.. Voltammétrie-cyclique, 141 5.9.1 Fenêtres de potentiel et courant de fond, p.145

R. Van-den-brand, J. Heutschi, Q. Barraud, J. Digiovanna, K. Bartholdi et al., Restoring Voluntary Control of Locomotion after Paralyzing Spinal Cord Injury, Science, vol.336, issue.6085, pp.1182-1185
DOI : 10.1126/science.1217416

N. Dominici, U. Keller, H. Vallery, L. Friedli, R. Van-den et al., Versatile robotic interface to evaluate, enable and train locomotion and balance after neuromotor disorders, Nature Medicine, vol.143, issue.7, p.2012
DOI : 10.1016/S1836-9553(10)70020-5

URL : http://infoscience.epfl.ch/record/177735

A. Volta, Schriften über die thierische elektrizität, p.1793

E. Adrian, The Basis of Sensation, BMJ, vol.1, issue.4857, 1954.
DOI : 10.1136/bmj.1.4857.287

O. Hamill, A. Marty, and E. Neher, Improved patch-clamp techniques for highresolution current recording from cells and cell-free membrane patches, Pflug. Arch, vol.391, pp.58-100, 1981.

R. David and . Lide, CRC Handbook of Chemistry and Physics, 2007.

A. Benabid, P. Pollak, and C. Gervason, Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus, The Lancet, vol.337, issue.8738, pp.403-406, 1991.
DOI : 10.1016/0140-6736(91)91175-T

I. Marwan, P. Hariz, L. Blomstedt, and . Zrinzo, Deep brain stimulation between 1947 and 1987 : the untold story, Neurosurgical Focus, vol.29, issue.2, p.1, 2010.

M. Lanotte, . Rizzone, and . Bergamasco, Deep brain stimulation of the subthalamic nucleus: anatomical, neurophysiological, and outcome correlations with the effects of stimulation, Journal of Neurology, Neurosurgery & Psychiatry, vol.72, issue.1, pp.53-58, 2002.
DOI : 10.1136/jnnp.72.1.53

V. Sturm, D. Lenartz, A. Koulousakis, H. Treuer, K. Herholz-c et al., The nucleus accumbens: a target for deep brain stimulation in obsessive???compulsive- and anxiety-disorders, Journal of Chemical Neuroanatomy, vol.26, issue.4, pp.293-299, 2003.
DOI : 10.1016/j.jchemneu.2003.09.003

S. Kennedy, P. Giacobbe, S. Rizvi, F. Placenza, Y. Nishikawa et al., Deep Brain Stimulation for Treatment-Resistant Depression: Follow-Up After 3 to 6 Years, American Journal of Psychiatry, vol.168, issue.5, pp.502-510
DOI : 10.1176/appi.ajp.2010.10081187

E. D. Keefer, B. R. Botterman, M. I. Romero, A. F. Rossi, and G. W. Gross, Carbon nanotube coating improves neuronal recordings, Nature Nanotechnology, vol.7, issue.7, pp.337-341, 2010.
DOI : 10.1038/nnano.2008.174

A. Perez and F. , Minimum requirements for a retinal prosthesis to restore useful vision, 2006.

C. Moulin, Crontribution à l'étude et à la réalisation d'un système électronique de mesure et excitation de tissu nerveaux à matrice de microélectrodes, 2006.

G. Gabriel, R. Gómez-martínez, and R. Villal, Interface impedance improvement with carbon nanotubes, IFMBE Proceedings, vol.17, pp.296-299, 2007.
DOI : 10.1007/978-3-540-73841-1_78

J. Persson, N. Danielsen, and L. Wallman, Porous silicon as a neural electrode material, Journal of Biomaterials Science, Polymer Edition, vol.148, issue.10, pp.1301-1308, 2007.
DOI : 10.1163/156856207782177846

G. Davies and T. Evans, Graphitization of Diamond at Zero Pressure and at a High Pressure, Proc.R.Soc.London, pp.413-427, 1574.
DOI : 10.1098/rspa.1972.0086

M. Christopher, J. E. Breeding, and . Shigley, The type classification system of diamond its importance in gemology. Gems and Gemology, pp.96-111, 2009.

