
HAL Id: tel-00807081
https://theses.hal.science/tel-00807081

Submitted on 2 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stiffness and grip force measurement using an eccentric
mass motor: a dynamic model and experimental

verification
Miquel Lopez

To cite this version:
Miquel Lopez. Stiffness and grip force measurement using an eccentric mass motor: a dynamic model
and experimental verification. Biomechanics [physics.med-ph]. University of California, Irvine, 2012.
English. �NNT : �. �tel-00807081�

https://theses.hal.science/tel-00807081
https://hal.archives-ouvertes.fr


 

 

 

UNIVERSITY OF CALIFORNIA, 

IRVINE 

 

Stiffness and grip force measurement using  

an eccentric mass motor: a dynamic model and experimental 

verification 

 

THESIS 

 

 

 

in Mechanical and Aerospace Engineering 

 

by 

 

Miquel Batalle Lopez 

 

 

 

 

2012  



ii 

 

TABLE OF CONTENTS 

 

List of figures ........................................................................................................... iii 

List of tables ............................................................................................................ vii 

Acknowledgments .................................................................................................. viii 

Abstract of the thesis ................................................................................................ ix 

 

 

  



iii 

 

List of figures 

 

Figure 1: Schematic picture of a subject grasping an object. The eccentric mass 

motor, is placed on the outside of the finger, mounted onto a ring. ................................................3 

Figure 2: Schematic showing the mechanical model of our system (Figure 1). It 

is composed of four basic elements: eccentric mass dc motor, skin mechanical 

impedance, system mass and muscle stiffness which is in charge of 

increasing/decreasing the system stiffness (input). ..........................................................................7 

Figure 3: State space representation suggests that we need to solve our two 

ODEs, found applying the Lagrange’s method, for system acceleration and motor 

angular acceleration. Spaces 1x1 and 1x3 in matrix Eq. 8 respectively. .........................................9 

Figure 4: Hill’s muscle model considering three elements: Contractile component 

(CE), parallel elastic element (KPE) and series elastic element (KSE). ...........................................11 

Figure 5: Graphical representation of the estimated stiffness and Normalized 

Force Level NFL, interpolated for the whole range of force. At the maximum 

force level 100%, we have a muscle stiffness of 816.1 N/m. Graph taken from [4], 

Fig. 4, subject B. ............................................................................................................................13 

Figure 6: scheme showing skin mechanical impedance. Composed of a mass 

component (M), a damper component (C) and a spring component (K) which 

represents stiffness. All of them in parallel with each other. .........................................................15 

Figure 7: Cantilever configuration of the finger. Where Me is the mass of the dc 

motor, off-balance load and ring enclosure, and MFinger is the finger mass. This 

model allows us to find the equivalent mass of the system M1. ....................................................16 

Figure 8: Regular pager dc motor by SolarBotics. It measures in at 7.05mm 

(0.277") diameter, 16.54mm (0.651") body length, and 21.7mm (0.854") overall 

length, with the shaft diameter of 1.01mm(0.039"). ......................................................................18 

 

 



iv 

 

Figure 9:  Picture showing SolidWorks assembly. Whole and partial views of the 

first setup. DC mass eccentric motor plus off-balance load which consists of three 

2/56” screws and coupling. This assembly was designed to create a high vibratory 

effect to our system. .......................................................................................................................20 

Figure 10: Picture showing SolidWorks assembly. Whole and partial views of the 

second setup. DC mass eccentric motor plus off-balance load which consists of 

one 2/56” screw and coupling. This assembly was designed to create a low 

vibratory effect to our system. .......................................................................................................20 

Figure 11: Motor velocity characteristic curve. Where the settling time is s ≈ 0.2 

s and motor velocity at equilibrium point 9553 R.P.M. ................................................................23 

Figure 12: Torque and power characteristic curves, with a maximum torque of 

0.1716 Nmm and a power peak at 43 mW. ....................................................................................24 

Figure 13: Efficiency and Current characteristic curves, with efficiency peak at 

52 % and with maximum current at 127 mA. ................................................................................24 

Figure 14: Cantilever beam setup. Eccentric mass dc motor is standstill. The 

beam was slid in and out in order to change the stiffness and measure the 

vibration and speed of the dc motor. ..............................................................................................31 

Figure 15: Picture of the whole cantilever beam setup. On the right, beam 

anchored to the table, eccentric mass dc motor rotating. In the middle, national 

instrument, stroboscope and power supply. On the left side of the picture, 

computer with Matlab acceleration data plots. ..............................................................................32 

Figure 16: Cantilever beam model. ...............................................................................................33 

Figure 17: Impulse response for a span of 119.4 mm or 1500 N/m. ........................................... 34 

Figure 18: Impulse response fit curve for stiffness 1500 N/m. Both curves 

overlap, meaning that the fit is good. .............................................................................................35 

Figure 19: Damping ratio evolution for thirteen levels of stiffness considered. In 

N/m: 250, 500, 625, 750, 1000, 1500, 3000, 4500, 6000, 7500, 9000, 10,500 and 

12,000.............................................................................................................................................36 

Figure 20: Picture of the non- interposed ring sensor setup. The subject is 

wearing the device on the intermediate phalange of the index finger ...........................................37 



v 

 

Figure 21: Picture showing ring sensor experiment setup. On the right, force 

transducer handgrip plus ring sensor worn by the subject. In the middle national 

instrument to acquire data. On the left side, power supply. ...........................................................39 

Figure 22: Experiment #1. Plot showing the comparison between simulation and 

data recorded by the accelerometer and stroboscope for stiffness levels [N/m]: 

250, 500, 625, 750, 1000, 1500, 3000, 4500, 6000, 7500, 9000, 10,000 and 

12,000.............................................................................................................................................50 

Figure 23: Experiment #1. Plot showing the evolution of motor velocity over 

time for the simulation. ..................................................................................................................50 

Figure 24: Experiment #1. Plot showing the resonance analysis for experiment 

#1. Simulation vs. Experiment results. ..........................................................................................51 

Figure 25: Experiment #1. Plots of vibration displacement for every stiffness, 

max amplitude at steady state taken in order to build Figure 24. .................................................52 

Figure 26: Experiment #1. Plot showing the natural frequency of the system for 

each stiffness vs. the motor velocity. When they match up the system is 

resonating. ......................................................................................................................................53 

Figure 27: Experiment #1. Plot showing the vibration acceleration as a function 

of stiffness. System resonating for a stiffness of 1500 N/m. .........................................................53 

Figure 28: Experiment #1. Acceleration profile for every stiffness in g-force 

(9.81 m/s
2
). Data used to build Figure 27. Plot for K = 1500 N/m, the 

accelerometer was saturated (acceleration > 6G) since the system is resonating. .........................55 

Figure 29: Experiment #2. Plot showing the comparison between simulation and 

data recorded by the accelerometer and stroboscope for stiffness levels [N/m]: 

250, 500, 625, 750, 1000, 1500, 3000, 4500, 6000, 7500, 9000, 10,000 and 

12,000.............................................................................................................................................56 

Figure 30: Experiment #2. Plot showing the evolution of motor velocity over 

time for the simulation. ..................................................................................................................57 

Figure 31: Experiment #2. Plot showing the natural frequency of the system for 

each stiffness vs. the motor velocity. When they match up the system is called to 

be in resonance. ..............................................................................................................................57 

Figure 32: Experiment #3. Plot showing the comparison between simulation and 

data recorded by the accelerometer and stroboscope for stiffness levels [N/m]: 



vi 

 

250, 500, 625, 750, 1000, 1500, 3000, 4500, 6000, 7500, 9000, 10,000 and 

12,000.............................................................................................................................................58 

Figure 33: Experiment #3. Plot showing the evolution of motor velocity over 

time for the simulation. ..................................................................................................................58 

Figure 34: Experiment #3. Plot showing the natural frequency of the system for 

each stiffness vs. the motor velocity. When they match up the system is called to 

be in resonance. ..............................................................................................................................59 

Figure 35: Plot showing the voltage analysis of sensitivity. ........................................................ 60 

Figure 36: Plot showing the off-balance load analysis of sensitivity. ......................................... 61 

Figure 37: Plot showing the system mass analysis of sensitivity. ............................................... 62 

Figure 38: Plot showing the evolution of motor velocity as we vary the voltage 

for constant levels of stiffness........................................................................................................63 

Figure 39: Experiment #1. Force transducer grip force measurements and 

accelerometer data profile. .............................................................................................................66 

Figure 40: Experiment #1. Normalized force level versus motor frequency. Data 

from Figure 39. .............................................................................................................................67 

Figure 41: Experiment #1. Comparison between simulation and experiment. 

Muscle stiffness is related to NFL (%) through Figure 5. ............................................................68 

Figure 42: Experiment #2. Force transducer grip force measurements and 

accelerometer data profile. .............................................................................................................69 

Figure 43: Experiment #2. Normalized force level versus motor frequency. Data 

from Figure 42. .............................................................................................................................69 

Figure 44: Experiment #2. Comparison between simulation and experiment. 

