
HAL Id: tel-00804206
https://theses.hal.science/tel-00804206

Submitted on 25 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Techniques combinatoires pour les algorithmes
paramétrés et les noyaux, avec applications aux

problèmes de multicoupe.
Jean Daligault

To cite this version:
Jean Daligault. Techniques combinatoires pour les algorithmes paramétrés et les noyaux, avec ap-
plications aux problèmes de multicoupe.. Discrete Mathematics [cs.DM]. Université Montpellier II -
Sciences et Techniques du Languedoc, 2011. English. �NNT : �. �tel-00804206�

https://theses.hal.science/tel-00804206
https://hal.archives-ouvertes.fr

ACADÉMIE DE MONTPELLIER

U N I V E R S I T É M O N T P E L L I E R II
Sciences et Techniques du Languedoc

THÈSE

présentée au Laboratoire d’Informatique de Robotique
et de Microélectronique de Montpellier pour

obtenir le diplôme de doctorat

Spécialité : Informatique
Formation Doctorale : Informatique
École Doctorale : Information, Structures, Systèmes

Techniques combinatoires pour les algorithmes paramétrés
et les noyaux, avec applications aux problèmes de

multicoupe.
Combinatorial Techniques for Parameterized Algorithms and Kernels,

with Applications to Multicut.

par

Jean DALIGAULT

5 juillet 2011

Directeur de thèse
M. Stéphan THOMASSÉ, professeur . LIRMM, Université Montpellier II

Rapporteurs
Mme Cristina BAZGAN, professeur . LAMSADE, Université Paris Dauphine
M. Fedor V. FOMIN, professor . Universitetet i Bergen

Examinateurs
M. Victor CHEPOI, professeur. .LIF, Université de Provence, Marseille
M. Cyril GAVOILLE, professeur . LABRI, Université de Bordeaux
M. Alain JEAN-MARIE, Directeur de recherche INRIA LIRMM, Université Montpellier II
M. Ioan TODINCA, professeur . LIFO, Université d’Orléans

Contents

Contents i

Remerciements 1

Résumé de la thèse 3

1 Preliminaries 17
1.1 Introduction to the Thesis . 17
1.2 Fixed-Parameter Tractability . 18
1.3 Kernelization . 22

1.3.1 Introduction to Kernels . 22
1.3.2 Kernel Lower Bounds . 23
1.3.3 Polynomial Kernels . 24

1.4 Multicut . 25
1.4.1 Introduction to Multicut . 25
1.4.2 Expressing other Problems in the Multicut Framework 27
1.4.3 Multicut In Trees . 27

1.5 Maximum Leaf Spanning Tree Problems . 29

Part I: Kernels 31

2 A Polynomial Kernel for Multicut In Trees 33
2.1 A Polynomial Kernel for Caterpillars . 33
2.2 General Trees . 38

i

ii CONTENTS

3 Finding Directed Trees with Many Leaves 47
3.1 Combinatorial Bounds . 47
3.2 Reduction Rules . 53
3.3 Quadratic Kernel . 55
3.4 Constant-Factor Approximation . 57
3.5 Linear Kernel for Acyclic Digraphs . 59
3.6 Conclusion . 60

Part II: Graph Structure and Decompositions 63

4 Reducing Multicut to Bounded Treewidth 69
4.1 Preliminaries . 70
4.2 General Reduction Rules for MULTICUT . 71
4.3 Clique Minor . 76

4.3.1 Finding a Nice Model . 76
4.3.2 Small and Giant Components . 79
4.3.3 Reducing the Instance . 80

4.4 Grid Minor . 81
4.4.1 On Grid Minors without Clique Minors 81
4.4.2 Reducing the Instance . 89

4.5 Conclusion . 90

5 Well-Quasi-Ordering Induced Subgraphs 93
5.1 Introduction . 93
5.2 Totally Ordered Sets of Functions . 96
5.3 Words on Functions . 98
5.4 Trees on Functions . 101
5.5 NLC with Restricted Relabelling Functions . 104
5.6 Further Well-Quasi-Ordering Problems . 106

6 Helly Circle Graphs 109
6.1 Introduction . 109
6.2 Computing a Helly Circle Model . 110
6.3 Concluding Remarks . 115

Part III: Parameterized Algorithms 117

7 Multicut is FPT 119
7.1 Introduction . 119
7.2 Detailed Outline of the Proof . 119
7.3 Preliminaries . 121

7.3.1 Equivalence with Cluster Deletion variants 121

CONTENTS iii

7.3.2 Reductions, branchings and invariants 123
7.4 Connectivity in FPT time . 124

7.4.1 Enumerating Cuts in FPT Time . 124
7.4.2 Irrelevant Requests . 126
7.4.3 Cherry Reduction . 129

7.5 Reducing MULTICUT to COMPONENT MULTICUT 131
7.5.1 Component Multicut . 131
7.5.2 The Vertex-MulticutY . 132
7.5.3 Reducing Attachment Vertices . 133
7.5.4 Backbones . 134

7.6 BACKBONE MULTICUT is FPT . 136
7.6.1 Backbone Multicut . 136
7.6.2 Invariants . 138
7.6.3 Contracting Edges . 138
7.6.4 Choosing a Stable Edge . 139
7.6.5 Contracting Slices . 141
7.6.6 Reducing the Lemons . 144
7.6.7 Reducing to 2-SAT . 149

7.7 Hints for Vertex-Multicut . 151
7.8 Conclusion . 153

7.8.1 A Single-Exponential Algorithm . 153
7.8.2 Comparison with Marx and Razgon’s Proof in [100] 153
7.8.3 Other Leads . 154

8 Algorithms for MaxLeaf 157
8.1 Another 4knO(1) Time Algorithm . 158
8.2 Faster Algorithm . 161
8.3 Exponential Algorithm for DIRECTED MAXIMUM LEAF 165
8.4 Randomized Algorithm for MIST . 166

Concluding Remarks 171

Bibliography 173

Remerciements

Ces années de thèse ont constitué une expérience plaisante et enrichissante. Je le dois
en grande partie à tous mes collègues de l’équipe AlGCo. Etre accueilli au sein d’une équipe
aussi sympathique et dynamique était une grande chance pour moi, et j’adresse mille
merci à tous ! En particulier à mes co-bureaux : Anthony, qui m’aura supporté jusqu’au
bout, si longtemps que j’aurais juré (à tort) qu’il n’a jamais eu les cheveux longs. Nicolas,
qu’on m’a un jour présenté comme le nouveau stagiaire de l’équipe, et qui a très vite in-
versé les rôles. Kévin, pour son aide précieuse, et sa petite famille : Sarah qui m’a appris à
dire "Jean travaille une fois par semaine" en langage des signes, et Mala qui daigne jouer à
Dobble avec moi quand il juge que j’ai besoin de compagnie.

Mais aussi à Daniel et Alex, qui ont accueilli avec beaucoup de gentillesse le timide
nouveau thésard de l’équipe, et qui n’ont pas bronché quand je leur ai peut-être fait la
peur de leur vie quelque part en Italie. Sans oublier les ex-Montpelliérains : Michael, qui à
l’inverse m’a fait la peur de ma vie (devant un tableau) en m’aidant néanmoins à survivre
au well-quasi-order et à ma première année de thèse. Bin, qui a changé cette roue avec
brio au bord de l’autoroute, et Vincent qui a initié les marins d’eau douce que Mamadou
et moi étions aux joies de la navigation en pleine mer.

Merci aussi à Stéphane et Emeric, qui du haut de leurs gabarits (respectivement) de
rugbyman et de basketteur sont d’une gentillesse infinie. Benjamin, à qui je n’ai toujours
pas pardonné le coup de la corde, et EunJung qui nous a brillamment libérés. Christophe,
jamais en manque de traits d’esprits corrosifs, Marie-Catherine et Philippe. Sans oublier
l’autre Philippe, chez qui la gentillesse le dispute à la curiosité (vous êtes-vous jamais de-
mandé comment estimer le nombre de blagues carambar distinctes ? non ??).

I am also grateful to Anders Yeo (whom I would love to watch play badminton) and Gre-
gory Gutin, who very kindly welcomed me to Royal Holloway and introduced me further to
parameterized complexity.

1

2 REMERCIEMENTS

Je ne trouverai pas les mots adéquats pour exprimer ma gratitude à l’égard de mon di-
recteur de thèse, Stéphan Thomassé. Il y a quatre ans, Stéphan m’a convaincu en deux
brèves rencontres de partir faire ma thèse dans une ville où je n’avais aucune attache, loin
de ma famille et de mes amis. Et je me réjouis de cette décision depuis lors. Très peu
de thésards (sinon aucun) n’ont la chance d’avoir un directeur à la fois aussi fort, sympa-
thique, dynamique, disponible et gentil (même si sa gentillesse s’efface parfois temporaire-
ment, au moment de donner le fouet à un ou des étudiant(s) paresseux), et j’ai conscience
de ma bonne fortune. J’ai profité de ses connaissances encyclopédiques pendant ces qua-
tre années, qui m’ont donné la chance d’aborder de nombreux domaines. Mais plus que
d’une somme de connaissances, c’est d’une vision globale des mathématiques discrètes
dont Stéphan fait profiter sans relâche et avec passion les personnes qui l’entourent. Le
regarder travailler, et trouver une multitude de liens entre une myriade de domaines, est la
chose la plus impressionnante et enrichissante dont j’ai été témoin dans la recherche.

J’espère, Chef, ne pas t’avoir trop embêté en t’appelant "Chef". Je n’ai jamais été fort
pour exprimer mes émotions, et j’ai peur de ne pas réussir à transmettre à quel point ma
gratitude à ton égard est grande, et pas du seul point de vue de la recherche. S’il y a un jour
un Oscar pour les directeurs de thèse, alors je nomine Stéphan.

Je suis reconnaissant à toutes celles et tous ceux dont je me suis éloigné géographique-
ment pendant cette thèse. Mes parents, et leur soutien sans faille, et qui se sont posé des
questions quand leur fils leur a annoncé qu’il travaillait dans la "décomposition". Thomas,
qui crapahute de par le monde, a fait et vu ces choses que je ne ferai et verrai jamais.

Et comment remercier cette bande d’affreux jojos qui me supportent en dépit de tout ?
Alice (j’essaierai de faire de ma soutenance un petit spectacle de marionnettes, promis), et
Aurel et Caro (come back folks!), et Bob (pardon, Lieutenant Bob), et Duche (qui m’a battu
sur le fil, le salaud), et Fabien (non seulement Poitiers a battu Tours, mais en plus il a fallu
que ça soit mentionné dans ma thèse ?), et Jim et Min (qui vont convoler à leur tour, avant
de s’envoler vers d’autres cieux) et Laura (biblio-woman au volant de sa biblio-mobile ?), et
les Nours (et leur Noursonne), et Pierre (comment prononce-t-on à Londres, Pieeeeeurrrr
?), et Spil (dont le groupie n°1 se désole à chaque concert raté).

Résumé de la thèse

Thématique de la thèse.
Cette thèse s’articule autour de trois thèmes étroitement liés : les algorithmes efficaces

pour des problèmes de graphes, les propriétés combinatoires et structurelles des graphes,
et la théorie de l’ordre. Cette trinité algorithmes / structures / ordres a fait ses preuves en
théorie des graphes. Par exemple, le célèbre théorème des mineurs de Robertson et Sey-
mour résulte d’une interaction entre une approche structurelle (largeur arborescente, con-
struction de graphes excluant un mineur à partir de graphes plongés dans une surface), des
propriétés d’ordre (le bel ordre de la relation de mineur) et des propriétés algorithmiques
fortes (la solubilité à paramètre fixé du problème de ’linkage’, la polynomialité de tous les
problèmes clos par mineurs).

Les résultats principaux de cette thèse sont de nature algorithmique. Par exemple, le
problème de Multicoupe est FPT (soluble à paramètre fixé), ou encore le problème consis-
tant à trouver un arbre avec beaucoup de feuilles dans un graphe orienté admet un algo-
rithme d’approximation à facteur constant. Les problèmes traités sont des problèmes diffi-
ciles (NP-complets), pour lesquels un angle d’attaque indirect doit être utilisé (approxima-
tion, algorithmes à paramètre fixé, noyaux polynomiaux). Ces deux dernières approches,
appartenant au paradigme de la complexité paramétrée, sont les approches privilégiées
dans cette thèse. Le domaine de la complexité paramétrée est relativement récent et très
prometteur.

Les méthodes utilisées sont principalement de nature combinatoire et structurelle. Les
décompositions arborescentes de graphes sont un outil central de ces travaux (clique-
décomposition, décomposition en arbre). D’autres propriétés comme la structure des
graphes avec grand grille-mineur et sans grand clique-mineur, ou la structure des graphes
sans diamant induit sont également étudiées, à la fois pour elles-mêmes, mais aussi parce
qu’elles induisent des améliorations algorithmiques.

3

4 RÉSUMÉ DE LA THÈSE

Quand cela s’est avéré possible, ces travaux ont utilisé des notions liés aux ordres. Un
chapitre est dédié à la théorie de l’ordre (le bel ordre de la relation de sous-graphe induit),
et des outils comme le Théorème de Dilworth ou les ’s− t numberings’ ont été très utiles
pour affiner notre compréhension des structures.

Résultats de la thèse.
Le problème de graphes au centre de cette thèse est le problème de la Multicoupe.

Etant donné un graphe et un ensemble de paires de sommets (les requêtes), on cherche à
couper simultanément toutes les requêtes en supprimant le moins d’arêtes possible. C’est
un problème difficile (NP-complet) et d’une importance fondamentale, qui généralise le
problème basique de la coupe. Résoudre des problèmes de Multicoupe est aussi important
en pratique, notamment pour l’étude et la conception de réseaux (réseaux de communi-
cation, VLSI, ...).

Les deux résultats centraux de cette thèse concernent ce problème de Multicoupe. En
premier lieu, le problème de MULTICOUPE DANS LES ARBRES admet un noyau polynomial 1.
En d’autres termes, on peut réduire les instances de MULTICOUPE DANS LES ARBRES à
une taille petite (en fonction de la taille de la solution désirée). Ce résultat est l’objet du
Chapitre 2.

En second lieu, le problème de Multicoupe est soluble à paramètre fixé 2. En d’autres
termes, la partie exponentielle de la complexité du problème de Multicoupe (inévitable si
P 6=NP) réside dans la taille de la solution désirée, et non pas dans la taille de l’entrée toute
entière. Ce résultat est l’objet du Chapitre 7.

Les autres résultats principaux de cette thèse sont les suivants. Pour le problème (NP-
dur) consistant à trouver un arbre avec un nombre maximum de feuilles dans un digraphe,
nous avons fourni un noyau quadratique, un algorithme d’approximation à facteur con-
stant 3, et un algorithme paramétré rapide 4. Ces résultats sont l’objet des Chapitres 3 et
8 respectivement. Trouver un arbre avec beaucoup de feuilles, ou de manière équivalente
trouver un ensemble dominant connecté, est un problème central dans le domaine des
réseaux de communications, utilisé de manière systématique pour construire l’épine dor-
sale d’un réseau.

Les résultats précédents relèvent du domaine de la complexité paramétrée. Les travaux
suivants, autour des graphes induits exclus, ont eux aussi des applications algorithmiques,
mais cette fois directement vers des algorithmes polynomiaux. Le Chapitre 5 est consacré à
une caractérisation partielle des classes 2-bel-ordonnées par sous-graphe induit 5. La mo-
tivation principale de ce travail : tout problème de graphes clos par sous-graphe induit et
restreint à une classe 2-bel-ordonnée admet automatiquement un algorithme polynomial.

1. Ce résultat a été présenté à STACS 2009.
2. Ce résultat sera présenté à STOC 2011.
3. Travaux présentés à IWPEC 2009.
4. Travaux publiés dans Journal of Computer and System Sciences (2010).
5. Travaux publiés dans Order (2010).

5

Enfin, cette thèse aborde les propriétés structurelles des classes de graphes géométriques.
Le Chapitre 6 est consacré à prouver que les graphes de cercle de Helly sont exactement les
graphes de cercle sans diamant induit 6.

Préliminaires
La théorie classique de la complexité mesure la difficulté d’un problème en fonction de

la taille de l’entrée. La complexité paramétrée raffine cette analyse, en prenant en compte
à la fois la taille de l’entrée et un second paramètre. Parmi les paramètres pertinents : une
largeur du graphe (largeur d’arbre ou largeur de clique par exemple), la taille de la solution
désirée, le degré maximum du graphe d’entrée, ...

Formellement, un problème est dit Fixed-Parameter Tractable, abbrégé en FPT, en
français soluble à paramètre fixé, s’il admet un algorithme en temps f(k)poly(n) sur les
entrées de taille n et de paramètre k. Le domaine de la complexité paramétrée est un do-
maine très prometteur et extrêmement dynamique depuis sa découverte dans les années
90. Il s’enorgueillit de nombreuses réussites pratiques, de multiples techniques pour créer
des algorithmes paramétrés, et d’une théorie de la complexité très avancée avec notam-
ment une théorie de la difficulté analogue à la NP-complétude en complexité classique.

Un point de vue parallèle aux algorithmes paramétrés est la notion de noyau, qui cor-
respond à une compression sans perte des instances d’un problème.

Formellement, un noyau pour un problème paramétré est un algorithme en temps
polynomial qui prend en entrée une instance et qui retourne une instance équivalente et
de taille bornée par une fonction du paramètre. Si cette fonction est un polynôme, on parle
de noyau polynomial. L’existence d’un noyau est équivalent à la solubilité à paramètre fixé,
mais certains problèmes FPT n’ont pas de noyau polynomial.

Un noyau peut être vu comme un pré-traitement. Avant de tenter résoudre un prob-
lème difficile, on peut commencer par calculer un noyau pour réduire la taille de l’instance,
avant de chercher une solution. C’est d’autant plus bénéfique que le noyau est petit (par
exemple polynomial, et si possible linéaire ou quadratique).

Partie I : Noyaux
Les noyaux sont à l’intersection entre l’algorithmique et la combinatoire. Formelle-

ment, un noyau est un algorithme, mais en pratique, un noyau est obtenu à partir de règles
de réductions, qui sont généralement de deux types:

– Remplacer une structure locale par une structure plus simple équivalente (propriété
structurelle).

– Prouver que si un invariant est plus grand ou plus petit qu’une certaine valeur, alors
il doit (ou il ne peut pas) exister une solution (propriété combinatoire).

Le Chapitre 2 est consacré au problème de MULTICOUPE DANS LES ARBRES. Etant donné
un graphe, une requête est un couple de sommets (u,v) qu’on souhaite déconnecter. Dans

6. Travaux publiés dans Discrete Mathematics (2010).

6 RÉSUMÉ DE LA THÈSE

un arbre, un seul chemin réalise une requête donnée, on peut donc assimiler la requête
(u,v) à l’unique chemin entre u et v.

MULTICOUPE DANS LES ARBRES :
Donnée : Un arbre T , un ensemble de requêtes, un entier k.
Paramètre : k.
Question : Existe-t-il une multicoupe de taille au plus k, c’est-à-dire un en-
semble S de k arêtes de T tel que toute requête contient une arête de S ?

Guo et Niedermeier [80] ont prouvé que ce problème était FPT, et ont posé la question
de l’existence d’un noyau polynomial (de même que Fellows [11]). Le Chapitre 2, basé sur
un travail commun avec Nicolas Bousquet, Stéphan Thomassé et Anders Yeo, fournit une
réponse positive.

Nous utilisons des règles de réductions simples, essentiellement déjà exprimées dans
[80], ainsi que deux règles de réduction plus compliquées et plus puissantes qui perme-
ttent de faire décroître la taille de toute instance jusqu’à un polynôme en k. Les règles
simples :

(0) Une requête de longueur 1 force à utiliser son unique arête dans la solution.
(1) Il n’existe aucune solution s’il existe k+1 requêtes disjointes.
(2) Si toutes les requêtes partant d’une feuille ont la même direction (c’est-à-dire ont

toutes la même seconde arête), alors il existe une solution optimale qui évite l’arête
adjacente à cette feuille. Si toutes les requêtes partant d’un noeud interne sans feuille
ont la même direction, c’est-à-dire ont toutes la même première arête (par exemple
celle de droite), alors il existe une solution optimale qui évite l’autre arête adjacente
à ce noeud (à gauche).

(3) Une requête qui en contient une autre peut être supprimée.
De manière informelle, ces règles ne laissent que peu de champ libre aux requêtes entre

noeuds internes, puisqu’elles ne peuvent pas se contenir, par la règle (3). Elles peuvent
soit être disjointes (mais il ne peut y avoir en tout que k requêtes disjointes par la règle (1)),
soit s’intersecter strictement. Ce dernier cas sera essentiellement traité par la règle (4).
Le difficulté du problème réside surtout dans les requêtes partant d’une feuille, puisque
deux requêtes partant de deux feuilles distinctes ne peuvent se contenir. Les deux règles
de réduction suivantes expriment en un sens une domination plus subtile que l’inclusion
brute.

(4) S’il existek+2 requêtes distinctesR,R1, . . .,Rk+1, telles que pour tout i 6= j, Ri∩Rj ⊆
R, alors on peut supprimer la requête R.

(5) Envergure Dominante : Si l’envergure d’une feuille contient k+1 requêtes dont les
extrémités sont toutes distinctes, alors il existe toujours une solution optimale qui
n’utilise pas l’arête incidente à cette feuille.

Sans entrer dans les détails techniques de cette règle (5), la règle la plus puissante et la plus
complexe, l’envergure d’une feuille x est la partie de l’arbre à travers laquelle s’étend une
requête la plus courte depuis x vers la gauche et une requête la plus courte depuis x vers la

7

droite. La formulation ci-dessus de la règle (5) s’applique au cas où l’arbre est une chenille
(en anglais un caterpillar), c’est-à-dire un chemin sur lequel sont attachées des feuilles.
Dans le cas général, l’énoncé de la règle de l’envergure devient plus complexe.

Ces règles appliquées à une chenille réduisent la taille d’une instance à O(k5)

(Théorème 11 dans la Section 2.1). Nous dédions une section entière au cas de la che-
nille, car il contient l’essence de notre preuve tout en restant relativement simple. Avec la
généralisation de la règle (5) détaillée dans la Section 2.2, toute instance de MULTICOUPE

DANS LES ARBRES est réduite à une taille O(k6) (Théorème 19).

Le troisième chapitre concerne la recherche d’un arbre orienté avec beaucoup de
feuilles. Cette problématique est cruciale pour la conception et l’analyse de réseaux de
communication. Un bon réseau possède souvent une "épine dorsale", c’est-à-dire un
sous-arbre (si possible petit) qui domine le reste du graphe. Une telle épine dorsale corre-
spond exactement aux noeuds internes d’un arbre avec beaucoup de feuilles.

L’existence et la recherche d’arbres avec beaucoup de feuilles est une probléma-
tique très étudiée, tant pour les graphes non-orientés que pour les graphes orientés. En
non-orienté, ce problème, bien que NP-complet, est relativement simple, et des noyaux
linéaires et algorithmes d’approximations à facteur constant étaient déjà connus. Nous
nous sommes intéressés aux graphes orientés.

ARBRE ENRACINÉ AVEC BEAUCOUP DE FEUILLES :
Donnée : Un graphe orienté D, un sommet r appelé la racine de D, un entier
k.
Paramètre : k.
Question : Existe-t-il un arbre orienté enraciné en r qui couvre D et qui pos-
sède au moins k feuilles ?

Un arbre orienté est un arbre où tout arc est orienté de la racine vers les feuilles, parfois
appelé arbre sortant.

Dans le Chapitre 3, nous présentons un noyau quadratique pour le problème d’ARBRE

ENRACINÉ AVEC BEAUCOUP DE FEUILLES (améliorant un noyau cubique de Fernau et al.
[61]), ainsi qu’un algorithme d’approximation à facteur constant (l’unique algorithme
d’approximation connu n’avait un facteur que

p
n [50]).

Si la racine n’est pas précisée dans la donnée, alors le problème n’admet pas de noyau
polynomial (sauf si la hiérarchie polynomiale s’écroule au troisième niveau) [61]. Cela
signifie que la notion de noyau n’est pas purement algorithmique. En effet, le problème
non-enraciné se réduit trivialement à n instances du problème enraciné (une par racine
possible).

Le point de départ de notre travail est de se réduire aux graphes 2-connexes, c’est-à-
dire sans sommet dont la suppression rend une partie du graphe inaccessible depuis la
racine r. Ceci est exprimé par la règle (1) de la Section 3.2. Les graphes 2-connexes possè-
dent un ordre particulier sur les sommets appelé r−r énumération. Dans un tel ordre (où

8 RÉSUMÉ DE LA THÈSE

la racine est dupliquée et apparait à la fois au début et à la fin), chaque sommet possède
un voisin entrant avant et après lui. Dans la Section 3.1, nous utilisons une r−r énuméra-
tion pour exprimer des bornes combinatoires sur l’existence d’arbres avec beaucoup de
feuilles. Notamment, nous montrons que dans un graphe orienté 2-connexe, il existe tou-
jours un arbre couvrant avec au moins autant de feuilles que :

– une fraction constante du nombre de sommets de degré entrant au moins trois
(Théorème 37).

– une fraction constante du nombre de sommets incidents à un arc entrant simple
(Théorème 38).

Intuitivement, on aurait pu s’attendre à une borne dépendant du nombre de sommets
de grand degré sortant, et non entrant comme dans le Théorème 37. Pour le Théorème 38,
un arc (u,v) est dit simple si l’arc inverse, (v,u), n’apparait pas dans le graphe. L’existence
de nombreux 2-circuits, c’est-à-dire d’arcs (u,v) et (v,u), est l’obstruction principale à
l’existence d’un arbre avec beaucoup de feuilles dans les graphes orientés 2-connexes.

Un noyau quadratique découle de ces résultats combinatoires couplés aux règles de
réduction simples présentées dans la Section 3.2. Ce noyau pour le problème d’ARBRE

ENRACINÉ AVEC BEAUCOUP DE FEUILLES est détaillé dans la Section 3.3, et un algorithme
d’approximation à facteur constant est présenté dans la Section 3.4.

Cette approche donne un résultat plus satisfaisant du point de vue de l’approximation
grâce au traitement possible des 2-circuits. Comme un noyau doit conserver la valeur ex-
acte de la solution, nous ne pouvons pas nous débarrasser des longs chemins de 2-circuits.
Dans le cadre de l’approximation au contraire, un long chemin de 2-circuits fournit soit
une feuille soit deux feuilles dans un arbre, et il est donc facile de fournir une solution sat-
isfaisante du point de vue de ces chemins de 2-circuits. Les résultats combinatoires de la
Section 3.1 assurent par ailleurs une solution raisonnablement bonne sur les portions ne
contenant pas de 2-circuits.

La question ouverte principale sur le problème d’ARBRE ENRACINÉ AVEC BEAUCOUP DE

FEUILLES est l’existence d’un noyau linéaire. Notre noyau possède un nombre quadra-
tique d’arêtes, et des résultats de borne inférieure correspondant exactement à un nombre
quadratique d’arêtes existent désormais [45]. Une réponse négative proviendrait certaine-
ment de l’adaptation de ces techniques au problème d’ARBRE ENRACINÉ AVEC BEAUCOUP

DE FEUILLES, et une réponse positive découlerait du traitement des longs chemins de 2-
circuits.

Partie II : Structure et Décompositions de Graphes
La seconde partie de cet manuscrit se focalise sur la structure des graphes, et notam-

ment sur les mineurs, les décompositions arborescentes et les classes de graphes à mineurs
ou sous-graphes induits exclus. Ces thèmes sont étroitement liés, et souvent en rapport
avec la théorie de l’ordre.

Un graphe H est un mineur d’un graphe G si H peut être obtenu à partir de G en ef-

9

fectuant une suite de contractions d’arêtes et de suppressions de sommets et d’arêtes. La
relation de mineur est une relation plus riche que celle de sous-graphe.

Une décomposition en arbre (tree-decomposition en anglais) d’un graphe G est un ar-
bre T et une collection {Tv|v ∈ V} de sous-arbres de T telle que Tu∩Tv 6=; pour tout arête
(u,v). La largeur d’un noeud de T est le nombre de sous-arbres Tv qui contiennent ce
noeud, moins un. La largeur de la décomposition est le maximum des largeurs d’un noeud
de T , et la largeur d’arbre (treewidth en anglais) d’un grapheG est le minimum des largeurs
d’une décomposition en arbre de G.

Dans le Chapitre 4, nous nous intéressons aux multicoupes dans les graphes en
général :

MULTICOUPE :
Donnée : Un graphe G, un ensemble de requêtes, un entier k.
Paramètre : k.
Question : Existe-t-il une multicoupe de taille au plus k, c’est-à-dire un en-
semble S de k arêtes dont la suppression coupe toutes les requêtes ?

Nous réduisons le problème de MULTICOUPE aux graphes de largeur d’arbre
bornée. Un graphe de grande largeur d’arbre admet une grande grille comme mineur
(Théorème 57), et nous utilisons cette structure de grille-mineur pour extraire plus
d’informations sur les multicoupes possibles.

Le coeur de notre approche réside dans l’étude de problèmes de connectivité sur trois
sommets. Etant donné trois sommets x,y,z d’un grapheG, nous appelons (zy|x)-coupe de
taillekun ensemble dek arêtes dont la suppression déconnecteyde xmais ne déconnecte
pas y de z.

SÉPARATION DE TRIPLET :
Donnée : Un graphe G, trois sommets x,y,z de G, et un entier k.
Paramètre : k.
Sortie : Calculer une (zy|x)-coupe de taille au plus k s’il en existe.

Nous prouvons que ce problème de SÉPARATION DE TRIPLET est FPT (Théorème 63).
Une notion plus complexe et plus pertinente vis-à-vis des multicoupes est celle de lien
fort. Etant donné un ensemble de sommets T d’un graphe G, deux entiers k et k ′ et un
sommet z de G, nous disons qu’un sommet x ∉ T est k ′-fortement (z|T)-k-lié si pour tout
sous-ensemble S⊆ T de grande taille, plus précisément tel que |S|≥ |T |−k ′, il n’existe pas
de (zx|S)-coupe de taille au plus k.

Un des résultats clés du Chapitre 4 est le Théorème 66, qui assure que quand un ensem-
ble de sommets T est suffisamment grand (en fonction de k et de k’), il existe toujours un
sommet x ∈ T qui est k ′-fortement (z|T \{x})-k-lié. De ce résultat, nous déduisons deux rè-
gles de réductions pour MULTICOUPE. Une requête est inutile (irrelevant en anglais dans le
Chapitre 4) si l’existence d’une solution ne change pas quand cette requête est supprimée.

Règle 1. Un sommet incident à kO(k) requêtes est incident à une requête inutile.

10 RÉSUMÉ DE LA THÈSE

La Règle 1 est très commode, et la définition suivante a pour but d’étendre la recherche
de requête inutile. Un ensemble de sommets T est dit groupé (gathered dans la version
anglaise) si pour tout ensemble d’arêtes F, de taille au plus k, il existe au plus une com-
posante connexe de G\F qui contient au moins deux sommets de T .

Règle 2. Dans une instance réduite par la Règle 1, s’il existe un ensemble groupé T d’au
moins kO(k) terminaux, alors on peut trouver en temps FPT une requête inutile.

Cette règle de réduction est l’outil le plus puissant du Chapitre 4. Nous utilisons la
structure donnée par une grande grille en mineur pour réorganiser l’instance jusqu’à pou-
voir appliquer la Règle 2. Dans la Section 4.3, nous traitons le cas où l’instance admet,
non seulement une grande grille, mais aussi une grande clique en mineur. Dans la Sec-
tion 4.4, nous utilisons notamment un renforcement d’un résultat de Robertson et Sey-
mour sur les grilles sans grande clique en mineur, le Lemme 85. Après un nettoyage appro-
prié de l’instance, nous exhibons soit une arête inutile, car trop loin de tout terminal pour
participer efficacement à une multicoupe, soit un grand ensemble groupé de terminaux.
Dans les deux cas, l’instance de grande largeur d’arbre est réduite, et ce processus peut être
répété jusqu’à l’obtention d’une instance de largeur d’arbre bornée en k.

Le Chapitre 5 concerne les sous-graphes induits. Le célèbre théorème des mineurs de
Robertson et Seymour, brièvement décrit pages 64-65, établit que la relation de mineur est
un bel ordre, c’est-à-dire que pour tout ensemble infini de graphes, il en existe un qui est un
mineur d’un autre. Cet énoncé de théorie de l’ordre est d’une importance algorithmique
cruciale, car il implique que toute classe de graphes close par mineur est exprimable par
un nombre fini d’obstructions, et donc reconnaissable en temps polynomial.

Un résultat de ce type ne peut exister pour la relation plus contrainte de sous-graphe
induit, qui n’est pas un bel ordre. Par exemple, l’ensemble des cycles est une antichaine,
c’est-à-dire qu’aucun cycle n’est sous-graphe induit d’un cycle de taille différente.

Afin d’établir un méta-résultat, évidemment moins puissant que pour la relation de
mineur, mais qui assure aussi la polynomialité dans le cas des sous-graphes induits, la
notion de 2-bel ordre est intéressante. Une classe de graphesS est dite 2-bel-ordonnée (par
sous-graphe induit) s’il n’existe pas d’antichaine infinie de graphes de S dont les sommets
sont bicolorés, quand la relation de sous-graphe induit doit conserver les couleurs.

Un intérêt de cette notion de 2-bel ordre est qu’une classe de graphes 2-bel-ordonnée
admet un ensemble fini de sous-graphes induits interdits, et est donc automatiquement
reconnaissable en temps polynomial (Proposition 112). Le Chapitre 5 propose une car-
actérisation partielle des classes de graphes 2-bel-ordonnées. Nous utilisons la NLC-
décomposition (notion équivalente à la décomposition en cliques). Etant donné deux
graphes G et H, dont les sommets sont partitionnés en k classes de couleur, la NLC-
décomposition permet de construire l’union disjointe des deux graphes G et H, et de
choisir, pour chaque classe de couleur de G et chaque classe de couleur de H, si elles

11

seront totalement adjacentes ou totalement non-adjacentes. Un graphe est dit de largeur
NLC au plus k s’il est constructible à partir de sommets isolés, en utilisant cette opéra-
tion d’union, et en s’autorisant à ré-étiqueter (c’est-à-dire essentiellement fusionner) les
classes de couleur. Pour une définition formelle, nous invitons le lecteur à se référer au
Chapitre 5.

Autoriser des ré-étiquetages quelconques permet de construire facilement des classes
de graphes qui ne sont pas 2-bel-ordonnées, même avec seulement k = 3 classes de
couleur. Nous étudions donc les restrictions de la largeur NLC où seules certaines opéra-
tions de ré-étiquetage sont autorisées. Nous caractérisons totalement les ensembles de
ré-étiquetages autorisés qui mènent à des classes 2-bel-ordonnées, de plusieurs manières
différentes.

Pour ce faire, nous définissons une relation ≤ sur les mots de fonctions (resp. sur les
arbres de fonctions) qui correspond à la relation sous-mot (resp. sous-arbre) où la compo-
sition doit additionnellement être respectée. Nous définissons également une relation ¹
sur les fonctions de ré-étiquetage basée sur les images : étant donné deux fonctions f et g,
nous écrivons f¹ g quand Im(f◦g) = Im(f).

En dénotant par NLCF
k

l’ensemble des graphes de largeur NLC au plus k quand les ré-
étiquetages sont restreints aux fonctions appartenant à l’ensembleF, nous montrons dans
le Chapitre 5 que tous les énoncés suivants sont équivalents :

– L’ensemble de fonctions F est totalement ordonné par la relation ¹.
– L’ensemble des mots sur F est bel-ordonné par ≤.
– L’ensemble des arbres sur F est bel-ordonné par ≤.
– L’ensemble de graphes NLCF

k
est bel-ordonné (par sous-graphe induit).

– L’ensemble de graphes NLCF
k

ne contient pas de chemins arbitrairement grands.

– L’ensemble de graphes NLCF
k

est ∞-bel-ordonné.
Pour expliciter la dernière formulation, une classe de graphes est ∞-bel-ordonnée si

elle est n-bel-ordonnée pour tout entier n, c’est-à-dire s’il n’existe pas d’antichaine infinie
de graphes dont les sommets sont colorés avec n couleurs.

La conjecture qui a originellement motivé notre travail a été formulée par Pouzet [107] :

Conjecture 1. Une classe de graphes close par sous-graphe induit est 2-bel-ordonnée si et
seulement si elle est ∞-bel-ordonnée.

En d’autres termes, utiliser plus que 2 couleurs n’apporterait aucune restriction supplé-
mentaire. Nos résultats montrent que c’est bien le cas pour les classes de graphes NLCF

k
.

Pour compléter la preuve de la conjecture de Pouzet, il suffirait donc de prouver la Con-
jecture 113 : toute classe de graphes G close par sous-graphe induit et 2-bel-ordonnée est-
elle incluse dans une classe NLCF

k
bel-ordonnée ? En d’autres termes, tout graphe de G

est-il constructible par une décomposition NLC avec k couleurs où l’ensemble F des ré-
étiquetages autorisés est totalement ordonné par ¹, c’est-à-dire que pour toutes fonctions
f et g de ré-étiquetage autorisées, Im(f◦g) = Im(f) ou Im(g◦f) = Im(g) ?

12 RÉSUMÉ DE LA THÈSE

Dans le Chapitre 6, nous nous intéressons à une classe de graphes définie de manière
géométrique, les graphes de cercle. Un graphe G est un graphe de cercle s’il existe un en-
semble de cordes d’un cercle, en bijection avec les sommets de G, tel que deux sommets
sont adjacents dans G si et seulement si les deux cordes correspondantes s’intersectent.
L’ensemble de cordes est alors appelé un modèle de G

Une des sous-classes naturelles des graphes de cercle est la classe des graphes de cercle
de Helly. Un ensemble d’objets a la propriété de Helly si tout sous-ensemble d’objets, qui
s’intersectent deux à deux, possède un point en commun. Un graphe de cercle est dit de
Helly s’il possède un modèle avec la propriété de Helly, c’est-à-dire où toute clique corre-
spond à des cordes qui s’intersectent exactement au même point.

Tous les graphes de cercle ne sont pas des graphes de cercle de Helly. Par exemple, le
diamant (une clique à quatre sommets à laquelle on enlève une arête) est un graphe de cer-
cle qui n’admet pas de modèle avec la propriété de Helly. Le Chapitre 6 est consacré à prou-
ver que le diamant est essentiellement la seule obstruction, c’est-à-dire que les graphes de
cercle de Helly sont exactement les graphes de cercle sans diamant induit. Ce résultat avait
été conjecturé par Durán [51]. Cette caractérisation fournit un algorithme efficace pour la
reconnaissance des graphes de cercle de Helly. Cette reconnaissance peut s’effectuer avec
la même complexité que la reconnaissance des graphes de cercle, en temps quadratique
avec l’algorithme de Spinrad [119], et même en temps quasi-linéaire avec l’amélioration
récente de Gioan et al. [54].

Notre preuve est constructive. Nous partons d’un modèle (sans nécessairement la pro-
priété de Helly) d’un graphe de cercle G sans diamant, et nous faisons grandir un sous-
graphe induit H de G tel que le modèle restreint à H possède la propriété de Helly. Nous
modifions le modèle de G sans changer l’ordre circulaire des extrémités des cordes. Nous
maintenons plusieurs autres propriétés pour ce sous-graphe H. Par exemple, H doit être
convexe, c’est-à-dire qu’une corde qui se trouve entièrement entre deux cordes de H doit
elle aussi appartenir à H. Tant que H 6=G, nous trouvons un sommet u ∉H tel que H∪u

est convexe, et dont le voisinage possède de bonnes propriétés d’ordre. Nous montrons
qu’une notion naturelle de successeur et de prédécesseur peut être définie sur le voisinage
de u et propagée. Ceci nous permet de trouver une séquence S de cordes contenant u et
basée sur la relation successeur / prédécesseur, telle que de petites mouvements sur les ex-
trémités des cordes de S peuvent être exécutés sans détruire le modèle, et de telle manière
que le modèle sur H∪S vérifie la propriété de Helly.

Partie III : Algorithmes Paramétrés
La troisième partie de ces travaux concerne les algorithmes paramétrés. Dans le

Chapitre 7, nous prouvons que MULTICOUPE est FPT (soluble à paramètre fixé). Le prob-
lème de MULTICOUPE était l’un des derniers problèmes naturels importants dont la solu-
bilité à paramètre fixé restait ouverte.

La preuve exposée dans le Chapitre 7 n’utilise pas explicitement la réduction à largeur

13

d’arbre bornée du Chapitre 4. Les outils principaux sont cependant issus des idées ex-
posées dans le Chapitre 4, notamment les résultats de connectivité à base de séparation
de triplets. L’autre idée clé, la traduction des requêtes en clauses 2-SAT, provient indirecte-
ment de la réduction à largeur d’arbre bornée, puisque cette idée est née en étudiant le
problème de MULTICOUPE sur des instances très simples de petite largeur d’arbre. Nous
donnons ici une synthèse des principales étapes de notre preuve, et nous renvoyons le
lecteur au Chapitre 7 pour un cadre plus formel.

Le point de départ de notre preuve est l’obtention d’une multicoupe de sommets, c’est-
à-dire d’un ensemble de sommets dont la suppression coupe toutes les requêtes, de taille
au plus k+ 1. De plus, nous pouvons supposer que la multicoupe de sommets Y doit
être explosée par la solution, c’est-à-dire que toute paire de sommets de Y doit être sé-
parée par la solution. Un tel raisonnement avait été utilisé pour la première fois dans [99].
L’ensemble Y donne un début de structure à l’instance : on peut se focaliser sur les com-
posantes connexes deG\Y, que nous appelons les Y-composantes. Les sommets de Y adja-
cents à uneY-composante sont ses points d’attachement. Pour simplifier, nous regroupons
toutes les Y-composantes adjacentes à un même unique point d’attachementy ∈ Y en une
seule Y-composante (que nous appelons une y-cerise).

Le nombre de Y-composantes est borné en k, nous pouvons donc brancher pour dé-
cider combien d’arêtes de la solution doivent se trouver dans chaque Y-composante.

Aucune requête n’a ses deux extrémités dans une même Y-composante avec au
moins deux points d’attachement, et nous pouvons donc simuler chaque requête (u,v)

par plusieurs demi-requêtes (u,y,v), où y est un point d’attachement commun des Y-
composantes deu et de v. Informellement, couper la demi-requête (u,y,v) signifie couper
tout chemin entre u et v qui passe par y.

Les demi-requêtes donnent une structure plus simple au problème : couper la demi-
requête (u,y,v) revient soit à séparer u de y dans la composante de u, soit à séparer v
de y dans la composante de v. Nous allons pouvoir nous focaliser séparément sur chaque
composante, et exprimer de manière logique la contrainte liée à une demi-requête par une
clause 2-SAT 7, à condition de pouvoir exprimer simplement (c’est-à-dire avec une variable
2-SAT) le fait que u soit séparé de y dans sa composante. C’est l’objectif principal du reste
de notre preuve.

En utilisant des branchements extensifs, nous réduisons les composantes à trois som-
mets d’attachement ou plus, dans le Lemme 150. Il ne reste plus que des cerises et des
Y-composantes à deux points d’attachement (que nous appelons alors 2-composantes).

Les cerises sont essentiellement traitées avec les résultats de connectivité, du type sé-
paration de triplets, donnés au Chapitre 4. En effet, la séparation ou non d’un sommet avec
l’unique point d’attachement de sa cerise est l’unique paramètre pertinent pour évaluer
une coupe à l’intérieur d’une cerise. Ces résultats de connectivité sont reformulés d’une
manière plus adaptée à notre propos et étendus à la Section 7.4.

7. 2-SAT est le problème de satisfiabilité de formules logiques dont les clauses n’ont que deux variables.

14 RÉSUMÉ DE LA THÈSE

Pour donner plus de structure aux 2-composantes, qui constituent désormais le coeur
du problème, nous montrons au Lemme 152 l’existence (après branchement) d’un chemin
particulier appelé l’épine dorsale de la 2-composante. Ce chemin, entre les deux points
d’attachement de la 2-composante, doit comporter exactement une arête de la solution.
L’ensemble des multicoupes est alors partiellement linéairement ordonné, en fonction de
l’arête de l’épine dorsale choisie par la multicoupe. Il est possible d’exprimer très sim-
plement le fait qu’une multicoupe appartienne à une section finale ou initiale d’un ordre
linéaire total. Notre but est donc d’assurer que les multicoupes qui séparent un sommet
donné et un point d’attachement de sa 2-composante consistent exactement en une sec-
tion finale ou initiale d’un ordre total.

L’instance, telle que transformée jusqu’ici, correspond au problème intermédiaire,
défini à la Section 7.5, que nous appelons COMPONENT MULTICUT. Nous étudions ensuite
une problème plus général que COMPONENT MULTICUT, que nous appelons BACKBONE

MULTICUT dans la Section 7.6. Les instances de BACKBONE MULTICUT comportent notam-
ment des clauses 2-SAT, ce qui nous permet d’enrichir les instances en traduisant au fur et
à mesure des contraintes sur le type de solution recherchée en des formules logiques.

Nous transformons ensuite les instances avec des branchements extensifs jusqu’à ce
que chaque sommet de l’épine dorsale soit un sommet séparateur entre les deux sommets
d’attachement de la 2-composante. C’est une partie très technique de la preuve, qui se
conclut avec le Lemme 158.

Avec la forme des 2-composantes légèrement simplifiée, nous atteignons finalement
notre but : linéariser totalement (une fois de plus via des branchements) l’ensemble des
multicoupes. Nous définissons à la Sous-section 7.6.6 un ordre pertinent ¹ sur les multi-
coupes. Cet ordre total nous permet, avec les outils de connectivité spécifiques à la Sec-
tion 7.4, de réduire les 2-composantes à seulement leur épine dorsale. C’est la seconde
partie très technique de notre preuve.

A ce stade, l’instance se compose simplement de cerises attachées sur un sommet de Y
et de chemins isolés entre deux sommets de Y. Il est alors possible d’exprimer totalement
les contraintes associées aux requêtes par des clauses 2-SAT, et de finalement résoudre la
formule 2-SAT obtenue en temps polynomial.

