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Abstract

Cloud computing is increasingly exploited to tackle the computing challenges raised in both science
and industry. Clouds provide computing, network and storage resources on demand to satisfy the needs
of large-scale distributed applications. To adapt to the diversity of cloud infrastructures and usage, new
tools and models are needed. Estimating the amount of resources consumed by each application in
particular is a difficult problem, both for end users who aim at minimizing their cost and infrastructure
providers who aim at controlling their resources allocation. Although a quasi-unlimited amount of re-
sources may be allocated, a trade-off has to be found between (i) the allocated infrastructure cost, (ii)
the expected performance and (iii) the optimal performance achievable that depends on the level of par-
allelization of the application. Focusing on medical image analysis, a scientific domain representative of
the large class of data intensive distributed applications, this thesis proposes a fine-grained cost function
model relying on the expertise captured from the application. Based on this cost function model, four
resources allocation strategies are proposed. Taking into account both computing and network resources,
these strategies help users to determine the amount of resources to reserve and compose their execution
environment. In addition, the data transfer overhead and the low reliability level, which are well-known
problems of large-scale distributed systems impacting application performance and infrastructure usage
cost, are also considered.

The experiments reported in this thesis were carried out on the Aladdin/Grid’5000 infrastructure,
using the HIPerNet virtualization middleware. This virtual platform manager enables the joint virtual-
ization of computing and network resources. A real medical image analysis application was considered
for all experimental validations. The experimental results assess the validity of the approach in terms of
infrastructure cost and application performance control. Our contributions both facilitate the exploita-
tion of cloud infrastructures, delivering a higher quality of services to end users, and help the planning

of cloud resources delivery.






Résumé

Les infrastructures virtuelles de cloud sont de plus en plus exploitées pour relever les défis de cal-
cul intensif en sciences comme dans 1’industrie. Elles fournissent des ressources de calcul, de com-
munication et de stockage a la demande pour satisfaire les besoins des applications a grande échelle.
Pour s’adapter a la diversité de ces infrastructures, de nouveaux outils et modeles sont nécessaires.
L’estimation de la quantité de ressources consommées par chaque application est un probléme partic-
ulierement difficile, tant pour les utilisateurs qui visent a minimiser leurs cofits que pour les fournisseurs
d’infrastructure qui visent a contrdler ’allocation des ressources. Méme si une quantité quasi illimitée
de ressources peut étre allouée, un compromis doit étre trouvé entre (i) le cofit de I’infrastructure al-
louée, (ii) la performance attendue et (iii) la performance optimale atteignable qui dépend du niveau
de parallélisme inhérent a 1’application. Partant du cas d’utilisation de I’analyse d’images médicales,
un domaine scientifique représentatif d’un grand nombre d’applications a grande échelle, cette these
propose un modele de cofit a grain fin qui s’appuie sur 1’expertise extraite de 1’application formalisée
comme un flot. Quatre stratégies d’allocation des ressources basées sur ce modele de cofit sont intro-
duites. En tenant compte a la fois des ressources de calcul et de communication, ces stratégies permettent
aux utilisateurs de déterminer la quantité de ressources de calcul et de bande passante a réserver afin de
composer leur environnement d’exécution. De plus, I’optimisation du transfert de données et la faible
fiabilité des systemes a grande échelle, qui sont des problemes bien connus ayant un impact sur la per-
formance de I’application et donc sur le colit d’utilisation des infrastructures, sont également prises en
considération.

Les expériences exposées dans cette these ont été effectuées sur la plateforme Aladdin/Grid’ 5000,
en utilisant I’intergiciel HIPerNet. Ce gestionnaire de plateforme virtuelle permet la virtualisation de
ressources de calcul et de communication. Une application réelle d’analyse d’images médicales a été
utilisée pour toutes les validations expérimentales. Les résultats expérimentaux montrent la validité de
I’approche en termes de controle du coit de I’infrastructure et de la performance des applications. Nos
contributions facilitent a la fois I’exploitation des infrastructures de cloud, offrant une meilleure qualité

de services aux utilisateurs, et la planification de la mise a disposition des ressources virtualisées.
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Chapter 1

Introduction

Over the last years, distributed computing infrastructures have been increasingly exploited for tackling
the computation challenges raised in both science and industry. They provide computing, network and
storage resources to deal with the needs of large-scale applications. From a single site cluster, where
the amount of resources is limited, distributed computing infrastructures have rapidly evolved to larger
scale Grids where users have the illusion that they are working on an unlimited-sized infrastructure.
Depending on the parallelism level supported in their applications, users can recruit a large amount of
resources to speed up their applications execution. Grids are well suited to efficiently process massively
data parallel application through the delivery of High Throughput Computing. Clouds are a natural next
step of distributed computing infrastructures towards the allocation of resources on demand. Users on
Clouds reserve resources to satisfy their performance requirements and pay the execution cost “per use”.
A challenging problem, both for business and research communities, is how to execute applications in
a cost-efficient manner to obtain the desired level of performance. Focusing on medical image analysis,
a scientific domain representative of the large class of data intensive distributed applications, this the-
sis proposes several optimizations in terms of data management, resource allocation and infrastructure
reliability to find out an acceptable trade-off between the execution cost and achievable performance.
In this thesis, we particularly focus on cloud infrastructures which enable better control of resources
allocation and therefore execution cost. However, the results of this thesis are applicable to a broader set

distributed computing infrastructures.

1.1 Distributed multi-user systems

Since the late 1960s, the term distributed system has appeared in the computer science dictionary to
depict an aggregation of autonomous computers that communicate through a computer network. Com-
puters interact with each other to achieve a common goal [Enslow, 1978]. Scientific and business organi-
zations build their own cluster infrastructures to fulfill their internal computation requirements. With the
rise of the Internet, the pressure for decentralization and distribution of software and hardware resources
has increased tremendously. Not only service decomposition in Information Technology is occurring
inside an enterprise but also software and hardware resources can be assembled from cross enterprises

and service provider systems. This leads to the need for new abstractions and architectures that can
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Figure 1.1: Evolution of distributed systems and their resources allocation mechanisms

enable dynamic resources sharing in an environment which spans over multiple administrative domains
distributed across the world.

Grids with a flexible, secure and coordinated sharing of heterogeneous resources among dynamic
collections of individuals and institutions, are emerging as a pinnacle of the evolution of distributed
computing infrastructures [Foster et al., 2001]. Since their foundation, Grids have become increasingly
important as they are employed in various critical areas such as weather forecasting, flight control sys-
tem, simulation, bio-informatics or biomedical applications. Distributed systems become multi-users
due to the rapid growth of their user communities and the push of institutions towards better sharing of
computing resources. As the goals and the way of using systems differ between users, user communities
on distributed computing systems are divided into Virtual Organizations (VOs). Each VO refers to a
dynamic group of users defining a set of resources-sharing rules and conditions. VO members share
resources and collaborate with each others for the purpose of one or more identified goals.

Clouds, the new generation of distributed systems, provide resources on demand. By using virtual-
ization of both operating system and network, clouds give users more flexibility to design customized
execution environments. In addition, the amount of cloud resources reserved for an execution can vary
elastically depending on the applications workload.

Despite the evolution of distributed computing infrastructures and strong efforts put forward to
harness systems complexity and satisfy users requirements, many challenging problems still remain.
Among them, resources reservation and scheduling are NP-complete problems as proved in the litera-
ture [Ullman, 1975]. How to best allocate resources to a given application with a determined input data
set is still a difficult question to answer. Many allocation approaches have been implemented to adapt to
the evolution of distributed systems. Figure 1.1 depicts the evolution of resources allocation approaches
observed over the last years to adapt to the emergence of large-scale distributed systems. On small scale
systems centrally managed, tasks schedulers are used. The move to open large-scale grid infrastruc-
tures introduce the need for meta-schedulers in charge of coarse-grained load balancing. Finally, the
emergence of dedicated virtualized environments push towards new methods of resources allocation.

1.1.1 Resources allocation

Efficient utilization of resources is not only needed from the financial perspective in a commercial dis-
tributed system. It is also one of the main requirements in non-business type sharing of resources, such

as in scientific Grids. High efficiency results in cost-effectiveness and therefore justifies the use of dis-
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tributed systems. However, it is challenging to meet the quality of service objectives of an application
running on a distributed computing infrastructure while maintaining high system performance. The rea-
son comes from the fact that optimizing the quality of services delivered to users on an infrastructure
usually conflicts with efficiency goals of resources providers. Furthermore, distributed infrastructures
are shared by multiple applications that belong to different administrative domains. There are many
ways to reserve the resources to execute the application on distributed infrastructures through the mid-
dleware and resource managers based on a scheduling policy. Sections 1.1.1.1 to 1.1.1.6 review the main
approaches depicted in figure 1.1 and give some insight on their adaptation to distributed infrastructures

evolution.

1.1.1.1 Batch scheduler

The most popular resource manager used on a traditional system is the batch scheduler. As presented in
figure 1.2a on page 21, a batch scheduler receives tasks submissions which are independent sequential
or parallel computations requested by users. It schedules the execution of these tasks on the resources
it manages, determining when and where each task is to be executed. Consequently, resources are
allocated along with the arrival of tasks and they are accessed through tasks submission. Compared to
static scheduling problems which presume perfect knowledge of the current execution system state and
fully predictable changes, real batch systems have to face the periodic arrivals of new tasks in the queue
and uncertainties such as exact tasks duration. Therefore, they have to update their schedule dynamically
accordingly.

The simplest batch scheduling policy is First Come First Served (FCFS) which is sup-
ported in many batch schedulers such as OAR [Capit et al., 2005], Condor [Tannenbaum et al., 2001,
Litzkow et al., 1988], PBS/OpenPBSl, NQS [Albing, 1993] and gLitez. With this naive strategy, there
is a possibility that a task has to wait for a long time in the queue before being executed. A very short
task located at the end of the batch queue has to wait until all tasks located before it in the queue finish.
Smarter policies have been proposed in the literature to help users to access their resources as soon as
possible. One of theses policies is to calculate the priority of the task based on some properties of the
task and policies of the batch queue as implemented in the Maui batch scheduler® [Bode et al., 2000].
The task priority is determined by task properties such as the requested resource requirements and the
time it has waited in the queue. These properties are combined in a formula with weights specified by
the system administrator. After the priority of all tasks in the queue is calculated, resources are allocated
to the task according to its priority order in the batch queue. Priorities have to be updated periodically

to take into account new tasks and real waiting time.

1.1.1.2 Meta-scheduler

Batch systems are often used at the local level where resources are usually homogeneous and the number

of resources is limited. A single resource manager can then control all available resources. Tasks are

"Portable Batch System (PBS), http://www.pbsworks.com/
’The gLite middleware, http://glite.web.cern.ch/glite/
3http: //www.clusterresources.com/products/maui-cluster-scheduler.php
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allocated directly from the batch queue to computing resources. Such scheduling frameworks do not pro-
vide load balancing across several clusters and they have limited scalability when the size of infrastruc-
ture increases. A meta-scheduler (figure 1.2b) provides a multi-level scheduling mechanism to adapt
to the heterogeneity of resources on multi-site infrastructures (GrADS [Vadhiyar and Dongarra, 2002],
GridWay [Huedo et al., 2004]). It considers more global view of the execution environment, and dis-
tributes jobs between different local schedulers (e.g. batch schedulers). This hierarchical scheduling
mechanism is therefore more scalable and implements site-wise load balancing. By enabling the het-
erogeneity of low-level schedulers, meta schedulers satisfy better the user request for a large variety of
resources.

Batches and meta-schedulers implement the push model which composes of three phases. The

scheduler:
1. collects resources status for the entire infrastructure;
2. decides job allocation to resources; and
3. submits jobs to resources.

In the first phase, all information concerning the system has to be published. In a large scale infrastruc-
ture, this is often impractical, and information will often be unavailable, incorrect, or out of date. In the
second phase, the decision of the best match between jobs and resources is an NP-complete problem. The
size of this problem increases along with the number of jobs in the queue and available resources. The
scheduler can become overloaded and cause some delays in the scheduling process [Cancio et al., 2004].

Additionally, there is a considerable overhead associated with a job submission as the process relies
on using a meta-scheduler, which itself communicates with other schedulers. At least, two queueing and
scheduling tasks are going to be involved. For larger experiments that involve rather long-running jobs
this does not represent intractable scheduling computations. On the other hand, for some other types
of work, especially the ones involving large number of short-running jobs, the overhead is large and
meta-schedulers become inefficient.

1.1.1.3 Advance reservation

Batches and meta-schedulers schedule user resource requests on the fly which sometimes does not satisfy
users requirements. For distributed applications which need to guarantee the Quality of Service (QoS),
resources reservations are effective technologies. Resources reservation techniques include advance
reservation and immediate reservation. An advance reservation is a restricted delegation of a particular
resource capability over a user-defined time interval. Through a reservation interface, users specify
resource characteristics, start time and duration. Immediate reservation can be considered as advance
reservation which requires to start immediately. We focus on the advance reservation to analyze the
features it provides to users.

Resources reservation for a specific time in the future ensures that all resources would be simulta-
neously available at the execution time of the application. Reserving resources in advance, users can

provide an upper bound on the response time. For an application with sequential tasks, for example,



1.1. Distributed multi-user systems 19

the response time of the first resource in sequence can be the start time of the reservation for the second
resource and so on; thus guaranteeing the end-to-end response time.

Advance reservation has received significant attention from the research community. Espe-
cially applied to grid infrastructures, advance reservation has been considered as an important re-
quirement for future grid resource management systems. For computing and storage resources, ad-
vance reservation was introduced as a part of the Globus Architecture for Reservation and Allocation
(GARA) [Foster et al., 1999]. Numerous batch systems have been integrated with an advance reserva-
tion service such as Maui [Bode et al., 2000], PBS or OAR [Capit et al., 2005].

Despite their attractive features, advance reservations increase the complexity of the schedul-
ing problem and can cause infrastructure performance degradation. They leave idle time frag-
ments in resource schedules where no reservation can be made. As studied in [Smith et al., 2000,
Sulistio and Buyya, 2004], with only 20% of users requests arriving as advance reservation, the uti-
lization of the grid infrastructure can go down as low as 66% in the case where no task reserved in
advance. To overcome this drawback, several scheduling algorithms have been proposed, such as one

presented in [Farooq et al., 2006].

1.1.1.4 Pilot jobs

Using a regular batch submission interface but enabling resources reservation at the user level, the pilot
Jjobs mechanism can be considered as a bridge between batch systems and systems supporting resources
reservation. As described in figure 1.2c¢, the pilots are composed of two main components: the pilot
agent, which is responsible for executing the computing task and the pilot master which provides the
computing task to the pilot agents. To initiate a pilot pool, a master process is started locally and a
desired number of agents is submitted to the infrastructure using a plain job submission process via
meta-scheduler. Once a pilot is executed on a resource, it reports back to its master and pulls a com-
puting task for execution on its resource. This approach is therefore implementing the pull model. As
soon as there is no computing task to process, the worker terminates itself, freeing the resource for other
users. If, for any reason the agent fails or looses the connection with the master, the master can reassign
the computing task to another agent as soon as one becomes available. Compared to the push model,
the scheduling decision in the pull model is more local and less computationally complex. The pull
model only involves finding one task to match the pulling resource when the pilot request for a task to
execute. The master only deals with the tasks of a single user and therefore it is less subject to overhead.
Scalability is ensured by deploying multiple dedicated masters. Several pilot jobs frameworks have been
developed. For example, systems interfaced with EGEE* include DIANE [Moscicki, 2003] WISDOM-
II [Ahn et al., 2008, Jacq et al., 2008], ToPoS”, BOINC tasks [Kacsuk et al., 2008], gPTM3D in radiol-
ogy [Germain et al., 2008], DIRAC [Casajus et al., 2010] and CONDOR glidelns [Sfiligoi, 2008].

The pilot mechanism allows users to create a virtual private set of computing resources reserved for
executing their computing tasks. By installing or uninstalling the pilot agent on computing resources,
the size of the resources pool is flexibly controlled. The available underlying resources with the infras-

tructure also becomes more reliable for the end user when using piloting. Pilots hide broken resources

‘nttp://eu-egee.org/
5https ://wiki.nbic.nl/index.php/ToPoS
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because only the successfully started pilot jobs get an opportunity to process computing tasks. They can
provide accurate information about available resources which makes matchmaking much more reliable.
They also allow users to perform basic sanity check of running environments before they start the real
work. Any problem that occurs during the execution can be immediately reported back to the master
that can react upon it.

However, since pilot jobs are submitted through a scheduling agent (e.g. batch system), it is not
possible to synchronize resources with pilot jobs mechanism. Users can submit n pilot jobs to acquire
n resources but they acquire a resource only after a pilot agent successfully starts and no guaranty
is assured that all n pilot agents are started at the same time. Communications between computing
nodes are therefore difficult to implement. Furthermore, the pilot mechanism introduce new levels
of complexity in the resources management. Resource reservation and optimization is still manually

performed by users in each application.

1.1.1.5 Summary

To summarize, figure 1.2 presents the shift of scheduling approaches towards the support of large-scale
systems. The coarse grain implementation in traditional systems (figure 1.2a) is simple but it is not scal-
able and users do not have much choices in the computing resources location and start time of their tasks.
Moving down, the grain level is finner, scheduling systems are more complex but they are more scalable
and bring increased reliability and quality of services. Meta-schedulers (figure 1.2b) accommodate with
heterogeneous local site policies to adapt to users requirements. Advance reservation allows users to
reserve a set of resources for a future experiment. While this mechanism guarantees QoS constraints,
it can cause infrastructure performance degradation. Furthermore, users have to estimate the amount of
resources to reserve, although such an estimation is not straightforward, especially when considering
distributed applications. Pilot jobs (figure 1.2c) implement the pull model which supports the decou-
pling of workload submission from resources assignment. This results in a flexible execution model,
which in turn enables the distributed scale-out of applications on multiple and possibly heterogeneous
resources. Although some limitations remain, pilot jobs is a new reservation mechanism towards the
creation of a dedicated set of computing resources with increased reliability and flexibility for each VO.
Shielding users from the heterogeneity of underlying resources, the pilot mechanism brings to users a
unique interface to reserve computing resources and submit computing tasks. However, many problems
need more investigation. Resource co-allocation is a major problem, many applications need multiple
resources which could be located on different infrastructure sites. These resources have to be available
simultaneously before the application execution. Schedulers therefore need to be able to co-ordinate

resources scheduling.

1.1.1.6 Resources co-allocation

Distributed systems may be used to execute parallel applications which can efficiently use several pro-
cessors, taking advantage of different resources on the infrastructure. In order to achieve this, a parallel
programming model has to be proposed, and the resource management systems must be able to co-

allocate resources, possibly from different administrative domains.
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The Message Passing Interface (MPI) [MPI Forum, 1994] has been broadly used for developing par-
allel applications with inter-process communication running on multiple resources in a single site envi-
ronment. However, executing these applications on multi-site environments imposes different challenges
due to the heterogeneity of both computing and network resources. Intra-site communications have a
much lower latency than inter-site communications. Complying with the MPI standard, libraries have
been developed that take into account these challenges, for instance PACX-MPI [Gabriel et al., 1998],
MPICH [Gropp et al., 1996] or MPICH-G [Foster and Karonis, 1998]. The main drawback of the MPI
approach is that the number of resources requested by the application is “static”. It cannot vary during
the submission and execution of the application according to the infrastructure status. Resources on
multi-site infrastructures have to be available at the same time and all processes must share the same
life cycle in the execution. Consequently, an application might declare how many resources it needs,
but it has no way to perform this choice taking into account the infrastructure status: the resource man-
ager locks this application until all requested resources are available. Additionally, the fault-tolerance is
not guaranteed in this kind of applications. A failure occurring on an individual resource in the set of
requested resources might cause the collapse of the whole application.

Executing parallel applications on multi-site infrastructures requires a more complex and fine-
grained resource allocation mechanism. This resource allocation mechanism usually refers to resource
co-allocation [Czajkowski et al., 1999]. Resources reservation and management on a multi-site infras-
tructure is obviously more difficult than on a single site due to several problems such as site auton-
omy, heterogeneous substrate, online control, etc. Resulting challenges imposing on the resource co-
allocator are the distributed transaction, fault tolerance, inter-site network overhead and schedule op-
timization. Most of existing work on resource co-allocation focus on at least two of these challenges.
On the scheduling problem, in [Snell et al., 2000], authors presented three scheduling strategies for co-
allocation focussing on the location of resources: (i) Specified co-allocation in which users specify
resources and their location; (ii) general allocation in which users do not specify the resource loca-
tion; and (iii) optimal scheduling in which the scheduler tries to determine the best location for every
requested resource to optimize the cost, performance, response time or any other criteria specified by
users. Other research work handling the difference between the actual and estimated computation and
communication cost has been presented in [Alhusaini et al., 2000]. This approach tries to minimize the
completion time (i.e. makespan) of a set of applications rather than a single application. It composes of
two steps: The first step is an off-line planning in which the scheduler assigns tasks to resources while
assuming that all applications hold all required resources for their whole execution. The second step is a
run-time adaptation in which the scheduler maps tasks on resources according to the actual computation
and communication costs which may differ from the estimated cost used in the first step.

All solutions dealing with challenges of resources co-allocation are developed in system middle-
wares. The Globus Architecture for Reservation and Allocation (GARA) [Foster et al., 1999] is con-
sidered the first project taking into account the Quality of Service for the resource co-allocation re-
quest. It enables applications to co-allocate resources including computing, network and storage re-
sources. It uses advance reservations to support the co-allocation with QoS. OAR [Capit et al., 2005]
is a batch scheduler that has been used in Grid’5000 [Cappello et al., 2005]°. It also supports the

*https://wuw.grid5000. fr
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co-allocation by using advance reservations based on all-or-none policy. Job Submission Service
(JSS) [Elmroth and Tordsson, 2009] is a tool for resource brokering focusing on the software com-
ponent interoperability. This tool has been used in NoduGrid’ and Swegrid®. It relies on ad-
vance reservations for resources co-allocation. These advance reservations are flexible in the sense
that users can provide a start time interval for the allocation. Other systems also support resource
co-allocation such as KOALA [Mohamed and Epema, 2008], HARC [MacLaren et al., 2006], Gri-
dARS [Takefusa et al., 2007].

Each of these middlewares includes some form of resource brokers or meta-schedulers which en-
sure that users requirements are met across sites or clusters. Meta-schedulers services range from re-
source discovery, application staging, data management, and resource management. However, they
are often tied to a particular unified software stack such as glLite or Globus. Due to the heterogeneity
of resources distributed in multiple VOs which may have different local policies, users and applica-
tion developers face many different choices of local schedulers, system protocols and resource brokers.
Different approaches have been adapted to allow users to access any systems through a standardized
protocol. Nimrod/G provides an economy based scheduling algorithm when choosing computing re-
sources [Buyya et al., 2000]. The Globus Grid Resource Allocation and Management (Globus GRAM)
provides a standardized interface to access different local schedulers [Czajkowski et al., 1998]. Condor-

G offers users of condor pools to also take advantage of Globus-based grids [Frey et al., 2002].

1.1.1.7 Trade-off between resources and reservation cost

Resources reservation is crucial in dynamic environments such as grids. The reservation phase provides
some confidence that a subsequent allocation request will succeed. Moreover, resources reservation pre-
vents resources from becoming overloaded due to simultaneous requests from users. This could make
it difficult or even impossible for an application to satisfy its temporal constraints or even carry on. Re-
sources reservation is obviously a difficult problem which has attracted many investigations from the
research community. Optimization of resources usage is another major problem when executing appli-
cation on distributed infrastructures. From an infrastructure provider point of view, the major challenge
is to account (financially or not) for resources usage according to specific criteria (e.g. fair share among
users, degressive price, etc.). On a batch system, the infrastructure has no choice but to wait for the ter-
mination of the application to compute the resource usage cost. We then refer to the post-measurement
model. On systems implementing advance reservation requests, the system provider can base the esti-
mate of the execution on the resources specification of the applications. We refer to the pre-measurement
model. Clouds, in particular, use a simple cost computation model that let users take care of precisely
estimating the amount of resources to reserve. This practice is less suitable for dedicated infrastructures,
such as scientific Grid infrastructures, for which providers are not only interested in billing but also aim
at improving quality of services and optimizing resources sharing. This strong limitation has motivated
us to propose a finer grain model to (i) decide on the amount of resources to allocate to each application,

and (ii) compute the resources usage cost (chapter 3).

"http://www.nordugrid.org/
$http://www.snic.vr.se/projects/swegrid
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From a user point of view, the problem of determining the size of the infrastructure to deploy for sup-
porting a given application run is often a difficult one. Although a quasi-unlimited amount of computing
resources may be allocated, a trade-off has to be found between (i) the allocated infrastructure cost,
(ii) the performance expected and (iii) the optimal performance achievable, that depends on the level of
parallelization of the application. Without assistance, users have to resort to a qualitative appreciation
of the optimal infrastructure to allocate, based on their previous experience with the application and the
distributed system used. Determining the amount of computational and storage resources needed for
each application run is often not sufficient when considering distributed applications. Communication
network bandwidth is also a critical resource, especially for data-intensive applications. Shared among
the infrastructure users, network bandwidth may impact application performance significantly. It is pos-
sible to reserve several computing resources among a huge number of resources of the infrastructure but

reserving the whole physical link is not possible and unrealistic.

1.1.2 The Infrastructure as a Service concept on Clouds

Cloud computing infrastructures are providing resources on demand for tackling the needs of large-scale
distributed applications. They provide the computing, network and storage resources matching the user
requirements to compose a dedicated execution environment. This execution environment becomes a
service at the infrastructure level. Virtualization technologies applied to both computing and network
resources allow cloud providers to better satisfy the user needs and control their resources. Thanks to
virtualization technologies, users on clouds have the illusion that they are using their own, confined
infrastructure while they are sharing with other users the same physical infrastructure. In this section, a

review of virtualization technologies and cloud infrastructures is given.

1.1.2.1 Virtualization

Modern computers are powerful and usually underutilized; even an inexpensive computer running a typ-
ical Web client is about 5% utilized [Virtualization, 2009]. Virtualization has become mandatory to get
the most from today’s typically underutilized computing resources. Not only, is it a mean of presenting
the illusion of many smaller virtual machines (VMs), each of them running a separate operating system
instance and hosting multiple services, but also does it provide a confined and specific environment.
Numerous virtual machine monitor (VMM) systems using virtualization have been designed to sub-
divide these machines. A VMM is a software layer that virtualizes all resources of a physical machine,
thereby defining and supporting the execution of multiple virtual machines. The interface exported by a
VMM is a virtualized hardware/software interface, including a CPU, physical memory, and I/O devices.
A VMM typically executes directly on physical hardware, and more specifically, below the level of op-
erating systems. Within each VM, a “guest” operating system provides the customary set of high-level
abstractions such as files or network sockets. VMware [Devine et al., 1998] and Connectix’ both virtu-
alize the commodity of computer hardware and implement a full virtualization of underlying hardware.
IBM supports a paravirtualized version of Linux for their ZSeries mainframes allowing a large number

of Linux instances to run simultaneously. The VMM has also been used by Disco to allow commod-

Connectix. Product Overview: Connectix Virtual Server http: //www.connectix.com/products/vs.html
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ity operating systems to run efficiently on ccNUMA machines [Bugnion et al., 1997, Govil et al., 1999].
The vMatrix [Awadallah and Rosenblum, 2002] project is based on VMware and aims at building a plat-
form for moving code between different machines. XEN [Barham et al., 2003] is an x86 virtual machine
monitor which allows multiple operating systems to share the conventional hardware in a safe and re-
source managed fashion. It can host up to 100 virtual machines instances simultaneously on a modern
computer with a low performance overhead. Denali [Whitaker et al., 2002] scarifies the strong security
and performance isolation.