Muscle stiffness is related to NFL (%) through Figure 5. ............................................................70 

Figure 45: Plot showing the trade-off between ring sensor sensitivity and g-force, 

and the optimal point in red. ..........................................................................................................72 

Figure 46: Optimal set of parameters, red point. ......................................................................... 73 

Figure 47: Optimal system behavior ............................................................................................ 74 

  

file:///C:/Users/Miquel/Desktop/Master's%20Thesis/Master's%20Thesis%20-%20Final%20Version/MS%20-%20WriteUpV.docx%23_Toc335093597
file:///C:/Users/Miquel/Desktop/Master's%20Thesis/Master's%20Thesis%20-%20Final%20Version/MS%20-%20WriteUpV.docx%23_Toc335093597


vii 

 

List of tables 

 

Table 1: Masses in our system, with Eq. 11 and Eq. 12 it gives us a total mass of ≈ 16 g. ........ 17 

Table 2: Regular pager dc motor characteristics. 1.5V gives 17.5mA free draw 

current (120mA stall) at 9700RPM. 3V gives 22mA free (260mA stall) at 

18,420RPM. 5V operation give 32.1mA free (420 stall) at 31,900RPM. .....................................18 

Table 3: Values of off-balance load and eccentricity for sets one and two. ................................ 20 

Table 4: DC Motor variables calculated using Table 2, Eq. 14 and 15. Motor 

winding resistance measured using a multimeter, and for the motor moment of 

inertia we picked a low value since it is very insignificant compared to the off-

balance load mounted onto the shaft. .............................................................................................22 

Table 5: DC Motor simulation parameters for V = 1.5 volts. ...................................................... 23 

Table 6: Beam total mass for each stiffness level. ....................................................................... 34 

Table 7: Parameters bounds and number of steps taken, which also define the increment size. . 47 

Table 8: Optimal parameters. ....................................................................................................... 71 

  



viii 

 

Acknowledgments 

 

I would like to thank my advisor for welcoming me in the Biomechatronics lab, for his great 

advise and motivation, and giving me the opportunity of living such an incredible experience 

because I have truly learnt a lot. 

Thank you to the members of the Biomechatronics lab, for helping me with my experiments and 

throughout the whole year. Thanks to the rest of the committee members, Professor James 

Bobrow and Professor Mark Bachman.  

Additionally, my sincere appreciation to the Balsells Fellowship Program for offering me the 

opportunity of pursuing my Master’s in Mechanical and Aerospace Engineering at the University 

of California, Irvine. Specially thanks to Professor Roger Rangel for his support. 

Finally, special thanks to all my family for their support. 

  



ix 

 

 

Abstract of the thesis 

Stiffness and grip force measurement using an eccentric  

mass motor: a dynamic model and experimental verification 

 

by 

 

Miquel Batalle Lopez 

Master of Science in Mechanical and Aerospace Engineering 

University of California, Irvine, 2012 

 

 

 

Loading can dramatically reduce the vibratory displacement and the operating frequency in 

vibrotactile systems implementations that use an eccentric mass motor, but this phenomenon is 

not well modeled or understood. In this work, we derive a dynamic model of this phenomenon 

and implement a system for measuring stiffness and grip force that take advantage of this 

phenomenon. The system is based on a non-interposed sensing approach using an eccentric mass 

dc motor mounted on the outside of the index finger. If the device were to be worn as a wearable 

sensor, it could be embedded in a ring. The basic idea is that a person could wear the ring sensor 

and through it measure the stiffness and grip force when squeezing various objects, without 

requiring the ring sensor to actually contact the object. The results show that grip force and 

muscle stiffness vary with motor velocity (operating frequency) and thus that the measurement 



x 

 

of velocity can be used to infer grip force and stiffness. With the validated model, we also 

developed an optimization routine which computes the best design parameters for inertial load 

and voltage to maximize the phenomenon. This provided insight into the optimal parameters that 

should be used in an actual ring sensor design to achieve high performance by attaining a good 

trade-off between high sensor sensitivity and low level of vibration. 
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1 Introduction  

 

 

Eccentric mass motors are used in a wide range of applications, including vibration alerting 

functions in cell phones and pagers, and vibrotactile systems for providing haptic feedback. 

Vibrotactile systems take advantage of the body's sense of touch for the conveyance of 

information, hence the device, i.e. the eccentric mass motor, is usually enclosed within a housing 

and mounted to the skin. Human skin impedance is composed of three components: mass, a 

springy component and a viscously damping one. It is also known that the human skin is highly 

non-linear [3] and that its impedance varies with frequency and location on the body, as well as 

the loading applied to it [1],[2]. Hence, depending on the design of a vibrotactile system device, 

loading can dramatically reduce the vibratory displacement and the operating frequency [1]. This 

phenomenon is disadvantageous for these systems since they should ideally produce a 

displacement output that is relatively independent of loading to generate a consistent sensation 

for the user. Developers of vibrotactile systems have suggested that in order to avoid these 

adverse effects the mechanical properties of the skin should carefully be taken into consideration 

in device design [2]. Yet, to our knowledge, there are no dynamic models of the interactions of 

eccentric mass motors and human skin that could be used to guide device design. In the work 

presented here, we present such a dynamic model and verify it experimentally. 
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We also show using the model and several experiments how the loading phenomenon can be 

used to our advantage in order to measure hand stiffness and grip force without interposing the 

sensor between the hand and the object gripped. 

Vibration has previously been taken advantage of in order to measure the impedance of the 

human hand or arm, however never grip force to our knowledge, and not in a non-interposed 

way. For instance, a vibratory device for measuring the arm's geometrical mechanical impedance 

was developed [7]. This device is larger than the ones used in vibrotactile systems, being about 

the size and shape of a coffee mug. Essentially, the human hand that holds the device receives a 

dynamic force exerted by the centrifugal force due to the rotating mass. Ultimately, acceleration 

signals caused by the vibration are correlated with the perturbing force in order to obtain hand 

mechanical impedance.   

In our case, we are interested in the measurement and estimation of the human hand's stiffness 

during gripping, which is also an active research topic. For example, for this application, a grasp 

perturbator to measure finger stiffness during pinch grip operations was recently developed [4]. 

It relies on a simple idea: the device displaces the relative position of thumb and index fingers by 

a known distance and measures the reaction force exerted by the fingers. The device also shows 

a linear relationship between finger stiffness and grip force. A disadvantage of this device is that 

it must be interposed between the fingers to measure stiffness. That is, it can only be used to 

measure hand stiffness when the hand is gripping the experimental apparatus itself.  In this 

project, we show how it is possible to take advantage of the loading effects of vibratory systems 

in order to create a non-interposed grip force sensor.  
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2 Materials and Methods 

 

 

2.1 Basic Phenomenon and Overview of Methods 

In this section a dynamic model for a system for measuring stiffness and grip force is presented. 

It is based on a non-interposed sensing approach using an eccentric mass dc motor mounted on 

the outside of the index finger, between the distal interphalangeal and proximal interphalangeal 

joints (Figure 1). If the device were to be worn as a wearable sensor, it could be embedded in a 

ring. The basic idea is that a person could wear the ring sensor and through it measure the 

stiffness and grip force when squeezing various objects, without requiring the ring sensor to 

actually contact the object. 

 

Figure 1: Schematic picture of a subject grasping an object. The eccentric mass motor, is placed 

on the outside of the finger, mounted onto a ring. 
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The basic phenomenon used to measure stiffness and grip force is as follows. The off-balance 

load carried by the dc motor causes the finger to vibrate. For a lower impedance system the 

vibratory displacement is high, creating a greater inertial load on the motor. Since the motor is 

driven at a constant voltage, the dc motor spins at lower velocities. Higher impedances cause the 

motor to speed up.  Because the impedance of the finger and the grip force are directly related, a 

lower force generates a high vibratory displacement, and thus low velocities for the motor. On 

the other hand, high grip forces cause the motor to speed up.  

To study this phenomenon we carried out two experiments: 

 Cantilever beam with variable length: The goal of this experiment is to quantify the 

relationship between motor velocity and stiffness in a controlled setting. Changing the 

length of the beam, we varied the stiffness of the system, and as a result the motor 

(mounted at the end of the beam) changed its velocity as well. This experiment allowed 

us to investigate the sensitivity of each parameter in our model (Figure 2). 

 Ring Sensor: The purpose of this experiment was to take advantage of the phenomenon to 

build a non-interposed grip force sensor. We built a simple ring and tested it in order to 

demonstrate how we can measure grip force and muscle stiffness by correlating them 

with motor velocity.  

 

We derived the equations of motion applicable to both experiments and simulated them using 

Matlab. This procedure validated the mathematical model and confirmed our hypothesis that grip 

force and muscle stiffness vary with motor velocity.  
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With the validated model, we developed an optimization routine which computes the best design 

parameters for inertial load and voltage to maximize the phenomenon. This provided insight into 

the optimal parameters that should be used in an actual ring sensor design to achieve high 

performance by attaining a good trade-off between high sensor sensitivity and low level of 

vibration.  