J. J. Gracio, Q. Fan, and J. Madaleno, Diamond growth by chemical vapour deposition, Journal of Physics D: Applied Physics, vol.43, issue.37, 2010.
DOI : 10.1088/0022-3727/43/37/374017

URL : https://hal.archives-ouvertes.fr/hal-00597830

J. Stephen, D. G. Harris, and . Goodwin, Growth on the reconstructed diamond (100) surface, J. Phys. Chem, vol.97, issue.14, pp.23-28, 1993.

T. Fujii and M. Kareev, Mass spectrometric studies of a CH4/H2 microwave plasma under diamond deposition conditions, Journal of Applied Physics, vol.89, issue.5, pp.2543-2546, 2001.
DOI : 10.1063/1.1346655

P. Volpe, J. Pernot, P. Muret, and F. Omnès, High hole mobility in boron doped diamond for power device applications, Applied Physics Letters, vol.94, issue.9, 2009.
DOI : 10.1063/1.3086397

E. Christoph, B. Nebel, D. Rezek, H. Shin, N. Uetsuka et al., Diamond for bio-sensor applications, Journal of Physics D : Applied Physics, vol.406443, issue.20, pp.16-17, 2007.

P. Volpe, P. Muret, J. Pernot, F. Omnès, T. Teraji et al., High breakdown voltage Schottky diodes synthesized on p-type CVD diamond layer, physica status solidi (a), vol.2, issue.9, pp.2088-2092, 2010.
DOI : 10.1002/pssa.201000055

URL : https://hal.archives-ouvertes.fr/hal-00739492

S. Ruffinatto, Le diamant pour la bioélectronique : De la fonctionnalisation chimique à la modification physique par des nanotubes de carbone, pp.17-77, 2012.

P. Bergonzo, A. Bongrain, E. Scorsone, A. Bendali, L. Rousseau et al., Lissorgues et al. 3d shaped mechanically flexible diamond microelectrode arrays for eye implant applications : The medinas project, IRBM, vol.45, issue.32, pp.91-94

P. Bergonzo, A. Bongrain, E. Scorsone, A. Bendali, L. Rousseau et al., Diamond-on-polymer microelectrode arrays fabricated using a chemical release transfer process, Micromechanical Systems, vol.20, issue.4, pp.867-875

M. W. Varney, D. M. Aslam, A. Janoudi, D. H. Ho-yin-chan, and . Wang, Polycrystalline-Diamond MEMS Biosensors Including Neural Microelectrode-Arrays, Biosensors, vol.1, issue.4, pp.118-113
DOI : 10.3390/bios1030118

L. V. Radushkevich and V. M. Lukyanovich, About the structure of carbon formed by thermal decomposition of carbon monoxide on iron substrate, Zurn. Fisic. Chim, vol.26, pp.88-95, 1952.

S. Iijima, Helical microtubules of graphitic carbon, Nature, vol.354, issue.6348, pp.56-58, 1991.
DOI : 10.1038/354056a0

M. S. Dresselhaus, G. Saito, A. Dresselhaus, and . Jorio, Raman spectroscopy of carbon nanotubes, Physics Reports, vol.409, issue.2, pp.47-99, 2005.
DOI : 10.1016/j.physrep.2004.10.006

T. Guo, P. Nikolaev, A. Thess, D. Colbert, and R. Smalley, Catalytic growth of single-walled nanotubes by laser vaporization, Chem. Phys. Lett, vol.249, pp.49-54, 1995.

D. Takagi, Y. Kobayashi, and Y. Homma, Carbon Nanotube Growth from Diamond, Journal of the American Chemical Society, vol.131, issue.20, 2009.
DOI : 10.1021/ja901295j

M. Kumar and Y. Ando, Chemical Vapor Deposition of Carbon Nanotubes: A Review on Growth Mechanism and Mass Production, Journal of Nanoscience and Nanotechnology, vol.10, issue.6, pp.3739-3758, 2010.
DOI : 10.1166/jnn.2010.2939

C. Biale, V. Mussi, U. Valbusa, S. Visentin, G. Viscardi et al., Carbon nanotubes for targeted drug delivery, Nanotechnology 9th IEEE Conference on, pp.644-646, 2009.