In summary, virtualization technologies allow cloud providers to flexibly deploy and configure their
infrastructure. Users requirements on the virtual machine performance are easy to satisfy by adjusting
the number of virtual instances hosted on the same physical resource. Although users share together the
same set of physical resources, thanks to the virtualization technologies, they have the illusion that they

are executing their applications on an isolated, secured and dedicated environment.

1.1.2.2 Cloud infrastructures

Cloud infrastructures are increasingly explored to provide transparency to users when co-allocating mul-
tiple resources hosted on single or multi-site infrastructures. By using virtualization technologies, virtual
execution environments can be dynamically and easily formed to deploy and execute applications with
various requirements. Existing Grid infrastructures have tried to combine the virtualization on top in or-
der to create Cloud infrastructures and provide resources on demand. Numerous commercial Cloud in-
frastructures have successfully promoted their infrastructures and allowed users to reserve the resources
and execute their applications in the “pay as you go” manner. Some allow users to choose the OS and
customize it (e.g. Amazon EC2'’, Enomaly’s Elastic Computing Platform (ECP)'', GOGRID'?), oth-
ers are less configurable such as 3tera’s AppLogic'? which has no OS choice and b-hive'* which is
data-center oriented.

Both scientific and business organizations are finding Cloud infrastructures valuable as a way to

improve:

o IT management since the virtualization on Cloud infrastructures allows more flexible management

of resources;

e Reliability since it is easy in a virtual environment to failover to another virtual machine when

necessary and quickly restart virtual machines and applications;

o Flexibility by being able to readily build up and tear down virtual data or computing centers based

on needs; and

e Security by being able to deploy customized security system.

Ohttp://aws.amazon.com/ec2/
"http://www.enomaly.com
12http: //gogrid.com
Bhttp://www.3tera.com
“nttp://www.bhive.net
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From an infrastructure provider perspective, Infrastructure as a Service (1aaS) cloud computing rep-
resents a fundamental change from precedent distributed infrastructures. Pilots mechanism built on
top of grids give users the illusion that they are working on an infrastructure with reservation support,
although this reservation mechanism is manually managed by the application. Furthermore, on Grid in-
frastructures, the control over how resources are used is based on local software and policy choices. On
the contrary, thanks to the virtualization that isolates the resource leased to the user, the infrastructure
provider turns control of that resource over to the user in a secured manner. The control mechanism
and security policies are left to the user responsibility. Moreover, by using virtualization, Cloud infras-
tructures can co-allocate several execution environments on the same set of physical resources. This
increases the efficiency of resource utilization.

It is well known that the underlying Cloud infrastructure environment is inherently large-scale, com-
plex, heterogeneous and dynamic. It aggregates large number of independent computing and network
resources and data stores. Managing these infrastructures while guaranteeing the QoS is thus a challeng-
ing technical problem. However, most of cloud infrastructures in operation are proprietary and rely upon
infrastructures that are invisible to the research community, or explicitly designed not to be instrumented
and modified by systems researchers interested in cloud infrastructures. It is difficult to understand the
behavior and the management mechanism of these infrastructures. Looking at the Research Cloud in-
frastructures, we can indicate several projects such as the ones listed below:

The Nimbus toolkit (formerly known as the “virtual workspace service”) [Keahey et al., 2005] was
developed with the goal of providing an open source implementation of a service that allows a client to
lease remote resources by mapping environments, or “workspaces” (e.g. implemented by VMs), onto
those resources. Its primary objectives are to provide infrastructure semantics addressing the needs of
the scientific community through resource leases. A single virtual workspace called atomic workspace
is defined through workspace metadata which contains all information needed for deployment such as
the virtual image to deploy, CPU, memory, etc. Several atomic workspaces can be combined to form a
virtual cluster whose networking configuration can be different between its atomic workspaces.

The HIPerNet software is developed in the context of the HIPCAL'® project. HIPCAL studies a
new grid substrate paradigm based on confined virtual cluster concept for resource control in grids. In
addition to virtual host allocation, it implements new approaches for bandwidth sharing and end-to-end
network quality of service guarantees. The resources of global infrastructure including computing re-
sources, storage and network resources are partitioned in virtual infrastructures (aggregation of virtual
machines coupled with virtual channels) and dynamically composed. These virtual clusters are multi-
plexed in time and space, isolated and protected. Users use the VXDL language [Koslovski et al., 2008]
to describe the needed resources (e.g. number of computing resources, network bandwidth, network
topology, etc.). This language is also extended for the infrastructure reliability.

Collaborating in the HIPCAL project, the work presented in this thesis is based on the HIPerNet
framework. Our proposals presented in chapter 3 have been adopted to do experiments on the Aladdin/-
Grid’5000 testbed through this framework. The HIPerNet framework has been used to deploy virtual
machines, control the bandwidth and manage the users reservations. The performance assessment of
this infrastructure is presented in [Vicat-Blanc Primet et al., 2009b, Koslovski et al., 2009].

Bhttp://hipcal.lri.fr/
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1.1.3 Summary

In this section, we addressed the resource reservation and allocation problem on distributed systems.
From a seminal distributed system like local-area network, distributed systems have rapidly evolved
to clouds to better satisfy the users computation needs. Along with this evolution, several parallel
programming paradigms have been developed to help users harnessing the computation performance
of distributed systems. With virtualization technologies, cloud infrastructures offer the flexibility to
co-allocate the resources including the computing, networking resources and other non-functional re-
quirements according to users specifications. Despite this strong utility, distributed systems still need
more investigation on resource optimization, especially on cloud infrastructures where users may be
accounted for their resource utilization.

Many domains require high performance computation. We selected medical image analysis appli-
cations as a case study to do the research presented in this thesis since they represent a broad class of
distributed data intensive applications. In the next section, we detail this application class and the needs

of cloud infrastructures for these applications.

1.2 Cloud infrastructures for medical image analysis applications

1.2.1 Medical image analysis applications

Imaging has become an essential component in many fields of biomedical research and clinical prac-
tice. Biologists study cells and generate 3D confocal microscopy data sets, virologists generate 3D
reconstructions of viruses from micrographs, radiologists identify and quantify tumors from Magnetic
Resonance Imaging (MRI) and Computerized Tomography (CT) scans, and neuroscientists detect re-
gional metabolic brain activity from Positron Emission Tomography (PET) and functional MRI scans.
These digital medical images represent tremendous amounts of data, in the order of tens to hundreds
of MB for each MR image, and of hundreds for a CT-scan. Consequently, the annual production of a
single radiology center is estimated to tens of TB per year. To face the growing requirements of image
analysis, sophisticated computerized quantification and visualization tools have been developed over the
three past decades.

The main commonality of these applications is their data-intensive characteristic since they have
to manipulate large volumes of data and for many patients. Each image processing procedure can last
up to several hours. Moreover, the management of these applications is complex due to the non-trivial
semantics and the data privacy. A medical image itself is often of low interest if it is not related to a
context (patient medical files, other similar cases...). A medical image is therefore often processed as
a correlated data set. Distributed systems are needed to exploit potential parallelism and speed up the

execution of the application.

1.2.1.1 Medical image analysis workflow

Medical image analysis applications are complex not only in terms of data semantic and privacy but
also in terms of the structure of the application. Each application is usually composed of several al-

gorithms which interact with each other to transfer intermediate data. This leads to the needs for a
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high-level language which enables the description of the structure of the application with precedence
constraints in the platform independent manner. We describe medical image analysis applications using
a workflow language which proved to be a suitable abstraction for distributing such procedures. A work-
flow is often represented as a Directed Acyclic Graph (DAG) that consists of nodes which represents
tasks and edges which represent data and control dependencies between them. Workflow-based applica-
tions are interpreted by workflow management systems such as Pegasus [Deelman et al., 2005], MO-
TEUR [Glatard et al., 2008b], P-GRADE [Kacsuk et al., 2003], DIET MA-DAG [Amar et al., 2006],
etc. which automatically transform the specifications into executable workflows that can be executed
on distributed resources. Using workflow description offers several advantages, such as (i) ability to
build dynamic applications which orchestrate distributed resources, (ii) utilizing resources that are lo-
cated in a particular domain to increase throughput or reduce data transfer costs, and (iii) execution

spanning multiple administrative domains to obtain specific processing capabilities.

1.2.1.2 Resources allocation for workflow execution

Algorithms involved in a workflow are usually heterogeneous in computation (i.e. execution time). On
current systems, each invocation of workflow algorithms processing a data item is realized as batch job
that can be defined as non-interactive computational task submitted to the infrastructure independently.
The application performance therefore depends on the availability of resources on the infrastructure.
If any task is pending for a long time in the queue, the application performance will be impacted.
Although pilots help users reserving quickly resources, current systems may not satisfy the expected
performance (e.g. meet the deadline of a patient) and hardly optimize resources reserved for workflow-
based applications. Resource co-allocation with advance reservation is a solution which allows users to
achieve the desired performance and optimize resources usage. Based on the information extracted from

the application logic, users can optimize and designe their confined execution environment.

1.2.1.3 Security concerns

The security requirements of medical applications cannot be tempered with, at the risk of discarding
distributed computing usage in this area. All data belongs to patients whose confidentiality needs to
be preserved in order to fulfill strict hospital privacy rules, in particular when data is transported from
acquisition sources to processing sites and for storage of intermediate computing results. Additionally,
it is not acceptable for any clinical institution that the access to its data resources be managed externally
by a centralized organization. The access control policy should ensure that each health organization
solely controls its own data. The access control technique should allow for reactive access control rules
to be set-up in the context of medical studies, whose life time is short (typically weeks) and the group
composition highly dynamic (small specialist groups are involved in each study, possibly evolving along

time to embark larger consortiums as needed by the experiments).

1.2.1.4 Summary

To summarize, medical applications require:
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e High-level descriptions to ensure that applications are described in a platform independent way.
This description must allow users to exploit parallel computing on distributed systems to achieve

desired performance;

e Complex resource allocation mechanisms to co-allocate resources to applications that guarantee
the performance requirements. The allocation mechanism should support resources reservation

and the optimization of resources usage;

e High security levels to ensure that data privacy is protected during the execution on distributed

systems as well as on the communication channels.

1.2.2 Cloud infrastructure for medical image analysis applications

As mentioned in section 1.2.1, medical image analysis applications are data and computation intensive.
They need a parallel implementation to get executed in a reasonable amount of time compatible with the
clinical practice constraints. It is even more critical with applications that require interactivity for which
users can only remain a reasonably short amount of time in front of their computer screen, waiting for the
algorithm to process the data and return output. Local area parallelism is widely available today through
MPI and batch-oriented applications. However, due to the limited number of local resources available in
medical sites, these applications sometimes need to execute on wide area infrastructure. Additionally, it
is difficult to set up multi-medical center studies if the application is executed on local area.

Grid infrastructures have been used for such applications since their founda-
tion [Germain et al., 2005]. Grids provide an infrastructure allowing the medical community to
access and manipulate medical data. Grids offer the computing power needed to validate algorithms
on large datasets and to process complete databases for applications requiring statistics such as
epidemiology and image registration. The transparent access to medium to high-end computing systems
through grid middleware broadens the applicability of augmented reality as a medical tool. For instance
on the EGEE infrastructure, many medical image analysis applications have been ported in, such as
[Montagnat et al., 2004, Glatard et al., 2005, Blanquer Espert et al., 2005].

Clouds are a natural next step of Grids towards the provisioning of Infrastructure as a Service. We
can see many benefits of using Clouds over Grid or Cluster resources for this kind of applications. Cloud
infrastructure can at least ensure two important requirements of medical image analysis applications
summarized in section 1.2.1. The elasticity of Cloud infrastructures allows users to increase or decrease
the size of the execution environment to run their application, considering the number of input data to
achieve the desired performance (e.g. meet the deadline for a patient). Resources co-allocation is better
satisfied on cloud infrastructures, including network resources thanks to virtualization technology that
enables the sharing of link bandwidth among users without interfering with each other. The isolation
of the infrastructure help users to enhance the security to protect the privacy of patient data without
disturbing other users. With the distributed storage services provided by cloud infrastructures, the large
amount of data of these applications can be retrieved from or sent to closest possible location to the
computing resources or client. However, cloud infrastructures do not support enough mechanisms to
optimize the resources usage. In particular, for complex distributed data intensive applications, such as

medical image analysis, which is described in workflow format, the amount of resources needed for each
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algorithm varies during the execution. We mainly focus on this limitation in this thesis. The objective is

to propose a model to help both users and infrastructure providers to optimize resources usage.

1.3 Manuscript contributions and organization

The work presented in this manuscript studies the problem of porting medical images analysis appli-
cations in cloud infrastructures to run these applications while jointly optimizing the cost and desired
performance. On the one hand, we study the portability challenges to manage the transparency of the
porting process or to minimize the modifications on the client and application side. We do experiments
to assess the performance and evaluate the overhead when porting such applications in cloud infrastruc-
tures. On the other hand, after successfully porting applications in cloud infrastructures, we optimize
their execution based on several performance criteria. The first purpose of the cloud infrastructure is to
provide the resources on demand and users pay for resource reservation in the “pay as you go” manner.
Taking advantage of this feature, we propose strategies to determine the amount of resources needed
to run the application while minimizing the resource reservation cost. Thanks to HIPerNet middleware
which is applying virtualization to both computing and network resources, these strategies can take into
account the network bandwidth between the database and computing nodes or between computing clus-
ters if needed. The cloud infrastructure provides many features that benefit the application such as high
security level and infrastructure reliability.

The study made in this thesis is however limited to workflow-based applications since the proposed
strategies are based on an estimation which is only produced when sufficient information about applica-
tions is available. This information includes the volume of the input data processed and the output data
produced by each algorithm, as well as the average execution time of the algorithm. Thanks to workflow
formalism, this information can be extracted and the application logic can be interpreted to produce such

an estimation.

Chapter 2. Chapter 2 presents a taxonomy on the workflow languages. We present the features and
drawback of each workflow language. We explain why we need the workflow languages for medical
image analysis applications and how to use the workflow language to exploit parallelism. Two main
problems when executing workflow-based applications on distributed systems are considered in this
chapter. Data management is the first problem that we analyze. Existing approaches on data management
are then reviewed. The second problem is workflow scheduling and resources allocation. A classification
of workflow scheduling approaches is given. Based on this classification, existing algorithms are detailed
and categorized. Through the analysis of the state of the art, we present our motivation for the study

made in this thesis.

Chapter 3. In this chapter, we present our contribution to optimize the execution of workflow-based
applications on a cloud infrastructure. We introduce the cost function model which helps users on the
one hand to determine the size of infrastructure to deploy for supporting a given application run and
infrastructure providers on the other hand to account for resources usage according to specific crite-

ria [Truong Huu and Montagnat, 2010]. Four allocation strategies are described based on the estimation
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made by workflow scheduler enriched in the MOTEUR workflow engine [Glatard et al., 2008b]. The es-
timation can differ from the real execution due to the variation of computational process execution time
with input data or stochastic processes causing unforeseeable execution time. A technique is proposed
in this chapter to address this problem. We also address in this chapter other concerns that impact appli-

cation performance and cost on cloud infrastructures such as low reliability and data transfers overhead.

Chapter 4. In this chapter, we present all experiments to validate the proposals described in chapter 3.
We first introduce the experimental testbed, the Aladdin/Grid’5000 experimental infrastructure. We
then detail the HIPerNet virtualization middleware that we used to manipulate virtual machines. The
workflow-based medical application use case is next described. The first experiment is conducted to
evaluate the infrastructure virtualization impact. Its results assess the performance impact within 10%
which is acceptable when considering other advantages of system virtualization for most non time-
critical applications [Koslovski et al., 2009]. We then present experiments conducted for each proposal
presented in chapter 3. These experiments assess the performance of our approaches on resource usage
optimization, reliability support, and prove that cloud infrastructures are suitable for medical image

analysis applications [Truong Huu et al., 2011, Koslovski et al., 2010].



32

Introduction

Chap. 1




Chapter 2
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applications

[ | \ his chapter deals with the process of the de-

scription and execution of medical applica-
tions on distributed systems. We start the chapter
by underlining the need for a workflow language as
a high-level description abstraction for medical ap-

plications. An overview on existing workflow data-

driven languages is then given. Executing workflow
applications on distributed systems involves several
critical problems. We analyze in this chapter three
main problems: data management, workflow schedul-
ing and resource allocation. Existing approaches to
address these problems are then reviewed to motivate

the forthcoming study of this thesis.

e chapitre traite du processus de description
C et d’exécution des flots applicatifs d’analyse
d’image médicale sur des infrastructures a grande
échelle. Nous commengons le chapitre en soulig-
nant la nécessité d’'un langage de flot applicatif
comme une abstraction de description de haut niveau
pour des applications d’analyse d’image médicale.

Une taxonomie sur les langages existant dirigés

par les données est ensuite présentée. L’exécution
des flots applicatifs sur les infrastructures a grande
échelle implique plusieurs problémes critiques. Nous
analysons dans ce chapitre trois problémes prin-
cipaux: [allocation de ressources, la gestion de
données et ’ordonnancement. Les approches exis-
tantes traitant ces problémes sont ensuite étudiées

pour motiver les prochaines études de cette these.
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Both medical research and clinical practice are nowadays involving large quantities of digital data
and require large-scale computation, as a result of the use of ever more digital probes in medicine.
For instance, in medical images analysis, a single research study may require many complex image
processing algorithms which can communicate with each other to exchange data. These algorithms are
repeatedly executed on a data set of up to thousands of image files. Execution efficiency demands the
use of parallel or distributed systems, but few medical researchers have time or expertise to write the
necessary parallel applications.

From a computer science point of view, such applications can be described as workflows. A work-
flow is a graph whose nodes represent data analysis processes and arcs represent inter-dependencies.
Inter-dependencies may be data dependencies (data exchange needed between subsequent processes)
or pure control dependencies (the dependency only expresses a synchronization of processes execution
in time). The representation and execution of medical applications as workflows enable a generic pro-
cessing of many similar image analysis tasks. As mentioned above, medical applications require heavy
computation, dominated by their data parallel nature. The workflow-based approach eases the descrip-
tion and deployment of such computation over distributed systems. It decouples the application from
the execution infrastructure, thus releasing the application developers from the most complex computa-
tional problems, especially parallelization. It exposes to non-expert medical users a simple, accessible
formalism to describe medical applications.

Executing workflow-based applications on a distributed system involves many problems such as

security, infrastructure reliability, data management and workflow scheduling.

e The security problem concerns the data privacy when transferring and executing on the infrastruc-

ture;

e The infrastructure reliability ensures applications are successfully executed and return to users

accurate results;

e The data management is important due to the data exchange between workflow tasks. One ex-
treme condition, is to use a central server to store all input data and intermediate results, thus
decreasing the complexity of the data management problem. Another extreme, is to transfer the
data directly from a computing resource to another one which needs this data. The problem is
even more complicated when executing applications on multi-user distributed systems. Network
resources are shared among users, the delay of data transfer on shared link can significantly impact

applications performance.

e The critical problem addressed in this thesis is workflow scheduling and resources allocation.
Workflow scheduling is a process that maps the execution of workflow tasks on distributed re-
sources. It allocates suitable resources to workflow tasks so that the execution can be completed
to satisfy objective functions imposed by users. As it was proven an NP-complete problem, many
heuristics which solve a particular problem and meta-heuristics which solve a class of problems
have been proposed. Depending on characteristics of the distributed system, a scheduling ap-

proach could be chosen.
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We begin this chapter by analyzing the needs of workflow systems for medical applications. We then
make an overview on existing workflow languages which meet users requirements on the abstraction and
the parallelism exploitation. We then discuss existing data management approaches before presenting

the workflow scheduling and resource allocation problem.

2.1 Towards the workflow description for medical image analysis appli-

cations

Medical image analysis applications are often composed of several algorithms dealing with large data
sets. Some are dependent on each other which means there are precedence constraints (control or data)
between them. An algorithm cannot be executed before the termination of its precedences. Others are
independent which means they can be executed in parallel on several computing resources. Moreover,
each algorithm can be used in many applications, for instance, image pre-processing algorithms. These
characteristics impose on both medical community and computer science two major challenges: the

reusability of application code and parallelism exploitation.

2.1.1 On the reusability of application code

Code reuse has been practiced from the earliest days of programming. Programmers have always reused
sections of code, templates, functions, and procedures. Code reuse is the idea that a partial or complete
computer program written at one time can be, should be, or is being used in another program written at
a later time. The reuse of programming code is a common technique which attempts to save time and
energy by reducing redundant work.

The software library is a good example of code reuse. Programmers may decide to create internal
abstractions so that certain parts of their program can be reused, or may create custom libraries for their
own use. Some characteristics that make software more easily reusable are modularity, loose coupling,
high cohesion, information hiding and separation of concerns.

Object Oriented Programming (OOP) allows users to define classes which could be reusable in a
number of different applications. In OOP, code is reused in the form of objects. These objects are
often contained in vast libraries of reusable code. Frameworks take the process even further, providing
more robust and disciplined systems of reuse. By obtaining and reusing parts of systems which have
already been “tried and tested”, we can exploit the principal advantages of object-oriented programming
techniques over procedural programming techniques. OOP enables programmers to create modules that
do not need to be changed when a new type of object is added. A programmer can simply create a
new object that inherits many of its features from existing objects. This makes object-oriented programs
easier to modify. Despite efforts of many OOP languages such as C++ and Java, OOP did not fulfill the
promise of complete reusability as noticed by Gannon in [Gannon, 2007].

“Object-oriented programming was thought to be the solution to reusability but it only
got us part of the way. Object-oriented concepts are powerful but they do not guarantee

that a class built for one application can be easily reused in another. To build truly reusable
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software, one must design the software as part of a component architecture that defines rules

and contracts for deployment and reuse.”

The code reuse took a new step in 1968, when Mcllroy envisioned an industry of reusable software
components [Mcllroy, 1968]. He emphasized the idea of subassemblies and interchangeable parts which
could both be applied to industrial products and software. He wrote in his paper that:

“My thesis is that the software industry is weakly founded, in part because of the ab-
sence of a software components subindustry. ... A components industry could be immensely

successful.”

However, at that moment, the software community did not yet agree on what a software component
exactly was. Many debates have been conducted to find the answer and to determine whether objects
in OOP could be considered as components or not. In 1997, Sametinger gave in [Sametinger, 1997] a

precise definition:

“Reusable software components are self-contained, clearly identifiable artefacts that de-
scribe and/or perform specific functions and have clear interfaces, appropriate documenta-

tion and a defined reuse status.”

Since then, reuse of software components has become more and more important in various aspects
of software engineering. Structuring a complex application into largely independent components has
several advantages. It is easy to distribute components among various engineers to allow parallel devel-
opment. Maintenance is easier when clean interfaces have been designed for components since changes
can be made locally without having unknown effects on the whole application. And, if components in-
terrelations are clearly documented and kept to a minimum, it becomes easier to exchange components
and incorporate new ones into an application.

Web services are nowadays emerging technologies to reuse software as a service that can deliver its
functions over the Internet without being installed locally. Thanks to XML and other Web standards
(e.g. Simple Object Access Protocol (SOAP), Web-Service Description Language (WSDL), Univer-
sal Description Discovery and Integration (UDDI)), applications can run in different environments and
at different locations to exchange information, interoperate, and be combined more readily than ever
before. Based on HyperText Transfer Protocol (HTTP), a ubiquitous transport mechanism in today’s
computing environments, it is possible for application functions to interact within and across enter-
prises. Each application function is responsible for defining its inputs and outputs using the standards
for Web services, so that other applications can interact with it.

Web services have been well exploited in the domain of medical image analysis applications. The
MammoGrid project has delivered its SOA-based Grid application to enable distributed computing span-
ning national borders. This application harnesses the use of huge amounts of medical image data to
perform epidemiological studies, advanced image processing, radiographic education and ultimately,
tele-diagnosis over communities of medical virtual organisations [Amendolia et al., 2004]. The Bronze
Standard application has also been gridified based on web services. It tackles the problem of qualifying
registration algorithms accuracy [Glatard et al., 2006a]. In the MediGRID project [Kottha et al., 2007],
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web services have been used to compose medical applications which are executed on grid infrastructures
through the MediGRID portal.

Finally, workflows are a new paradigm which facilitates code reuse by dictating a component-based
model for workflow activities. These components are executed as part of a workflow. Indeed, as more
data, analysis tools and other resources are nowadays delivered as web services, users can describe and
enact their applications by orchestrating distributed and local services into a workflow. This process
often involves several steps: (i) choosing a set of appropriate services based on functional and non-
functional properties of services, (ii) ordering them in sequence according to the application logic by
solving the connectivities between services, and (iii) converting the complex process into a target work-
flow language which can be executed on a platform. Defining workflow-based applications in such a
way allows them to be processed as a component. Workflow activities are therefore plugged in and out

easily.

2.1.2 Parallelism exploitation

We especially underline in this thesis the need of parallelism for medical image analysis applications.
Facing the growth of the volume of datasets, medical image analysis algorithms need a parallel imple-
mentation to get executed in a reasonable amount of time compatible with clinical practice constraints.
Efficiency is even more critical for applications that require interactivity. In this case, users can only
remain a reasonably short amount of time in front of their computer screen, waiting for the algorithm
to process data and return an output. Support for parallel computations is therefore mandatory for these
applications. Local area parallelism is widely available today through message passing interfaces but
does not satisfy the needs of the medical community due to the lack of resources at local sites. Grids
and Clouds satisfy better the parallelism needs. Workflow languages are emerging as the most suitable
manner to describe the structure of medical image analysis applications. Interpreted by workflow man-
agers with the support of distributed middleware, workflow-based applications can exploit following

parallelism levels:

Asynchronous service calls. The first important parallelism level can be exploited is referred to asyn-
chronous service calls. Multiple applications services can be invoked simultaneously. These invoca-
tions need to be non-blocking to exploit the parallelism. GridRPC and Web services are two standards
supporting the asynchronous invocations [Nakada et al., 2005, Perera and Ranabahu, 2006]. Given that
asynchronous invocations are possible, three other parallelism levels described below can be supported

to harness the power of the infrastructure and satisfy the performance requirements.

Workflow parallelism. Depending on the structure of the application, several services can be executed
in parallel on many data items. For instance, if we consider the simple example shown in figure 2.1,
services P» and P3 may be executed in parallel. This parallelism level is implemented in all existing

service-oriented workflow managers.

Data parallelism. Clinical practice leads to continuous patient data acquisition daily and consequently

produces many data sets. Services can be instantiated as several computing tasks running on different
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Source

Figure 2.1: Example of a workflow exploiting data, workflow and service parallelism.

Dy
Pl X | D
Dy
Dy
Py X | D
Dy
Do
P || D | X
Do

Table 2.1: Data parallel execution of the workflow presented in figure 2.1

computing resources and processing different input data in parallel. The major challenge of data par-
allelism is the ability of the service to process many parallel connections. The application should be
able to create multiple threads to independently process each input data item. These threads should not
conflict with each other to avoid data access conflicts. Considering the workflow given in figure 2.1 and
supposing that we want to execute this workflow on 3 independent input data items Dy, D1 and Do, the
data parallel execution of this workflow is presented in table 2.1. P} begins the execution by processing
all input data items in parallel. P, and P; are idle (represented by a cross) since they have to wait for Py
whose result is their input data. When P finishes its execution, P» and Ps will start in parallel according

to workflow parallelism and they also process in parallel all input data items resulted from P;.

Service parallelism. Service parallelism or pipelining represents the concurrent execution of two in-
dependent input data items by two different services which are sequentially linked. Considering again
the workflow in figure 2.1 and the input data set composes of 3 independent items Dy, D and Ds.
Supposing that the data parallelism is eliminated, table 2.2 presents the execution of this workflow. The
abscissa axis represents time. P; executes all input data items sequentially. Service parallelism occurs

when different data items appear on different cells of the same column.