Cet algorithme à paramètre fixé pour MULTICOUPE a une complexité simplement ex-
ponentielle en k. Notre preuve étant complexe, il devrait cependant être très difficile
d’implémenter l’algorithme en pratique. Trouver une preuve plus simple menant à un
algorithme utilisable pour MULTICOUPE reste un problème très intéressant.

Dans le dernier chapitre, le Chapitre 8, nous abordons le problème de l’existence
d’arbres orientés avec beaucoup de feuilles du point de vue des algorithmes paramétrés,
contrairement au Chapitre 3 où un point de vue combinatoire avait mené à un noyau et à
un algorithme d’approximation.

Le résultat principal du Chapitre 8 est un algorithme paramétré de temps d’exécution

15

O∗(3.72k) pour trouver un arbre orienté avec au moins k feuilles. Nous raffinons un algo-
rithme de complexité O∗(4k) obtenu dans [88]. C’est un algorithme de branchement très
simple, et qui a pourtant apporté une très importante amélioration par rapport à la longue
liste des algorithmes crées auparavant, tant pour les graphes orientés que non-orientés.

L’idée est de faire grandir une solution partielle en branchant à chaque étape sur dif-
férentes manières d’étendre l’arbre partiel. Plus précisément, à chaque pas, une feuille x

de l’arbre partiel est sélectionnée. Dans la première branche, on suppose que x sera une
feuille dans la solution finale, et dans la deuxième branche, on suppose que x sera in-
terne. Dans le premier cas, on gagne une feuille de la solution finale, et il est facile dans le
deuxième cas d’assurer le gain d’au moins une feuille dans la solution partielle. Ces deux
nombres de feuilles ne peuvent dépasser k, et la profondeur de l’arbre représentant les
branchements de l’algorithme est donc au plus 2k, ce qui donne un algorithme en temps
O∗(4k).

Pour améliorer cette complexité, nous parvenons à trouver, dans les branchements
les moins favorables pour la complexité de l’algorithme, un sommet extérieur à la solu-
tion partielle que l’on peut supposer être forcément une feuille dans la solution finale
sans perte de généralité. C’est l’étape (4.2) de notre algorithme B(D,T,L). Assurer un
gain supplémentaire dans les branchements non favorables nous permet de descendre
strictement sous O∗(4k), ce qui entraine une amélioration pour le problème classique
(non paramétré).

Pour calculer le nombre maximum de feuilles d’un arbre couvrant dans un graphe
orienté ou non-orienté, l’algorithme évident de force brute consiste à énumérer tous
les sous-ensembles de sommets, et à décider (en temps polynomial) s’il existe un arbre
couvrant dont les feuilles sont exactement l’ensemble donné. Cet algorithme prend un
temps O∗(2n), où n est le nombre de sommets du graphe. Aucun meilleur algorithme
n’était connu. Dans la Section 8.3, nous utilisons notre algorithme paramétré pour dé-
cider l’existence d’un arbre couvrant avec k feuilles pour les entiers k depuis 1 jusqu’à
une borne légèrement plus grande que n

2 , et nous complétons l’analyse pour les entiers
k significativement plus grand que n

2 par l’algorithme de force brute. Comme notre al-

gorithme paramétré est significativement meilleur que O∗(4k), et comme l’algorithme de
force brute n’est pas appliqué sur les valeurs de k voisines de n

2 , nous cassons la barrière
de 2n. Plus précisément, cet algorithme hybride s’exécute en temps O(1.9973n). Cette
complexité a depuis été significativement améliorée pour les graphes non-orientés [108].

Pour finir, la Section 8.4 est dédiée à un algorithme paramétré randomisé pour le prob-
lème dual qui consiste à trouver un arbre couvrant avec peu de feuilles. Nous utilisons
le paradigme développé dans [89] pour décider en temps randomisé O∗(2k) s’il existe un
arbre couvrant avec au moins k noeuds internes dans un graphe orienté ou non-orienté.
Nous exhibons un polynôme multivarié correspondant à un graphe, tel que le graphe pos-
sède un arbre avec k noeuds internes si et seulement si le polynôme contient un monôme
multilinéaire de degré k. Le résultat fondamental de [89], exprimé au Lemme 178, permet

16 RÉSUMÉ DE LA THÈSE

justement de décider l’existence d’un tel monôme multiliénaire de degré k en temps ran-
domisé O∗(2k). Intuitivement, l’idée de ce type de transformation est d’associer une vari-
able à chaque sommet du graphe, et de construire un polynôme de telle manière que les
monômes correspondent à des sous-arbres du graphe, ou plus précisément à une "marche
arborescente" sur le graphe. La multilinéarité (c’est-à-dire le fait que toute variable ait de-
gré au plus un dans le monôme) permet d’assurer que le même sommet n’est pas utilisé
deux fois, c’est-à-dire qu’on trouve bien une structure avec k sommets.

CHAPTER

1
Preliminaries

1.1 Introduction to the Thesis

Themes of the thesis.
This thesis revolves around three tightly linked themes: efficient algorithms for graphs

problems, combinatorial and structural properties of graphs, and order theory. This
trinity algorithms / structures / orders has proved successful in graph theory. For ex-
ample, the celebrated minor theorem of Robertson and Seymour results of an interplay
between a structural approach (tree decomposition, structure theorem for constructing
graphs excluding a minor from graphs embedded in a surface), order properties (the well-
quasi-order of the minor relation) and strong algorithmic properties (the Fixed-Parameter
Tractability of the linkage problem, the polynomiality of all problems closed under minor).

The main results of this thesis are algorithmic statements. For example, the MULTI-
CUT problem is FPT (Fixed-Parameter Tractable), and finding trees with many leaves in a
digraph admits a constant-factor approximation algorithm. We are interested in hard (NP-
complete) problems, which have to be tackled through a paradigm such as approximation
algorithms, FPT algorithms or polynomial kernels. This thesis focuses on parameterized
complexity, a rather recent and very promising domain.

Our methods are mostly combinatorial and structural. Tree decompositions (tree-
width, clique-width) are a central tool in this work. We also study other properties such
as the structure of graphs with large grid-minor and without large clique-minor, or the
structure of diamond-free graphs, for themselves as well as for their algorithmic use.

When possible, we used order theory. A chapter is devoted to the well-quasi-order of
the induced subgraph relation, and tools such as Dilworth’s Theorem or s− t numberings
have been of great use to refine our understanding of structures.

17

18 CHAPTER 1. PRELIMINARIES

Results of the thesis.
The graph problem central to this thesis is the MULTICUT problem. Given a graph and

a set of pairs of vertices (the requests), we want to simultaneously cut all requests by re-
moving as few edges as possible. This is a hard problem (NP-complete) of fundamental
importance, which generalises the basic cut problem. Solving MULTICUT is also important
in practice to design and study networks (communication networks, VLSI design, ...).

The two central results in our work concern this MULTICUT problem. First, the MUL-
TICUT IN TREES problem admits a polynomial kernel 1. In other words, instances of MUL-
TICUT IN TREES can be reduced to a small size (as a function of the desired solution size).
This result is the aim of Chapter 2.

Second, the MULTICUT problem is FPT 2. In other words, the exponential part of the
complexity of the MULTICUT problem (unavoidable if P 6=NP) lies in the size of the desired
solution, and not in the whole size of the input graph. This result is expressed in Chapter 7.

The other main results of this thesis are the following. For finding a tree with many
leaves in a digraph (an NP-hard problem), we provide a quadratic kernel, a constant factor
approximation algorithm 3 and a fast parameterized algorithm 4. This results are exposed
in Chapter 3 and Chapter 8. Finding a tree with many leaves, or in other words in a small
connected dominated set, is a central problem in the domain of communication networks,
widely used to find the backbone of a network.

The previous results belong to the area of parameterized complexity. The following re-
sults on excluded induced graphs also have algorithmic applications, but directly to poly-
nomial algorithms. Chapter 5 is devoted to a partial characterisation of graph classes 2-
well-quasi-ordered under the induced subgraph relation 5. The main motivation of this
work is that every graph problem closed under induced subgraphs and restricted to a 2-
well-quasi-ordered class admits a polynomial time algorithm. The last theme of this thesis
is geometric graph classes. Chapter 6 is devoted to proving that Helly circle graphs are
exactly the circle graphs without an induced diamond 6.

1.2 Fixed-Parameter Tractability

Standard complexity theory aims at establishing the difficulty of a problem in terms of
the size of the instance. Many important problems are NP-complete, and thus are seen
as equivalent in the usual complexity paradigm. Fixed-Parameter Tractability has been
designed to discriminate these problems further, according to a second dimension: the

1. Result presented at STACS 2009.
2. To be presented at STOC 2011.
3. Results presented at IWPEC 2009.
4. Work published in Journal of Computer and System Sciences (2010).
5. Work published in ORDER (2010).
6. Result published in Discrete Mathematics (2010).

1.2. FIXED-PARAMETER TRACTABILITY 19

difficulty of a problem is expressed in terms of the instance size together with another pa-
rameter. Some relevant and commonly used parameters are: a width of the input graph
(treewidth, cliquewidth...), the solution size, the maximum degree of the input graph, but
a whole zoology of parameters has been appearing recently.

Such a two dimensional paradigm leads to an even larger diversity of complexity
classes. This parameterized refinement is meaningful both theoretically and practically.
Citing Flum and Grohe [62]: "Measuring complexity only in terms of the input size means
ignoring any structural information about the input instances in the resulting complexity
theory. Sometimes, this makes problems appear harder than they typically are".

More formally, a problem is said to be Fixed-Parameter Tractable with respect to a pa-
rameter if it admits an algorithm running in time f(k)∗poly(n) on instances of size n

and of parameter k, for some computable function f. The parameter of an instance is also
required to be polynomial-time computable. In other words, the algorithm is uniformly
polynomial for fixed k. This is a more restrictive notion than the mere polynomiality for
fixed k expressed by the complexity class XP. Indeed, algorithms of running time of the
type 2k∗n and nk have very different behaviors in practice.

Parameterized complexity has been originally developed during the 1990s by Downey,
Fellows and their co-authors in a series of papers (see their book [49]).

From a practical standpoint, NP-hard problems are difficult to tackle without restric-
tion on the possible inputs. Fortunately, practical instances are usually structured. For
example, rather than having to answer queries to any VERTEX COVER instance, we might
have to answer only questions of the type: does this instance admit a vertex cover of size
at most k, where k ≤ 20. Or does this graph of treewidth at most 20 admit a c-colouring.
In these cases, a good parameterized algorithm for VERTEX COVER parameterized by the
solution size, or for c-colouring parameterized by the treewidth should allow to tackle the
practical problem satisfactorily. Indeed, Vertex Cover admits an algorithm running in time
1.28k+kn [26].

Parameterized Techniques.
Among the most common parameterized techniques stand bounded search trees,

colour coding, dynamic programming on tree decompositions, iterative compression,
multilinear monomial randomized techniques, and kernels.

The use of a bounded search tree is a very natural branching technique. At each step, we
branch towards a certain number of new instances. The whole process can be visualized
as a tree of instances rooted in the original instance. When the maximum degree and the
depth of the search tree are bounded in terms of the parameter k, and the amount of work
required at each branching step (and to solve each leaf instance) is polynomial, the whole
algorithm runs in time f(k)∗poly(n). The bounded search tree technique will be used in
Chapter 8 to design a parameterized algorithm for finding directed trees with many leaves.

Colour coding is a probabilistic method introduced by Alon et al.[5]. Suppose you are
looking for a path of length k in a graph. Colour coding consists in randomly k-colouring

20 CHAPTER 1. PRELIMINARIES

the vertices of the graph, and looking for a path where each colour is represented exactly
once, which is a much easier task. The key is to prove that with a reasonably high proba-
bility, a k-path in the original graph becomes a colourful path. One can repeat this process
until a solution has been found with a large enough probability (and this can be deran-
domized into a deterministic parameterized algorithm). Colour coding will not be used in
this thesis.

Dynamic programming on tree decompositions can be seen as the origin of the param-
eterized framework. To tackle the k-Linkage problem, Robertson and Seymour designed
tree-decompositions. Instances of large treewidth have a particular structure, containing
a large grid minor, which can be used to solve the problem. On the other hand, instances
of small treewidth can be tackled using their tree decomposition. The most straightfor-
ward use of a tree decomposition of small width is called dynamic programming. This
dichotomy between tree decomposition of small width and large grid minor structure al-
lowed Robertson and Seymour to show that k-linkage is FPT on their way to the graph
minor theorem. This deep connection between tree decompositions and parameterized
complexity is at the heart of this thesis, and in particular of Part II. The interplay between
parameterized complexity and tree decomposition yielded the celebrated Courcelle’s The-
orem [33]: every problem definable in monadic second order logic is FPT when parame-
terized by the treewidth of the input graph. This implies that many natural and important
NP-hard problems are FPT when parameterized by the treewidth of the input graph, such
as INDEPENDENT SET, COLOURING, FEEDBACK VERTEX SET.

Iterative compression consists in, given a solution for a slightly smaller instance (for
example, the graph minus a vertex or minus an edge), trivially growing it into a solution
for the whole instance, and trying to compress this slightly too large solution into an ad-
missible solution. If such a compression can be performed in FPT time, then growing the
desired structure step by step from scratch (say, adding a vertex or an edge of the instance
graph at each step) and repeatedly performing this compression leads to a parameterized
algorithm. This technique will be used in Chapter 7.

Koutis and Williams [89] have developed a randomized technique based on finding a
multilinear monomial in a polynomial presented as a circuit. This technique allows to find
O∗(2k) 7 randomized algorithms for a number of problems, including testing the existence
of a given tree on k nodes as a subgraph, obtaining better bounds than non-randomized
algorithms. These randomized algorithms do not appear to be efficiently derandomiz-
able though. We will discuss the applications of this technique for finding trees with many
leaves or many internal vertices in Chapter 8.

Kernelization consists in reducing the size of an instance until it is small with respect to
the parameter. It is not only a technique to design parameterized algorithms, but rather a

7. In the O∗ notation we omit the polynomial terms, so that O∗(f(k)) stands for O(P(n)f(k)) for some
polynomial P.

1.2. FIXED-PARAMETER TRACTABILITY 21

parallel framework interesting by itself. The next section gives an introduction on kernels,
and Part I of this thesis is devoted to kernelization.

A Hardness Theory.
Fixed-Parameter Tractability has a well-developed hardness theory. The class W[P]

plays the role of the class NP in the parameterized world, and is refined by the W-hierarchy.
The A-hierarchy plays the role of the polynomial hierarchy. These two hierarchies coin-
cide on their first level, and it is believed that the class FPT is strictly included in this
first level W[1]=A[1]. The fact that W[P] 6=FPT unless P=NP has not been proved, but a
weaker version involving limited nondeterminism holds. Consider the class NP[f] of prob-
lems decided by an NP machine performing at most f(n) nondeterministic steps on in-
puts of size n. We know that W[P] 6=FPT unless P=NP[α(n)log(n)] where α is any com-
putable unbounded function. Compare with the fact that P=NP[log(n)]. In other words,
if supra-logarithmic nondeterminism gives more power than polynomial time, then W[P]-
hard problems are indeed not FPT.

Notorious FPT problems and Open question(s).
– Minor testing (parameterized by the size of the target graph) and thek-Linkage prob-

lem are FPT by the graph minor series results.
– Topological minor testing and immersion testing are FPT as well [76].
– Computing an optimal tree decomposition (parameterized by the treewidth) is

FPT [9].
– DIRECTED FEEDBACK VERTEX SET (removing k vertices to make a digraph acyclic)

parameterized by the solution size is FPT [29].
– ALMOST 2-SAT (removing k clauses to make a collection of clauses with two literals

satisfiable) is FPT [109].
– ODD CYCLES TRANSVERSAL (removing k vertices to make a graph bipartite) is

FPT [110].
– MULTICUT (parameterized by the solution size) is FPT (Chapter 7 or [100]). 8

– Is BICLIQUE (deciding the existence of a k by k complete bipartite subgraph) FPT? 9

The FPT status of many important natural problems is now known, and the focus has
shifted towards areas such as: above/below lower bound parameterizations, subexponen-
tial algorithms on planar graphs, meta-results.

8. This implies that ODD CYCLES TRANSVERSAL, among others, is FPT.
9. BICLIQUE has no polynomial kernel if P 6=NP [30].

22 CHAPTER 1. PRELIMINARIES

1.3 Kernelization

1.3.1 Introduction to Kernels

Reducing the size of an instance, via preprocessing or data reduction, is an important
topic in computer science. Given an NP-hard problem, there can exist no polynomial time
algorithm reducing the size of an instance by at least one bit if P 6=NP (otherwise, repeating
this process gives a polynomial algorithm for the NP-hard problem). Kernelization is a
more reasonable attempt in this direction: the goal is to reduce the size of the instance
until it is small enough.

Formally, a kernelization algorithm for a parameterized problemΠ is a polynomial time
algorithm which receives as input an instance (I,k) of Π and outputs another instance
(I ′,k ′) of Π such that, for some computable function f:

1. k ′ ≤ f(k).

2. |I ′|≤ f(k).

3. the instances (I,k) and (I ′,k ′) are both true or both false.

The reduced instance (I ′,k ′) is called a kernel. If I ′ is a substructure (say, a subgraph) of
I, then I ′ can be seen as the core of the instance I for this problem, hence the denomination
"kernel". However, I ′ can be totally unrelated to I.

The existence of a kernelization algorithm for a decidable problem clearly implies that
the problem is FPT as one can kernelize the instance, and then solve the reduced instance
(I ′,k ′), no matter how slow the decision algorithm is. This whole process runs in time
poly(n)+g(k), for some function g.

The converse actually holds. Given an FPT problem, one can run a parameterized al-
gorithm during a (large enough) polynomial number of steps, return a trivially true/false
instance if the answer has been computed, otherwise return the original instance, whose
size is then bounded in terms of the parameter.

Hence a problem is FPT if and only if it admits a kernelization algorithm. The size
of the reduced instance given by this result is not necessarily small with respect to the
parameter. A much more constrained condition is to be able to reduce to an instance of
polynomial size in terms of k. We then say that the problem admits a polynomial kernel.
Some problems are FPT but do not admit a polynomial kernel unless P=NP. More formally,
a polynomial kernelization algorithm for a parameterized problem Π is a polynomial time
algorithm which receives as input an instance (I,k) of Π and outputs another instance
(I ′,k ′) of Π such that:

1. k ′ ≤ k.

2. |I ′|≤P(k), where P is a polynomial.

3. the instances (I,k) and (I ′,k ′) are both true or both false.

1.3. KERNELIZATION 23

The above definition of a polynomial kernel is the most standard. Alternative notions
do exist. For example, one can relax condition (1.) to k ′ ≤ poly(k). Most polynomial
kernels designed in the literature satisfy the above strong definition, but weaker notions
should be of interest. Names such as "weak polynomial kernel" have been suggested for
this type of relaxation. What is merely called a kernel here is sometimes referred to as
a "strong kernel". The existence of a (strong) kernel is equivalent to the existence of a
weak kernel, but there exist problems which have a weak polynomial kernel but no (strong)
polynomial kernel [30].

Note that when a graph problem admits a polynomial kernel, rather than expressing
the kernel size in terms of bitlength, it is usually expressed in terms of number of vertices.

A kernelization algorithm can be used as a preprocessing step to reduce the size of
the instance before applying another algorithm. Being able to ensure that this kernel has
actually polynomial size in k enhances the overall speed of the algorithm. See [81] for a
review on kernelization.

1.3.2 Kernel Lower Bounds

Kernelization now has a hardness theory, which has been developed in the past few
years. The most natural way to prove that a problem admits no polynomial kernel if P 6=NP
is to prove that it has a parameter-decreasing self-reduction [30]. For example, SAT pa-
rameterized by the number of variables has a parameter-decreasing self-reduction: an in-
stance is equivalent to the logical "OR" of the two instances obtained by replacing a given
variable by true and false respectively. This reduction strictly decreases the parameter, and
the size blow-up is polynomial (here, by a factor two). Interleaving such self-reductions
with applications of a (strong) polynomial kernel would give a polynomial-time algorithm:

Theorem 2 ([30]). An NP-hard problem which has a parameter-decreasing self-reduction
admits no (strong) polynomial kernel unless P=NP.

SAT parameterized by the number of variables and k-Rooted Path have no (strong)
polynomial kernel unless P=NP by Theorem 2. Indeed, k-Rooted Path (finding a path
of length k starting at a given vertex in a graph or a digraph) admits a slightly less trivial
parameter-decreasing self-reduction, which essentially consists in branching over the first
edge of the desired path and gluing results together to form a single graph.

A breakthrough lower bound technique called OR-composition has been found in [12],
based on a result by Fortnow and Santhanam [67]. A parameterized problemP is said to be
OR-composable if there exists a polynomial-time algorithm which, given a set of instances
of P, computes an instance of P equivalent to their logical "OR", and whose parameter is
polynomially bounded in the maximum parameter of an input instance.

24 CHAPTER 1. PRELIMINARIES

Theorem 3 ([12]). A parameterized NP-hard problem which is OR-composable admits no
polynomial kernel unless the polynomial hierarchy collapses to the third level.

This even holds for weak polynomial kernels.
Theorem 3 can be made slightly more flexible, working with parameterized reductions

to transfer lower bounds from a problem to another. Such a technique was used to prove
that deciding the existence of k vertex-disjoint cycles admits no polynomial kernel [16] and
that finding directed trees with at least k leaves admits no polynomial kernel [61].

A very recent strengthening of the OR-composition can be found in [15]. A problem
P is said to cross-compose into Q if there exists a polynomial-time algorithm which, given
a set of instances of P, computes an instance of Q equivalent to their logical "OR", and
whose parameter is polynomially bounded in the maximal size of an input instance. The
cross-composition technique generalises the OR-composition technique in two ways: the
parameter bound is relaxed, and one can reduce from a different problem.

Theorem 4 ([15]). A parameterized problem into which an (unparameterized) NP-hard
problem cross-composes admits no polynomial kernel unless the polynomial hierarchy col-
lapses to the third level.

Dell and van Melkebeek refined the OR-composition technique to obtain precise lower
bounds in [45]. They essentially show that instances of d-SAT cannot be compressed away
from the trivial O(nd) bound, and infer the following result:

Theorem 5 ([45]). An NP-hard vertex-deletion problem closed by subgraphs does not admit
a kernel of size O(k2−ǫ) for any ǫ> 0.

Note that size means bitlength (and not number of vertices) in this result. VERTEX

COVER, FEEDBACK VERTEX SET and BOUNDED-DEGREE DELETION are such problems, and
an edge-quadratic (and thus tight) kernel is known for each of them (see [24], [122] and [59]
respectively).

1.3.3 Polynomial Kernels

The existence of a polynomial kernel can be a subtle issue. A result by Fernau et al. [61]
shows that ROOTED MAXIMUM LEAF OUT-BRANCHING has a cubic kernel while MAXIMUM

LEAF OUT-BRANCHING does not, unless the polynomial hierarchy collapses to the third
level (using the OR-composition technique). So the notion of polynomial kernel is not
purely algorithmic, since MAXIMUM LEAF OUT-BRANCHING can be solved by n applica-
tions of an algorithm for ROOTED MAXIMUM LEAF OUT-BRANCHING (one for each possible
root).

On the positive side, Bodlaender et al. designed powerful meta-results in [14] to prove
the existence of polynomial (or even linear) kernels in bounded genus graphs. These re-
sults apply to problems which can be expressed in Monadic Second-Order logic, and satisfy

1.4. MULTICUT 25

compactness properties. Extending this work, Fomin et al. showed that the bidimension-
ality framework can be used to establish linear kernels on classes excluding a minor [66].

Notorious problems admitting polynomial kernels and open questions.
– VERTEX COVER (hitting all edges of a graph with k vertices) admits a 2k-vertex ker-

nel [26].
– More generally, d-Hitting Set (finding a set of k elements hitting a collection of sub-

sets of size d) admits a kernel of size O(kd−1) [1].
– A number of problems including FEEDBACK VERTEX SET, DOMINATING SET, CON-

NECTED DOMINATING SET, INDEPENDENT SET, and MINIMUM LEAF SPANNING TREE

admit linear kernels on planar graphs [14].
– MULTICUT IN TREES admits an O(k6)-vertex kernel (see Chapter 2).
– Does DIRECTED FEEDBACK VERTEX SET admit a polynomial kernel?
– Does ODD CYCLES TRANSVERSAL admit a polynomial kernel?
– Does CHORDAL DELETION (removing k vertices to make a graph chordal, i.e. without

induced cycles of length four or more) admit a polynomial kernel? 10

– Does CLIQUE COVER (covering the edges of a graph by at most k edge-disjoint
cliques) admit no polynomial kernel?

This was a brief introduction to Fixed-Parameter Tractability. For more on this topic,
we refer the reader to the flourishing literature, for example to the three now classical
books: [49, 62, 105].

1.4 Multicut

1.4.1 Introduction to Multicut

The central problem in this thesis is the MULTICUT problem, an important and natural
(and NP-hard) generalisation of the standard (and polynomial time decidable) cut prob-
lem.

Given a graph G and a set R of requests between pairs of vertices (these vertices are
called terminals or endpoints), a(n) (edge)-multicut 11 is a subset F of edges of G whose
removal separates the two endpoints of every request (i.e. the two endpoints of a request
lie in different connected components of G\F).

MULTICUT:
Input: A graph G=(V,E), a set of requests R, an integer k.
Parameter: k.
Output: TRUE if there is a multicut of size at most k, otherwise FALSE.

10. CHORDAL DELETION is FPT [97].
11. In this thesis, the term multicut stands for edge-multicut.

26 CHAPTER 1. PRELIMINARIES

When parameterized by the solution size as above, MULTICUT was considered as one
of the main open problems of the fixed parameterized complexity theory [46].

State of the art on MULTICUT.
MULTICUT and its variants have raised an extensive literature. These problems play

an important role in network issues, such as routing and telecommunication (see [32]).
For example, vertices of the graph could represent Urban Switch Centers in a telephone
network, and (weighted) edges represent physical connections between vertices [23].

The MULTICUT problem is already hard when restricted to trees. Indeed, VERTEX COVER

can be viewed as MULTICUT in stars. Hence MULTICUT IN TREES is NP-complete and
MaxSNP hard, which implies that it admits no Polynomial-Time Approximation Scheme
(PTAS) unless P=NP. Garg et al. [72] proved that MULTICUT IN TREES admits a factor 2 ap-
proximation algorithm, by showing that in trees the minimal multicut size is at most twice
the maximal flow value, and using a primal-dual approach. Guo and Niedermeier [80]
proved that MULTICUT IN TREES is FPT with respect to the solution size.

Another variant is the MULTIWAY CUT problem in which a set of terminals has to be
pairwise separated. Parameterized by the solution size, MULTIWAY CUT has been proved
FPT by Marx [96]. A faster O⋆(4k) algorithm is due to Chen et al. [28].

On general instances, Garg et al. gave an approximation algorithm for MULTICUT

within a logarithmic factor in [71], proving that the minimum multicut size is within a
factor O(log(l)) of the maximum multiflow value in general graphs, where l is the num-
ber of requests. However, MULTICUT has no constant factor approximation algorithm
if Khot’s Unique Games Conjecture holds [25]. The fact that MULTICUT is probably not
tractable from an approximation standpoint motivates the study of the fixed parameter-
ized tractability of MULTICUT.

Guo et al. showed in [79] that MULTICUT is FPT when parameterized by both the
treewidth of the graph and the number of requests. Gottlob and Lee proved a stronger re-
sult in [74]: MULTICUT is FPT when parameterized by the treewidth of the input structure,
i.e. the input graph whose edge set is augmented by the set of requests.

The graph minor theorem of Roberston and Seymour implies that MULTICUT is non-
uniformly FPT when parameterized by the solution size and the number of requests. Marx
proved that MULTICUT is (uniformly) FPT for this latter parameterization [96]. A faster
algorithm running in time O∗(8 · l)k was given by Guillemot [77]. Marx et al. [98] ob-
tained FPT results for more general types of constrained MULTICUT problems through
treewidth reduction results. However their treewidth reduction techniques do not yield
FP-Tractability of MULTICUT when parameterized by the solution size only. Finally, Marx
and Razgon obtained a factor 2 Fixed-Parameter-Approximation for MULTICUT parame-
terized by the solution size in [99].

1.4. MULTICUT 27

1.4.2 Expressing other Problems in the Multicut Framework

The importance of MULTICUT does not only lie in its theoretical relevance and its prac-
tical network applications. Many graph problems can be expressed into the MULTICUT

framework. The following is a non-exhaustive list of a few such problems.

Cluster Edition With Free Edges
MULTICUT is FPT-equivalent to CLUSTER EDITION WITH FREE EDGES, which consists

in deciding whether a graph can be edited (through edge deletions and additions) into a
cluster graph (a vertex-disjoint union of cliques), with cost at most k, where the edition of
free edges has cost 0, while the edition of other edges has cost 1. This problem is called
FUZZY CLUSTER EDITING in [13]. Its equivalence with MULTICUT has been mentioned sev-
eral times in the literature, we will give a short proof in Subsection 7.3.1.

2-CNF≡ Deletion
2-CNF≡ Deletion is a variant of SAT where clauses are equivalence-clauses, expressing

the equivalence of two literals. 2-CNF≡ Deletion consists in deleting as few clauses as pos-
sible to make a set of equivalence-clauses satisfiable. It can be reduced to MULTICUT where
requests form a perfect matching as follows [86]. To an instance F of 2-CNF≡ deletion, as-
sociate a graph G(F) whose vertices are literals, whose edges are described by the clauses
and where there is a request between a variable and its negation. A formula is satisfiable if
its associated graph has no connected component containing a variable and its negation.
Deleting k clauses in F to make it satisfiable is equivalent to finding a k-multicut of G(F).
This simple transformation is approximation- and FPT-preserving.

2-CNF≡ deletion contains problems such as Minimum Edge-Deletion Graph Biparti-
sation. To each vertex, associate a variable which states to which of the two parts it will
belong. Each edge of the graph can be expressed with an equivalence-clause stating that
its endpoints must lie in different parts of the bipartition.

Other reductions to MULTICUT

A vertex cover is a set of vertices which hits all edges of a graph. VERTEX COVER can be
expressed as MULTICUT restricted to stars. Indeed, given a instance G= (V,E) of VERTEX

COVER, let S be a star whose leaf set if V , and where (u,v) is a request if (u,v) ∈E. A vertex
cover of the graph G corresponds exactly to an edge-multicut of S.

Sparsest Multicut, which consists in finding a cut minimizing the ratio between the
number of removed edges and the number of requests cut, can also be reduced to MULTI-
CUT in an approximation-preserving way [117].

1.4.3 Multicut In Trees

In the (unweighted) MULTICUT IN TREES problem, we consider a tree T together with a
set R of pairs of distinct nodes of T , called requests. Hence, a request can also be seen as a

28 CHAPTER 1. PRELIMINARIES

prescribed path between these two nodes. We will often identify the request and its path.
A multicut of (T,R) is a set S of edges of T which intersects every request in R, i.e. every
path corresponding to a request contains an edge of S.

A multicut corresponds to a covering by cliques of the vertices of the intersection graph
of requests in R. Note that this intersection graph is chordal. Equivalently, consider the
bipartite graph B with vertex bipartition (E,R) where E is the set of edges of T , and where
a request in R is adjacent to an edge in E if and only if the edge belongs to the request. In
this setting, a multicut of size k corresponds inB to a cover of the partR with k stars rooted
in E.

MULTICUT IN TREES:
Input: A tree T =(V,E), a set of requests R, an integer k.
Parameter: k.
Output: TRUE if there is a multicut of size at most k, otherwise FALSE.

This problem is known to be FPT, see [78] or [80] for a branching algorithm and an
exponential kernel. The existence of a polynomial kernel was asked in [11].

Our Results.
As of 2008, MULTICUT was only known to be FPT when restricted to trees. With Nicolas

Bousquet, Stéphan Thomassé and Anders Yeo, we showed that MULTICUT IN TREES has
actually a polynomial kernel. To obtain this kernel we exhibit reduction rules which can
be applied until the instance size becomes polynomial in the solution size k. These rules
essentially rely on the local structure of the instance. Some of these rules, as well as the
analysis on the instance size bound, are very involved. This O(k6) kernel is presented in
Chapter 2, based on [22].

It was shown only later, in 2010, that MULTICUT is FPT on general graphs (see Chap-
ter 7). This means that the next natural question is whether MULTICUT restricted to larger
classes than trees still has a polynomial kernel. No further progress has been made in this
direction so far. Exhibiting a polynomial kernel for MULTICUT IN TREES was already very
challenging, and FPT algorithms for the general MULTICUT problem are very involved, and
require a heavy dose of branching. Hence one can be pessimistic about the existence of
a polynomial kernel for the general MULTICUT problem. But no negative result has been
found so far. If MULTICUT turned out not to have a polynomial kernel, finding where the
line between polynomial kernel and no polynomial kernel stands for MULTICUT would be
a very interesting (and probably very difficult) question.

Also, a more general presentation of MULTICUT IN TREES is to assign weights to edges,
and ask for a multicut of minimal weight. Our technique to establish a polynomial kernel
for the unweighted version does not seem to generalise to the weighted case.

1.5. MAXIMUM LEAF SPANNING TREE PROBLEMS 29

1.5 Maximum Leaf Spanning Tree Problems

The MAXIMUM LEAF SPANNING TREE (in short MAXLEAF) problem consists in finding a
spanning tree with the maximum number of leaves in an undirected graph. This is equiv-
alent to finding a Connected Dominating Set of minimum size. Indeed, the set of internal
nodes in a spanning tree corresponds to a Connected Dominating Set. This problem is NP-
complete and MaxSNP-hard [70], which implies that it admits no PTAS unless P=NP.

Finding undirected trees with many leaves has many applications in the area of com-
munication networks, see [47] or [124] for instance. An extensive literature is devoted to the
paradigm of using a small connected dominating set as a backbone for a communication
network.

MAXLEAF has been well-studied from a graph-theoretical point of view. Graphs with
at least n+(k2) edges have a tree with k leaves [48]. On graphs with maximum degree d,

Linial conjectured that there always exists a tree with at least d−2
d+1n+cd leaves, where cd

is a constant depending on d. This conjecture was proved up to d = 5 [120, 75, 87], but
fails when d → ∞ as observed by Alon due to results in [2]. Kleitman and West prove a

guarantee of (1− 5
2
ln(d)
d)n leaves in [87], which is optimal up to the factor 5/2 by Alon’s

lower bound.
Many algorithms have also been designed for MAXLEAF. There is a factor 2 approxi-

mation algorithm for the MAXLEAF problem [118], and a 3.75k kernel [56]. An O∗(1.94n)
exact algorithm was designed in [64]. In cubic graphs, a factor 3/2 approximation has been
found [19].

The MAXLEAF problem has been studied from the parameterized complexity perspec-
tive as well and several authors [17, 57, 60] have designed fixed parameter tractable (FPT)
algorithms for solving the parameterized version of MAXLEAF: given a graph G and an in-
tegral parameter k, decide whether G has a spanning tree with at least k leaves. This is
equivalent to the existence of a CDS of size at most n−k. Hence such parameterized al-
gorithms can be used to find an optimal CDS when there exist only large CDS. The most
natural question would be: is there an FPT algorithm for finding a CDS of size at most k?
Indeed an FPT algorithm for this problem would have a great practical impact on network
problems. But the answer is negative: the existence of a Connected Dominating Set of size
at most k is a W[2]-hard problem.

In this thesis, we are interested in the directed version of MAXLEAF, whose study has
begun more recently, but has nonetheless fruited many results.

An out-tree is a tree where each edge has been oriented from the root towards the
leaves. More formally, an out-tree is a connected digraph with a single vertex of in-degree
0, the root, where every other vertex has in-degree exactly 1. An out-branching of a digraph
D is a spanning out-tree in D, i.e. a connected subgraph with no cycle where every vertex
has in-degree at most one.

ROOTED MAXIMUM LEAF OUT-BRANCHING:

30 CHAPTER 1. PRELIMINARIES

Input: A digraph D, an integer k, a vertex r of D.
Parameter: k.
Output: TRUE if there is an out-branching of D rooted at r with at least k
leaves, otherwise FALSE.

This problem is equivalent to finding a Connected Dominating Set of size at most
|V(D)|−k, connected meaning in this setting that every vertex is reachable by a directed
path from r.

ROOTED MAXIMUM LEAF OUT-BRANCHING remains NP-complete even restricted to
acyclic digraphs [4].

The best approximation algorithm known for MAXIMUM LEAF OUT-BRANCHING found
a solution within the square root of the optimum. algorithm [50]. From the Parameterized
Complexity viewpoint, Alon et al. showed that MAXIMUM LEAF OUT-BRANCHING restricted
to a wide class of digraphs containing all strongly connected digraphs is FPT [3], and Bon-
sma and Dorn extended this result to all digraphs and gave a faster parameterized algo-
rithm [18]. Recently, Kneis, Langer and Rossmanith [88] obtained an O∗(4k) algorithm for
MAXIMUM LEAF OUT-BRANCHING, which is also an improvement for the undirected case
over the numerous FPT algorithms designed for MAXIMUM LEAF SPANNING TREE (Chen
and Liu have a similar algorithm in [27]). Fernau et al. [61] proved that ROOTED MAXI-
MUM LEAF OUT-BRANCHING has a polynomial kernel, exhibiting a cubic kernel. They also
showed that the unrooted version of this problem admits no polynomial kernel, unless the
polynomial hierarchy collapses to the third level, using a breakthrough lower bound result
by Bodlaender et al. [12].

In this thesis, we provide a quadratic kernel for ROOTED MAXIMUM LEAF OUT-
BRANCHING and a linear kernel for the acyclic subcase of ROOTED MAXIMUM LEAF OUT-
BRANCHING in Chapter 3. We also exhibit a constant factor approximation algorithm for
ROOTED MAXIMUM LEAF OUT-BRANCHING. These results are based on reduction rules and
combinatorial bounds, using a notion called s− t numberings. In Chapter 8 we design an
O∗(3.72k) algorithm for ROOTED MAXIMUM LEAF OUT-BRANCHING, which in particular
provides the first non-trivial exponential algorithm for finding an out-tree with maximal
number of leaves in a digraph.

Part I: Kernels

Kernels lie at the intersection between algorithms and combinatorics. Strictly speaking,
a kernel is an algorithm, but in practice, finding a kernel has more to do with understand-
ing combinatorial and structural properties. To design a kernel, one effectively creates
reduction rules, which are mostly of two types:

– Replace a substructure with another, and prove that it does not impact the existence
of a solution (structural property).

– Show that if an invariant is smaller/greater than a given value, then there must/can-
not exist a solution (combinatorial property).

The algorithmic part is quite often trivial (essentially proving that the reduction rules
can be applied in polynomial time).

In Chapter 2, we provide a polynomial kernel for the MULTICUT IN TREES problem,
answering an open question raised by Fellows in [11] and by Guo and Niedemeier in [80].
This chapter is based on [22], a joint work with Nicolas Bousquet, Stéphan Thomassé and
Anders Yeo.

This work was my first contact with the area of parameterized complexity. MULTICUT

IN TREES is simpler to approach than the general MULTICUT problem, as a request is real-
ized by only one path. Hence finding a multicut in a tree simply consists in finding a hitting
set for a prescribed set of paths in a tree. Our later attempts at transposing this idea to the
general MULTICUT problem did not prove very fruitful. We will state a few conjectures on
this topic in Subsection 7.8.3.

This simple setting gave us something to chew on during Nicolas’ undergraduate in-
ternship, and we quickly came up with Rules (0) to (3), which had already been found
in [80]. Rule (4) is actually quite simple as well, but this was not enough to obtain a poly-
nomial kernel. We had to go through the pains of designing Rule (5), the Wingspan rule,
which is quite technical and less natural than the others. In a sense, this rule expresses

31

32 PART I: KERNELS

the fact that the requests cannot overlap too much, which is the key to bound the size of
an instance. Indeed, requests cannot be too much spread out by Rule (1). Finding a more
natural reduction rule to replace the wingspan rule(s) is an interesting open question.

In Chapter 3, we provide kernels for the ROOTED MAXIMUM LEAF OUT-BRANCHING

problem. This chapter is mostly based on [42], a joint work with Stéphan Thomassé.
The key starting point was reducing cut-vertices (Rule (1) in Section 3.2) to focus on 2-
connected digraphs. Stéphan coming across the concept of s−t numberings allowed us to
better formalize our intuitions, leading to Section 3.1 and its clean combinatorial bounds.
We will show that in a 2-connected digraph, one can always find a tree with as many leaves
as:

– a constant fraction of the number of vertices of in-degree at least three (Theorem 37).
– a constant fraction of the number of vertices incident to a simple in-arc (Theo-

rem 38).
The algorithmic consequences, a quadratic kernel in Section 3.3 and a constant factor

approximation in Section 3.4, stemmed from these combinatorial results.
Section 3.5 gives a linear kernel in the acyclic case, based on [39], a joint work with Gre-

gory Gutin, EunJung Kim and Anders Yeo. I am grateful to Gregory, EunJung and Anders for
inviting me and for introducing me to MAXLEAF problems during the summer of 2008. This
and the work on MULTICUT IN TREES convinced me to focus my thesis on parameterized
complexity.

CHAPTER

2
A Polynomial Kernel for Multicut In

Trees

We show that MULTICUT IN TREES has a polynomial O(k6) kernel. We use reduction
rules from [78] and [80] along with other more powerful rules. In Section 2.1, we first illus-
trate our techniques when the tree T is a caterpillar. In Section 2.2 we extend the proof to
general trees.

2.1 A Polynomial Kernel for Caterpillars

Recall that the input of MULTICUT IN TREES is an instance (T,R,k), where T is a tree, R
is a set of requests and k is an integer. A node of T which is not a leaf is an internal node.
The internal tree of T is the tree restricted to its internal nodes. We say that T is a caterpillar
if its internal tree is a path. We consider the restriction of the MULTICUT IN TREES problem
to caterpillars, as it contains the core of our proof in the general case. In particular, our key
reduction rule, the wingspan rule, is easier to state and apply in the caterpillar setting.

Let us give some general definitions which will apply both for the caterpillar case and
for the general case.

The request graph R(T,R) of the instance (T,R,k) has vertex set V(T), and edge set R.
We say that two nodes x and y are R-neighbours if xy is a request in R, equivalently if x
and y are adjacent in R(T,R). A leaf x and an internal node y are quasi-R-neighbours if xy
is a request, or if there exists a request xz, where z is a leaf rooted at y. An internal node
with no leaf attached to it is an inner node. If x is a leaf, we denote by e(x) the unique
edge incident to x, and we denote by f(x) the unique neighbour of x. A group of leaves
is the set of leaves connected to the same internal node. A group request is a request xy
where x and y belong to the same group. A leaf which is an endpoint of a group request
is a bad leaf. A leaf to leaf request is a request between two leaves. An internal request is

33

34 CHAPTER 2. A POLYNOMIAL KERNEL FOR MULTICUT IN TREES

a request between two internal nodes. A request between an internal node and a leaf is a
mixed-request. Two requests are disjoint if their edge sets are disjoint. Two requests x1y1
and x2y2 are endpoint-disjoint if x1,y1,x2,y2 are pairwise different.

The internal path of a request is the intersection between the path of the request and
the internal tree. The common factor of two requests is the intersection of their paths. A
request R1 dominates a request R2 if the internal path of R1 contains the internal path of
R2.

Contracting an edge e in (T,R,k) means contracting e in T , and transforming each re-
quest of the form (e1, . . . ,et,e,et+1, . . .,el) in R into (e1, . . . ,et,et+1, . . .,el). Deleting an
edge e means contracting e in T and removing every request containing e from R (so that
the instance remains a tree).

Two requests of length at least 2 from a given leaf xhave the same direction if the second
edge of their path starting at x is the same. Two requests from an internal node x have the
same direction if the first edge of their paths (starting at x) is the same. All the requests from
x have the same direction if they pairwise have the same direction.

In the following, our instance T is assumed to be a caterpillar. We call the two extremi-
ties of the internal path the left end and the right end of T . The path between a node x and
the right (resp. left) end will be called right and left relatively to x.

Let T ′ be the internal tree of the caterpillar T . The following five sets partition T :
– The set I1 of leaves of T ′.
– The set I2 of degree two nodes of T ′.
– The set L1 of leaves rooted at I1.
– The set L ′

2
of bad leaves rooted at I2.

– The set L2 of the other leaves rooted at I2.
The wingspan W of a leaf x is the path between the closest quasi-R-neighbour on the

right of x and the closest quasi-R-neighbour on the left of x (if no such neighbour exists, we
take f(x) by convention). The size of a wingspan is the number of L2-leaves pending from
it. The subcaterpillar SC(W) of the wingspan W consists in the union of W and the leaves
rooted at W. The wingspan W dominates a request yz if both y and z belong to SC(W).

The usual way of exhibiting a kernel is to define a set of reduction rules. These rules
should be safe, meaning that after applying a rule, the truth value of the problem on the
instance does not change. Moreover the repeated application of the rules should take
polynomial time. Finally, after iterating these rules on an instance, we want the reduced
instance to be of size polynomial in k.

The reduction rules
We apply the following reduction rules to an instance:
(0) Unit Request: if a request R has length one, i.e. R= e for some edge e of T , then we

delete e and decrease k by one.
(1) Disjoint Requests: if there are k+1 disjoint requests in R, then we return a trivially

false instance.

2.1. A POLYNOMIAL KERNEL FOR CATERPILLARS 35

(2) Unique Direction: if all the requests starting at a leaf x have the same direction,
then contract e(x). If all the requests starting at an inner node (i.e. an internal node
with no leaf) x have the same direction, then contract the edge e adjacent to x which
does not belong to any request starting at x.

(3) Inclusion: if a request R is included in another request R ′, then delete R ′ from the
set of requests.

(4) Common Factor: if k+ 2 distinct requests R,R1, . . . ,Rk+1 are such that for every
i 6= j, the common factor of Ri and Rj is a subset of R, then delete R from the set of
requests.

(5) Dominating Wingspan: if x is an L2-leaf with a wingspan dominating at least k+1

endpoint-disjoint requests, then contract e(x).
Each iteration of the reduction consists in applying the first applicable rule, in the

above order.

Lemma 6. Rules Unit Request, Disjoint Requests, Unique Direction, Inclusion, Common
Factor and Dominating Wingspan are correct.