W. Zhang, Z. Zhang, and Y. Zhang, The application of carbon nanotubes in target drug delivery systems for cancer therapies, Nanoscale Research Letters, vol.6, issue.1, pp.2011-2034, 2011.
DOI : 10.1166/jbn.2010.1117

A. Wisitsoraat and C. Karuwan, High Sensitivity Electrochemical Cholesterol Sensor Utilizing a Vertically Aligned Carbon Nanotube Electrode with Electropolymerized Enzyme Immobilization, Sensors, vol.9, issue.11, pp.8658-8668, 2009.
DOI : 10.3390/s91108658

M. Mattson, R. Haddon, and A. Rao, Molecular Functionalization of Carbon Nanotubes and Use as Substrates for Neuronal Growth, Journal of Molecular Neuroscience, vol.14, issue.3, pp.175-182, 2000.
DOI : 10.1385/JMN:14:3:175

H. Hu, Y. Ni, R. C. Haddon-vedrana-montana, and V. Prapura, Chemically Functionalized Carbon Nanotubes as Substrates for Neuronal Growth, Nano Letters, vol.4, issue.3, pp.507-511, 2004.
DOI : 10.1021/nl035193d

B. Harrison and A. Atala, Carbon nanotube applications for tissue engineering, Biomaterials, vol.28, issue.2, pp.344-353, 2007.
DOI : 10.1016/j.biomaterials.2006.07.044

M. Guiliano, M. Prato, and L. Ballerini, Nanomaterial/ neuronal hybrid system for functinal recovery of the cns, Drug Discov. Today : Disease Models, 2008.

E. B. Malarkey and V. Prapura, Carbon Nanotubes in Neuroscience, Acta Neurochir, vol.106, pp.337-341, 2010.
DOI : 10.1007/978-3-211-98811-4_62

G. Baranauskas, E. Maggiolini, E. Castagnola, A. Ansaldo, A. Mazzoni et al., Carbon nanotube composite coating of neural microelectrodes preferebtially improves the multiunit signal to noise ratio, J. Neural Eng, vol.8, pp.2011-2034

A. Mazzatenta, M. Giugliano, S. Campidelli, L. Gambazzi, L. Businaro et al., Interfacing Neurons with Carbon Nanotubes: Electrical Signal Transfer and Synaptic Stimulation in Cultured Brain Circuits, Journal of Neuroscience, vol.27, issue.26, pp.6931-6936, 2007.
DOI : 10.1523/JNEUROSCI.1051-07.2007

V. Lovat, D. Pantarotto, L. Lagostena, B. Cacciari, M. Grandolfo et al., Carbon Nanotube Substrates Boost Neuronal Electrical Signaling, Nano Letters, vol.5, issue.6, pp.1107-1110, 2005.
DOI : 10.1021/nl050637m

G. Cellot, E. Cilia, S. Cipollone, V. Rancic, A. Sucapane et al., Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts, Nature Nanotechnology, vol.26, issue.2, pp.126-133, 2009.
DOI : 10.1038/nnano.2008.374

M. Shein, A. Greenbaum, T. Gabay, R. Sorkin, M. David-pur et al., Engineered neuronal circuits shaped and interfaced with carbon nanotube microelectrode arrays, Biomedical Microdevices, vol.106, issue.2, 2008.
DOI : 10.1007/s10544-008-9255-7

URL : https://link.springer.com/content/pdf/10.1007%2Fs10544-008-9255-7.pdf

Y. Chen, H. Hsu, Y. Lee, H. Su, C. Shiang-jie-yen et al., An active, flexible carbon nanotube microelectrode array for recording electrocotrigrams, J.Neural Eng, vol.8, pp.2011-2034

F. Sauter-starace, O. Bibari, F. Berger, P. Caillat, and A. L. Benabid, ECoG recordings of a non-human primate using carbon nanotubes electrodes on a flexible polyimide implant, 2009 4th International IEEE/EMBS Conference on Neural Engineering, pp.112-115, 2009.
DOI : 10.1109/NER.2009.5109247

E. Flahaut, M. C. Durrieu, M. Remy-zolghadri, R. Bareille, and C. Baquey, Investigation of the cytotoxicity of CCVD carbon nanotubes towards human umbilical vein endothelial cells, Carbon, vol.44, issue.6, pp.1093-1099, 2006.
DOI : 10.1016/j.carbon.2005.11.007

URL : https://hal.archives-ouvertes.fr/hal-00474857

J. T. Chiu-wing-lam, R. James, S. Mccluskey, R. L. Arepalli, and . Hunter, A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks, Critical Reviews in Toxicology, vol.36, pp.189-217, 2006.