Exploiting those three types of parallelism in workflow-based applications does not require specific
parallel programming skills since they can be directly determined from the graph of services. Their
exploitation is mandatory to speed up the application execution, obtain the desired performance and

harness the computing power of distributed systems.
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P3 X DO D1 D2
P || X | Dy | D1 | Dy
Pl Dy | Dy | Dy| X

Table 2.2: Service parallel execution of the workflow presented in figure 2.1

2.1.3 Conclusions

In this section we underlined the need of workflows for medical image analysis applications. From
a computer science point of view, medical applications can be described as a workflow as it requires
many mostly independent services. Additionally, medical image analysis applications usually involve
large data sets for different needs such as statistical studies, performance evaluation, epidemiology, etc.
They require heavy computations, dominated by workflow, data and service parallelism. The workflow
approach brings to users the ability to develop and distribute such applications over remote resources
on distributed systems. It also decouples applications from the execution infrastructures, shielding the
application developers from the complexity of computational problems, in particular parallelism.

Many workflow approaches have been developed in the literature. Each system often includes a
workflow language for describing applications and a workflow manager for interpreting the workflow
description and managing the application execution. However, they are often designed for a specific
need. It is difficult to find an approach that covers a broad set of features and meets medical image
analysis requirements. In the next section, we highlight several workflow approaches and motivate our

choice.

2.2 Data-driven workflow languages

Workflow languages play an important role in the workflow design process given that they constrain the
kind of computational pattern that can be represented. As a matter of fact, a large number of work-
flow languages exist today, exhibiting the variety of needs for workflow-based applications. From
raw Directed Acyclic Graphs (DAGs) such as DIET MA-DAG [Caron and Desprez, 2006] or CON-
DOR DAGMan', workflow languages have rapidly evolved to the abstraction for parallel computa-
tions such as Petri Nets [Alt and Hoheisel, 2005], meta-model [Nemo et al., 2007], data-driven such as
Scufl [Turi et al., 2007] and scripting languages such as SwiftScript [Zhao et al., 2007]. Each of these
approaches can be defended through some aspects well covered in their design: DAGs are convenient
for scheduling [Hall et al., 2007, Malewicz et al., 2006], Petri Nets can be used to detect properties such
as potential deadlocks, data-driven languages ease the description of applications logic for non-expert
users and scripting is extensively used by programmers for prototyping, etc.

In this thesis, we focus on the data-driven languages as they are particularly appealing for designing
scientific data analysis applications and executing them on a distributed system. Particularly, data-driven
languages meet requirements of medical image analysis applications on the coarse-grain abstraction de-
scription. Data-driven languages also satisfy medical analysis applications on the parallelism exploita-

tion. They implicitly express the parallelism. They separate the definition of data to process from the

"ttp://www.cs.wisc.edu/condor/dagman
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graph of activities to be applied to the data. This separation of the scientific data to analyze and process-
ing logic is convenient in many experimental situations: an application is designed and implemented
independently of data sets to consider, and the same workflow can be reused for analyzing different data

sets without any change.

2.2.1 The Scufl language

Scufl was introduced within the myGrid project” to represent data flows enacted through the Taverna
workflow engine [Oinn et al., 2007]. Scufl is a simple graph-oriented language which is defined through
several XML tags described in the following paragraphs.

Processors. In the Scufl language, computing activities are called processors. For convenience
there exist different processor kinds. Without loss of generality we will focus on three types of proces-
sors: (i) java internal processors which are executing predefined java-coded operations at the level of the
workflow engine, (ii) beanshell processors® which are interpreting java user code locally and (iii) web
service processors which are invoking standard web services. Beyond the convenience of separating data
and application logic, processors may fire multiple times depending on data items which they receive to
process. The processor XML tag can contain many different tags which specify the processor behavior.
For example, beanshell processors have specific tags to hold the java code to be interpreted, web service
processors have another tag to define the service WSDL description document endpoint, etc. A com-
monality to all processors is that they define named input and output ports. Ports are buffers which hold

either data items sent to the processor for computation or data items produced by the processor.

Data links. An output port of a processor Py and an input port of a subsequent processor P; are
connected through links. Data links are by far the most widely used in Taverna data flows: a data link
expresses a data dependency between Py and P;. P; can only be enacted once it received one data item
or more into all its input ports through data links. When exactly P fires is determined by the processor

iteration strategy defined below.

Coordination constraints. Coordination constraints are a specific kind of processor links which do
not require any data to be exchanged between connected processors. The target processor of a coordi-
nation constraint can only fire once the source processor has completely executed (i.e. once it has fired
for all data sets to process and it is certain that no further firing will be needed in the execution of this
workflow). It is to be noted that cycles of linked processors may exist in Scufl. However, the behavior
of the Taverna enactor in presence of cycles is ill-defined. A clear semantic for data link cycles can be
defined. Control links cannot appear within a cycle given that the completion execution of a processor

within a cycle cannot be determined.

Iteration strategies. Despite its apparent simplicity, the Scufl language provides a rich data flow se-

mantic through iteration strategies. They define how many times a processor fires when it receives input

’myGrid UK e-Science project: www.mygrid.org
*http://www.beanshell.org
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data on two or more input ports. There are two basic iteration strategies when considering a pair of input
ports pg and p; of processor P: dot and cross. In the case of a dot product, the processor will fire once
for each pair of input data items received on py and p;. For example, if pg receives data items a and b,
and p; receives ¢ and d, then the processor will fire two times P(a, ¢) and P(b, d). The dot product cor-
responds to a traditional one-to-one execution semantic. In case of parallel execution, the order of data
items processed may be shuffled and care has to be taken by the workflow manager to respect the user
expected semantics of computations. The cross product corresponds to an all-fo-all execution semantic.
In the former example, 4 data items would be produced: P(a, ¢), P(a,d), P(b,c) and P(b,d). Combin-
ing dot and cross produces in an arithmetic expression, complex iteration strategies can be defined for

processors with more than two input ports.

List data sequences. An important aspect of the Taverna workflow engine is to support lists of con-
secutive data items and lists of embedded list semantics. However, lists are not clearly part of the Scufl
language but rather a consequence of the data flow strategy implemented in Taverna: only the beanshell
processor type properly handles lists although there is no reason why lists should be related to a specific
processor kind. It is a flaw in Taverna design which is fixed in the GWENDIA language presented in
section 2.2.4. With lists, several data items can be logically considered as a single group of data. Some
processors may process a complete list in a single invocation while others may process list items individ-
ually depending on the semantic of the processor. For instance, an arithmetic “square” operation may be
invoked on individual integers while a statistical “mean” operation will be invoked on a list of integers.
Embedded lists enable multiple level data sets management and provide support for synchronization of

data items before processor invocation.

2.2.2 Abstract Grid Workflow Language (AGWL)

The Abstract Grid Workflow Language (AGWL) is the workflow language used by the ASKALON
workflow manager [Fahringer et al., 2007] which offers two interfaces for generating large-scale scien-
tific workflows in a compact and intuitive representation: graphical modeling using UML standard and
a programmatic XML based language. The AGWL workflow can be either generated from a graphical
UML description or directly written by the end-user. The AGWL workflow description is definitely
independent from the execution infrastructure. Workflow applications are designed without dealing
with either the complexity of the execution infrastructure or any specific implementation technology. A
dedicated scheduler is responsible for resources allocation and a resource manager handles resources
reservation. The detail specification of AGWL is given in [Fahringer et al., 2005].

Activities. An AGWL workflow consists of activities. An activity can be either an atomic activity,
which refers to a single computational task, or a compound activity, which encloses some atomic activi-
ties that are connected by control and data flow. Control flows are defined through explicit links among
activities by using different control-flow constructs (e.g. sequences, loops...). Users specify data flows
by connecting input and output ports among activities which may not necessarily be directly connected

with control flow links. A workflow is a compound activity. The compositions of an AGWL workflow
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application or a compound activity is done by specifying all its enclosed activities as well as their control

and data flow connections.

Control flows. AGWL supports basic control flow among activities as in conventional programming
languages. Basic control flows are: the standard sequential flow (e.g. sequence), exclusive choice
(e.g. switch,if-then-else)and sequential loops (e.g. for, forEach,while and do-until).
AGWL can be used to specify multiple exits from loops. The break construct can be used to exit the
execution of a loop construct. AGWL also supports an ex it construct to terminate the execution of the
entire workflow.

In addition to basic control flow constructs, AGWL supports advanced control flow elements. These
constructs provide the abstraction to compose advanced and complex workflow applications and to spec-
ify the concurrency in a natural manner: parallelFor and parallelForEach.

The parallelFor/parallelForEach activity is similar to the for/forEach activity with
the difference thatin parallelFor/parallelForEach, all loop iterations can be executed simul-
taneously. It is assumed that the input data of any iteration is independent of output data produced by
other iterations of the same activity.

Data-flows. For each activity in AGWL, it must be guaranteed that whenever the control flow reaches
the activity, all data input ports of the activity have been assigned to well-defined values (valid data
packages). When the control flow leaves, all its data output ports must be well-defined as well. If the
activity refers by name to the output port of another activity, a data flow link is established. Data flow
can be expressed among arbitrary activities which are not necessarily connected by any control flow
link. For example, a data flow link between activities A and B is simply established by defining the
output of A as <output name="oA"> and the input of B as <input name="o0A">. If more than
one activity declares oA as an input, the output will be sent to all those activities.

The data flow in AGWL is more complex when considering compound activities (e.g. conditional,
sequential loop, parallel loop activities). AGWL defines a fixed pattern for each activity to allow the
data exchange between activities. Each compound activity has a data output port which is linked to data
output port of inner activities. Considering an example of the i f activity presented in figure 2.2, activity
Ay is not allowed to be linked to a data output port of an inner activity of the i f activity (i.e. Ay and
As).

In addition to the data flow among activities, AGWL supports the data flow between activities and
special entities called repositories, which are abstractions for data containers. They are used to model,
for instance, saving intermediate results or querying data resources without knowing any details about

how repositories are implemented (e.g. file servers, databases, etc).

Properties and Constraints. In AGWL, properties and constraints can be defined by users to provide
additional information for a workflow runtime environment to optimize and steer the execution of work-
flow applications. Properties provide hint about the behavior of activities (e.g. expected size of the input
data, estimated computational complexity). Constraints should be complied by the underlying workflow

runtime environment (e.g. to minimize the execution time, to provide as much memory as possible, to
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construct

----->» Data flow

—> Control flow
[0 Data input port
Il Data output port

(a) Illegal data flow (b) Legal data flow
Figure 2.2: The data flow in conditional activity [Fahringer et al., 2005]

run on the specific host architecture). User can also specify properties and constraints for activities and
data flow dependencies.

To execute the AGWL workflow, ASKALON uses another language, Concrete Grid Workflow Lan-
guage (CGWL) to have a task-graph representation of the workflow. Before the execution, the workflow

manager performs a mapping from AGWL to CGWL.

2.2.3 SwiftScript

SwiftScript is a simple high-level scripting language with a functional, data-driven execution model.
Used in Swift engine [Zhao et al., 2007], this scripting language is particularly well suited for specifying
workflow applications involving loosely coupled collections of services which communicate by reading
and writing files. Dependencies between services of the application are expressed through dataflow
constraints: when an output of a service is the input of one more other services, the first service must
complete the execution before other services can begin.

SwiftScript treats file system data as first class objects. The XML Data Type and Mapping
(XDTM) [Moreau et al., 2005] is used to describe mappings between typed SwiftScript variables and
file system variables. Considering the example of medical image applications, the input data of these
applications are usually image files stored in a directory. SwiftScript uses an array of objects with
type Image to map all medical images to objects. The SwiftScript foreach operator can then be
used to specify a particular operation to be applied to each element of such arrays. The use of fu-
tures [Halsted, 1985] for every variable defined in the script makes SwiftScript completely data-driven.
Futures are non-blocking assignment variables, using a proxy to ensure immediate execution of assign-
ment and performing lazy blocking on variable value accesses only. The execution progresses asyn-
chronously as long as a data access is not blocking. The availability of data enables blocked thread
to restart execution. Thus, SwiftScript becomes easy to specify, compose and type check applications
which execute on large volume of data maintained in complex file system structures.

Calls to services of workflow applications are specified via atomic procedures. An atomic procedure



44 Workflows for medical image analysis applications Chap. 2

encompasses an executable which has been installed on computing infrastructures, documented in a site
catalog. The atomic procedure defines data flow of the executable, the input data to enable the execution,
and the format of the call to the executable. At runtime, the Swift engine chooses from the site catalog
a resource which has the specified executable installed, and executes it.

A SwiftScript compound procedure can be used to specify the application logic involving multiple
calls to either atomic procedures or other compound procedures. For instance, a foreach operation can be
used to apply a particular atomic procedure for each array element. A SwiftScript application typically

composes of:
e a set of type definitions;
e one or more atomic and compound procedure definitions;

e a set of data definition statements defining the connections between SwiftScript variables and file

system structures; and

e calls to atomic and compound procedures that operate on those variables. These calls can be

viewed as equivalent to the main () procedure of a C program.

SwiftScript mapper constructs connect the logical data representation to a physical entity containing
the data. This information allows the Swift engine to virtualize data resources, in the sense that both their
physical location and physical format is abstracted away from SwiftScript programmer. When executing
SwiftScript applications, the Swift engine identifies all executable tasks. An executable task is a task for
which all its inputs are available. The execution of executable tasks generates outputs, other workflow

tasks depending on these outputs will become executable.

2.2.4 The GWENDIA language

The GWENDIA language* [Montagnat et al., 2009] is a data-driven language that aims at easing the
description of the complex application data flows from a user point of view while ensuring good appli-
cation performances and distributed resources usage. GWENDIA is represented in XML using the tags

and syntax defined below:

Types. Values flowing through the workflow are typed. Basic types are integer, double, string
and file.

Processors. A processor is adata production unit. A regular processor invokes a service through a
known interface. Special processors are workflow source (a processor with no inbound connectivity,
delivering a list of externally defined data values), sink (a processor with no outbound connectivity,

receiving some workflow output) and constant (a processor delivering a single, constant value).

*GWENDIA is defined in the context of the ANR-06-MDCA-009 GWENDIA project: http://gwendia.polytech.

unice.fr
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Processor ports. Processor input and output ports are named and declared. A port may be an input
(<in> tag) or an output (<out> tag). The input ports also define iteration strategies that control the

number of invocation of the processor as a function of its inputs.

A simple example is given below:

<?xml version="1.0"” encoding="UTF-8’?>
<workflow name="Workflow Example”>
<interface >
<constant name="size” type="string” value="1.5” cardinality="scalar”/>
<source name="floating” type="string” />
<source name="reference” type="string” />
<sink name="Results” type="string” />
</interface >
<processors>
<processor name="CrestLines” >
< name="input0” type="string” depth="0" />
< name="inputl” type="string” depth="0" />
< name="input2” type="string” depth="0" />

< name="result0” type="string” depth="0" />
<iterationstrategy >
<cross>
<dot>

<port name="input0” />
<port name="inputl” />
</dot>
<port name="input2” />
</cross>
</iterationstrategy >
<gasw descriptor="/home/truonghuu/bronze—standard/crestLines.xml”/>
</processor >
<processor name="CrestMatch” >
< name="input(0” type="string” depth="0" />
< name="inputl” type="string” depth="0" />
< name="input2” type="string” depth="0" />
< name="result0” type="string” depth="0”" />
<iterationstrategy >
<dot>
<port name="input0” />
<port name="inputl” />
<port name="input2” />
</dot>
</iterationstrategy >
<gasw descriptor="/home/truonghuu/bronze—standard/cmatch.xml” />
</processor>
</processors >
</workflow>
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Data link. A data link is a simple connection between a processor output port and a processor input

port as exemplified below:

<links >

< from="floating” to="CrestLines:input0” />

< from="reference” to="CrestLines:inputl” />

< from="CrestLines: result0” to="CrestMatch:input0” />
</links >

Data structures. The data manipulated in the GWENDIA language is composed from scalar typed
data items. The basic types are mentioned above (integer, double, string and £ile). Fixing
the drawback of the Scufl language, the GWENDIA language allows the data to be grouped into different
depth arrays. An array is an ordered collection of data items with the same type. A simple array is a
collection of scalars (e.g. a = {—2,3,1} is an array of integers). A one-dimension index designates
each of its data item (ag designates the integer —2). An array may be empty or may contain other arrays
at any nesting level. An array of array is further referred to a 2-nesting levels array, etc. A scalar data
item corresponds to a O-nesting level array while a singleton {s} corresponds to a I-nesting level array.

The special value () represents the absence of data.

Iteration strategies. While extending the dot and the cross iteration strategies implemented in the
Scufl language to handle the ) value, the GWENDIA language introduces two other iteration strategies:

The flat cross product matches inputs identically to a regular cross product. The difference is in the
indexing scheme of the data items produced: it is computed as a unique index value by flattening the
nested-array structure of regular cross produces (a; and b; received on two input ports produces a data
item cg with index & = ¢ x m + j where m is the size of array b), thus preserving the input data nesting
depths. As consequence, the flat cross product may be partially synchronous. As long as the input array
dimension are not known, some indices cannot be computed. Similarly as the cross product, ports of a
flat cross product are associative but not commutative. A () value received on a flat cross product port
behaves as in the case of a regular cross product. It matches with all possible combinations of data items
received in other ports and produces a () output without firing the activity.

The match product matches data items carrying one or more identical user-defined tag, indepen-
dently of their index scheme [Montagnat et al., 2006]. Similarly to a cross product, the output of a
match is indexed in a multiple nesting levels array item whose index is the concatenation of the input
indices. A match product implicitly defines a boolean valued function match(u;, v;) which evaluates to
true when tags assigned to u; and v; match. The output array has a value at index 4, j if match(u;, v;)
is true. It is completed with () values if match(u;, v;) is false and then w; j; = (). The port of a match is
therefore associative but not commutative. A () value received on a match product input does not match

any other data item and does not cause activity firing.

Control structures. The data-driven and graph-based approach adopted in the GWENDIA language
makes the parallelism expression straightforward for end users. The data parallelism is completely

hidden through the use of arrays. Advanced data composition operators are available through activities
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port depth definitions and iteration strategies. Consequently, complex data parallelism patterns and data
synchronization can be expressed without any additional control structures.

The only control structures considered in the GWENDIA language are therefore conditionals and
loops. Conditionals and loops are expressed using the java language and interpreted each time the
activity is fired. The data received on the input ports of a control structure is mapped to java variables
(basic types or java ArrayLists depending on the input port depths). The detail of conditional and loops
specification can be found in [Montagnat et al., 2009].

2.2.5 Application use case

Most experiments reported in this thesis are using the Bronze Standard applica-
tion [Glatard et al., 2006b] as a representative use case of workflow-based medical applications.

Medical image registration algorithms are playing a key role in a large number of medical image
analysis procedures and therefore their accuracy is critical. Image registration consists in estimating the
3D transformation between two images, so that the first one can superimpose on the second one in a
common 3D frame. A difficult problem, as for many other medical image analysis procedures, is the
assessment of these algorithms robustness, accuracy and precision [Jannin et al., 2002]. Indeed, there is
no well established gold standard to compare to the algorithm results. The Bronze Standard algorithm
is a statistical procedure that aims at estimating the accuracy of a given number of algorithms.

The idea is to compute the registration of a maximum number of image pairs with a maximum
number of registration algorithms in order to obtain a largely overestimated system of transformation
estimates (observations). From this redundant system, the Bronze Standard can be estimated by mini-
mizing a specific criterion in the space of transformations to determine the transformations that better
explain the observations. The accuracy of a given algorithm is then computed as the distance between
its results and the Bronze Standard. The higher the number of independent registration algorithms con-
sidered and the number of images processed, the more accurate the procedure. It makes this application
very data-intensive.

Figure 2.3 shows a representative workflow application, described in the GWENDIA language,
named Bronze Standard [Glatard et al., 2006b]. The input data set of this application composes of two
list of images named Floating and Reference, respectively. They are used in four image reg-
istration services CrestLines, CrestMatch, Yasmina and Baladin. Let n be the number of
images in the list of Floating and Reference. The dot product of the iteration strategy between
these inputs for each registration service results in n pairs of images to be processed. Many workflow
services also have some constant parameters. These parameters are used for all input image pairs, as
expressed by the cross product. The number of invocations of CrestLines is thus n. Similarly, for
other services, the number of invocations of each service can be determined depending all the number
of input and the iteration strategy (n invocations).

Combining the input data set and the application description, a DAG will be generated at runtime
and submitted to the infrastructure. The generated DAG of the Bronze Standard workflow shown in
figure 2.3 is presented in figure 2.4. {I1, Io, ..., I,,} represent n input image pairs to be processed, and
{R1, Ry, ..., R,,} stands for the output results. This DAG, typically composed of hundreds of tasks, is

represented in a compact and user readable framework through a workflow language abstraction.
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Figure 2.3: Bronze Standard workflow. Arrows denote precedence constraints. & and & represent the

dot and cross product iteration strategies, respectively. Six workflow services named CrestLines,

CrestMatch, PFMatchICP, Yasmina, Baladin, PFRegister, are iterated according to the

their iteration strategy on the input data sets. Floating and Reference represent a pair of input

images of the workflow. CL_size, PFMOpt, YasminaOpt and BaladinOpt are constant parameter

of workflow services.
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Figure 2.4: DAG jobs of the Bronze Standard application for n inputs

2.2.6 Conclusions

In this section, a review on workflow languages has been provided. We focussed on the data-driven lan-
guages to highlight their features for data intensive applications such as medical image analysis applica-
tions. Existing languages and their corresponding implementations offer a very diverse and complete set
of tools providing to users the required facilities to build their applications. They provide a high-level
abstraction to users to describe the application logic. With the data-driven approach, these languages
make the parallelism expression straightforward to end users. They hide the complexity of underlying

execution environment from users.

Depending on users profile and application characteristics, different language could be chosen.
For instance, users who do not have programming background can use languages with graphical in-
terface support such as Scufl or AGWL. Conversely, users who are familiar with scripting languages
can use SwiftScript which offers all constructs and data types facilities of a traditional scripting lan-
guage. Combining the idea of the Scufl language on iteration strategies and SwiftScript language on the
array management, the GWENDIA language brings to users a complete and simple tool for describing
data-intensive applications. A workflow description in the GWENDIA language can be executed on dif-
ferent data sets without any modification. Being an XML-based language, GWENDIA implementation
also provides a graphical interface via MOTEUR workflow engine for users who want to use graphical
tool to design their applications. Based on requirements and characteristics of medical images analysis

applications, the GWENDIA language has been chosen for all experiments presented in this thesis.
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After having a description of the application logic, the next step is to interpret this description com-
bining with the input data set and execute it on a distributed system. Managing the data transfer between
application services is a difficult task. It is even more complicated when executing the application on
a shared infrastructure. Network resources are shared by multiple users and can significantly impact
applications performance. In the next section, we discuss existing approaches addressing workflow data

management.

2.3 Workflow data management on distributed systems

During the execution of workflow-based applications, the input data needs to be staged to computing
resources before executing tasks. Similarly, the output data may be required by subsequent tasks which
are processed on different resources. Intermediate data has to be staged out to corresponding computing
resources. While some workflow systems provide automatic mechanisms, others require users to man-
age intermediate data transfer in the workflow description. We refer to the user-directed approach. We
focus on the automatic approach and we present in this section several systems supporting the data man-
agement for workflow-based applications, especially for data-intensive applications whose intermediate
data transfer mechanism significantly impact the overall performance. These approaches can be divided

into two categories:

e use smart strategies to schedule the workflow tasks on the same computing resource
(e.g. [Arnold et al., 2000]);

e optimize the data transfers on disk by wusing a central storage server (e.g.
GASS [Bester et al., 1999], OmniStorage [Aida et al., 2006], Kangaroo [Thain et al., 2001]).

2.3.1 Request Sequencing in NetSolve

NetSolve [Casanova and Dongarra, 1997] is a Grid middleware built at the University of Tennessee. An
instance of NetSolve Grid is a set of possibly heterogeneous computer hosts accessible over the Internet
via some networking infrastructures. The system uses a client/agent/server model and is available for
all popular operating systems (variants of Unix and Windows). The major components of the NetSolve
system are the NetSolve agent, an information service and resources scheduler, the NetSolve server, a
network resource that serves up computational hardware and software resources, and the NetSolve client
libraries which allow users to instrument their application code with calls for remote computational
services. A NetSolve client sends a request to the NetSolve agent. The NetSolve agent chooses the best
NetSolve server according to the size and nature of the problem to be processed.

The first approach used in NetSolve to tackle the problem of sending large data sets on the in-
frastructure is Request Sequencing [Arnold et al., 2000]. To allow users to group two or more regular
NetSolve requests into a sequence, two functions were implemented in the interface of this approach.
Their purpose is to mark the beginning and end of a sequence of requests. begin_sequence () takes
no arguments and returns nothing, it notifies the system to begin the data analysis. end_sequence ()

marks the end of the sequence and takes a variable number of arguments describing which output pa-
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rameters not to return. This is a part of the API as it is users who determine which results are mandatory
and which are not necessary.

When users submit a sequence of requests to the platform, a DAG is produced. Then, the entire
sequence is sent to a computing resource which first runs tasks with satisfied dependencies. When one
task (at least) ends, the computing resource updates its dependencies and repeats the same process while
there are tasks left to execute. By using this approach, dependent tasks in an application can be grouped
into a sequence. Consequently, the data transfer between these tasks will be eliminated.

However, this approach has some drawbacks. It does not handle multiple computing resources be-
cause no data redistribution is possible between computing resources. The whole DAG of all NetSolve
requests within the sequence is built before being sent to the chosen computing resource. This can lead
to sub-optimal utilization of computing resources when, within a sequence, two or more requests can be
solved in parallel on two different resources. Consequently we cannot use this approach to workflow-
based applications since we aim at dividing applications to exploit the parallelism on distributed systems.
Second, the control structure is forbidden within a sequence since the condition clause of this control
structure may depend on the result of a prior request in the sequence which is not yet scheduled for
execution until the end of the sequence. Finally, statements that would change the value of any input
parameter of any component of the sequence are also forbidden within the sequence since only refer-
ences to the data are stored during the data analysis. So if changed, the data transferred at the end of the
sequence will not be the same as the data that was present when the request was originally made.

In conclusion, this approach can be considered as a smart strategy but it has many drawbacks and it

is not convenient to our objectives.

2.3.2 Distributed Storage Infrastructure

To make a data persistent and to take advantage of its placement in the infrastructure, Net-
Solve has proposed the second data management approach called Distributed Storage Infrastructure
(DSI) [Beck and Moore, 1998]. DSI allows a program to manage data stored remotely. It means that
users can control the placement of data that will be requested by computing resources. Instead of mul-
tiple transfers of the same data, DIS enables the transfer of the data once from the client database to
a storage server. Considering these storage servers as being closer to computing resources than to the
client database, the cost of data transfer will be lower when data is reused.

The Internet Backplane Protocol (IBP) [Plank et al., 1999] is an example DSI that has been incor-
porated into NetSolve. This integration allows users to allocate, destroy, read and write data objects
to remote storage servers via IBP client API such as IBP_allocate, IBP_store, IBP_load,
IBP_copy... To run client computational requests, computing resources connect to these storage
servers to find the data that they need. Users can thus run their applications on the remote comput-
ing resources in using remote data and retrieve only relevant results.

The data items managed by a DSI system are called DSI objects. To generate a DSI object, users
have to know the storage server in which they want to store their data. It is noted that the data location is
not a criteria for the choice of a computing resource. NetSolve maintains its own File Allocation Table
(FAT) to manage DSI objects. Each DSI object has a key by which it is cataloged in the FAT. When

users send a request to the NetSolve infrastructure, the input and output references in the request are
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checked against keys of the FAT to see if they represent a remote object. If not found, they are assumed
to be referring to local data, in-core or on disk.