The basic idea is that, designing a grip force sensor using an eccentric mass dc motor, we want it 

to be able to increase/decrease its angular velocity very rapidly and as much as possible when 

there is a change in muscle stiffness/grip force. However, we do not want the device to be 

annoying for the wearer, so it needs to work at the lowest level of vibration possible.  

The dependence of the system to parameters such as voltage, total mass and off-balance load is 

also studied through simulations. Quantifying how sensitive the system is to a change in these 

parameters provides insight into the phenomenon. In other words, we quantified what happens 

when we raise and drop the voltage, when we mount a light or a big off-balance load or, how our 

system is going to behave if instead of using a light housing for our dc motor we use a heavy 

one.   
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2.2 Mathematical Model 

The mathematical model can be divided into four parts: skin mechanical impedance, muscle 

stiffness, system total mass and eccentric mass dc motor (Figure 2).  

The basic idea is that an increase in grip force is associated with an increase in muscle stiffness, 

as muscle become stiffer as they contract. The skin is compressed also during grip and it also 

increases its impedance. As a result of this action, the dc motor velocity changes. The model 

results in a second order system, where skin and muscle stiffnesses are in parallel, which means 

that the total stiffness is the sum of one plus the other. Skin damping remains in parallel with 

total stiffness and skin mass can be added to the total mass.  

In Figure 2, the dc motor is modeled by and J which respectively are motor angular position, 

torque and moment of inertia. M1 accounts for the mass of our system (off-balance load, dc 

motor, ring and finger mass). The constant m is the mass of the off-balance load and l is its 

eccentricity. Skin mechanical impedance is represented by M2, C and KSkin which respectively 

are mass, damping and stiffness of the area of skin affected by the vibration. For the muscle, we 

used a simplified version of the hill’s model. Hence KMuscle is its stiffness. X is the system 

amplitude of vibration or vibratory displacement. Finally, for our calculations we consider only 

one total mass M which is the sum of M1 and M2. 
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Figure 2: Schematic showing the mechanical model of our system (Figure 1). It is composed of 

four basic elements: eccentric mass dc motor, skin mechanical impedance, system mass and 

muscle stiffness which is in charge of increasing/decreasing the system stiffness (input). 

 The dynamic equations of our system are obtained using Lagrange’s Method. The basic idea is 

to calculate kinetic energy (Eq. 2), potential energy (Eq. 5) and dissipative energy (Eq. 6) for the 

system as a function of every DoF (degree of freedom). Then, applying the Lagrangian (Eq. 1) 

and identifying all the existing forces and torques, we can obtain the differential dynamic 

equations. We have a two DoF system, where the variables are: System position and motor 

position, denoted by X and . Their first time derivatives    and     account for linear and angular 

velocity. And the second ones    and    for linear and angular acceleration.  
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Dissipative Energy 
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The variables or DoF of our system are associated to either a force or a torque, accounted as Qj 

in the Lagrangian (Eq. 1). In our case we only have a torque (Eq. 7) which is related to variable 

. It is exerted by the dc motor, and it can be obtained through the dc motor equation [10]. The 

constants in this equation are explained in further detail in  2.2.4.2. 
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Figure 3: State space representation suggests that we need to solve our two ODEs, found 

applying the Lagrange’s method, for system acceleration and motor angular acceleration. Spaces 

1x1 and 1x3 in matrix Eq. 8 respectively. 
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Finally, the mathematical model of our system is given by the following expression (Eq. 9) in 

state space form. The solution of these equations will define the dynamics of our system (Figure 

2). ODE15s will return variables x(1), x(2), x(3) and x(4) (Eq. 7), as a function of time. The 

behavior of these parameters will be studied in further stages of this work by introducing KMuscle, 

KSkin, CSkin as variables and also optimized for m, l and V.   
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2.2.1 Muscle Stiffness 

Muscles produce two kinds of force by contracting their fibers, active and passive, which sum to 

compose a muscle’s total force. This action has been largely modeled using a Hill’s model 

(Figure 4).  The model is composed of three elements: Contractile element (CE) which is the 

element in charge of generating force, an elastic element in parallel with the contractile element 

(KPE), which is responsible for the muscle passive behavior when it is stretched, and a series 

elastic element (KSE), which represents the tendon. 

  

 

Figure 4: Hill’s muscle model considering three elements: Contractile component (CE), parallel 

elastic element (KPE) and series elastic element (KSE). 

In our model, the stiffness that we take into consideration is a mixture of the parallel elastic 

element (KPE) and the series elastic element (KSE). Thus, for us KMuscle defines the total muscle 

stiffness measured, combination of the series and parallel elastic elements. 

http://en.wikipedia.org/wiki/Stretched
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Muscle stiffness is considered as a variable in our simulations, since it defines muscle activity. 

For instance, if we are holding a cup of coffee and if we want to hold it more firmly, KMuscle will 

have to increase, hence the strength in our hand will become higher and as a consequence the cup 

of coffee will be squeezed stronger, and vice versa.  

Eventually, one of our purposes in this work is to determine muscle stiffness using our device by 

correlating it with motor velocity. As a gold standard, we estimated skin stiffness from grip force 

by usingdata from a previous experiment that used an interposed actuator to measure grip 

stiffness [4]. From this data we picked the subject who was capable of producing the largest 

force/stiffness. In terms of computer simulation, since this previous research showed that the 

relationship between stiffness and grip force is essentially linear, KMuscle is defined as an input 

and introduced as a linear vector of size 1x40, and bounds at KMuscleMIN = 1 and KMuslceMAX = 

816.1. 
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Figure 5: Graphical representation of the estimated stiffness and Normalized Force Level NFL, 

interpolated for the whole range of force. At the maximum force level 100%, we have a muscle 

stiffness of 816.1 N/m. Graph taken from [4], Fig. 4, subject B.  
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2.2.2 Skin Mechanical Impedance 

Skin mechanical impedance properties have to be taken into consideration since it is very well 

known that they can vary for many reasons. 

 Skin is compressed due to its springy component: the higher the compression the larger 

the impedance.  

 As a results of vibrations [2]: Something more complex happens in this case, since some 

different behaviors or properties can be shown depending on the part of our body where 

we want to focus our action. For example, on the human hand, it has some considerable 

variations. Natural frequencies can be found within 80-200 Hz. At the start (i.e. for low 

frequencies) the impedance decreases with the frequency down to a minimum level, after 

which it increases. This minimum level defines resonance, fr. The viscous parts of the 

skin tissues are where the absorption of vibration is going to take place. The mechanical 

vibration is transformed into heat defining the damping component.  

 Hence, skin mechanical impedance is also going to be dependent on diameter of skin 

affected by vibration. The more area affected the larger is the effect [1],[2].  
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Figure 6: scheme showing skin mechanical impedance. Composed of a mass component (M), a 

damper component (C) and a spring component (K) which represents stiffness. All of them in 

parallel with each other. 

Despite the fact that skin is highly non-linear, modeling it as a linear system is a reasonable 

assumption for our case [3]. So, for our simulation ( 2.4) we define skin stiffness and damping as 

linear functions that go from an initial to a final value. 

The estimation of this impedance was made using [2] and [3], and introduced as vectors of size 

1x40, with bounds at: 

 Skin Stiffness [N/m]: 25-4200 

 Skin Damping [N-s/m]: 1-17 

 Skin Mass [g]: 2.4 constant.  
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2.2.3  System Total Mass 

The total mass of our system is the sum of the off-balance load, dc motor, ring and finger mass. 

The dc motor mass is provided by the manufacturer, the off-balance load and ring mass can be 

obtained by weighting them on a scale. On the other hand, to find mass of the finger, the density 

and volume of it were estimated by considering the bone density of the finger (Bone = 1.1 g/cm
3
 

[8]) and approximating its volume to a cylinder. 

        (10) 

Next, the finger is contemplated as a spring element in a cantilever configuration [9].  

 

Figure 7: Cantilever configuration of the finger. Where Me is the mass of the dc motor, off-

balance load and ring enclosure, and MFinger is the finger mass. This model allows us to find the 

equivalent mass of the system M1.  

 

Me 
MFinger 

L 

FingerBoneFinger VM  
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To determine the equivalent mass, the basic idea is to find a unique mass that placed at the end of 

the beam gives us an equivalent system in terms of kinetic energy, in other words it is called 

kinetic energy equivalence. The formula applied is: 

        (11) 

 

Eventually, to find the total mass of the system all we have to do is to add the mass of the skin 

(M2): 

             (12) 

 

Table 1: Masses in our system, with Eq. 11 and Eq. 12 it gives us a total mass of ≈ 16 g.  

System Mass 

 Parameter Description Measurement Method Value [g] 

MDC DC motor mass Given by manufacturer 2.4 

m Off-Balance Load mass see  2.2.4 see  2.2.4 

MFinger Index finger mass See 2.1.3
 

6.9 

MRing Ring Mass Scale 12 

 

 

  

fingere MMM  23.01

21 MMM 
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2.2.4  Eccentric Mass DC Motor  

In our study we used a pager motor by SolarBotics. We decided to use this motor for our study 

because they are very economic, efficient and it satisfied our requirements size wise. Also, it is a 

popular dc motor used in many applications. That means that is versatile and robust. 