C. Poland, R. Duffin, I. Kinloch, A. Maynard, and W. Wallaceet, Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study, Nature Nanotechnology, vol.67, issue.7, pp.423-428, 2008.
DOI : 10.1038/nnano.2008.111

H. Nagai and S. Toyokuni, Biopersistent fiber-induced inflammation and carcinogenesis: Lessons learned from asbestos toward safety of fibrous nanomaterials, Archives of Biochemistry and Biophysics, vol.502, issue.1, pp.1-7
DOI : 10.1016/j.abb.2010.06.015

L. Yan, F. Zhao, S. Li, Z. Hu, and Y. Zhao, Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes, Nanoscale, vol.131, issue.192, pp.362-382
DOI : 10.1039/C0NR00647E

I. Fenoglio, E. Aldieri, E. Gazzano, F. Cesano, M. Colonna et al., Thickness of Multiwalled Carbon Nanotubes Affects Their Lung Toxicity, Chemical Research in Toxicology, vol.25, issue.1, pp.74-82
DOI : 10.1021/tx200255h

S. Minnikanti and N. Peixoto, Carbon nanotube applications on electron devices, InTech, pp.143-168, 2011.

J. Zhang, X. Wang, Y. W. Yu, W. Feng, T. et al., Interaction between carbon nanotubes and substrate and its implication on field emission mechanism, Carbon, vol.44, issue.3, pp.418-422, 2006.
DOI : 10.1016/j.carbon.2005.09.004

S. Lim, H. Choi, H. Jeong, S. Y. Kim, G. Jung et al., A strategy for forming robust adhesion with the substrate in a carbon-nanotube field-emission array, Carbon, vol.44, issue.13, pp.2809-2815, 2006.
DOI : 10.1016/j.carbon.2006.03.030

W. Sung, S. Lee, W. Kim, O. J. Lee, H. Kim et al., New approach to enhance adhesions between carbon nanotube emitters and substrate by the combination of electrophoresis and successive electroplating, Diam and Relat Mater, pp.1003-1007, 2008.
DOI : 10.1016/j.diamond.2008.03.001

W. Choi, D. Chung, J. Kang, H. Kim, Y. Jin et al., Fully sealed, high-brightness carbon-nanotube field-emission display, Applied Physics Letters, vol.75, issue.20, pp.3129-3131, 1999.
DOI : 10.1063/1.125253

H. Su, C. Chen, Y. Chen, D. Yao, H. Chen et al., Improving the adhesion of carbon nanotubes to a substrate using microwave treatment, Carbon, vol.48, issue.3, pp.805-812
DOI : 10.1016/j.carbon.2009.10.032

A. M. Bonnot, B. S. Mathis, and S. Moulin, Investigation of the growth kinetics of low pressure diamond films by in situ elastic scattering of light and reflectivity, Applied Physics Letters, vol.63, issue.13, pp.1754-1756, 1993.
DOI : 10.1063/1.110704

F. Bénédic, P. Bruno, and P. Pigeat, Real-time optical monitoring of thin film growth by in situ pyrometry through multiple layers and effective media approximation modeling, App. Phys. Lett, vol.90, 2007.

B. S. Parajón-costa, C. C. Wagner, and E. J. Baran, Vibrational spectra and electrochemical behavior of bispicolinate copper(ii), The Journal of the Argentine Chemical Society, vol.92, 2004.

S. Pons and M. Fleischmann, The Behavior of Microdisk and Microring Electrodes Mass Transport to the Disk in the Unsteady State : A.C. Electrochemistry. Defense Technical Information Center, 1988.

S. Bruckenstein and J. Janiszewska, Diffusion currents to (ultra)microelectrodes of various geometries???ellipsoids, spheroids and elliptical ???disks???, Journal of Electroanalytical Chemistry, vol.538, issue.539, pp.538-5393, 2002.
DOI : 10.1016/S0022-0728(02)01251-2

E. Vanhove, Electrode en diamant B-NCD ; Optimisation du matériau pour la stabilisation d'un réactivité élevée, pp.40-76, 2010.