In conclusion, although DSI improves the data transfer that is explicit at users level, useless transfers
between DSI storage servers and computing resources remain. It means that intermediate results need
to be returned to storage servers before being sent to other computing resources for other request. This
may lead to the over-utilization of network resources. Indeed, we have used this approach for many
experiments to show that it may lead to the overloading of the storage server and network since the

volume of the input and intermediate data in medical applications is usually very large.

2.3.3 GASS in Globus Toolkit

The Globus Toolkit [Foster and Kesselman, 1997] provides middleware services for grid infrastructures.
It comprises a set of modules such as resource location and allocation, communication, unified re-
source information service, authentication interface, process creation and data access. Each module
defines an interface which high-level services use to invoke that module mechanisms, and provides an
implementation which uses appropriate low-level operations to implement these mechanisms in different
environments. The Authentication interface includes the Grid Security Infrastructure (GSI) which pro-
vides public-key-based authentication and authorization services. The Resource location and allocation
provides a language for specifying application requirements, mechanisms for immediate and advance
reservations of grid resources and for remote job management. And, the unified resource information
service is used for the distributed publication and retrieval of information about grid resources.

The default data management service in Globus Toolkit is the RIO (remote I/O) sys-
tem [Foster et al., 1997] which uses striping to support high-performance remote access, but requires
that applications to adopt the MPI-10 parallel I/O library. To overcome the limitation of the remote I/O
system, Global Access to Secondary Storage (GASS) [Bester et al., 1999], a data movement and access
service is designed, implemented and integrated in the Globus Toolkit. The goal of the GASS service is
to support for the file access patterns (I/O patterns) common in distributed applications and the ability
for users controlled management of network bandwidth.

There are four I/O patterns considered in the GASS service: read-only access to entire file assumed to
contain constant data, shared write access to an individual file whose value is produced by the last writer,
append-only access, and unrestricted read/write access to an entire file with no other concurrent accesses.
These patterns are distinguished by particularly simple access patterns and coherency requirements.

GASS addresses bandwidth management issues by providing a file cache, a local secondary storage
area, in which copies of remote files can be stored. By default, data is moved into and out of this cache
when files are opened and closed according to two standard strategies: fetch and cache on first read open
and flush cache and transfer on last write close. GASS also provides mechanisms that allow users to
refine default data movement strategies and to manage how they are applied in particular cases. These
mechanisms fall into two general classes: relatively high-level mechanisms concerned with pre-staging
data into the cache prior to program access and with post-staging of data subsequent to program access;
and low-level mechanisms that can be used to implement alternative data movement strategies.

Distributed applications access remote files using GASS by opening and closing files

with specialized open and close calls: globus_gass_open, globus_gass_fopen,
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globus_gass_close, globus_gass_fclose. These calls trigger the GASS cache man-
agement operations described above to optimize performance based on the default data movement
strategies. From an application point of view, the GASS open and close calls act like their standard
Unix I/O counterparts, except that a URL rather than a file name is used as an argument of these calls.
A URL used in a GASS open call specifies a remote file name, the physical location of the data source
on which the file is located, and the protocol required to access the resource (HTTP, HPSS, DPSS,
FTP). GASS also exposes additional low-level APIs which can be used to implement specialized data
movement and access strategies.

The main drawback of this approach is that applications must be specifically re-written to use GASS.
One must find all of instances of open in a program and replace them with globus_gass_open.
Although this is not a difficult problem for the technically minded, it would be laborious to re-build
each application that wishes to use GASS. And, it is only possible when source code is available and
recompilation feasible.

In conclusion, GASS is just a data access API which aims at reducing the latency of data transfer
and optimizing the bandwidth consumption by using a local secondary storage server located in grid
infrastructures. Apply to medical applications with the assumption that the secondary server is closer
to computing resources, the input data stored in the remote server can be cached after the first read into
secondary storage server. The same mechanism can be used for intermediate results of the workflow.
When intermediate results have just been created, they will be cached into the secondary storage server.
The subsequent tasks of the workflow will find the data already present in the cache (secondary storage
server). Because of these mechanisms, GASS does not implement the direct data transfer between

computing resources.

2.3.4 OmniStorage in OmniRPC

OmniRPC [Sato et al., 2003] is a GridRPC system which allows seamless parallel programming
from a cluster to a grid environment. OmniRPC inherits its API and basic architecture from
Ninf [Sato et al., 1997]. A client and remote computing resources which execute remote procedures are
connected via a network. Remote libraries are implemented as an executable program which contains a
network stub routine as its main routine.

OmniRPC provides a partial data persistence facility called automatic-initializable remote module
to hold only data given by an initialize function of the remote executable module. This allows multiple
transmission of the same initial data to be avoided. However, the data must be sent directly from client
to each computing resource when remote module is invoked. If the initial data is large, the client may be
a bottleneck. Furthermore, since remote modules are invoked on demand, the invocation of computing
resources is sometimes delayed, resulting in poor scalability. To solve this problem, a data transfer layer
for OmniRPC called OmniStorage [Aida et al., 2006] is designed and implemented.

The main component of OmniStorage is a relay host that relays data transfer between client host and
computing resources. When a cluster is used for a pool of computing resources, it is useful for relay
host to be set up at the master node of the cluster. In OmniStorage, the connection to each computing
resource forms a tree topology without any cycle. Data is transferred from the root, and all computing

resources can cache the received data. By using the OmniStorage’s API, the client can register data to
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the cache in the relay host. When the remote program is invoked by OmniRPC, the invoked remote
program checks first whether the requested data is in local cache. If the data is not found, a process for
requesting the data from the relay host is then performed. The relay host checks if the requested data
is in the local cache and sends to computing resource. If the data is not found, the relay host sends a
request to client host. The client host retrieves the data from the local cache and sends to relay host. The
data is stored in the cache of relay host.

In conclusion, OmniStorage achieves efficient initial data transfer to computing resources. Using the
OmniStorage together OmniRPC can improve the performance of applications with large-scale initial
data transfer. However, OmniStorage does not include a function to collect the data of computation

results.

2.3.5 Kangaroo in Condor

Condor [Tannenbaum et al., 2001] is a specialized workload management system for compute-intensive
jobs. Similarly to other full-featured batch systems, Condor provides a job queueing mechanism,
scheduling policy, priority scheme, resources monitoring, and resource management. Users submit their
jobs to Condor. Condor places them into a queue, chooses when and where to run them based on policy,
monitors their progress, and ultimately informs users upon completion.

While providing functionality similar to that of a more traditional batch systems, Condor’s novel
architecture allows it to succeed in areas where traditional scheduling fail. Condor can be used to
manage a cluster of dedicated Beowulf nodes. In addition, several unique mechanisms enable Condor
to effectively harness wasted resources power from otherwise idle desktop workstations. Condor can be
used to seamlessly combine all of a organization’s computational power into one resource.

Kangaroo [Thain et al., 2001] is a wide-area data movement system developed at University of
Wisconsin-Madison. Kangaroo improves the throughput and reliability of distributed applications by
hiding network storage devices behind memory and disk buffers. Kangaroo allows unmodified applica-
tions to overlap computation with I/O. By removing the burden of data movement from the application,
Kangaroo helps reduce the application makespan.

Kangaroo uses a TCP-based message-oriented protocol. Servers exchange the information by pass-
ing well-defined message to each other. Different file operations are encoded as Kangaroo messages
and may contain control and data information. Kangaroo also offers a highly reliable data movement
mechanism by using a write-ahead log and retransmitting messages in case of network failures or when
a server downstream runs out of spool space.

The Kangaroo architecture is centered around a chainable series of servers that implement a simple

interface:
e void kangaroo_put (host, path, offset, length, data);
e int kangaroo_get (host, path, offset, length, data);
e int kangaroo_commit ();

e int kangaroo_push (host, path).
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All above functions except kangaroo_put are Remote Procedure Calls (RPCs).
kangaroo_put and kangaroo_get allow servers to fetch data from any reachable host/-
filesystem. A host is reachable if it is running the Kangaroo server to which the machine that requests
the data can authenticate. kangaroo_commit ensures that all outstanding puts have been accepted
for delivery. In practice, this is achieved by returning to the caller only after ensuring that all messages
are sent prior to a commit have been logged on persistent storage at the next hop. kangaroo_push
blocks until all outstanding puts have been transferred to their ultimate destination. We can think of this
as a recursive RPC, in which, each caller invokes push and returns when the server downstream returns.

A kangaroo_push call on the destination returns when all data has made it to the proper file.
In other words, a kangaroo_commit guarantees that all previously sent messages have been suc-
cessfully spooled at the next hop Kangaroo server, whereas kangaroo_push returns only after a
successful commit/push.

However, the Kangaroo prototype uses a static single route. This route is the first match that it
finds in the Kangaroo routing table. Since it uses a single route, data cannot be routed around failures,
even if alternate routes exist. This can affect the availability of data at the destination. The Kangaroo
implementation is also not able to identify operations that can be performed in parallel, which results in
wasted bandwidth.

Again, Kangaroo uses the same approach as GASS and OmniStorage. It means that Kangaroo uses
several storage servers located in the execution environment to aim at hiding errors and latency of the
data transfer. Workflow-based applications can be executed on this infrastructure since the input data
and intermediate results can be replicated on storage servers. Subsequent tasks of the workflow can
communicate with any storage server, preferably the closest, to accomplish the data request. However,
applications must know one of these storage servers to send and request the data. In addition, the time
between two dependent tasks of the workflow is often small while the application has to wait for the

accomplishment of data replications. This can lead to an increase in the application makespan.

2.3.6 Conclusions

Many data management approaches have been proposed in the literature to satisfy users needs. Some of
them use a local centralized storage server located in the execution environment. This approach reduces
the data transfer time from client to computing resources in assuming that computing resources are
closer to the storage server than the client. Other approaches use the smart scheduling mechanism to
avoid useless data transfers between two dependent tasks of the application. However, each of them has
its drawbacks. Most systems do not consider bandwidth optimization. Moving to cloud infrastructures
which enable the network virtualization, new data management systems need to be studied to optimize
the bandwidth reservation for data transfer.

The overall performance of medical applications is significantly impacted by data transfer mecha-
nisms due to their data-intensive characteristic. With the workflow description, the overall performance
is also impacted by workflow scheduling mechanisms. The dependency between workflow tasks makes
the scheduling process more complex. Since this is an NP-complete problem, finding a “near-optimal”
solution is already a difficult process. In the next section, we present existing approaches of work-

flow scheduling to motivate for a new workflow scheduling which can adapt to the diversity of the new
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generation of distributed systems.

2.4 Scheduling and resource allocation for workflow-based applications

Workflow scheduling is a process that maps and manages the execution of workflow tasks on distributed
resources [ Yu and Buyya, 2005]. It allocates suitable resources to workflow tasks so that the execution
can be completed to satisfy objective functions imposed by users. Proper scheduling can have signifi-
cant impact on the performance of the system. In general, the problem of mapping tasks on distributed
services belongs to a class of problems known as NP-complete problems [Ullman, 1975]. For such prob-
lems, no known algorithms are able to generate the optimal solution within polynomial time. Solutions
based on exhaustive search are impractical as the overhead of generating schedules is very high. In
distributed multi-users environments, scheduling decisions must be made in the shortest possible time
since there are many users competing for resources, and time slots desired by one user could be taken
up by another user at any moment. Many heuristics and meta-heuristics based algorithms have been
proposed to schedule workflow applications in heterogeneous distributed environments.

Based on the taxonomy presented in [Yu et al., 2008], this section provides a summary of workflow
scheduling algorithms which can be grouped into two categories: best-effort based and QoS-constraint
based scheduling ( see sections 2.4.1 and 2.4.2, respectively). Best-effort based algorithms focus on
minimizing the execution time of the application (makespan) and ignore other criteria (e.g. execution
costs). QoS constraints based algorithms take into account not only the application makespan but also
other users requirements such as the execution cost, reliability, security or robustness of scheduling
algorithms [Yu et al., 2008, Jeannot et al., 2008, Shi et al., 2006].

2.4.1 Best-effort based workflow scheduling

In distributed multi-user systems, resources are shared by different VOs. In this model, monetary cost
is not considered during the application execution. Best-effort based scheduling algorithms aim at min-
imizing the application makespan. Many heuristic-based approaches have been proposed to solve a par-
ticular problem. Research effort has also been invested in meta-heuristic scheduling algorithms which
are a general solution for developing a specific algorithm to solve a particular problem. In this section,

several best-effort algorithms are given.

2.4.1.1 Individual task scheduling with Myopic

Individual task scheduling is the simplest scheduling algorithm for scheduling workflow applications.
It makes the schedule decision based on only one individual task. The workflow engine is responsi-
ble for managing the dependency between workflow tasks and submitting tasks to the scheduler. The
Mpyopic algorithm is an example of individual task scheduling presented in [Wieczorek et al., 2005]. In
Algorithm 1, we show the detail of this approach. Considering I' the set of unmapped ready tasks to be
scheduled, this algorithm aims at mapping a task ¢ belonging to I" on the resource which is expected to
finish ¢ earliest. A task is ready when its precedent tasks have been finished. The algorithm repeats until

all tasks in I' have been scheduled.
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Algorithm 1 Myopic scheduling algorithm
while 3¢ € T" do
get ¢t from I’

get resource r which can complete ¢ at the earliest time
schedule £ on r
remove ¢ from I'

end while

In conclusion, this algorithm is simple but it does not consider the overall performance of the ap-
plication. It does not provide any full-graph analysis and does not consider the order of task execution.

Additionally, it does not consider the optimization of resources usage.

2.4.1.2 List scheduling

A list scheduling algorithm prioritizes workflow tasks and schedules them based on their priorities.
Consequently, there are two phases in a list scheduling, the task prioritizing and the resource selection
phase. The task prioritizing phase sets the priority of each task based on task characteristics. This phase
results in a scheduling list by sorting tasks according their priority value. The resource selection phase
maps tasks in the order of their priority on the optimal resource.

Min-Min, Max-Min and Sufferage. The first instance of list scheduling algorithms is Min-Min, Max-
Min and Sufferage proposed by Maheswaran et al in [Maheswaran et al., 1999]. These three heuristics
are based on the performance estimation for task execution and data transfer. It has been employed in
several workflow systems such as vGrADS [Berman et al., 2005] and Pegasus [Blythe et al., 2005].

In Algorithm 2, the detail of the Min-Min heuristic is given. Let I" be the set of independent tasks
needed to be scheduled. For each iterative step, the algorithm computes the Estimated Completion Time
(ECT) of each task on every available resource 7 in the list of available resources (avail Resources) of
this task. From all ECT values, the algorithm gets the Minimum Estimated Completion Time (MCT) for
each task which is estimated to be executed on the resource R;. The task 7 with the minimum MCT
over all tasks will be chosen to be scheduled first at this iteration. 7 will be assigned to the resource R,
which is expected to complete the task at the earliest time.

The Max-Min operates similarly to the Min-Min heuristic. The only difference is that the Max-Min
heuristic schedules the task with the maximum ECT rather than minimum ECT in the Min-Min heuristic.
After obtaining the MCT value for each task, the task having maximum MCT is chosen to be scheduled
on the resource which is expected to complete the task at the earliest time.

Instead of using minimum MCT or maximum MCT, the Sufferage heuristic compute the task pri-
ority based on its sufferage value. The sufferage value of a task is the difference between its earliest
completion time and its second earliest completion time. The task with the maximum sufferage value is

chosen to be scheduled on the resource which is expected to complete the task at the earliest time.

Heterogeneous Earliest Finish Time (HEFT). This algorithm has been proposed by Topcuoglu et al
in [Topcuoglu et al., 2002] and applied in the ASKALON project [Wieczorek et al., 2005]. It consists of
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Algorithm 2 Min-Min, Max-Min and Sufferage scheduling algorithms
while 3¢ € T" do
forallt € I"do

avail Resources <— get all available resources for ¢

for all r € avail Resources do
compute ECT(¢, r)

end for

get the resource R; having MCT(t) = min ECT(¢, ), r € avail Resources
end for
// Min-Min: get the task having minimum ECT(¢, r)
7 < min ECT(t, Ry),t € T
/l Max-Min: get the task having maximum ECT(¢, r)
7 < max ECT(t, Ry),t € T
/Il Sufferage: get the task having maximum sufferage su f;
get the resource R} having earliest ECT(t, ), r € avail Resources
get the resource R? having second earliest ECT(t,7), r € avail Resources/{R}}
// compute the sufferage value for task ¢
suf; = ECT(t, R?) - ECT(t, R})
T+ max suf(t),t €l
schedule 7 on R,
remove 7 from I’

end while

three phases in which two first phases correspond to the task prioritizing phase of other list scheduling

algorithms:
o the weight phase: assign the weight to workflow nodes;
o the ranking phase: create a sorted list of tasks in the order of how they will be executed; and

o the mapping phase: assign tasks on resources.

Algorithm 3 Heterogeneous Earliest Finish Time (HEFT) algorithm

compute the average execution time of each task ¢ according to equation 2.1
compute the average data transfer time between tasks and their successors according to equation 2.2
compute the rank value of each task ¢ according to the 2.3 and 2.4
sort the task in a scheduling list I' by decreasing order of the task rank value
while 3¢ € I do
t < remove the first task from I
get resource r which can complete ¢ at the earliest time
schedule ¢ on r

end while
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We present the detail of the HEFT in Algorithm 3. Denote w; as the weight of task ¢; and R; as the
set of available resources for ¢;. The estimated execution time of task ¢; on the resource r is time(t;, 7).
The weight of task ¢; is the average estimated execution time on all available resources for this task,
computed by 2.1.

Z time(t;,r)
__ reR;
Wy = ————— 2.1)
| 1]
Let time(e; ;,7;,7;) be the data transfer time on the edge e; ; between resources r; and r; which

execute the task ?; and ¢;, respectively. The average data transfer time from ¢; to ¢; is defined by:

Z time(e; j,7i,75)
TiERi,T’j ER]'
||| R

(2.2)

CZ 7j =

The ranking phase is performed traversing the workflow upwards. Workflow tasks are ordered in

HEFT based on a rank function. For the exit task ¢;, the rank value is:
rank(t;) = w; 2.3)

The rank value of other tasks is computed recursively based on 2.1, 2.2 and 2.3.

rank(t;) = w; + max (¢ j + rank(t;)), ti € succ(t;) 2.4

where succ(t;) is the set of immediate successors of the task ¢;. After having rank values, workflow
tasks are sorted by decreasing the order of their rank value. The task with higher rank value is given
higher priority.

In the mapping phase, workflow tasks are scheduled in the order of their priority, each task is as-

signed to the resource which is expected to complete the task at the earliest time.

Cluster- and duplication-based scheduling. Both cluster- and duplication-based scheduling are de-
signed to reduce the data transfer time between dependent tasks of the workflow. This leads to the
decrease of the application makespan. Cluster-based scheduling aims at grouping several dependent
tasks into a cluster and executing this cluster on the same resource. The duplication-based scheduling
aims at duplicating some parent tasks on idle resources. Children tasks are then scheduled on the same
resource to avoid the data transfer.

The Task duplication-based Algorithm for Network Heterogeneous systems (TANH) is a hybrid of
cluster-based and duplication-based scheduling [Bajaj and Agrawal, 2004]. The overview of this algo-
rithm is show in Algorithm 4. It first traverses the task graph to compute parameters of each node
including the earliest start and completion time, latest start and completion time, critical immediate suc-
cessor tasks, best resource and the level of task. After that it clusters workflow tasks based on these
parameters. Tasks in the same cluster are scheduled on the same resource. If the number of clusters is
greater than the number of available resources, it scales down the number of clusters to the number of

available resources by merging some clusters. Otherwise, it uses the idle resources to duplicate tasks.
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Algorithm 4 Task duplication-based Algorithm for Network Heterogeneous systems (TANH) algorithm

compute parameter of each task node

cluster workflow tasks

if the number of clusters is greater than number of available resources then
reduce the number of clusters to the number of available resources

else
perform the duplication of tasks

end if

Conclusions. All list scheduling approaches only focus on minimizing the application makespan.
Min-Min schedules tasks having shortest execution time first, it results in the higher percentage of tasks
assigned to their best choice than Max-Min. However, in the case where there are many more short tasks
than long tasks, Max-Min has better performance than Min-Min [Braun et al., 2001]. The Sufferage ap-
proach can have good performance in high heterogeneity environment where there is large performance
difference between resources. However, Casanova et al argue in [Casanova et al., 2000] that Sufferage
can perform worst in case of data intensive applications in multiple cluster environments. Consequently,
this heuristic is not the best choice for medical image analysis applications which usually process large
input data sets. HEFT and TANH analyze the dependency between tasks of the workflow to achieve bet-
ter overall performance. However, they again only focus on the optimization of the application makespan

and can have the different performance on different applications [Zhao and Sakellariou, 2003].

2.4.1.3 Greedy Randomized Adaptive Search Procedure (GRASP)

GRASP [Feo and Resende, 1995] is a meta-heuristic scheduling approach based on the interactive ran-
domized search technique. Algorithm 5 describes GRASP. In GRASP, a number of iterations are con-
ducted to search a possible optimal solution for scheduling tasks on resources. Each iteration is made

up a construction phase and a local search phase.

The construction phase generates a feasible scheduling solution. It uses a Restricted Candidate List
(RCL) to record the best resources for processing each task. There are two mechanisms to generate the
RCL: cardinality-based and value-based mechanism. The cardinality-based mechanism recordes the k
best resources, while the value-based mechanism records all resources whose performance is better than

a given threshold.

In the local search phase, the neighborhood of the current solution is searched to generate a new
solution. The new solution will replace the current solution if its overall performance is better than that

of the current solution (i.e. its makespan is shorter than that generated in the construction phase).

In GRASP, resource allocated to each task is randomly selected from its RCL. After allocating a
resource to a task, the resource information is updated and the scheduler continues to process other

unmapped tasks.
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Algorithm 5 Greedy Randomized Adaptive Search Procedure (GRASP) algorithm

while stopping criterion not satisfied do

schedule + createSchedule(work flow)
if schedule is better than bestSchedule then
bestSchedule < schedule
end if
end while
procedure createSchedule(work flow)
solution < constructSolution(work flow)
newSolution < localSearch(solution)
if newSoulution is better than solution then
return newSolution
end if
return solution
end procedure
procedure constructSolution(work flow)
while schedule is not complete do
I' +— get all unmapped ready tasks
make a RCL for each task t € T’
subSolution < select a resource randomly for each ¢ € I" from its RCL
solution <+ solution U subSolution
update information for further RCL making
end while
return solution
end procedure
procedure localSearch(solution)
newSolution < find an optimal local solution
return newSolution

end procedure

2.4.1.4 Conclusions

In this section, the overview of best-effort scheduling algorithms is given. In general, heuristic algo-
rithms can produce a reasonable solution in polynomial time. Among them, individual task scheduling
is the simplest but only suitable for simple workflows such as a pipeline in which several tasks are re-
quired to be executed sequentially. Most medical image analysis applications are complex applications
which have many tasks competing for a limited number of resources. List scheduling algorithms can

make a more efficient schedule for such applications.

Although data transfer time has been considered in list scheduling algorithms, they still may not
provide an efficient scheduling for data intensive workflow applications, in which a significant fraction

of computation time is used for transferring the input data and results between dependent tasks. List
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scheduling algorithms focus on finding an execution order for a set of parallel tasks, and the defini-
tion of the best resource for each task is based on the information of the task. Therefore, they may
not assign data dependent tasks on resources which can optimize the data transfer. Both cluster- and
duplication-based algorithms aim at reducing the data transfer time between dependent tasks. Cluster-
based algorithms group dependent tasks and schedule them on the same resources, while duplication-
based algorithms duplicate several tasks on idle resources. However, the cluster-based optimization is
not practical since workflow tasks in medical image analysis applications are usually heterogeneous in
computation. Grouped tasks may require different type of resources. Similarly to the cluster-based opti-
mization, idle resources in the duplication-based optimization may not satisfy the requirements of tasks
to be duplicated.

The meta-heuristic based workflow scheduling uses guided random search technique and exploits the
feasible solution space iteratively. GRASP generates a randomized schedule at each iteration and keeps
the best solution as the final solution. Compared with heuristic-based algorithms, meta-heuristic algo-
rithms provide an optimized scheduling solution based on the performance of an entire workflow. How-
ever, the scheduling time required for finding the optimal solution is usually higher than the heuristic-

based approach. Therefore, meta-heuristic algorithms can be usually applied for simple workflows only.

2.4.2 QoS constraint based workflow scheduling

Many workflow applications require some assurances of Quality of Service (QoS) such as deadline or
execution cost constraints. For such applications, the workflow scheduler has to be able to analyze users
QoS requirements and map workflow tasks on suitable resources. However, whether users requirements
can be satisfied depends not only on the scheduling decision of the workflow scheduler but also on
the local resource allocation mechanism. If every single task cannot be completed as expected, it is
not possible to guarantee the entire workflow execution. A Service Level Agreement (SLA) should be
established to allow the workflow scheduler to negotiate with the infrastructure providers. An SLA is a
contract specifying users expectations and obligations between users and infrastructure providers. The
scheduler needs to determine the QoS for each workflow task, so that the QoS of the whole workflow is
satisfied.

Within SLA context, users usually have to pay for the resource access and service pricing based on
the QoS level. Therefore, the goal of workflow scheduling algorithms is to find out the trade-off between
the execution cost and achievable performance rather than to complete the execution at the earliest time.
To date, popular QoS constraints are the execution cost and deadline. In this section, we present the

representative QoS constraints based scheduling algorithms.

2.4.2.1 Deadline constraint scheduling
Many workflow applications are time critical and require the execution to be completed before a certain

deadline. The deadline constraint scheduling is designed for such applications.

Back-tracking algorithm. The Back-tracking algorithm [Menascé and Casalicchio, 2004] is a repre-

sentative of the deadline constraint scheduling approach. This heuristic assigns workflow ready tasks
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to the least expensive computing resources. If there is more than one ready task, the algorithm assigns
the task with the largest computational demand to the fastest resource in its available resources list. The
heuristic repeats the procedure until all tasks have been mapped. After each iterative step, the execu-
tion time of current assignment is computed. If the execution time exceeds the deadline, the heuristic
back-tracks the previous step, removes the least expensive resource from its resources list and reassigns
it with the reduced resource set. If the resource list is empty, the heuristic keeps back-tracking to the

previous step, reduces corresponding resource list and reassigns tasks.

Deadline/Time Distribution (TD). Instead of back-tracking and repairing the initial schedule, the TD
heuristic [Yu et al., 2005] partitions the workflow and distributes the overall deadline into each workflow
task based on the task workload and dependencies. After the deadline distribution, the whole workflow
scheduling problem has been divided into several sub-workflow scheduling problems.

To partition the workflow, the TD defines two categories of workflow tasks: synchronization and
simple task. A synchronization task is a task which has more than one parent or child task. For instance,
in the workflow shown in figure 2.5a, T}, T19 and 714 are synchronization tasks. Other tasks which
have only one parent or child task are simple tasks. For example, 75 — Ty and 77, — T3 are simple
task. Simple tasks are then clustered into a branch. A branch is defined as a set of inter-dependent tasks
which are executed sequentially between two synchronization tasks. As shown in figure 2.5b, branches
of the workflow in figure 2.5a are {75, T35, T4}, {15, 16}, {17}, {Ts,Ts}, {Th1} and {T12,T13}. The
overall deadline is then distributed into branches and synchronization tasks. Based on the deadline of
each branch, a sub-deadline will be assigned to tasks of this branch.

Once each task has its own sub-deadline, a local optimal schedule can be generated for each task.
If each local schedule guarantees that its task execution can be completed within its sub-deadline, the
whole workflow execution will be completed within overall deadline. Similarly, the result of the cost
minimization solution for each task leads to an optimized cost solution for the entire workflow. There-
fore, an optimized workflow schedule can be constructed from all local optimal schedules. The scheduler
allocates every workflow task to a selected resource which can meet the sub-deadline of the workflow

task at the low execution cost.