 

Figure 8: Regular pager dc motor by SolarBotics. It measures in at 7.05mm (0.277") diameter, 

16.54mm (0.651") body length, and 21.7mm (0.854") overall length, with the shaft diameter of 

1.01mm(0.039").  

Not so many performance features are given by the manufacturer, but enough to build our dc 

motor model and figure out the value for all the parameters that appear in these equations of 

motion. 

Table 2: Regular pager dc motor characteristics. 1.5V gives 17.5mA free draw current (120mA 

stall) at 9700RPM. 3V gives 22mA free (260mA stall) at 18,420RPM. 5V operation give 

32.1mA free (420 stall) at 31,900RPM. 

Voltage RPM Current (free) Current (stall) 

1.5V 9700 17.5mA 120mA 

3.0V 18420 22mA 260mA 

5.0V 31900 32.1mA 420mA 
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2.2.4.1 Off-balance load 

In order to off-balance the system and create the vibration, we manufactured our own eccentric 

mass which mounted onto the motor's shaft acted as an eccentric load. In like manner, 

manufacturing it allowed us to add/remove weight when desired, hence control the vibration. So, 

the level of vibration is dependent on our own off-balance load (‎2.2.4.1) and on the level of 

electric power supplied (‎2.3.1.1) to the dc motor as well, which determined by the voltage that 

we control sets the motor at different speeds. 

We essentially; used two different off-balance setups. The first one was meant to create a big off-

balance vibration and the second one to create a smaller effect. The design of this load was very 

simple. A cylinder with a bore to press-fit the shaft of the dc motor and act as a coupling in order 

to later on twist three screws in the sides, perpendicularly to the shaft where three more bores 

had been made and tapped beforehand. The purpose of these screws was to create an off-balance 

movement, as well as making sure that the motor’s shaft and coupling spin together, hence the 

lowest one (see Figure 9 and Figure 10), acts as a set screw by compressing the shaft. Their size 

is 2/56”, so we are dealing with small stuff and we do not need light weights. The material used 

for the coupling was PTFE-Filled Delrin® Acetal Resin, by performance plastic.  

In this section, the parameters of interest for us are mass (in grams) and eccentricity (in 

millimeters). Thus, a SolidWorks model of the off-balance load helped us to figure them out by 

evaluating the mass properties of the assembly. Density was assigned to each component, and the 

Cartesian origin was placed at the center of the coupling so we could directly obtain the 

eccentricity.    
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Figure 9:  Picture showing SolidWorks assembly. Whole and partial views of the first setup. DC 

mass eccentric motor plus off-balance load which consists of three 2/56” screws and coupling. 

This assembly was designed to create a high vibratory effect to our system.   

 

   

Figure 10: Picture showing SolidWorks assembly. Whole and partial views of the second setup. 

DC mass eccentric motor plus off-balance load which consists of one 2/56” screw and coupling. 

This assembly was designed to create a low vibratory effect to our system.  

 

Table 3: Values of off-balance load and eccentricity for sets one and two. 

Parameters m (off-balance load) in grams l (eccentricity) in mm 

SETTING #1 1.89 4.25 

SETTING #2 1.01 2.11 
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2.2.4.2 DC Motor model 

The behavior of our system depends on the characteristics of our dc motor. It determines 

velocity, torque and power. Hence, it was very important to build a very accurate model of it. 

Parameters such as rise time, time constant, bandwidth and final motor velocity may be a little 

off with respect to the reality unless we achieve a good modeling for our dc motor.  

The equations of motion for DC motors are (Eq. 13): 





















vIKJ

KRI
dt

dI
LV

t

b

        (13)
 

where, V is the voltage applied to the motor, L is the motor inductance, I the current through the 

motor windings, R the motor windings resistance, Kb the motor's back electromagnetic force 

constant,  the rotor's angular velocity, J the rotor's moment of inertia, kt the motor's torque 

constant,  the motor's viscous friction constant, and  the torque applied to the rotor by an 

external load.

 

However, the dc motor behavior will be analyzed at the two equilibrium points, 

taking advantage of the fact that we are given the characteristics of our dc motor for three 

different voltages (Table 2):  

 Stall: when the load carried by the dc motor is so large that the angular velocity goes 

down to zero, essentially because the motor cannot handle so much torque.  

 Free: when there is no load carried by the dc motor and it turns without any resistance. 
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The system is called to be in equilibrium when after applying a voltage, the motor angular 

velocity settles (i.e. reaches a steady value). The motor is not accelerating anymore and the 

current drawn by it has stabilized, so the derivatives in Eq. 13 are zero. Hence, taking all that 

into consideration, and the fact that if there are no electromagnetic losses, the torque constant is 

equal to the motor's back electromagnetic force constant and then we can assume [12]: 

tb KK 

             (14)

 

The equations of equilibrium are: 
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          (15) 

 

Table 4: DC Motor variables calculated using Table 2, Eq. 14 and 15. Motor winding resistance 

measured using a multimeter, and for the motor moment of inertia we picked a low value since it 

is very insignificant compared to the off-balance load mounted onto the shaft. 

DC MOTOR 

 Parameter Description Value Units 

Kb Motor's back electromagnetic force constant 0.00135 V·s/rad 

Kt Torque constant Kt = Kb N·m/Amp 

v Motor's viscous friction constant 1.71·10
-8 

N·m·s/rad 

R Motor winding resistance 18 Ohms 

J Motor moment of inertia 5·10
-9 

Kg·m
2 

  



23 

 

2.2.4.3 DC Motor performance characteristics 

 In this section we show a simulation of our DC motor performance characteristics, considering 

that it carries no load: m = 0 g (Figure 2).  

Table 5: DC Motor simulation parameters for V = 1.5 volts.   

Voltage RPM Current (free) Current (stall) 

1.5V 9553 15mA 127mA 

 

As we can observe in Table 5, the parameters of the simulation that we obtained are very close 

to the ones provided in Table 2. Hence, we can consider that the model build of the dc motor is 

good enough.  

 

Figure 11: Motor velocity characteristic curve. Where the settling time is s ≈ 0.2 s and motor 

velocity at equilibrium point 9553 R.P.M. 
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Figure 12: Torque and power characteristic curves, with a maximum torque of 0.1716 Nmm and 

a power peak at 43 mW. 

 

Figure 13: Efficiency and Current characteristic curves, with efficiency peak at 52 % and with 

maximum current at 127 mA.  
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2.3 Experiment Setup 

In this section we describe the two experiments we conducted in order to verify our hypothesis, 

as explained in ‎2.1.  

First of all, the idea is to show that stiffness can be written as a function of motor velocity for our 

type of system. Hence, we came up with a simple system, a cantilever beam with variable length, 

which can allow us to find a clear correlation between parameters, and in the same manner was 

easy to model. Also, it is a quite studied case so that a lot of information can be found about it. 

The dc motor was mounted to the free end of the beam. Different lengths were defined which 

cause different levels of stiffness. Then, starting by setting the beam at a long span, progressively 

we shortened it as we measure the velocity of the motor for each given length or level of 

stiffness, eventually building a graph with the measurements obtained. This procedure was 

repeated for three different voltages and two off-balance loads, so we can investigate the 

behavior of our eccentric mass dc motor for different settings. The voltage was controlled by 

connecting it to a Laboratory DC Power Supply HY3005D, which allowed the adjustment of 

output voltage. Also two other magnitudes were measured, motor velocity and vibratory 

acceleration. The most suitable device to collect this type of data is an accelerometer. Hence 

frequency of vibration (which is equivalent to motor velocity) and vibratory acceleration can be 

read. In addition, we made use of a stroboscope to measure motor velocity so accelerometer 

readings can be supported.  

Secondly, we also needed to show that an actual ring sensor could be built and that we could use 

its principle of operation to measure grip force and muscle stiffness. For this reason, a 
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rudimentary ring sensor was put together. Composed of a flexible ring made of electrical tape 

and paper, it supported the eccentric mass dc motor on the outside. It is easy to pun on and take, 

off the index finger. The ring is also comfortable and light weight, which are important 

requirements so the subject who wears it is not supposed to notice anything. The same 

instruments utilized for the cantilever beam setup were used here for taking measurements, an 

accelerometer and a strobe light. Furthermore, a force transducer to demonstrate direct 

correlation between motor velocity and grip force was used as well.  

The data obtained was acquired using a national instrument, NI USB-6009 and processed with 

Matlab. 
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2.3.1 Experiment Equipment  

2.3.1.1 Power supply 

The regular pager dc motor voltage can be controlled by connecting it to a Laboratory DC Power 

Supply HY3005D. The current drawn is dependent on voltage and load mounted onto the shaft. 