O. A. Willimas, M. Nesladek, M. Daenen, S. Michealson, A. Hoffman et al., Growth, electronic properties and applications of nanodiamond, Diamond and Related Materials, vol.17, issue.7-10, pp.2008-2054
DOI : 10.1016/j.diamond.2008.01.103

T. Tachibana, Y. Yokota, K. Hayashi, K. Miyata, K. Kobashi et al., Parametric study of bias-enhanced nucleation of diamond on platinum in microwave plasma, Diamond and Related Materials, vol.9, issue.3-6, pp.251-255, 2000.
DOI : 10.1016/S0925-9635(00)00207-7

A. Chavanne, J. Barjon, B. Vilquin, J. Arabski, and J. C. Arnault, Surface investigations on different nucleation pathways for diamond heteroepitaxial growth on iridium, Diamond and Related Materials, vol.22, pp.52-58
DOI : 10.1016/j.diamond.2011.12.005

M. Whitfield, J. Savage, and R. Jackman, Nucleation and growth of diamond films on single crystal and polycrystalline tungsten substrates, Cité en, pp.262-268, 2000.
DOI : 10.1016/S0925-9635(00)00236-3

Y. Kim, Y. Han, and J. Lee, The effects of a negative bias on the nucleation of oriented diamond on Si, Cité en, p.46, 1998.
DOI : 10.1016/S0925-9635(97)00195-7

Y. K. Kim, K. Lee, M. J. Lee, and J. Y. Lee, The nucleation of highly oriented diamond on silicon using a negative bias, Thin Solid Films, vol.341, issue.1-2, pp.211-215, 1999.
DOI : 10.1016/S0040-6090(98)01534-X

S. Saada, J. C. Arnault, N. Tranchant, M. Bonnauron, and P. Bergonzo, Study of the CVD process sequences for an improved control of the Bias Enhanced Nucleation step on silicon, physica status solidi (a), vol.64, issue.9, pp.2854-2859, 2007.
DOI : 10.1002/pssa.200776339

B. R. Stoner, G. H. Ma, S. D. Wolter, and J. T. Glass, Characterization of bias-enhanced nucleation of diamond on silicon by in vacuo surface 182

S. Barrat, S. , I. Dieguez, and E. Nauer-grosse, Diamond deposition by chemical vapor deposition process: Study of the bias enhanced nucleation step, Journal of Applied Physics, vol.84, issue.4, pp.1870-1880, 1998.
DOI : 10.1063/1.368314

C. Sarrieu, E. Bauer-grosse, and S. Barrat, Influence of silicon carbide interlayer evolution on diamond heteroepitaxy during bias enhanced nucleation on silicon substrates, Diamond and Related Materials, vol.20, issue.8, pp.1246-1249
DOI : 10.1016/j.diamond.2011.07.006

S. T. Lee, H. Y. Peng, X. T. Zhou, N. Wang, C. S. Lee et al., A Nucleation Site and Mechanism Leading to Epitaxial Growth of Diamond Films, Science, vol.287, issue.5450, pp.104-106, 2000.
DOI : 10.1126/science.287.5450.104

C. Wang and G. Yang, Thermodynamics of metastable phase nucleation at the nanoscale, Materials Science and Engineering: R: Reports, vol.49, issue.6, pp.157-202, 2005.
DOI : 10.1016/j.mser.2005.06.002

Y. K. Liu, P. L. Tso, I. N. Lin, Y. Tzeng, and Y. C. Chen, Comparative study of nucleation processes for the growth of nanocrystalline diamond, Diamond and Related Materials, vol.15, issue.2-3, pp.234-238, 2006.
DOI : 10.1016/j.diamond.2005.06.020

Y. Ma, T. Tsurumi, N. Shinoda, and O. Fukunaga, Effect of bias enhanced nucleation on the nucleation density of diamond in microwave plasma CVD, Diamond and Related Materials, vol.4, issue.12, pp.1325-1330, 1995.
DOI : 10.1016/0925-9635(95)00320-7