Proof. (1) Rules Unit Request and Disjoint Requests are obvious.
(2) For Rule Unique Direction, assume first that all the requests from a leaf x have the

same direction, and that a multicut contains e(x). Let e ′ be the second common
edge of all these paths. As e ′ cuts all the requests cut by e(x), if e(x) is in a solution S

then S\{e(x)}∪ {e ′} is also a solution. So we can contract e(x).
Now, assume that all the requests from an inner node x go to the right. If a solution
S contains the edge e adjacent to x on the left then S\{e}∪ {e ′}, where e ′ is the edge
incident to x on the right, is a solution since a request going through e also goes
through e ′.

(3) An edge cutting R also cuts all the paths containing R which proves Rule Inclusion.
(4) If there is a multicut of k edges, then one of these edges must intersect two requests

among R1, . . .,Rk+1. This edge lies in the intersection of two of these paths, hence in
R, so the request R is cut in any multicut of R\{R}.

(5) Let x be an L2-leaf with a wingspanW dominatingk+1 endpoint-disjoint requests.
If a multicut of size k exists, it contains an edge e which cuts two of these requests.
As the requests are endpoint-disjoint, their intersection is included in the internal
tree, hence in W. Assume, for example, that e is on the left of the leaf x. Then all
the requests from x which go to the left go through e, and moreover x has no group
request by definition. Thus, if a solution exists, there is a solution without e(x), since
e(x) can be replaced by the edge e ′ which is on the right of f(x).

Lemma 7. Deciding whether a rule applies and applying it takes polynomial time.

Proof. Denote by n the number of nodes in T and by r the number of requests.

36 CHAPTER 2. A POLYNOMIAL KERNEL FOR MULTICUT IN TREES

– The application of Rule Unit Request takes time O(r). The maximum edge-disjoint
paths problem in trees is polynomial, see [72], thus Rule Disjoint Requests is polyno-
mial. Rule Unique Direction can be applied in time O(rn2), and Rule Inclusion can
be applied in time O(r2n).

– For the running time of Rule Common Factor, consider a request R. Informally, we
are looking for a large enough set of requests which intersect R, possibly leaving it at
one or two places, such that the edges through which they leave are all distinct. More
formally, let Z be the set of edges not in R but sharing a vertex with some edge in R.
Let Y be the set of edges e in Z such that there exists a request starting at a node in
R and going through e. We can assume without any loss that one request per such
edge e is chosen. Let G be the graph whose vertex set is Z−Y and whose edges are
the pairs (e,e ′) such that there exists a request going through both e and e ′. There
exist k+1 paths as in Rule Common Factor if and only if G has a matching of size
at least k+1− |Y|. As the matching problem is polynomial, the application of Rule
Common Factor takes polynomial time.

– Let W be a wingspan, and consider the graphR(T,R)|SC(W) which is restriction of the
request graph to SC(W). In other words, the vertices of R(T,R)|SC(W) are the nodes
in SC(W) and two vertices are adjacent if there is a request between them. There
exist k+ 1 endpoint-disjoint requests dominated by W if and only if R(T,R)|SC(W)

has a matching of size k+1, thus Rule Dominating Wingspan is polynomial.

Lemma 8. The reduction process has a polynomial number of iterations.

Proof. Each rule decreases the sum of the lengths of the requests, which is initially less
than the number of requests times the number of nodes.

In the following we consider an instance in which none of these rules can be applied,
and prove that such a reduced instance has polynomial size in k.

Informally speaking, Rule Inclusion rules out many possible patterns for requests be-
tween internal nodes. Two such internal requests are either disjoint (and there cannot be
more than k disjoint requests by Rule Disjoint Requests) or "overlapping". The complexity
of the problem essentially lies in the request with a leaf endpoint. Rule Inclusion provides
very little help to reduce this type of requests, which are not contained one in another pro-
vided their endpoints are disjoint. Rule Common Factor and Rule Dominating Wingspan
are designed to deal with requests with a leaf endpoint in a slightly more complicated fash-
ion than the trivial Inclusion rule (and additionally, to treat "overlapping" patterns which
can occur with internal requests as well).

Let us introduce two graph theoretic lemmas which are used in our proof.

Lemma 9. Let G be an undirected graph with m edges and of maximum degree∆≥ 1. Then
G has a matching of size ⌈ m

2∆−1⌉.

2.1. A POLYNOMIAL KERNEL FOR CATERPILLARS 37

Proof. Such a matching can be obtained by a greedy algorithm, as taking an edge uv in the
matching forbids the edges adjacent to u and those adjacent to v (there are at most 2∆−1

such edges, including uv).

Lemma 10. LetH be an undirected graph onn vertices and of maximum degree∆≥ 1. Then
H has an independent set of size ⌈ n

∆+1⌉.

Proof. Such an independent set can be obtained by a greedy algorithm, as taking a vertex
u in the independent set forbids the vertices adjacent to u.

Theorem 11. The MULTICUT IN CATERPILLARS problem has a kernel of size O(k5).

The rest of this section is dedicated to prove that an instance reduced under the above
reduction rules has size O(k5). Let A be such an instance.

Observation 12. A node has at most k+1 R-neighbours in each direction in A.

Proof. If a node x has k+2 R-neighbours in, say, the right direction, then Rule Common
Factor applies, where R is a longest right request of x.

Claim 13. There are at most 2k(2k+1) bad leaves in A.

Proof. A bad leaf is connected to at most k+1 leaves of the same group, by Rule Common
Factor. Let G be the undirected graph whose vertices are the bad leaves of T and where
there is an edge between two leaves if there is a group request between them. The minimal
degree in G is at least 1, and the maximal degree is at most k+ 1. If there are at least
2k(2k+1)+1 bad leaves then there are at least k(2k+1)+1 edges in G. Thus by Lemma 9
there exist a matching of size k+1, which implies the existence of k+1 endpoint-disjoint
(thus disjoint) group requests. In this case, Rule Disjoint Requests would apply.

Claim 14. A wingspan has size at most 2k(4k+3) in A.

Proof. Let W be a wingspan of maximal size, i.e. such that SC(W) contains a maximal
number of L2-leaves. As Rule Dominating Wingspan does not apply, W does not dominate
k+1 endpoint-disjoint requests. Let W ′ be the set of leaves pending from W. Consider
the restriction G= R(T,R)|SC(W) of the request graph to SC(W). Finding k+1 endpoint-
disjoint requests dominated by W is equivalent to finding a matching of size k+1 in G.
The degree of a vertex u in G is at most 2k+2 because there are at most k+1 requests
in each direction for u in T (by Observation 12). Moreover, if u corresponds to a node of
W ′, the degree of u is at least one. Indeed, since the wingspan W has maximal size, each
L2-leaf pending from W must have a request dominated by W.

If there are 2k(4k+3)+1 L2-leaves in W ′, then G contains at least k(4k+3)+1 edges,
and so G has a matching of size k+1 by Lemma 9, which in turn means the existence of
k+1 endpoint-disjoint requests.

Claim 15. There are O(k3) L2-leaves in A.

38 CHAPTER 2. A POLYNOMIAL KERNEL FOR MULTICUT IN TREES

Proof. Let x be an L2-leaf pending from a wingspan W. By the previous claim, there are
less than 2k(4k+3) leaves pending from W. At most 2k(4k+3)+1 L2-leaves not pending
from W have wingspans intersecting W from each direction, as the furthest L2-leaf (on
the right) whose wingspan intersects W has a wingspan whose subcaterpillar contains all
other leaves whose wingspans intersect W from the right. Let H be the auxiliary graph
with vertex set L2, where two L2-leaves are adjacent if their wingspans intersect. H has
maximum degree less than 6k(4k+3)+2 by the above discussion. By Lemma 10, if T has
at least (6k(4k+3)+2)k+1 vertices, then H has a stable set of size k+1. Thus T would
have k+1 disjoint wingspans, and thus k+1 disjoint requests, a contradiction.

Claim 16. There are O(k5) I2-nodes in A.

Proof. By Claim 15, there are O(k3) I2-nodes with leaves. Let us bound the number of
inner nodes, i.e. of I2-nodes without a leaf. Let I ′ be the set of inner nodes in T . Consider
the graph G which is the restriction of the request graph to I ′.

Because of Rule Inclusion, each inner node has degree at most two in G (one in each
direction). Thus G is a disjoint union of paths, called request paths. The length of a request
path is at most k by Rule Disjoint Requests. A node with degree 1 in G is an extremal inner
node.

Each extremal inner node must be an R-neighbour in T of a leaf or of an internal node
with a leaf (otherwise it would be reduced by Rule Unique Direction). Denote by X the
set of leaves and I2-nodes with leaves. Each node in X has O(k) R-neighbours among the
inner nodes, and |X| = O(k3), so there are O(k4) inner nodes with a neighbour in X (in
particular, at most O(k4) extremal inner nodes). Each extremal inner node belongs to a
unique request path of size at most k. Moreover each inner node with no neighbour in X

must belong to a request path. So there are O(k5) inner nodes in T .
There are O(k3) leaves and O(k5) internal nodes in a reduced instance. Thus our re-

duction rules provide a kernel of size O(k5) for MULTICUT IN CATERPILLARS, which con-
cludes the proof of Theorem 11.

2.2 General Trees

Should no confusion arise, we retain the terminology of the previous section.
Let (T , R, k) be an instance. Let T ′ be the tree obtained from T by deleting the leaves.

We partition the set of nodes of T into the following seven sets:
– The set I1 of leaves in T ′.
– The set I2 of degree 2 nodes in T ′.
– The set I3 of the other nodes in T ′.
– The set L1 of leaves rooted at I1.
– The set L2 of leaves rooted at I2, endpoint of no group request.
– The set L ′

2
of leaves rooted at I2, endpoint of at least one group request.

2.2. GENERAL TREES 39

– The set L3 of leaves rooted at I3.
We also denote by L the set of leaves of T .

We need a few technical definitions. A caterpillar of T is a maximal connected com-
ponent of T − I3−L3. The backbone of a caterpillar is the set of internal nodes of T in this
caterpillar. A caterpillarC is non-trivial if the set of internal nodes inC seen as a caterpillar
has size at least two. The extremities of a non-trivial caterpillar C are the two nodes of C
which are I2 or I1-nodes of T and become I1-nodes in C. A minimal request of a node x is
a request having x as an endpoint and whose internal path is minimal for inclusion among
all internal paths of requests with x as an endpoint. If several requests have the same in-
ternal paths, we arbitrarily distinguish one as minimal and will not consider the others as
minimal. If xy is a minimal request of x then y is called a closest R-neighbour of x.

Let x and y be nodes in T . If z lies on the path between x and y, or is a leaf rooted at a
node lying on the path between x and y, we say that z lies toward y from x (and we do not
write "from x" should no confusion arise).

Assume that x is an L2-leaf of a caterpillar C (that is, an L2-leaf of T which belongs to
C). Let Gr(x) be the group of leaves pending from f(x). Let A(x) and B(x) be the two
connected components of T − {f(x)}−Gr(x). Let a(x) (resp. b(x)) be the extremity of C
in A(x) (resp. B(x)). If A(x) (resp. B(x)) contains no extremity of C, that is if f(x) is an
extremity of C, then we define a(x) = f(x) (resp. b(x) = f(x)). A wingspan W of x is the
path between two closest R-neighbours of x lying respectively in A(x) and B(x). Observe
that x can have several wingspans. The subcaterpillar of a wingspan W consists in W and
the leaves rooted at W.

An L2-leaf x covers a caterpillar C if either x ∉C and there is a request starting at x and
going through the whole backbone of C, or if x ∈C and a wingspan of x contains the whole
backbone of C. Figure 2.1 provides an example of leaves covering a caterpillar.

We apply the following reduction rules to an instance: Rules (0), (1), (2), (3), and (4) are
stated in the previous section. Rule Dominating Wingspan is split for convenience into two
rules, one similar to the caterpillar case and the other more general, as follows:

(5a) Bidimensional Dominating Wingspan: if x is an L2-leaf of a caterpillar C with a
wingspan W such that W ∩C dominates at least k+ 1 endpoint-disjoint requests,
then we contract e(x).

(5b) Generalised Dominating Wingspan: assume that x is an L2-leaf of the caterpillar
C, and that x covers C. Assume that for every closest quasi-R-neighbour z of x in
A(x), there exist k+1 endpoint-disjoint requests between a node lying toward b(x)

from f(x) and a node toward z from a(x). Then we contract e(x). See Figure 2.2.
As an observation, Rule generalised Dominating Wingspan symmetrically applies with

the roles of left and right (i.e. with the roles ofA(x)/a(x) andB(x)/b(x)) reversed. This was
not formally stated above for clarity. Each iteration of the reduction consists in applying
the first applicable rule, in the above order.

Lemma 17. Rules (5a) and (5b) are correct.

40 CHAPTER 2. A POLYNOMIAL KERNEL FOR MULTICUT IN TREES

f(x) b(x)
y1

x2

x ′
2

B(x)

x1

y

x3

x ′
3

d

a

b

hg

C

A(x)

x

a(x)

x ′
4

c

Figure 2.1: The nodes a,b,c,d are I1-nodes and g,h are I3 nodes. C is a caterpillar, and
x is an L2-leaf of C, with requests xx1, xx ′

2
, xx ′

3
and xx ′

4
. The closest quasi-R-neighbours

of x are x1, x2 and x3. The leaf x has two wingspans: the path between x1 and x2, and
the path between x3 and x2. Either of these wingspans contains the whole backbone of C,
so x covers C. Similarly, yy1 is a request, so the L2-leaf y, which does not belong to the
caterpillar C, covers C as well.

Proof. Correction of Rule Bidimensional Dominating Wingspan follows from the correc-
tion proof of Rule Dominating Wingspan in the previous section.

Assume that Rule generalised Dominating Wingspan can be applied to x. Let z1, . . .,zl
be the closest R-neighbours of x in A(x). For every i ∈ {1, . . ., l}, because of the k+ 1

endpoint-disjoint requests mentioned in the rule, any k-multicut contains an edge in the
path between zi and b(x). Assume that a k-multicut S contains an edge e ′′ between x and
b(x). Let e ′ be the edge adjacent to e(x) in the path between x and a(x). If S contains e(x),
then S− {e(x)}∪ {e ′} is also a k-multicut. Indeed, any request x,u with u ∈A(x) is cut by
e ′, and any request xv with v ∈B(x) is cut by e ′′. Assume now that a k-multicut S contains
no edge between x and b(x). Then for every i ∈ {1, . . ., l}, S must contain an edge ei on the
path between zi and f(x). Let e ′ be the edge adjacent to e(x) in the path between x and
b(x). If S contains e(x), then S− {e(x)}∪ {e ′} is a k-multicut. Indeed, any request xu with
u ∈A(x) is cut by an edge ei, and any request xv with v ∈B(x) is cut by e ′.

Proposition 18. The repeated application of these rules on the instance until none can be
applied takes polynomial time.

Proof. The proof of the first five cases was made for general trees in the previous section.
The polynomiality of Rule Bidimensional Dominating Wingspan follows from the proof

2.2. GENERAL TREES 41

f(x) b(x)

B(x)A(x)

x

a(x)

e(x)

z ′
1

z1

z2

C

Figure 2.2: Rule generalised Dominating Wingspan, with k = 2, applies to the L2-leaf x.
Indeed, xhas two closest quasi-R-neighbours inA(x), namely z1 and z2. There arek+1= 3

requests between the paths [z1,a(x)] and the path [f(x),b(x)], and likewise with z2.

of Rule Dominating Wingspan’s polynomiality in the previous section. Deciding whether
there exist k+1 endpoint-disjoint requests between prescribed areas can still be expressed
as a matching problem as in Rule Dominating Wingspan’s proof, so the application of Rule
generalised Dominating Wingspan also takes polynomial time.

Theorem 19. The number of nodes in a reduced instance is O(k6).

The rest of this section is devoted to the proof of Theorem 19.

Claim 20. |I1|=O(k)

Proof. There are at most k groups of leaves with a group request, by the k+1 disjoint re-
quests rule. Every group of L1-leaves has a group request, otherwise a leaf of this group
would be deleted by Rule Unique Direction. Every I1-node has at least one L1-leaf pending
from it, thus |I1|≤ k.

Claim 21. |I3|=O(k)

Proof. In a tree, there are at most as many nodes of degree at least 3 as the number of
leaves, so |I3|≤ |I1|≤ k.

Claim 22. |L1|=O(k2) and |L ′
2
|=O(k2)

Proof. Each leaf in L1 is a bad leaf by Rule Unique Direction, and each leaf in L ′
2

is bad
by definition. As in Claim 13 there are at most 2(k+1)(2k+1)−1 bad leaves in T . Thus
|L1∪L ′

2
|=O(k2)

42 CHAPTER 2. A POLYNOMIAL KERNEL FOR MULTICUT IN TREES

We now show that:
– |L3|=O(k4)

– |L2|=O(k4)

– |I2|=O(k6)

Claim 23. The number of requests from a node x to a group of leaves is at most k+1.

Proof. Otherwise Rule Common Factor would apply to these requests.

Claim 24. The number of requests from a node x to all the L2-leaves in a given caterpillar C
is at most 2k+2 if x ∈C and k+1 if x ∉C.

Proof. Otherwise there would be at leastk+2 requests sharing the same direction between
x and leaves in this caterpillar, and Rule Common Factor would apply to these requests.

Claim 25. There are at most 2k(k+2) requests between two groups of leaves.

Proof. Let G be the bipartite graph whose vertices are the leaves of the two groups Y and
Z, and where a leaf in Y and a leaf in Z are adjacent if there is a request between them.
The maximum degree in G is at most k+ 1 by Claim 23, thus if there are 2k(k+ 2)+ 1

requests between Y and Z, then by Lemma 9 there would be a matching of size k+2 in G.
Thus there would be k+2 endpoint disjoint requests between Y and Z, and Rule Common
Factor would apply.

Claim 26. The number of requests between a group of leaves E and the nodes in a given
caterpillar C is at most 4k(k+2).

Proof. Assume by contradiction that there are at least 4k(k+2)+1 such requests. Let f be
the node in which the leaves ofE are rooted. If f belongs toC, thenC−f has two connected
components, and we only consider the component C ′ to which there is the most requests
from G. If f does not belong to C, then we let C ′ = C. There are at least 2k(k+ 2)+ 1

requests between C ′ and E. Consider the undirected (bipartite) graph G whose vertices
are the leaves of E and the nodes of C ′, and where there is an edge between a leaf from E

and node of C ′ if there is a request between them. This graph has maximum degree k+1

by Rule Common Factor, thus by Lemma 9, G has a matching of size k+ 2. Thus there
would be k+2 endpoint disjoint such requests, and Rule Common Factor would apply to
them.

Claim 27. There are at most 2k−1 caterpillars in T .

Proof. There are at most 2k nodes in I1∪I3. Let us call them separating nodes. Let r be one
of these separating nodes. Let us consider r as the root of T . Each caterpillar is adjacent
to exactly two separating nodes. Let us associate to each caterpillar of T its adjacent sepa-
rating node further away from the root r. This mapping is a bijection, and no caterpillar is
mapped on r, thus there are at most 2k−1 caterpillars.

2.2. GENERAL TREES 43

Claim 28.

|L3|=O(k4)

Proof. We have that |I3|=O(k) by Claim 21. LetX be an L3-group rooted iny ∈ I3. Because
of Rule Disjoint Requests, at most 2k(k+1) leaves in X are endpoints of group requests (by
Lemma 9 on the usual auxiliary request graph onX). Each leaf ofX must be the endpoint of
at least one request, so let us count the maximal number of requests contributed by each
type of nodes. By Claim 25, and as there are at most k groups of L1-leaves and k groups
of L3-leaves, at most 2k∗2k(k+2) leaves of X have a request toward an L1-leaf or an L3-
leaf. There are at most 2k−1 caterpillars in T by Claim 27, and leaves in X have in total at
most 4k(k+2) R-neighbours in a given caterpillar by Claim 26. Thus O(k3) leaves in X are
endpoints of a request toward a caterpillar node, and I3 nodes can contribute for at most
O(k2) requests, so |X|=O(k3). This gives |L3|=O(k4).

Claim 29.

|L2|=O(k4)

Proof. Assume by contradiction that |L2|≥ 3(2k−1)(k+1)(k+1)(4k+3). Let C be a cater-
pillar of T containing the maximum number of L2-leaves. By Claim 27, there are at most
2k−1 caterpillars in T , thus C contains at least 3(k+1)(k+1)(4k+3) L2-leaves.

Assume first that C is not covered. We obtain a contradiction as in the caterpillar case.
Consider x to be the L2-leaf having a wingspan whose intersection W̃ with C has maximal
size. Let C ′ be the subcaterpillar of backbone W̃. Then C ′ contains at least (k+1)(4k+3)

L2-leaves, otherwise one would find k+ 1 disjoint wingspans by taking W̃, then a W̃1

disjoint from W̃, then a W̃2 disjoint from W̃ and W̃1, . . . , and finally a W̃k disjoint from
W̃,W̃1, . . . , ˜Wk−1, as in Claim 15. Note that the caterpillars W,W1, . . .,Wk are themselves
disjoint, as their intersections W̃,W̃1, . . . ,W̃k with C are disjoint and non-empty. Thus
there would be k+1 disjoint requests, a contradiction. Since W̃ is maximal, each L2-leaf
y in C ′ is the endpoint of a request r⊆C ′. The existence of (k+1)(4k+3) L2-leaves in C ′

means that there are at leastk+1 endpoint-disjoint requests dominated by W̃, by Lemma 9
applied to the usual auxiliary request graph G on the L2-leaves of C ′ (note that the maxi-
mum degree of G is at most 2k+2). Thus Rule (5a) should apply, a contradiction.

Assume now that C is covered by some L2-leaf x. If at least (k+1)(4k+3) L2-leaves in
C do not cover C, then some wingspan of x dominates (k+1)(4k+3) requests, and thus
dominates at least k+1 endpoint-disjoint requests, by the usual application of Lemma 9.
So Rule (5a) should apply, a contradiction. So at least 3(k+1)(k+1)(4k+3)−(k+1)(4k+3)

L2-leaves in C cover C, let X be the set of these leaves. Let a and b be the extremities of
the caterpillar C, and denote by A and B the two corresponding connected components
of T −C. Let d1, . . .,dj be the I1-nodes in A. Note that j ≤ k. Consider the set Xi of 2(k+
1)(4k+3) leaves inX whose closest R-neighbour toward di are the closest toa of all closest
R-neighbours toward di of vertices in X. Note that a closest R-neighbour toward di of a

44 CHAPTER 2. A POLYNOMIAL KERNEL FOR MULTICUT IN TREES

vertex in X cannot belong to C, as leaves in X cover C. When less than 2(k+1)(4k+3)

L2-leaves in X have an R-neighbour toward di, remove Xi from X, mark di as invalid, and
proceed. Note that at least one di must be valid, as |X|> 2k(k+1)(4k+3).

Now we have a list of at most k sets (the sets Xi for di valid) of size 2(k+1)(4k+3).
The union X ′ of these is of size at most 2k(k+1)(4k+3)< |X|. Thus there exists an L2-leaf
z in X−X ′. Consider the closest R-neighbour ni of x̃ toward a valid di. Note that x̃ has
no R-neighbour toward an invalid di, as such L2-leaves has been removed from X. There
are either (k+1)(4k+3) L2-leaves of Xi between x̃ and a or (k+1)(4k+3) L2-leaves of
Xi between x̃ and b. Thus there are k+1 endpoint-disjoint requests either between the
subcaterpillars of backbone]x̃,a[and]a,ni[or between the subcaterpillars of backbone
]b, x̃[and]a,ni[, by Lemma 9 on the usual auxiliary request graph. In the former case Rule
Common Factor applies to the request between x̃ and ni (or a leaf pending at ni) along
with the above-mentioned k+1 endpoint disjoint requests. If the latter case applies for all
valid di, then Rule generalised Dominating Wingspan applies to the L2-leaf x̃.

Claim 30.

|I2|=O(k6)

Proof. There are O(k4) internal nodes with leaves in T , by Claim 29. It remains to bound
the cardinal of the set Z of inner nodes in I2.

Let r be a given I1-node of T , we now consider r as the root of T . Let u be an inner node
in Z. Let C(u) be the caterpillar containing u, denote by a(u) and b(u) its extremities,
with b(u) an ancestor of a(u) with respect to r. Let A(u) be the connected component
of T − {u} containing a(u). If the node u has an R-neighbour in A(u), select one such
node v(u). Note that u is on the path between v(u) and r. By Rule Inclusion, v(u) 6= v(u ′)
whenever u 6=u ′. Let G be the graph with vertex set Z, and with edge set {(u,v(u))|u∈Z}.
This graphG is a disjoint union of paths. By Rule Disjoint Requests, paths in G have length
at most k. Vertices u in G which have no R-neighbour in A(u) must be adjacent in T to
some node not in Z, by Rule Unique Direction. There are O(k4) nodes not in Z, each of
which can have at most k R-neighbours in Z. Indeed, a vertex cannot have two different
R-neighbours in Z in the same direction, by Rule Inclusion. Thus there are O(k5) vertices
u without R-neighbour in A(u) in G, so there are O(k6) vertices in G, which finally means
that there are O(k6) inner nodes in T . ä

This concludes the proof of Theorem 19.
We have shown that the (unweighted) MULTICUT IN TREES problem admits a polyno-

mial kernel. This kernelization algorithm, or just some particular sequence using some of
the reduction rules presented above, can be used as a preprocessing or in-processing step
in a practical algorithm.

This analysis might not be tight, so one can hope to improve thisO(k6)bound retaining
the same set of reduction rules. But new reduction rules should be needed to decrease this
bound even further, to cubic size for example.

2.2. GENERAL TREES 45

Our technique does not seem to generalise to the weighted version of MULTICUT IN

TREES. Thus deciding whether the weighted MULTICUT IN TREES problem admits a poly-
nomial kernel is still open.

The general Multicut in Graphs problem is now known to be FPT with respect to the
parameter k, the size of the desired solution. The existence of a polynomial kernel for
this unrestricted MULTICUT problem would be very surprising, but no proof of a negative
answer has been provided yet. The following natural question seems both interesting and
hard:

Problem 31. For which graph classes G does the MULTICUT problem restricted to G admit a
polynomial kernel?

CHAPTER

3
Finding Directed Trees with Many

Leaves

This chapter is organized as follows. In Section 3.1 we exhibit combinatorial bounds on
the problem of finding a directed tree with many leaves. We use the notion of s−t number-
ing introduced in [94]. We next present our reduction rules, which are independent of the
parameter, and in Section 3.3 we prove that these rules give an edge-quadratic kernel when
the root is prescribed. We present a constant factor approximation algorithm in Section 3.4
for finding an out-tree with many leaves in a digraph. Finally, in Section 3.5, we present a
linear kernel for the rooted problem restricted to acyclic digraphs.

3.1 Combinatorial Bounds

Let D be a directed graph. For an arc (u,v) in D, we say that u is an in-neighbour of v,
that v is an out-neighbour of u, that (u,v) is an in-arc of v and an out-arc of u. The out-
degree of a vertex is the number of its out-neighbours, and its in-degree is the number of its
in-neighbours.

Recall that an out-tree is a directed tree where each edge is oriented from the root to-
wards the leaves, and an out-branching of a digraph D is a spanning out-tree in D.

An out-branching with a maximum number of leaves is said to be optimal. Let us de-
note by maxleaf(D) the number of leaves in an optimal out-branching of D.

Without loss of generality, we restrict ourselves to the following. We exclusively con-
sider loopless digraphs with a distinguished vertex of in-degree 0, denoted by r. We assume
that there is no arc (x,y) with x 6= r and where y is an out-neighbour of r, and that r has
out-degree at least 2. Throughout this chapter, we call such a digraph a rooted digraph.
Definitions will be made exclusively with respect to rooted digraphs, hence the notions we
present, like connectivity and resulting concepts, do slightly differ from standard ones.

47

48 CHAPTER 3. FINDING DIRECTED TREES WITH MANY LEAVES

Let D be a rooted digraph with a specified vertex r. The rooted digraph D is connected
if every vertex of D is reachable by a directed path starting at r in D. A cut of D is a set
S ⊆ V(D)− r such that there exists a vertex z ∉ S which is not the endpoint of a directed
path from r in D−S. In other words, the cut S separates z from r. We say that D is 2-
connected if D has no cut of size at most 1. A cut of size 1 is called a cutvertex. Equivalently,
a rooted digraph is 2-connected if, for every vertex x distinct from r and its out-neighbours,
there are two internally vertex-disjoint paths from r to x.

We will show that the notion of s− t numbering behaves well with respect to out-
branchings with many leaves. This concept has been introduced in [94] for 2-connected
undirected graphs, and generalised in [31] by Cheriyan and Reif for digraphs which are
2-connected in the usual sense. We adapt this notion in the context of rooted digraphs.

Let D be a 2-connected rooted digraph. An r− r numbering of D is a linear ordering
σ of V(D)− r such that each vertex x, which is not r and not an out-neighbour of r, has
two in-neighbours u and v such that σ(u)<σ(x)<σ(v). An equivalent presentation of an
r−r numbering of D is an injective embedding f of V(D) where r has been duplicated into
two vertices r1 and r2, into the [0,1]-segment of the real line, such that f(r1) = 0, f(r2) = 1,
and such that the image by f of every vertex besides r1 and r2 lies inside the convex hull of
the images of its in-neighbours. Such convex embeddings have been defined and studied
in general dimension by Lovász, Linial and Wigderson in [95] for undirected graphs, and in
[31] for directed graphs.

Given a linear order σ on a finite set V , we denote by σ the linear order on V which
is the reverse of σ. An arc (u,v) of D is a forward arc if u = r or if u appears before v in
σ; (u,v) is a backward arc if u= r or if u appears after v in σ 1. A spanning out-tree T is
forward (resp. backward) if all its arcs are forward (resp. backward) with respect to σ (and
we omit the reference to σ when the context is clear).

The following result and proof is just an adapted version of [31], given here for the sake
of completeness.

Lemma 32. Let D be a 2-connected rooted digraph. There exists an r−r numbering of D.

Proof. By induction over D. We first reduce to the case where the in-degree is at most 2
(thus the in-degree of every vertex besides r and its out-neighbours is exactly 2). Let x be a
vertex of in-degree at least 3 in D. Let us show that there exists an in-neighboury of x such
that the rooted digraph D−(y,x) is 2-connected. Indeed, there exist two internally ver-
tex disjoint paths from r to x. Consider such two paths intersecting the in-neighbourhood
N−(x) of x only once each, and denote by D ′ the rooted digraph obtained from D by re-
moving one arc (y,x) not involved in these two paths. There are two internally disjoint
paths from r to x in D ′. Consider z ∈ V(D)− r−x. Assume by contradiction that there
exists a vertex t which cuts z from r in D ′. As t does not cut z from r in D and the arc
(y,x) alone is missing in D ′, t must cut x and not y from r in D ′. Which is a contradiction,

1. Yes, arcs going out of the root are considered both backward and forward.

3.1. COMBINATORIAL BOUNDS 49

in D: t v u w

in D ′: wt uv

Figure 3.1: At the top, an r−r numberingσ of D ′. At the bottom, the resulting rr-ordering
of D.

as there are two internally disjoint paths from r to x in D ′. By induction, D ′ has an r− r

numbering, which is also an r−r numbering for D.
Hence, letD be a 2-connected rooted digraph, where every vertex has in-degree at most

2. As r has in-degree 0, there exists a vertex v with out-degree at most 1 in D by a counting
argument. If v has out-degree 0, then let σ be an r−r numbering of D−v, let u1 and u2 be
the two in-neighbours of v. Insert v between u1 and u2 in σ to obtain an r−r numbering
of D. Assume now that v has a single out-neighbour u. Let w be the second in-neighbour
of u. Let D ′ be the graph obtained from D by contracting the arc (v,u) into a single vertex
uv. As D ′ is 2-connected, consider by induction an r−r numberingσ of D ′. Replace uv by
u in σ. It is now possible to insert v between its two in-neighbours so that u lies between
v and w. Indeed, assume without loss of generality that w is after uv in σ. Consider the
in-neighbour t of v smallest in σ. As σ is an r−r numbering of D ′, t lies before uv in σ. We
insert v just after t to obtain an r−r numbering of D (see Figure 3.1).

Note that an r−r numberingσ of D naturally gives two acyclic covering subdigraphs of
D, the rooted digraph D|σ consisting of the forward arcs of D, and the rooted digraph D|σ

consisting of the backward arcs of D. The intersection of these two acyclic digraphs is the
set of out-arcs of r.

Corollary 33. Let D be a 2-connected rooted digraph. There exists an acyclic connected
spanning subdigraph A of D which contains at least half of the arcs of D−r.

Let G be an undirected graph. A vertex cover of G is a set of vertices which hits all edges
of G. We need the following folklore result:

Lemma 34. Any undirected graph G on n vertices and m arcs has a vertex cover of size n+m
3 .

Proof. By induction on n+m. If there exists a vertex of degree at least 2 in G, choose it in
the vertex cover, otherwise choose any non-isolated vertex.

Let G be a bipartite graph with vertex bipartition (A,B). A set S ⊆ B dominates A if⋃
v∈SN(v)=A.

50 CHAPTER 3. FINDING DIRECTED TREES WITH MANY LEAVES

r

A ′

A

Y Z

Figure 3.2: An illustration of the proof of Corollary 36.

Lemma 35. Let G be a bipartite graph over A∪B, with d(a)= 2 for everya ∈A. There exists

a subset of B of size at most
|A|+|B|

3 which dominates A.

Proof. Let G ′ be the graph whose vertex set is B, and where (b,b ′) is an arc if b and b ′

share a common neighbour in A. The result follows from Lemma 34 since G ′ has |A| arcs
and |B| vertices.

Let G be an undirected graph. A dominating set of G is a set S⊆ V such that for every
vertex x ∉ S, x has a neighbour in S. A strongly dominating set of G is a set S⊆V such that
every vertex has a neighbour in S.

Let D be a rooted digraph. A strongly dominating set of D is a set S⊆V such that every
vertex besides the root r has an in-neighbour in S. Denote by d(r) the out-degree of the r.

Corollary 36. Let D be an acyclic connected rooted digraph with l vertices of in-degree at

least 2. Then D has an out-branching with at least l+d(r)−1
3 +1 leaves.

Proof. Denote by n the number of vertices of D. For every vertex v of in-degree at least 3,
delete incoming arcs until v has in-degree exactly 2. SinceD is acyclic, it has a vertex s with
out-degree 0.

Let Z be the set of vertices of in-degree 1 in D. Let Y be the set of in-neighbours of
vertices of Z. Note that |Y|≤ |Z|≤n−1−l. Let A ′ be the set of vertices of in-degree 2 which
are out-neighbours of some vertex in Y. Let B=V(D)−Y−s. Let A be the set of vertices
of in-degree 2 which are not in A ′. See Figure 3.2.

Note that Y cannot have the same size as Z. Indeed, Z contains the out-neighbours
of r, and hence Y contains r, which has out-degree at least 2. More precisely, |Y|+d(r)−

1 ≤ |Z∪A ′|. As B = V(D)−Y− s (and s ∉ Y) and A = V(D)−A ′−Z− r, we have that

3.1. COMBINATORIAL BOUNDS 51

Figure 3.3: The "boloney" graph D6

|B|≥ |A|+d(r)−1. Moreover, as Y has size at most n−1− l, we have that |B|≥ l. Consider
a copy A1 of A and a copy B1 of B. Let G be the bipartite graph with vertex bipartition
(A1,B1), and where (b,a), with a ∈ A1 and b ∈ B1, is an edge if (b,a) is an arc in D. By

Lemma 35 applied to G, there exists a set X⊆B of size at most
|A|+|B|

3 ≤ 2|B|−(d(r)−1)
3 which

dominates A in D. The set C = X∪Y strongly dominates V(D)− r in D, and has size at

most |X|+ |Y|≤ 2|B|−(d(r)−1)
3 + |Y|= |B|+ |Y|−

|B|+d(r)−1
3 . As |Y|+ |B|=n−1 and |B|≥ l, this

yields |X∪Y| ≤ n−1−
l+d(r)−1

3 . As D is acyclic, any set which strongly dominates V − r

contains r and is a connected dominating set. Hence there exists an out-branching T of D

having a subset of C as internal vertices. T has at least l+d(r)−1
3 +1 leaves.

This bound is tight up to one leaf. The rooted digraph Dk depicted in Figure 3.3 is
2-connected, has 3k−2 vertices of in-degree at least 2, d(r)= 3 and maxleaf(Dk) = k+2.

Finally, the following combinatorial bound is obtained:

Theorem 37. Let D be a 2-connected rooted digraph with l vertices of in-degree at least 3.
Then maxleaf(D)≥ l

6 .

Proof. Apply Corollary 36 to the rooted digraph with the larger number of vertices of in-
degree 2 among Dσ and Dσ.

A 2-circuit is a pair of vertices u,v of D such that (u,v) and (v,u) are arcs in D. An arc
is simple if does not belong to a 2-circuit. A vertex v is nice if it is incident to a simple in-arc.

The second combinatorial bound is the following:

Theorem 38. Let D be 2-connected rooted digraph with l nice vertices (i.e. vertices incident
to a simple in-arc). Then D has an out-branching with at least l

24 leaves.

Proof. By Lemma 32, we consider an r−r numbering σ of D. For every nice vertex v (in-
cident to some in-arc a) with in-degree at least three, delete incoming arcs of v different
from a until v has only one incoming forward arc and one incoming backward arc. For ev-
ery other vertex of in-degree at least 3 in D, delete incoming arcs of v until v has only one
incoming forward arc and one incoming backward arc. At the end of this process, σ is still
an r−r numbering of the digraph D, and the number of nice vertices has not decreased.

52 CHAPTER 3. FINDING DIRECTED TREES WITH MANY LEAVES

c

fd

a b

w

r a b c d e u f w v z r

z v

ue

r

Figure 3.4: A 2-connected rooted digraph along with an r−rnumbering. Backward arcs are
depicted with dashed lines and forward arcs are depicted with full lines. The nice vertex v
is incident to the simple arc uv of Tf which is not transverse in Tb. Hence the arc vw of Tb
is transverse in Tf, as per the proof of Theorem 38.

Denote by Tf the set of forward arcs of D, and by Tb the set of backward arcs of D. As σ
is an r−r numbering of D and the in-degree in D is at most 2, Tf and Tb are two spanning
trees of D which partition the arcs of D−r.

The crucial definition is the following: say that an arc uv of Tf (resp. of Tb), with u 6= r,
is transverse if u and v are incomparable in Tb (resp. in Tf), that is if v is not an ancestor of
u in Tb (resp. in Tf). Observe that u cannot be an ancestor of v in Tb (resp. in Tf) since Tb is
backward (resp. Tf is forward) while uv is forward (resp. backward) and u 6= r.

Assume without loss of generality that Tf contains at least as many transverse arcs as
Tb. Consider now any planar drawing of the rooted tree Tb. We make use of this drawing
to define the following: if two vertices u and v are incomparable in Tb, then one of these
vertices is to the left of the other, with respect to our drawing. In other words, we fix the
order of the branches in Tb.

We can now partition the transverse arcs of Tf into two subsets: the set Sl of transverse
arcs uv for which v is to the left of u, and the set Sr of transverse arcs uv for which v is to
the right of u. Assume without loss of generality that |Sl|≥ |Sr|.

The digraph Tb∪Sl is an acyclic digraph by definition of Sl. Moreover, it has |Sl| vertices
of in-degree two since the heads of the arcs of |Sl| must be pairwise distinct. Hence, by

Corollary 36, Tb∪Sl has an out-branching with at least |Sl|+d(r)−1
3 +1 leaves, hence so does

D.
We now give a lower bound on the number of transverse arcs in D to bound |Sl|. Con-

sider a nice vertex v in D, which is not an out-neighbour of r, and with a simple in-arc uv

belonging to, say, Tf. If uv is not a transverse arc, then v is an ancestor of u in Tb. Let w
be the out-neighbour of v on the path from v to u in Tb. Since uv is simple, the vertex w

3.2. REDUCTION RULES 53

v w zxu

Figure 3.5: A bipath of length 4. Rule (2) states that v and w can be contracted (or equiva-
lently w and x).

is distinct from u. No path in Tf goes from w to v since w is before v in σ, hence vw is a
transverse arc (see Figure 3.4). Therefore, we proved that v (and hence every nice vertex
which is not an out-neighbour of r) is incident to a transverse arc (either an in-arc, or an

out-arc). Thus there are at least l−d(r)
2 transverse arcs in D.

Finally, there are at least l−d(r)
4 transverse arcs in Tf, and thus |Sl|≥

l−d(r)
8 . In all, D has

an out-branching with at least l
24 leaves.

As a corollary, the following result holds for oriented graphs (digraphs with no 2-
circuit):

Corollary 39. Every 2-connected rooted oriented graph on n vertices has an out-branching
with at least n−1

24 leaves.

3.2 Reduction Rules

We say that P= {x1, . . . ,xl}, with l≥ 3, is a bipath of length l−1 if the set of arcs adjacent
to {x2, . . .,xl−1} in D is exactly {(xi,xi+1),(xi+1,xi)|i ∈ {1, . . ., l−1}}. See Figure 3.5.

To exhibit a quadratic kernel for ROOTED MAXIMUM LEAF OUT-BRANCHING, we use the
following four reduction rules:

(0) If there exists a vertex not reachable from r in D, then reduce to a trivially FALSE
instance.

(1) Let x be a cutvertex of D. Delete vertex x and add an arc (v,z) for every v ∈N−(x)

and z ∈N+(x)−v.
(2) Let P be a bipath of length 4. Contract two consecutive internal vertices of P.
(3) Let x be a vertex of D. If there exists y ∈N−(x) such that N−(x)−y cuts y from r,

then delete the arc (y,x).
Note that these reduction rules are not parameter dependent. Rule (0) only needs to be

applied once.

Observation 40. Let S be a cutset of a rooted digraph D. Let T be an out-branching of D.
There exists a vertex in S which is not a leaf in T .

Lemma 41. The above reduction rules are safe and can be checked and applied in polyno-
mial time.

54 CHAPTER 3. FINDING DIRECTED TREES WITH MANY LEAVES

Proof. (0) Reachability can be tested in linear time.
(1) Let x be a cutvertex of D. Let D ′ be the graph obtained from D by deleting vertex
x and adding an arc (v,z) for every v ∈N−(x) and z ∈N+(x)−v. Let us show that
maxleaf(D) = maxleaf(D ′). Assume that T is an out-branching of D rooted at r with
k leaves. By Observation 40, x is not a leaf of T . Let f(x) be the father of x in T . Let T ′

be the tree obtained from T by contracting x and f(x). T ′ is an out-branching of D ′

rooted at r with k leaves.
Let T ′ be an out-branching ofD ′ rooted at rwithk leaves. N−(x) is a cut inD ′, hence
by Observation 40 there is a non-empty collection of vertices y1, . . . ,yl ∈ N−(x)

which are not leaves in T ′. Choose yi such that yj is not an ancestor of yi in T ′ for
every j ∈ {1, . . ., l}−{i}. Let T be the graph obtained from T ′ by adding x as an isolated
vertex, adding the arc (yi,x), and for every j ∈ {1, . . ., l}, for every arc (yj,z) ∈ T with
z ∈N+(x), deleting the arc (yj,z) and adding the arc (x,z). As yi is not reachable in
T ′ from any vertexy ∈N−(x)−yi, there is no cycle in T . Hence T is an out-branching
of D rooted at r with at leastk leaves. Moreover, deciding the existence of a cut vertex
and finding one if such exists can be done in polynomial time.

(2) Let P be a bipath of length 4. Let u, v, w, x and z be the vertices of P in this consec-
utive order. Let T be an out-branching of D. Let D ′ be the rooted digraph obtained
from D by contracting v and w. The rooted digraph obtained from T by contracting
w with its father in T is an out-branching of D ′ with as many leaves as T .
Let T ′ be an out-branching of D ′. If the father of vw in T ′ is x, then T ′−(x,vw)∪
(x,w)∪(w,v) is an out-branching ofDwith at least as many leaves as T ′. If the father
of vw in T ′ is u, then T ′−(u,vw)∪ (u,v)∪ (v,w) is an out-branching of D with as
many leaves as T ′.

(3) Let x be a vertex of D. Let y ∈N−(x) be a vertex such that N−(x)−y cuts y from
r. Let D ′ be the rooted digraph obtained from T by deleting the arc (y,x). Every out-
branching of D ′ is an out-branching of D. Let T be an out-branching ofD containing
(y,x). There exists a vertex z ∈N−(x)−y which is an ancestor of x. Thus T−(y,x)∪
(z,x) is an out-branching of D ′ with as many leaves as T .

Observe that Rule (1) could be generalised as follows:
(1’) Let x be a vertex of D which is not a leaf in some optimal out-branching of D.

Delete vertex x and add an arc (v,z) for every v ∈N−(x) and z ∈N+(x)−v.
But we will not use this more general rule.

Observation 42. If a digraph has an out-branching rooted at r, then an out-tree rooted at r
with k leaves can be extended to an out-branching rooted at r with at least k leaves in linear
time.

We apply rules (0), (1), (2) and (3) iteratively until reaching a reduced instance, on which
none can be applied.

3.3. QUADRATIC KERNEL 55

Lemma 43. Let D be a reduced rooted digraph with a vertex of in-degree at least k. Then D

is a TRUE instance.

Proof. Assume that x is a vertex of D with in-neighbourhood N−(x) = {u1, . . .,ul}, with
l≥ k. For every i ∈ {1, . . ., l}, N−(x)−ui does not cut ui from r. Thus there exists a path Pi
from r to ui outsideN−(x)−ui. The rooted digraph D ′=∪i∈{1,...,l}Pi is connected, and for
every i ∈ {1, . . ., l}, ui has out-degree 0 in D ′. Thus D ′ has an out-branching with at least
k leaves, and such an out-branching can be extended into an out-branching of D with at
least as many leaves, by Observation 42.

3.3 Quadratic Kernel

In this section and in Section 3.4, a vertex of a 2-connected rooted digraph D is said to
be special if it has in-degree at least 3 or if one of its incoming arcs is simple. A non-special
vertex is a vertex u which has exactly two in-neighbours, which are also out-neighbours of
u. A weak bipath is a maximal connected set of non-special vertices. If P= {x1, . . . ,xl} is a
weak bipath of length l−1, with l≥ 1, then the in-neighbours of xi, for i= 2, . . ., l−1 in D

are exactly xi−1 and xi+1. Moreover, x1 and xl each forms a 2-circuit with a special vertex.
Indeed, each must have a second in-neighbour, and non-special vertices are not incident
to simple in-arcs. If l = 1, then x1 forms two 2-circuits with two special vertices. Denote
by s(P) the special in-neighbour of x1. If l = 1, we distinguish one of the two special in-
neighbours as s(P).