Those are input parameters for us, which we require to be constant for each experiment. The 

current on the dc motor will also drop as it speeds up due to an increase in muscle stiffness/grip 

force which will provoke a decrease in system inertial load. The apparatus is equipped with LCD 

Displays for voltage and current, however a multimeter was used to double-check voltage output, 

since resolution was not accurate enough. Some features: Input Voltage: 207 - 253V AC, 50Hz. 

Output Voltage: 0 - 30V DC. Output Current: 0 - 5A DC.    

 

2.3.1.2 Accelerometer 

A MMA7361L 3-Axis Accelerometer ±1.5/6g by Polulu was used. This device was highly 

suitable for both of our experiment setups due to its tiny dimensions. It is a low-g accelerometer, 

with maximum sensitivity range of 6g, which is within our range of study, considering that we 

are not interested in studying high levels of vibration because we want our wearable ring sensor 

to be a comfortable for the subject. This device also allowed us to measure frequency, since the 

output is an sinusoidal curve with amplitude equal to acceleration in g (9.81 m/s
2
).  

  

http://www.pololu.com/catalog/product/1246


28 

 

2.3.1.3 Stroboscope 

A strobe light capable of emitting up to 12,215 flashes per minute was used to measure motor 

velocity. It is done by matching flashing rate emitted by the stroboscope with the speed of 

rotation of the motor. So, out of this measurement we can obtain directly revolutions per minute. 

Our off-balance load allowed us to use this instrument since the screws could be taken advantage 

of as a reference. Eventually, we wanted our screws to standstill which meant that flashing rate 

and motor velocity matched.  

2.3.1.4 Force transducer 

Composed of a handgrip and a load cell, the force transducer provided us direct grip force 

measurements by squeezing the handgrip, using a NI 6221 DAQ for acquiring the data and 

ultimately Matlab for processing it. 

 

2.3.1.5 Data acquisition 

National instruments NI USB-6009 and NI 6221 DAQ were used to acquire data from the 

accelerometer and force transducer respectively. Equipped with several analog and digital ports 

for receiving inputs and sending outputs. These national instruments were very convenient for 

our study, also easy to set up and use since NI-DAQ drivers is the only thing needed to allow 

Matlab read from them.   
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2.3.2 Cantilever Beam Experiment 

The main requirement for our cantilever beam was a variable length, hence a slider anchored 

with a bar clamp at one end formed the support, capable of withstanding the moment and shear 

stress produced by the eccentric mass motor vibration. The span of the beam could be varied by 

loosening four straps. Nevertheless, during the experiment the end of the beam was strapped 

tight in order to ensure the proper cantilever behavior of the system. The eccentric mass motor 

was located at the free end, supported by a plastic connection mounted to the beam. The 

accelerometer was attached at the end of the beam as well, right next to the eccentric mass dc 

motor. Its axis was perfectly aligned with the system, so meaningful measurements could be 

obtained. Essentially, the z axis was the one oriented towards the vibration direction, y axis was 

parallel to the longitudinal axis of our beam and x axis parallel to the revolution axis of the dc 

motor. 

The beam material was brass with a transverse section of 1.61x25.6 mm
2
 and a density of 8500 

kg/m
3
. The mechanical properties of brass are very well know, however since sometimes there 

can be little variations, we carried out an experiment to figure out the Young's Modulus (E). A 

weight of 1.073 Kg, was hanged from the free end of the beam for different lengths. Each desired 

stiffness was represented by a length which was calculated using Eq. 16 [9].  

 Stiffnesses considered in N/m: 1500, 3000, 4500, 6000, 7500, 9000, 10,500, 12,000.   

 Respective lengths in mm: 119.4, 94.77, 82.79, 75.22, 69.828, 65.71, 62.419, 59.70.  
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Deflection was measured. Then, using Eq. 17 [9] the Young' Modulus was computed for each 

case. Eventually, the average was taken to determine the final value of E using the value of Ei for 

each length or stiffness level. Hence, the Young's Modulus obtained was 95,753.28 MPa, which 

is very close to the value found in books. 
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2.3.2.1 Experiment procedure 

The wires of the dc motor were connected to the positive and negative ports of the power supply 

using two bananas. Thirteen levels of stiffness were defined. Starting at low values and ending at 

high stiffnesses. Hence, from long spans to short ones: 

KSYSTEM [N/m]= [250, 500, 625, 750, 1000, 1500, 3000, 4500, 6000, 7500, 9000, 10500, 12000]. 

 Acceleration measurements were taken during ten seconds for every stiffness considered. The 

Matlab routine to obtain data was started a little bit before than the dc motor. In that manner, we 

could see the transition of our system from standstill to nominal conditions of operation for the 
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settings chosen. Meanwhile motor velocity was checked with the strobe light. Next, the straps 

were loosened, the beam slid out on to the next stiffness, and so forth.  

The procedure was repeated three times for three different sets of parameters since we are also 

interested in studying the dependency of the system on voltage and off-balance inertial load. In 

conclusion, we were taking motor velocity and vibratory data thirteen times per experiment 

(since we defined thirteen stiffnesses).  

 EXPERIMENT #1: V = 0.75 v, m = 1.01 g and l = 2.11 mm 

 EXPERIMENT #2:  V = 1.5 v, m = 1.89 g and l = 4.25 mm 

 EXPERIMENT #3:  V = 2.0 v, m = 1.01 g and l = 2.11 mm 

 

 

 

Figure 14: Cantilever beam setup. Eccentric mass dc motor is standstill. The beam was slid in 

and out in order to change the stiffness and measure the vibration and speed of the dc motor. 



32 

 

 

Figure 15: Picture of the whole cantilever beam setup. On the right, beam anchored to the table, 

eccentric mass dc motor rotating. In the middle, national instrument, stroboscope and power 

supply. On the left side of the picture, computer with Matlab acceleration data plots.  

Find a video of the experiment in Appendix Error! Reference source not found.. 

 

2.3.2.2 Cantilever beam model 

The dynamic model for the cantilever beam system was considered Figure 16, in order to obtain 

the right behavior in our simulation and to be able to compare simulation vs. experimental data. 

It is slightly different than the model for the ring sensor  2.2. It is composed of one spring, 
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damper and mass. All of them are properties of the material/beam, which vibrate due to the 

action of the eccentric mass motor, whose model, of course, is not going to change. 

 

Figure 16: Cantilever beam model. 

System total mass will vary for every level of stiffness since the more length the more mass, and 

vice versa. Again, we will have to find the equivalent mass using ‎2.2.3 and adapting it to new 

system. First of all, we can know the mass introduced by the material for every given length 

multiplying volume times density. Also the mass of the other components in the system can be 

found either by weighting them on the scale or using provided data. So, the weight of the dc 

motor is given, its support mounted to the end of the beam can be weighted and off-balance load 

is also an already known parameter. Hence, system mass can be identified. 
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Table 6: Beam total mass for each stiffness level. 

K [N/m] 250 500 625 750 1000 1500 3000 4500 6000 7500 9000 10,000 12,000 

MSYSTEM [g] 34.7 31.5 30.7 30 29 27.8 26.1 25.2 24.7 24.4 24.1 23.8 23.6 

 

The only parameter that we are missing is damping, which is usually the hardest to determine. 

The idea is to figure it out by applying and impulse to the beam for each level of stiffness 

considered and then fit an impulse response Eq. 18 [9], to the actual data which can be obtained 

with the accelerometer.   
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Figure 17: Impulse response for a span of 119.4 mm or 1500 N/m. 
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Figure 18: Impulse response fit curve for stiffness 1500 N/m. Both curves overlap, meaning that 

the fit is good. 

Process showed in Figure 17 and Figure 18 is repeated for every level of stiffness. After fitting 

the impulse responses, we can obtain the value of damping ratio for each stiffness, K. It is just a 

matter of comparing coefficients (Eq. 18) given that we know the mass of the system, hence 

natural frequency can be found, n = (K/M)
1/2

. 

Ultimately, through damping ratio we can calculate damping constant C, by applying Eq. 19, for 

every level of stiffness. 
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Figure 19: Damping ratio evolution for thirteen levels of stiffness considered. In N/m: 250, 500, 

625, 750, 1000, 1500, 3000, 4500, 6000, 7500, 9000, 10,500 and 12,000.  

 

The fit curve in Figure 19 is an interpolation so we can know the damping ratio for any given 

level of stiffness. It goes down, for stiffnesses near resonance of the system, at stiffness 1500 

N/m, and then after 6000 N/m it settles. 
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2.3.3 Ring Sensor Experiment 

A rudimentary ring was build to demonstrate the validity of our approach. It is a non-contact grip 

force sensor. The most important feature of our device with respect to other vibratory apparatus 

is that ours is not in touch with the skin, although the skin is affected by the vibration. It is not 

inserted between the object and the finger. Therefore, the ring mounts the eccentric mass motor 

facing the outside of the hand. 