J. Gerber, S. Sattel, H. Ehrhardt, P. Robertson, and . Wurzinger, Investigation of bias enhanced nucleation of diamond on silicon, Journal of Applied Physics, vol.79, issue.8, pp.4388-4396, 1996.
DOI : 10.1063/1.361864

Y. Ma, T. Tsurumi, N. Shinoda, and O. Fukunaga, Effect of bias enhanced nucleation on the nucleation density of diamond in microwave plasma CVD, Diamond and Related Materials, vol.4, issue.12, 1995.
DOI : 10.1016/0925-9635(95)00320-7

J. C. Arnault, L. Demuynck, C. Speisser, and F. L. Normand, Mechanisms of CVD diamond nucleation and growth on mechanically scratched Si(100) surfaces, The European Physical Journal B - Condensed Matter and Complex Systems, vol.11, issue.2, pp.327-343, 1999.
DOI : 10.1007/s100510050943

URL : https://hal.archives-ouvertes.fr/hal-00685231

E. Scorsone, S. Saada, J. C. Arnault, and P. Bergonzo, Enhanced control of diamond nanoparticle seeding using a polymer matrix, Journal of Applied Physics, vol.106, issue.1, 2009.
DOI : 10.1063/1.3153118

M. Daenen, O. A. Williams, J. D-'haen, K. Haenen, and M. Nesládek, Seeding, growth and characterization of nanocrystalline diamond films on various substrates, physica status solidi (a), vol.25, issue.18, pp.3005-3010, 2006.
DOI : 10.1002/pssa.200671122

Y. Chang, A. Chiu, W. F. Pong, and M. H. Tsia, Electronic properties of the diamond films with nitrogen impurities: An x-ray absorption and photoemission spectroscopy study, Applied Physics Letters, vol.77, issue.26, 2000.
DOI : 10.1063/1.1334916

F. Silva, K. Hassouni, X. Bonnin, and A. Giquel, Microwave engineering of plasma-assisted CVD reactors for diamond deposition, Journal of Physics: Condensed Matter, vol.21, issue.36, 2009.
DOI : 10.1088/0953-8984/21/36/364202

S. Prawer, K. W. Nugent, D. Jamieson, J. Orwa, L. Bursill et al., The Raman spectrum of nanocrystalline diamond, Chemical Physics Letters, vol.332, issue.1-2, pp.93-97, 2000.
DOI : 10.1016/S0009-2614(00)01236-7

A. C. Ferrari and J. Robertson, Origin of the 1150 cm ?1 raman mode in nanocrystalline diamond, Physical Review Letter B, vol.63, 2001.

A. Kriele, O. A. Williams, M. Wolfer, J. J. Hees, W. Smirnov et al., Formation of nano-pores in nano-crystalline diamond films, Chemical Physics Letters, vol.507, issue.4-6, pp.2011-61
DOI : 10.1016/j.cplett.2011.03.089

G. Bugnicourt, Adhésion, croissance et polarisation de neurones sur substrats micro-et nano-structurés, 2011.

H. Ye and R. B. Jackman, Spectroscopic impedance study of nanocrystalline diamond films, Journal of Applied Physics, vol.94, issue.12, pp.7878-7882, 2003.
DOI : 10.1063/1.1622998

M. Lions, S. Saada, B. Bazin, M. A. Pinault, F. Jomard-an et al., Extreme insulating ultrathin diamond films for SOD applications: From coalescence modelling to synthesis, Diamond and Related Materials, vol.19, issue.5-6, pp.413-417
DOI : 10.1016/j.diamond.2010.01.018

M. Bevilacqua, N. Tumilty, C. Mitra, H. Ye, T. Fayfelson et al., Nanocrystalline diamond as an electronic material: An impedance spectroscopic and Hall effect measurement study, Journal of Applied Physics, vol.107, issue.3, pp.2010-68
DOI : 10.1063/1.3291118

F. Pruvost and A. Deneuville, Analysis of the Fano in diamond, Diamond and Related Materials, vol.10, issue.3-7, pp.531-535, 2001.
DOI : 10.1016/S0925-9635(00)00378-2

S. Ghodbane, Réalisation, étude et optimisation de couches minces de diamant dopées au bore en vue de leur utilisation comme électrodes Bibliographie pour la réduction des nitrates, pp.71-72, 2007.