See Figure 3.7 for an example.
This section is dedicated to the proof of the following statement:

Theorem 44. A digraph D with at least 90k2 vertices and reduced under the reduction rules
of the previous section has an out-branching with at least k leaves.

Proof. By Theorem 37 and Theorem 38, if there are at least 6k+24k−1 special vertices,
then D has an out-branching with at least k leaves, as a vertex is special if it is nice or if it
has in-degree at least 3. Assume that there are at most 30k−2 special vertices in D.

As D is reduced under Rule (2), there is no bipath of length 4. We can associate to every
weak bipath B of D on l vertices a set of ⌈ l3⌉ out-arcs toward special vertices. Indeed, let
P = (x1, . . . ,xl) be a weak bipath of D. For every three consecutive vertices xi,xi+1,xi+2

of P, with 2 ≤ i ≤ l−3, (xi−1,xi,xi+1,xi+2,xi+3) is not a bipath by Rule (2), hence there
exists an arc (xj,z) with j= i, i+1 or i+2 and z ∉ P. Moreover, z must be a special vertex
as arcs between non-special vertices lie within their own weak bipath. Finally, x1 and xl
have an out-arc toward a special vertex, so each bipath on l vertices contributes for at least
2+ ⌊ l−2

3 ⌋ ≥ ⌊ l3⌋+1≥ ⌈ l3⌉ out-arcs toward special vertices.
By Lemma 43, a special vertex in D has in-degree at most k−1 as D is reduced under

Rule (3). Thus, there are at most 3(k−1)(30k−2) non-special vertices in D, so the total
number of vertices in D sums to less than 90k2 as claimed.

56 CHAPTER 3. FINDING DIRECTED TREES WITH MANY LEAVES

r

v4,1v1,1

Figure 3.6: The lower bound graph Tl, with l = 4. Arcs of the type (vi,3t,vi+t,1) are only
depicted for i= 1 for clarity.

To sum up, the kernelization algorithm is as follows: starting from a rooted digraph D,
apply the reduction rules. Let D ′ be the obtained reduced rooted digraph. If D has size
more than 90k2, then reduce to a trivially TRUE instance. Otherwise, D ′ is an instance
equivalent to D with O(k2) vertices.

Observation 45. A reduced instance has actually O(k2) arcs.

Proof. There is a linear number of special vertices, so there is at most a quadratic number
of arcs between special vertices. The number of arcs between non-special vertices is linear
in the number of non-special vertices (and hence quadratic ink) since non-special vertices
form weak bipaths. The are only two arcs from special vertices to all non-special vertices in
a given weak bipath, thus the number of arcs from special vertices to non-special vertices
is at most quadratic as well. Finally, special vertices have in-degree less than k, thus the
number of arcs from non-special vertices to special vertices is at most quadratic as well.

This quadratic bound is tight up to a constant factor with respect to our reduction rules.
Indeed, the graph Tl depicted in Figure 3.6 and described below is reduced under the re-
duction rules stated in Section 3.2 and has a number of vertices quadratic in its maximal
number of leaves.

Let V = {vi,j|i= 1, . . ., l, j= 1, . . .,3(l−1)}. For every i= 1, . . ., l, the pair (r,vi,1) is an
arc of T . For every j= 1, . . .,3l−2 and i= 1, . . ., l, the pair (vi,j,vi,j+1) is a 2-circuit of Tl.
For every i = 1, . . ., l, the pair (vi,3l−1,vi+1[l],3l−1) is an arc of Tl. For every t= 1, . . ., l−1

and i = 1, . . ., l, the pair (vi,3t,vi+t,1) is an arc of Tl, where i+ t takes values in {1, . . ., l}

3.4. CONSTANT-FACTOR APPROXIMATION 57

r

a

b

e

c

d

Figure 3.7: This graph is 2-connected
and reduced under the reduction rules
of Section 3.2. Indeed, the horizon-
tal weak bipath (between d and b)
contains no bipath of length 4 due to
the simple out-arc towards e, so Rule
(2) does not apply. The root r and
the special vertices a,b,c,d,e are de-
picted with fat dots. Vertex d has in-
degree 3, vertices a,b,c are incident
to simple in-arcs, and vertex e verifies
both. Other vertices are non-special,
and thus are organized into weak bi-
paths between two special vertices. For
example, there is a weak bipath (of
length 3) between b and d, and a weak
bipath (of length 0) between c and d.

depending on its value modulo l. This digraph Tl is reduced under the reduction rules of
Section 3.2, and maxleaf(Tl) = 2(l−1). Finally, Tl has 3l(l−1)+1 vertices.

Note that this graph has many 2-circuits. We are not able to deal with them with respect
to kernelization. For the approximation on the contrary, we are able to deal with the 2-
circuits to produce a constant factor approximation algorithm.

3.4 Constant-Factor Approximation

This section is devoted to a constant factor approximation algorithm for ROOTED MAX-
IMUM LEAF OUT-BRANCHING, being understood that this also gives an approximation al-
gorithm of the same factor for MAXIMUM LEAF OUT-BRANCHING as well as for finding an
out-tree (not necessarily spanning) with many leaves in a digraph.

The reduction rules described in Section 3.2 directly give an approximation algorithm
asymptotically as good as the best known approximation algorithm [50]. Indeed, as these
rules are independent of the parameter, and as our proof of the existence of a solution
of size k when the reduced graph has size more than 90k2 is constructive, this yields a
O(

p
OPT) approximation algorithm. Let us sketch this approximation algorithm. Start

by applying the reduction rules described in Section 3.2 to the input rooted digraph. This
does not change the maximum number of leaves in an out-branching. Let m be the size of

the reduced digraph. We exhibit an out-branching with at least
√

m
90 leaves as in the proof

of Theorem 44. Finally, undo the sequence of contractions given by the application of the

58 CHAPTER 3. FINDING DIRECTED TREES WITH MANY LEAVES

reduction rules at the start of the algorithm, repairing the tree as in the proof of Lemma 41.

The tree thus obtained has at least
√

m
90 leaves, while the tree with a maximum number of

leaves in the input graph has at most m−1 leaves. Thus this algorithm is an O(
p
OPT)

approximation algorithm.
Let us now describe our constant factor approximation algorithm. Given a rooted di-

graph D ′′, apply exhaustively Rule (1) of Section 3.2. The resulting rooted digraph D is
2-connected. By Lemma 41, maxleaf(D ′′) = maxleaf(D).

Let us denote byDns the digraphD restricted to non-special vertices. Recall thatDns is
a disjoint union of bipaths, which we call non-special components. A vertex of out-degree
1 in Dns is called an end. Each end has exactly one special vertex as an in-neighbour and
out-neighbour in D. See Figure 3.7 for an example, where Dns is the graph induced by the
vertices depicted with small dots.

Theorem 46. Let D be a 2-connected rooted digraph with l special vertices and h non-
special components. Then max(l

30 ,h− l)≤maxleaf(D)≤ l+2h.

Proof. The upper bound is clear, as at most two vertices in a given non-special component
can be leaves of a given out-branching. The first term of the lower bound comes from The-
orem 37 and Theorem 38. To establish the second term, consider the digraph D ′ which is
to restriction of D to r and the special vertices of D. For every non-special component of
D, add a 2-circuit in D ′ between the special in-neighbours of its two ends. Consider an
out-branching of D ′ rooted at r. This out-branching uses l edges in D ′, and directly cor-
responds to an out-tree T in D. Extend T into an out-branching T̃ of D. Every non-special
component which is not used in T contributes to at least a leaf in T̃ , which concludes the
proof.

Consider the best of the three out-branchings of D obtained in polynomial time by
Theorem 37, Theorem 38 and Theorem 46. This out-branching has at least max(l

30 ,h− l)

leaves. The worst case is when l
30 =h−l. In this case, the upper bound becomes: l+2h=

92l
30 , so we have a factor 92 approximation algorithm for ROOTED MAXIMUM LEAF OUT-

BRANCHING.
Note that the above analysis is probably not tight, and this constant factor approxima-

tion algorithm to find directed trees with many leaves should actually have a better ratio
than 92.

3.5. LINEAR KERNEL FOR ACYCLIC DIGRAPHS 59

3.5 Linear Kernel for DIRECTED k-LEAF restricted to Acyclic
Digraphs

Note that the results in Section 3.3 do not give a vertex-linear kernel for oriented graphs.
Indeed, the reduction rules applied to an oriented graph can create 2-circuits. The exis-
tence of a vertex-linear kernel for ROOTED MAXIMUM LEAF OUT-BRANCHING is still open
even in the case of oriented graphs. In this section, we prove that the simpler acyclic case
admits a vertex-linear kernel.

An acyclic digraph D has an out-branching if and only if D has a single vertex of in-
degree zero. This follows from Observation 47 which will also be used in Chapter 8.

Observation 47. [[7]] A digraph D has an out-branching if and only if D has a single
strongly connected component without incoming arcs. One can decide whether a digraph
has an out-branching in time O(n+m).

Hence, we assume that the acyclic digraph D under consideration has a single vertex r
of in-degree zero.

We start from the following simple lemma.

Lemma 48. In an acyclic digraph D with a single source r, every spanning subgraph of D,
where each vertex different from r has in-degree 1, is an out-branching.

Let B be an undirected bipartite graph with vertex bipartition (V ′,V ′′). A subset S of
V ′ is called a bidominating set if for each y ∈V ′′ there is an x ∈ S such that xy ∈E(B). The
so-called greedy covering algorithm [6] finds a bidominating set as follows. Start from the
empty set C. While V ′′ 6= ;, choose a vertex v of V ′ of maximum degree, add v to C, and
delete v from V ′ and the neighbours of v from V ′′.

The following lemma has been obtained independently by several authors, see Propo-
sition 10.1.1 in [6].

Lemma 49. If the minimum degree of a vertex in V ′′ is d, then the greedy covering algorithm

finds a bidominating set of size at most 1+
|V ′|
d (1+ ln

d|V ′′|
|V ′|

) .

Let D be an acyclic digraph with a single source. We use the following reduction rules
to get rid of some vertices of in-degree 1.

(A) If D has an arc a= xy with d+(x) =d−(y) = 1, then contract a.
(B) If D has an arc a= xy with d+(x)≥ 2, d−(y) = 1 and x 6= r, then delete x and add

an arc uv for each u ∈N−(x) and v ∈N+(x).
Note that applying Rules (A) and (B) preserves the acyclicity. These reduction rules are

safe, essentially because the arc a must belong to an out-branching in both cases:

Lemma 50. Let D∗ be the digraph obtained from an acyclic digraph D with a single source
by applying exhaustively Rule A and Rule B. Then D∗ has a k-out-branching if and only if
D has one.

60 CHAPTER 3. FINDING DIRECTED TREES WITH MANY LEAVES

Proof. Consider an acyclic digraph D with an arc a= xy with d+(x) = d−(y) = 1 and let
D ′ be the digraph obtained from D by contracting a. Let T be a k-out-branching of D.
Clearly, T contains a and let T ′ be the out-branching obtained from T by contracting a.
Then T ′ is also a k-out-branching. Similarly, if D ′ has a k-out-branching T ′, then D has a
k-out-branching T obtained from T ′ by adding the arc a. Hence Rule (A) is safe.

Consider now an acyclic digraph D with an arc a= xy with d+(x) ≥ 2, d−(y) = 1 and
x 6= r and let D ′ be obtained from D by applying Rule (B). Let T be a k-out-branching
in D. Then T contains the arc xy and x is not a leaf of T . Let U be the subset of N+(x)

such that xu ∈ A(T) for each u ∈ U and let v be the vertex such that vx ∈ A(T). Then
the out-branching T ′ of D ′ obtained from T by deleting x and adding arcs vu for every
u ∈U has at least k leaves. Note that T ′ is indeed an out-branching of D ′ by Lemma 48.
Similarly, a k-out-branching of D can easily be constructed from a k-out-branching of D ′

by appropriately inserting the vertex x.

Consider the resulting digraph D∗. Let B be an undirected bipartite graph, with vertex
bipartition (V ′,V ′′), where V ′ is a copy of V(D∗) and V ′′ is a copy of V(D∗)− {r}. The set
of edges of B is E(B) = {u ′v ′′| u ′ ∈V ′,v ′′ ∈V ′′,uv∈A(D∗)}.

Lemma 51. Let R be a bidominating set of B. Then D∗ has an out-branching T such that
the copies of the leaves of T in V ′ form a superset of V ′−R.

Proof. Consider a subgraph Q of B obtained from B by deleting all edges apart from one
edge between every vertex in V ′′ and its neighbour in R. By Lemma 48, Q corresponds to
an out-branching T of D∗ such that the copies of the leaves of T in V ′ form a superset of
V ′−R.

Theorem 52. If D∗ has no k-out-branching, then the number n∗ of vertices of D∗ is less
than 6.6(k+2).

Proof. Suppose thatn∗ ≥ 6.6(k+2); we will prove thatD∗ has a k-out-branching. Observe
that by Rules A and B, all vertices of D∗ are of in-degree at least 2, besides r and possibly
some of its out-neighbours. Let X denote the set of out-neighbours of r of in-degree 1 and
let X ′′ be the set of copies of X in V ′′. Observe that the vertices of V ′′−X ′′ are all of degree
at least 2 in the bipartite graph B−X ′′. Thus, by Lemma 49, B−X ′′ has a bidominating set
S of size at most n∗

2 (1+ ln2)+1. Hence, S∪ {r} is a bidominating set of B and, by Lemma

51, D∗ has a b-out-branching with b≥n∗− n∗

2 (1+ ln2)−2≥ 0.153n∗−2≥ k.

3.6 Conclusion

In this chapter, we have given an edge-quadratic kernel and a constant factor approx-
imation algorithm for ROOTED MAXIMUM LEAF OUT-BRANCHING, reducing the gap be-
tween the problem of finding trees with many leaves in undirected and directed graphs.

3.6. CONCLUSION 61

MAXIMUM LEAF SPANNING TREE has a factor 2 approximation algorithm, and ROOTED

MAXIMUM LEAF OUT-BRANCHING now has a factor 92 approximation algorithm. Reducing
this 92 factor into a small constant is one challenge.

The gap now essentially lies in the fact that MAXIMUM LEAF SPANNING TREE has a
vertex-linear kernel while ROOTED MAXIMUM LEAF OUT-BRANCHING has a quadratic ker-
nel. Deciding whether ROOTED MAXIMUM LEAF OUT-BRANCHING has a vertex-linear ker-
nel is a challenging question. We have given a positive answer in the simpler acyclic case.
Whether long paths made of 2-circuits can be dealt with or not through reduction rules
might be key for the existence of a vertex-linear kernel in the general case.

Part II: Graph Structure and
Decompositions

We give a brief introduction to treewidth and graph minors, two important structural
concepts used in this part. We refer the reader to Robertson and Seymour’s Graph Minors
series and to Bodlaender’s survey [10] for a more complete presentation of treewidth.

Introduction to Treewidth

Informally, treewidth mesures the closeness of a graph to a tree. The definition of
treewidth is usually credited to Robertson and Seymour in their Graph Minors series. Halin
had apparently introduced this concept earlier, and several different formulations have
been independently introduced by other authors later on. The following definition is the
standard presentation of treewidth.

A tree decomposition of a graphG= (V,E) is a tree T and a set {Tv|v ∈V} of subtrees of T
such that Tu∩Tv 6=; for every edge (u,v) ∈E. The width of a decomposition is the cardinal
of the largest pairwise intersecting set of subtrees minus one. The treewidth of a graph is
the minimum width of its tree decompositions.

Alternatively, a graph has treewidth at most k if it is a subgraph of a chordal graph
whose cliques have size at most k+1. Another way to express this property is that a graph
has treewidth at most k if there exists a vertex elimination ordering such that each vertex
has at most k non-eleminated neighbours when eliminated.

Treewidth can also be defined in terms of cops and robber games. A haven of order
k+1 of a graph G is a function f mapping each set X of at most k vertices of G to one of the
connected components of G−X and such that f(Y)⊂ f(X) when X⊂ Y. The treewidth of
G is the largest index k such thatG admits a haven of order k+1.A haven of order k+1 can
be used by an infinitely fast visible robber to avoid k cops trying to catch him in G [116],

63

64 PART II: GRAPH STRUCTURE AND DECOMPOSITIONS

and conversely a tree-decomposition of width at most k−1 gives a search strategy for k
cops to catch the robber.

The +1 or −1 is added in these definitions so that the graphs of treewidth 1 are the
forests.

Treewidth admits a negative certificate: brambles. A bramble of a graph is a collection
of connected sets of vertices such that the union of every two sets is connected. The order
of a bramble is the minimum size of a transversal, i.e. of a vertex set which intersects each
set in the bramble.

Theorem 53 ([116]). A graph has treewidth at most k if and only if it admits no bramble of
order k+1.

The crucial importance of treewidth lies in the fact that many difficult and impor-
tant graph problems become tractable on graphs of bounded treewidth. Among oth-
ers: CLIQUE, COLOURING, FEEDBACK VERTEX SET, HAMILTONIAN CYCLE, GRAPH ISOMOR-
PHISM. Algorithmic techniques relying on bounded treewidth are generally called Dynamic
Programming. The majot tractability meta-result for problems on graphs of bounded
treewidth is Courcelle’s Theorem [33]: every problem definable in monadic second order
logic is FPT when parameterized by the treewidth of the input graph.

Computing the treewidth of a graph is NP-hard, and FPT when parameterized by the
treewidth [9]. Treewidth can be approximated within a factor O(

√
log(n)) [58], and the

existence of a constant factor approximation algorithm for treewidth is open. On planar
graphs, is it not known whether computing treewidth is NP-hard.

Minors, treewidth and order theory

Minor is a richer relation than subgraph. A graph H is a minor of a graph G if H can be
obtained from G by a sequence of edge-contractions and edge- and vertex-deletions.

Many natural graph problems are closed under minors. For example planarity is pre-
served by contractions and deletions. K5 and K3,3 are two non-planar graphs, and Ku-
ratowski showed that planarity is actually characterised by these two graphs through the
minor relation:

Theorem 54 (Kuratowski). A graph is planar if and only if it does not have K5 and K3,3 as a
minor.

Every class of graph closed under a quasi-order (a reflexive and transitive relation) ¹ is
characterised by a (possibly infinite) set of obstructions under ¹, namely the set of mini-
mal (by ¹) graphs outside the class. This set of obstructions is an antichain for ¹ (a set of
pairwise incomparable elements). The key point of Kuratowski’s result is that this set is ac-
tually finite for planar graphs ordered by the minor relation. More generally, a quasi-order

65

is called a well-quasi-order when every antichain is finite. Wagner reportedly conjectured 2

that the minor relation is a well-quasi-order, which implies that every class of graphs closed
under minor is characterised by a finite set of obstructions. This conjecture was proved by
Robertson and Seymour and is now known as the graph minor theorem.

Theorem 55 (Robertson and Seymour’s graph minor theorem). The minor relation is a
well-quasi-order on the set of finite graphs.

On top of its fundamental importance, the graph minor theorem has a also great algo-
rithmic significance, as minor testing can be done in polynomial time.

Corollary 56. Graph problems closed under minor are polynomial time decidable.

Treewidth is a key tool in Robertson and Seymour’s approach. Graphs of bounded
treewidth have a sufficiently simple structure for Robertson and Seymour to prove that
minor is a well-quasi-order on a set of graphs of bounded treewidth [111, 112]. Hence we
can consider only graphs of large treewidth. This is essentially enough to prove the graph
minor theorem on planar graphs. Indeed, a planar graph is a minor of a large enough grid
(imagine a planar drawing of the graph approximated through a very fine crosshatch). The
following result allows to conclude in the planar case:

Theorem 57 ([115]). A graph with treewidth at least 22m
5

contains an m∗m grid minor.

Putting it all together, an infinite antichain of planar graphs must contain graphs of ar-
bitrarily large treewidth, which admit arbitrarily large grid minors. This is a contradiction,
as each of these planar graphs is a minor of a large enough grid.

Things are more complicated when considering non-planar graphs. In an infinite an-
tichain S of graphs, consider a graph H. Each graph in S is H-minor free by definition.
Robertson and Seymour exhibited a structure theorem for H-minor free graphs: these
graphs can be constructed with a tree-like stucture from graphs "nearly-embeddable" in
some surface. This structure theorem is a big part of Robertson and Seymour’s proof of
the graph minor theorem, and a reasoning similar to the proof sketched above for planar
graphs can be used to conclude.

Reducing Multicut to Bounded Treewidth

In Chapter 4, we show that MULTICUT parameterized by the solution size k can be
reduced to graphs of treewidth bounded by a function of k. This is a joint work with
Christophe Paul, Anthony Perez and Stéphan Thomassé.

This chapter is highly concerned with minors. Indeed, graphs of large treewidth admit
large grid minors, and we use different types of minors to structure the instance and obtain
more information on the behavior of multicuts. Chapter 4 can be seen as an first step

2. Although he actually denied having made this conjecture.

66 PART II: GRAPH STRUCTURE AND DECOMPOSITIONS

towards the proof that MULTICUT is FPT given in Chapter 7. The connectivity tools given
in Chapter 4 are the foundations of the approach in Chapter 7.

In Section 4.2, we study constrained separation problems of the type: separate ver-
tex x from vertex y without seperating y from vertex z. This allows us to design powerful
reduction rules for MULTICUT. For example, Rule 2 in Section 4.2 allows each vertex to par-
ticipate only to a number of requests bounded in k. Rule 3 is yet more powerful. If a large
set T of terminals is gathered, then a request can be safely removed from the instance. In-
formally, gathered means that a k-edge cut cannot separate two vertices of T from the main
part of T in the same connected component. In Section 4.3 and Section 4.4 we work on the
structure of the instance given by a large treewidth in order to find such a large gathered
set of terminals.

Well-Quasi-Ordering Induced Subgraphs

Minor-closed graph problems are automatically polynomial-time decidable by Corol-
lary 56, as the minor relation is a well-quasi-order. It is natural to consider more restrictive
relations, but the subgraph and (hence) induced subgraph relations are not well-quasi-
orders. Indeed, the set of cycles is an infinite antichain for these relations. An algorithmic
meta-result as powerful as the Graph Minor Theorem will not hold in the setting of induced
subgraphs. Even if the induced subgraph relation is a well-quasi-order on a restricted class
of graphs S, this does not imply that S is recognizable in polynomial time. Indeed, the
obstructions to S lie outside the class S, so there could be infinitely many obstructions
nonetheless.

In Chapter 5, we are interested in an attempt towards a weaker meta-result. The fol-
lowing definition is a strengthening of the notion of well-quasi-order. A set S of graphs
is n-well-quasi-ordered if the set Ŝ, consisting of all vertex n-colourings of graphs in S, is
well-quasi-ordered by the coloured induced subgraph relation ≤c. More precisely, G≤cG

′

if there is an injection from V(G) to V(G ′) preserving adjacency and colour. The notion of
1-well-quasi-order is exactly that of well-quasi-order, and the notion of 2-well-quasi-order
is more constrained, as the set of paths is not 2-well-quasi-ordered by the induced sub-
graph relation. Indeed, the set of paths with their extremities of colour 1 and their internal
vertices of colour 2 forms an infinite antichain.

This notion allows an algorithmic meta-result (see Proposition 112):

Proposition 58. If the induced subgraph relation is a 2-well-quasi-order on a class of graphs
S, then S is recognizable in polynomial time.

In Chapter 5 we try to characterise the 2-well-quasi-ordered classes of graphs, with the
following conjecture of Pouzet in mind, which states that using more than two colours
would actually be irrelevant:

67

Conjecture 59. A class of graphs closed under induced subgraph is 2-well-quasi-ordered if
and only if it is n-well-quasi-ordered, where n≥ 3.

We give a partial characterisation (which we conjecture to be complete) of the 2-
well-quasi-ordered classes of graphs, using NLC-decomposition, a tree-like decomposi-
tion of graphs absolutely similar to clique-decomposition. We use NLC-width and NLC-
decomposition for the sake of simplicity, but all results could be stated in terms of clique-
width and clique-decomposition. We refer the reader looking for the definition of NLC-
width to Chapter 5.

More technically, we will define classes NLCF
k

to be the restriction of the class of graphs
NLCk, where relabelling functions are exclusively taken from a set F of functions from
{1, . . .,k} into {1, . . .,k}. We characterise the sets of functions F for which NLCF

k
is well-

quasi-ordered by the induced subgraph relation ≤i. Precisely, these sets F are those which
satisfy that for every f,g ∈ F, we have Im(f ◦g) = Im(f) or Im(g ◦ f) = Im(g). To obtain
this, we show that words (or trees) on F are well-quasi-ordered by a relation slightly more
constrained than the usual subword (or subtree) relation.

To characterise the 2-well-quasi-ordered classes of graphs, we conjecture that such a
class is always included in some well-quasi-ordered NLCF

k
for some family F. This would

imply Pouzet’s conjecture.
Chapter 5 is based on [41], a joint work with Stéphan Thomassé and Michael Rao.

Diamond-free Circle Graphs are Helly Circle

In Chapter 6, we describe a characterisation of a geometric class of graphs, namely
the Helly Circle graphs. This chapter follows [38], a joint work with Daniel Gonçalves and
Michael Rao.

A circle graph is the intersection graph of a set of chords in a circle. Such a circle model
has the Helly property if every three pairwise intersecting chords intersect in a single point,
and a graph is Helly circle if it has a circle model with the Helly property.

Not all circle graphs admit a Helly circle model. For example, the diamond, the graph
obtained from K4 by deleting an edge, has no Helly circle model. Indeed, the two induced
triangles would need to correspond to the same intersection point in the circle model to
respect the Helly property. We show that the diamond is essentially the only such counter-
example, i.e. that the Helly circle graphs are exactly the diamond-free circle graphs, as
conjectured by Durán [51]. This characterisation gives an efficient recognition algorithm
for Helly circle graphs.

Our proof is constructive. We maintain a circle model of the graph G while growing a
subgraph H ⊆ G on which the circle model is Helly. Informally, we grow H by finding a
vertex u ∉H such that the circle model of H∪ {u} is convex, and we prove that the neigh-
bourhood of such a vertex u possesses nice linear ordering properties. This allows us to
define a sequence S of vertices which contains u, and such that we can propagate small

68 PART II: GRAPH STRUCTURE AND DECOMPOSITIONS

endpoint movements over the chords representing the vertices of S. We do not change the
circular order of the endpoints around the circle, and we finally obtain a new circle model
of G which is Helly on H∪S. Growing the subgraphH layer by layer untilH=G completes
the proof.

CHAPTER

4
Reducing Multicut to Bounded

Treewidth

In this chapter, we show that MULTICUT parameterized by the solution size k can be
reduced to graphs of treewidth bounded by a function of k.

The key idea is to establish conditions under which we can identify an irrelevant re-
quest, i.e. a request whose removal yields an equivalent instance. For example, we prove
that if a vertex is an endpoint of too many requests, then one of these requests is irrelevant.
Hence, we will be able to assume that the request graph of an instance has maximum de-
gree bounded by a function of k. Likewise, if a large gathered set of terminals exists (i.e. a
set of terminals which satisfies some separability properties), then one of these terminals is
incident to an irrelevant request. Both cases yield reduction rules as the irrelevant request
can be identified in FPT time.

Given an input graph of large treewidth (with respect to the solution size k), we estab-
lish a win / win situation. Either one of the reduction rules applies or we can identify an
edge whose contraction yields an equivalent instance. Informally, such a useless edge can
be found in a zone of the graph sufficiently far away from the terminals and sufficiently
connected, so that this edge cannot help disconnect a meaningful part of the graph.

The cases where the input graph has a large grid minor and a large clique minor are
treated separately. The proofs of these two cases share some similarities, but we could not
unify them.

Therefore we prove that MULTICUT is FPT when parameterized by the solution size k if
and only if MULTICUT is FPT when restricted to graphs of treewidth bounded in k. Besides,
we give an O∗((2k+1)k) algorithm for the INTEGER WEIGHTED MULTICUT IN TREES prob-
lem. This last problem, which was left open in Chapter 2 and in [80], is one of the simplest
sub-cases of the MULTICUT problem on bounded treewidth graphs.

The work in this chapter was completed prior to finding the "emulate requests with 2-

69

70 CHAPTER 4. REDUCING MULTICUT TO BOUNDED TREEWIDTH

SAT clauses" idea, which eventually led to the self-contained complete proof in Chapter 7.
Although results from this chapter will not be explicitly used in Chapter 7, the treewidth
reduction exposed below paves the way for the complete proof that MULTICUT is FPT in
two ways. Most importantly, the connectivity framework established in this chapter is
the core of the complete proof. Less importantly, working on seemingly hard instances
of small treewidth gave birth to the starting point of Chapter 7, emulating requests with
2-SAT clauses in simplified instances.

4.1 Preliminaries

Given two vertices x,y ∈ V(G), contracting x and y in G means deleting x and y and
adding a new vertex with neighbourhood N(x)∪N(y)\ {x,y}. When X⊆V(G) we denote
by G[X] the subgraph of G induced by X.

An (x,y)-cut is a set of edges of the graph G whose removal disconnects x and y. We
define similarly an (x,Y)-cut and an (X,Y)-cut for two sets X,Y of vertices in V(G). We say
that an edge xy belongs to a set X ⊆ V(G) if x,y ∈ X. A set of edges F touches an induced
subgraph G ′ of G if an edge in F belongs to V(G ′).

Given a graph J, let us denote by Li and call the level i of J starting from L0 ⊆ V(J)

the subset of V(J) containing vertices lying at distance exactly i from L0 in J. The level
decomposition of J starting with L0 ⊆V(J) is the partition of V(J) into levels Li, i≥ 0.

Given an instance (G,R,k) of the parameterized MULTICUT problem, a k-multicut is a
multicut of size at most k. We say that a k-multicut is optimal when its size is minimum
among all k-multicuts. We say that a request (si, ti) is irrelevant whenever the instance
(G,R\{(si, ti)},k) is equivalent to the instance (G,R,k).

We use the following notation with respect to minors. Let P be a partition of V(G),
such that every part h of P induces a connected subgraph of G. Let H be the graph G

quotiented by P, i.e. the graphG where each part of P is contracted into a single vertex. If J
is a subgraph of H, then J is said to be a minor of G. We say that the pair (P,H) is a J-model
of G. In a slight abuse of notation, we write that H is a J-model of G (or simply a model of
G), leaving partitionP implicit. We also abusively write that a part h of P is a part of H. We
want to emphasize that edges of H are all pairs of parts of P between which G induces an
edge. When H ′ is a subgraph of H, V(H ′) naturally denotes the set of vertices of H ′, which
are parts, and we write VG(H

′) to denote the set of vertices
⋃

h∈H ′
x ∈h⊆V(G).

These definitions are quite cumbersome, but we refer the reader to the above para-
graph in case of a doubt about the minor-related notations and terminology.

4.2. GENERAL REDUCTION RULES FOR MULTICUT 71

4.2 General Reduction Rules for MULTICUT

Let (G,R,k) be an instance of MULTICUT. This section is devoted to show that the fol-
lowing three reduction rules are correct and can be applied in FPT time.

Rule 1. If there exist k+1 edge-disjoint paths between two vertices x and y, then contract x
and y.

Ihere exists an integer req(k) = kO(k) such that the following holds 1.

Claim 60. If a vertex t is an endpoint of at least req(k) requests, then we can find in FPT
time an irrelevant request incident to t.

Rule 2. If a vertex t is an endpoint of at least req(k) requests, then we remove the irrelevant
request found with Claim 60.

By Rule 2 we may assume that the degree of the request graph is bounded by req(k).
We say that a set T ⊆ V is gathered if for every F ⊆ E, |F| ≤ k, there exists at most one con-
nected component inG\F containing more than one vertex of T . We denote this connected
component by CF. Note that a subset of a gathered set is gathered.

Claim 61. If the instance is reduced under Rule 2 and there exists a gathered set of terminals
T of size at least gath(k) = 4 ·req(k)3 = kO(k), then we can find in FPT time an irrelevant
request incident to one of these terminals.

Rule 3. If the instance is reduced under Rule 2 and there exists a gathered set of terminals T
of size at least gath(k) = 4 · req(k)3 = kO(k), then we remove the irrelevant request found
with Claim 61.

Lemma 62. Rule 1 is safe and can be applied in polynomial time.

Proof. If there exist k+1 edge-disjoint paths between two vertices x and y, then x and y

lie in the same connected component of G\F for every set F of k edges. Hence contract-
ing x and y yields an equivalent instance. Testing whether two vertices are (k+1)-edge-
connected is polynomial by usual flow techniques.

To prove the soundness of Rule 2 and Rule 3, we study two edge-connectivity problems
of independent interest. We define the central notions of this section:

– A (zy|x)-cut is a (z,x)-cut which is not a (z,y)-cut. Similarly, given a subset of ver-
tices T , a (zy|T)-cut is a (z,T)-cut which is not a (z,y)-cut.

– A vertex y ∉ T is (z|T)-k-linked if there is no (zy|T)-cut of size at most k, i.e. if every
(z,T)-cut of size at most k is a (z,y)-cut.

We call TRIPLE SEPARATION the problem of finding a (zy|x)-cut of size at most k.

1. More precisely, req(k) = f(k,k), where f is defined at the beginning of the proof of Theorem 66. Some
of the bounds proved in this chapter are rather heavy, and we do not wish to write them explicitly in the main
statements.

72 CHAPTER 4. REDUCING MULTICUT TO BOUNDED TREEWIDTH

TRIPLE SEPARATION:
Input: A graph G=(V,E), three vertices x,y,z ∈V(G) and a positive integer k.
Parameter: k.
Output: A (zy|x)-cut of size at most k (if one exists).

Theorem 63. The TRIPLE SEPARATION problem is FPT with respect to the solution size k.

A stronger statement has recently been proved by Marx et al. [98]. Their Theorem 3.4
states that deciding whether there exists a set of k vertices separating prescribed pairs and
not separating other prescribed pairs is FPT with respect tok and the number of prescribed
pairs. We give a different proof of our statement for the sake of completeness.

Proof. Consider an input of the TRIPLE SEPARATION problem, with a graph G = (V,E),
three vertices x,y,z and an integer k. Given a set of vertices X, we denote by δG(X), or
more simply by δ(X), the border of the set of vertices X, i.e. the set of edges having exactly
one endpoint in X. Let c be the size of a minimum cut between vertices z and x, and let
X be a minimal set of vertices of border of size c containing x. Observe first that if c > k

then the answer is NO. So assume that c É k. Notice that a minimal edge-cut separates
the graph into exactly 2 connected components. Hence if y ∉ X then δ(X) is a (zy|x)-cut
and the answer is YES. Otherwise, let G ′ be the multigraph obtained from G by contracting
V(G)\X into a single vertex z ′, keeping multiple edges.

Claim 64. There exists a (zy|x)-cut of size at most k in G if and only if there exists a (z ′y|x)-
cut of size at most k in G ′.

Proof. Assume first that there exists a (z ′y|x)-cut F ′ of size at most k in G ′. Let W be
the connected component of G ′\F ′ containing x. We have that |δG(W)|= |δG ′(W)|, hence
δG(W) is a (zy|x)-cut of size at most k in G.

Conversely, let F be a (zy|x)-cut of size at most k in G, and let Z be the connected
component of G \ F containing z and y. Let Z ′ ⊆ V(G ′) be the set Z∩X∪ {z ′}. The
set δG ′(Z ′) is a (z ′y|x)-cut in G ′. By definition of G ′ and Z ′, we have |δG ′(Z ′)| =
|δG ′(Z ∩ X ∪ {z ′})| = |δG(Z ∪ X)|. By submodularity of the border, we know that
|δG(Z)|+|δG(X)|≥ |δG(Z∪X)|+|δG(Z∩X)|. Thus, |δG ′(Z ′)|≤ |δG(Z)|+|δG(X)|−|δG(Z∩X)|.
As δG(X) is minimum zx-cut in G, we know that |δG(X)| ≤ |δG(Z ∩ X)|, which gives
|δG ′(Z ′)|≤ |δG(Z)|≤ k. ⋄

We are now looking for a (z ′y|x)-cut of size at most k in G ′. By minimality of X, we
know that δG ′(X) is the only minimum (z ′,x)-cut in G ′ (otherwise we would find a smaller
set X ′ (X containing x of border of size c in G). We have to look the a (zy|x)-cut of size l

with c+1 ≤ l ≤ k. By definition, such a cut does not contain all edges of δG ′(X), because
otherwise it would be a (z,y)-cut. We thus branch over the c edges adjacent to z ′, obtaining
c new instances where the considered edge has been contracted to a single vertex z̃. Doing
so, we strictly increase the connectivity between z ′ and x by minimality of X. We now have

4.2. GENERAL REDUCTION RULES FOR MULTICUT 73

to decide if there exists a (z̃y|x)-cut in a graph where the connectivity between z̃ and x is
at least c+ 1. Note that if the contracted edge was z ′y, we just need to decide whether
there exists a cut of size at most k between z̃ and x. Since c≤ k and since the connectivity
between z̃ and x strictly increases at each step, the whole branching algorithm runs in time
O(k!×poly(n)).

We say that a vertex x is k ′-strongly (z|T)-k-linked if and only if for every S ⊆ T such
that |S|≥ |T |−k ′, the vertex x is (z|S)-k-linked (i.e. if there is no (zx|S)-cut of size at most
k). Note that when x is k ′-strongly (z|T ′)-k-linked, x is a fortiori k ′-strongly (z|T)-k-linked
when T ′ ⊆ T . In particular, we get the following corollary by using Theorem 63 on every
subset S⊆ T such that |S|≥ |T |−k ′, contracting the set S into a single vertex:

Corollary 65. Deciding whether a vertex x is k ′-strongly (z|T)-k-linked and producing a
witness of non-strong-linkage, i.e. a (zx|S)-cut for S a subset of T of size at least |T |−k ′, is
FPT in k, k ′ and |T |.

The following Theorem is a key result of this chapter:

Theorem 66. Let G= (V,E) be a graph, z a vertex of V(G) and T a subset of V(G)\{z} of size
at least f(k,k ′) = kO(k+k ′). There exists a vertexx∈ T which isk ′-strongly (z|T\{x})-k-linked
and which can be found in FPT time in k, k ′ and |T |.

Proof. Assume that T has size at least f(k,k ′) = kk+k ′+1(k
′+1+k2

k−1 +1)− k ′+1+k2

k−1 .
We initiate our algorithm with the graph G0 :=G and let T0 := T . We repeat the follow-

ing process k+k ′+2 times, selecting some vertex xi in Ti for i= 0, . . .,k+k ′+1. We first
test whether xi is k ′-strongly (z|Ti\{xi})-k-linked inGi as in Corollary 65. If this is the case,
then we are done. If this is not the case, we obtain a subsetSi of Ti of size at least |Ti|−k ′−1

and a (z|Si)-cut Ci of size at most k which is not a (z,xi)-cut. Denote by Li the connected
component of Gi\Ci containing z, and consider the connected component Vi+1 of Gi\Ci

not containing z and containing the largest number of vertices of S. Let Gi+1 be the graph
obtained from G[Vi+1∪Li] by contracting Li∪V(Ci) into z, where V(Ci) denotes the set of
vertices incident to Ci. Note thatV(Gi+1) contains a large subset Ti+1= Ti∩(Vi+1\V(Ci))

of vertices of T , and that xi is well defined for every i= 1, . . .,k+k ′+1. Indeed, by defini-

tion of Si, we have that |Ti+1|≥
|Si|
k −k, since at most k vertices of Si belong to V(Ci), and

Vi+1 is chosen among at most k components. As |Si| ≥ |Ti|−k ′−1 by definition, we ob-

tain |Ti+1|≥
|Ti|−k ′−1

k −k. Equivalently, this means that |Ti+1|+
k ′+1+k2

k−1 ≥ 1
k(|Ti|+

k ′+1+k2

k−1).

Thus the sequence (|Ti|+
k ′+1+k2

k−1) follows a geometric progression of factor 1
k . So that

|Tk+k ′+1| ≥ 1 we need that |T |+ k ′+1+k2

k−1 = |T0|+
k ′+1+k2

k−1 ≥ kk+k ′+1(k
′+1+k2

k−1 + |Tk+k ′+1|) ≥
kk+k ′+1(k

′+1+k2

k−1 +1), that is |T |≥ kk+k ′+1(k
′+1+k2

k−1 +1)− k ′+1+k2

k−1 , which is the assumption
of Theorem 66.

If the algorithm did not stop after step k+k ′+1, this means that for every i= 1, . . .,k+

k ′+1, xi is not k ′-strongly (z|T \{xi})-k-linked in Gi.

74 CHAPTER 4. REDUCING MULTICUT TO BOUNDED TREEWIDTH

z

x0 x1 xi xk ′+k+1

L1 L2 Li+1 Lk ′+k+2

Figure 4.1: On the left, an illustration of the sets Li, Ci, Si, Vi+1 and Ti+1 in the proof of
Theorem 66. On the right, the sets Li are depicted in the original graph G, and vertex
xk ′+k+1 is k ′-strongly (z|T \{x})-k-linked in G.

Let us denote Te := {xi : i= 0, . . .,k+k ′}. We will show that xk+k ′+1 is k ′-strongly (z|Te)-
k-linked in G, which implies that xk+k ′+1 is k ′-strongly (z|T \ {xk+k ′+1})-k-linked in G.
Consider a pathP between xk+k ′+1 and z. Note thatCi∩Cj=; for i 6= j, which implies that
each edge of Ci has one endpoint in Li and one endpoint in Li+1. For every i= 0, . . .,k+k ′,
P intersects Li since P intersects Ci. For every i= 0, . . .,k+k ′, let Pi be a path between xi
and z in G which is included in P outside Li. Such a path exists because Li+1 is connected.
This implies that, for every set Se ⊆ Te of size at least k+k ′+1−k ′ = k+1, and for every
path P between xk+k ′+1 and z, there exist k+1 pathsPj for j= 1, . . .,k+1 between vertices
of Se and z, such that Pj ∩Pl ⊆ P for j 6= l. Every cut of size at most k between z and Se
contains an edge which intersects two distinct paths Pi,Pj, and hence cuts P. This holds
for every path P between xk+k ′+1 and z, so every cut of size at most k between z and Se
separates xk+k ′+1 and z.

Note that, if the algorithm did stop before step k+k ′+1, i.e. if xi is k ′-strongly (z|Ti \

{xi})-k-linked in Gi, then xi is k ′-strongly (z|T \{xi})-k-linked in G by monotonicity of this
linkedness notion and by construction of Gi.

Finally, this algorithm runs in FPT time thanks to Corollary 65.

Lemma 67. Claim 60 is correct so Rule 2 can be applied in FPT time.

Proof. Let t be a vertex which is incident to at least req(k) = f(k,k) requests, and T̃ be
the set consisting of the corresponding second endpoints of these requests. Since |T̃ | Ê
f(k,k), Theorem 66 implies that there exists a vertex t̃ ∈ T̃ which is k-strongly (t|T̃ \ {t̃})-
k-linked in G, so t̃ is in particular (t|T̃ \ {t̃})-k linked in G. Let F be a k-multicut of (G,R\

(t, t̃),k). By definition, F is a (t, T̃ \{t̃})-cut in G, and hence a (t, t̃)-cut in G as (t|T̃ \{t̃})-k-
linked. It follows that F is actually a k-multicut for (G,R,k) and thus that the request (t, t̃)
is irrelevant.

Lemma 68. Claim 61 is correct so Rule 3 can be applied in FPT time.

4.2. GENERAL REDUCTION RULES FOR MULTICUT 75

Proof. Let T be a gathered set of terminals of size at least 4f(k,k)3, and S= {s|(s,t) ∈R,t ∈
T }. By Rule 2 each vertex t ∈ T is the endpoint of at most f(k,k) requests. Hence there exist
two sets T ′= {t ′

1
, . . . , t ′p}⊆ T and S ′= {s ′, . . . ,s ′p}⊆ S with p= 4f(k,k)2 such that (t ′

i
,s ′

i
) is a

request for every i= 1, . . .,p.
We now define an auxiliary bipartite graph B= (T ′∪S ′,E ′) where t ′

i
s ′
j
∈ E ′ if i 6= j and

there exists a cut F of size at most k in G such that t ′
i

and s ′
j

lie in a same connected com-

ponent different from CF in G\F. As T ′ is gathered, in this case, no other vertex of T ′ lies
in the same component as t ′

i
and s ′

j
. For every i 6= j we use Theorem 63 on the graph ob-

tained from G by contracting T ′ \ {t ′
i
} into a single vertex x to test whether there exists a

(t ′
i
s ′
j
|x)-cut of size at most k. If so, then t ′

i
and s ′

j
are in the same connected component in

G\F, which is not CF since t ′
i

is cut from any vertex of T ′ \ {t ′
i
}, and t ′

i
and s ′

j
are adjacent

in B. Hence B can be constructed in FPT time in k.

Claim 69. Every vertex s ′ ∈ S ′ has degree at most f(k,k) in B.

Proof. Assume that there exists a vertex s ′ ∈ S ′ with degree at least f(k,k). By Theo-
rem 66 there exists a vertex x in NB(s

′), the set of neighbours of s ′ in D, such that x is
k-strongly (s ′|NB(s

′) \ {x})-k-linked. Since x and s ′ are adjacent in B, there exists a set
F⊆E(G), |F|≤ k such that s ′ and x belongs to a same component different from CF inG\F.
Since T is a gathered set, such a cut F must cut x from NB(s)\{x} and is thus a cut between
x and s ′, a contradiction. ⋄

Claim 70. There exists T ′′ ⊆ T ′ and S ′′ ⊆ S ′ of size f(k,k) such that for every set F of at most
k edges, if t ′

i
∈ T ′′ and s ′

j
∈S ′′ both lie in a component C 6=CF of G\F, then i= j.

Proof. By Claim 69, we have |E ′| É |S ′| · f(k,k). Hence there exists a set J of at least
|T ′|
2 = 2f(k,k)2 vertices of T ′ with degree at most 2f(k,k) in B. Let I = {s|(t,s) ∈ R,t ∈ J}.