 

 

Figure 20: Picture of the non- interposed ring sensor setup. The subject is wearing the device on 

the intermediate phalange of the index finger 
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2.3.3.1 Experiment procedure 

The experiment carried out here was simpler than the cantilever beam experiment, ‎2.3.2. The 

goal was to show a direct dependence between motor velocity and grip force, ultimately, relating 

this grip force to muscle stiffness using [4]. The only parameter that we wanted to change for this 

experiment was the off-balance inertial load, which can be easily done by changing the off-

balance load setting, ‎2.2.4. Two experiments were run, one with off-balance load setting #2 and 

the second with setting #1 (‎2.2.4.1), always keeping the voltage constant at 0.75 volts. Hence, the 

purpose was to cause different vibratory effects and see the magnitude of change in the 

relationship between motor velocity and grip force as we varied the off-balance load. 

First of all, the wires of the dc motor were connected to the positive and negative ports of the 

power supply using two bananas. The accelerometer was glued right next to the dc motor making 

sure that its axis was aligned. The one oriented towards the vibration direction was X. The 

handgrip of the force transducer used was squeezed progressively during ten seconds. The basic 

idea was to start squeezing it very weakly, increase the grade of force applied up to a maximum 

(NFL = 100%), and then relax the hand again. The procedure was aiming to obtain an 

acceleration profile that should show, initially a low frequency, continuously increasing to a high 

frequency and then going back to a low one. Ultimately, the purpose again was to see if the 

model built in ‎2.2 exhibited the same behavior as in the reality by comparing simulation vs. 

experimental data. Both sensors, accelerometer and force transducer, collected data for a period 

of ten seconds. To make sure that they were synchronized we just started to run their respective 

Matlab routines at the same time. Finally, all this procedure was repeated two times for each off-

balance inertial loading case. 
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Figure 21: Picture showing ring sensor experiment setup. On the right, force transducer handgrip 

plus ring sensor worn by the subject. In the middle national instrument to acquire data. On the 

left side, power supply. 

 

Muscle stiffness  2.2.1, and skin impedance  2.2.2, were considered to be minimum when NFL 

(%) [4] was right at zero, at the moment right before our finger makes contact with the handgrip. 

And maximum when NFL (%) [4] was at hundred per cent, i.e. maximum grip force applied.   

 

Find a video of the experiment in Appendix Error! Reference source not found.. 
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2.4 Simulation 

In our work, we developed many simulations for several purposes. The main objective was to 

test the model in order to determine how well it follows reality. The simulation was also a very 

helpful tool in order to get a good understanding of the physics of our system and see why it 

follows a particular behavior. Thus, two main simulations, one for each experiment, comparing 

simulation vs. experimental data were developed. Additionally, four sensitivity simulations were 

implemented as well, which allow the investigation of the system under the variation of voltage, 

system total mass and off-balance load. We also want to know for what set of parameters our 

system exhibits such a behavior that for a change in impedance the frequency of vibration has the 

steepest increase, and at the same time a low vibration strength. This set of parameters are the 

optimal ones for our ring sensor. Hence, an optimization routine is presented, which studies 

many possible combinations for voltage and inertial loading, ultimately picking the optimal.      

All the simulations are written in Matlab. All of them consists of two files. In the first one the 

differential equations (Eq. 9) are written and expressed as a function. In the second file we 

define the input parameters, substitute them into ODE15s solver, it calls the function previously 

created in the first file and returns four outputs (Eq. 7). Since we intend to model our system as a 

function of impedance, we will have to define a loop that computes a new input for ODE15s, and 

it will have to solve the dynamic differential equations for every step or increment returning 

different outputs. That will demand some computational effort to the computer since the smaller 

the increments in impedance the more times that ODE15s will be executed.  
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Firstly, for the cantilever beam experiment, only thirteen steps in stiffness and damping where 

considered, of varying step size. So stiffness moves in a range from 250 to 12,000 N/m and 

damping ratio 0.039 to 0.019, (‎2.3.2.2). For the simulations, the same number of steps was used 

in Matlab routine developed to compare simulation vs. experiment. However, for the analysis of 

sensitivity, more steps were computed in order to have more accuracy Stiffness moves in a range 

from 300 to 10,000 N/m and damping ratio the same, using the interpolation previously made in 

‎2.3.2.2. Also, for all the plots, interpolations between data points were done which gave us a 

better sense of the evolution or behavior of the system.  

Data of system vibratory acceleration vs. stiffness were also analyzed for experiment #1. That 

helped to support the hypothesis stated in this work, ‎2.1.   

Secondly, for the ring sensor simulation we decided to take smaller increments, since the process 

of obtaining data was less time consuming than in the cantilever beam experiment. Results from 

a published work [4],[2] were used. Hence, all we had to do was transfer the data to our 

simulation, (‎2.2.1 and ‎2.2.2). Besides we only ran two experiments for grip force vs. motor 

frequency.  
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2.4.1 Cantilever Beam Model 

2.4.1.1 Experiment vs. model 

Reference code:  APPENDIX Error! Reference source not found. 

In this section, the code used to simulate the behavior of the eccentric mass dc motor, as we 

progressively vary the stiffness of the cantilever beam, is developed. Also, the experimental data 

is collected and plotted together with the simulation.  

The code is structured in a way that allows the selection of the experiment that we want to 

display. Since three experiments were carried out, with three different settings, (‎2.3.2). So after 

selecting it, the simulation builds vectors for all the parameters of the system, and parameters for 

the dc  motor equations of motion. Then, the parameters are substituted into ODE15s, together 

with a time vector of two seconds, and it does the numerical integration while it saves the output 

data of the system, when it is settled, in a matrix. This process is repeated for every level of 

stiffness, which implies a loop. The stiffness ,defined as a vector, is read position by position, 

hence each step in the loop is a different position in the vector so a consecutive stiffness level. 

Next, the Matlab routine builds the vectors of experimental data, with data from the 

accelerometer (acceleration and period of vibration) and stroboscope.  

Out of it we built our plots with simulation and experimental data, and we compared: stiffness 

vs. motor velocity, time vs. motor velocity, natural frequency vs. motor velocity, and resonance 

plot which is vibration displacement vs. the ratio between motor velocity and natural frequency. 
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The vibration displacement X is computed using acceleration maximum amplitude and motor 

velocity for the experiment, i.e. Eq. 20.  

2

Acc
X 

          (20)

 

At last, stiffness is plotted against g-force, i.e. acceleration. A very important plot to see the 

evolution of the vibration as we vary stiffness. Only done for experiment #1. 

 

2.4.1.2 Sensitivity analysis  

Reference code: APPENDICES Error! Reference source not found., Error! Reference 

source not found., Error! Reference source not found., Error! Reference source not found.. 

The goal is to obtain plots for the relationship: stiffness vs. motor velocity for variations of a 

parameter. No experimental data is involved here, only the cantilever beam model simulation. 

Four different codes were used to make four analysis of sensitivity. First of all, three parameters 

were analyzed: voltage, off-balance load and system total mass. All of them have the same code 

structure which is based on a central loop for moving on the stiffness vector and a second one for 

moving on a vector composed of a progressive variation of the parameter of study. For instance, 

for the voltage sensitivity analysis we will create a vector of six different voltages and we will 

obtain a curve of stiffness vs. motor velocity for each voltage. Same thing for off-balance load 

and system total mass.       
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Then, we also want to see what happens to the relationship, voltage vs. motor velocity. In other 

words, for constant levels of stiffness we increase the voltage progressively and check what 

happens to the velocity.  

The parameters used for the equations of motion in each case were: 

 Voltage sensitivity: off-balance load 1.01 g, eccentricity 2.11 mm and system total mass 

19.5 g. 

 Off-balance load sensitivity: voltage 1.5 v, eccentricity 2.11 mm and system total mass 

19.5 g. 

 System mass sensitivity: voltage 1.5 v, eccentricity 2.11 mm and off-balance load 1.01 g. 

 Voltage vs. motor speed: off-balance load 1.01 g, eccentricity 2.11 mm and system mass 

19.5 g. 
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2.4.2 Ring Sensor Model 

2.4.2.1  Experiment vs. model comparison 

Reference code:  APPENDIX Error! Reference source not found. 

In this section, the code used to simulate the behavior of the eccentric mass dc motor, as we 

progressively vary muscle and skin impedance (stiffness plus damping) in the ring sensor model, 

is developed. Also, the experimental data is collected and plotted together with the simulation. 

Essentially, we intend to collect all the information from point ‎2.2  and simulate it.  

The total stiffness (KTotal) considered was the sum of KMuscle and KSkin. Starting at 25 N/m, and 

moving linearly up to 5016 N/m. The damping went linearly as well from 1 to 17 N-s/m. System 

total mass remained constant and it was calculated using ‎2.2.3. 

The code structure is the same as in APPENDIX Error! Reference source not found., 

described in ‎2.4.1. With only two experiments (‎2.3.3.1). 

We built the plots using the data of the simulation plus the experiment in order to compare 

stiffness vs. motor velocity. And using only the experimental data we plotted grip force vs. motor 

velocity. 
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2.4.2.2 Optimization routine 

Reference code:  APPENDIX Error! Reference source not found. 