P. W. May, W. J. Ludlow, M. Hannaway, P. J. Heard, J. A. Smith et al., Raman and conductivity studies of boron-doped microcrystalline diamond, facetted nanocrystalline diamond and cauliflower diamond films, Diamond and Related Materials, vol.17, issue.2, pp.105-117, 2008.
DOI : 10.1016/j.diamond.2007.11.005

S. Ghodbane, F. Omnès, and C. Agnès, A cathodoluminescence study of boron doped {111}-homoepitaxial diamond films, Diamond and Related Materials, vol.19, issue.4, pp.273-278, 2010.
DOI : 10.1016/j.diamond.2009.11.003

URL : https://hal.archives-ouvertes.fr/hal-00739731

C. Wild, R. Kohl, N. Herres, W. Müller-sebert, and P. Koidl, Oriented CVD diamond films: twin formation, structure and morphology, Diamond and Related Materials, vol.3, issue.4-6, pp.373-381, 1994.
DOI : 10.1016/0925-9635(94)90188-0

A. Charles, Le diamant dopé au bore pour la bioélectronique : Bicompatibilité et fonctionnalisation, 2009.

C. and L. Clement, Diamond Electrochemistry, 2005.

N. Tumilty, L. Kasharina, T. Prokhoda, B. Sinelnikov, and R. B. Jackman, Synthesis of carbon nanotubes on single crystal diamond, Carbon, vol.48, issue.11, pp.3027-3032, 2010.
DOI : 10.1016/j.carbon.2010.04.023

. Cheol-jin-lee, . Jeunghee, A. Jeong, and . Yu, Catalyst effect on carbon nanotubes synthesized by thermal chemical vapor deposition, Chem Phys Lett, vol.360, pp.250-255, 2002.

D. Takagi, Y. Kobayashi, and Y. Homma, Carbon Nanotube Growth from Diamond, Journal of the American Chemical Society, vol.131, issue.20, pp.6922-6923, 2009.
DOI : 10.1021/ja901295j

C. M. Whelan and S. Esconjauregui, The reasons why metals catalyze the nucleation and growth of carbon nanotubes and other carbon nanomorphologies, Carbon, issue.3, pp.659-669

W. Deng, X. Xu, and W. A. Goddard, A Two-Stage Mechanism of Bimetallic Catalyzed Growth of Single-Walled Carbon Nanotubes, Nano Letters, vol.4, issue.12
DOI : 10.1021/nl048663s

E. Kukovitsy, L. Vov, S. Sainov, N. Shustov, V. Chernozatonskii et al., Correlation between metal catalyst particle size and carbon nanotube growth, Chemical Physics Letters, vol.355, issue.5-6, pp.497-503, 2002.
DOI : 10.1016/S0009-2614(02)00283-X

A. Nasibulin, P. Pikhista, H. Jiang, and E. Kauppinen, Correlation between catalyst particle and single waled nanotube diameters, CAR- BON, vol.43, pp.2251-2257, 2005.

H. Heise, R. Kuckuk, A. Ojha, A. Svrivastava, V. Svrivastava et al., Characterisation of carbonaceous materials using Raman spectroscopy: a comparison of carbon nanotube filters, single- and multi-walled nanotubes, graphitised porous carbon and graphite, Journal of Raman Spectroscopy, vol.59, issue.3, pp.344-353, 2009.
DOI : 10.1002/jrs.2120

S. Decossas, G. Cappello, G. Poignant, L. Patrone, A. M. Bonnot et al., Interaction forces between carbon nanotubes and an AFM tip, Europhysics Letters (EPL), vol.53, issue.6, 2001.
DOI : 10.1209/epl/i2001-00214-6

S. Decossas, Nanotribologie par microscopie à force atomique sur les nanotubes de carbone, 2001.

A. Rocha, K. Jian, G. Ko, and H. Liang, Neuron adhesion and strengthening, Journal of Applied Physics, vol.108, issue.2, 2010.
DOI : 10.1063/1.3456504

T. Ohashi, W. Sugimoto, and Y. Takasu, Catalytic etching of {100}-oriented diamond coating with Fe, Co, Ni, and Pt nanoparticles under hydrogen, Diamond and Related Materials, vol.20, issue.8, pp.1165-1170, 2001.
DOI : 10.1016/j.diamond.2011.06.029