2.4.2.2 Cost constraint scheduling

As users have to pay to achieve the QoS level, they sometimes would like to execute the workflow
with the minimized execution cost while guaranteeing the QoS level. It is noted that the execution
cost is proportional to the execution time. Cost constraint scheduling therefore intends to minimize the
application makespan while meeting users cost constraint. Sakellariou et al [Sakellariou et al., 2005]
present a cost constraint scheduling called LOSS and GAIN.

The LOSS and GAIN approach iteratively adjust a schedule which is generated by a time optimized
heuristic or a cost optimized heuristic to meet users cost constraints. A time optimized heuristic aims at
minimizing the application makespan while a cost optimized heuristic aims at minimizing the execution
cost.

If the total execution cost of the schedule generated by time optimized heuristic is not greater than

the cost constraint, this schedule can be used as the final assignment. Otherwise, LOSS is applied. The
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B1

Synchronization task

(a) Before partitioning (b) After partitioning
Figure 2.5: Workflow task partition with the TD algorithm

idea of LOSS is to gain a minimum loss in execution time for the maximum cost savings to satisfy the
cost constraint. The algorithm repeats to reassign tasks with the smallest loss in execution time until the
cost constraint is satisfied.

If the total execution cost of the schedule generated by the cost optimized heuristic is less than the
cost constraint, GAIN is applied to reduce the execution time. The idea of GAIN is to gain a maximum
benefit in execution time for the minimum increase of execution cost. The algorithm repeats to reassign

tasks with the biggest gain in execution time until the total cost exceeds the cost constraint.

2.4.2.3 Genetic algorithm

A genetic algorithm based approach [Yu and Buyya, 2006] is also developed to solve the workflow
scheduling problem within the deadline and execution cost constraints. As the goal of the scheduling is
to maximize the performance based on two factors: execution time and cost, a fitness function is defined
and separated into two parts: cost-fitness and time-fitness. Both functions use two binary variables, «
and 3. If users specify a cost constraint, then &« = 1 and § = 0. If users specify a deadline constraint,
then & = 0 and 8 = 1. For the cost constraint scheduling, the cost-fitness component encourages the
formation of the solution which satisfies the cost constraint while minimizing the execution time. For
the deadline constraint scheduling, the time-fitness component encourages the algorithm to choose the
schedule with less cost.

In conclusion, QoS based scheduling algorithms solve the problem of scheduling workflow appli-

cations within QoS constraints. The back-tracking heuristic is more naive. It is like a constraint based
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Myopic algorithm since it makes a greedy decision for each task without planning for the entire work-
flow. Conversely, the deadline distribution makes a scheduling decision for each task based on a planned
sub-deadline according to dependencies between workflow tasks and the overall deadline. Therefore, it
has better schedule for current task and does not need to trace back the assigned schedule.

The LOSS and GAIN approach addresses the cost constraint. It takes advantage of heuristics de-
signed for a single constraint optimization problem to solve a multi-constraints optimization problem.
It adjusts the schedule optimized for one constraint to satisfy other constraints in the manner that it can
gain the maximum benefit or minimum loss. Even though the original heuristics are targeted at the cost
constraint scheduling problem, such concept can be used for other constraint scheduling. However, large
scheduling computation time could occur for data-intensive applications due to the re-computation of
the loss and gain after adjusting a task assignment.

Unlike best-effort scheduling in which only one single objective is considered, QoS constraint
scheduling has to consider more objectives which are usually conflicting. It becomes infeasible to de-
velop a heuristic to solve QoS constraint scheduling optimization problems. However, this situation of-
ten happens in distributed systems, especially cloud infrastructures where users have to pay for resources
usage and specify their requirements for resources reservation. For this reason, the meta-heuristic like

genetic algorithm will play an important role for the multi-objective based scheduling.

2.4.3 Conclusions

In this section, we presented an overview of workflow scheduling. Two scheduling approaches have
been described. The best-effort approach aims at minimizing the application makespan and does not
consider other requirements while the QoS constraint approach tries to achieve multiple objectives. In
general, workflow scheduling on existing distributed systems has to face many practical problems such

as:

Resources are shared on infrastructures and many users compete for the resources;

Resources are not under control of the scheduler;

Resources are heterogeneous and may not all perform identically for a given task; and

Workflow-based applications are usually data-intensive.

Therefore, workflow scheduling has to consider non-dedicated and heterogeneous executions environ-
ments. Existing scheduling algorithms can still be applied to cloud infrastructures which can have differ-
ent characteristics from existing distributed infrastructures. Resources are dedicated, fully controllable
thanks to the virtualization technology. Physical resources can be adjusted the performance according to
users requirements. Existing algorithms therefore need to be improved to adapt to such characteristics.
Furthermore, users can expect a new scheduling model which can allow them to optimize the resource
allocation and execution of their applications while guaranteeing the desired performance. That has

motivated us to do the research on workflow scheduling on cloud infrastructures.
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2.5 Conclusions and motivation for the following

In this chapter, we presented the process of porting a medical application on a distributed system. As
concluded in section 2.1, workflow languages are sufficiently expressive to describe the majority of
medical applications. Among existing workflow languages, the data-driven approach is appealing for
designing medical image analysis applications and executing them on a distributed system. Executing
data-intensive applications on distributed systems is significantly influenced by the data management
mechanism. We reviewed existing approaches to motivate our study when porting applications on cloud
infrastructures. In addition to the data management problem, using workflows for describing medical
applications leads to scheduling problems which are very difficult.

Moving to cloud infrastructures, existing approaches on data management and workflow scheduling
are still applicable. However, to adapt to the diversity of cloud infrastructures and usage, these ap-
proaches need to be improved. With the concept of “Infrastructure as a Service”, cloud infrastructures
bring to users the facility and flexibility to design and configure their execution environment. Addition-
ally, users usually have to pay for resources access on cloud infrastructures. They need new tools and
operation models to optimize the execution cost. The forthcoming study presented in this thesis there-
fore focuses on the execution optimization of workflow-based medical analysis applications on cloud
infrastructures. We present in the next chapter the cost function model for such applications. The model
takes into account both network and computing resources. Based on this model, several optimizations

on the resources allocation strategies will be given.
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3.1 Introduction

Cloud computing infrastructures are being increasingly exploited for tackling the computation needs
of large-scale distributed applications. They provide resources on demand to address the computation
needs of such applications. The virtualization technologies exploited ease the migration of heavyweight
applications by adapting the execution environment to the specific application requirements. However,
state of the art cloud solutions delivered today hardly address the problem of estimating performance
and cost related to a given platform provisioned. This chapter addresses three key problems which are

correlated to each other when executing applications on cloud infrastructures:

e resources allocation and execution cost estimation,
e data transfer optimization, and

e infrastructure reliability.

3.1.1 Resources allocation and execution cost estimation

Estimating the “optimal” amount of cloud resources (network links and nodes) needed to run a specific
complex distributed application given an input data set is a challenging problem, both for users who aim
at minimizing their cost and infrastructure providers who aim at controlling their resources allocation
and account (financial or not) for resources usage. In the commercial cloud offers, various business
models have been developed to bill resources usage. They are usually based on a coarse-grained a
posteriori metering of the amount of CPU and disk space consumed (e.g. Amazon EC2' charges users
per hour of resources usage, per GB/month of storage and for the generated traffic in network). The
estimation of the proper amount of resources to allocate is left to the responsibility of the users, although
such an estimation is far from trivial, especially when considering distributed applications. From an
infrastructure provider point of view, this practice is less suitable for dedicated infrastructures, such as
academic clouds or intra-enterprise clouds, for which providers are not only interested in billing but
also aim at improving quality of services and optimizing resources sharing. From a user point of view,
assistance in resources consumption planing and cost management is highly desirable. Therefore, a finer
grain model has to be proposed to (i) decide on the amount of resources to allocate to each application
and (ii) compute the resources usage cost.

Determining the amount of computational and storage resources needed for each application run
is often not sufficient when considering distributed applications. Communication network bandwidth
is also a critical resource, shared among the infrastructure users, which may impact application per-
formance significantly. Nowadays, the virtualization paradigm can be applied and combined to both
network and computing resources and the Infrastructure as a Service can be extended to the network.
This advanced cloud computing paradigm enables the definition of confined execution environments, in-
cluding the amount of virtual resources needed, virtual network topology and network links bandwidth.

The global cloud infrastructure manager is able to create multiple, isolated and protected environments

'http://aws.amazon.com/ec2/
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for multiple users concurrently while sharing the same set of physical resources, without interfering with
each other.

Research community has put forward a lot of effort on the cost-based resources allocation. For
instance, Buyya et al present in [Buyya et al., 2005] a summary of existing research systems which
have explored the use of economy models for trading resources in different application domains: CPU
cycles, storage space, database query processing, and distributed computing. The main purpose of these
systems is to provide mechanisms and tools that allow users and infrastructure providers to express their
requirements and facilitate the realization of their goal. The final goal of these systems is to satisfy the
largest possible number of users, thus maximizing the benefit of infrastructure providers. Additionally,
they have been designed for CPU or storage management. Few systems consider the network resource
which is also an important one when executing data intensive applications.

Motivated for both end users and infrastructure providers, this chapter proposes a fine-grained
model to help (i) users estimating the amount of resources needed and thus optimizing the execution
cost, and (ii) infrastructure providers controlling their resources allocation and billing the resources us-
age [Truong Huu and Montagnat, 2010]. This fine-grained model takes into account both computing
and network resources [Truong Huu et al., 2011] (see sections 3.2 and 3.3).

3.1.2 Data transfer optimization

Data transfer optimization is the second problem addressed in this chapter. During an execution of data
intensive applications, a considerable amount of time is spent on data transfer. Therefore, optimizing the
data transfer leads to the optimization of application performance and execution cost. From an economy
point of view, optimizing the data transfer reduces network bandwidth reserved for the execution, thus
reducing the execution cost paid for network resources. From the application performance point of view,
optimizing the data transfer reduces the application makespan. The reservation duration for computing
and storage resources is therefore also reduced.

The underlying infrastructure impacts the implementation of the data transfer mechanism. On
traditional systems (e.g. batch systems) where computing resource will be freed after finishing the
computational task, users have to use a central storage server for input data and intermediate results
which are the data exchanged between workflow services (e.g. GASS [Bester et al., 1999], OmniStor-
age [Aida et al., 2006]). This is sub-optimal because these intermediate results have to be copied back
to the storage server before being transferred to other computing resources.

On GridRPC systems or infrastructures supporting resources reservation, several techniques can
be used to optimize the data transfer as presented in [Desprez and Jeannot, 2004, Caron et al., 2005].
Among them, Data Tree Manager (DTM [Del-Fabbro et al., 2007]) is an example which provides to
users a set of operations to manage data (e.g. addition, deletion, search and replication). Users can
decide whether a data item must be persistent inside the execution platform or not. If a data item
is persistent, an identifier will be assigned to it. Users must know this identifier to use it for further
computations. Therefore, contrarily to the approach presented in previous paragraph, by using DTM,
input data which is used several times during the execution or the intermediate results can be defined
as persistent and the transfer to the central server can be avoided. Furthermore, intermediate results

can stay cached inside the platform. A computing node can request for a data item through its identifier.



70 Execution optimization on cloud infrastructures Chap. 3

DTM is responsible for looking and transferring this data item to computing node. However, this service
is only distributed as a part of the DIET platform [Caron and Desprez, 2006]. The users have to adopt
their application and run it on the DIET infrastructure to take avantage of this data transfer optimization.

On cloud infrastructures in particular, storage resources play an important part, users have to reserve
an amount of storage space for storing their data (e.g. Amazon S3 released storage service for persistent
data). Therefore, a central storage space can be reserved for the input and output data. Temporary data
generated during execution usually does not need to be backed up on permanent storage resources. A
data transfer mechanism is thus needed to exploit the standard storage capacity of computing resources.
Related to workflow-based applications, workflow services can be executed on different computing re-
sources in parallel. The result of each workflow service can be cached on the computing resource and
transferred directly to other computing nodes for further computation if needed. Only output data of
the workflow will be transfer to storage server or users machine. Based on this approach, this chapter
presents in section 3.5 our techniques to optimize the data transfer between workflow services without
requiring laborious modifications to adapt the application. The results obtained assess the performance

of their improvement.

3.1.3 Reliability

The last problem addressed in this chapter is the low reliability of distributed systems. We describe an
extension of the “Infrastructure as a Service” paradigm to provide reliable cloud infrastructures. Dis-
tributed systems are subject to failures which happen on computing nodes and network links. Recent
experimental studies show that jobs submitted by users to large-scale, multi-institutional grid infrastruc-
tures often fail to complete successfully. For example, data collected and analysed by the WISDOM
project [Breton et al., 2009] which submits tens of thousands of jobs to EGEE infrastructure? in the con-
text of a drug-design effort [Jacq et al., 2008], indicate that only 65% of submitted jobs were executed
successfully. Recovering from the failures to enable application to continue running is therefore highly
desirable.

Recovering from failures has been well studied in the literature. On large-scale infrastructures,
the re-submission is one of the solutions used for recovering from failures [Berten and Jeannot, 2009,
Lingrand et al., 2009a, Lingrand et al., 2009b]. The underlying infrastructure supports APIs for users
to monitor the job status and detect the failure (e.g. OAR middleware [Capit et al., 2005] provides
oarstat command to get status of job submitted to the infrastructure). Users are responsible for mon-
itoring and detecting whether a failure occured, and resubmit their jobs. The application makespan is
longer in this case especially when the execution time of individual tasks is long. Optimizing the appli-
cation makespan and reliability is therefore a major issue as studied in [Jeannot et al., 2008], in which
the authors propose a scheduling approach that minimizes both the makespan and the probability of fail-
lure of the execution. Multi-submission is another solution to reduce chance of failure [Casanova, 2007].
For each job to be executed, a collection of k copies of a job is submitted. As soon as one job of the
collection is running, all the other ones are canceled. If none of the jobs starts executing before the

timeout value (¢, ), the whole collection is canceled and resubmitted. On the virtual networked environ-

Mttp://www.eu-egee.orq/
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ment, Kangarlou et al propose to periodically save static snapshots of the entire execution environment
to disk, while the execution is in progress [Kangarlou et al., 2009]. The live snapshots are reloaded as
a new submission if failures are encountered in the current execution. The application makespan then
depends on the re-submission interval or the snapshot interval, which may be long due to disk-access
time.

On cloud infrastructures, reliability becomes a service provided by infrastructure providers. Users
have to pay for enhancing the reliability of their execution environment. The existing mechanisms
are still applicable but do not provide sufficient transparency against failures. Re-initiating or resum-
ing applications to recover from failures will impact any time-sensitive application and therefore new
failover mechanisms are needed. These mechanisms will be used for both infrastructure providers to
transparently provide the reliability to users, and users to efficiently provision the desired reliability
level. Thanks to the virtualization technology, the reliability on cloud infrastructures can be enabled
through the allocation of virtual backup nodes and links. The live migration mechanism such as Re-
mus [Cully et al., 2008] or Kemari [Tamura et al., 2008] can be used. In this approach, the memory
state of a protected node is continuously “synchronized” with a backup node, as with checkpointing.
When a failure in protected node occurs, the backup node can resume the execution immediately, and
the failover can be made transparently to other nodes in the execution environment. However, as dis-
cussed above, the reliability level is proportional with the execution cost. The higher the reliability level,
the larger the number of backup computing resources and network link is reserved, and thus the higher
the execution cost has to be paid. A trade-off between the reliability level and the execution cost needs to
be found. We present in section 3.6 our analysis and solution to enhance the reliability while optimizing

the execution cost [Koslovski et al., 2010].

3.2 Cost model of application execution

This section deals with the problem of estimating the amount of resources needed for a specific run of
a complex distributed application. At first, we introduce the Virtual Private eXecution Infrastructure
(VPXI) concept as a confined execution environment and then we formulate the cost function model
used to determine which VPXI(s) better fulfill the application needs, based on information extracted

from the application logic and the execution infrastructure.

3.2.1 Virtual Private eXecution Infrastructure (VPXI)

As opposed to clusters and grids, to execute distributed applications on clouds users first have to reserve
resources to compose their execution environment. Theoretically, the cost of an infrastructure deploy-
ment and usage scenario may be quantitatively estimated by the system if sufficient information on the
application and the infrastructure is known. In the general case though, it is hardly feasible to anticipate
the precise needs of a parallel application or the behavior of such an application given a determined
size infrastructure. Restraining the problem a bit more, it appears that workflow-based applications have
good properties for such a quantitative estimation. Workflow-based applications represent a large class
of coarse-grained distributed applications [Glatard et al., 2008b]. Taking advantage of the workflow for-

malism, the application logic can be interpreted and exploited to produce an execution schedule estimate.
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distributed and virtualized substrate
Figure 3.1: Example of a VPXI allocation on a distributed and virtualized HIPerSpace (image courtesy

of HIPCAL project [ Vicat-Blanc Primet et al., 2009b]).

For instance, the Bronze Standard application described in section 2.2.5 can be analyzed as illustrated

in figure 2.4 to create an execution plan.

The information extracted from the application becomes useful to help users estimating the amount
of resources needed for their application given an input data set. The execution environment is de-
fined taking into acount specific requirements on the amount of resources (computing and network), the
performance of computing resources and the network topology. The execution environment is speci-
fied through the Virtual Private eXecution Infrastructure (VPXI [Koslovski et al., 2009]) defined as a
time-limited interconnection of a set of virtual computing resources through a virtual private overlay
network. Cloud infrastructures provide a description language (e.g. VXDL [Koslovski et al., 2008]) al-
lowing users to describe their requirements. The cloud middleware is responsible for interpreting the
user description, deploying the user image on virtual machines and adjusting the performance of these
machines according to the user specification. The final goal is to make the confined execution envi-
ronment (VPXI) available from the execution start time until the estimated execution completion time.
Figure 3.1 presents an example of two virtual execution infrastructures (VPXI A and VPXI B) managed
by the HIPerNet virtualization middleware [Vicat-Blanc Primet et al., 2009b]. Each application can ex-
ecute, confined in a VPXI dedicated for a defined time period. The platform pre-deployment phase is
a time-consuming process needed to make the VPXI ready for execution. Additionally, several cloud
middlewares (e.g. HIPerNet) enable the reconfiguration of the infrastructure during the execution. A
VPXI reservation can be divided into several stages. For each stage, the VPXI can be reallocated with
respect to a specific configuration, to perform the execution of one part of the application. After com-
pleting the execution, allocated resources are returned to the cloud. The VPXI reconfiguration between
different stages, which may involve redeployment of resources, is also time-consuming. One extreme
condition, is to create a static execution environment for the whole duration of the complete application
execution, thus sparing the redeployment cost. Another extreme, is to allocate new resources one by one

on demand.

Specific VPXI can be allocated for the need of each application. Workflow-based application ex-
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Figure 3.2: Workflow example and its execution divided into stages

ecution plans can be decomposed into several stages as illustrated in figure 3.2. The synchronization
service Sg has to wait for services .S1_5 to finish before launching the execution. After Sg finishes its
execution, all services S7_1; can begin their execution. Consequently, the execution of this application
can be divided into 3 stages, as shown in figure 3.2b. Furthermore, the number of invocations in each
stage can be different, depending on the iteration strategy of each service and the number of services
in each stage. Stages 1 and 3 require 5 invocations, while stage 2 requires only 1 in this case. This
leads to the variation of number of computing resources needed between stages. Additionally, due to the
computation heterogeneity and variety of data volume of workflow services, the desired performance
of computing and network resources for each workflow service can also differ. These characteristics
make workflow-based applications suitable for porting their execution on cloud infrastructures with a
fine-grained model that maps the workflow execution on to several sequential stages of a VPXI. In the
next section, we present the cost model which helps users estimating the amount of resources needed to
describe the VPXI description.

3.2.2 Cost model formalization

The cost model proposed below makes a fine-grained estimate of the resources that will be consumed
for each application run. All parameters used in the cost model are summarized in table 3.1. Let myax
be the maximum number of computing nodes available on the infrastructure and s be the number of
execution stages of the application. The vector m = (mjy,ma, ..., mg) is the number of nodes used in
each execution stage with Vi, m; < mpax. If we assume the per-second cost of a resource is ¢,, then the

total computing cost of the infrastructure allocated for the application is:

S
Cr =cp Y _my (Td; + T;(mi, n,b)) (3.1)
i=1
where T'd; is the deployment time (including resource reservation and initialization time) and
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Mmax maximum number of computing nodes available on the infras-
tructure

n number of input data items

s number of execution stages of the application

m = (mi,ma, ..., M) number of computing nodes used in each execution stage with

Vi, m; < Mmax

Cr per-second cost of a computing resource

Cy per-Mbps cost of the bandwidth

Td; the deployment time of stage ¢ (in seconds)
T;(m;,n,b) the execution time of stage 7 (in seconds)

b= (bi1,bi2,....,bi ki), € [1..s] || link bandwidth used in stage 7 (in Mbps)

Table 3.1: Notations used in the cost function model.

T;(m;,n,b) is the execution time at stage . 7; depends both on computing time and data transfer
time involved within stage ¢. It is parameterized by the number of resources reserved (m;), the number
of input data items to process (n) and the bandwidth (b = (b; 1,052, ..., bi ki), @ € [1..s]) of the network
links used for data transfer. The computation of T; is possible using the application logic described
through the workflow.
The total infrastructure cost is also impacted by the data transfer time. If the per-Mbps cost of the
reserved bandwidth is ¢, then the total data transfer cost is:
ki
Cb—cbxz (Td; + T;(mi,n, b)) > bi; (3.2)
i=1 j=1
This cost applies to an infrastructure where the amount of network bandwidth allocated is controlled
(e.g. HIPerNet [Koslovski et al., 2009]). It sums all data transfer costs involved in the workflow execu-
tion, including workflow input data transferred from outside the cloud (at stage 1), the temporary data
generated during workflow execution (at all stages) and the output data transferred to external resources
(at stage s).

From formulas 3.1 and 3.2, the total infrastructure cost to execute the application can be computed:
C=C+0Cy 3.3)

This cost has to be optimized considering a maximum admissible cost and the application perfor-
mance scalability. C' depends on the value of 7; at each execution stage. A trade-off has to be found
between the amount of computing resources and network resources allocated (which impacts 75;), and
the resulting cost. The computation of 7; is possible using the application logic described through the
workflow. The workflow engine used in our experiment, MOTEUR [Glatard et al., 2008b], was semi-
nally designed to produce an execution schedule and control the distribution of an application at runtime.
It was enriched with a resource allocation and scheduling planner that is used to estimate 77;, given that
information on the workflow services execution time and transferred data amount is available. The work-
flow engine simulates the execution by resolving the application execution flow as it would do during

a regular run. Instead of actually invoking the application processes though, the workflow planner just
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keeps track of the estimated tasks execution duration, in virtual execution time, thus determining the

exact number of tasks to be executed of each instance after execution start.

3.2.3 Comparison to a commercial offer

The cost model described in equations 3.1 and 3.2 can be used for cost estimation both from an infras-
tructure provider and an infrastructure user point of view. Depending on the intended usage, it may be
tuned. For instance, Amazon EC2 cloud computing offer charge users per hour, day or week of usage.
The times estimated are therefore rounded at the ceil value in the unit considered. In addition, Amazon
EC2 does not account for infrastructure deployment time in billing (7'd; = 0). This cloud infrastructure
also does not make it possible to adapt nor guarantee the network bandwidth allocated. The amount of
network resources is therefore billed on the basis of the total amount of data transferred rather than the
amount of bandwidth consumed. Finally, Amazon charges for workflow input and output data trans-
fers (data transfer from and to the storage resources outside the cloud) additionally, while in the model
proposed above this transfer is accounted for in Cj, (equation 3.2).

Consequently, the cost billed for the EC2 computing resources usage is one of:

S
Zﬂ(mu n, b)
=1
/ ¢l X Mpax X 34442iiij444, (3.4a)
Cl =
° T;(mi,n,b)
! ;X | = 3.4b
chg;n%x[ 2600 ] (3.4b)

where ¢ is the Amazon EC2 per-hour unit cost of computing resources. Case 3.4a applies if a single
reservation is made for the whole duration of the workflow execution. In that case, there is a single stage
and the maximum number of resources (Mmmax) Will be reserved. Case 3.4b applies if one reservation
is made for each stage. Compared to equation 3.1, the cost computed in equation 3.4 is impacted by
rounding to the next hour. In particular in case of multiple reservations (case 3.4b), the rounding at
each stage may be penalizing. A trade-off has to be found between reserving the maximum number of
resources for the whole duration of the computation (case 3.4a) and adapting the number of resources at
each stage, at the expense of an over-estimated platform usage time (case 3.4b).

Similarly, the cost charged for usage of network resources when transferring input/output data in
Amazon EC2 is:

Cl =, x Vp (3.5)

where Vp is the total amount of data transferred between EC2 and other data sources (e.g. the user
machine or a database server on Amazon S3), and ¢} is a per-volume unit cost. Unlike equation 3.2, this
cost cannot be adapted to specific network usage requirements. This reflects the fact that this infrastruc-
ture does not provide any bandwidth control mechanism.
The total Amazon EC2 cost is:
C'=CL+Cy (3.6)
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3.3 Resources allocation strategies for workflow-based applications

The application execution time for each stage (7;) depends on the amount of resources allocated within
each VPXI. To determine VPXIs and estimate the corresponding execution times, we describe below
four strategies named naive, FIFO, optimized without services grouping optimization and optimized

with services grouping optimization.

3.3.1 Naive strategy

Given p the number of services composing an application workflow and ¢; the benchmarked execution
time of service ¢ € 1..p, a set of my,,y virtual computing nodes is allocated and split proportionally to
each service execution time: Mmaxti/ > it nodes are dedicated to the service ¢. The network bandwidth
is similarly allocated proportionally to the amount of data to transfer between each pair of services, or
the same bandwidth is reserved for all links in the infrastructure. This strategy is naive in the sense that
it only considers a single execution stage and the resources are statically allocated to each service even
though a service may not be involved during the whole duration of the workflow execution. This strategy

serves as a performance base-line.

3.3.2 FIFO strategy

In this approach, we make the simplifying assumption that all services can be deployed on every com-
puting resource. These resources are thus indistinguishable and the scheduler may request any task to
be executed on any resource. A FIFO scheduling strategy is optimal in this case and a single stage is
considered since infrastructure redeployment is unnecessary (1" = 71). In addition, the same bandwidth
is reserved for all links in the infrastructure (b; = by = ... = b). As an example, figure 3.3 displays the
estimated execution time and the total cost of the workflow from figure 2.3 on page 48 with regard to
the bandwidth (for n = 32 input data items and unit costs ¢,, = ¢, = 0.2). When the bandwidth is small,
the total cost is high due to the data transfer time. When the bandwidth increases, the execution time
and cost both decrease. However, after a 2.0Mbps threshold, the execution time only slightly reduces
while the bandwidth allocation cost increase dominates. The optimization method used to numerically

approximate the optimal bandwidth leads to 0.6517Mbps.

3.3.3 Optimized strategy

The FIFO strategy can only apply to identical resources and without optimizing the bandwidths between
each pair of resources. Conversely, the optimized strategy described below considers dividing the work-
flow execution in multiple stages and allocating resources and bandwidth independently for each stage.
The cost minimization algorithm is executed for each stage to allocate an optimal number of virtual
resources to the services involved in this stage.