The degree of B[J ∪ I] is at most 2f(k,k) implying that we can greedily find two sets
T ′′ = {t ′′

1
, . . . , t ′′

f(k,k)
}⊆ J and S ′′ = {s ′′

1
, . . . ,s ′′

f(k,k)
}⊆ I such that (t ′′

i
,s ′′

i
) is a request for every

i and B[T ′′∪S ′′] does not contain any edge. By construction, this means that for every set
F of at most k edges if t ′′

i
and s ′′

j
both lie in a component C 6=CF of G\F then i= j. ⋄

By Theorem 66, there exists a vertex s ′′
i
∈ S ′′ which is k-strongly (z|S ′′ \ {s ′′})-k-linked

in G̃, where G̃ is the graph obtained from G by contracting T ′′ to a single vertex z. We
conclude the proof of Lemma 68 by showing the following:

Claim 71. The request (s ′′
i
, t ′′

i
) is irrelevant.

Proof. Let F be a k-multicut for the instance (G,R \ (t ′′,s ′′),k). In particular, F is a
(T ′′

F
,S ′′

F
)-cut where T ′′

F
= T ′′ ∩CF and S ′′

F
denotes the set of terminals corresponding to

T ′′∩CF. Observe that F is a (z,S ′′
F
)-cut in G̃: otherwise this would imply that there exists a

vertex of T ′′ \T ′′
F

lying in a component C 6=CF of G\F which also contains a vertex of S ′′
F

,

which cannot be by Claim 70. Hence F is a (s ′′,z)-cut in G̃ and thus a (s ′′, t ′′)-cut in G,

76 CHAPTER 4. REDUCING MULTICUT TO BOUNDED TREEWIDTH

implying that F is actually a k-multicut for (G,R,k). ⋄

This concludes the proof of Lemma 68.

The rest of this chapter is essentially devoted to finding a situation where Rule 3 can be
applied.

4.3 Clique Minor

In this section, we assume that G has a large clique minor, more precisely a CM(k)-

clique minor, with CM(k) = O(kk
O(k)

) 2. Let H be a CM(k)-clique model of G. Such a
model can be computed in FPT time in k. Let a be a vertex of G lying in a part ha of H. The
vertex a is special if there exist k+1 vertex-disjoint paths internally in ha between a and
distinct parts of H different from ha.

4.3.1 Finding a Nice Model

We say that a modelH of a graphG is nice whenever it satisfies the following properties:
(1) |V(H)|≥CM(k) and H is (k+1)-vertex connected.
(2) There exists at most one special vertex a in G (and we denote its part by ha).
(3) All parts but possibly ha have degree at most (k+1)2 in H.
(4) The special vertex a separates ha \{a} from V(G)\ha in G.

Theorem 72. Let (G,R,k) be an instance of MULTICUT reduced under Rule 1 which admits
a CM(k)-clique model H. There exists a nice model of G which can be computed in FPT
time in k.

Proof. Let us first show that H respects the second property of the nice model definition.
Observe that any CM(k)-clique model for G is in particular (k+2)-vertex connected since
CM(k)Ê k+2.

Claim 73. Let (G,R,k) be an instance of MULTICUT reduced under Rule 1 which admits a
(k+1)-vertex connected model H. Then G has at most one special vertex.

Proof. Assume by contradiction that there exist two vertices a and a ′ having at least
k+ 1 vertex-disjoint paths P1, . . .,Pk+1 and P ′

1
, . . . ,P ′

k+1
in their own parts ha and ha ′

towards distinct parts different from ha (resp. ha ′) in H. Since G is reduced under Rule 1,
there are at most k vertex-disjoint paths between a and a ′ in G. Hence by Menger’s theo-
rem [101] there exists a set S of at most k vertices of G whose removal disconnects a and
a ′. Let S be the set of parts of H containing vertices of S. By hypothesis, there exists at least

2. More precisely, CM(k) = ((k+1)2)(2(k+2)+1)·(gath(k)+1) (where gath(k) is the size of a gathered
set reduced by Rule 3).

4.3. CLIQUE MINOR 77

one path Pi towards a neighbour hi of ha and one path P ′
i

towards a neighbour h ′
i

of h ′
a

such that Pi∪hi and P ′
i
∪h ′

i
are not intersected by S. By (k+1)-vertex connectivity of H

there exists a path between hi and h ′
i

in H\S. Since every part of H\S is connected, such
a path can be extended to a path between a and a ′ in G\S, leading to a contradiction. ⋄

We now show a technical result:

Lemma 74. Let G = (V,E) be a graph which admits a p-vertex connected model H with
p> k and assume that G contains at most one special vertex a. If there is a part h 6=ha with
degree greater than (p−1)(k+1) in H, then there exists a bipartition h1,h2 of h such that hi

is connected inG for i= 1,2 and the partition P\h∪{h1,h2} of V(G) is ap-vertex connected
model of G, where P is the partition of V(G) associated to H.

Proof. We need the two following claims:

Claim 75. Let T be a tree of maximum degreed, with a weight function ω from the nodes of
T into {0, . . .,M}, such that ω(T)>q(d+1) withq≥M. There exists an edge of T separating
T into two subtrees T1 and T2 such that ω(Ti)Êq+1 for i= 1,2.

Proof. Assume that T contradicts the lemma. For each edge e in T , let Te
1

and Te
2

be
the connected components of T \ e. We have ω(Te

1
) ≤ q or ω(Te

2
) ≤ q (and these cases

are mutually exclusive). Let us orient T : e gets the orientation Te
1
→ Te

2
if ω(Te

1
)≤ q. Note

that an edge uv gets the orientation u→ v whenever u is a leaf. Since this orientation is
acyclic, there exists an internal node x of T such that all edges incident to x are oriented
towards x. Let Tx

1
, . . .,Tx

l
be the connected components of T \ x. We have l ≤ d. Thus

w(T) =ω(Tx
1
)+ . . .+ω(Tx

l
)+ω(x)≤ l ·q+M≤q(d+1), a contradiction. This concludes

the proof of Claim 75. ⋄

Claim 76. LetH be a c-vertex-connected graph andh ∈V(H) be a vertex of degree at least 2c.
Let N1,N2 be a bipartition of N(h), with |Ni|≥ c for i= 1,2. Let H ′ be the graph obtained
from H by deleting h and adding two vertices h1 and h2, of respective neighbourhoods N1∪
{h2} and N2∪ {h1}. Then H ′ is c-connected.

Proof. Assume that there exists a set S of c−1 vertices whose removal disconnects H ′.
If hi ∉ S for i= 1,2, then S disconnects H, a contradiction. If h1 and h2 both lie in S, then
(S \ {h1,h2})∪ {h} disconnects H, a contradiction. If hi lies in S, for i = 1 or i = 2, then
{h3−i} is not a connected component of H\S since it has at least c neighbours besides hi

in H ′. Thus S\ {hi}∪ {h} is a (c−1)-cut in H, a contradiction. This concludes the proof of
Claim 76. ⋄

We use these two results to prove Lemma 74. Consider a part h 6= ha of degree greater
than (p−1)(k+1) inH. For each parth ′ adjacent toh inH, we distinguish one vertex x ∈h
such that there exists an edge xx ′ in G with x ′ ∈ h ′. Denote this vertex x by v(h ′). Let T

78 CHAPTER 4. REDUCING MULTICUT TO BOUNDED TREEWIDTH

be a tree of G[h] spanning all vertices x such that v−1(x) 6=;, with T minimal by inclusion.
The leaves of T are exactly the vertices such that v−1(x) 6=;. Let ω be a weight function on
h, such that ω(x) = |v−1(x)|.

Since G contains at most one special vertex, vertices distinct from a can have at most
k neighbours in distinct other parts, implying that ω(x)É k for every vertex x 6= a. More-
over, the degree of any vertex in T is at most k, since a vertex with degree at least k+ 1

would have k+1 vertex-disjoint paths towards leaves of T and hence towards k+1 dis-
tinct parts different from its own part, which cannot be since a is the only special vertex
of G. By construction, ω(T) is equal to the degree of h in H, so ω(T)> (p−1)(k+1). By
Claim 75 applied with q = p−1 and d = k, there exists a bipartition T1,T2 of T such that
ω(Ti) Ê p. Observe that this bipartition can be extended into a bipartition of h into two
connected sets h1, h2 such that |NH(h1)|, |NH(h2)| Ê p, by definition of the weight func-
tion ω. By Claim 76 it follows that the partitionP\h∪ {h1,h2} defines a model H ′ which is
p-connected. This concludes the proof of Lemma 74.

Assume now that H does not contain a special vertex, and let h be a part of H with
degree at least (k+1)2+1 inH. Since H is (k+2)-vertex connected, it follows by Lemma 74
applied with p = k+ 2 that we can find in polynomial time a new model of G which is
(k+2)-vertex connected, which contains at most one special vertex by Claim 73, and with
size strictly greater than V(H). We apply repeatedly Lemma 74 until either no part has
degree at least (k+1)2+1 in Hi or there exists a special vertexa in a part ha. In the former
case, since the model finally obtained is (k+2)-vertex connected and does not contain any
special vertex, it is actually a nice model, thus we are done. In the latter case, we modify
the finally obtained model to obtain a new model H ′ such that the special vertex a cuts
ha \{a} from V(G)\ha in G as follows.

For every vertex v 6= a ∈ha having a neighbour in a part hv 6= ha, we denote by Av the
set of vertices disconnected from a in ha by the removal of v. We remove the set Av∪ {v}

from ha and add it to hv, repeating this process until no vertex in ha but a is adjacent
to other parts. Observe that the model H ′ thus obtained may no longer be (k+2)-vertex
connected after this process: however, H ′ \ha remains (k+ 1)-vertex connected. Since
ha has degree at least k+1 in Hi, it follows that H ′ is a (k+1)-vertex connected model.
Observe that H ′ contains exactly one special vertex a by Claim 73.

Since this process may increase the degree of some parts different from ha in H ′, we
apply repeatedly Lemma 74 to H ′ to reduce its degree while preserving (k+1)-vertex con-
nectivity. Once this process is over, we obtain a (k+1)-vertex connected model H ′ such
that |V(H ′)|ÊCM(k), whose special vertex a separates ha \ {a} from V(G)\ha in G, and
such that every part but possibly ha has degree at most (k+1)2. It follows that H ′ is a nice
model, which concludes the proof of Theorem 72.

4.3. CLIQUE MINOR 79

4.3.2 Small and Giant Components

In the following we consider a nice model H of the instance (G,R,k) of the MULTICUT

problem.

Lemma 77. Let H be a nice model of G. Two parts not touched by a set F⊆E(G) of at most
k edges are included in the same connected component of G\F.

Proof. Assume that a set F of at most k edges does not touch parts h1 and h2. It follows
that parth1 (resp h2) is completely included in a connected component of G\F. By (k+1)-
connectivity in H, there are k+1 disjoint paths between h1 and h2 in H, which cannot all
be cut by a set of at most k edges.

Corollary 78. Let H be a nice model of G, h1, h2 be two parts of H and (t1, t2) a request with
t1 ∈ h1 and t2 ∈ h2. Every k-multicut contains an edge that belongs to h1 or an edge that
belongs to h2.

Observe that any set of at most k edges cuts the graph G into at most k+1 connected
components. Given a set F of edges, we call giant component of G\F and denote by CF a
connected component of G\F containing entirely at least |V(H)|−k parts.

Lemma 79. Let F be a set of at most k edges of a graph G admitting a nice model H. Then
G\F has a giant component, which contains all parts not touched by F.

Proof. Let h1 andh2 be two parts not touched by a set F of at most k edges. Thenh1 and h2

belong to the same connected component in G\F by Lemma 77. Since there are at most k
parts touched by F, all other parts are entirely included in the same connected component
of G\F.

The connected components distinct from the giant component are called small com-
ponents. Altogether, they intersect vertex-wise at most k parts.

Lemma 80. Assume thatG admits a nice model. For every set F of at mostk edges, the special
vertex belongs to the giant component of G\F.

Proof. Since a is adjacent to at least k+1 parts, a is adjacent to at least one vertex lying in
a part not touched by F in G\F. By Lemma 79, a cannot belong to a small component.

Lemma 81. Let F be an optimal k-multicut of a graph G admitting a nice model. Every
small component C of G\F contains a vertex which is a terminal.

Proof. Let F be an optimal k-multicut of G and e be any edge of F which touches C. If C
contains no terminal then F\{e} is still a multicut, contradicting the optimality of F.

Let Ha=H\ha. Adjacent vertices x and y which are far away in Ha from any terminal
can be contracted as stated in the following Lemma:

80 CHAPTER 4. REDUCING MULTICUT TO BOUNDED TREEWIDTH

Lemma 82. Let G be a graph admitting a nice modelH. Let h be a part of Ha not containing
any terminal, such that every part at distance at most k+2 from h in Ha has no terminal.
Let e be an edge of G with at least one endpoint in h. Then e does not belong to any optimal
k-multicut.

Proof. Consider an optimal k-multicut F of G, and let h ′ be a part adjacent to h in H.
Every small component contains a terminal by Lemma 81 and intersects at most k parts by
definition. Since part h (resp. h ′) is assumed to be too far from any terminal in Ha, part
h (resp. h ′) can intersect a small component C of G\ F only if a ∈ C, which contradicts
Lemma 80. Hence neither part h nor part h ′ can intersect a small component. It follows
that if e belongs to F then F\ {e} is also a k-multicut, which contradicts the optimality of
F.

Hence the following reduction rule is correct:

Rule 4. Let G be a graph admitting a nice model H and h be a part of Ha without any
terminal. If every part at distance at most k+2 from h in Ha has no terminal, then contract
an arbitrary edge e of G with at least one endpoint in h.

When this reduction rule does no longer apply, every part is at distance at most k+2 in
Ha from a part containing a terminal.

4.3.3 Reducing the Instance

Let us review the structure of the graph when none of Rule 1, Rule 2 and Rule 4 applies.
Recall that we consider an instance (G,R,k) which contains a nice model H.

We consider the level decomposition of Ha starting from some partL0 of Ha. SinceH is
a nice model, it follows that every part of Ha has degree at most (k+1)2 inHa. Hence every
level Li has size at most (k+1)2|Li−1|. Denote by d the number of non-empty levels in this

decomposition. We have CM(k)≤ |V(Ha)|+1≤ (
∑d

i=0((k+1)2)i)+1≤ (k+1)2(d+1), so
d≥ log(k+1)2(CM(k)−1)−1.

Let us show that we can find a large enough gathered set to reduce the instance with
Rule 3. Let T be a set of maximum size of terminals in VG(Ha) belonging to different parts
lying pairwise at distance at leastk+1 inHa. By Rule 4, every part is at distance at mostk+2

from a terminal in Ha, so there exists at least one terminal in every 2(k+2)+1 consecutive
levels, implying that |T |≥ d

2(k+2)+1
≥ gath(k) as CM(k) = ((k+1)2)(2(k+2)+1)·(gath(k)+1).

Let us argue that T is a gathered set. Indeed, consider a set F of at most k edges. Since
parts containing terminals of T are pairwise at distance at least k+1 in Ha, a small com-
ponent of G \ F can contain two terminals of T only if it contains the special vertex a

(Lemma 79). Since a belongs to the giant component by Lemma 80, it follows that G\ F

contains at most one component containing more than one vertex of T (namely the giant

4.4. GRID MINOR 81

component), and hence T is a gathered set. Rule 3 applies to T , so an irrelevant request can
be found in FPT time.

We have shown in this section that wheneverG has a large clique model, we can reduce
the instance in FPT time either by safely contracting an edge or by finding an irrelevant
request. This concludes the large clique minor part.

4.4 Grid Minor

In the previous section, we have shown that every graph with a large clique minor can
be reduced in FPT time.

The aim of this section is to complete the treewidth reduction by showing that a graph
with a large grid minor but no large clique minor can also be reduced in FPT time. Indeed,

every graph with treewidth at least 22m
5

contains an (m×m)-grid minor [115], and a model
for such a grid minor can be computed in FPT time in m.

Given a grid model H = (V(H),E(H)) of a graph G we denote by H a graph
(V(H),E(H)) where E(H)⊆E(H) is such that H is a grid.

We call the set of vertices lying on the outer-face in the unique planar drawing of a grid
H ′ the border of the grid, and denote it by B(H ′).

4.4.1 On Grid Minors without Clique Minors

In this section, we concentrate on structural properties of graphs with large grid minors
but no large clique minors. LetGk be the graph obtained from the (k×k)-grid by adding the
two diagonals to each internal face of the grid (see Figure 4.2). The proof of the following
result is due to Gwenaël Joret.

Lemma 83. The crossed grid G2k has a k-clique minor.

Proof. We are looking for a k-clique model inside G2k, i.e. for k vertex-disjoint connected
sets of vertices ofG2k such that any two of these sets are adjacent inG2k. Roughly speaking,
these subsets will be the union of the ith column and ith row ofG2k for odd i. These sets are
not vertex disjoint, but this can easily be dealt with: for any crossing of two sets, we use two
diagonals inside a face of the original grid to uncross them while preserving connectivity.

More formally, denote by (i, j) the vertex lying on row i and column j of the crossed grid
G2k. Let Si be the set of vertices defined as follows, where 1É i+ lÉ 2k:

Si :=






(i, i+ l) and (i+ l, i) for even l, lÊ 0

(i+1,i+ l) and (i+ l, i+1) for even l, l< 0

(i+1,i+ l) and (i+ l, i+1) for odd l, lÊ 0

(i, i+ l) and (i+ l, i) for odd l, l< 0

82 CHAPTER 4. REDUCING MULTICUT TO BOUNDED TREEWIDTH

S3

S2

S1

S4

1 2 3 4 5 6 7 8

2

5

6

7

8

4

3

1

Figure 4.2: On the left, the crossed grid G4. On the right, a clique model in the crossed grid
G8

The sets Si for odd i are a model of a Kk in G2k. Indeed they are disjoint, and they are
pairwise adjacent since for every odd i, j, with i< j, we have (i, j) ∈Si and (i+1,j) ∈Sj (see
Figure 4.2).

Given a grid G, a non-edge e ∉ E(G) is said to be non-planar if the graph G∪ {e} is not
planar. We call a planar supergraph of a grid an augmented grid. We define the border of
an augmented grid similarly to the border of a grid.

We now show that a grid together with many non-planar edges has a large clique minor.
In [113], Robertson and Seymour give a result (7.4) similar to what we need. To reformulate
it in a form closer to our terminology:

Lemma 84. [113] For every integer m, there exists an integer r(m) such that a graph ob-
tained from an augmented gridH by adding (m2) non-planar edges in (V(H)×V(H))\E(H),
whose endpoints lie at distance at least r(m) from B(H) in H and are pairwise lying at dis-
tance at least r(m) in H, has a Km minor.

Note that result (7.4) from [113] concerns walls rather than grids and is stated with a
different distance function, but Lemma 84 can be deduced from there.

It is important that the extra edges are non-planar in Lemma 84, and that they lie far
away from the border of the grid. The fact that the extra edges are long is actually not
necessary, as stated in the following extension of Lemma 84.

Lemma 85. For every integer m, there exists two integers r(m) and jump(m) = 2O(r(m))

such that a graph obtained from an augmented grid H by adding jump(m) non-planar

4.4. GRID MINOR 83

P3 P2P1P1P2 P3

Figure 4.3: Illustration of the swaps made within two consecutive zones in the proof of
Lemma 85.

endpoint disjoint edges in (V(H)×V(H)) \E(H), whose endpoints lie at distance in H at
least r(m) from the border B(H), has a Km minor.

Proof. Let jump(m) = 2 ·82(r(m)+m)(m−1
2

)+2 ·8r(m)(m
2
). If 2 ·8r(m)(m

2
) non-planar edges

have length at least m in the grid, then there exists a subset of size (m2) of these non-planar
edges whose endpoints lie pairwise at distance at least r(m) in H. Indeed a vertex of an
augmented subgrid has degree at most 8. By Lemma 84, it follows that H has a clique
minor of size m. Otherwise, there exists a subset X of at least jump(m)−2 ·8r(m)(m2) ≥
2 ·82(r(m)+m)(m−1

2
) non-planar edges of length at most r(m). Hence there exists a subset

S⊆X of non-planar edges whose endpoints lie pairwise at distance at least 2(r(m)+m) of
size at least (m−1

2). For every edge e= xy ∈S, letSe be the minimal subgrid containing both
x and y. The zone Ze of e is the subgrid obtained from Se by adding m layers around Se.
The layer around a subgrid S of an augmented grid is the set of vertices outside S adjacent
to the a vertex of the border of S.

Note that for any two edges e,e ′ ∈ S we have Ze∩Ze ′ =∅. There exists a set of m vertex
disjoint paths P1, . . . ,Pm which are parallel and adjacent outside the zones and enter all
zones in the grid exactly once.

A zone can be used to swap two adjacent paths, as shown in Figure 4.3. We use the
following swap strategy:

– use the (m−1) first encountered zones to place Pm before P1
– use the (m−2) next zones to place Pm−1 before P1
– ...
– use the (m− i) next zones to place Pm−i before P1
– ...
– use the next zone to place P2 before P1

84 CHAPTER 4. REDUCING MULTICUT TO BOUNDED TREEWIDTH

We have
m(m−1)

2 zones, enough to do the
m−1∑

i=1

i=
m(m−1)

2 above swaps, and a given zone

is large enough to make two adjacent paths cross within it. We have reversed the original
planar left-to-right order of paths P ′

i
, i ∈ {1, . . .,m} by making consecutive swaps, hence

any two paths have crossed and hence are adjacent in the grid. Thus pathsPi, i ∈ {1, . . .,m}

form a Km minor model.

Given a grid model H we say that H ′ ⊆H is a proper subgrid of H if it satisfies the fol-
lowing properties:

– |V(H ′)|≥ prop(k)= 2 ·r(CM(k)).
– H ′ is an induced augmented grid.
– There are at most spec(k)2 vertices in V(G) \ V(H ′) with neighbours in
V(H ′) \ B(H ′), where spec(k) = jump(k) · (deg(k) + 1) + 1 and deg(k) =

k(k+ 2) · jump(CM(k) + 1) · jump(CM(k)) + 6. Such vertices are called special
vertices and are denoted by W.

– Each special vertex has at least k2/4 neighbours in V(H ′)\B(H ′).

Theorem 86. Let G be a graph admitting a (GM(k) ×GM(k))-grid model H, with
GM(k) = prop(k) ·spec(k)spec(k), but no KCM(k) minor. There exists a proper subgrid of H
which can be computed in polynomial time.

Proof. We first show a technical result which will be used in the proof of Theorem 86. Con-
sider a grid model H of a graph G and an induced augmented grid H ′ which lies at dis-
tance at least r(CM(k)) from B(H) in H. An edge wz, where z ∈ VG(H

′)\VG(B(H
′)) lies

at distance at least r(CM(k)) of the border of H ′ in H ′ and w ∈ VG(H \H ′), is called an
H ′-matched edge.

Lemma 87. Let G be a graph admitting a grid model H with an induced augmented grid H ′

of size at least prop(k) which lies at distance at least r(CM(k)+1) in H from the border of
H. If there exist at least spec(k) endpoint disjoint H ′-matched edges in H, then one of the
following holds:

(1) either G admits a grid model H1 and an induced augmented grid H ′
1
⊆H1 such that

|H ′
1
| Ê prop(k) and every set of endpoint disjoint H ′

1
-matched edges has size at most

spec(k),
(2) or G has a CM(k) clique minor.

Proof. Recall that spec(k) = jump(k) · (deg(k)+1)+1. The following result follows by
definition of a minor:

Observation 88. Let G be a graph admitting a grid model H with an induced augmented
grid H ′ such that there exist p paths internally in G\VG(H

′) which are vertex-disjoint, be-
tween pairs of vertices zi,z

′
i
∈ VG(H

′) at distance at least r(CM(k)) from the border of H ′

in H ′, 1≤ i ≤ p. If edges ziz
′
i

are non-planar in H ′ for i= 1, . . .,p, then G has as a minor a

4.4. GRID MINOR 85

grid Ȟ with p non-planar edges whose endpoints lie at distance at least r(CM(k)) from the
border of Ȟ in Ȟ.

Let W = {w1, . . . ,wp} be the endpoints of the H ′-matched edges which belong to
VG(H \H ′), and assume that |W| Ê spec(k). Since the graph G \VG(H

′) is connected,
let T be a tree spanning W in G\VG(H

′). We can assume that this tree where parts have
been contracted is a path, since H \VG(H

′) has a Hamiltonian path. Moreover, we can
assume that any vertex of a given part has at most one neighbour in T in each of its two
adjacent parts. Indeed, assume that a vertex v in a part h has more than one neighbour in
T in one of its adjacent part h ′. We choose some vertex u ∈Nh ′(v) and remove all edges
between v and Nh ′(v)\u from T . We now use the connectivity of h ′ to find a spanning tree
of all vertices in Nh ′(v), which gives a new spanning tree T ′ having the claimed property.
Finally, we choose such a tree T with minimum maximum degree. We again distinguish
two cases. Recall that deg(k)= k(k+2) · jump(CM(k)+1) · jump(CM(k))+6.

Case 1: T has degree bounded by deg(k).
We use the following Lemma to exhibit a large clique minor in G:

Lemma 89. Let T be a tree of degree at most d. Let W be a set of nodes of T . There exist
|W|−1
d+1

vertex-disjoint paths in T with distinct endpoints in W.

Proof. We root T arbitrarily. The hypothesis trivially holds for |W| = 1, so assume that
|W|≥ 2. Among all pairs of vertices in W, we choose one pair (x,y) whose least common
ancestor u is minimum for the ancestor relation. Let Tu be the subtree of T rooted at u. As
u is minimum, each subtree rooted in a son of u contains at most one vertex of W. Hence,
as u has degree at most d, Tu contains at most d+1 vertices of W. By induction on T \Tu,

there exist |W|−(d+1)−1
d+1 =

|W|−1
d+1 −1 vertex-disjoint paths in T \Tu with distinct endpoints in

W. We add to these paths the disjoint path (x,y)⊆ Tu to obtain the desired bound.

Applying Lemma 89 to T and W, we find spec(k)−1

deg(k)+1
≥ jump(CM(k))) vertex-disjoint

paths between distinct vertices wi,j. Using Lemma 88, G has as a minor a grid with
jump(CM(k)) endpoint disjoint non planar edges with endpoints at distance at least
r(CM(k)) from the border of H ′. Using Lemma 85, we deduce that G has a KCM(k) mi-
nor.

Case 2: T has a node u of degree more than deg(k).
Assume that u has maximum degree in T . As T where each part has been contracted

to a vertex is a path, u has at least deg(k)− 2 neighbours in T lying in its own part hu.
Among these vertices, we distinguish at most 4 of them, which are vertices connecting hu

to its four adjacent parts in H. As T has minimum maximum degree, there must exist a set
Wu ⊆W∩hu of size at least deg(k)−6 such that there exist vertex disjoint paths between
u and vertices in Wu. For any w=wi ∈Wu, we use zw to denote the corresponding vertex

86 CHAPTER 4. REDUCING MULTICUT TO BOUNDED TREEWIDTH

zi, Zw to denote the part of zw, and let Aw be the set of vertices disconnected from u in T

by the deletion of w. Note that Aw∪Wu=; since u has vertex disjoint paths to vertices in
Wu. Let us denote by Tw the set of neighbours of Aw∪ {w} distinct from zw in H ′.

Assume that for some vertex w ∈ Wu, there does not exist any part bw containing a
vertex in Tw such that bwZw would be a non-planar edge in H ′. We change the partitionH

by removing Aw∪ {w} from part hu and adding it to part Zw.
The resulting partition is still a grid model of G since all parts are still connected sets

in G and the four distinguished vertices connecting hu to its four adjacent parts in H are
still in hu. This also implies that H ′ still lies at distance at least r(CM(k)) from the border
of H in H. Moreover, H ′ is still an induced augmented grid of H since no non-planar edge
has been created in H ′. We go back to the beginning of the proof of Lemma 87 with this
new grid model H and augmented subgrid H ′ of G. We cannot loop more than n times
as the number of vertices of G contained in VG(H

′) strictly increases. When this process
terminates, if we did not find either a clique minor of G or a grid model H with an induced
augmented grid H ′ containing at most spec(k) endpoint disjoint matched-edges towards
vertices inVG(H\H ′), then we are still in Case 2. Thus, for every vertexw ∈Wu there exists
a vertex in Aw∪ {w} with a neighbour z ′w in a part Z ′

w ∈V(H ′) such that ZwZ
′
w would be a

non-planar edge in H ′. Hence there exist paths Pw between zw and z ′w for w ∈Wu which
are vertex disjoint in hu, as Aw∩Aw ′ =; for w 6=w ′ ∈Wu.

Let Z= {Zw|w ∈Wu} and Z ′ = {Z ′
w|w ∈Wu}. Note that by construction Zw 6= Zw ′ for

w 6=w ′ ∈Wu. Consider the bipartite graph B=(Z ′∪Wu,E), where E := {Z ′
ww|w ∈Wu}.

Claim 90. Every part in Z ′ has degree at most bipdeg(k)= k(k+2) · jump(CM(k)+1) in
B.

Proof. Assume by contradiction that there exists a part h in Z ′ of degree at least
bipdeg(k). Observe that a vertex x ∈ h cannot have k+1 distinct neighbours in Wu, as
there would exist k+ 1 edge-disjoint paths between u and x, which contradicts the fact
that the instance is reduced under Rule 1. Let Z ′′ = {z ′w|w ∈Wu}∩h. Since h is connected,
consider a tree Th of minimum maximum degree spanning Z ′′ in h.

Assume first that Th has minimum degree bounded by k+1. We apply Lemma 89 to Z ′′

and Th to find bipdeg(k)

k·(k+1+1)
= jump(CM(k)+1) vertex disjoint paths in Th between vertices in

Z ′′. This gives jump(CM(k)+1) vertex disjoint paths in G ′ := (G\VG(H
′)∪ {h} between

vertices in Z (see Figure 4.4). Consider H ′′ := (H ′ \{h})∪h ′, where h ′ is a new part having
the same adjacency with H ′ than h. As H ′′ defines an induced augmented grid, we can
apply Lemma 88 to H ′′ and the above jump(CM(k)+ 1) vertex-disjoint paths of G ′ to
find a grid with jump(CM(k)+1) non-planar endpoint disjoint edges with endpoints at
distance at least r(CM(k)+1) from the border of H ′. By Lemma 85, the graph H ′′ has a
KCM(k)+1-minor, implying that G has a KCM(k) minor.

Assume now that Th has a vertex uh of degree at least k+1. Assume that uh has maxi-
mum degree in Th. In particular, this means that there exists k+1 vertices of Z ′ with vertex

4.4. GRID MINOR 87

Wu

Aw

h

u

zw
zw ′

w ′ w

tw ′ tw

Figure 4.4: An illustration of the vertex disjoint paths found in the proof of Claim 90.

disjoint paths to uh in Th. As we have bipdeg(k)
k ≥ k+1, there exist k+1 edge-disjoint paths

between u and uh, which contradicts the fact that the instance is reduced under Rule 1.
This completes the proof of Claim 90. ⋄

By Claim 90 we can greedily find
|Wu|

bipdeg(k)
vertex-disjoint paths in V(G)\H ′ between

distinct vertices of H ′ of the form ziwiz
′
i
. By Observation 88, G admits as a minor a grid

H with at least deg(k)−6

bipdeg(k)
= jump(CM(k)) endpoint disjoint non-planar edges lying at dis-

tance at least r(CM(k)) from the border of H in H. Together with Lemma 85, this implies
that G admits a KCM(k)-minor. This completes the proof of Lemma 87.

Proof of Theorem 86. We need the following technical result:

Lemma 91. Let H be an (m×m)-grid and Z be a set of i2 vertices of H. Then H contains an
(⌊ m

i+1⌋×⌊ m
i+1⌋)-subgrid which does not contain any vertex from Z.

Proof. We refineH by considering (i+1)2 vertex-disjoint subgrids of size ⌊ m
i+1⌋·⌊

m
i+1⌋ each.

As there are more grids than elements of Z there exists one such subgrid containing no
vertex from Z, which is of size ⌊ m

i+1⌋ · ⌊
m
i+1⌋.

Consider the refinement of the subgrid obtained from H by removing its r(CM(k))

first layers in H, in vertex disjoint subgridsHi,j, for 1≤ i, j≤ 2CM(k) of size
GM(k)

2CM(k)
· GM(k)

2CM(k)

each.

88 CHAPTER 4. REDUCING MULTICUT TO BOUNDED TREEWIDTH

Claim 92. If every subgrid Hi,j is a non-planar graph, then G has the (2CM(k)×2CM(k))-
crossed grid as a minor.

Together with Lemma 83, Claim 92 implies that there exist 1≤ i, j≤ 2CM(k) such that
Hi,j is an induced augmented grid. In the following, we use H ′ to denote Hi,j.

Claim 93. If every set of H ′-matched edges has size at most spec(k) then G admits a proper
subgrid model.

Proof. Recall that an H ′-matched edge is an edge wz where z ∈VG(H
′)\VG(B(H

′)) lies
at distance at least r(CM(k)) of the border of H ′ in H ′ and w ∈ VG(H \H ′). Let Out =

V(G)\VG(H
′) denote the set of vertices of G outside the grid H ′, and In the set of parts

of V(H ′) lying at distance at least r(CM(k)) from the border of H ′ in H ′. Let B be the
bipartite graph with vertex bipartition (Out,In), and where a part h ∈ In is adjacent to a
vertex x ∈Out if there exists a vertex y ∈ h such that xy is an edge of G. Denote by A the
set of parts in In with degree at least spec(k) in B. Since every set of H ′-matched edges
has size at most spec(k), we have that |A|< spec(k). Hence there exists a subgridH ′′ ⊆ In

of size at least
GM(k)p
|spec(k)|

which contains no part of A by Lemma 91. Let C be the set of

parts in H ′′ with degree at least 1 in B. If |C| ≤ spec(k), Lemma 91 gives a subgrid H ′′′

of H ′′ of size at least GM(k)

spec(k)
> prop(k) which contains no part in C. Parts in H ′′′ have no

neighbours inV(G)\VG(H
′), hence H ′′′ is a proper subgrid. Otherwise if |C|> spec(k), let

D be the set of vertices in Out with at least one neighbour in H ′′. We have by hypothesis
that |D|É spec(k)2 (otherwise we would find a large set of H ′-matched edges).

Hence there exists a grid model with a subgrid H ′′ which respects all properties of the
definition of a proper subgrid but the last one. We now show how to deal with the special
vertices. Let H0 = H ′′. For i ≥ 0, if there exists a vertex in Out adjacent in B to a set Pi
of parts in Hi of size less than k2/4, then we let Hi+1 be the subgrid of Hi obtained by
Lemma 91 which contains no vertex in Pi. Otherwise Hi is a proper subgrid and we stop.
The above process can be repeated at most D< spec(k)2 times. Hence the proper subgrid

found by this process has size at least GM(k)

spec(k)spec(k)
which is at least prop(k) by definition

of GM(k). ⋄

To complete the proof of Theorem 86, it remains to show that we can find a subgridHm

of sufficiently large size with at most spec(k) Hm-matched edges. Assume that there are
at least spec(k)H ′-matched edges. Using Lemma 87, this implies either that G has a large
clique minor or that G admits a grid model H with an induced augmented grid Hm having
at most spec(k) Hm-matched edges. Since the former case is impossible by assumption,
it follows by Claim 93 that G admits a proper subgrid model. This completes the proof of
Theorem 86.

4.4. GRID MINOR 89

4.4.2 Reducing the Instance

Assume now thatGhas a (GM(k)×GM(k)) grid modelHbut noCM(k)-clique model.
By Theorem 86 we can moreover assume that G has a proper subgrid H ′. Given a set F of
edges, a giant component denotes in this case a connected component of G\F containing
entirely at least |V(H)|−k2/4 parts. We do not give detailed proofs of our claim when they
are similar to claims in the previous section.

Lemma 94. Let F be a set of at most k edges of a graph G admitting a grid model. Then G\F

has a giant component, denoted by CF.

This is analogous to Lemma 79. The way to cut the most vertices in a grid with k edges
is to cut off a corner of size (k/2×k/2). We call the other connected components the small
components (and they intersect altogether at most k2/4 parts).

Lemma 95. For every set F of at most k edges the special vertices belong to the giant compo-
nent of G\F.

This is analogous to Lemma 80.

Lemma 96. Let F be an optimal k-multicut of a graph G admitting a grid model H. Every
small component C of G\F contains a vertex which is a terminal.

This is analogous to Lemma 81.
Let us now consider the refinement of the subgrid H ′ into vertex-disjoint subgrids

H ′
i,j

of size f7(k) · f7(k) each, where f7(k) =
prop(k)

6·gath(k) −
k2

12 . In other words, we will have
prop(k)

2·(3f7(k)+(k2/4))
=gath(k).

Case 1: There exists a subgrid without terminal
Consider integers i, j be such that H ′

i,j
does not contain any terminal, and let hi,j be a

part of H ′
i,j

at maximum distance in H ′
i,j

of the border of the grid H ′
i,j

. We define xi,j to be
a vertex of hi,j and yi,j to be some neighbour of xi,j in G.

Claim 97. For every k-multicut F, xi,j and yi,j both belong to the giant component of G\F.

Proof. Recall that every small component contains a terminal and intersects at most
k2/4 parts, by Lemma 94 and Lemma 96. If part hi,j lies at distance more than k2/4+1 in
H of a part containing a terminal, then xi,j has no path in G to a terminal intersecting at
most k2/4+1 parts, and so xi,j and yi,j must both belong to the giant component of any
k-multicut. Assume that there exists a path in G between xi,j and a terminal intersecting
at most k2/4+1 parts. This path uses an edge zi,jwi,j with zi,j ∈H ′

i,j
for some special vertex

wi,j. Indeed H ′
i,j

has size larger than 2(k2/4+2) by definition. So hi,j is at distance more

than k2/4+1 from the border of H ′
i,j

, and H ′
i,j

contains no terminal. Since the special ver-

tices belong to the giant component of G\F for every set F of at most k edges by Lemma 95,

90 CHAPTER 4. REDUCING MULTICUT TO BOUNDED TREEWIDTH

it follows that xi,j and yi,j belong to the giant component of G\F. ⋄

Since xi,j and yi,j belong to the giant component of G\F for every k-multicut F, we can
safely contract them.

Case 2: All subgrids contain a terminal
We find a gathered set using arguments similar to the ones used in the previous section.

Consider the level decomposition ofG\W starting fromL0 := (H\(H ′∪W))∪B(H ′). Since
H ′ is a proper subgrid and hence contains no non-planar edges, if follows that there are at

least prop(k)
2 levels in the level decomposition of G\W starting from L0. Let T be a set of

maximum size of terminals inVG(L1∪. . .∪Ld) belonging to different parts lying at distance
at least k2/4 in H>1 :=VH(L1∪ . . .∪Ld). Since every subgrid H ′

i,j
in H ′ contains a terminal

and has size f7(k) · f7(k) there is a terminal in every 3f7(k) consecutive levels, implying

that |T |≥ d
3f7(k)+(k2/4)

≥ prop(k)

2·(3f7(k)+(k2/4))
=gath(k).

We now show that T is a gathered set. Consider any set F of at most k edges. Since parts
containing terminals of T are pairwise at distance at least k2/4 in H>1 and since small
components intersect at most k2/4 parts by Lemma 94, a small component of G\ F can
contain two terminals of T only if it contains a special vertex w ∈W. Since w belongs to
the giant component by Lemma 95, it follows that G\F contains at most one component
(the giant component) containing more than one vertex of T and hence T is a gathered set.
Applying Rule 3 to T , there exists an irrelevant request adjacent to a terminal in T which
can be found in FPT time.

This completes the reduction of this section, showing that we can reduce in FPT time
in k a graph with a large grid minor but with no large clique minor.

4.5 Conclusion

Deciding whether the MULTICUT problem parameterized by the solution size k is fixed
parameter tractable was one of the most important open question in parameterized com-
plexity [46]. In this Chapter we have shown that this problem can be reduced in FPT time
to graphs of treewidth bounded by a function of k. Remains to prove that the MULTICUT

problem is fixed parameter tractable on graphs of treewidth bounded by a function of k.
This will be the purpose of Chapter 7, which will actually give a direct proof, not using a
bounded treewidth assumption. Nonetheless, the key ideas of Chapter 7 will be the con-
nectivity tools presented in this chapter.

The other idea which gave birth to Chapter 7 is the following. Let us say that an input
graph G is a meridian graph if G consists in internally vertex disjoint paths between two
given vertices u and v. The graph G has treewidth two since G \ v is a tree. Although
MULTICUT restricted to meridian graphs (or equivalently restricted to flowers) appears to

4.5. CONCLUSION 91

be a very easy subcase of MULTICUT, it took us a rather long time to realize that it could
efficiently be dealt with.

A meridian graph admits a vertex-multicut of small size: the two endpoints u and v,
along with a bounded number (in k) of other vertices (unless the instance admits more
than k disjoint paths realizing different requests, and thus is trivially false). Additionally,
the components obtained after removing this vertex-multicut are very simple (just paths,
here). We will see in Chapter 7 how MULTICUT can be solved efficiently on graphs sharing
these properties of the meridian graphs (with rather easy branching and simulation of the
requests with 2-SAT clauses), and how MULTICUT can be reduced to such simple graphs
(and this will be rather involved).

CHAPTER

5
Well-Quasi-Ordering Induced

Subgraphs

5.1 Introduction

Let S be a set and ≤ be a quasi-order on S, i.e. a reflexive and transitive relation. Given
an infinite sequence (xi)i∈ω of elements of S, a good pair consists of two elements xi ≤ xj,
with i < j. An infinite sequence with no good pair is called a bad sequence of (S,≤). A
quasi-order with no bad sequence is a well-quasi-order.

The following are other equivalent presentations of the notion of well-quasi-ordering
(see for instance [93]). A quasi-order is a well-quasi-order if and only if:

– it has no infinite antichain (i.e. no infinite set of pairwise uncomparable elements)
and no infinite strictly decreasing sequence.

– every infinite sequence has an infinite increasing subsequence.
– every nonempty subset of S has a nonempty finite set of minimal elements (up to

equivalence).
The theory of well-quasi-ordering has been flourishing. Higman’s Theorem states that

the set of words over a well-quasi-ordered set is well-quasi-ordered by the subword rela-
tion [83], and this has been extended by Kruskal to trees [92]. Robertson and Seymour’s
celebrated graph minor theorem [114] (briefly discussed on pages 64-65) asserts that the
minor relation is a well-quasi-order on the set of finite graphs. It implies that every graph
class closed under minor (also called minor ideal) can be characterized by a finite list of ex-
cluded minors. This in turn implies that every minor ideal can be recognized in polynomial
time.

The class of finite graphs is not well-quasi-ordered by the induced subgraph relation
since the cycles form an infinite antichain. The good properties of the minor ideals en-
sured by the minor theorem do not hold for induced subgraph ideals (for instance, the
set of paths, which is well-quasi-ordered, does not have a finite set of forbidden induced

93

94 CHAPTER 5. WELL-QUASI-ORDERING INDUCED SUBGRAPHS

subgraphs, since it contains all cycles). This is a motivation for the stronger notion of 2-
well-quasi-ordering.

In the following, we will be exclusively interested in the induced subgraph relation.
Throughout this chapter, we will abbreviate "well-quasi-ordered by the induced subgraph
relation" by well-quasi-ordered, with the understanding that we are dealing with the in-
duced subgraph relation.

An extension of the notion of well-quasi-order is the notion of n-well-quasi-order.
Given a class S of graph, the class Ŝ consists of all vertex n-colourings of graphs in S (i.e.
each vertex is labelled by an integer in {1, . . .,n}) 1. Let us consider the the coloured in-
duced subgraph relation ≤c on vertex-coloured graphs: G ≤c G

′ if there is an injection
from V(G) to V(G ′) preserving adjacency and colour. A set S of graphs is n-well-quasi-
ordered if Ŝ is well-quasi-ordered by the coloured induced subgraph relation ≤c.

Finally, the set S is ∞-well-quasi-ordered if S is n-well-quasi-ordered, for all n≥ 1.
The notion of 1-well-quasi-order is exactly the notion of well-quasi-order. Being 2-well-

quasi-ordered is a strictly stronger property than being (1-)well-quasi-ordered, for instance
the set of paths is not 2-well-quasi-ordered. Indeed, the set of paths where the endpoints
have colour 1 and the internal vertices have colour 2 is an infinite antichain for ≤c.

The notion of 2-well-quasi-ordering is especially interesting in view of algorithmic
properties, as induced subgraph ideals which are 2-well-quasi-ordered can be character-
ized by a finite list of forbidden induced subgraphs, and thus are recognizable in poly-
nomial time. Our ultimate aim would be to characterize the 2-well-quasi-ordered ideals
of graphs, hopefully proving the following conjecture of Pouzet [107], also appearing in
Fraïssé [68]:

Conjecture 98. An induced subgraph ideal is 2-well-quasi-ordered if and only if it is ∞-
well-quasi-ordered.

In the more general framework of categories, Pouzet’s question has a negative answer,
as shown by Kriz and Sgall [91].

We will come back to this topic in Section 5. Our main purpose here is to study a restric-
tion of the hierarchy of graph classes NLC, or equivalently of the cliquewidth hierarchy. 2

The class NLCk of k-node labelled controlled graphs was introduced in [123]. A k-
labelled graph is a graph in which every vertex has a label in {1, . . .,k}. Let F be a set of
functions from {1, . . .,k} into {1, . . .,k}. The class NLCF

k
is defined recursively on k-labelled

graphs using three operators: •i, ◦f and χS. For i ∈ {1, . . .,k}, the operator •i creates a single
vertex labelled by i. The operator ◦f, with f ∈ F, applied to a k-labelled graph, replaces

1. In this chapter, "colouring" means "labelling", and has nothing to do with the graph theoretic concept
of "proper colouring".

2. We do not define cliquewidth here. It is equivalent to NLC-width, in the sense that one is bounded if
and only if the other is bounded. Although cliquewidth is much more common, we state our results in terms
of NLC-decomposition for technical convenience.