The goal was to obtain the right combination of values for off-balance load, eccentric distance 

and voltage that optimize our ring sensor. Maximum sensitivity and a low level of vibration are 

characteristics that will define the optimal one.  

Sensitivity, was defined as the combination of parameters that for an increase in stiffness the 

eccentric mass dc motor had the largest increase in speed. For that reason, it was interesting to 

determine the natural frequency of the system because resonance was a phenomena that could be 

taken advantage of on our benefit, since it implies a peak, i.e. a large change in vibratory 

conditions. Hence, it would help us achieve maximum rate of change in speed if the initial 

angular velocity of the eccentric mass dc motor was near the natural frequency of the system.  

Low vibration strength was desired in order to have a smooth device which does not produce too 

much annoyance to the person who wears it.  

The satisfaction of these two requirements was attained by computing several combinations of 

parameters. The slope for each case was calculated, which defines the rate of change in velocity, 

and also the g-force (1 g = 9.81 m/s
2
) produced by the vibration. Finally, a trade-off defined our 

objective function: 

forceG

Slope
offTrade




        (21)
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 The optimal case was the one that maximized Eq. 21. It was not necessarily the case with 

highest slope and lowest g-force, but something in-between that was acceptable.  

Some research on vibrators (Appendix Error! Reference source not found.) was done in order 

to understand the normal conditions of operation of an eccentric mass dc motor, i.e. a vibrator. 

The acceptable range of vibration and speed was investigated, which was strictly related to 

eccentric load and voltage. In that manner we could adjust the bounds for our optimization 

analysis, and narrow the possible number of combinations down to only feasible ones. So, 

essentially after defining bounds for voltage, off-balance load and eccentric distance (Table 1), 

the Matlab optimization routine ran three loops combining parameters for a simulated increase in 

impedance. In total 200 combinations were computed. Once out of the loop, the less linear 

behaviors were not taken into account and the best trade-off was picked, i.e. the optimal set of 

parameters for our ring sensor.   

 

Table 7: Parameters bounds and number of steps taken, which also define the increment size. 

Parameter Minimum Maximum Number of Steps 

Voltage [volts] 0.5 2.0 8 

Off-balance load [g] 0.25 2 5 

Eccentricity [mm] 1 3 6 
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3 Results  

 

 

3.1 Cantilever Beam Experiment 

For the thirteen levels of stiffness analyzed the data was recorded and plotted. We found high 

motor velocities for very low levels of stiffness. Then, suddenly the motor slowed down to a 

minimum point near the natural frequency, defined by stiffness and system mass. This was 

followed by a near linear increase in motor velocity for medium levels of stiffness. Eventually, 

for a very stiff system the motor velocity settled back to a constant level.  

 

3.1.1 Experiment #1 

We first measured motor speed for the cantilever beam system when the motor was driven at 

0.75 volts. It varied as a function of beam stiffness, starting at 250 N/m (short span) and ending 

at 12,000 N/m. The motor velocity followed the same pattern for the simulation and the 

experimental data, Figure 22. Firstly, the motor velocity remains more or less constant, with 

little variations, until it reaches 1500 N/m where it suddenly drops to a lowest speed found at 

3000 N/m. The motor velocity at this point is approximately 3000 rpm for the simulation and 

2800 rpm for the experiment. Past this point it gently goes up. Figure 23 shows the speed of the 

motor versus time for different beam stiffnesses, starting from a zero velocity.  As can be seen 
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again, the final speed depends on the beam stiffness. The system settles quite fast given that the 

off-balance load is light.  

Figure 24 shows the displacement of the beam as function of the velocity of the motor, 

normalized by the natural frequency of the system, which was determined experimentally as well 

and calculated for each beam stiffness.  The key observation here is that the beam vibrates with 

the largest amplitude when motor velocity is near the resonant frequency of the system. Figure 

25 shows the vibration amplitude versus time for each beam stiffness. 

 Figure 26 shows how the motor velocity depends on the natural frequency of the beam. Note 

that when motor velocity is around 325 rad/sec, it happens to most closely match the natural 

frequency of the beam.  As shown above (Figure 24), this creates a large amplitude vibration 

which then loads the motor, causing it to slow down.  

Figure 27 shows the inertial loading on the motor as a function of beam stiffness. This plot 

confirms our hypothesis there is an optimal impedance that creates a high inertial load.  A key 

finding that we did not anticipate was the decrease in inertial loading for very low stiffnesses.  In 

retrospect, this makes sense in terms of considering the system as resonating beam.  Figure 28 

shows the measured acceleration of the beam as a function of time for each level of beam 

stiffness. 
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Figure 22: Experiment #1. Plot showing the comparison between simulation and data recorded 

by the accelerometer and stroboscope for stiffness levels [N/m]: 250, 500, 625, 750, 1000, 1500, 

3000, 4500, 6000, 7500, 9000, 10,000 and 12,000. 

 

Figure 23: Experiment #1. Plot showing the evolution of motor velocity over time for the 

simulation.  



51 

 

 

Figure 24: Experiment #1. Plot showing the resonance analysis for experiment #1. Simulation 

vs. Experiment results. 
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Figure 25: Experiment #1. Plots of vibration displacement for every stiffness, max amplitude at 

steady state taken in order to build Figure 24.  
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Figure 26: Experiment #1. Plot showing the natural frequency of the system for each stiffness 

vs. the motor velocity. When they match up the system is resonating.  

 

 

Figure 27: Experiment #1. Plot showing the vibration acceleration as a function of stiffness. 

System resonating for a stiffness of 1500 N/m. 



54 
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Figure 28: Experiment #1. Acceleration profile for every stiffness in g-force (9.81 m/s
2
). Data 

used to build Figure 27. Plot for K = 1500 N/m, the accelerometer was saturated (acceleration > 

6G) since the system is resonating. 
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3.1.2 Experiments #2 & #3 

Figure 29-34  replicate the above results for motor input voltages equal to 1.5 volts and 2 volts, 

respectively.  For these simulations and experiments, we also altered the off-balance load, using 

a larger load for the 1.5 volt condition, and a smaller load for the 2.0 volt condition.  As can be 

seen, the motor speed again depends on the beam stiffness, and the simulation adequately 

captures this phenomenon.  

 

 

Figure 29: Experiment #2. Plot showing the comparison between simulation and data recorded 

by the accelerometer and stroboscope for stiffness levels [N/m]: 250, 500, 625, 750, 1000, 1500, 

3000, 4500, 6000, 7500, 9000, 10,000 and 12,000. 
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Figure 30: Experiment #2. Plot showing the evolution of motor velocity over time for the 

simulation. 

 

 

Figure 31: Experiment #2. Plot showing the natural frequency of the system for each stiffness 

vs. the motor velocity. When they match up the system is called to be in resonance. 
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Figure 32: Experiment #3. Plot showing the comparison between simulation and data recorded 

by the accelerometer and stroboscope for stiffness levels [N/m]: 250, 500, 625, 750, 1000, 1500, 

3000, 4500, 6000, 7500, 9000, 10,000 and 12,000. 

 

Figure 33: Experiment #3. Plot showing the evolution of motor velocity over time for the 

simulation.  
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Figure 34: Experiment #3. Plot showing the natural frequency of the system for each stiffness 

vs. the motor velocity. When they match up the system is called to be in resonance. 
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3.1.3 Sensitivity Analysis 

Given the confidence gained in the simulation by comparing the above experimental results with 

the simulation, we proceeded to examine how different system parameters affect the system 

behavior using simulation. Figure 35 shows how the input voltage affects motor velocity as a 

function of beam stiffness.  As can be seen, the stiffness at which motor velocity is slowest (i.e. 

where it is resonating the most), moves to the right as the driving voltage increases.   

 

 

Figure 35: Plot showing the voltage analysis of sensitivity. 
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Figure 36 shows how motor velocity depends on the off-balance load as a function of beam 

stiffness. Increasing the off-balance load pushes the minimum speed point of the motor to a 

smaller stiffness. 

 

 

Figure 36: Plot showing the off-balance load analysis of sensitivity. 

 

Figure 37 shows what happens when the system mass (i.e. mass of the beam, and in the actual 

ring sensor, ‎2.3.3, motor housing) are varied.  Note that increasing the system mass moves the 

point of slowest velocity to the right.  This is an important consideration as we will see for the 

ring sensor, as we desired the phenomenon of increasing speed with increasing stiffness to 

happen in a region consistent with human hand stiffness (i.e. the stiffness of the skin and muscle 

together), which reaches up to only 5016 N/m. 
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Figure 37: Plot showing the system mass analysis of sensitivity. 

 

Figure 38 shows motor velocity at constant levels of stiffness as a function of motor input 

voltage. For an unloaded DC brushed motor, we expect the motor velocity to increase linearly 

with motor input voltage.  This is true for the system at low and high input voltages, which drive 

the system at frequencies far away from the beam resonant frequency.  However, for input 

voltages that cause motor velocities near the beam resonant frequency, the beam vibrates a lot, 

loading the motor, and slowing it down. 