An algorithm is needed to decide on the number of stages and when infrastructure reconfiguration
should happen. Firstly, the workflow of services is transformed into a Directed Acyclic Graph (DAG),
using the second composition approach presented in [Zhao and Sakellariou, 2006] for instance. Sec-

ondly, the DAG is divided in execution stages, each of them meant to be executed on a specific virtual
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Figure 3.3: Estimation of the execution time and total cost with regard to the bandwidth of the FIFO

strategy

infrastructure. An example execution DAG for the workflow of figure 2.3 is shown in figure 3.4, where
IN and OUT are special entry and exit nodes that are not accounted for in the execution and data trans-
fer times estimation. The pseudo-code of the DAG split into stages is presented in algorithm 6. An
execution stage is defined as the set of invocations which have the same depth in the DAG.

Note that the DAG generation is only possible for workflows without unbounded loops (the exact
number of invocations of each service needs to be known) so that the workflow planner can deter-
mine a complete execution schedule. Workflows including while kind of loops, or foreach constructs
iterating over unknown size data structures make the workflow unresolvable prior to execution. This
is limiting the class of applications that can be planned. Yet, this represents a broad category of
workflow applications in e-Science (many data-intensive, scientific workflow languages do not support
loops [Deelman et al., 2003]). A solution for dealing with workflows with unresolvable constructs is to
divide them into smaller resolvable sub-workflows. This generation process has to be revised dynami-
cally though (e.g. each time a loop is iterated, the loop body sub-workflow can be generated). Such a
strategy was implemented in the workflow manager of the DIET middleware (MA DAG) for instance,
to deal with workflows which could not be represented by DAGs?.

At each execution stage, the infrastructure is reconfigured for only deploying the specific services
involved in that stage. The resources are allocated proportionally to the number of invocations needed
for each service. In a typical data intensive application execution, there are more data items to process
(n) than resources available (my,,x). For instance, in the case of a stage ¢ with only one service S (e.g.

3DIET MA DAG: http://graal.ens-1lyon.fr/~diet/workflow.html
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Algorithm 6 Execution DAG split into stages

Require: processedServices list initialized with all workflow inputs.
Require: stage = 1

while There are still services to process do
stage-services = empty list
for each service S in workflow do
if all inputs of S come from the list of processed services then
add S into stage-services
set stage of service S to stage
end if
end for
add list stage-services to list processedServices
increment the stage counter (stage = stage + 1)
end while

stage 1, 2 or 4 in figure 3.4), my,ax data items are processed concurrently by S and the process is repeated

n/mmax times, leading to the execution time:

T, = [” } X T (3.7)

mmax
where T is the execution time for S.

More generally, the optimal resources and bandwidth allocation strategy, taking into account the
number of service invocations, the execution time and the data transfer time in each stage is computed
using the multi-criteria Downhill Simplex minimization method. Let inv;,j = 1..s be the number of
invocations of service j at stage ¢ where s is the number of services being executed at this stage. Let
vector m = (mq,ma, ..., ms) be a combination of number of resources allocated to the service j. This
combination must satisfy the condition 23:1 m; < Mmax. The resulting optimal execution time to
complete inv; invocations of service j is:

T = P”ﬂ x Ty (3.8)
my;

where T’,; is the unit execution time of service j.

3.3.4 Services grouping optimization

The total execution cost also depends on the infrastructure deployment time of each stage. We present in
this section an optimization of the total resources reservation and redeployment time by extending the job
grouping strategy without loss of parallelism introduced in [Glatard et al., 2008a]. The seminal strategy
of grouping without loss of parallelism minimizes the application makespan by grouping services which
would have been executed sequentially, thus reducing data transfers and the number of job invocations
needed. Applying this strategy to the Bronze Standard workflow (described in section 2.2.5), two service
groups are identified which do not cause loss of parallelism as shown in figure 3.5a. The number of

execution stages can also be reduced as shown in figure 3.5b.
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A limitation of this algorithm is that it only exploits workflow topology information but not the actual
execution cost of the services, although it might be preferable to loose some degree of parallelism, when
the grouping gain is higher. The trade-off can be found thanks to the execution planner developed for
the allocation strategies. Starting from the execution DAG split into stages, job invocation groups are
evaluated for each consecutive pair of stages. For each service A of the workflow involved in the stage
i, let By, By, ..., Bj be all children from A in stage 7 + 1. All possible combinations of grouping A with
one or more of the By, services is tested and the resulting execution cost is evaluated by optimizing the
number of resources and the bandwidth allocated. In the Bronze Standard application, the best solution

is shown in figure 3.6.

3.4 Handling the uncertainty and exception in real execution

As discussed in section 3.3, to allocate resources to the application, the workflow planner exploits the
information extracted from the application: start time, execution time and data volume to be transferred.
Among them, the execution time plays the important role. It is usually estimated or predicted based
on history of executions or benchmarks. However, due to the variations of data volumes and the non-
deterministic nature of some algorithms, the estimated execution time that is usually an average value
may differ from the actual value at runtime. Users will tend to overestimate their application to ensure
that the application execution is not aborted if the actual runtime is higher than the estimated one. This
leads to the degradation of infrastructure performance and also the increase of the execution cost that
users have to pay. In [Canon and Jeannot, 2008], the authors propose a scheduling algorithm that can
absorb part of the uncertainty and gives an allocation whose execution time is still close to the predicted
value. However, it does not take into account the execution cost when executing the application on a

pay-per-use platform.
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We propose in this section a technique to handle the uncertainty on the actual execution duration.
Prior to the execution, the workflow planner uses the estimated execution time to allocate resources.
During the execution, the workflow planner monitors the progress of each task on each computing node
and reevaluates the execution plans dynamically accordingly.

At stage 1, if the real execution time (7'r;) happens to be shorter or longer than the estimated execu-
tion time (7;):

Try =px1T; 3.9

then, the associated cost according to the cost model introduced in section 3.2.2 would be:
Cr=c, xm; x (Td; +Tr) (3.10)

However, in that case, the cost reduction or increase caused by improper estimation of the execution
time should be strengthened to avoid abuses of the infrastructure. Without extra cost, a malicious user
could reserve for an arbitrary long time and later on resize the reservation without penalty. An extra cost

(Cextra,) is therefore added to the real usage cost:
Cr =c, xmy X (Td; + Tr;) + Cextra, (3.1D)

If the real execution time (7'r;) is shorter than the estimated execution time (77;), the extra cost is pro-

portional to the estimated time deviation:
Cextra, = A1 X ¢ x m; x (T; —T'ry) (3.12)

where the per-unit cost of resources is A\; X ¢, A\; € [0, 1].

The problem is more challenging when the real execution time (7'r;) is longer than the estimated
execution time (7). We propose two approaches for two kinds of infrastructure: non-shared infrastruc-
ture and shared infrastructure. On a non-shared infrastructure, resources are reserved exclusively to the
application during its execution. One or more constant duration time interval 7 will be allocated to the
stage to finish its execution. The start time of the next stage will be postponed until all tasks of the pre-
vious stage finish. On a shared infrastructure, the infrastructure manager has to consider the execution
of other applications. If the additional time allocated for the task of this application does not violate the
start time constraint of other applications, the schedule is confirmed. Otherwise, the task is cancelled.
If we assume that the per-unit cost of resources increases linearly with the number of additional time
intervals to meet the real execution time (j X Ag X ¢, for the j th additional time interval), the extra cost

would be:
X
Cextra, = Ao X ¢ X T X m; X Zj (3.13)
j=1
Tri—1T;] . . L
where Y = | —— | is the number of additional time intervals added.

It is to be noted that each time an additional time interval is allocated to the task, the workflow plan-
ner needs to reevaluate the execution plan. Therefore, if the value of 7 is much smaller than the actual
error in the underestimated execution time, more overheads will be imposed to the workflow planner.

On the other hand, if the value of 7 is larger than the actual error, the number of tasks cancelled may
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increase. This leads to the degradation of performance of the infrastructure. In [Farooq et al., 2009],
authors present an approach to calculate 7 value. If we assume that the error in the estimation is pro-
portional to the estimated execution time, we can choose the value of 7 as: 7 = ¢ x ;. If the mean
error in the underestimated execution time is some proportion ¢ of the mean estimated execution time
T;, the average number of time Y, the additional time should be added to complete the execution of task
is given by:

_OxT; 0

- - 3.14
X oxT o (3.14)

The value of 6 is calculated based on the past history. The value of o is then adjuted accordingly to
ensure that the value of x stays near a desired value (i.e. which does not cause the overhead imposed to
the workflow planner while minimizing the number of tasks cancelled).

The same approach can be applied for the network bandwidth.

k;
Cyp=cp x (Tdi + Tri) x Y_ b j + Ceatray, (3.15)

j=1
In conclusion, this section presents our approach to handle the uncertainty during the real execu-
tion. An execution stage could be overestimated or underestimated and does not finish at the expected
time. Both users and cloud providers can benefit from our approach. In the case the application is
underestimated, the application can still execute if it does not violate any constraint. Cloud providers
can increase the performance of the infrastructure which can be defined as the number of applications
executed successfully. In any case, users will be charged for extra cost if the application does not finish

at the expected time. A “near-optimal” estimation is therefore needed.

3.5 Improving data transfer performance

As discussed in the previous chapter, the data transfer mechanism plays an important role in the opti-
mization process. It impacts the application makespan, the network resources consumed by the execution
and therefore the execution cost.

Depending on underlying infrastructures, suitable data transmission mechanism can be used. Intelli-
gent scheduling strategies have been used to schedule dependent tasks on the same computing resources
to avoid the data transfer between dependent tasks (e.g. Request Sequencing [Arnold et al., 2000]).
This approach is sub-optimal since the parallelism exploitation is limited. Other solutions are to use
relay hosts in the infrastructure or a central server to store the data (e.g. DSI [Beck and Moore, 1998],
GASS [Bester et al., 1999]). On traditional systems (e.g. batch system), it is mandatory to use this
approach since the computing resource does no longer belong to the user after finishing the task. Con-
sidering a simple example as shown in figure 3.7, the workflow has two dependent services S and Sa,
executing on a batch system. The service S copies the input data a from the storage server and executes
on a computing node. After finishing the execution, the computing node has to send the result S;(a) to
the storage server since it will be released. The service S in turn has to copy the result S (a) from the

storage server and executes on another resource, the result S2(S1(a)) has to be sent to the storage server.
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Figure 3.7: Using a central storage server for input data and intermediate results, the default execution

mode of batch systems.

Although this mechanism is sub-optimal because intermediate results have to be transferred twice before
arriving to other computing resources, users have no better mean to reduce the data transfer time.

On systems which are subject to advance reservation (e.g. Grid’5000 or cloud infrastructures), users
reserve a set of resources for a given duration to execute their application. Resources are reserved
exclusively to the application execution during this time. Intermediate results therefore can stay cached
on computing resources until the expiration of the reservation. Thanks to this feature, a direct transfer
mechanism can be implemented. Again, considering the simple workflow shown in figure 3.9a, the
service 5] is executed on a computing resource and generates an intermediate result S (a), this result
stays on the computing node and waits for further invocations. Instead of connecting to the central
storage server, the service Sy connects to the computing node of the service S to copy its input data.
After finishing the execution, the result of S5 either stays on its computing node or is sent to the storage
server as a final result of the application.

In figure 3.9, we propose two techniques to implement the direct transfer mechanism. The
original workflow is diagrammed in figure 3.9a, the first technique is described in figure 3.9b and
the second one is presented in figure 3.9c. As the input data of medical images analysis ap-
plications are usually image file and described through a description file, the first technique pro-
poses indicating the location of the data as shown in figure 3.9b. An input data item is de-
scribed in input file as login@database:/filename. Workflow services installed on comput-
ing nodes need to be modified to generate intermediate results using the same kind of identifiers,
login@computing_node:/result. With this technique, the workflow description stays the same
for any execution but the input data description must be modified to adapt to the change of data base
Server.

The second approach proposes changing the description of the workflow as presented in figure 3.9c.
For each original input port of each workflow service, we add two input ports representing the login
and host of the input data location. All outputs of this workflow service are generated from the same
computing resource. Therefore, for each workflow service, we add two output ports describing the lo-
gin and host of the current computing resource. However, this technique violates the philosophy of the

workflow language. The first reason is that the workflow language describes only the application logic



84 Execution optimization on cloud infrastructures Chap. 3

l—o
(%]
c
o
3
1o

S1 E N\ ] >
execute on

computing node

Figure 3.8: On systems supporting the advance reservation, intermediate results can be stored on com-

puting nodes and transferred to other computing nodes directly.

and independently from the underlying infrastructure, the detail on how to transfer the data is the respon-
sibility of the workflow engine and underlying infrastructure. The second reason is that the addition of
two input port representing the location of each input data port makes the workflow description more

complex. Therefore, we use the first technique for the experimental evaluation in the next chapter.

3.6 Reliability support in cloud infrastructure

Networking and computing infrastructures are subject to random failures of nodes and links. These
failures are not rare in the case where the number of physical entities are large, especially in distributed
systems. The reliability of a system may be evaluated quantitatively and qualitatively. The Mean Time
Between Failures (MTBF) is a statistical metric to determine the failure rate of the underlying infrastruc-
ture, which can be evaluated by the infrastructure management system. Already, the impact of a node
failure to a distributed application can be different; a failed worker node amongst hundreds of others is
less significant than the failure of a database server.

The virtualization technology enables the definition of confined execution environment, with a user-
specified amount of virtual resources including computing and network resources. The virtualization
also enables the specification of the reliability to be provided to different resources within the execution
environment. The database server requires a higher level of reliability than a computing node. The
reliability becomes a service provided by infrastructure providers. The higher the reliability level, the
higher the cost users have to pay.

The goal of this section is to summarize the solution presented in [Koslovski et al., 2010] that we
used to support the reliability for the execution environment (section 3.6.1). We then formulate the cost

model to calculate the extra cost that users have to pay for reliability (section 3.6.2).
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Figure 3.9: Improving the data transfer, direct transfer between computing resources

3.6.1 Providing transparent reliability

We summarize in this section the solution presented in [Koslovski et al., 2010] to provide transpar-
ent reliability. We used a live protection mechanism such as Remus [Cully et al., 2008] or Ke-
mari [Tamura et al., 2008]. The main idea of Remus and Kemari is to continuously “synchronize” the
memory state of a protected (critical) node with a replica (backup node), similarly to checkpointing.
When a failure in the protected node occurs, the backup node can resume execution immediately, and
the failover process can be made transparent to other nodes in the VPXI.

The key difference between Remus and Kemari is that Kemari initiates a checkpoint only when
external events occur, such as disk writing and network-packet sending, whereas Remus checkpoints at
a regular interval. One important feature of Remus is that, at every checkpoint, the external output is
buffered locally in the critical node until it is assured that the backup node completes that checkpoint
update. This ensures that any failover operation will be transparent to other unaffected nodes. Moreover,
the protected node continues execution in parallel until the next checkpoint, thereby increasing system
performance over classical lock-step checkpointing. Kemari, on the other hand, does not perform any
buffering and relies on pausing the protected node to achieve the required transparency. We chose to use
Remus over Kemari in our proof of concept as it provides a finer and customizable granularity between
checkpoints, which can be as frequent as tens of milliseconds. As of Xen 4.0.0, Remus is included in

the official Xen releases.

3.6.2 Extending the cost function model to reliability

Given a confined virtual execution environment with a user-specified amount of computing resources in-
terconnected by a private overlay network, this section deals with the problem of determining the number

of backup nodes and backup links to provide the reliability level required by users while optimizing the
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execution cost.
Extending equation 3.1 and 3.2, if in each execution stage ¢, the number of backup nodes and links
are mb; and lb;, respectively, the total execution cost for computing resources (including the extra cost

for backup nodes) is:

Cr = cr x Y (my +mb;) x (Td; + T;(m; + mbi, n,b + 1b;)) (3.16)
=1

and respectively for link bandwidth:

s k;+1b;
Co=cy x > _(Td; + Ty(mi + mbs,n,b+1b;)) > b (3.17)
i=1 j=1

The total execution cost is therefore:

C=0Cr+GCy (3.18)

The challenging problem is to determine the number of backup nodes and links at each stage of
the execution. An optimized number of backup resources results in an optimized execution cost while
the desired reliability can be achieved. A critical node with a low MTBF will require more backup
nodes on standby (synchronized through Remus) than another node with a higher MTBF for the same
reliability level, if physical failures are independent. As noted in [Yeow et al., 2010], backup nodes
can be shared among different groups of critical nodes to minimize the total number of backup nodes
(and hence, minimize the execution cost). For example, let us assume that stage ¢ of the execution
has two services needing n; and ng critical nodes. To assure the reliability level at least 1 and ro,
these two services require k; and ko2 backup nodes, respectively. The higher the reliability level, the
higher number of backup nodes needed. It is possible to share the backup nodes for n; + ny nodes
such that the total number of backup nodes is lower than k1 + ko provided that every backup node is
a standby for all other critical nodes. In [Yeow et al., 2010], the Opportunistic Redundancy Pooling
(ORP) mechanism imposes a sharing policy between groups of critical nodes such that it is possible to
have min(k1, ko) backup nodes so long as the reliability of every service is satisfied. We use the ORP
approach to evaluate the number of backup nodes required. Since ORP assumes independent physical
failures, it also generates additional physical-embedding constraints such that the physical locations of
all shared backup nodes and critical nodes validate that assumption. For example, virtual nodes may not
be embedded onto the same physical host, or rack that is connected to the same switch, or power supply.

The backup nodes must be connected to the rest of VPXI through backup links which have to be pre-
allocated. The higher the number of backup links reserved, the higher the reservation cost. Therefore, the
number of backup links must be optimized. We used the approach presented in [Koslovski et al., 2010]
to generate the backup links. Figure 3.10 shows an example of how backup links are generated. A new
link between a backup node and some other node is created if it is a neighbor of a critical node. Hence,
in figure 3.10b, node 7% connects to all three nodes. Furthermore, the attributes of link (7%, 7%) can
function as links (r¥,73) or (ry,73). Links (r%,7}) and (%, 73) are reused for synchronization. With
one more backup node (as in figure 3.10c), the backup links between node rg and the rest of VPXI (node
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(a) Original VPXI (b) Add one backup (c) Add two backups
Figure 3.10: The figures show the steps (from left to right) as each backup node is added to the original
VPXI for reliability. Nodes r{ and 73 are critical nodes, and nodes % and r} are backup nodes. Backup
links are reused for synchronization (in bold dotted lines). The non-bold dotted lines are backup links
assuring the connection between backup nodes and other nodes which are neighbor of critical nodes.
The respective attributes (bandwidth and latency) are determined by the existing links in the original

VPXI specified by the user (image courtesy of [Koslovski et al., 2010]).

7%) are the same as those of node ¢, and with a backup link between node 7% and 74 to function as the

link (7}, r§) when both critical nodes fail.

3.7 Conclusions

In this chapter, the main contributions of this thesis were given. We described a cost model which allows
users to scale their confined virtual execution environment. Based on the estimation of the application
makespan, this cost model helps users finding the trade-off between the desired performance and the ex-
ecution cost that they have to pay. Using this cost model, we enriched the MOTEUR workflow manager
with four resource allocation strategies applied for workflow-based applications. The real execution of
distributed applications is usually different from the estimation due to the variation of computational
process execution time with input data or stochastic processes causing unforeseeable execution time, we
proposed in this chapter our technique to handle this problem. Both users and infrastructure providers
can benefit from these strategies. In the case the application execution time has been underestimated,
users can continue executing their application if their extended resource reservation does not violate the
constraints of other reservations in the infrastructure. Infrastructure providers can increase the perfor-
mance of the infrastructure while minimizing the number of aborted applications.

Taking advantage of the virtualization, we extended the Infrastructure as a Service concept to re-
liability. Our approach allows both users to specify their desired reliability level, and infrastructure
providers to transparently provide the reliable execution environment.

In the next chapter, we will present our validation of all proposals presented in this chapter. Experi-
ments are conducted on the Aladdin/Grid’5000 testbed through HIPerNet framework.
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Chapter 4

Evaluation experiments on the
Aladdin/Grid’5000 infrastructure

his chapter provides experimental validation of
T the optimization techniques described in chap-
ter 3. All experiments have been conducted on the
Aladdin/Grid’5000 infrastructure, using the HIPer-
Net virtual platform management middleware. Be-

fore performing the experiments, the overview of the

testbed infrastructure and tools is given. Following
the evaluation of the impact of the virtualization, the
four resources allocation strategies proposed are then
evaluated. The experiments assess the performance of
the optimized strategy with services grouping. Other
experiments on data transfer improvement and the re-

liability support are also presented.

e chapitre présente la validation expérimentale
des propositions décrites dans le chapitre 3.

Toutes les expériences ont été menées sur
Uinfrastructure  d’Aladdin/Grid’5000 a [’aide
de lintergiciel =~ HIPerNet, — un  gestionnaire

d’infrastructure virtuelle.  Avant d’effectuer les

expériences, linfrastructure expérimentale et

des outils impliqués dans les expériences sont

introduits.  Apres [’évaluation de !'impact de la
virtualisation, les quatre stratégies d’allocation de
ressources sont ensuite évaluées. Les expériences
démontrent la performance de la stratégie optimisée
avec ['optimisation de groupement de services.
D’autres expériences sur le transfert des données
et ’amélioration de fiabilité de !’infrastructure sont

également présentées.
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4.1 Aladdin/Grid’5000, experimental infrastructure

Aladdin/Grid’5000" is a dedicated experimental infrastructure composed of 13 clusters distributed in 9
French cities. It was recently extended with one cluster in Brazil not used in the experiments presented
in this chapter. Sites are linked with 1Gbps or 10Gbps connections dedicated to this platform. Within
each cluster, nodes are located in the same geographic area and communicate through Gigabyte Ethernet
links. Communications between clusters are made through the Renater French academic network.

The platform is fully configurable. It allows users to reserve part of the resources and deploy their
own system and environment, with administrator privilege access. User defined system images and
environment are deployed on reserved machines by the kadeploy”® tool. Thanks to this feature, users
can reserve a pool of physical machines and deploy the virtual machine monitor (e.g. Xen, KVM) on
these machines to create the virtualized substrate. Bandwidth control is also supported on Aladdin/-
Grid’5000 [Vicat-Blanc Primet et al., 2009a]. This allows users to specify the bandwidth needed for
their applications.

Resources allocation on the Aladdin/Grid’5000 platform is made through OAR [Capit et al., 2005]
which provides all the basic mechanisms of classical batch schedulers. Users can reserve “intenstive”
resources for an immediate purpose if there are some available or use advance reservation to preserve

for a future run.

4.2 HIPerNet virtualization middleware

HIPerNet provides a framework to build and manage private, dynamic, predictable, and large-scale
virtual computing environments, that high-end challenging applications can use through traditional APIs
such as standard POSIX calls, sockets, and Message Passing (e.g. MPI and OpenMP) communication
libraries. With this framework, a user preempts and, for a given timeframe, virtually interconnects
a pool of virtual resources from a distributed physical substrate, in order to execute her application.
VPXIs (section 3.2.1) correspond to the HIPerNet management unit.

The HIPerNet framework aims at partitioning a distributed physical infrastructure (computers, disks,
and networks) into dedicated virtual private computing environment composed dynamically. When a
new machine joins the physical resource set, HIPerNet prepares its operating system to enable several
virtual machines (VMs) to be instantiated dynamically when required. This set of potential virtual ma-
chines is called an HIPerSpace and it is represented in the HIPerSpace database. The HIPerSpace is
the only entity that sees the physical entities. A resource, volunteer to join the pool of resources, is
automatically initiated and registered in the HIPerSpace database. The discovery of all the devices of
the physical node is also automatic. An image of the specific HIPerNet operating system is deployed
on it. In our current HIPerNet implementation, the operating system image basically contains the Xen
Hypervisor and its domain of administration called domain O (Dom 0). The HIPerSpace registrar (oper-
ational HIPerVisor) collects and stores data persistently, and manages accounts (e.g. the authentication

database). It is therefore hosted by a physical machine outside of the HIPerSpace itself. For the sake of

'"https://grid5000. fr
ttp://kadeploy.imag.fr/
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Figure 4.1: Example of a VPXI allocation on a distributed and virtualized HIPerSpace.

robustness and scalability, the HIPerSpace registrar can be replicated or even distributed.

When a user submits a VPXI request specified using the VXDL language, the HIPerNet allo-
cator examines the request and executes an embedding algorithm to map the virtual infrastructure
on the physical one. Then if the request is accepted, HIPerNet deploys or reconfigures the vir-
tual resources of the VPXI according to this specification. Using the bandwidth control concept in
Grid’5000 [Vicat-Blanc Primet et al., 2009a], HIPerNet allocates links bandwidth to all the virtual links
whose bandwidth was explicitly specified in VXDL during the request submission. When a VPXI is
created, virtual links are provisioned according to the VXDL request. Within this request, the user can
specify several stages for the VPXI, involving different configurations of bandwidth to best fit the appli-
cation requirements. While the VPXI is running, the user can change its configuration moving from one
stage to another.

Figure 4.1 presents an example of two virtual execution infrastructures (VPXI A and VPXI B) man-
aged by the HIPerNet framework. Each application can execute, confined in a VPXI dedicated for a
defined time period.

For all experiments presented below, a system image was created, which contains the operating sys-
tem — based on a standard Debian Efch Linux distribution with a kernel version 2.6.18-8 for AMD64 —,
the domain-specific image processing services, and the middleware components (the MOTEUR work-
flow engine and DIET middleware).

4.3 Infrastructure description using VXDL

4.3.1 VXDL language

The VPXI of each experiment is described through the Virtual eXecution Description Language
(VXDL) [Koslovski et al., 2008]. VXDL is an XML-based language which allows users to describe

not only the end resources, but also the virtual network topology, including virtual routers and timeline
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representation. The VXDL grammar is divided into Virtual Resources, Virtual Network Topology, and
Virtual Timeline description as described below. Note that these descriptions are partially optional: it is
possible to specify a simple communication infrastructure (a virtual private overlay network) or a simple

aggregate of end resources without any network topology description (a virtual cluster or grid).

Virtual Resources Description. This part of VXDL grammar enables users and applications to de-
scribe, in a simple and abstract way, all the required end hosts and host groups. VXDL allows the basic
resource parametrization (e.g. minimum and maximum acceptable values for RAM and CPU frequency).
An important feature of VXDL is that it proposes cross-layer parameters. With the specification of an-
chor and the number of virtual machines allocated per physical host users can directly interact with
lower layers and transmit application-specific information. The anchor parameters corresponds to a
physical allocation constraint of a VPXI. Indeed, in theory a VPXI can be allocated anywhere in a virtu-
alized substrate, but sometimes it is desirable that a virtual end host (or group) be positioned in a given
physical location (e.g. a site or a machine - URL, IP) for an application-specific reason. On the other
hand, in a virtualized substrate, multiple virtual machines can be allocated in the same physical host,
sharing the real resources. VXDL enables the definition of a maximum number of virtual machines that

must be allocated in a physical host, enabling users to interact directly with the allocation algorithm.

Virtual Network Topology Description. VXDL brings two original aspects within the network topol-
ogy description: (i) the joined specification of network elements and computing elements and (ii) the
link-organization concept, which permits a simple and abstract description of complex structures. Links
can define connections between end hosts, between end hosts and groups, inside groups, between groups
and VXrouters, and between VXrouters. In VXDL grammar, the definition of source - destination pairs
for each link is proposed. The same link definition can be applied to different pairs, simplifying the
specification of complex infrastructures. For example, links used to interconnect all components of an
homogeneous group, as a cluster, can all be defined in a same link description. Each link can be defined
by attributes such as latency, bandwidth, and direction. Latency and bandwidth can be defined by the

maximum and minimum values.

Virtual Timeline Description. Any VPXI can be permanent, semi-permanent, or temporary. The
VPXI are allocated for a defined lifetime in time slots. Time slots duration is specific to the substrate-
management framework and consequently this parameter is configured by the manager of the environ-
ment. Often the VPXI components are not used simultaneously or all along the VPXI lifetime. Thus,
the specification of an internal timeline for each VPXI can help optimizing the allocation, scheduling,
and provisioning processes. Periods can be delimited by temporal marks. A period can be activated after

the end of another period.