5.1. INTRODUCTION 95

1 1

2

3

3

b

c

a

e

f

1 1

a b

c

d

g

d

g

e f

1

1 2 3

1

1

1

χ;

χ{(3,1)}

χ;

δ

χ{(1,2)}

χ{(2,3)}

χ{(2,3)}

Figure 5.1: The decorated path G3 and an associated NLC-expression, using a singe rela-
belling function, δ: 3→ 2→ 1.

every label i with f(i). The operator χS, with S ⊆ {1, . . .,k}× {1, . . .,k}, applied to two k-
labelled graphs G and H in this order, creates the disjoint union of graphs G and H, and
for every pair (i, j) ∈ S adds edges between every vertex of label i in G and every vertex of
label j in H. The class NLCk is defined to be NLCΦ

k
where Φ is the set of all functions from

{1, . . .,k} into {1, . . .,k}. The NLC-width of G is the minimum k for which some labelling of
G is in NLCk.

See Figure 5.1 for an example of an NLC3 expression of a small graph.
When k is fixed, it is not known whether there exists a polynomial time algorithm com-

puting a NLC decomposition using k colours for graphs in NLCk. Only the cases k = 1

(which corresponds to cographs) and k = 2 [84] have been solved so far. Computing the
NLC-width is NP-hard [82].

The NLC-width has a strong link with another well-known parameter: the clique-width,
introduced by Courcelle et al. [35]. NLC-width and clique-width indeed differ by a factor
at most 2. More precisely, the clique-width of a graph is bounded below by its NLC-width,
and above by twice its NLC-width. Moreover, transformations respecting these bounds
between decompositions of the two types can be done in linear time.

The class of graphs NLC1 (cographs) is well-quasi-ordered, see [43] and [121] for the
countable case. The class of graphs NLC2 is well-quasi-ordered (and even ∞-well-quasi-
ordered), this easily follows from the results in [84]. Indeed, the NLC2 prime graphs for
the modular decomposition are constructible in NLC2 without relabelling, and thus form
a well-quasi-ordered family by Kruskal’s Tree Theorem [92]. However, the class NLC3 is
not well-quasi-ordered, as it contains for every i the decorated path of length i depicted
in Figure 5.1, whichs consists of a path of length i with two pendant vertices attached to
each extremity, and which we denote byGi. These graphs indeed do not form a well-quasi-
ordered family. Allowing all relabelling operators ◦f is too much to construct a well-quasi-
ordered class of graphs if we have at least 3 colours. This is why we define a restriction

96 CHAPTER 5. WELL-QUASI-ORDERING INDUCED SUBGRAPHS

of NLC, using only relabelling operators from a specified set of functions F. Our main
purpose is to characterize the sets F such that NLCF

k
is well-quasi-ordered. We will see that

NLCF
k

is well-quasi-ordered (equivalently ∞-well-quasi-ordered) if and only if it does not
contain arbitrarily large paths.

In Section 5.2, we introduce a binary relation ¹ on a set of functions. In Section 5.3
we introduce a subword order ≤ on words labelled with a set of functions which is more
constrained than Higman’s subword order. In Section 5.4 we extend ≤ to trees, with the
purpose of applications to NLCF

k
expressions. In Section 5.5, we characterize the sets F for

which NLCF
k

is well-quasi-ordered. In the final section, we discuss Pouzet’s conjecture on
n-well-quasi-ordering, and further well-quasi-ordering problems.

Throughout this chapter, we will obtain the following equivalent characterizations for
a set of functions F (with Theorem 104, Theorem 106, Theorem 110, Corollary 109 and
Corollary 111):

– The set F is totally ordered by ¹.
– The set of words on F is well-quasi-ordered by ≤.
– The set of trees on F is well-quasi-ordered by ≤.
– The set of graphs NLCF

k
is well-quasi-ordered.

– The set of graphs NLCF
k

is ∞-well-quasi-ordered.

– The set of graphs NLCF
k

does not contain arbitrarily large paths.

5.2 Totally Ordered Sets of Functions

Let F be a set of functions from {1, . . .,k} into {1, . . .,k} closed under composition (with
the convention that the identity function ε belongs to F). We can make these assumptions
without loss of generality with respect to classes NLCF

k
, in the sense that such a class can

always be defined by using a set F of relabel functions as above. The key definition of this
section is the following. Let us say that f¹ g whenever Im(f◦g)= Im(f).

Assume that ¹ is total on F, i.e. for every f,g in F, at least one of f¹ g and g¹ f holds.
This implies in particular that Im(f2) = Im(f) for all f ∈F. Observe that f¹ g implies that
|Im(f)|≤ |Im(g)|.

Lemma 99. If ¹ is total on F, then ¹ is transitive.

Proof. Assume by contradiction that Im(f◦g) = Im(f), Im(g◦h) = Im(g) and f� h, i.e.
|Im(f ◦h)| < |Im(f)|. Since ¹ is total, we must have h ¹ f, and then Im(h ◦ f) = Im(h).
Hence f¹ g¹h¹ f, and thus |Im(f)|= |Im(h)|. As h◦f¹h◦f holds, we have |Im(h◦f◦h◦
f)|= |Im(h ◦ f)|= |Im(h)|. Moreover |Im(h ◦ (f ◦h) ◦ f)|≤ |Im(f ◦h)| < |Im(f)|= |Im(h)|,
which is a contradiction.

5.2. TOTALLY ORDERED SETS OF FUNCTIONS 97

Thus ¹ is a reflexive and transitive relation, in other words ¹ is a total quasi-order on
F. This is equivalent to the existence of a partition of F into t equivalence classes F1, ...,Ft
such that f ∈ Fi and g ∈ Fj satisfy f¹ g if and only if i≤ j.

Lemma 100. When F is totally quasi-ordered by ¹, the equivalence classes F1, ...,Ft are ex-
actly the classes of functions having an image of the same size, in increasing order of the
image size.

Proof. If |Im(f)| < |Im(g)| then g� f, so we must have f ¹ g. Suppose now by contradic-
tion that |Im(f)|= |Im(g)|, f¹ g andg� f. This means that |Im(f◦(g◦f)◦g)|≤ |Im(g◦f)|<
|Im(g)|. We also have that |Im(f◦g)|= |Im(f)|= |Im(g)|, thus |Im(f◦g◦f◦g)|< |Im(f◦g)|.
This contradicts f◦g¹ f◦g.

Observe that the top class Ft contains ε, and contains only permutations, since other
functions do not have the whole set {1, . . .,k} as an image.

Lemma 101. For all i, Fi and ∪k≥iFk are closed under composition.

Proof. The first part of the statement follows by Lemma 100 and by definition of ¹. To
prove that ∪k≥iFk is closed under composition, consider f ∈ Fi and g ∈ Fj with i < j. Since
f¹ g, f◦g is in Fi, as its image is the same as the image of f. Assume now by contradiction
that g◦f∈ Fp, with p< i. Then |Im(f◦g)|= |Im(f)|> |Im(g◦f)|≥ |Im(f◦ (g◦f)◦g)|. Thus
|Im(f◦g)| 6= |Im((f◦g)2)|, contradicting f◦g¹ f◦g.

Lemma 102. The functions of the bottom class F1 verify a "left-cancellation" identity:

∀f ∈ F1,∀h,h ′ ∈F, if h◦f◦h ′=h◦f then f◦h ′ = f

Proof. This identity actually holds whenever f¹h. We will use Lemma 102 only with f ∈ F1,
but we prove the more general statement where the assumption f ∈ F1 has been replaced
with the weaker f¹h.

By Lemma 101, f ¹ h ◦ f. Assume that h ◦ f ◦h ′ = h ◦ f. If there is an x ∈ {1, . . .,k} such
that f◦h ′(x) 6= f(x), then these two distinct elements belong to the image of f and have the
same image under h. This means that |Im(h ◦ f)| < |Im(f)|, and contradicts the fact that
f¹h◦f.

Here is an example of a set of functions which is totally ordered by ¹. An (i, j)−cast,
with i≤ j, is a function f from {1, . . .,k} into itself such that f(l) = l for all l< i and f(l) = j

whenever l≥ i. It is routine to check that the set of all such casts is indeed totally ordered by
¹. We feel that the following problem would give some insight on the well-quasi-ordered
NLCF

k
classes:

Problem 103. Find a generic class of functions G (like casts for instance) such that for every
totally ordered F and k, there exists some k ′ for which NLCF

k
is included in NLCG

k ′.

Such a class of function would describe much more precisely how to construct the well-
quasi-ordered classes NLCF

k
.

98 CHAPTER 5. WELL-QUASI-ORDERING INDUCED SUBGRAPHS

5.3 Words on Functions

An F-word is a finite word on the alphabetF, i.e. a finite sequence f1, . . . , fl of elements
of F, with l≥ 0. Let WF be the set of F-words. Let M= f1, . . . , fl and M ′ = f ′

1
, . . . , f ′

l ′ be two
F-words. We denote by |M|= l the length of M. The word M is a subword of M ′ if there
exists an increasing injection φ from {1, . . ., l} into {1, . . ., l ′} such that fi = f ′

φ(i)
. In other

words, a subword respects the order of the letters but does not preserve consecutiveness.
Higman’s Theorem [83] asserts that the subword partial order is a well-quasi-order when
the alphabet is finite. In our more constrained partial order on F-words, we write M≤M ′

if two conditions are satisfied:
– There is a function φ for which M is a subword of M ′.
– For all 1≤ i< l, we have fi= f ′

φ(i)
◦f ′

φ(i)+1
◦ · · · ◦f ′

φ(i+1)−1
.

Thus, when M≤M ′ and i< j, the composition of functions fi◦fi+1◦· · ·◦fj−1 is equal to
the function f ′

φ(i)
◦f ′

φ(i)+1
◦ · · · ◦f ′

φ(j)−1
. And since fj= f ′

φ(j)
, we also have fi ◦fi+1◦ · · · ◦fj=

f ′
φ(i)

◦f ′
φ(i)+1

◦ · · · ◦f ′
φ(j)

.

Our goal is to prove here that WF is well-quasi-ordered by ≤ if and only if ¹ is total on
F. For this, we have to be more general and we need to consider WF

Q
, the set of words on

the set F×Q, where Q is a set equipped with a well-quasi-order ≤Q.
We naturally extend the partial order ≤ on WF

Q
. For w in WF

Q
and 1≤ x≤ |w| we denote

by (fwx ,q
w
x) the xth letter of w. For every pair of indices a,b, with 1≤a<b≤ |w|, we define

Lw(a,b) to be the composition fwa ◦ fw
a+1

◦ ...◦ fw
b−1

. When a= b, we set Lw(a,b) = ǫ. Let
φ be an increasing injection from {1, . . ., |w|} into {1, . . ., |w ′|}. We say that φ is compatible
with labels if fwx = fw

′

φ(x)
and qw

x ≤Q qw ′

φ(x)
for every x ∈ 1, . . ., |w|. We say that φ preserves

path-composition if for every x< |w|, we have thatLw(x,x+1)=Lw
′
(φ(x),φ(x+1)) (recall

that by definition Lw(x,x+1) = fwx). We write w≤w ′ if there exists an increasing injection
φ from {1, . . ., |w|} into {1, . . ., |w ′|} which is compatible with labels and preserves path-
composition. When φ is only compatible with labels, we simply say that w is a subword of
w ′ and write w≤0w

′.

Theorem 104. The set of words WF
Q

, whereQ is a well-quasi-order, is well-quasi-ordered by
≤ if and only if ¹ is a total quasi-order on F.

Proof. Assume first that ¹ is not a total quasi-order on F, i.e. there exist two incomparable
functions f,g ∈ F. Depending if f = g or not, let us show in both cases that WF is not
well-quasi-ordered by ≤.

– If f = g, we claim that S = (wk)k≥0, where wk = ǫfkǫ, is a bad sequence 3 Indeed,
if wi ≤ wj with i < j, the identity functions must be mapped to identity functions,
as f must be different from ǫ. Moreover, to preserve path-composition, the first and

3. Note the similarity with the basic counter-example to 2-well-quasi-order, the decorated paths. The
word w is essentially a path of f where the extremities are marked by an ǫ.

5.3. WORDS ON FUNCTIONS 99

the last f of wi must be mapped to the first and the last f of wj. Hence, two con-
secutive f’s in wi must be mapped to non-consecutive f’s in wj, which contradicts
path-composition since f 6= fl for every l ≥ 2. Indeed, f being incomparable with
itself means that |Im(f2)|< |Im(f)|.

– If f 6= g, we claim that S= (wk)k≥0, where wk = ǫ(fg)kǫ, is a bad sequence. Again,
if wi ≤ wj with i < j, the identity functions must be mapped to identity functions.
Moreover, to preserve path-composition, the first f and the last g of wi must respec-
tively be mapped to the first f and to the last g of wj. Hence, two consecutive f and
g in wi must be mapped to non-consecutive f and g in wj, which contradicts path-
composition.

Assume now that ¹ is a total quasi-order on F. Our goal is to prove that WF
Q

is well-
quasi-ordered.

To achieve this, we need to enrich the structure, and consider words onF×F×Q instead
of F×Q. We will label every letter of a word by another function in F. Precisely, we add,
to every letter x of a word w, the function consisting of the composition of all functions
of the prefix of w before x. The reason for this is to keep track, in every letter of the word,
of some information preceding this letter. Technically, this bit of information allows us to
use a Nash-Williams’ minimum bad sequence argument, cutting every word in a prefix-
suffix way and applying the minimality to prove the well-quasi-order. The key idea is to cut
the words on some letter which belongs to the bottom class of F, since left-cancellation
(thanks to the extra label) enables to glue back the prefix and the suffix.

Let us turn to technicalities. Instead of dealing with words w = ((fwx ,q
w
x))x=1...|w| on

F×Q, we transform w into the word w̃ = ((fwx ,L
w(1,x),qw

x))x=1...|w| on F×F×Q. To
simplify notation, we still call this word w.

A word ((fx,hx,qx))x=1...k onF×F×Q is coherent if for every 1≤ x< k, we havehx+1=

hx ◦fx. Observe that w is coherent by construction, and so is every factor of w. We denote
by W̃F

F×Q the set of coherent words on F ×F×Q. The set F ×Q is equipped with the

well-quasi-order (f,q) ≤F×Q (f ′,q ′) if f = f ′ and q ≤Q q ′. Theorem 104 follows from the
following result.

Lemma 105. For every well-quasi-ordered set Q, the set W̃F
F×Q is well-quasi-ordered by ≤.

Proof. By induction on t, the number of equivalence classes of F.
Assume first that t= 1. Observe that {ε}⊆F⊆Sn, where Sn is the set of permutations

of {1, . . .,n}. By Higman’s Theorem [83], W̃F
F×Q is well-quasi-ordered by ≤0. Let us prove

that ≤ and ≤0 coincide in this case. Suppose that w = ((fwx ,h
w
x ,q

w
x))x=1...|w| and w ′ =

((fw
′

x ,hw ′
x ,qw ′

x))x=1...|w ′| belong to W̃F
F×Q and satisfy w ≤0 w

′. There exists an increasing

injection φ from {1, . . ., |w|} into {1, . . ., |w ′|} which is compatible with labels. Consider a
position x< |w|. Since φ preserves labels, we have fwx = fw

′

φ(x)
(we call this function f) and

hw
x = hw ′

φ(x)
(we call this function h). To prove that ≤0 preserves path-composition, we

100 CHAPTER 5. WELL-QUASI-ORDERING INDUCED SUBGRAPHS

x

gf

x+1

wi

f g

φ(x+1)

wj

h ′

φ(x)

h h

1 1

h0h0

Figure 5.2: The words w and w ′ in the proof of Lemma 105.

just have to check that fwx = fw
′

φ(x)
◦ fw ′

φ(x)+1
◦ · · · ◦ fw ′

φ(x+1)−1
. Equivalently, by letting h ′ =

fw
′

φ(x)+1
◦ · · · ◦ fw ′

φ(x+1)−1
(the empty product being ǫ), we want to prove that f= f◦h ′. Since

w is coherent, we have hw
x+1

= hw
x ◦ fwx = h ◦ f. Since w ′ is coherent, we have hw ′

φ(x+1)
=

hw ′

φ(x)
◦fw ′

φ(x)
◦fw ′

φ(x)+1
◦· · ·◦fw ′

φ(x+1)−1
, hence hw ′

φ(x+1)
=h◦f◦h ′. Since φ preserves labels, we

haveh◦f=hw
x+1

=hw ′

φ(x+1)
=h◦f◦h ′. We can then deduce that f= f◦h ′ by left-cancellation

of the permutationh. This concludes the proof of the base case.
Let us now assume that the induction hypothesis holds for t− 1. Consider F with

t equivalence classes. We will prove that W̃F
F×Q is well-quasi-ordered by ≤ using Nash-

Williams’ minimal bad sequence argument [104]. By contradiction, let S= (wi)i∈ω be an
infinite bad sequence of W̃F

F×Q, minimal in the sense that for every i≥ 1, the ith word wi of
this sequence is defined to be a word of minimal size such that there exists a bad sequence
(with respect to ≤) starting with w1, ...,wi−1,wi.

Set wi = ((f
wi
x ,(h

wi
x ,q

wi
x)))x=1...|wi|

, and consider the minimal pi such that fwi
pi ∈ F1,

if such a pi exists. The subword w ′
i
= ((f

wi
x ,(h

wi
x ,q

wi
x)))x=1...pi , or w ′

i
= wi if pi is un-

defined, is called the beginning of wi. Likewise, the end of wi is the subword w ′′
i
=

((f
wi
x ,(h

wi
x ,q

wi
x)))x=pi+1...|wi|, or the empty word if pi is undefined.

Let X be the set of all ends of words in S. We now prove that X is well-quasi-ordered by
≤. Let σ be an infinite sequence of X. Let α= (zi)i∈ω be an infinite extracted subsequence
of σ such that for all i, if zi is the end of wj and zi+1 is the end of wk, then j ≤ k. Let wn

be the word of which z1 is the end. The sequence (w1, ...,wn−1,z1,z2, ...) is good by the
minimality of S. Since S is bad, one cannot have wi ≤ zj, or wi ≤wj with i< j. Hence there
exists a good pair zi ≤ zj with i< j, thus X is well-quasi-ordered by ≤.

By Lemma 101, we know that F−F1 is closed under composition. Let R= (F1×X)∪{△}

where △ is a new marker. The setR is ordered by≤R as follows: △≤R△, and (f,x)≤R (g,x
′)

if f=g and x≤ x ′. Since X is well-quasi-ordered, we have that R and, hence Q ′ =Q×R are
well-quasi-ordered. By our induction hypothesis, W̃F−F1

(F−F1)×Q ′ is well-quasi-ordered by ≤,

where the order ≤Q ′ on Q ′ is defined by: (q,r)¹Q ′ (q ′,r ′) if q¹Q q ′ and r≤R r
′.

5.4. TREES ON FUNCTIONS 101

Denote by w ′′′
i

the word of W̃
F−F1
(F−F1)×Q ′ which is the concatenation of the word

((f
wi
x ,(h

wi
x ,(q

wi
x ,△))))x=1...pi−1 with the extra letter (ε,(hwi

pi ,(q
wi
pi ,(f

wi
pi ,w

′′
i
)))) if pi exists,

or ((fwi
x ,(h

wi
x ,(q

wi
x ,△))))x=1...pi−1 otherwise. Note that w ′′′

i
is coherent since wi is coher-

ent.
As W̃

F−F1
(F−F1)×Q ′ is well-quasi-ordered by ≤, there exist i < j such that w ′′′

i
≤ w ′′′

j
. We

denote by φ the mapping from w ′′′
i

into w ′′′
j

. Observe that if w ′′′
i

does not have an extra
letter, we would directly have that wi ≤wj which is impossible since S is a bad sequence.
Hence pi and pj exist. Let us now exhibit a mapping Φ from wi into wj which preserves
labels and path-composition.

First, we set Φ to be the restriction of the function φ from {1, . . .,pi} into {1, . . .,pj}.
Observe that φ(pi) = pj since extra letters do not carry a marker δ. Moreover, the extra

letter (ε,(hwi
pi ,(q

wi
pi ,(f

wi
pi ,w

′′
i
)))) is mapped to the extra letter (ε,(h

wj
pj ,(q

wj
pj ,(f

wj
pj ,w

′′
j
)))).

In particular, we have w ′′
i
≤w ′′

j
. The mappingφ ′′ from w ′′

i
≤w ′′

j
which realizes w ′′

i
≤w ′′

j
is

our extension of Φ from {pi+1, . . ., |wi|} into {pj+1, . . ., |wj|}.
Now Φ is completely defined. Moreover, it preserves labels by definition. Thus, we

only need to show that Φ also preserves path-composition, and more precisely path-
composition exactly after the letter pi, since the other cases are already taken into account
by φ or φ ′.

We have to show that fwi
pi = f

wj

Φ(pi)
◦ · · · ◦ fwj

Φ(pi+1)−1
or equivalently that fwi

pi = f
wj
pj ◦

f
wj

pj+1
· · · ◦ fwj

φ ′′(pi+1)−1
. Observe that this condition holds vacuously when pi = |wi|. As the

extra letter of w ′′′
i

is mapped to the extra letter of w ′′′
j

, we have f
wi
pi = f

wj
pj (we call this

function f) and h
wi
pi = h

wj
pj (we call this function h). We now let h ′ = f

wj

pj+1
· · · ◦ fwj

φ ′′(pi+1)−1

(the empty product being ǫ). Since the word wi is coherent, we have h
wi

pi+1
= h

wi
pi ◦ fwi

pi =

h ◦ f. Since wj is coherent, we have h
wj

φ ′′(pi+1)
= h

wj
pj ◦ f

wj
pj ◦ fwj

pj+1
◦ · · · ◦ fwj

φ ′′(pi+1)−1
. Hence

h
wj

φ ′′(pi+1)
=h◦f◦h ′. Sinceφ ′′ preserves labels, we haveh◦f=h

wi

pi+1
=h

wj

φ ′′(pi+1)
=h◦f◦h ′.

We now conclude by Lemma 102 that f = f ◦h ′. This concludes the proof of Lemma 105
and Theorem 104.

5.4 Trees on Functions

We extend in this section our results to trees. However, since the arguments are similar
to the previous section, we will not give the same level of detail, especially concerning the
verification of path-composition.

A structured tree is a finite rooted tree where the children of a node are ordered from left
to right. We denote by TF

Q
the set of structured trees with nodes labelled by F×Q, where F

102 CHAPTER 5. WELL-QUASI-ORDERING INDUCED SUBGRAPHS

is as usual a set of functions, and Q is a well-quasi-ordered set. A node x is then labelled by
a pair l(x) = (f(x),q(x)). We simply write TF when there is no additional label Q. The set
of nodes of a tree T is denoted byV(T). We write x∧y to denote the least common ancestor
of x and y. We say that (x,y) is an arc of T when x is the father of y. A sequence of nodes
z0,z1, ...,zn is a downward path in T if (zi,zi+1) is an arc, for every i= 0, . . .,n−1, and we
say that z0 is an ancestor of zn and that zn is a descendant of z0. For such a downward path
z0,z1, ...,zn, we denote by L(z0,zn) the composition f(z0)◦f(z1)◦ ...◦f(zn−1).

Let us define a partial order ≤ on TF
Q

which extends the order ≤ on words. Precisely, let

us write that T ≤ T ′ if there exists an injection φ from V(T) into V(T ′) such that:
– φ preserves descendants.
– φ preserves least common ancestors, i.e. φ(x∧y) =φ(x)∧φ(y).
– φ preserves the left/right order, i.e. if x and y are not in descendant relation, and the

branch of x∧y containing x is to the left of the one containing y, the same holds for
the branches of φ(x)∧φ(y) containing φ(x) and φ(y).

– φ preserves labels, i.e. f(x) = f(φ(x)) and q(x)≤Q q(φ(x)).
– φ preserves path-composition, i.e. for every arc (x,y) in T , we have L(x,y) =

L(φ(x),φ(y)), i.e. f(x)= L(φ(x),φ(y)).
When φ satisfies all these properties except possibly path-composition, we simply

write T ≤0 T
′. Kruskal’s Tree Theorem [92] asserts that ≤0 is a well-quasi-order on the set of

trees.
Note that the relation ≤ does indeed extend the relation ≤ on words defined in the

previous section.
This more constrained order relation≤ presents some analogies with the so-called gap-

condition embedding studied by Kriz in [90]. For instance, when the class of functions
F is totally ordered, and hence partitioned into F1, . . .,Ft, the path-composition property
implies that if y is a child of x and f(x) belongs to Fi, then every function of the product
L(φ(x),φ(y)) belong to classes with height at least i. It could be interesting to state a
common generalisation of these results, possibly involving ordinal functions.

Theorem 106. The set TF
Q

, where Q is a well-quasi-order, is well-quasi-ordered by ≤ if and
only if ¹ is total on F.

Proof. If ¹ is not total on F, the set of words, hence of trees, is not well-quasi-ordered as
we have seen in the previous section.

Assume now that ¹ is total on F. As for words, we transform a tree T in TF
Q

into a tree in

TF
F×Q. To every vertex x of T distinct from the root r, we give the extra labelL(r,x), the extra

label of the root being ǫ. More generally, we say that a rooted tree T with nodes labelled by
F×F×Q is coherent if for every arc (x,y) ∈ T , with l(x) = (f,h,q) and l(y) = (g,h ′,q ′), we
have h ′ = h◦ f. We denote by T̃F

F×Q the set of coherent structured rooted trees with nodes
labelled by F×F×Q. Theorem 106 is a consequence of the following result.

Lemma 107. If Q is well-quasi-ordered, the set T̃F
F×Q is well-quasi-ordered by ≤.

5.4. TREES ON FUNCTIONS 103

zi
1

zi
2

zi
3

(f4,w4,q4)

(f3,w3,q3)

(f6,w6,q6)

zi
5

zi
4

(f2,w2,q2)

(f1,w1,q1)

(f5,w5,q5)

Figure 5.3: The tree Ti (f2, f4, f5 and f6 are in F1, while f1 and f3 are not).

(f3,h3,q3)

(f6,h6,q6)(f4,h4,q4)

(f1,h1,q1)

(f5,h5,q5)

(f2,h2,q2)

(ε,h6,q6,(f6,(z
i
4
,zi
5
)))

(ε,h5,q5,(f5,()))

(f3,h3,q3,△)

(f1,h1,q1,△)

(ε,h4,q4,(f4,(z
i
3
)))

(ε,h2,q2,(f2,(z
i
1
,zi
2
)))

Figure 5.4: The trees T ′
i

(left) and T ′′
i

(right)

Proof. Let us prove this by induction on t, the number of equivalence classes of F.
When t= 1, the proof goes according to the case of words: by Kruskal’s Theorem, T̃F

F×Q
is well-quasi-ordered by ≤0, which again coincides with ≤.

Let us assume that the induction hypothesis holds for t−1. Consider F with t equiv-
alence classes. We prove that T̃F

F×Q is well-quasi-ordered by ≤ using Nash-Williams’ mini-

mal bad sequence argument. By contradiction, let S=(Ti)i∈ω be an infinite bad sequence
of T̃F

F×Q, minimal in the sense that for i≥ 1, the ith tree Ti of this sequence is defined to be
a tree of minimal size for which there exists a bad sequence starting with T1, ...,Ti−1,Ti.

A branching vertex is a node x labelled by (f,w,q), with f ∈ F1, and with no ancestor
having a label (g,w ′,q ′) with g in F1. A branch is a subtree which is rooted in a child of a
branching vertex. We denote by T ′

i
the subtree of Ti obtained by deleting all the branches

of T (see Figure 5.3 and Figure 5.4). Let X be the set of all branches of the trees in S. As in
the previous section, the minimality of S ensures that X is well-quasi-ordered by ≤.

Recall that F− F1 is closed under composition. We denote by Seq(X) the set of se-
quences of X. The usual order ≤seq on Seq(X) is defined as follows: for every two se-
quences (x1, ...,xm) and (x ′

1
, ...,x ′

n) of X, we have (x1, ...,xm)≤seq (x
′
1
, ...,x ′

n) if there exists
an increasing injectionσ from {1, . . .,m} to {1, . . .,n} such that ∀i ∈ {1, . . .,m} xi ≤ x ′

σ(i)
. Let

R=((F1×Seq(X))∪{△})with △ a new marker. Let≤R be the following order onR: △≤R△,
and (f,x)≤R (g,x

′) if f=g and x≤seq x
′. By Higman’s Theorem, ≤seq is a well-quasi-order

on Seq(X), hence ≤R is a well-quasi-order on R. By our induction hypothesis T̃F−F1
(F−F1)×Q ′ ,

with Q ′=Q×R, is well-quasi-ordered by ≤.

104 CHAPTER 5. WELL-QUASI-ORDERING INDUCED SUBGRAPHS

Denote by T ′′
i

the tree obtained from T ′
i

by modifying the labels of its nodes as follows:
– Labels of internal nodes are modified from (f,h,q) into (f,h,(q,△)).
– Labels of leaves x are modified from (f,h,q) into (ǫ,h,(q,s)), where s is the se-

quence of branches of the branching vertex x (see Figure 5.4).

Observe that the trees T ′′
i

are coherent, and since T̃F−F1
(F−F1)×Q ′ is well-quasi-ordered by ≤,

there exist i< j such that T ′′
i
≤ T ′′

j
. The node injection φ from T ′′

i
into T ′′

j
can be extended,

via the labels s, to the vertices of the branches of Ti and Tj. By construction, φ directly
gives Ti ≤0 Tj, and coherence property, as for words, gives path-composition. Thus Ti ≤ Tj,
contradicting the badness of S. This completes the proof of Lemma 107 and Theorem 106.

5.5 NLC with Restricted Relabelling Functions

We can see NLCF
k

expressions as binary trees, where the leaves are labelled by •i, the
nodes of degree 1 by ◦f, and the nodes of degree 2 by χS. To fit in the framework of the
previous section, we add an extra label to every node of such an NLCF

k
tree, to see χS and

•i as identity relabelling functions. More formally, we replace •i with (ε,•i), ◦f with (f,◦f)
and χS with (ε,χS). We call such a tree a construction tree for the graph corresponding to
this NLCF

k
expression. Let TG be a construction tree for a graph G. Let x be a vertex of G

which corresponds to the leaf x ′ of TG of label •i and let y be an ancestor of x ′ in TG. When
we apply the operation corresponding to the node y of TG to the vertex x, the colour of x,
denoted by cx(y) is exactly L(y,x ′)(i).

Lemma 108. Let G and H be two NLCk graphs and let TG and TH be NLCF
k

construction trees
of G and H. If TG ≤ TH, then G≤iH.

Proof. Let φ be an injection fromV(TG) intoV(TH) which realizes TG ≤ TH. The restriction
of φ on the leaves of TG can be seen as an injection from V(G) into V(H). Let x,y be two
vertices of G, with x on the left of y in T . Then x and y are neighbours in G if and only if
their least common ancestor in V(TG) is a node labelled by χS with (cx(x∧y),cy(x∧y)) ∈
S. As φ preserves labels, path composition and right/left order, this is the case if and only
if φ(x) and φ(y) are neighbours in H. So G≤iH.

Theorem 106 and Lemma 108 immediately give that if ¹ is total on F, then NLCF
k

is
well-quasi-ordered by ≤i. Moreover, since we can always add some extra vertex-labels, we
obtain that:

Corollary 109. NLCF
k

is ∞-well-quasi-ordered when ¹ is total on F.

Let us now characterize the sets NLCF
k

which are well-quasi-ordered:

5.5. NLC WITH RESTRICTED RELABELLING FUNCTIONS 105

Theorem 110. NLCF
k

is well-quasi-ordered by ≤i if and only if ¹ is total on F.

Proof. Assume that ¹ is not total on F, and let (f,g) be an incomparable pair for the rela-
tion¹. Let us show that for everyn≥ 1, the decorated pathGn consisting of a path of length
n with two pending vertices attached to each extremity is in NLCF

k
. The set {Gn|n ∈ω} is

clearly not well-quasi-ordered.
Assume first that f= g, that is |Im(f2)|< |Im(f)|. Hence there exist x,y ∉ Im(f2), such

that f(x) =y. To construct the decorated pathGn, start from two vertices labelled by y and
one vertex labelled by x, and apply χ{(x,y)} to form a path of length 2. Relabel by f. Observe
that the two extremities of this path will never again be labelled by x or y since their labels
will stay within Im(f2). Add a vertex labelled by x, apply again χ{(x,y)}. This adds an edge
between the middle vertex of the path and the new one. Then relabel by f, and keep on
building the path up to the desired length. The point is that after any step, the extremity
of the path is distinguished by its label from the other vertices. When the last vertex of
the path has been added (with label x as usual), add two isolated vertices with label x for
instance, and apply χ{(x,x)}, completing the graph Gn.

We can generalise this when f and g are distinct. An f-class is a subset S of {1, . . .,k}
such that |f(S)| = 1 and which is maximum with respect to inclusion. Since f � g, there
exists an f-class disjoint from Im(g). Let x be one of its elements. Similarly, let y be in a
g-class disjoint from Im(f). Let us prove by induction that for every n, we can build paths
of length 2n where the last vertex is labelled by y and the other vertices are labelled in the
set Im(f). We will therefore be able to build the decorated path Gn for arbitrarily large n,
by adding two pending nodes on each extremity as in the previous case.

To start with, take a vertex z ∈ Im(f), add a vertex y, and apply χ{(z,y)}. Now assume
that we have a path of length 2n where the last vertex is labelled by y and the other vertices
by some elements of Im(f). Relabel by g. Observe that the last vertex is still distinguished
from the rest. Add a vertex x. At this point, no other vertex has label x, since x is not in
Im(g). Apply χ{(x,y)}. This constructs a path of length 2n+1. Now relabel by f, add a vertex
y and apply χ{(y,x)} in order to get a path of length 2(n+1) which satisfies the induction
hypothesis.

This proof actually gives the following result:

Corollary 111. If ¹ is not total on F, then NLCF
k

contains arbitrarily large paths.

Also, if NLCF
k

contains arbitrarily large paths then NLCF
k

is not 2-well-quasi-ordered,
which completes the proof of the equivalences claimed in the introduction.

To sum-up the different results obtained in this section, we have proved that the fol-
lowing statements are equivalent:

– NLCF
k

is well-quasi-ordered by ≤i

– NLCF
k

is ∞-well-quasi-ordered by ≤i

– ¹ is total on F

106 CHAPTER 5. WELL-QUASI-ORDERING INDUCED SUBGRAPHS

– NLCF
k

does not contain arbitrarily large paths.

5.6 Further Well-Quasi-Ordering Problems

As we have mentioned before, one important motivation for the notion of a 2-well-
quasi-ordered class is that it can be described by a finite set of bounds [107].

Proposition 112. Let I be a 2-well-quasi-ordered induced subgraph ideal. There are finitely
many graphs in the complement I of I which are minimal with respect to the induced sub-
graph relation.

Proof. By contradiction, we assume that the set B of minimal graphs in Ī is infinite. For ev-
ery graphG inB, choose a vertex x, colour the neighbours of x red and the non-neighbours
of x black, and delete x. Call the resulting bicoloured graph G ′. The set B ′ = {G ′|G ∈ B}

is infinite, and consists of graphs whose underlying graphs are in I, by minimality of the
graphs in B. As I is 2-well-quasi-ordered, there exist two graphs G ′

1
and G ′

2
in B ′, such

that G ′
1

is a coloured induced subgraph of G ′
2

. Hence G1 is an induced subgraph of G2,
contradicting the fact that G2 is in B.

We call the minimal graphs in I the forbidden graphs of I, and denote by F(I) the set
of these graphs. The same argument shows that I∪ F(I) is well-quasi-ordered when I is
2-well-quasi-ordered.

Proposition 112 implies that any 2-well-quasi-ordered induced subgraph ideal is poly-
nomial time recognizable. This means in particular that for a set F totally quasi-ordered
by ¹, the class NLCF

k
is recognizable in polynomial time, by simply brute-force testing the

existence of each forbidden subgraph.
The following question would give an answer to Pouzet’s conjecture.

Conjecture 113. If G is a 2-well-quasi-ordered induced subgraph ideal, there exists an ∞-
well-quasi-ordered set NLCF

k
which contains G.

This problem seems hard. One first step would be to show the following:

Conjecture 114. No class of graphs closed under induced subgraph, and of unbounded
clique-width, is 2-well-quasi-ordered.

The next step would be to show that if indeed a subclass of NLCk is 2-well-quasi-
ordered, then it is contained in some ∞-well-quasi-ordered set NLCF

k ′, with k ′ possbibly
larger than k.

Recall that clique-width and NLC-width are equivalent from the point of view of
boundedness. We present the conjectures of this final section in terms of clique-width,
the more familiar of the two, while we used NLC-width in our proofs for technical conve-
nience.

5.6. FURTHER WELL-QUASI-ORDERING PROBLEMS 107

Concerning classes of unbounded clique-width, the following problem (which gener-
alises Conjecture 114) is of independent interest:

Problem 115. Is it true that every class of graphs closed under induced subgraph, and of
unbounded clique-width, is not well-quasi-ordered by the induced subgraph relation?

Let us say that an ideal I ′ ⊆ I is a sub-ideal of an ideal I, and a strict sub-ideal if I ′ (I.
To prove Conjecture 114, one can actually restrict to minimal such classes:

Proposition 116. Let I be a 2-well-quasi-ordered induced subgraph ideal of unbounded
clique-width. There exists a sub-ideal I ′ of I of unbounded clique-width such that every
strict sub-ideal of I ′ is of bounded clique-width.

Proof. Since I is well-quasi-ordered, every non empty collection of sub-ideals of I has a
minimal element by Higman’s Theorem. This fact applied to the collection of sub-ideals of
I with unbounded clique-width yields the result.

Thus the following conjecture implies Conjecture 114:

Conjecture 117. No ideal G verifies all of the following properties:
– G has unbounded clique-width
– G has a finite number of forbidden graphs
– Every strict sub-ideal of G has bounded clique-width

For further discussion on minimal ideals of unbounded clique-width, see [85] for in-
stance.

Finally, let us mention a question which would extend further Pouzet’s conjecture. The
answer for cographs can be found in [121].

A quasi-order Q is a better-quasi-order if the class of countable ordinals labelled by Q

is a well-quasi-order [104].

Conjecture 118. Let G be a class of countable graphs. If the class of finite induced subgraphs
GF of G is 2-well-quasi-ordered, then G is better-quasi-ordered for every better-quasi-ordered
vertex-labelling.

CHAPTER

6
Helly Circle Graphs

In this chapter, we prove that the Helly Circle Graphs are exactly the Diamond-free Cir-
cle Graphs. This characterisation yields an efficient recognition algorithm.

6.1 Introduction

A circle graph is a graph whose vertices can be associated to chords of a circle such that
two vertices are adjacent if and only if the corresponding chords intersect.

Recently, circle graphs have received renewed attention in relation to the vertex-minor
relation, pivot-minor relation, and rankwidth (see for instance [34] and [106]). Circle
graphs indeed play a similar role with respect to vertex minor and rankwidth as pla-
nar graphs do with respect to minor and treewidth. Circle graphs were characterized by
Bouchet [21] by three excluded vertex-minor, and by Geelen and Oum [73] by a finite list of
forbidden pivot-minors. Another characterization of circle graphs was given by de Frays-
seix [44].

In the following, we prove that a subclass of the circle graphs, namely the Helly circle
graphs, are characterized with respect to circle graphs by one excluded induced subgraph:
the diamond.

A circle model of a circle graph G is a function which associates to every v ∈ V(G) the
two endpoints of a chord in the unit circle C. For convenience we only consider models
where endpoints are pairwise disjoint.

A sequence model σG of a circle graph G is a circular sequence in which every element
of V(G) appears exactly twice according to the order in which we meet the chord end-
points on a clockwise walk around C. Note that many circle models correspond to a given
sequence model and that a circle graph G may have several sequence models, for example
if G is disconnected.

109

110 CHAPTER 6. HELLY CIRCLE GRAPHS

A subsequence σ of σG, which we will denote by σ⊆σG, is a circular sequence obtained
by deleting from σG the two occurrences of every v ∈X, for some subset X⊆V(G).

A family of geometric objects is said to have the Helly property if every pairwise in-
tersecting subfamily shares a common point. Thus a circle model is Helly if every three
pairwise intersecting chords intersect in a single point. A circle graph G is Helly if it has a
Helly circle model.

The diamond is the graph obtained from K4 by deleting an edge. The diamond clearly
admits no Helly circle model, so every Helly circle graph is diamond-free. Our main result
is that the converse holds, as conjectured by Durán [51] (see also [8, 52]).

Theorem 119. Every diamond-free circle graph G is a Helly circle graph.

The rest of this chapter is devoted to the proof of Theorem 119.
This characterization ensures that the complexity of Helly circle graphs recognition is

at most that of circle graphs recognition. Using the O(n2) recognition algorithm of circle
graphs by Spinrad [119] yields a O(n2) recognition algorithm for Helly circle graphs (see
the concluding remarks for a short discussion on algorithmic issues). Using a recent im-
provement of Gioan et al. [54], Helly circle graphs can even be recognised in quasi-linear
time.

6.2 Computing a Helly Circle Model

Consider a diamond-free circle graph G and one of its sequence models σG. In the
following, we make a slight abuse of notation in denoting (G,σG) by G. We prove Theo-
rem 119 by showing that G admits a Helly circle model. We basically grow a Helly Circle
model step by step. Formally, we need the following definitions.

An induced subgraph H of G is convex if for every subsequence (a,b,c,c,b,a) of σG,
{a,c} ⊆ V(H) implies that b ∈ V(H). This corresponds exactly to the geometric notion of
convexity, as in a subsequence (a,b,c,c,b,a) the chord b lies between the chords a and c.

A clique Kt is non-trivial if and only if t ≥ 2. An induced subgraph H of G is clique
maximal if every non-trivial maximal clique of H is a maximal clique of G. An induced
subgraph H of G is almost component maximal if at most one (connected) component 1

of H is not a maximal component of G. An induced subgraph H of G is convenient if it is
convex, clique maximal, and almost component maximal. Given an induced subgraph H

of G, we denote by σH the sequence model in σG induced by V(H). Also, a mixed Helly
model of (G,H) is a circle model of G where the induced circle model of H is Helly.

Lemma 120. Given a convenient subgraph H of G, for every vertex u ∈ V(G) \V(H) the
neighbours of u in H are pairwise non-adjacent. Equivalently, for every x and y ∈ V(H),
(u,x,y,u,x,y) 6⊆σG.

1. In the following, we write "component" instead of "connected component".

6.2. COMPUTING A HELLY CIRCLE MODEL 111

Proof. Since H is clique maximal, the neighbourhood NH(u) of u in H does not contain
a non-trivial maximal clique of H. Thus if two vertices of NH(u) were adjacent (say x and
y), then these vertices would belong to a maximal clique of H with at least one vertex z not
adjacent to u. This is impossible since u, x, y, and z would induce a diamond.

Lemma 121. Consider a convenient subgraph H of G, and a vertex u ∈ V(G)\V(H). It is
possible to denote the two occurrences of u in σG by u− and u+ so that for every x ∈V(H)\

NG(u) we have (u−,x,x,u+)⊆σG.

Proof. If there exists a vertex x ∈ V(H) \NG(u), choose u− and u+ in such a way that
(u−,x,x,u+)⊆σG, otherwise choose them randomly. For every y ∈V(H)\ ({x}∪NG(u)),
we observe that we have (u−,y,y,u+) ⊆ σG and not (y,u−,u+,y) ⊆ σG. Indeed, in the
second case we would have (y,u−,x,x,u+,y)⊆σG, contradicting the convexity of H.

Theorem 119 follows from the fact that (G,G) admits a mixed Helly model. To show
that (G,G) admits a mixed Helly model, we first note that the empty graph G[;] is a con-
venient subgraph of G and that (G,G[;]) admits a mixed Helly model. Then we prove that
given a convenient subgraphH(G such that (G,H) admits a mixed Helly model, there ex-
ists a convenient subgraph H ′ of G verifying H(H ′ and such that (G,H ′) admits a mixed
Helly model.

To construct such a subgraph H ′ we need the following result.

Lemma 122. Given any proper convenient subgraph H of G, there exists a vertex u ∈V(G)\

V(H) such that G[V(H)∪{u}] remains convex. Furthermore, if H has a component which is
a proper subgraph of a component C of G, then there exists such a vertex u in C.

Proof. Let ≺ be the relation on V(G)\V(H) such that u ′ ≺ u if (x,u,u ′,u ′, u,x) is a sub-
sequence of σG for some x ∈V(H). It is easy to see that ≺ is anti-symmetric and transitive.
Clearly, for any maximal u for ≺, G[V(H)∪ {u}] is convex. Moreover, by convexity, if u ′ ≺u

and u ′ is adjacent to some y ∈ V(H), then u is adjacent to y. Thus if H has a component
that is a proper subgraph of a component C of G, then ≺ has a maximal element in C.

We now distinguish the case where every component of H is a component of G and
the case where one connected component of H is a proper subgraph of a component of G.
In the first case we consider a vertex u ∈ V(G)\V(H) such that G[V(H)∪ {u}] is convex.
Such a vertex exists by Lemma 122. It is clear thatH ′ =G[V(H)∪{u}] is almost component
maximal. Since the non-trivial cliques ofH ′ are exactly the non-trivial cliques ofH, we have
that H ′ is clique maximal and thus convenient. The non-trivial cliques of H ′ are exactly
the non-trivial cliques of H, thus the mixed Helly model of (G,H) is a mixed Helly model
of (G,H ′).

Thus we can assume that H has a component which is a proper subgraph of a compo-
nent of G.

112 CHAPTER 6. HELLY CIRCLE GRAPHS

u−

vkv1
. . .

u+ u−

vkv1
. . .

u+

yx

Figure 6.1: Left: A vertex u ∈V(G)\V(H) and its neighbourhood in H. Right: x and y are
respectively a predecessor and a successor of u.

Lemma 122 ensures that there exists at least one vertex u ∈ V(G) \V(H) such that
G[V(H)∪ {u}] is convex and almost component maximal (i.e. u has neighbours in H). The
following result states that the neighbours of such a vertex u are linearly ordered.

Lemma 123. Given a vertex u ∈ V(G) \V(H) adjacent to some vertex in H and such that
G[V(H)∪{u}] is convex, Lemma 120 allows us to index the neighbours of u inH as v1, . . .,vk,
with k≥ 1, in such a way that (u+,v1, . . .,vk,u

−,vk, . . . ,v1)⊆ σG (see Figure 6.1). Further-
more, every common neighbour x of u and some vertex vi, with 1 ≤ i ≤ k, is adjacent to
exactly one vertex in NH(u), namely vi, and x satisfies either:

(P) vi= v1 and (u+,v1,x,u
−,v1,x)⊆σG, or

(S) vi= vk and (u+,x,vk,u
−,x,vk)⊆σG.