S. Konishi, T. Ohashi, W. Sugimoto, and Y. Takasu, Effect of the Crystal Plane on the Catalytic Etching Behavior of Diamond Crystallites by Cobalt Nanoparticles, Chemistry Letters, vol.35, issue.11, pp.1216-1217, 2006.
DOI : 10.1246/cl.2006.1216

W. Smirnov, J. Hess, D. Brink, W. Sebert, A. Kriele et al., Anisotropic etching of diamond by molten Ni particles, Applied Physics Letters, vol.97, issue.7, 2010.
DOI : 10.1063/1.3480602.1

M. Singleton and P. Nash, The c-ni system. Buletin of Alloy Phase Diagrmas, pp.121-126, 1989.

G. L. Selman and P. J. , Ellison and A. s. Darling. Carbon in platinum and palladium. Platinum metals review, pp.14-20, 1970.

S. Iijima, C. Barbec, A. Maiti, and J. Bernholc, Structural flexibility of carbon nanotubes, The Journal of Chemical Physics, vol.104, issue.5, 1996.
DOI : 10.1063/1.470966

M. Kumar, Carbon Nanotube Synthesis and Growth Mechanism, InTech, 2011.

S. P. Chai, S. H. Zein, and A. R. Mohamed, A Review on Carbon Nanotubes Production via Catalytic Methane Decomposition, 2004.

Y. Yan, . Huang, P. J. Tuomas, E. M. Knowles, and . Terentjev, Strength of nanotubes, filaments, and nanowires from sonicationinduced scission, Advanced Materials, vol.21, issue.108, pp.3945-3948, 2009.

A. Hirata and N. Yoshioka, Sliding friction properties of carbon nanotube coatings deposited by microwave plasma chemical vapor deposition. Tribology International, 2004.

J. Lievonen and M. Ahlskog, Lateral force microscopy of multiwalled carbon nanotubes, Ultramicroscopy, vol.109, issue.7, 2009.
DOI : 10.1016/j.ultramic.2009.03.028

L. Marty, V. Bouchiat, C. Naud, M. Chaumont, T. Fournier et al., Schottky Barriers and Coulomb Blockade in Self-Assembled Carbon Nanotube FETs, Nano Letters, vol.3, issue.8, p.1115, 2003.
DOI : 10.1021/nl0342848

D. Roy, Z. H. Barber, and T. W. Clyne, Strain gradients along the growth direction in thin diamond film deposited on silicon wafer, Journal of Applied Physics, vol.94, issue.1, pp.136-139, 2003.
DOI : 10.1063/1.1573347

R. Haubner, A. Lindlbauer, and B. Lux, Diamond deposition on chromium, cobalt and nickel substrates by microwave plasma chemical vapour deposition, Diamond and Related Materials, vol.2, issue.12, pp.1505-1515, 1993.
DOI : 10.1016/0925-9635(93)90021-S

J. Judge, A Study of the Dissolution of SiO[sub 2] in Acidic Fluoride Solutions, Journal of The Electrochemical Society, vol.118, issue.11, p.1772, 1971.
DOI : 10.1149/1.2407835

R. Kiran, L. Rousseau, G. Lissorgues, E. Scorsone, A. Bongrain et al., Multichannel Boron Doped Nanocrystalline Diamond Ultramicroelectrode Arrays: Design, Fabrication and Characterization, Sensors, vol.12, issue.12, pp.7669-2012
DOI : 10.3390/s120607669

M. Erix and . Hudak, Electrochemical evaluation of platinum and diamond electrode for neural stimulation, pp.2011-143

J. M. Nugent, K. S. Santhanam, A. Rubio, and P. M. Ajayan, Fast Electron Transfer Kinetics on Multiwalled Carbon Nanotube Microbundle Electrodes, Nano Letters, vol.1, issue.2, pp.87-91, 2001.
DOI : 10.1021/nl005521z

J. F. Schenck, The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds, Medical Physics, vol.23, issue.6, 1996.
DOI : 10.1118/1.597854

K. Goslin and G. Banker, Experimental observations on the development of polarity by hippocampal neurons in culture, The Journal of Cell Biology, vol.108, issue.4, p.1507, 1989.
DOI : 10.1083/jcb.108.4.1507