 



63 

 

 

Figure 38: Plot showing the evolution of motor velocity as we vary the voltage for constant 

levels of stiffness. 
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3.2 Ring Sensor Experiment 

In this experiment, a force transducer handgrip (‎2.3.1.4) was squeezed with a progressive level of 

force, from zero to one hundred NFL (Normalized Force Level in %), with corresponding levels 

of total stiffness of 25 - 5016 N/m, and damping of 1 - 17  N-s/m (‎2.2.1 and ‎2.2.2). Acceleration 

and grip force were recorded for ten seconds, We found that at the very beginning as we touched 

the handgrip the motor rotated at a high speed, and that the speed decreased to a low value as we 

reached motor velocities near the natural frequency. It was followed by a linear increase in 

frequency (motor velocity) and decrease in acceleration (inertial load) for experiment #1 (smaller 

off-balance load), and nearly linear for experiment #2 (larger off-balance load). 

Hence, both experiments confirmed our hypothesis that grip force and muscle stiffness vary with 

motor velocity. Note that the simulation was done taking into account total stiffness, however for 

the plots Figure 41 and Figure 44, only muscles stiffness was plotted vs. frequency, subtracting 

KSkin from KTotal.   

Force levels were within the normal range of grip force when squeezing a cylinder [5], [6], 

which was a good indicator, with a maximum of 4.5 N for the first experiment (Figure 39) and 6 

N for the second one (Figure 42).  

In both experiments #1 and #2 simulation and experimental data follow each other, meaning that 

we achieved a good model of the ring sensor and the estimation of the parameters was good.  

Finally, both relationships stiffness vs. frequency and NFL vs. frequency, follow the same 

patterns (high frequencies first for low values, a minimum when the motor velocity is near the 
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natural frequency of the system and followed by a smooth increase of frequency again), which 

shows that muscle stiffness and muscle force are strictly correlated. 
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3.2.1 Experiment #1 

Figure 39 shows a smooth decrease in acceleration as the grip force increases (from 2 sec to 4.5 

sec), going to a lowest acceleration when the grip force is maximum. Then, as we started to relax 

our hand (around 6.8 sec) and the grip fore dropped, it accelerates again. The same phenomenon 

happens with grip force and frequency, which is more discernible in Figure 40. When grip force 

increases the frequency is higher and vice versa.    

 

Figure 39: Experiment #1. Force transducer grip force measurements and accelerometer data 

profile. 
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Figure 40: Experiment #1. Normalized force level versus motor frequency. Data from Figure 

39. 

 

 

Figure 41 shows the same pattern for simulation and experimental data, however, there is a little 

offset between both curves. 
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Figure 41: Experiment #1. Comparison between simulation and experiment. Muscle stiffness is 

related to NFL (%) through Figure 5.  

 

3.2.2 Experiment #2 

Experiment #2 replicates Experiment #1 with larger forces and accelerations (Figure 42) since it 

was carried out with a larger off-balance load. However, lower motor frequencies (Figure 43 and 

Figure 44). 

As can be seen, the motor speed again depends on the stiffness, and the simulation again 

adequately captures this phenomenon. 
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Figure 42: Experiment #2. Force transducer grip force measurements and accelerometer data 

profile. 

 

Figure 43: Experiment #2. Normalized force level versus motor frequency. Data from Figure 

42. 
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Figure 44: Experiment #2. Comparison between simulation and experiment. Muscle stiffness is 

related to NFL (%) through Figure 5.  

 

Figure 44 shows the same pattern for simulation and experimental data, however, there is a little 

offset between both curves. 
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3.2.3 Optimization Routine 

The simulation took 4h and 21 min. It was run using a computer with the following properties: 

 Operating system: Windows 7.  

 Processor: Inter(R) Core(TM) i5-2430M CPU @ 2.40GHz  2.40 GHz 

 Installed RAM memory:  6.00 GB 

 System type: 64-bit Operating System 

Table 8: Optimal parameters. 

Solution OPTIMAL PARAMETERS 

Voltage [volts] 0.5 

Off-balance load [g] 2 

Eccentricity [mm] 2.5 

 

Figure 45 shows trade-off (Eq. 21), sensitivity and g-force vs. the combination index. Figure 46 

shows the combination of parameters per each index defined. The optimal solution is found at 

combination index 20. 

As can be seen, the optimal point did not happen to have neither maximum sensitivity nor lowest 

g-force, however it was the best trade-off between them. Also, an inertial factor of 12.5 g·mm
2
 

(above the average) was the optimal, with the lowest level of voltage considered.  
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Figure 45: Plot showing the trade-off between ring sensor sensitivity and g-force, and the 

optimal point in red. 
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Figure 46: Optimal set of parameters, red point. 
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Figure 47: Optimal system behavior 

 

Figure 47 shows the behavior of the system with the optimal set of parameters. The correlation 

coefficient 0.952 is smaller than 0.96 which indicates that the correlation between stiffness and 

motor velocity could not be accepted as linear. And for most stiffnesses it settles before 0.3 sec. 

However, it is nearly linear and most importantly, the motor speed increases with stiffness which 

is the kind of behavior that we were interested in for our ring sensor. 

 Finally, if this ring sensor design were to be implemented, we can estimate the sensitivity. We 

assume human hand stiffness (KSkin plus KMuscle) variese in a range between 25 - 5016 N/m, and 

assuming that the initial stiffness given to the system sets the motor speed right before resonance 

(lowest point in Figure 47), i.e. 280 N/m. The motor would speed up from 1450 rpm. to 2455 

rpm. for a level of 100 % of NFL applied. That is an increase of 1005 rpm, and assuming that the 
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highest grip force applied was 8 N, we would have a sensitivity of 125.6 rpm./N and a g-force 

(Figure 45) of 0.38-g.  
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4 Discussion  

 

 

In this thesis, we studied how the velocity of an eccentric mass vibration motor driven at a 

constant voltage varies with the mechanical impedance of the system it is attached to, and 

specifically studied this phenomenon when the motor is worn as a ring sensor, to determine the 

feasibility of using the phenomenon to create a non-interposed grip force sensor. 

We develop a dynamic model of the motor-skin interaction using Lagrange's equations. Motor 

velocity varies with grip force and muscle stiffness, as confirmed here both with the simulations 

of the model and with experiments. We found high motor velocities for very low levels of 

stiffness. Then, suddenly the inertial loading on the motor increases as the motor slows down to a 

minimum point near the natural frequency, defined by stiffness and system mass. This is 

followed by a near linear increase in motor velocity for medium levels of stiffness. Eventually, 

for a very stiff system the motor velocity settles back to a constant level. This pattern indicates 

that the interactions between motor speed, vibration, and hand impedance can be interpreted 

within a framework of resonance of the hand with the motor. When the motor rotates at a speed 

close to the resonant frequency of the hand, the system vibrates more, which applies an inertial 

load to the motor and slows it down. Put another way, the inertial loading effects on the motor 

(Figure 27) confirmed our hypothesis that for a lower impedance system the vibratory 

displacement is high, creating a greater inertial load on the motor. Since the motor is driven at a 

constant voltage, higher impedances cause the motor to speed up.   
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Some differences were found between simulation and experimental results. The pattern followed 

by the relationship between stiffness and motor velocity was the same in both cases. However, 

sometimes there was a little offset between both curves. This offset might be due to either a not 

accurate enough model for the dc motor or some small errors in the computation of parameters 

such as off-balance load and system mass.  

The sensitivity analysis, Figure 35, Figure 36 and Figure 37, tells us that the selection of a 

proper set of parameters is a key factor in order to achieve a steep effect for the ring sensor. We 

desired the phenomenon of increasing speed with increasing stiffness to happen in a region 

consistent with human hand stiffness, therefore a smaller voltage and system mass with a larger 

off-balance load, happen to be more appropriate parameters to consider. This is also supported 

by the optimization routine ‎3.2.3, where a low voltage is picked since high voltages generate a 

too high g-force (Figure 45), with a large off-balance load.   

For the ring sensor grip force measurement, a much higher force was recorded in the second 

experiment with a larger off-balance load mounted (Figure 42), than in the first one with a 

smaller load. That could have been caused by either the ability of the subject to exert a larger 

squeezing force in the second experiment or the effect of the larger off-balance load. That 

suggests that an investigation on the off-balance loading effects vs. grip force should be carried 

out in order to determine whether the grip force measurement can be altered by the off-balance 

load mounted or not. 

Figure 47 shows a quick settling time, smaller than 0.3 seconds for most levels of stiffness. This 

gives a sense of the bandwidth of the system, meaning how fast the dc motor can respond to a 

change in impedance. A fast response will enable the motor to react rapidly, producing a fast 
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change in speed. Hence, for the ring sensor experiment the bandwidth seems to be appropriate 

since motor speed changes very fairly rapidly with grip force, and human grip force is band 

limited to about 2 Hz. 

Motor velocity was related to hand impedance under the assumption that skin impedance 

increased linearly and also assuming that muscle stiffness could be taken from [4]. However, in a 

further stage of this study other methods to obtain better measurements for hand stiffness could 

be considered, as for example [7].  
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