4.3.2 Translation of VPXI into VXDL

For each experiment presented in this chapter, its VPXI is described through VXDL. This VPXI is
composed of two parts: a generic part and variable one. The generic part is used to describe mandatory

nodes to execute an application (e.g. middleware, database). Figure 4.2 presents the description of
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<vxdl:vNode id=*‘‘database’’ >
<vxdl : memory>
<vxdl:simple >512</vxdl:simple>
<vxdl:unit>MB</vxdl:unit>
</vxdl : memory>
</vxdl:vNode>
<vxdl:vNode id=‘‘MOTEUR’ >
<vxdl : memory>
<vxdl:simple >512</vxdl:simple>
<vxdl:unit>MB</vxdl:unit>
</vxdl : memory>
</vxdl:vNode>
<vxdl:vNode id=‘‘DIET”’ >
<vxdl : memory>
<vxdl:simple >512</vxdl:simple>
<vxdl:unit>MB</vxdl:unit>
</vxdl : memory>
</vxdl:vNode>

Figure 4.2: Generic part description in VXDL language

a database node. The variable part composing of computing resources is generated according to the
design strategies.

For example, the naive strategy presented in section 3.3 divides the set of myax virtual computing
resources proportionally to the execution time of workflow services. We use the <vxdl:group> tag
to describe a cluster of virtual computing resources corresponding to a workflow service. This cluster
composes of m; = Mmaxti/ > ; tj resources with a minimum amount of RAM. Figure 4.3 presents the
description of this strategy.

Similarly to the naive strategy, the FIFO strategy runs the application in a single stage and assumes
that all services can be deployed on every computing resource. Therefore, the VXDL description has
only one group.

The optimized strategy has a more complex description which uses the Virtual Timeline Description
of VXDL language. Figure 4.4 presents an example of the application which has two stages. The first
stage has one service which executes in ¢; seconds. The second stage has three services starting at the
same time after first stage has finished.

The virtual network topology is specified by depending on each application. The more dependence
between workflow services, the more complicated network topology. Each link is specified by a min-
imum amount of bandwidth and one or more pairs of source/destination. Figure 4.5 shows a typical
link between the database storing the workflow input and the computing resource cluster of a workflow
service.

VXDL has been extended to enable the specification of reliable virtual infrastructures. The extension
proposes the identification of the required reliability level for each virtual resource (nodes and links).

Users can set the requirement individually or for a group of resources. To illustrate the flexibility of the
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<vxdl:vGroup id=‘‘workers’’ multiplicity=‘“‘m_.i’’>
<vxdl:vNode id=‘‘worker’’>
<vxdl : memory>
<vxdl:simple >512</vxdl:simple>
<vxdl:unit>MB</vxdl:unit>
</vxdl : memory>
<vxdl:cpu>
<vxdl:cores >1</vxdl:cores>
<vxdl:frequency>
<vxdl:simple >1.0</vxdl:simple>
<vxdl:unit >GHz</vxdl: unit>
</vxdl:frequency >
</vxdl:cpu>
</vxdl:vNode>
</vxdl:vGroup>

Figure 4.3: VXDL description of one cluster of computing resources

<vxdl:virtualTimeline >
<vxdl:id>ApplicationTimeline </vxdl:id>
<vxdl:timeline >
<vxdl:id>T1</vxdl:id>
<vxdl:activate >Service_i </vxdl:activate >
<vxdl:until >
<vxdl:totalTime>ti </vxdl:totalTime >
<vxdl:unit>s </vxdl: unit>
</vxdl:until >
</vxdl:timeline >
<vxdl:timeline >
<vxdl:id>T2</vxdl:id>
<vxdl:after >T1</vxdl:after >
<vxdl:activate >Service_jl </vxdl:activate >
<vxdl:activate >Service_j2 </vxdl:activate >
<vxdl:activate >Service_j3 </vxdl:activate >
<vxdl:until >
<vxdl:totalTime>tj </vxdl:totalTime >
<vxdl:unit>s </vxdl:unit>
</vxdl:until >
</vxdl:timeline >
</vxdl:virtualTimeline >

Figure 4.4: Virtual Timeline Description for optimized strategy
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<vxdl:virtualTopology>
<vxdl:id>VirtualNetwork </vxdl:id>
<vxdl:link >
<vxdl:id>lv 1</vxdl:id>
<vxdl:bandwidth>
<vxdl :min>2</vxdl : min>
<vxdl:unit>Mbps</vxdl:unit>
</vxdl:bandwidth>
<vxdl:direction >bi </vxdl:direction >
<vxdl:pair>
<vxdl:source>database </vxdl:source>
<vxdl:destination>cluster_i </vxdl:destination >
</vxdl:pair>
</vxdl:link >
</vxdl:virtualTopology >

Figure 4.5: Virtual network topology description

specification language, the example below is part of a VXDL file and describes a group of 30 virtual

nodes with a reliability specification of 99.9% (among others parameters).

4.4 Medical image analysis application use case

The experiments presented in this chapter are performed using the Bronze Standard (BS) a real
workflow-based application from the area of medical image analysis [Glatard et al., 2006b] introduced
in section 2.2.5.

The Bronze Standard application exhibits the complex workflow illustrated in figure 4.7. On this
figure, each rectangle represents an application service to be executed for every image in the tested
database. There are six services in the Bronze Standard application: CrestLines, CrestMatch,
PFMatchICP, Yasmina, Baladin, PFRegister. The arrows between services represent data
dependencies (the output of a service is piped into the input of the following one). In addition to the
computational services, the diagram represents data sources (Float ing and Reference representing
two input image sets to be registered) and sinks (output collectors Results). CL_size, PFMOpt,
YasminaOpt and BaladinOpt are constant parameter of workflow services. ¢ and ® represent two
iteration strategies, the dot and cross product, respectively. The dot product make the service fire once
for each pair of input image. It corresponds to a traditional one-to-one execution semantic. For instance,
if Floating has n images and Reference has m images, CrestLines will fire min(n, m) times.
The cross product corresponds to an all-fo-all execution semantic. In the Bronze Standard application,
each service has an option parameter. This parameter is used for all input image pairs. Thus, a cross
product is used for them. The graph represents the flow of processings, described in the GWENDIA
language. The data to process is described independently. The workflow is interpreted and enacted
by the MOTEUR workflow engine [Glatard et al., 2008b]. From the application graph of processings

and given input data sets, the engine dynamically determines the data flows to be processed. Using the
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<vxdl:vGroup id=‘‘workers’’ multiplicity=¢30"">
<vxdl:vNode id=‘‘worker’’ >
<vxdl:reliability >99.9% </vxdl: reliability >
<vxdl : memory>
<vxdl:simple >512</vxdl:simple>
<vxdl:unit>MB</vxdl:unit>
</vxdl :memory>
<vxdl:cpu>
<vxdl:cores >1</vxdl:cores>
<vxdl:frequency>
<vxdl:simple >1.0</vxdl:simple>
<vxdl:unit>GHz</vxdl:unit>
</vxdl:frequency>
</vxdl:cpu>
</vxdl:vNode>
</vxdl:vGroup>

Figure 4.6: Specification of the reliability level in VXDL

Services H Time (seconds) | Input data | Produced data
CrestLines 31.06 + 0.57 15MB 10MB
CrestMatch 3.22 £0.51 25MB 4MB

PFMatchICP || 10.14 + 2.41 10.2MB 240kB
PFRegister 0.64 +0.22 240kB 160kB
Yasmina 5294 £1296 | 152MB 4MB
Baladin 226.18 £19.36 | 15.2MB 4MB

Table 4.1: Benchmark of the Bronze Standard services execution time and data transfer volumes.

rich semantics of the data composition operators discussed in chapter 2, section 2.2, this results in the
production of a very large number of computation tasks, many of which can be executed in parallel
although some dependencies have to be taken into account in the scheduling. To exploit the parallelism,
three parallelism levels discussed in the section 2.1.2 are enabled in the MOTEUR workflow engine.

4.5 Experiment runs condition

In the experiments reported below, unless explicit mention of another database size, a clinical database
with 59 pairs of patient images was used for the execution of the Bronze Standard application. For each
run, 354 computing tasks were generated.

As abaseline, the execution time and the data volume transferred for each Bronze Standard processor
have been measured in initial microbenchmarks out of the virtualized system. These benchmarks were
also used for the needs of the MOTEUR workflow engine in the VPXI design step. The results are
reported in table 4.1. It can be seen that the algorithm execution time is rather reproducible (with a

standard deviation in the order of 1-5% of the average value).
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Figure 4.7: Bronze Standard workflow.

In all experiments, the MOTEUR workflow engine [Glatard et al., 2008b] is used for interpret-
ing the workflow description which is in the format of the GWENDIA language. It is respon-
sible for handling the composition strategies in each workflow service. It enables three par-
allelism levels presented in section 2.1.2 (workflow, data and service parallelism). It imple-
ments several interfaces to large-scale infrastructures (EGI® through gLite middleware*, Aladdin/-
Grid’5000 [Cappello et al., 2005] through the OAR middleware [Capit et al., 2005] and GridRPC
through the DIET middleware [Caron and Desprez, 2006]).

The DIET middleware is a scalable grid scheduler based on a hierarchy of agents communicating
through CORBA. The leaves of the hierarchy are called Service Daemons (SeDs) which can offer any
number of application specific computational service. Thus, the number of computing resources for each
workflow service can be controlled by pre-installing the computational algorithm of workflow service on
any number of SeDs. The MOTEUR workflow engine submits a workflow task to a DIET Master Agent
which is responsible for finding a suitable SeD to solve this task. If the number of tasks is larger than the
number of SeDs, the Round-Robin scheduling policy is applied. If there is more than one task arriving
on each SeD, the First Come First Served policy is applied. In the first experiments (for the measure-
ment of the virtualization impact and data improvement, sections 4.6 and 4.7, respectively), the DIET
middleware was used. In the latter experiments (validation of the four resources allocation strategies
and reliability support, sections 4.8 and 4.10, respectively), we enriched the MOTEUR workflow engine
with a scheduling module to replace the DIET middleware. Details on the characteristics of physical

resources reserved on the Aladdin/Grid’5000 platform are given for each experiment.

*http://www.egi.eu/
*nttp://glite.web.cern.ch/glite/
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It is to be noted that, all experiments reported below are subject to variation due to concurrent
usage on the Aladdin/Grid’5000 infrastructure by other users. Especially for network resources, the
experiments performed on two remote interconnected clusters are more impacted by external network

traffics than a on local clusters.

4.6 Infrastructure virtualization impact measurement

System and network virtualization has an impact on applications performance. The precise topology
of the Virtual Private eXecution Infrastructure (VPXI) allocated causes some additional performance
variations. In this section, an evaluation of the impact of virtualization on application performance is
given.

Let us consider a request for a VPXI composed of 35 nodes to execute the Bronze Standard applica-
tion. Three nodes are dedicated to the middleware services: 1 node for the MOTEUR workflow engine,
1 node for the database server and 1 node for the DIET middleware. The 32 nodes left are dedicated
to application services. The naive strategy is considered in this experiment: the computing nodes are
allocated proportionally to the execution time of the workflow processors: 3 nodes for CrestLines, 1
node for CrestMatch, 1 node for PFMatchIP, 1 node for PFRegister, 22 nodes for Baladin,
and 4 nodes for Yasmina. Figure 4.8 represents the distribution of virtual resources for application
services and administrative tools (MOTEUR, DIET and database). The CrestMatch node is data-
sensitive. It requires larger data transfers than other services. Thus the links between CrestMatch
and PFMatchIP, PFRegister, Baladin need more network resources.

For this same computing resource set, several variants of VPXI descriptions with different network
topologies can be expressed. In VPXI 1 the network is composed by two links type, one with low
latency (0.2ms, e.g. intra cluster) and the other one with a maximum latency of 10ms (e.g. remote
clusters interconnection). In VPXI 2 the network comprises three virtual links: one with a low intra-
cluster latency (maximum latency of 0.2ms), another one with a latency of 10ms interconnecting the
components except one asking for a maximum latency of 0.2ms to interconnect CrestMatch (dark blue)
with the components PEMatchICP, Yasmina and Baladin (blue) which require larger data transfers than
other services.

Let us now illustrate how each VPXI description can be embedded in a physical substrate. Depend-
ing on the infrastructure availability, the VPXI specification may be mapped differently on the available
resources. We propose two different solutions for each VPXI, resulting in four different physical al-
locations as represented in figure 4.9. In this example, Site I and Site 2 represent two geographically

distributed resources sets:
e In VPXI 1 - Allocation I in this allocation one virtual machine is hosted by a physical node.

e In VPXI 1 - Allocation II each physical node in clusters CrestMatch, PFRegister, Yasmina, and

Baladin are allocated 2 virtual machines.

e VPXI 2 - Allocation III respects the required interconnection allocating corresponding resources
in the same physical set of resources (such as a site in a grid). This embedding solution explores

the allocation of 1 virtual machine per physical node.
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Figure 4.8: VPXI description of the Bronze Standard application as generated by the naive allocation

strategy.

e VPXI 2 - Allocation IV explores the same physical components as Allocation III but allocates 2
virtual machines per physical node in the CrestMatch, PFRegister, Yasmina, and Baladin clusters.

The physical infrastructure for these experiments is reserved on the Grid’5000 clusters: capricorne
(Lyon), bordemer (Bordeaux) and azur (Sophia), the CPUs of which are 2.0 GHz dual-cores Opterons.
The distance between clusters is approximately 500km and they are connected through 10 Gbps links.
For the experiments reported in this section, we used a clinical database of 32 pairs of images. In
each experiment, we repeated the application 10 times to measure the average and standard deviation
of the application makespan, the data transfer, and the task execution time. Each VPXI is composed of
35 nodes divided in generic and variable parts: 3 nodes are dedicated to the generic part (MOTEUR,
DIET, file server) using 1 CPU per node, and the remaining 32 nodes of the variable part are allocated
dependently on the VPXIs (VPXI I - Allocation I and VPXI 2 - Allocation 11l used 1 CPU per node while
VPXI 1 - Allocation Il and VPXI 2 - Allocation 1V used 1 CPU core per node).

Co-allocating resources on one grid site: the application makespan on the VPXI 2 - Allocation 111
and VPXI 2 - Allocation IV is 11min 44s (4+49s) and 12min 3s (4+50s) respectively. This corresponds to a
+3.8% makespan increase, due to the execution overhead when there are two virtual machines collocated
on the same physical resource. Indeed, we present in table 4.2 the average execution time of application
services on the VPXI 2 - Allocations IIl and IV. We can observe that the average execution overhead is
5.17% (10.53% in the worst case and 1.28% in the best case).

Resources distributed over 2 sites: when porting the application from a local infrastructure to

a large scale infrastructure, the data transfer increases. Table 4.3 presents the data transfer time (s)
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Figure 4.9: Allocations of descriptions VPXI-1 and VPXI-2.
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Services H Allocation III Allocation IV | Variation
CrestLines || 34.12 £ 0.34 36.84 +5.78 +7.97%

CrestMatch 3.61 £0.48 3.99 + 0.63 +10.53%
PFMatchICP|| 11.93 4+2.76 12.75 +5.35 +6.87%
PFRegister 0.78 £0.18 0.79 £ 0.18 +1.28%
Yasmina 59.72 £ 14.08 | 61.53+ 1398 | +3.03%

Baladin 244.68 £ 16.68 | 247.99 + 19.51 | +1.35%

Table 4.2: Execution time on VPXI 2 - Allocations III and I'V.

of the application services on VPXI 2 - Allocation IV (local) and VPXI I - Allocation II (distributed
over 2 sites). The measured overhead is 150% in the worst case. Conversely, some local transfers
may be slightly reduced. In the case of our application however, this overhead has little impact on the
application makespan since it is compensated for by the parallel data transfer and computations. Indeed,
the makespan is 12min (4=12s) and 12min 11s (£20s) on VPXI I - Allocation I and VPXI I - Allocation
11 respectively, very similar to the performance of VPXI 2 - Allocation IV.

Services H Allocation IV ‘ Allocation II | Variation

CrestLines 24045 301 +£1.6 +50.5%
CrestMatch 1.99 4+ 0.34 1.83 £0.36 | -8.04%
PFMatchICP 1.34+04 325+0.13 | +150%
PFRegister 0.514+0.23 | 043+0.09 | -15.69%
Yasmina 1.19 £ 0.27 1.16 £ 0.21 -2.52%

Baladin 1.17 £ 0.38 1.81 £1.03 | +54.7%

Table 4.3: Data-transfer time on the local VPXI 2 - Allocation IV and large scale VPXI 1 - Allocation

II infrastructures.

Resources distributed over 3 sites: further distributing computational resources causes an addi-
tional increase of the data-transfer overheads. An additional experiment with VPXI I - Allocation I1
the generic part of which is located in Lyon while the variable part is randomly distributed in Lyon,
Bordeaux and Sophia leads to a makespan of 12min 13s (£ 30s) with a data-transfer overhead of 176%
in the worst case.

Conclusions: although system virtualization has a performance impact on the application, the ex-
ecution time variation is small (within 10%) and acceptable when considering the other advantages
of system virtualization for most non time-critical applications. The data transfer time over virtual link
might impact performance much more however, and virtual network links deployment should be thought

carefully.

4.7 Data transfer improvement evaluation

In this section, we present experiments to evaluate the improvement of data transfer mechanism de-

scribed in section 3.5. The impact of the data transfer mechanism was evaluated on both physical and
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Services H Batch mode Direct mode | Variation

CrestLines 13.817 £2.349 | 9.59 £0.25 | -30.59%
CrestMatch || 17.263 £3.490 | 9.18 £ 1.96 | -46.82%
PFMatchICP || 2.875 +£2.406 | 1.32+0.53 | -54.09%
PFRegister 0.649 £0.164 | 0.72 £ 0.12 | +10.94%
Yasmina 4172 £3.057 | 3.37+£2.19 | -19.22%
Baladin 4.689 £3.688 | 3.19£2.00 | -31.97%

Table 4.4: Data transfer time of six services in the Bronze Standard application on the physical infras-

tructure, comparing batch mode and direct mode.

virtual infrastructure. On each infrastructure, two kinds of experiment were conducted:
e run the application in batch mode using a central database server to store the intermediate results);

e run the application in direct mode, intermediate results being transferred directly between com-

puting nodes.

The virtual infrastructure was created by specifying a VPXI. We reserved 16 physical machines on
the capricorne Aladdin/Grid’5000 cluster in Lyon, France. The reserved nodes are IBM e325 worksta-
tion with AMD Opteron 246, 2 cores x 2.0GHz, 2.0GB RAM. Each physical machine hosts two virtual
nodes. One virtual node was deployed per core. Each virtual node has 512 MB of memory. Therefore,
a VPXI whose variable part composes of 32 virtual computing nodes is created. The FIFO strategy
was considered in this experiment. All computing nodes are able to process any workflow service. The
generic part of the VPXI was hosted on three physical machines including DIET, MOTEUR and the
database server similarly to previous experiments.

The matching physical infrastructure is deployed on the same cluster. We reserved the same number
of physical resources as in the virtual infrastructure and we submitted up to two processes to each
computing node concurrently (thus equally making use of each CPU two cores). For all experiments, a
clinical database of 32 pairs of images was used (192 tasks were submitted to the infrastructure).

In table 4.4, we present the data transfer time the six services involved in the Bronze Standard
application. The results show that the data transfer time with the direct mode is significantly reduced
compared to the batch mode. The best case, the PFMatchICP service, achieves a decrease in data transfer
time by over 54.09%.

Moving to the virtual infrastructure, the data transfer improvement is even higher. Table 4.5 presents
the data transfer time on the virtual infrastructure when executing the application with two batch mode
and direct mode. The best case reduces the data transfer time by 68.01%. However, the results in
this table show that the network bandwidth sharing on virtual infrastructure is less fair. The standard
deviation of some workflow services is very high (e.g. CrestMatch, Yasmina, Baladin). The control
bandwidth mechanism is therefore very useful to fairly share network among services, thus helping
in controlling their execution time. In the next section, we present the experiments dealing with the

resources allocation including computing and network resources.
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Services H Batch mode Direct mode | Variation

CrestLines 31.140 £ 4.366 | 22.37 £ 0.74 | -28.16%
CrestMatch || 46.237 £7.918 | 20.07 & 3.67 | -56.59%
PFMatchICP || 5.316 £5.784 | 1.70 £ 1.17 | -68.02%
PFRegister 0.620 £ 0.057 | 0.63 £0.05 | +1.60%
Yasmina 8.158 £8.483 | 7.00£6.94 | -14.19%
Baladin 8.368 £8.363 | 7.47£6.85 | -10.73%

Table 4.5: Data transfer time of six services in the Bronze Standard application on the virtual infrastruc-

ture, comparing batch mode and direct mode.

4.8 Virtual resources allocation strategies evaluation

In this section, we present our experiments for the evaluation of four resources allocation strategies pre-
sented in section 3.3. The experimental infrastructure is diagrammed in figure 4.10. For all experiments,
36 physical computers were reserved. The MOTEUR workflow engine, as a client of the HIPerNet en-
gine, was hosted on one physical host, outside of the virtual infrastructure. The 35 remaining computers
were registered in the HIPerSpace. The HIPerNet engine deploys and manages virtual machines on these
computer on demand (dark arrows), to host the input database server (1 node) or the application services
(34 remaining nodes). In our experiments, each physical computer hosts a single virtual machine. MO-
TEUR produces VXDL descriptions that are required by the HIPerNet engine (blue connection). After
receiving all virtual machines allocated to the VPXI, MOTEUR connects to the computing nodes to
invoke the application services (red connections). The computing nodes connect to the database host to
copy the input data, intermediate results, and send the final results to MOTEUR (green connections). For
each experiment, the application was executed 5 times and the makespan was averaged to minimize the

execution time variations encountered in distributed computing. The standard deviation is also reported.

For each strategy, the planner optimizer was executed to determine the configuration with the min-
imal execution cost. The number of virtual machines allocated to the application and the bandwidth

between the database node and computing nodes are specified by corresponding VXDL documents.

The naive and FIFO strategies are single-stage. They use all available computing resources (34
computing machines) with an optimal bandwidth yielding to a minimal execution cost. Conversely, the
optimized strategies are multi-stages, optimize bandwidth needed, and may allocate less resources than

the maximum available when there is no gain in doing so.

We also measured the deployment time of the virtual infrastructure before running the application
and the reconfiguration time between stages of the optimized strategies. The reconfiguration time takes
into account bandwidth reconfiguration between the database host and computing nodes allocated to
application services in each stage. The virtual machines in stage n are reused in stage n + 1. If the
stage m + 1 uses more virtual machines than stage n, additional virtual machines are deployed during

the execution of stage n.
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Figure 4.10: Experimental infrastructure
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Figure 4.11: Virtual infrastructure composition considering the naive strategy.
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Figure 4.12: Virtual infrastructure composition considering the FIFO strategy.



4.8. Virtual resources allocation strategies evaluation 105

Tasks
A

0 4025s Time
Figure 4.13: Tasks schedule with the naive strategy

4.8.1 Single stage strategies

The virtual infrastructures of the naive and FIFO strategies are represented in figures 4.11 and 4.12,
respectively. The naive allocation strategy allocated the 34 computing nodes to application services as
follows: 3 nodes for CrestLines, 1 node for CrestMatch, 1 node for PEMatchICP, 1 node for PFRegister,
5 nodes for Yasmina, and 23 nodes for Baladin. The same bandwidth, 2.69Mbps, is used for all com-
puting nodes. The application makespan is 67.08min =+ 0.10min. This experiment shows that the virtual
resources are not well exploited during the execution. Figure 4.13 shows a schedule of this strategy.
Each colored line represent one task duration: it starts once the corresponding task has been submitted
and stops at the end of its execution. The first, brighter part of the line represents the task waiting time
spent from submission until a resource becomes available for execution. Colors are arbitrary and just
help to distinguish the different tasks. As can be seen, at the beginning of the execution, only three nodes
are used to execute the CrestLines service. Other resources are wasted. Similarly, the result of Crest-
Match is needed for three services: PFEMatchICP, Yasmina and Baladin but there is only one resource
allocated to this service according to this strategy and it becomes a bottleneck.

The makespan of the FIFO strategy is lower: 46.88min £ 0.78min with the optimal bandwidth
(1.16Mbps). The standard deviation of this strategy is higher due to the variable arriving order of the
tasks. Some long tasks can be executed on the same computing resource, leading to the increase of the

application makespan. Figure 4.14 shows a typical task schedule for this strategy.

4.8.2 Multi-stages strategies

For the optimized strategies, the workflow planner determines the number of virtual resources and the
bandwidths yielding to a minimal execution cost. Without services grouping there are 4 execution

stages which are represented in figure 4.15. According to the optimization results: only 30 nodes were
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Figure 4.14: Tasks schedule with the FIFO strategy

allocated for the first, second and fourth stages (additional resources would be wasted). The bandwidths
are 4.62Mbps, 14.74Mbps and 3.87Mbps, respectively. For the third stage, 4 nodes were allocated to
PFMatchICP, 6 nodes for Yasmina and 20 nodes for Baladin. The bandwidth for each service in this
stage is 0.87Mbps, 1.36Mbps and 1.29Mbps, respectively. The corresponding application makespan is
37.05min % 0.25min.

Further grouping the application services as shown in figure 3.6, the application is divided into three
stages only, using 30 nodes each. As presented in figure 4.16, the bandwidth allocated for each stage
is 4.90Mbps, 1.95Mbps and 3.87Mbps, respectively. The application makespan is then 22.93min +
0.35min. Besides the execution time improvement, the number of resources consumed is also lowered.
As we can observe in figure 4.17, all tasks of the same stage do not finish exactly at the same time though,
due to some variations of the image analysis tools execution time depending on the exact processed
image content. This has an impact as the tasks of stage n have to wait for the longest task of stage n — 1

before the system can be reconfigured.

4.8.3 Summary

In conclusion, table 4.6 compares the performance of the strategies presented above and the associated
platform cost computed using equation 3.3. The worst case is the naive strategy that uses the maximum
number of resources for a very large makespan and a long deployment. The FIFO strategy spends the
same time to deploy the infrastructure but it has a better makespan than the naive strategy. The naive and
FIFO strategies reconfiguration time is null since they are single-stage. The optimized strategy without
grouping services has better results both in terms of application makespan and number of resources con-
sumed than the naive and FIFO strategies, although it has to spend time to reconfigure the infrastructure
after each stage. The best case is obtained for the optimized strategy with services grouping. It uses

less resources, spends less time to reconfigure the infrastructure and returns the results faster. In terms
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Figure 4.15: Virtual infrastructure composition with the optimized strategy without services grouping
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Figure 4.16: Virtual infrastructure composition with the optimized strategy with services grouping
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Figure 4.17: Tasks schedule with the optimized strategy with services grouping

Deployment | Reconfiguration Execution cost
Strategy Makespan #VM ) i 5
time time (x10°)

Naive 67.08min + 0.10 35 29.83min 0 1.40 X ¢, + 3.68 X ¢
FIFO 46.88min + 0.78 | 35 29.83min 0 0.98 x ¢, +1.10 X ¢y
Optimized . .

) . 37.05min £ 0.25 31 25.68min 79.29s 0.69 x ¢, + 1.40 X ¢
(without grouping)
Optimized . .

i ) 22.93min £ 0.58 | 31 25.68min 52.86s 0.42 x ¢, +0.96 X ¢y
(with grouping)

Table 4.6: Performance comparison between the four strategies

of the deployment time, the naive and FIFO strategies take 29.83min to deploy 35 virtual machines. It
is to be noted that HIPerNet does not enable the parallel deployment of resources yet. This duration
corresponds to the time needed to copy the OS images (319MB) from the HIPerNet engine to the vir-
tual machines and start them sequentially. The optimized strategies use only 31 machines, reducing the
deployment time to 25.68min. In the future, parallel deployment is expected to lower this redeployment
overhead. As expected, the cost estimated is lowered for higher performing strategies to the reduction

of the application makespan and of the network bandwidth consumed.