It is clear that x ∈V(G)\V(H). In the first case (P), we call x a predecessor of u, while in the
second case (S) we say that x is a successor of u.

Proof. Consider a vertex x adjacent to u and to some vertex vi. Lemma 120 implies
that x ∈ V(G) \V(H), and since G is diamond-free the vertex x is not adjacent to any
vj with j 6= i, otherwise x, u, vi and vj would induce a diamond. We now prove that
(u+,x,vi,u

−,x,vi) 6⊆ σG, for 1 ≤ i < k. Since the subgraph H is almost component max-
imal and since u lies in the same component of G as vi and vi+1, the vertices vi and
vi+1 are in the same component of H. Thus vi has at least one neighbour z 6= vi+1 in
H. As the vertex x is adjacent to vi, Lemma 120 implies that x is not adjacent to z. So if
(u+,x,vi,u

−,x,vi) ⊆ σG, then (z,x,vi+1,vi+1,x,z) ⊆ σG, which contradicts the convexity
of H. We could similarly prove that (u,vi,x,u,vi,x) 6⊆σG, for 1< i≤ k. This concludes the
proof of Lemma 123.

Lemma 124. Consider a vertex u ∈ V(G) \V(H) adjacent to some vertex in H, such that
G[V(H)∪ {u}] is convex. For every predecessor (resp. successor) x of u, G[V(H)∪ {x}] is
convex and u is a successor (resp. a predecessor) of x.

Proof. Assume that G[V(H) ∪ {x}] is not convex. There exist two vertices y ∈ V(G) \

V(H) and z ∈ V(H) such that (x+,x−,y,z,z,y) ⊆ σG. By convexity of G[V(H)∪ {u}],
the vertex u is adjacent to y, as otherwise we would have (u+,u−,y,z,z,y) ⊆ σG.

6.2. COMPUTING A HELLY CIRCLE MODEL 113

u1

u−1 u2

v4
v3v2

v1

u0

Figure 6.2: A sequence S=(u−1,u0,u1,u2) allowing to extend H

Let us index the neighbours of u in H as v1, . . . ,vk, with k ≥ 1, in such a way that
(u+,v1, . . .,vk,u

−,vk, . . . ,v1) ⊆ σG. Recall that by the definition of x, the vertices u and
x have a common neighbour, that is v1 (resp. vk) by Lemma 123. Since u, x, y, and v1
(resp. vk) cannot induce a diamond, y and v1 (resp. vk) are not adjacent. This contradicts
the convexity of H, as we would have (v1,v1,y,z,z,y) or (vk,vk,y,z,z,y)⊆σG. Finally it is
clear by Lemma 123 that u is a successor (resp. a predecessor) of x.

By Lemma 122, there exists a vertex u0 in V(G) \V(H) such that G[V(H)∪ {u0}] is
convex and almost component maximal (i.e. u0 has neighbours in H). We now de-
fine the vertices ui ∈ V(G) \V(H) with −p ≤ i ≤ q, in such a way that (ui)−p≤i≤q is the
longest sequence containing u0 with the property that ui is a successor of ui−1 for every
i ∈ {−p+1, . . .,q}. Given the definition of u0, Lemma 124 implies that all the vertices ui

have a neighbour in H and have the property that G[V(H)∪ {ui}] is convex.
Informally, we are going to prove that the vertices which are neighbours of at least one

vertex ui have the good ordering property ensured by Lemma 123.
Lemma 123 allows to define an increasing sequence (ni)−p−1≤i≤q and to index the

neighbours vj of vertices in (ui)−p≤i≤q, with n−p−1 ≤ j ≤ nq, in such way that for every
i ∈ {−p,. . .,q}, the neighbours of ui in H are exactly the vertices vj with ni−1 ≤ j ≤ ni.
Lemma 123 also implies that (u+

i
,vni−1

, . . . ,vni
,u−

i
,vni

, . . . ,vni−1
)⊆σG, and thus the ver-

tices vj are such that (vn−p−1
,v1+n−p−1

, . . .,vnq,vnq, . . . , v1+n−p−1
,vn−p−1

)⊆ σG. In other
words, the vertices vj are represented by parallel chords, as in Figure 6.2).

Finally, we define the subgraph H ′ to which we are going to extend the mixed Helly
model:

H ′ =G[V(H)∪ {ui |−p≤ i≤q}]

Let us prove that H ′ is convenient and admits a Helly circle model.

Lemma 125. For every i ∈ {−p,. . .,q}, the successors of ui are the vertices uk such that k> i

and nk−1 =ni. For every i ∈ {−p,. . .,q}, the predecessors of ui are the vertices uk such that
k< i and nk=ni−1.

114 CHAPTER 6. HELLY CIRCLE GRAPHS

Proof. Lemma 123 implies that the relation “successor” on the set of vertices intersect-
ing both ui and nni

is a total order. Thus, if a successor of ui is missing in the sequence
(ui)−p≤i≤q, then one can easily insert it and increase the length of the sequence, which
contradicts the maximality of (ui)−p≤i≤q.

Lemma 126. H ′ is convenient.

Proof. The graphH ′ has as many components as H; thus it is almost component maximal.
Let us show that H ′ is clique maximal. Assume by contradiction that there exists a vertex
x ∈ V(G)\V(H ′) adjacent to both vertices of an edge ab ∈ E(H ′). If ab ∈ E(H), then this
would contradict Lemma 120. If a=ui and b= vj, with −p≤ i≤q and ni−1 ≤ j≤ni, then
the vertex x is a successor or a predecessor of ui (by Lemma 123) and it thus should belong
to H ′ (by Lemma 125). Hence a = ui and b = uj, with −p ≤ i < j ≤ q. As ui and uj are
adjacent, these two vertices are also adjacent to vni

. If x is adjacent to vni
, then x should

be a vertexuk, and thus belong toH ′, by Lemma 125. Conversely, if x is not adjacent to vni
,

then x, a, b and vni
would induce a diamond. In both cases, we obtain a contradiction.

Finally let us show that H ′ is convex. By contradiction, assume that there exist
x ∈ V(G) \V(H ′) and a,b ∈ V(H ′) such that (a,a,x,b,b,x) ⊆ σG. By convexity of H
and H∪ {ui} for every i ∈ {−p,. . .,q}, both a and b belong to V(H ′) \V(H), say a = ui

and b = uj, with −p ≤ i < j ≤ q. Since ui and uj are not adjacent, we have that
(vni

,ui,vni
,ui,uj,vnj

,uj,vnj
)⊆σG. Thus we have either

– (x,vni
,ui,vni

,ui,x,uj,vnj
,uj,vnj

)⊆σG or
– (vni

,x,ui,vni
,ui,x,uj,vnj

,uj,vnj
)⊆σG or

– (vni
,ui,vni

,ui,x,uj,vnj
,uj,x,vnj

)⊆σG

which respectively contradicts the convexity of H, H∪ {ui}, and H∪ {uj}.

Lemma 127. There is a mixed Helly model of (G,H ′).

Proof. We consider the Helly circle model ofH and extend it toH ′. Lemma 123 allows us to
distinguish one extremity of vj, for every j; the distinguished extremity v∗

j
being such that

(u+
i
,v∗

j
,u−

i
,vj)⊆ σG for every vertex ui crossing vj. We extend the Helly circle model of H

by successively processing the chords u−p, . . . ,uq in this order. For every i ∈ {−p−1, . . .,q}

let Hi =G[V(H)∪ {uk | −p ≤ k ≤ i}]. At each step we extend a Helly circle model of Hi−1

to a Helly circle model of Hi. Additionally, xe construct these Helly circle models in such a
way that for every i, the following property holds:

(*) the intersection point of ui and vni
lies strictly between the point v∗ni

and the inter-
section of the chord vni

with the abstract chord [v∗
ni−1

,v∗
ni+1

] (see Figure 6.3).

Assume that we have already processed the chords up to ui−1 (see Figure 6.3 Step 1).
Since σHi−1

⊆ σHi
, it is easy to draw the chord ui in order to intersect the desired chords.

We slightly move this chordui in order to fulfil both (*) and the Helly property, as follows. If
ui = u−p, then the neighbours of u−p in H−p are pairwise non-adjacent (by Lemma 120),

6.3. CONCLUDING REMARKS 115

v∗
ni+1

ui−1

v∗ni−1
v∗ni

v∗ni−1
v∗ni

v∗ni
v∗ni−1

ui−1 ui−1

ui ui

v∗
ni+1

ui v∗
ni+1

Step 1 Step 2 Step 3

Figure 6.3: Processing the chord ui. The dashed lines represent the abstract constraints.

so the Helly property follows immediately. Thus, we just have to move u−
−p close enough to

v∗n−p
in order to fulfil (*). This is possible since there is no chord extremity in between v∗n−p

and u−
−p in σH−p . If ui 6= u−p, the Helly circle model of Hi−1 fulfils (*). This ensures that

we can move the chord ui in order to intersect ui−1 and vni−1
exactly at their intersection

point (see Figure 6.3 Step 2). The neighbourhood of ui in Hi induces a graph with a unique
non-trivial maximal clique (the clique with vertex set {vni−1

}∪ {uk | k< i and nk =ni−1}),
so the circle model of Hi fulfils the Helly property. Finally if (*) is not satisfied, then we just
move u−

i
close enough to v∗ni

by rotating ui around the intersection point of the clique.
(see Figure 6.3 Step 3). This concludes the proof of Lemma 127 and Theorem 119.

6.3 Concluding Remarks

The first polynomial-time algorithms for circle graph recognition were independently
given by Bouchet [20], Naji [103], and Gabor et al.. [69]. The latter was improved by Spin-
rad [119], who showed that the recognition of circle graphs can be done in O(n2) time and
that a circle model can be computed within the same time bound. Given a circle model of
a circle graph G, the graph induced by the neighbourhood of a vertex v in G is a permuta-
tion graph. Moreover, a permutation model of G[N(v)] can be computed in O(n) when a
circle model is known. One can easily check in O(n) time whether a permutation graph is
P3-free (i.e. is a disjoint union of complete graphs) using its permutation model. Thus one
can check whether a circle graph G given by a circle model is diamond-free in time O(n2),
by checking for every vertex v if the permutation graph G[N(v)] is P3-free. In consequence
we have:

Proposition 128. Helly circle graphs can be recognized in time O(n2).

Actually, the test for an induced diamond can even be carried out in linear time
O(n+m) with an adequate data structure. This means that the complexity of Helly cir-
cle graph recognition is at most the complexity of circle graph recognition. Recently, Gioan
et al. [53] produced an almost linear-time algorithm for computing Cunningham’s split
decomposition (see [36]), running in O((n+m)α(n+m)) time, where α is the inverse

116 CHAPTER 6. HELLY CIRCLE GRAPHS

a

b

c

Figure 6.4: A set of segments inducing a diamond-free graph without a Helly model of
intersecting segments.

of Ackerman’s function. They show that this algorithm gives a O((n+m)α(n+m)) algo-
rithm for circle graph recognition [54], which provides a circle model within the same time
bound. With the induced diamond test carried out in linear time on the output of their
algorithm, this yields a O((n+m)α(n+m)) recognition algorithm for Helly circle graphs.

A circle graph is the intersection graph of chords in a circle. One may wonder whether
Theorem 119 extends to intersection graphs of segments. This is not the case. The inter-
section graph of the segments in Figure 6.4 is diamond-free, but one can check that this
graph has no Helly intersection model (here the segments a, b and c are not concurrent).

Another question is whether such a characterisation can be generalised to higher di-
mensions. A graph is a d-dimensional sphere graph if it is an intersection graph of (d−1)-
dimensional disks which borders lie on a d-dimensional sphere. We wonder whether The-
orem 119 can be generalised in the following way (Theorem 119 corresponds to the case
d= 2):

Question 129. Does every d-dimensional sphere graph which is (Kd+2− e)-free admit a
Helly embedding ?

The reverse is not true unless we forbid that d disks intersect on a segment. Indeed,
with d distinct disks pairwise intersecting on a given segment, and two parallel disks or-
thogonal with these d disks, one obtains a Kd+2− e Helly model. In the definition of a
Helly circle model, one requires the chords to be distinct. The proper generalisation of this
restriction is to forbid that d disks intersect on a segment.

Part III: Parameterized Algorithms

In Chapter 7 we prove that MULTICUT is FPT when parameterized by the solution size.
MULTICUT was one the last important natural "FPT or not FPT" open problems. This chap-
ter is based on [37] and [40], joint work with Nicolas Bousquet, Christophe Paul, Anthony
Pérez and Stéphan Thomassé.

The proof is quite involved. The general idea is rather simple, but several steps are
highly technical, so Section 7.2 will give the general outline. The actual proof spans Sec-
tion 7.4 to Subsection 7.6.7. In Section 7.7 we claim that the same ideas work for the Vertex-
Multicut problem, although we do not write down the details. In Subsection 7.8.1 we briefly
discuss why the overall algorithm runs in single-exponential time. In Subection 7.8.2 we
compare our proof with Marx and Razgon’s independent proof in [100]. Finally, in Subsec-
tion 7.8.3 we give insights for a different approach of the MULTICUT problem.

Chapter 8 is mostly devoted to a fast parameterized algorithm for finding directed trees
with many leaves. This chapter is based on [39], a joint work with Gregory Gutin, EunJung
Kim and Anders Yeo.

Prior to this work, Kneis et al. had designed a simple and efficient O∗(4k) algorithm to
decide the existence of an out-tree with at least k leaves in [88], improving over a long list
of algorithms (even in the undirected case). Their branching algorithm was simple: grow
a tree starting with just a root. As long as the number of leaves in the partial tree is less
than k, pick a leaf, and decide whether it will be a leaf or an internal node in the solution.
The "Leaf" step can occur at most k times. If we can ensure that, in the "Internal" step,
the partial tree gains at least a leaf, then this "Internal" step can occur at most k times
as well, giving a branching algorithm running in time O∗(2k+k). The only case where the
"Internal" step does not increase the number of leaves in the partial tree is when we branch
over a current leaf which has only one out-neighbour outside the partial tree. In this case,
we can actually assume that this single out-neighbour will be internal as well in the final

117

118 PART III: PARAMETERIZED ALGORITHMS

x

r

Figure 6.5: The bold arcs denote the current tree T . When branching over the current leaf
x, if we decide that x will be internal, we can directly add the dashed subtree rooted at x to
our partial tree. This ensures that we gain at least one leaf with each "Internal" step.

solution (Lemma 171), and proceed as depicted in Figure 6.5 by directly adding a whole
subtree. This ensures a gain with each branching step.

This algorithm does not run quicker than 4k only when almost all branching steps gain
a single leaf during an "Internal" step, i.e. the leaf under consideration has out-degree two
outside the partial tree. Our goal is to find a way to prune the branching tree when this
happens too often. If we could ensure that a constant fraction of the branching steps are
performed on current leaves with at least three out-neighbours outside the current tree,
we would get an algorithm running in time O(ck) with c < 4. Likewise, if we could spare
a constant fraction of the branching steps (i.e. safely prune branches from our branching
tree), we would improve the running time. Section 8.2 is devoted to proving the correctness
of such a pruning.

The key is step (4.2) in algorithm B(D,T,L), which essentially states that in the tight
cases, when deciding that the current leaf x will be a leaf in our solution, we can assume
that some other vertexp0 will also be a leaf. Vertexp0 does not belong to the current tree, so
our algorithm decides to set as leaves vertices not necessarily explored yet. This somewhat
counterintuitive technique allows us to break the O∗(4k) barrier, which in turns gives us
the first algorithm to break the 2n barrier for the unparameterized problem. To the best of
our knowledge, this is still the only algorithm better than the straightforward brute-force
algorithm for directed MaxLeaf problems.

CHAPTER

7
Multicut is FPT

7.1 Introduction

Bearing in mind the connectivity techniques from Chapter 4, we are ready to tackle the
fixed-parameter tractability of the general multicut problem:

MULTICUT:
Input: A graph G, a set of requests R, an integer k.
Parameter: k.
Output: TRUE if there is an (edge)-multicut of size at most k, otherwise FALSE.

The status of this problem was one of the crucial open questions in parameterized com-
plexity. The main result of this chapter is to provide an FPT algorithm for MULTICUT. We
present our work in terms of edge-multicut rather than vertex-multicut, and Section 7.7
gives some hints to translate the algorithm to deal with vertex-multicuts.

Marx and Razgon independently found a proof of the fact that MULTICUT is FPT, with a
rather different approach, see [100]. Subsection 7.8.2 provides a brief comparison between
our work and theirs.

7.2 Detailed Outline of the Proof

Some parts of the proof are technically very involved. This section provides a detailed
outline of the proof, underlying the structure of the main results and the reasons behind
the main definitions. For formal definitions and statements, and for complete proofs, the
reader is referred to the following sections.

A Vertex-Multicut. First of all, we can assume by iterative compression that a vertex-
multicut Y of size k+ 1 is given, and that a solution must split Y. This is expressed in

119

120 CHAPTER 7. MULTICUT IS FPT

Lemma 147. This vertex-multicut Y gives a first layer of structure to an instance: we can
focus on the Y-components, i.e. the connected components of the graph where vertices of
Y have been removed.

Setting the number of multicut-edges per component. The number of Y-components
is bounded in k, considering that all connected components of G\Y which are adjacent to
a single given vertex y ∈ Y form a single Y-component. So, we can branch to decide how
many edges of the solution lie in each Y-component.

Half-requests. No request is contained inside a Y-component with two or more at-
tachment vertices, so we can simulate a request (u,v) with several half-requests (u,y,v),
where y ∈ Y is an attachment vertex of both the component C(u) of u and of the compo-
nent C(v) of v. Cutting a half-request (u,y,v) means cutting all paths between u and v

which go through y.
The goal: 2-SAT. Half-requests give a simpler structure to the multicut problem: cutting

a half-request (u,y,v) is equivalent to either separating u from y in C(u), or separating v

from y in C(v). We will express this "or" through 2-SAT clauses once we manage to express
in a simple way whether the solution separates u from y. The remaining of the proof is de-
voted to simplifying the structure of the instance until we can express with 2-SAT variables
whether the solution separates u from y.

Focus on 2-components. We first reduce Y-components with three or more attach-
ment vertices in Lemma 150. Now, Y-components have either two attachment vertices
(2-components) or one attachment vertex (cherries). Connectivity tools presented in Sec-
tion 7.4 are essentially sufficient to deal with cherries. The complexity of the problem
mostly lies in the existence of 2-components.

In order to give a better structure to 2-components we compute in Lemma 152 a par-
ticular path between its two attachment vertices: the backbone, which has the following
property. The multicut must contain exactly one edge in the backbone. The set of multi-
cuts is thus linearly partially ordered, according to the edge of the backbone they use. The
goal is now to simplify the structure of the instance so that the multicuts that separate a
vertex u from an attachment vertex y of C(u) form an initial (or final) section of this lin-
ear order. Indeed, the fact that the solution belongs to an initial or final section of a linear
order can be easily expressed with a 2-SAT variable.

BACKBONE MULTICUT. The instance as reduced up to this point fits the first intermedi-
ate variant, COMPONENT MULTICUT, defined in Section 7.5. We introduce in Section 7.6 the
second intermediate problem BACKBONE MULTICUT. We need this more general problem
than COMPONENT MULTICUT, so that we can enrich instances. Considering half-requests
is of major importance in our proof, but the presence of 2-SAT clauses is necessary only for
Lemma 158, and could possibly be avoided with a slightly different proof.

Lemonizing 2-components. Through Lemma 158 in Subsection 7.6.5 we reduce
2-components so that each vertex of the backbone becomes a cut-vertex of the 2-
components. An example is drawn in Figure 7.4. This is the first highly technical part

7.3. PRELIMINARIES 121

of the proof. The components now consist in a sequence of lemons with cherries attached
to the backbone.

Linearly ordering the set of multicuts. In Subsection 7.6.6 we perform a complete
linearisation of the set of multicuts. This can be seen as the core of our approach. We define
a meaningful partial order ¹ on multicuts, such that the set of multicuts can be partitioned
into a number bounded in k of parts totally ordered by ¹ by Dilworth’s Theorem. This is
Lemma 160.

Reducing 2-components to a backbone. The linear order ¹ on the set of all multicuts
allows us to move terminals of cherries to the backbone in Lemma 161. In an component
with no cherries left, we manage to reduce the sequence of lemons to just the backbone in
Theorem 163. This is the second highly technical part of the proof.

Reduction to 2-SAT. At this point, the 2-components are just paths. Only cherries at-
tached to vertices of Y remain, and they have a bounded number of meaningful cuts,
thanks to the connectivity tools from Section 7.4. These connectivity results are of the same
flavour as those presented in Chapter 4. Thus, the cherries attached to vertices of Y are eas-
ily dealt with in Lemma 164. With an instance consisting of a subdivision of a graph with
at most k edges, we easily express with 2-SAT variables in Theorem 165 whether a given
vertex is separated from a given vertex of Y. We end up (after a heavy dose of branching
throughout the proof) with a 2-SAT instance, which is polynomially solvable.

Complexity and Programmability. The overall algorithm is single exponential. It
should be quite difficult to effectively implement the algorithm though, the whole proof
being very involved. Finding a simpler proof leading to a simpler algorithm would be very
interesting.

7.3 Preliminaries

7.3.1 Equivalence with Cluster Deletion variants

Before turning to the proof that MULTICUT is FPT, we prove in this subsection a claim
mentioned in Chapter 1: MULTICUT is FPT-equivalent to CLUSTER EDITION WITH FREE

EDGES, which consists in deciding whether a graph can be edited (through edge deletions
and additions) into a cluster graph (a vertex-disjoint union of cliques), with cost at most k,
where the edition of free edges has cost 0, while the edition of other edges has cost 1. Its
equivalence with MULTICUT has been mentioned several times in the literature, we give a
short proof in this subsection.

CLUSTER EDITION WITH FREE EDGES:
Input: A graph G=(V,E), a set of free edges E0 ⊆V ∗V \E, an integer k.
Parameter: k.
Output: TRUE if G can be edited into a cluster graph with cost at most k, oth-
erwise FALSE.

122 CHAPTER 7. MULTICUT IS FPT

Note that it does not matter whether free edges are edges or non-edges, we assume
that E0 ⊆V ∗V \E for convenience. CLUSTER EDITION WITH FREE EDGES is actually FPT-
equivalent to CLUSTER DELETION WITH FREE EDGES, which consists in deciding whether
a graph can be edited into a cluster graph with cost at most k using only deletions:

CLUSTER DELETION WITH FREE EDGES:
Input:A graph G= (V,E), a set of free edges E0 ⊆E, an integer k.
Parameter: k.
Output: TRUE if G can be edited, through edge-deletions only, into a cluster
graph with cost at most k, otherwise FALSE.

Lemma 130. MULTICUT is FPT-equivalent to CLUSTER DELETION WITH FREE EDGES.

Proof. The clusters correspond to the connected components separated by the multicut,
and free edges are edited to fill components into cliques. More formally: let (G= (V,E), R,
k) be an instance of MULTICUT. We define G ′ = (V,V ∗V \R), and E0 = V ∗V \R\E. In
other words, requests of G are non-edges in G ′, edges of G are cost one edges in G ′, and
the rest are free edges in G ′.

A set of edges F is a k-multicut of G if and only ifG ′ can be edited into a cluster graph by
deleting F and the appropriate free edges (those whose endpoints lie in different connected
components of G\ F). Indeed, the fact that a request of G is a non-edge in G ′ forces its
endpoints to end up in different clusters in G ′ after edition.

Conversely, let G ′ = (V,E ′), E0, k be an instance of CLUSTER DELETION WITH FREE

EDGES. Let G=(V,E ′\E0) and R=V ∗V \E ′. Then G ′ is editable into a cluster graph with
cost at most k using only deletions if and only if the set F of cost 1 edges deleted from G ′ is
a k-multicut of (G,R).

Lemma 131. CLUSTER EDITION WITH FREE EDGES is FPT-equivalent to CLUSTER DELE-
TION WITH FREE EDGES.

Proof. To transform an Edition instance into a Deletion instance, we add all non-edges to
the graph, giving them cost 0, and add a gadget corresponding to each such edge to make
sure that we account for the proper cost. More formally, let (G= (V,E),E0 ⊆ V ∗V \E,k)

be an instance of CLUSTER EDITION WITH FREE EDGES. Let G ′ be the graph whose vertices
are: vertices of V , plus two new vertices xuvu and xuvv for each non-edge (u,v) of cost 1 in
G. All elements of V ∗V are edges of G ′, with the same cost as in G for edges of G, and
with cost 0 for non-edges of G. For every non-edge (u,v) of cost 1 in G, u is adjacent to
xuvu with cost 1, v is adjacent to xuvv with cost 1, xuvu and xuvv are not adjacent, and are each
adjacent to all other vertices in V(G ′) with edges of cost 0. The original instance (G,E0,k)

can be cluster-edited with cost at most k if and only if the new instance (G ′,E ′
0
,k) can be

cluster-deleted with cost at most k. The xuvu and xuvv gadget makes sure that we properly
count the cost for the edge (u,v). Indeed, in G ′ we can delete the edge (u,v) at no cost,
reverting to the original configuration in G, and vertex xuvu (resp xuvv) will end up in the

7.3. PRELIMINARIES 123

cluster of u (resp. v) with no extra cost. If we keep the edge (u,v) though, we have to pay a
price of one to delete either (u,xuvu) or (v,xuvv) as (xuvu ,xuvv) is not an edge. This price was
the correct price to add the edge (u,v) in G.

Conversely, let (G ′ = (V ′,E ′),E ′
0
⊆ E ′,k) be an instance of CLUSTER DELETION WITH

FREE EDGES. We modify this graph so that only deletions can be useful. Let G be the
graph obtained from G ′ by adding, for each non-edge (u,v) ∉ E, k

2 new vertices xuvu (i) for

i= 1, . . ., k2 and k
2 new vertices xuvv (i) for i= 1, . . ., k2 . For every i= 1, . . ., k2 , we add an edge

of cost 1 between u and xuvu (i) and between v and xuvv (i), and non-edges of cost 1 between
u and xuvv (i) and between v and xuvu (i). Finally, we add edges of cost 0 between xuvu (i)

(resp. xuvv (i)) and every vertex in V(G) \ {u,v}. The original instance (G ′,E ′
0
,k) satisfies

CLUSTER DELETION WITH FREE EDGES if and only if the new instance (G,E0,k) satisfies
CLUSTER EDITION WITH FREE EDGES. Indeed, adding in G a non-edge between vertices
in V(G ′) would make it too costly to edit gadget vertices into clusters. Also, if we do not
add in G a non-edge between vertices in V(G ′), gadget vertices xuvu (i) (resp. xuvv (i)) can
be edited into the cluster of u (resp. v) at no cost.

7.3.2 Reductions, branchings and invariants

Let us now turn to the proof of the fixed-parameter tractability of the general MULTICUT

problem. In this chapter, we study MULTICUT variants with additional constraints on the
deleted edges. In the original MULTICUT problem, we can delete a set of k edges without
restrictions, but in some more constrained versions we must delete a prescribed number
of edges on some particular paths. The total number of deleted edges is called deletion
allowance of the multicut problem. We will make extensive use of the term bounded which
always implicitly means bounded in terms of the deletion allowance. Also, when speaking
of FPT time, we always mean O(f(d)nc) where c is a fixed constant and d is the deletion
allowance. In the algorithm we will perform reductions and branchings, and we use invari-
ants to bound the total running time.

Reductions. These are computations where the output is a new instance which is
equivalent to the original instance with respect to the existence of a solution. One of the
most natural reductions concerns irrelevant requests, i.e. a request xy such that every k-
multicut of R\xy actually cuts x from y, where R is the set of requests. If one can certify
that a request xy is irrelevant, the reduction consists in replacing R by R \ xy. Another
reduction is obtained if we can certify that, if there exists a k-multicut, then there exists
a k-multicut which does not separate two given vertices u and v. In this case, we simply
contract u and v. Reductions are easy to control, and we can perform reductions liberally
provided that some invariant polynomial in n decreases. For example, request deletions
can be performed at most n2 times, and vertex contractions at most n times.

Branchings. In our algorithm, we often have to decide if the multicut we are looking
for is of a particular type, where the number of types is bounded. We will then say that we
branch over all the possible cases. This means that, to compute the result of the current

124 CHAPTER 7. MULTICUT IS FPT

instance, we run our algorithm on each case, in which we force the solution to be of each
given type. The output is TRUE if at least one of the outputs returns TRUE. To illustrate
this, in the case of a graph G with two connected components G1 and G2, both containing
requests, we would branch over k−1 instances, depending of the number of edges (be-
tween 1 and k−1) that we remove from G1. This simple branching explains why we can
focus on connected graphs.

Invariants. To prove that the total number of branches is bounded, we show that some
invariant is modified at each branching step, and that the number of times that this invari-
ant can be modified is bounded. We usually have several invariants ordered lexicograph-
ically. In other words, we have different invariants which we want to increase or decrease
and each invariant can take a bounded number of values. These invariants are ordered,
there is a primary invariant, a secondary invariant, etc. Each branching must improve the
invariant, i.e. the first invariant (with respect to priority order) which is changed by the
branching must be modified according to the preference, increase or decrease, that we
specified for it. For instance, the primary invariant could be the number of edges in the
multicut, which we want to decrease, and the secondary invariant could be the connectiv-
ity of G, which we want to increase. In this case, if we can decrease the number of edges in
the solution we do so even if the connectivity of the graph decreases. Also, if a branching
increases connectivity and leaves the number of multicut edges unchanged, we improve
the invariant.

7.4 Connectivity in FPT time

Dealing with minimum cuts can be done in polynomial time with usual flow tech-
niques. However, dealing with k-edge cuts when k is some fixed value larger than the opti-
mum is more difficult. We develop here some tools to deal in FPT time with bounded-size
cuts, inspired from some results from Chapter 4, and independently of the analogous ideas
formulated in [29], [96], [100] and [102]. What we call left cuts is called important cuts in
[100] and extreme cuts in [102], and is used implicitly in [29] and Chapter 4. The results
from Subsection 7.4.1 can essentially be found in these references, but we give them here
with simple proofs for the sake of completeness. Some results in Subsection 7.4.2 are sim-
ilar to statements from Chapter 4, and the results from Subsection 7.4.3 are specific to this
work.

7.4.1 Enumerating Cuts in FPT Time

Let G be a connected graph on n vertices with a particular vertex x called the root. A
cut can be indifferently considered to be a set of edges, or a bipartition of the vertex set.
As we want to focus on one side of the bipartition, we define a cut as a subset of vertices
S containing x. The border of S is the set of edges of G with exactly one endpoint in S.

7.4. CONNECTIVITY IN FPT TIME 125

We denote the border of S by ∆(S), and the cardinality of ∆(S) is denoted by δ(S). The
function δ is submodular, i.e. δ(A)+δ(B)≥ δ(A∩B)+δ(A∪B).

The key definition of this part if the following. A cut S is a left cut if every cut T (S

satisfies δ(T)> δ(S). Note that every cut S contains a left cut S ′ with δ(S ′)≤ δ(S).
The main interest of this notion is to deal with components of G separated by a single

vertex x from the rest of the graph, and which contain no request (at most one endpoint
per request). Inside such a component, the multicut edges might as well be the border
of a left cut. Indeed, a left cut separates even more vertices from the rest of the graph, at
the same (or even better) cost. The structure of the set of all multicuts is too complex to
design good combinatorial results with algorithmic applications, but the set of left cuts has
a better structure, as we shall see.

Lemma 132. Left cuts are closed under union.

Proof. Let S1∪S2 be the union of two left cuts. Let S3 (S1∪S2 be a cut with minimum
border. Without loss of generality, we assume that S1 is not included in S3. Since S1 is a left
cut, δ(S1∩S3) > δ(S1). As δ(S1∩S3)+δ(S1∪S3) ≤ δ(S1)+δ(S3), we obtain δ(S1∪S3) <
δ(S3). FurthermoreS1∪S3 ⊆ S1∪S2. Also, S3 has minimum border among strict subsets of
S1∪S2, so we have S1∪S3= S1∪S2. Finally δ(S1∪S2)< δ(S3), thus S1∪S2 is a left cut.

Lemma 133. If S1,S2 are distinct left cuts, δ(S1∪S2)< max(δ(S1),δ(S2)).

Proof. As S1 6= S1∪S2 orS2 6= S1∪S2, we assume without loss of generality thatS1(S1∪S2.
By Lemma 132, δ(S1∪S2)< δ(S1)≤ max(δ(S1),δ(S2)).

A cut S is indivisible if G\S is connected, otherwise it is divisible.

Lemma 134. If S is a divisible left cut and Y is a connected component of G\S, the cut Y is
an indivisible left cut with δ(Y)< δ(S).

Proof. The cut Y is indivisible by construction and ∆(Y)(∆(S), so we just have to prove
that Y is a left cut. Consider a left cut T ⊆ Y which minimizes δ(T). By Lemma 132, S∪T is
a left cut. Moreover, δ(T)≤ δ(S∪T) by minimality of δ(T), hence T = S∪T . In particular,
S⊆ T . Every edge of ∆(Y) has one endpoint in S and one endpoint in Y, so we have ∆(Y)⊆
∆(T). Therefore, by minimality of δ(T), we have T = Y. Thus, Y is a left cut.

Corollary 135. Every indivisible cut S contains an indivisible left cut S ′ with δ(S ′)≤ δ(S).

Proof. Let S ′′ be a divisible left cut contained in S such that δ(S ′′) ≤ δ(S). Let Y be the
component of G\S ′′ which contains S. By Lemma 134, S ′ := Y is an indivisible left cut with
δ(S ′)< δ(S ′′)≤ δ(S). Moreover, S ′ ⊆ S as S⊆ Y.

Given a vertex y, an xy-cut is a cut S such that y ∉ S. We denote by C
y
k

the set of
indivisible left xy-cuts with border k. We also denote by C

y
<k (resp. Cy

≤k) the union of the
sets Cy

i
for i< k (resp. for i≤ k).

126 CHAPTER 7. MULTICUT IS FPT

Theorem 136. The set Cy
≤k has size at most k! and can be computed in FPT time.

Proof. We prove this result by induction on k. Let us start our induction with k = λ, the
smallest value such that Cy

≤λ is non empty, i.e. the edge-connectivity between x and y.

Claim 137. The set Cy
≤λ has only one element Sλ. It can be computed in polynomial time.

Moreover Sλ contains all left xy-cuts.

Proof. The function δ is modular on xy-cuts of size λ, i.e. δ(A)+δ(B)≥ δ(A∩B)+δ(A∪B)
when A and B are xy-cuts of size λ. In particular, Cy

≤λ is closed under intersection, and
containsSλ, the intersection of all xy-cuts with border λ. Indeed, the set Sλ is indivisible by
minimality of λ (and can be computed in polynomial time). All other xy-cuts with border
λ contain Sλ by definition, so C

y
≤λ= {Sλ}.

Consider a left xy-cut T . We have δ(T ∩Sλ)+δ(T ∪Sλ)≤ δ(T)+λ. By minimality of λ,
δ(T∪Sλ)≥ λ. Thus δ(T∩Sλ)≤ δ(T). The set T being a left cut, we have T∩Sλ= T , so T ⊆ Sλ
as claimed.

Let S ∈Cy
k

with k> λ. Consider a set T ∈Cy
<k which contains S, minimal with respect to

inclusion. Such a cut T exists as the cut Sλ contains S by Claim 137. Since S is indivisible,
there exists an edge e in ∆(T)\∆(S).

Claim 138. If S ′ ∈Cy
≤k is included in T and e∉∆(S ′), then S ′= S.

Proof. Assume for contradiction that S ′ is different from S. By Lemma 132, S∪S ′ is a left
xy-cut, and by Lemma 133, we have δ(S∪S ′)< k. Let Y be the component of G\ (S∪S ′)
which contains T . By Lemma 134, the cut Y belongs to C

y
<k. Therefore Y ⊆ T , and by

minimality of T , we have Y = T . This implies that e∈∆(S∪S ′), which is a contradiction.

We turn Claim 138 into an algorithm. For every cut T in C
y
<k and every edge e ∈∆(T),

we contract (G\T)∪e to a single vertex still called y. We call this graph G ′. If the xy-edge
connectivity of G ′ is not equal to k, the search stops. Otherwise, we compute the unique
indivisible left xy-cut S with border k. This cut S in G is an element of Cy

k
. By Claim 138,

all the elements of Cy
k

can be computed in this way. This algorithm gives the upper bound
|C

y
≤k|≤ |C

y
<k|+(k−1)|C

y
<k|, hence |Cy

≤k|≤ k!. This concludes the proof of Theorem 136.

The value k! in Theorem 136 can actually be improved to 4k [28, 100].

7.4.2 Irrelevant Requests

We denote by Ck, C<k and C≤k respectively the union over all verticesy of G of Cy
k

, Cy
<k

and C
y
≤k respectively.

A collection of sets is called a ∆-system if every two distinct sets have the same inter-
section. Erdős and Rado [55] proved that there exists a function er such that a collection of
er(k,r) sets of size at most k contains a ∆-system consisting of r sets. The bound proved

7.4. CONNECTIVITY IN FPT TIME 127

in following result will be immediately improved to a single-exponential bound with The-
orem 140, whose proof is conceptually more complicated.

Theorem 139. Every set K of at least er(k!,k ′) vertices contains a subset K ′ of size k ′ such
that every left cut S with δ(S) ≤ k satisfies either S∩K ′ = ; or |K ′ \S| ≤ k. In other words,
every left cut with border at most k isolates either all the elements of K ′, or at most k elements
of K ′. The set K ′ can be computed in FPT time in k and k ′.

Proof. Let us consider the collection C of sets C
y
≤k, for all y ∈ K. By Theorem 136, the

collection C has size bounded in terms of k and k ′ and can be computed in FPT time.
The sets C

y
≤k have size at most k! and the set K has size er(k!,k ′), so there exists a

∆-system of size k ′, i.e. a subset K ′ of k ′ vertices of K such that for all y,y ′ ∈ K ′, the set

C
y ′

≤k∩C
y
≤k is equal to some fixed set C of C≤k. This set K ′ is computable in FPT time. Every

cut S in C satisfies S∩K ′=;, i.e. the cuts in C isolate K ′. Moreover, if a cut S in C≤k does
not belong to C, then S belongs to at most one C

y
≤k, hence S isolates at most one vertex of

K ′.
We have proved so far that the conclusion of Theorem 139 holds if S is an indivisible

left cut with border or size at most k, with the stronger conclusion that S isolates at most
one vertex of K ′ when it does not completely cut K ′. To conclude, let us observe that if S is
divisible andZ is a component ofG\S, then by Lemma 134 the cutZbelongs toC≤k. Hence
either Z isolates K ′, or Z isolates at most one vertex of K ′. The number of components of
G\S is at most k, which concludes the proof of Theorem 139.

The same result holds with a better (single-exponential) bound, as expressed in the
following result. We have kept the simpler Theorem 139 along with its proof for readers
more concerned with the simplicity of the argument than by the efficiency of the algorithm.

Theorem 140. Every set K of at least α(k,k ′) = k ′(k+2
2)−1 vertices contains a subset K ′ of size

k ′ such that every left cut S with δ(S)≤ k satisfies either S∩K ′=; or |K ′ \S|≤ k. The set K ′

can be computed in FPT (single exponential) time.

Proof. Observe that the result trivially holds when k ′ ≤ k. So we can assume that k ′ > k.
We prove the result by induction on k.

For k = 1, α(1,k ′) = k ′2. The complements of a left cut with a border of size 1 form
a collection of disjoint sets of vertices, which induces a partition of K. There is either a
class K ′ of this partition containing at least

√
|K| ≥ k ′ elements, or a set K ′ of size at least√

|K| ≥ k ′ whose elements are chosen in different classes. In both cases K ′ satisfies the
induction hypothesis.

Assume now that k> 1. We distinguish two cases.

Assume that there exists an indivisible left cut S with δ(S) ≤ k and |K\S| ≥ k ′(k+1
2)−1.

By induction, we extract from K \S a subset K ′ of size k ′ such that every left cut S with
δ(S)≤ k−1 satisfies eitherS∩K ′=; or |K ′\S|≤ k−1. Consider a left cut S ′ with δ(S ′) = k.

128 CHAPTER 7. MULTICUT IS FPT

If S ′= S, then S ′ isolates K ′ by definition of K ′, hence we assume that S ′ is distinct from S.
Observe that K ′ \S ′ is equal to K ′ \ (S∪S ′). As S∪S ′ is a left cut with border at most k−1,
the set K ′\S ′ is either K ′ or has size at most k−1. So the conclusion of Theorem 140 holds.

Conversely, assume that all indivisible left cuts Swith δ(S)≤ k satisfy |K\S|< k ′(k+1
2)−1.

Consider an auxiliary graph H with vertex set K and where vv ′ is an edge when there exists
an indivisible left cut S with δ(S)≤ k such that {v,v ′}∩S=;. The degree in H of a vertex

v is less than d := k ′(k+1
2)−1.k!. Indeed, there are at most k! indivisible left xv-cuts with a

border of size at most k, and we have assumed that all indivisible left cuts S with δ(S)≤ k

satisfy |K\S|< k ′(k+1
2)−1. Note that d is less than k ′(k+1

2)−1.k ′k as k ′ ≥ k. There is a stable

set K ′ in H of size at least |K|
d , and |K|

d ≥ k ′ since (k+2
2)−(k+1

2)−k= 1. Every indivisible left
cut S with δ(S)≤ k isolates at most one vertex of K ′ as K ′ is stable in H. Thus, every left cut
S with δ(S)≤ k isolates at most k vertices of K ′.

The induction hypothesis holds in both cases, which concludes the proof of Theo-
rem 140.

We will use the bound from Theorem 140 in the following. The next result was essen-
tially our key tool in reducing MULTICUT to graphs of bounded treewidth in Chapter 4, but
we give a more straightforward proof here. The proof of Theorem 66 essentially implies
that the following result holds with h(ℓ)= ℓO(ℓ), and can be computed in time O∗(ℓO(ℓ)).

Theorem 141. Every set Kwith at least h(ℓ) := ℓ.2ℓ!+1 vertices of G contains a vertex y such
that every cut S with δ(S)+ |S∩K|≤ ℓ is such that y ∉ S. Moreover, y can be found in FPT
time.

In other words, the vertex y verifies the following: whenever the deletion of a set of a
edges isolatesx from all butb elements ofK, witha+b≤ ℓ, then the vertexy is also isolated
from x.

Proof. Let G ′ be the graph obtained from G by adding a new vertex z with neighbourhood
K. In G ′, the set C of indivisible left zx-cuts with border at most ℓ has size at most ℓ! by
Theorem 136. The size of K is at least ℓ.2ℓ!+1, so there exists a subset T of K of size at least
ℓ+1 such that for every cut S inC, we have either T ⊆ S or T∩S=;. For example, originally
set T =K, and for every cut S in C, do T := T ∩S if |T ∩S|≥ |T ∩S|, and T := T ∩S otherwise.

We pick a vertex y in T . Let us prove that y satisfies the conclusion of Theorem 141.
In the graph G, consider a set A of a edges which isolates x from all the elements of K

apart from a subsetB of size b witha+b≤ ℓ. Let F be the set of edgesA∪{zb : b ∈B} of G ′.
Note that F is a zx-edge cut. We denote by X the component of x in G ′ \F. Since V(G ′)\X
is an indivisible zx-cut with border at most ℓ, it contains by Corollary 135 an indivisible left
zx-cut U with border at most ℓ. In other words, U belongs to C.

Let us first observe that the set T cannot be disjoint from U. Indeed T has size ℓ+1 and
each vertex of T is adjacent to z, thus the border of U would exceed ℓ. Hence T is included

7.4. CONNECTIVITY IN FPT TIME 129

in U, and the set of edges A isolates T from x in G, and in particular separates y from x.
This concludes the proof of Theorem 141.

This connectivity result allows us to bound the request degree of a vertex v, i.e. the
number of requests with v as an endpoint.

Corollary 142. In a MULTICUT instance with deletion allowance k, the maximum request
degree can be reduced to at most h(k+1) =O(2k!) in FPT time.

Proof. Consider a vertex x, and denote by K the set of vertices forming a request with x.
Assume that |K|≥h(k+1). By Theorem 141, there is a vertex y of K such that every subset
S containing x and verifying δ(S)+ |S∩K| ≤ k+1 is such that y ∉ S. We simply remove
the request xy from the set of requests. Indeed, let F be a multicut of size at most k of this
reduced instance. Let S be the component of x in G\F. As F is a multicut, no element of
K\y belongs to S. Moreover δ(S)≤ k since at most k edges are deleted. Thus δ(S)+ |S∩K|

is at most k+1, which implies that y ∉ S. In other words, even if we do not require to cut
x from y, a multicut of the reduced instance must cut the request xy. Therefore removing
the request xy from R is correct. When such a reduction can no longer be performed, each
vertex has request degree smaller than h(k+1).

7.4.3 Cherry Reduction

An x-cherry, or simply cherry is a connected induced subgraphC of G with a particular
vertex x called attachment vertex of C such that there is no edge from C\x to G\C and no
request has its two terminals in C\x. In other words, the requests inside an x-cherry must
have x as an endpoint. Note that we can always assume that the restriction of a multicut
to an x-cherry C is the border of a left cut of C, where x is the root. If u ∈ C\x, a request
uv ∈R is irrelevant if for every multicut F of at most k edges of R\uv and such that F∩C is
the border of a left cut in C, F actually separates u from v.

Theorem 143. Let C be an x-cherry of an instance with deletion allowance k. We can find in

FPT time a set K(C) of at most b(k) :=h(k+1)α(k,h(2k+1))= kO(k3) terminals in C\x,
such that if F is a set of at most k edges which cuts all requests with one endpoint inK(C) and
such that F∩C is the border of a left cut, then F actually cuts all requests with an endpoint
in C\x.