4.8.4 Comparison with a commercial offer

Table 4.7 presents the cost billed by Amazon EC2 (equation 3.6) as a function of the unit costs (currently
in Europe, ¢, =$0.10 / VM / hour, and ¢;, =$0.15 / day / GB). For these computations we made the
hypothesis of the same running times on Amazon EC2 nodes as on the Aladdin/Grid’5000 platform.
While Amazon EC2 data transfer cost is the same for all strategies (transfer of 1GB input and output
data), the cost paid for computing resources varies. The naive strategy, executing in more than one

hour, dominates the reservation cost for computing resources (2 hours x 35VMs x ¢}.). The reservation
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Execution cost

Strategy Makespan #VM =

HIPerNet (x10°) | Amazon EC2
Naive 67.08min + 0.10 35 1.40 X ¢, + 3.68 x ¢, | 2h x 35VMs x . + 1GB x )
FIFO 46.88min + 0.78 35 0.98 X ¢, +1.10 x ¢ | 1h x 35VMs x ¢} + 1GB x ¢},
Optimized

i ) 37.05min £ 0.25 | 31 0.69 x ¢, +1.40 X ¢, | 1h x 31VMs x ¢, + 1GB x ¢},
(without grouping)

Optimized . , ,
i ) 22.93min + 0.58 31 042 x ¢, +0.96 X ¢, | 1Th x 31VMs x ¢, + 1GB x ¢
(with grouping)

Table 4.7: Comparison with Amazon EC2

duration reduces to one hour for other strategies. Since the FIFO strategy uses 35VMs, its cost is higher
than the optimized strategy with and without grouping optimization which use less resources (31VMs).
Compared to Amazon EC2 cost, the cost model introduced in this paper is not rounded to the next hour,
thus showing a decrease of the execution cost following the application makespan decrease. Moreover,
the exact amount of bandwidth allocated is taken into account, thus showing a decrease on the data
transfer cost for higher performing strategies. This cost is closer to a real measurement of the amount of

resources consumed on the platform.

4.8.5 Impact of bandwidth control on application cost

Further experiments to evaluate the bandwidth control mechanism were also performed. The appli-
cation was executed using the optimized strategy with service grouping under two additional network
bandwidth configurations: lower and higher bandwidth values than the optimal found were tested (1
Mbps and 10 Mbps respectively). Table 4.8 displays for each configuration: the data transfer time
in each stage (in seconds), the application makespan (in minutes) and the corresponding cost. Com-
paring the results with the optimized bandwidth allocation, it appears that using a low bandwidth, the
makespan increases as expected. However, the cost increases as well because the cost gain on network
bandwidth is compensated by the loss on computing nodes reservation time. With the high bandwidth,
the application makespan can be reduced (-22.72% in this case) at a higher cost (+175% computed with
¢ = cp = 0.10).

. Stage 1 Stage 2 Stage 3 Makespan Execution cost
Bandwidth .

(s) (s) (s) (min) (x10°)

Low (1 Mbps) 222.59 +2.51 | 316.57 £40.37 | 291 = 0.50 | 34.78 +£ 0.67 | 0.65 x ¢, + 0.63 X ¢

Optimized 53.84+4.56 | 171.72 £24.66 | 1.53 £0.23 | 2293 £ 0.58 | 0.42 x ¢, +0.96 X ¢

High (10 Mbps) 30.79 + 3.85 42.68 +£9.55 | 1.09+0.18 | 17.724+0.23 | 0.33 x ¢, +3.19 X ¢

Table 4.8: Bandwidth control mechanism evaluation

4.9 Handling the uncertainty in real execution: a simulation result

In this section, we present a simulation result of the technique for handling the uncertainty on services

execution time introduced in section 3.4. We used the optimized strategy with services grouping opti-
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mization applied to the Bronze Standard application (see figure 3.6). Thus, there are three stages per
execution, each one uses 30 vitual computing resources connected to the database server through a
10Mbps link. The estimated total execution time is 779.52s with a simulation input data set of 59 image
pairs resulting in 59 invocations of each service. For each task invocation, we made the hypothesis that
the execution time is distributed according to a Gaussian distribution whose mean (p) is the measured
average execution time (for stage i € [1, 3], u1 = 131.2s, uo = 645.52s and 3 = 2.8s). An execution
stage is shorter than its expected time only if the execution time of all its task invocations is shorter than
the estimated one. In the case of Gaussian distribution, there is a high probability that at least one random
execution time is greater than its mean (u). Therefore, the over-estimation case was always observed
during the experiments. The extra cost caused by improper estimation is computed using equations 3.12
and 3.13 with ¢, = 0.10, ¢, = 0.001, A\; = 90% and Ay = 10%. Two experiments were conducted to

study the impact of the error in estimating the execution time:

1. The Gaussian distribution’s standard deviation is set to increasing values, thus worsening the

estimation;

2. The time slot extension period 7 is increased, thus studying the impact of this parameter on cost

computation.

Each experiment was repeated 20 times to measure the average and standard deviation of the application

makespan and execution cost, respectively.

In the first experiment, the distribution’s standard deviation varies from O to 0.8 of the mean value
(p). The 7 value is set to 5% of the estimated execution time of each execution stage (71 = 6.56s, 70 =
32.276s and 73 = 0.14s). As shown in figure 4.18, the execution cost increases with the estimation
error. The higher the error value, the higher the number of additional time slots of duration 7 added to
complete the execution. The total execution time also increases because the tasks belonging to the next
stage have to wait for the longest task in the previous one to finish. Additionally, the standard deviation
of the makespan and execution cost are higher when the error in the estimation increases. Although
users could have to pay a very high cost when the estimation is not correct, their application can at least

continue to execute until the end without being interupped.

In the second experiment, we fixed the standard deviation and changed the 7 value. As presented in
section 3.4, 7 = o x T}, where T; is the estimated execution time of stage 7. The o value is increased from
0.01 to 0.80, thus varying the 7 value from 1% to 80% of T;. The result displayed in figure 4.19 shows
that if the 7 value is small, the number of additional time 7 needs to be added to complete the execution
is high. The execution cost dominates due to the per-unit cost of resources that increases proportionally
to this number. The execution cost decreases when 7 increases (left part of the curves). However, when
T is greater than the error value, 7 is added only once but its duration is increasing according to the o

value, thus increasing the execution cost paid for the this additional time slot (right part of the curves).

As intended, improper estimation is penalized by a cost increasing with the magnitude of the over

estimation. The 7 parameter can be used to tune the magnitude of the overhead.
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4.10 Execution with redundant resources for improved reliability

The goal of the experiments presented in this section is to demonstrate the efficiency of the live migration
mechanism to support the reliability on the virtual infrastructure described in section 3.6. We simulated
faults by shutting down physical machines respecting the MTBF parameter which was set to 600s, 300s
and 150s, respectively. After a MTBF period, a random physical machine in the set of physical resources
will be shut down. Assuming the largest makespan of the application to be 30min, the failure probability
of each node (Pratr,) is then 0.03, 0.06 and 0.12, respectively. The initial value (600s) is based on failure
rate of servers (with a probability between 0.02 and 0.04) identified by [Atwood and Miner, 2008].

For the experiments in this section, the VPXI is designed based on the optimized strategy with
services grouping optimization presented in section 3.3.4 [Truong Huu and Montagnat, 2010] with the
modification of the link bandwidth value. 31 virtual resources are configured with 512MB of RAM, and
1GHz of CPU. A link bandwidth of 10Mbps is reserved for each virtual link between the database and
the computing nodes.

The application makespan is 1205s 4= 40s when the application is executed on a substrate without
simulated failures. It serves as the base-line computing time. In this case, the execution cost, computed
by the equation 3.3, is (0.37 x ¢, + 3.62 x ¢,.) x 10°, serving as base-line to analyze the execution cost.

The first experiment examines the protection of the database node which is a central point of failure,
and therefore the most critical node. In this case, the database is the unique component protected, and
faults are simulated in accordance with the MTBF value. Table 4.9 summarizes the application makespan
of this scenario according to the MTBF values. The application makespan increases proportionally to the
number of failures detected on the database node. Compared to the base-line, the application makespan
increases by +16%, +26% and +40% with regard to the MTBF values, 600s, 300s and 150s, respectively.

In our experimental set-up, we provided the reliability by backing-up the database 1:1. A unique
backup node is used for the database node for all the values of the MTBF. However, while 1:1 replication
made our proof-of-concept implementation feasible’, it does not keep the required reliability at the
specified level (99.99%). To calculate the theoretical execution cost of each VPXI with the proper
reliability support, we compute the number of backup nodes required to provide the reliability level of
99.99% as a function of the MTBF, computed according to [Koslovski et al., 2010]. Table 4.9 presents
the execution cost computed by equation 3.18 according to the MTBF values. The lower the value of
MTBE, the more the failures detected on the infrastructure, and thus the more backup nodes needed
to guarantee the required reliability level. Consequently, the reservation cost for computing resources
increases. The reservation cost for link bandwidth dominates significantly due to the increase of number
of backup links. Especially in the case of database protection, for each backup node, the same number
of links between the database node and other computing nodes needs to be reserved.

Each workflow service has a pre- and post-processing stage where the input data is copied to the
execution worker node and the results are sent to the database. The more the failures happen during these
two stages, the more the application makespan increases. In table 4.10, we present the data transfer time
(in seconds) of this scenario. The data transfer time increase dominates when there are more failures

detected on the database node.

>The current Remus implementation for Xen 3.4 is limited to a 1:1 protection.
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o Number of . 5
MTBF || Pra, | Makespan | Makespan variation Execution cost (x10°)
backup nodes
o0 1205s 0.37 X ¢, + 03.62 X ¢
600s 0.03 1401s +16.26% 2 0.46 x ¢, + 12.61 X ¢
300s 0.06 1524s +26.47% 3 0.52 X ¢, + 18.29 X ¢
150s 0.12 1688s +40.08% 4 0.59 X ¢, + 25.32 X ¢

Table 4.9: Summarize of the database protection scenario. oo stands for the case where there is not

failure simulation.

’ MTBF H Total data transfer time

00 165.02s + 44.30s
600 190.20s £ 96.75s
300 292.96s + 115.38s
150 299.61s + 128.26s

Table 4.10: Total data transfer time of six application services running with the critical database protec-

tion scenario.

The second experiment analyzes the protection of worker nodes. The MTBF values were the same
as in the database protection scenario (600s, 300s and 150s, respectively). After an MTBF, a random
physical machine will be crashed. The backup virtual machine is automatically started and continues
running the same workflow task. As presented in table 4.11, the application makespan only slightly
increases with regard to the number failures detected on the infrastructure. The delay on the backup
node activation is partly compensated for by other parallel executions and the variation of input data.
Table 4.11 shows the increase of the execution cost due to reliability for the different values of the
MTBE. The reservation cost for computing nodes increases due to the larger number of backup nodes
needed. Similarly to computing resources, the reservation cost for network bandwidth also increases but
it does not dominates as in the database protection scenario. For each backup node, new backup link
needs to be reserved to connect it to the database node.

In both, database protection and computing nodes protection cases, the application ran normally, the
failures detected on the infrastructure are recovered transparently from the application point of view.

We also performed the experiments using the task resubmission mechanism (application level re-

covery mechanism) to compare with the VPXI reliability service. After MTBF, a failure will occur on

o Number of )
MTBF || Pram, | Makespan | Makespan variation Execution cost (x10°)
backup nodes
%) 1205s 0.37 X ¢ + 3.62 X ¢y
600s 0.03 1208s +0.2% 5 043 x ¢ +4.23 x ¢
300s 0.06 1225s +1.7% 8 0.48 X ¢ +4.66 X ¢p
150s 0.12 1244s +3.2% 12 0.53 X ¢ +5.22 x ¢

Table 4.11: Summary of the computing nodes protection scenario.
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MTBE Reliability | Resubmission | Makespan Reliability Resubmission
makespan makespan variation cost (x10%) cost (x10%)
600s 1208s 1366s +13.08% | 0.43 X ¢, +4.23 X ¢p | 049 X ¢, +4.7T8 X ¢
300s 1225s 1466s +19.67% | 0.48 X ¢, +4.66 X ¢p | 0.57 X ¢, +5.57 X ¢
150s 1244s 1520s +22.19% | 0.53 X ¢, +5.22 X ¢p | 0.65 X ¢, +6.38 X ¢

Table 4.12: Comparison of the reliability approach with the resubmission mechanism on the makespan

and execution cost.

a worker node and this node will be unavailable for the computation. Consequently, new worker nodes
must be provisioned, and the task executed on the failed node has to be restarted on a new node. We
assumed that the number of backup nodes for task resubmission mechanism was the same as the one
identified in the previous scenario (5, 8, and 12 for MTBF of 600s, 300s, 150s, respectively). These
nodes are reserved, deployed and configured before starting the execution similarly to the reliability
experiments. Even considering the activation time of a backup node as null, our experimental results
show that the application makespan increases significantly in comparison with the virtual infrastructure
reliability service, +13.08%, +19.67% and +22.19% with respect to 600s, 300s and 150s of the MTBE,
as presented in table 4.12. Consequently, the execution cost with the resubmission mechanism increases

significantly as well.

4.11 Conclusions

This chapter presented our experiments assessing the performance of the virtual infrastructure. Although
the virtual infrastructure has a slight performance impact on the application execution (within 10%), this
increase is acceptable when considering the other advantages of the virtual infrastructure such as the
execution cost, security and reliability. The data transfer on virtual link might significantly impact the
application performance though. This drawback was lowered thanks to the direct transfer and band-
width control mechanisms. Additionally, the cost function model allows users to estimate the execution
cost for an application run, given an input data set. The experiments demonstrate the usability of the
resources allocation strategies and assess the performance of the optimized strategy with services group-
ing optimization. Finally, the live migration mechanism improves the virtual infrastructure reliability,
transparently recovering from failures from the user point of view. All experimental results assess the
validity of the approach in terms of infrastructure cost and application performance control. Our contri-
butions both facilitate the exploitation of cloud infrastructures, delivering a higher quality of services to

end users, and help the planning of cloud resources delivery.



Chapter 5

Conclusions and future work

5.1 Conclusions

The work presented in this thesis addresses the problem of performance and execution cost optimization
of workflow-based applications on cloud infrastructures. Many commercial clouds provide to users a
quasi-unlimited amount of computing, network and storage resources for dealing with the needs of large-
scale applications. However, the sizing of each reservation is completely left under the user responsi-
bility. Such an estimation is far from trivial though, especially when considering large-scale distributed
applications. We focused on workflow-based applications which provide an application description
framework with enough information to enable this estimation. We introduced a cost function model
whose granularity is finer than commercial offers to bring to users a “near-optimal” estimation. The
model is based on the expertise captured from the application including the data volume to exchange,
the execution time of each workflow service and the application logic represented by the precedence
contraints between workflow services.

Resources allocation has been studied since distributed computing infrastructures started being used
for large-scale applications. Most of existing approaches focus on minimizing the application makespan
and do not take into account the execution cost on a pay-per-use platform. Motivated by finding a trade-
off between the resources reservation cost and application performance, we proposed four resources
allocation strategies, based on the cost function model. A naive resources distribution strategy leads
to sub-optimal performance and the waste of idle resources. The FIFO strategy makes the assumption
that all services can be deployed on every computing resource. Computing resources are thus indistin-
guishable and the scheduler may request any task to be executed on any resource. The FIFO strategy is
better exploiting available resources. It is also optimal in this case and a single stage is considered since
the infrastructure redeployment is unnecessary. However, it does not optimize the bandwidth between
each pair of resources. Towards a better optimization in both computing and network resources, we pro-
posed the optimized strategy which considers dividing the workflow execution into multiple stages and
allocating resources and bandwidth independently for each stage. The cost minimization algorithm is
executed for each stage to allocate an optimal number of resources to the services involved at this stage.
It reduces the application makespan by a factor 2, compared with the naive strategy, thus reducing the

execution cost. These results were obtained taking into account the fact that the more stages involved in
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an execution, the higher the reconfiguration cost between stages. We extended an existing service group-
ing approach [Glatard et al., 2008a] to reduce the number of execution stages. The experimental results
applied to the Bronze Standard application show that reducing the number of execution stages from 4 to
3 leads to a reduction of the application makespan of 38%. The overall optimization, as compared to the

naive strategy, leads to an improvement of the application makespan over 65%.

A limitation of these strategies is that they apply only to workflow-based applications which can be
represented by an execution DAG (the exact number of invocations of each service needs to be known),
so that the workflow planner can determine a complete execution schedule. Consequently, workflows
including while kind of loops, or foreach constructs iterating over unknown size data structures make the
workflow unresolvable prior to execution. Yet, this represents a broad category of workflow applications

in e-Science.

During the experiments, we observed that the real execution differs from the estimated one due to
the variation of data volumes and the non-deterministic nature of some algorithms. The real execution
time becomes under- or overestimated. On a cloud platform, the execution could be aborted before
completion if the reservation expires. We proposed a technique to handle this problem by resizing the
resource reservation dynamically when the real execution differs from the estimated one. However,
to avoid abuse of the infrastructure, the cost function model was extended to compute an extra cost
resulting from the improper estimation. Both users and infrastructure providers can benefit from our
technique. In the case the execution time is underestimated, the user application can continue running

while infrastructure providers can dynamically control their resources allocation.

Beside resources allocation, we considered other problems related to distributed computing infras-
tructures that impact application performance, and therefore execution cost, such as the data transfer
overhead and low reliability. We introduced a mechanism to improve the data transfer between work-
flow services. As resources on cloud infrastructures are reserved exclusively to the whole application
execution, intermediate results of workflow services can stay cached on computing resources. They
will be transferred directly to other computing resources if needed, instead of being copied to a central
storage server back and forth. The experimental results on physical infrastructure show that the data
transfer time with the proposed mechanism reduces by 54.09% for the best case. The improvement
is even higher on virtual infrastructure (with a reduction of 68.01%) where the network virtualization

causes extra overheads.

Finally, to address the low reliability problem, a live migration mechanism was used. Critical re-
sources are synchronized with backup resources which will resume execution immediately when fail-
ures happen on critical resources. The cost function model was extended to infrastructure reliability
by computing the cost for backup resources. The amount of backup resources is optimized by using
the approach presented in [Koslovski et al., 2010, Yeow et al., 2010]. Compared to the resubmission ap-
proach, a traditional failure recovering mechanism, the experimental results show that the live migration
mechanism reduces significantly (18.15% for the best case) the application makespan and thus reduces

the execution cost.
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5.2 Future work

Extending the cost model to storage resources. An important part of cloud infrastructures is storage
resources which are used for both long and short term data storage. The long term storage is used
for persistent data such as input data or output of the application that needs to be preserved after the
execution finishes. Users are responsible for determining the duration and amount of disk space to
reserve, independently of the resources used for execution. However, the short term storage that is
used for temporary data generated during the execution may impact the total execution cost. In this
thesis, we assumed that the disk space on a standard computing resource is sufficient for storing all
intermediate data. However, large-scale distributed applications, especially data intensive applications,
consume significant amounts of temporary storage that could exceed the storage capacity of regular
computing nodes. In this case, users should recruit additional storage. This leads to the extra cost which
should be integrated in the cost model. Furthermore, reserving an additional storage server results in
the data transmission cost between the storage server and computing resources. For instance, Amazon
charges users for the network bandwidth between the storage resources delivered by Amazon S3 and
computing resources provided by Amazon EC2 while the data transfer inside Amazon EC2 cluster is
free. Therefore, it would be interesting to extend the cost function model to this kind of resources and

propose the allocation strategy to optimize the amount of resources needed.

Towards the dynamic resources allocation. The resources allocation strategies presented in chap-
ter 3 only apply to the workflow-based applications whose complete execution DAG can be generated
prior to execution. In the general case though, many applications cannot be represented as static DAGs
due to the use of conditionals, unbounded loops or variable data structures size. A solution for dealing
with workflows with unresolvable constructs is to divide them into smaller resolvable sub-workflows
and apply these resources allocation strategies to them. This solution was implemented in DIET MA
DAG [Amar et al., 2006], which is a DAG-based workflow scheduler, to accomodate to complex work-
flows written with the GWENDIA language. However, this implementation only considers the workflow
scheduling part. Further development of existing resources allocation strategies is an interesting per-
spective towards a dynamic approach for workflow-based applications.

Experimental validation of the mechanism handling the improper estimation. Dynamically han-
dling improper estimations during the execution is a difficult task. The approach presented in chapter 3
is evaluated by a simulation based on a probabilistic model. Even if the simulation results assess the
validity of the approach, a validation by a real execution is required to envisage the application of this
technique on a cloud platform. To perform this experiment, some implementation work is needed. At
the application level, the monitoring mechanism should be implemented to detect whether the estimated
execution is under- or overestimated. At the infrastructure level, the cloud middleware should be instru-

mented to include the infrastructure resizing module which is used to resize the reservation if needed.

Prediction of the number of pilot agents to submit. As presented in chapter 1, the pilot job mech-
anism is used to reserve computing resources to execute computing tasks. Estimating the number of

pilots needed for each application run is a difficult task. Without assistant, users tend to submit pilots
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Figure 5.1: Workflow example and its execution divided into stages

to all infrastructure sites to get as many computing resources as possible. This practice is aggressive
from an administrator point of view, which aims at fairly sharing resources among users and increasing
the infrastructure performance. Additionally, in many applications, the number of computing resources
needed varies during the execution. This leads to the variation of the number of necessary pilots along
time. For example, considering the application presented in figure 5.1a, its execution is divided into 3
stages requiring different number of pilot agents (figure 5.1b). The first and third stage require more
pilot agents than the second stage which has only one service (Sg). Assuming that the execution time
of Sg is longer than the duration that a pilot can stay idle before terminating without processing any
computing task, all pilots which are idle during the second stage will terminate before the third stage
starts. The third stage will be a bottleneck due to the lack of computing resources. Therefore, it could
be useful if the resources allocation strategies presented in chapter 3 are applied to predict the number

of pilots submitted to the infrastructure during the execution.

Towards the control of a complete cloud platform. The approach presented in this manuscript is
user-oriented in the sense that each user can make use of the cost function model to locally optimize its
cost. Applying it to the infrastructure administrators level requires further development to reach a well-
operational cloud platform with high quality of services. Maximizing the benefit of the infrastructure
is the main objective of commercial cloud providers but fairly sharing resources among users is also
crucial, e.g. for academic clouds. Although the amount of resources on clouds is “quasi-unlimited”, the
user needs are unbounded and might cause resources shortage. A solution that could be used if there are
multiple simultaneous user requests totalizing more resources than the infrastructure can provide is to
virtualize physical resources into as many virtual machines as needed. However, the number of virtual
machines hosted on the same physical one cannot increase seamlessly due to the virtualization impact

on resource performance. To maximize the benefit of cloud providers while guaranteeing the quality of
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services, a new cost model is needed. Similarly to many real cost booking systems, the model presented
in this thesis could be extended to dynamically adapt to the amount of resources available. When the
sum of user requests becomes larger than the capacity of the infrastructure, the user competes against

each other and pay a higher price for resources usage. Otherwise, the cost may reduce to attract users.
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Workflow-based applications performance and execution cost optimization on cloud infrastructures
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Cloud computing is increasingly exploited to tackle the computing challenges raised in both science and industry.
Clouds provide computing, network and storage resources on demand to satisfy the needs of large-scale distributed
applications. To adapt to the diversity of cloud infrastructures and usage, new tools and models are needed.
Estimating the amount of resources consumed by each application in particular is a difficult problem, both for
end users who aim at minimizing their cost and infrastructure providers who aim at controlling their resources
allocation. Although a quasi-unlimited amount of resources may be allocated, a trade-off has to be found between
(1) the allocated infrastructure cost, (ii) the expected performance and (iii) the optimal performance achievable that
depends on the level of parallelization of the application. Focusing on medical image analysis, a scientific domain
representative of the large class of data intensive distributed applications, this thesis proposes a fine-grained cost
function model relying on the expertise captured from the application. Based on this cost function model, four
resources allocation strategies are proposed. Taking into account both computing and network resources, these
strategies help users to determine the amount of resources to reserve and compose their execution environment.
In addition, the data transfer overhead and the low reliability level, which are well-known problems of large-scale
distributed systems impacting application performance and infrastructure usage cost, are also considered.

The experiments reported in this thesis were carried out on the Aladdin/Grid’5000 infrastructure, using the
HIPerNet virtualization middleware. This virtual platform manager enables the joint virtualization of computing
and network resources. A real medical image analysis application was considered for all experimental validations.
The experimental results assess the validity of the approach in terms of infrastructure cost and application per-
formance control. Our contributions both facilitate the exploitation of cloud infrastructures, delivering a higher

quality of services to end users, and help the planning of cloud resources delivery.

Keywords: Clouds, Workflows, Resources Allocation, Scheduling, IaaS, Virtualization, Bandwidth Control.

Optimisation des performances et du coiit de flots applicatifs s’exécutant sur des infrastructures de cloud
Les infrastructures virtuelles de cloud sont de plus en plus exploitées pour relever les défis de calcul intensif en

sciences comme dans I’industrie. Elles fournissent des ressources de calcul, de communication et de stockage a la
demande pour satisfaire les besoins des applications a grande échelle. Pour s’adapter a la diversité de ces infras-
tructures, de nouveaux outils et modeles sont nécessaires. L’estimation de la quantité de ressources consommées
par chaque application est un probleme particulierement difficile, tant pour les utilisateurs qui visent a minimiser
leurs coflits que pour les fournisseurs d’infrastructure qui visent a contrdler I’allocation des ressources. Méme
si une quantité quasi illimitée de ressources peut étre allouée, un compromis doit étre trouvé entre (i) le cofit
de I’infrastructure allouée, (ii) la performance attendue et (iii) la performance optimale atteignable qui dépend
du niveau de parallélisme inhérent a 1’application. Partant du cas d’utilisation de I’analyse d’images médicales,
un domaine scientifique représentatif d’un grand nombre d’applications & grande échelle, cette these propose un
modele de cofit a grain fin qui s’appuie sur I’expertise extraite de 1’application formalisée comme un flot. Quatre
stratégies d’allocation des ressources basées sur ce modele de cofit sont introduites. En tenant compte a la fois
des ressources de calcul et de communication, ces stratégies permettent aux utilisateurs de déterminer la quan-
tité de ressources de calcul et de bande passante a réserver afin de composer leur environnement d’exécution.
De plus, I’optimisation du transfert de données et la faible fiabilité des systemes a grande échelle, qui sont des
problémes bien connus ayant un impact sur la performance de 1’application et donc sur le cofit d’utilisation des
infrastructures, sont également prises en considération.

Les expériences exposées dans cette these ont été effectuées sur la plateforme Aladdin/Grid’5000, en utilisant
I’intergiciel HIPerNet. Ce gestionnaire de plateforme virtuelle permet la virtualisation de ressources de calcul et
de communication. Une application réelle d’analyse d’images médicales a été utilisée pour toutes les validations
expérimentales. Les résultats expérimentaux montrent la validité de I’approche en termes de contrdle du coft
de I'infrastructure et de la performance des applications. Nos contributions facilitent a la fois 1’exploitation des
infrastructures de cloud, offrant une meilleure qualité de services aux utilisateurs, et la planification de la mise a

disposition des ressources virtualisées.

Mots clés :  Infrastructures de Cloud, Flots applicatifs, Allocation de ressources, Ordonnancement, Infrastruc-

ture comme un Service, Virtualization, Contrdle de bande passante.
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