Proof. By Corollary 142, we can assume that all terminals have request degree at most
h(k+ 1). Let L be the set of terminals in C \ x. We assume that |L| > b(k). Our goal is
to show that there exists an irrelevant request with one endpoint in L. Let us consider
the bipartite request graph B formed by the set of requests with one endpoint in L. The
graph B is bipartite since C\x has no internal requests. Recall that if a bipartite graph with
vertex bipartition (X,Y) has maximum degree d and minimum degree one, there exists a

130 CHAPTER 7. MULTICUT IS FPT

matching with at least |X|/d edges. Indeed, in this case the edges can be partitioned into d

matchings and the graph contains at least |X| edges.
The request graph B thus contains a matching M of size at least α(k,h(2k+1)) such

that each request in M has one endpoint in L and the other endpoint outside C\x. Let
K := V(M)∩V(C\x). We first only consider the cherry C where x is the root. Since the
size of K is at least α(k,h(2k+1)), the set K contains by Theorem 139 a subset K ′ of size
h(2k+1) such that every left cut S with border at most k verifies S∩K ′ =; or |K ′ \S|≤ k.
Let M ′ be the set of edges of M having an endpoint in K ′. We denote by L ′ the set of
vertices M ′ \K ′, i.e. the endpoints of edges in M ′ which do not belong to C\x. Now let
us consider the graph G ′ :=G\ (C\x) with root x. The set L ′ has size at least h(2k+1),
thus by Theorem 141 there is a vertex y in L ′ such that, whenever we delete k edges in G ′

such that at most k vertices of L ′ belong to the component of x, then y does not belong to
the component of x. The vertexy being an element of L ′, we consider the request zy ∈M ′,
where z belongs to V(C\x).

We claim that the request zy is irrelevant. Indeed, let F be a multicut of R \ zy with
at most k edges such that FC = F∩C is the border of a left cut. Let S be the component
of x in C \ FC. The set S is a left cut and has a border of size at most k, hence, either S
completely isolates x from K ′ or S isolates at most k vertices of K ′ from x. If K ′ is isolated
from x, then in particular x is disconnected from y, hence the request zy is cut by F. So we
assume that a subset K ′′ containing all but at most k vertices of K ′ is included in S. Hence,
denoting by L ′′ the other endpoints of the edges of M ′ intersecting K ′′, this means that
F must disconnect x from L ′′. Therefore, the set F of at most k edges disconnects x from
at most k+1 elements of L ′ (the k elements of L ′′ and possibly y), so by definition of y,
the set F disconnects x from y. In particular zy is cut by F. Thus the request zy is indeed
irrelevant. All the computations so far are FPT.

We repeat this process, removing irrelevant requests until the size of L does not exceed
b(k). We then set K(C) :=L, and the conclusion of Theorem 143 holds.

Let C be a cherry of a graphG with deletion allowance k. A subsetL of the edges of C is
active when we can assume that a multicut uses only edges of L in C, or more formally: if a
multicut F of size at most k exists, then there exists a multicut F ′ of size at most |F| such that
F ′ \C= F\C and F ′∩C⊆L. When the set L is clear from the context, we say by extension
that edges of L themselves are active.

Lemma 144. Let C be an x-cherry of a graph G with deletion allowance k, and let K be the
set of all terminals of C\x. Let L(C) be the union of all borders of cuts of Cy

≤k, where y ∈K.
Then L(C) is active, and has size at most (k+1)!|K|.

Proof. Assume that F is a multicut of size at mostk. LetS be the component of x inC\F. Let
T be a left cut with T ⊆ S and δ(T)≤ δ(S). If a component U of T does not intersect K, then
F \∆(U) is still a multicut. Hence, we can assume that all components U of T intersect
K, in which case ∆(U) ∈ C

y
≤k for some y in K, hence ∆(T) is included in L(C). The set

7.5. REDUCING MULTICUT TO COMPONENT MULTICUT 131

F ′ = (F\C)∪∆(T) is a multicut, and the size bound for L(C) follows from Theorem 136:
C
y
≤k contains at most k! cuts of size at most k, and L(C) is a union of |K| such sets.

Theorem 145. Let H1,H2, . . . ,Hp be x-cherries of a graph G with deletion allowance k such
that H1\x,H2\x, . . .,Hp\x are pairwise disjoint. Assume that for every i, Ui :=H1∪·· ·∪Hi

is a cherry. Then every set Ui has a bounded active set Li such that Lj∩Ui ⊆Li whenever
i≤ j.

Proof. By Theorem 143, we can reduce the set of terminals in U1 to a bounded set K1. The
set L1=L(U1) is bounded and active by Lemma 144. The requests of C1\K1 are irrelevant
in U2 since they are irrelevant in U1, hence we can assume that Theorem 143 applied toU2

yields a set of terminalsK2 ⊆K1∪C2. Let L2 be the active edges associated to K2. Note that
if an edge e ∈L2 is in U1, then the edge e must belong to a set Cy

≤k for some y ∈ K2∩U1.
Since K2 ⊆K1∪C2, we have y ∈K1, and so e ∈L1, which is the property we are looking for.
We extract K3 from K2∪C3, and iterate this process to form the sequence Li.

7.5 Reducing MULTICUT to COMPONENT MULTICUT

Let G= (V,E) be a connected graph, and R be a set of requests. A vertex-multicut Y is
a subset of V such that every xy-path of G where xy ∈ R contains a vertex of Y. Let A be a
connected component of G\Y. We call Y-component, or component, the union of A and
its set of neighbours in Y. Let C be a Y-component, the vertices of C∩Y are the attachment
vertices of C.

7.5.1 Component Multicut

Our first intermediate problem is formally expressed below. Informally, the Y-
components have at most two attachment vertices. Each Y-component with two attach-
ment vertices has a distinguished path called backbone, and the multicut restricted to a
component must consist of exactly one edge of the backbone plus a fixed number of other
edges. Finally, the vertex-multicutY must be split by the solution.

COMPONENT MULTICUT:
Input: A connected graphG=(V,E), a vertex-multicutY, a set of requests, and
q integers integers f1, . . . , fq such that:

1. There are q Y-components G1, . . .,Gq with two attachment vertices xi
and yi. The other Y-components have only one attachment vertex.

2. Every Gi has an xiyi-path denoted Pi called the backbone of Gi, such
that the deletion of an edge of Pi decreases the edge connectivity in Gi

between xi and yi.

3. The integers f1, . . . , fq are such that f1+ · · ·+fq ≤ k−q.

132 CHAPTER 7. MULTICUT IS FPT

Parameter: k.
Output: TRUE if there exists a multicut F such that:

1. every path Pi contains exactly one edge of F,

2. every component Gi contains exactly 1+fi edges of F,

3. the solution F splits Y, i.e. each connected component of G\F contains at
most one vertex of Y.

Otherwise, the output is FALSE.

The edges of G which do not belong to the backbones are called free edges. The back-
bone Pi, in which only one edge is deleted, is the crucial structure of Gi. Indeed, the whole
proof consists of modifying each Y-componentGi step by step to finally completely reduce
it to the backbone Pi. Here, fi is the number of free edges that we can delete in Gi. Observe
that k−q−f1−· · ·−fq edges can be deleted in Y-components with one attachment vertex.
Our first reduction is the following:

Theorem 146. MULTICUT can be reduced to COMPONENT MULTICUT in FPT time.

The remaining of Section 7.5 is devoted to the proof of Theorem 146. We first construct
a vertex-multicut Y through iterative compression. Then, we prove that we can reduce to
Y-components with one or two attachment vertices. Finally, we show that we can assume
that every component with two attachment vertices has a path in which exactly one edge
is chosen in the solution. This is our backbone.

7.5.2 The Vertex-Multicut Y

This subsection is devoted to prove by iterative compression that MULTICUT is equiva-
lent to the following problem, as was first noted in [99]:

RICHER MULTICUT:
Input: A graph G, a set of requests R, an integer k, a vertex multicut Y of size at
most k+1.
Parameter: k.
Output: TRUE if there is a multicut of size at most k which splits Y, otherwise
FALSE.

Lemma 147. MULTICUT is FPT-equivalent to RICHER MULTICUT.

Lemma 147 follows from the following two Lemmas:

Lemma 148. MULTICUT can be solved in time O(f(k)nc) if the MULTICUT variant where a
vertex multicut of size at most k+1 is additionally given in the input can be solved in time
O(f(k)nc−1).

7.5. REDUCING MULTICUT TO COMPONENT MULTICUT 133

Proof. By induction on n, we solve MULTICUT in time f(k)(n− 1)c on G− v, where v ∈
V(G). If the output is FALSE, we return FALSE, otherwise the output is a multicut F of size
at most k. Let X be a vertex cover of F of size at most k (i.e. X contains one endpoint of
each edge in F). The set X∪ {v} is a vertex-multicut of the original instance, so we solve
MULTICUT in time f(k)nc−1+f(k)(n−1)c which is at most f(k)nc.

So we can assume that the input of MULTICUT contains a vertex-multicut Y of size at
most k+1.

Lemma 149. We can assume that the solution F splits Y.

Proof. To a solution F is associated the partition of G\F into connected components. In
particular, this induces a partition of Y. We branch over all possible partitions of Y. In a
given branch, we simply contract the elements of Y belonging to a same part of the parti-
tion.

This concludes the proof of Lemma 147.
During the following reduction proof, the size of the setY will never decrease. Since one

needs k+1 edges to separate k+2 vertices, the size of Y cannot exceed k+1, otherwise we
return FALSE. Hence the primary invariant is the size of Y, and we immediately conclude
if we can increase |Y|.

7.5.3 Reducing Attachment Vertices

Our second invariant, which we intend to maximize, is the number of Y-components
with at least two attachment vertices. This number cannot exceed k, since a solution must
split Y. Our third invariant is the sum of the edge connectivity between all pairs of vertices

of Y, which we want to increase. This invariant is bounded by k(
|Y|
2
) since the connectivity

between two elements ofY is at mostk. Note that this third invariant never decreases when
we contract vertices.

Lemma 150. If C is a Y-component with at least three attachment vertices, we improve the
invariant.

Proof. Let x,y,z be attachment vertices of C. Let λ be the edge-connectivity between x

and y in C. Let P1, . . .,Pλ be a set of edge-disjoint xy-paths. A critical edge is an edge
which belongs to some xy-edge cut of size λ. Note that every critical edge belongs to some
path Pi. A slice of C is a connected component of C minus the critical edges. Given a
vertex v of C, the slice of v, denoted by SL(v), is the slice of C containing v. Let B(z) be the
border of SL(z), i.e. the set of vertices of SL(z) which are incident to a critical edge. Note
that B(z) intersects every path Pi on at most two vertices, namely the leftmost vertex of Pi
belonging to SL(z) and the rightmost vertex of Pi belonging to SL(z). In particular, B(z)
has b vertices, where b≤ 2λ.

134 CHAPTER 7. MULTICUT IS FPT

We branch over b+1 choices to decide whether one of the b vertices of B(z) belongs to
a component of G\F (where F is the solution) which does not contain a vertex of Y. When
this is the case, the vertex is added to Y, which increases the primary invariant. In the last
branch, all the vertices of B(z) are connected to a vertex of Y in G\ F. We branch again
over all mappings f from B(z) into Y. In each branch, the vertex v ∈ B(z) is connected to
f(v) ∈ Y in G \ F. Hence we can contract every vertex v ∈ B(z) with the vertex f(v) ∈ Y.
This gives a new graph G ′. We denote by S ′ the subgraph SL(z) in G ′. Observe that S ′ is a
Y-component of G ′.

If x and y belong to S ′, then the edge connectivity between x and y has increased.
Indeed, there is now a path P between x and y inside S ′, in particular P has no critical
edge. Thus the connectivity between x and y has increased, so the invariant has improved.
We assume without loss of generality that x does not belong to S ′.

If S ′ contains an element of Y distinct from z, then S ′ is a Y-component with at least
two attachment vertices. Moreover, there exists a path P in C\S ′ from x to B(z). Hence
we have created an extra Y-component with at least two attachment vertices in G ′, which
improves the second invariant.

In the last case, z is the only vertex of Y which belongs to S ′. Therefore, B(z) is entirely
contracted to z. In particular z is now incident to a critical edge e. So there exists an xy-cut
A with δ(A)= λ and e ∈∆(A). Without loss of generality, we assume that z ∉A (otherwise
we consider the yx-cut A). We denote by B the vertices of A with a neighbour in A. In
particular, B contains z, has size at most λ, and every xy-path in C contains a vertex of B.
Let us denote by L the set A∪B and by R the set A. Note that L∩R=B. We now branch to
decide in which components of G\F the elements of B are partitioned. If an element of B
is not connected to Y in G\F, we improve the invariant. If each element of B is contracted
to a vertex of Y, both L and R in the contracted graph are Y-components with at least two
attachment vertices (respectively {x,z} and {y,z}). We again improve the invariant.

7.5.4 Backbones

We now assume that every component has at most two attachment vertices. Let
G1, . . .,Gq be the components of G with two attachment vertices. We denote by λi the
edge connectivity of Gi between its two attachment vertices xi and yi. Recall that the third
invariant is the sum of the λi for i= 1, . . .,q.

Lemma 151. We can assume that xi and yi have degree λi in Gi.

Proof. Let A be the unique left xiyi-cut with δ(A) = λi in the graph Gi rooted in xi. Let
B be the set of vertices of A with a neighbour in A. We now branch to decide how the
components of G\F partition B. If a vertex of B is not connected to a vertex of Y in G\F,
we can add it to Y and improve the invariant. If a vertex of B is contracted to a vertex yi,
we increase λi. Hence all elements of B are contracted to xi. Therefore A becomes an xi-

7.5. REDUCING MULTICUT TO COMPONENT MULTICUT 135

cherry, hence A\xi is removed from Gi. The degree of xi inside Gi is now exactly λi. We
apply the same argument to reduce the degree of yi to λi.

We now branch over all partitions of k into k0+k1+· · ·+kq= k, where ki is the number
of edges of the solution chosen inGi when i> 0, andk0 is the total number of edges chosen
in the y-cherries for y ∈ Y.

Lemma 152. Every component Gi can be deleted or has a backbone.

Proof. If ki ≥ 2λi, then the whole component Gi can be disconnected from the rest of the
graph by removing the edges inGi incident to xi andyi. This reduces the second invariant,
the number of components with at least two attachment vertices. So we can assume that
ki ≤ 2λi−1. Let P1,P2, . . . ,Pλi be edge-disjoint xiyi-paths.

Our algorithm now branches 2λi times, where the branches are called Bj and B ′
j

for
j= 1, . . .,λi. In the branchBj, we assume that there is only one edge of the solution selected
in Pj, and that this edge is critical, i.e. belongs to an xiyi-cut of size λi. In the branch B ′

j
,

we assume that all the edges of the solution selected in Pj are not critical. Let us show that
every solution F belongs to one of these branches. If F does not belong to any branch B ′

j
,

this means that F uses at least one critical edge in each Pj. But since ki ≤ 2λi−1, some
path Pj only intersects F on one edge, which is therefore critical. Hence F is a solution in
the branch Bj. Thus this branching process is valid. In the branch Bj, we contract all non
critical edges of Pj, therefore Pj is the backbone we are looking for. In the branch B ′

j
, we

contract all critical edges of Pj, hence the connectivity λi increases. We thus improve the
invariant.

This concludes the proof of Theorem 146. To sum up, the invariants in this redution
from MULTICUT to COMPONENT MULTICUT are (in decreasing order of importance):

– |Y|, to maximize, bounded by k+1.
– The number of components with at least two attachment vertices, to maximize,

bounded by k.
– The sum of the connectivity of all pairs of vertices of Y, to maximize, bounded by k3.
The tree which represents the branchings made by the algorithm has depth O(k5)

(the product of the bounds on the invariants). The degree of its nodes is bounded by
O∗(kO(k)). Indeed, when reducing the components with three or more attachment ver-
tices in Lemma 150, or when ensuring that the degree of attachment vertices in a given
component is exactly their connectivity in Lemma 151, we improve the invariant at a cost
of O∗(kO(k)), and these are the bottlenecks. Finally, the amount of work performed at each
node vanishes in front of the number of branches, which gives:

Remark 153. The reduction from MULTICUT to COMPONENT MULTICUT is executed in time

O∗(kO(k6)).

136 CHAPTER 7. MULTICUT IS FPT

Reductions which are only performed once do not impact the overall running time:
reducing MULTICUT to RICHER MULTICUT is achieved in time O∗(kO(k)) in Lemma 147;
also, there are O(k2) components with at most 2 attachment vertices (all y-cherries are
considered as a single component for y ∈ Y), hence branching to decide how many edges

of the multicut per component costs kO(k2). These terms vanish in front of the O∗(kO(k6))

term.

7.6 BACKBONE MULTICUT is FPT

7.6.1 Backbone Multicut

We introduce here the problem BACKBONE MULTICUT, which is a generalisation of
COMPONENT MULTICUT. Our goal is to show that BACKBONE MULTICUT is solvable in FPT
time, which implies that COMPONENT MULTICUT is FPT, which in turns implies that MUL-
TICUT is FPT thanks to Theorem 146.

BACKBONE MULTICUT, formally defined below, differs from COMPONENT MULTICUT in
two ways. BACKBONE MULTICUT contains half-requestd of the type (u,y,v), where u,v ∈V
and y ∈ Y. Cutting the half-request (u,y,v) means cutting all paths from u to v going
throughy. Also, an instance of BACKBONE MULTICUT can express simple properties on the
edge of a backbone selected in the multicut, which allows us to enrich instances.

BACKBONE MULTICUT:
Input: A connected graph G=(V,E), a set R of half-requests, a set Y of at most
k+ 1 vertices, a set B of q variables, a set C of clauses, and q non negative
integers f1, . . . , fq such that:

1. G has q Y-components called Gi with two attachment vertices xi,yi ∈ Y,
where i = 1, . . .,q. Moreover, Gi has a backbone Qi (a prescribed xiyi-
path) and the xiyi-connectivity in Gi is λi.

2. The set R contains half-requests, i.e. sets of triples (u,y,v), informally
meaning that vertex u sends a request to vertex v via y, where y ∈Y. Also,
Y is a u,v-cut for every half-request (u,y,v)∈R.

3. The set B contains q integer-valued variables c1, . . .,cq. Each variable ci
corresponds to the deletion of one edge in the backbone Qi. Formally, if
the edges of Qi are e1, . . .,eℓi , ordered from xi to yi, the variable ci can
take all possible values from 1 to ℓi, and ci = r means that we delete the
edge er in Qi.

4. The clauses in C have four possible types: (ci ≤ a⇒ cj ≤ b), or (ci ≤a⇒
cj ≥b), or (ci ≥a⇒ cj ≥b), or (ci ≥a⇒ cj ≤b).

7.6. BACKBONE MULTICUT IS FPT 137

w

e

b
d

c

x

y

a

z

Figure 7.1: Fat vertices w,x,y,z belong to Y. The request ab can be simulated by two half-
requests: (a,x,b) and (a,y,b). The request cd can be simulated by the single half-request
(c,w,d), as paths between c and d which do not go throughw have to go through x and y,
and hence will be automatically cut when Y is split. By the same argument, the request ce
is irrelevant and can be deleted.

5. The integers f1, . . . , fq sum to a value at most k. Each integer fi corre-
sponds to the number of free edges (i.e. edges of G which are not in a
backbone) of the solution which are chosen in Gi.

Parameter: k.
Output: TRUE if:

1. There exists an assignment of the variables of B which satisfies C. 1

2. There exists a subset F of at most k free edges of G, which contains fi free
edges in Gi for i= 1, . . .,q.

3. The union F ′ of the set F together with the backbone edges corresponding
to the variables of B splits Y and intersects every half-request of R, i.e. for
every half-request (u,y,v) ∈ R every path between u and v containing y

intersects F ′.

Otherwise, the output is FALSE.

Note that the deletion allowance of BACKBONE MULTICUT isk+q. COMPONENT MULTI-
CUT directly translates into BACKBONE MULTICUT with an empty set of clauses, and where
each request is simulated by one or two half-requests (see Figure 7.1).

This section is devoted to the proof of the following result, which will conclude the
proof of the fixed-parameter tractability of MULTICUT:

1. Formally, if ci is assigned value r, then variables ci ≤ a for a≥ r and variables ci ≥a for a≤ r are true
and variables ci ≥a for a≥ r+1 and variables ci ≤a for a≤ r−1 are false.

138 CHAPTER 7. MULTICUT IS FPT

Theorem 154. BACKBONE MULTICUT can be solved in FPT time.

7.6.2 Invariants

Our primary invariant is the sum of the numbers of free edges fi for i= 1, . . .,q, which
starts with value at most k and is non-negative. A branch in which we can decrease this
primary invariant will be considered solved. The secondary invariant is the sum of the
λi− 1, called the free connectivity, which we try to increase. Observe that this invariant
is bounded above by k. For the last invariant, recall that the slice SL(v) of a vertex v in a
component Gi is the connected component containing v of Gi minus the critical edges of
Gi, i.e. edges of λi-cuts. Observe that since all edges of a backbone are critical, the slices of
distinct vertices in a backbone do not intersect. See Figure 7.2.

The slice connectivity of a vertex v in Qi is the xiyi-edge-connectivity of Gi \ SL(v)

(where SL(v) is considered as a vertex set). We denote it by sc(v). For example, if the set of
neighbours of v intersects every xiyi-path in Gi \Qi, then we have sc(v) = 0. Conversely,
if v ∈ Qi has only neighbours in Qi, then sc(v) = λi−1. The slice connectivity sci of Gi

is the maximum of sc(v), where v ∈ Qi. The third invariant is the sum sc of the sci, for
i= 1, . . .,q, and we try to minimize this invariant. Observe that sc is always at most k.

Our goal is to show that we can always improve the invariant, or conclude that λi = 1

for all i.
In the following, we consider a component Gi with λi > 1, say G1.
To avoid cumbersome indices, we assume that the attachment vertices of G1 are x and

y, and that their edge-connectivity is denoted by λ instead of λ1. Moreover, we denote by
P1 the backbone of G1, and we assume that P1,P2, . . . ,Pλ is a set of edge-disjoint xy-paths
in G1. We visualize x to the left and y to the right (see Figure 7.2). Hence when we say that
a vertex u ∈Pi is to the left of some vertex v ∈ Pi, we mean that u is between x and v on Pi.

7.6.3 Contracting Edges

In our proof, we contract edges of the backbone and also free edges which are not crit-
ical. We always preserve the fact that the edges of the backbone are critical.

When contracting an edge of the backbone P1, we need to modify several parameters.
Assume that the edges of P1 are e1, . . .,eℓ. The variable c1 represents the edge of P1 which
belongs to the multicut. Now assume that the edge ei= vivi+1 is contracted. All the indices
of the edges which are at least i+1 are decreased by one. All the constraints associated to
the other backbones are not affected by the transformation. However, each time a clause
contains a literal c1 ≥ j, where j> i, this literal must be replaced by c1 ≥ j−1. Similarly, each
occurrence of c1 ≤ j ′ for j ′ ≥ i must be replaced by c1 ≤ j ′−1. If a set of edges is contracted,
we perform the contractions one by one.

The collection of paths P2, . . .,Pλ can be affected during our contractions since it can
happen that a pathPi with i≥ 2 contains both endpoints of a contracted edgeuv. In such a

7.6. BACKBONE MULTICUT IS FPT 139

����
��
�
�
�
���

��
��
��
����
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
����
��
��
����
��
��
����
��
��
����
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
����

��
��
����

��
��
��

��
��
��
��

��
��
��
����
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
����

��
��
����
��
��
����
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
����

��
��
����
��
��
����
��
��
����
��
��
����
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��x y

u v
Figure 7.2: A component in a BACKBONE MULTICUT instance with two attachment vertices
x,y ∈ Y. The bottom xy-path is the backbone P1, and the other "horizontal" xy-paths
are the prescribed paths P2, . . .,P6, from bottom to top. Each edge of the backbone does
indeed belong to a λ-cut (i.e. an xy-cut consisting of six edges). In other words, there exists
no path between two distinct vertices of the backbone which consists only of diagonal
edges, i.e. edges which do not belong to the paths P1, . . . ,P6. Thus the slices of two distinct
backbone vertices are disjoint. The tag of vertexu, as defined in Subsection 7.6.4, is {1,4,5}
and the tag of vertex v is {1,3,4,5,6}. The slice connectivity of u is sc(u) = 6−3= 3, and
sc(v) = 6−5= 1. The slice connectivity of this component is 5, as there exists a vertex of
the backbone P1 with no neighbour outside P1.

case, we remove from Pi the loop formed by the contraction, i.e. the subpath of Pi between
u and v. We thus preserve our path collection.

7.6.4 Choosing a Stable Edge

Let v be a vertex of P1. The tag of v is the subset t(v) := {i | Pi∩SL(v) 6=;}, i.e. the set
of indices of the paths intersecting the slice of v. Note that t(v) contains 1. Observe also
that the slice connectivity of G1 is the maximum of λ− |t(v)|, where v belongs to P1. See
Figure 7.2.

By extension, the tag of an edge vivi+1 of the backbone P1 is the ordered pair
(t(vi), t(vi+1)). When speaking of an XY-edge, we implicitly mean that its tag is (X,Y).
In particular, the edge of P1 which is selected in the solution has a given tag. We branch
over the possible choices for the tag XY of the deleted edge of P1. Let us assume that the
chosen edge has tag XY.

Lemma 155. If X 6= Y, we improve the invariant.

Proof. Since only one edge is cut in the backbone, we can contract all the edges of P1 with
tags different from XY. Observe that when contracting some UV-edge of P1, the tag of the
resulting vertex contains U∪V since the slice of the resulting vertex contains the union of

140 CHAPTER 7. MULTICUT IS FPT

d

a c
x y

vu

b

Figure 7.3: This component has two attachment vertices x and y. Its backbone is P1 =

xuvy, and we have P2 = xabcy and P3 = xdy. Both u and v have tag t(u) = t(v) = {1,2},
since all edges of P2 are edges of λ-cut. After contracting u and v, edges ab and bc are no
longer edges of λ-cut, and the slice of the resulting vertex u= v becomes {u= v,a,b,c,d},
and its tag becomes {1,2,3}, which strictly contains t(u)∪t(v).

both slices (it can actually be larger, see Figure 7.3). After contraction, all the edges of P1
between two consecutive occurrences of XY-edges are contracted, hence the tag of every
vertex of P1 now contains X∪Y. In particular, the slice connectivity of G1 decreases while
the free connectivity is unchanged. Thus the invariant has improved.

Therefore we may assume that we choose an XX-edge in the solution. Let us contract
all the edges of P1 which are not XX-edges. By doing so, the tag of every vertex of P1 con-
tains X. After this contraction, the instance is modified, hence we have to branch again
over the choice of the tag of the edge chosen in the solution. Any choice different from XX

increases the slice connectivity. Hence we can still assume that the tag of the chosen edge
is XX.

The slice connectivity of G1 is λ− |X|. An XX-edge uv of the backbone is unstable if,
when contracting uv, the tag of the vertex u= v increases (i.e. strictly contains X). Other-
wise uv is stable. We branch on the fact that the chosen XX-edge is stable or unstable.

Lemma 156. If the chosen XX-edge is unstable, we improve the invariant.

Proof. We enumerate the set of all unstable edges from left to right along P1, and parti-
tion them according to their index into the odd indices and the even indices. We branch
according to the index of the chosen unstable edge. Assume for instance that the chosen
unstable edge has odd index. We contract all the edges of P1 except from the odd unstable
edges. We claim that the tag of every vertex now strictly contains X. Indeed, all edges of P1
between two consecutive odd unstable edges are contracted, in particular some even un-
stable edge. Thus, since this even edge is unstable, the tag now strictly contains X. Hence
the slice connectivity decreases.

7.6. BACKBONE MULTICUT IS FPT 141

�
�
�
�

�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
����
��
��
��
��
��
��
����
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
����
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
����
��
��
��

��
��
��
����

��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��x y

Figure 7.4: All backbone vertices of this component are full, where X= {1,2,3,4}, with the
backbone P1 at the bottom.

7.6.5 Contracting Slices

In this part, we assume that the chosen edge of P1 is a stable XX-edge. A vertex v of
P1 is full if v belongs to every Pi, where i ∈ X (see Figure 7.4). Our goal in this subsection
is to show that we can reduce to the case where X = {1, . . .,λ}. By the previous section, a
branching which increases the tag of the chosen edge would improve the invariant. So we
assume that in all our branchings, the chosen edge is still a stable XX-edge.

Lemma 157. We can assume that all backbone vertices are full.

Proof. We can first assume that there are at most k vertices with tag X between two full
vertices. Indeed, let us enumeratew1,w2, . . . the vertices with tagX from left to right along
the backbone P1. A solution F contains at most k free edges and the slices of the vertices of
the backbone are disjoint, so at most k slices of vertices wi contain an edge of F. Hence, if
we partition the set of all slices SL(wi) into k+1 classes according to their index i modulo
k+1, the solution Fwill not intersect one of these classes. We branch on thesek+1 choices.
Assume for instance that F does not contain an edge in all SL(wi) where i divides k+1.
Therefore, we can safely contract each of such slices SL(wi) onto wi. This makes wi a full
vertex.

Let us now enumerate the full vertices z1,z2, . . . from left to right. Let uv be a stable
XX-edge. There exists a full vertex zi to the left of u (with possibly zi =u) and a full vertex
zi+1 to the right of v. Since the number of vertices with tag X between zi and zi+1 is at
most k, the number of XX-edges between zi and zi+1 is at most k+1. The rank of uv is the
index of uv in the enumeration of the edges between zi and zi+1 from left to right. Every
edge of P1 has some rank between 1 and k+1. In particular, we can branch over the rank
of the selected stable XX-edge. Assume for instance that the rank of the chosen edge is 1.
We then contract all edges which are not stable XX-edges with rank 1. This leaves only full
vertices on P1 since by construction there is a full vertex between two edges of the same
rank.

142 CHAPTER 7. MULTICUT IS FPT

Note that after performing the reduction of Lemma 157, if vivi+1 is a stable XX-edge,
then for every vertex w ∈ Pj with j ∈X which lies between vi and vi+1 in Pj, every wY-path
contains vi or vi+1. In particular, if X= {1, . . .,λ} then vi is an xy-cut-vertex in G1, and vi+1

as well.

Lemma 158. We can assume that X= {1, . . .,λ}. In other words, we can reduce to the case
where every vertex of P1 is a cut-vertex of G1.

Proof. Assume that X is not equal to {1, . . .,λ}. We show that we can partition the com-
ponent G1 into two components G1

1
and G2

1
. This partition leaves the free-connectivity

unchanged, but decreases the slice connectivity. A vertex vi of the backbone P1 is left
clean if the edge vi−1vi of P1 is a stable XX-edge, but the edge vivi+1 of P1 is not. The
vertex vi is right clean if the edge vivi+1 is a stable XX-edge, but the edge vi−1vi is not.
Finally, vi is clean if both vi−1vi and vivi+1 are stable XX-edges. When enumerating all left
clean and right clean vertices from left to right, we obtain the sequence of distinct vertices
r1, l1,r2, l2, . . . ,rp, lp where the ri are the right clean vertices and the li are the left clean
vertices. Observe that x and y do not appear in the sequence since their tag is {1, . . .,λ}.
Let us consider a pair ri, li. We say that a vertex v of G1 is between ri and li if every path
from v to x or y intersects {ri, li}. Let Bi be the set of vertices which are between ri and li.
Let B be the union of Bi for i= 1, . . .,p.

Let G1
1

be a copy of the subgraph induced by B onG1. Observe thatG1
1

has p connected

components, since li 6= ri+1. We contract in G1
1

the vertices li and ri+1, for all i= 1, . . .,p−

1, hence making G1
1

connected. Finally, we contract the vertex r1 of G1
1

with x, and we

contract the vertex lp of G1
1

with y, so that G1
1

is a Y-component which has x and y as

attachment vertices. The backbone P1
1

of G1
1

simply consists of the edges of the original
backbone.

To constructG2
1
, we remove fromG1 all the vertices of Bwhich are not left clean or right

clean vertices. Hence no stable XX-edge is left in G2
1

. We contract backbone edges of G2
1

as follows. All the backbone vertices between x and r1 are contracted to a vertex w1 := x,
more generally all the vertices between li and ri+1 are contracted to a new vertex called
wi+1, and finally all the vertices between lp and y are contracted to wp+1 := y. We add in
G2

1
the pathw1,w2, . . . ,wp+1 which is the backbone P2

1
of G2

1
. We correlate the edges of the

backbone of G1
1

and G2
1

by adding clauses implying that the chosen edge of P2
1

is wiwi+1

if and only if the chosen edge of P1
1

is between ri and li. We finally branch to split the

number of free edges f1 chosen in G1 into f1
1
+f2

1
= f1, the respective free edges deleted in

G1
1

and G2
1

. Let us call G ′ the graph G in which G1 is replaced by G1
1

and G2
1

. Note that the

free edges of G1 are partitioned into the free edges of G1
1

and of G2
1
. Observe that the free-

connectivity of G and G ′ are equal. However, the slice connectivity has decreased in G ′,
since its value is 0 inG1

1
and strictly less than λ−|X| in G2

1
. Indeed, for i= 1, . . .,p−1, either

the edge lili+1 is unstable or the tag of li or li+1 strictly contains X. Hence, contracting all

7.6. BACKBONE MULTICUT IS FPT 143

M3 M4 M5B3

r2

B2

l2

M2B1M1G1 x y

l1r1 r3 l3

B2 B3B1
l3G1

1
r1

M1 M2 M3 M4
M5

G2
1

w4w3w1
w2

Figure 7.5: At the top, a component G1 before transformation in the proof of Lemma 158.
The new componentsG1

1
and G2

1
are depicted at the bottom and in the center respectively.

The backbone edge in G2
1

between wi and wi+1 (dashed, mixed or dotted) is correlated

to the subpath of the backbone contained in Bi in G1
1

(similarly dashed, mixed or dotted).
The verticesw1 and r1 are identified with vertex x, and the vertices w4 and l3 are identified
with y, so that the xy-component G1 is replaced by two xy-components G1

1
and G2

1
. 2

vertices between li and ri+1 strictly increases the tag of the resulting vertex in G2
1

. So the
invariant improves. Figure 7.5 gives an example of this transformation.

Remains to prove that there exists a multicut inG ′ if and only if there exists a multicut in
G which uses a stable XX-edge. This comes from the following observation. Let e= vjvj+1

be a stable XX-edge of P1 between ri and li. Let Ge be the graph obtained from G by
deleting e, contracting x with all the vertices of P1 to the left of vj, and contracting y with
all the vertices of P1 to the right of vj+1. Let G ′

e be the graph obtained from G ′ by deleting
e in P1

1
, deleting the edge wiwi+1 correlated to e in P2

1
, contracting x with all the vertices of

P1
1

to the left of vj and all the vertices of P2
1

to the left of wi, and contracting y with all the

vertices of P1
1

to the right of vj+1 and all the vertices of P2
1

to the right of wi+1. The key fact
is that Ge is equal to G ′

e. Hence the multicuts in G and G ′ selecting the edge e are in one
to one correspondence.

The proof of Lemma 158 produces a new component, hence a new edge to be chosen

2. The names Mi are not used in the proof of Lemma 158, their purpose is just to identify what vertices
which do not belong to a set Bi become in G2

1
.

144 CHAPTER 7. MULTICUT IS FPT

M

Li

C

vi

i

i+1v

i

yx

Figure 7.6: The left subgraph Li of vi. The set Ci is the vi-cherry, and Mi is the lemon of
the backbone edge vivi+1.

in a backbone. This increases the deletion allowance by 1, but the number of free edges
has not increased. The slice connectivity decreases, so the the invariant improves.

7.6.6 Reducing the Lemons

Thanks to the results of the previous section, we can assume that each vertex of the
backbone P1 of G1 intersects all paths Pi for i= 1, . . .,λ. Let vivi+1 be an edge of the back-
bone P1. The vi-cherry Ci is the set of all vertices u of G1 such that every uY-path contains
vi.

The lemon Mi of vivi+1 is the set consisting of vi, vi+1 and of all vertices u of G1 which
do not belong to a cherry and such that every ux-path in G1 contains vi and every uy-path
in G1 contains vi+1. Observe that when contracting vivi+1, the lemon Mi becomes part
of the vi-cherry, where vi denotes the resulting vertex. We denote by Li the union of all
Cj with j ≤ i and all Mj with j < i. We call Li the left subgraph of vi. Similarly, the right
subgraph Ri of vi is the union of all Cj with j≥ i and all Mj with j> i. See Figure 7.6.

If a multicut F selects the edge vivi+1 in the backbone, then the vertices x,v1, . . .,vi all
lie in the same connected component of G\ F. When these vertices x,v1, . . . ,vi are con-
tracted to x, the set Li becomes an x-cherry. Half-requests through y with an endpoint
in Li are automatically cut since F splits Y. Consider the terminals Ti of half-requests of Li
which are routed via x. Note that these half-requests are equivalent to usual requests, since
Li is now an x-cherry. By Theorem 143 we can reduce Ti to a bounded set of terminals Ki.
This motivates the following key definition.

By Lemma 144, we define Li to be a bounded active set of edges in the x-cherry ob-
tained from Li by contracting vertices x,v1, . . . ,vi. By Theorem 145, we can compute such
sets Li so that Lj∩Li ⊆Li when i≤ j.

Let us say that a multicut F selecting vivi+1 in P1 is proper if F∩Li is included in Li.

Lemma 159. If there exists a multicut F of size at most k containing the backbone edge
vivi+1, then there is a proper multicut F ′ of size at most k containing vivi+1.

7.6. BACKBONE MULTICUT IS FPT 145

Proof. Consider a multicut F containing vivi+1. As the set Li is active in the cherry ob-
tained by contracting the path x,v1, . . . ,vi in Li, there exists a multicut F ′ of size k such
that F ′ \Li= F\Li and F ′∩Li ⊆Li. Hence F ′ is proper and contains vivi+1.

We denote by L the set of all subsets F of size at most k contained in some Li. We
denote by c the maximum size of a set Li. Note that c is bounded in terms of k.

Given two sets Fi ⊆ Li and Fj ⊆ Lj with j ≥ i, let us write Fi ¹ Fj when Fj∩Li+1 ⊆ Fi.
Observe that ¹ is a partial order. A subset F of L is correlated if:

– elements of F have the same size, and
– F is a chain for ¹, i.e. for every Fi and Fj in F, with Fi ⊆Li, Fj ⊆Lj and j≥ i, we have
Fj∩Li+1 ⊆ Fi.

Lemma 160. There exists a partition F1,F2, . . .,Fk(2c)k of L into k(2c)k correlated sets.

Proof. Let us prove by induction on ℓ = 0, . . .,k that there exists no antichain for ¹ in L

consisting of (2c)ℓ+1 sets of size at most l. This clearly holds for ℓ= 0. Assume that this
holds for ℓ−1. By contradiction, let A= {F1,F2, . . .,F(2c)ℓ+1} be an antichain of sets of size

at most ℓ. Let ti be an integer such that Fi ⊆Lti for i= 1, . . .,(2c)ℓ+1. We assume that the
sets Fi are enumerated in such a way that ti ≤ tj whenever i≤ j. The set F1 is incomparable
to all sets Fi with i > 1, hence Fi∩Lt1+1 * F1 for all i > 1. In particular Fi∩Lt1+1 is non-
empty, hence all sets Fi, for i= 1, . . .,(2c)ℓ+1, have an edge in Lt1+1. The sets Fi such that
ti= t1 have an edge in Lt1 by definition. The sets Fi such that ti > t1 have an edge in Lt1+1

as Lti ∩Lt1+1 ⊆Lt1+1, by definition of the sets Li. Since the size of Lt1 ∪Lt1+1 is at most
2c, there exists a subset B of A of size at least (2c)ℓ−1+1 of sets Fi sharing a same edge
e ∈Lt1 ∪Lt1+1. The set {F\e|F ∈B} has size |B|≥ (2c)ℓ−1+1 and is an antichain of sets of
size at most ℓ−1 by definition of ¹. This contradicts the induction hypothesis.

By Dilworth’s Theorem, there exists a partition of L into (2c)k sets totally ordered by
¹, which can be be refined according to the cardinality to obtain a partition into k(2c)k

correlated sets. Such a partition can be found in FPT time.

Let us now consider such a partition F1,F2, . . . ,Fk(2c)k of L into correlated sets. Ob-
serve that by Lemma 159 we can restrict our search to multicuts of the following type in
G1:

– A backbone edge vivi+1.
– Other edges in the lemon Mi, which separate vi from vi+1 in Mi.
– Edges in Li.
– Edges in Ri, which is defined analogously to Li, with the roles of vertices x and y

reversed.

Lemma 161. We can assume that there are no cherries Ci. Moreover, if a multicut of size at
most k exists, there exists one which contains only edges in one lemon Mi.

146 CHAPTER 7. MULTICUT IS FPT

Proof. By Lemma 159, if there exists a multicut F containing the backbone edge vtvt+1,
then there exists a proper multicut F ′ containing vtvt+1. By definition F ′∩Lt ⊆L.

We branch over the existence of a proper solution F ′ such that F ′ ∩ Lt ∈ Fj for j =

1, . . .,k(2c)k, where t is the integer such that vtvt+1 ∈ F ′. Let us assume that we are in
the branch where F ′∩Lt ∈Fj. A backbone edge vivi+1 is in the support of Fj if there exists
some Fi ∈ Fj such that Fi ⊆ Li. When vivi+1 is in the support we say that lemon Mi is a
support lemon. In this case, there actually exists a unique set in Fj, which we denote by Fi,
such that Fi ⊆Li, as Fj is totally ordered under ¹. Let ℓ be the number of edges of the sets
in Fj.

Claim 162. For all Fa ∈Fj, if Mi is a support lemon then Fa∩Mi =;.

Proof. As L contains no backbone edge by definition, it is enough to show that u is not
disconnected from vi in G1 \Fa. As Mi is a support lemon, there exists a set Fi ∈Fj such
that Fi ⊆Li. Consider a set Fa ∈Fj with Fa ⊆La. If a≤ i, then Fa ⊆ La ⊆ Li, so Fa∩Mi=;.
If a ≥ i, then Fa∩Li+1 ⊆ Fi ⊆ Li as Fj is correlated, hence Fa∩Mi = ; holds as well. This
completes the proof of Claim 162.

Consider a vertex u such that either u belongs to some cherry Ci or u belongs to a
lemon Mi which is not a support lemon. An edge vava+1 in the support affects a half-
request (u,x,v) if a < i or if i ≤ a and the unique set Fa ∈ Fj such that Fa ⊆ La separates
u from x in G1. If vava+1 does not affect (u,x,v), then neither does vbvb+1 when b ≥ a.
Indeed when b≥a, Fb ⊆Lb and Fb ∈Fj, we have that Fb∩La ⊆ Fa.

Let us now modify the instance. If no edge of the support affects a half request (u,x,v),
where either u belongs to some cherry Ci or u belongs to a lemon Mi which is not a sup-
port lemon, we remove (u,x,v) from R and add the half-request (x,x,v). Otherwise we let
vava+1 be the support edge with a maximal which affects (u,x,v). We replace (u,x,v) in
R by (va+1,x,v). We call this process projecting the half-request (u,x,v). After projecting
all half-requests via x with an endpoint in a cherry or in a lemon Mi which is not a support
lemon, we decrease fi by ℓ and contract every edge of P1 which is not in the support of Fj.
Note that, if vivi+1 is not in the support, then there remains no half-request via x with an
endpoint in Mi.

Assume that F ′ is a solution of this reduced instance which uses an edge vava+1 in the
support. Let Fa be the element of Fj such that Fa ⊆ La. Then F ′∪ Fa is a solution in the
original instance. Indeed the half-requests with an endpoint in the support lemons are
cut in F ′∪ Fa if and only if they are cut by F ′, as Fa does not intersect these lemons by
Claim 162. Also, the half-requests with an endpoint in the lemons which are not support
lemons or with an endpoint in the cherries are cut in the reduced instance if and only if
they are cut by Fa in the initial instance by construction.

Conversely, assume that F is a proper solution in the original instance which uses the
edge vava+1 and such that F∩La ∈ Fj. In particular, Fa = F∩La, so F\Fa is a solution of
the reduced instance. Indeed, all half-requests (u,x,v) cut by Fa in the original instance

7.6. BACKBONE MULTICUT IS FPT 147

are affected by vava+1, hence they have been projected to (vi,x,v) with i≥a+1, and they
are cut by F\Fa in the reduced instance.

The reduction, consisting in projecting all half-requests with an endpoint in a cherry
or in a lemon which is not a support lemon, improves the invariant unless ℓ= 0, i.e. unless
the proper solution of the original instance with backbone edge vivi+1 does not use any
edge in Li. In this case, all the requests via x of cherry Cj are projected to vj, for all j. By the
same argument, we can assume that no edge in a proper solution is selected to the right of
Mi and that the half-requests via y of Cj are projected to vj. In this case, there remains no
terminal in the cherries, so we simply contract the cherries. We are only left with lemons,
and we moreover know that if a solution exists, then there exists a solution which uses only
edges in a single lemon. This concludes the proof of Lemma 161.

Theorem 163. We can assume that G1 only consists of the backbone P1.

Proof. We assume that λ> 1 and show that we can improve the invariant. Let us consider
a backbone edge vivi+1. We denote by W the multiset of vertices {w2, . . .,wλ} where wj is
the vertex of the slice Si of vi in Mi which belongs to the path Pj and has a neighbour in
Mi \Si. In other words, wj is the rightmost vertex of each path Pj in the slice of vi. These
vertices wj are not necessarily distinct, for instance if vi has degree λ in Mi, the slice Si is
exactly {vi} hence all wj are equal to vi for j = 2, . . .,λ. We also denote by Z = {z2, . . .,zλ}

the multiset of vertices of the slice Ti of vi+1 in Mi which belong respectively to the paths
P2, . . .,Pλ and have a neighbour in Mi \Ti.

A multicut F induces a partition of W∪Z according to the components of G\F. A vertex
of W∪Z has three possible types: it can be in the same component as x after the removal
of F, in the same component as y, or in another component. Observe that, if two vertices
a,b of W ∪Z belong to components distinct from the components of x and y in G \ F,
then F is still a multicut after contracting a and b. Hence F induces a partition of W into
three parts, each of which can be contracted, and F remains multicut. We now branch over
all partitions of W ∪Z into three parts WZx,WZy,WZu, where WZx are vertices which
are in the same component as x, WZy are vertices which are in the same component as
y, and WZu are vertices of the same type, possibly disconnected from x and y (but not
necessarily so). We branch over all possible partitions of W into WZx,WZy,WZu, and
contract in each branch WZx to vi, WZy to vi+1, and WZu (if not empty) is contracted to
a single vertex called ui. In each branch, these contractions are performed simultaneously
in all lemons Mi. We denote by G ′

1
the resulting component, by M ′

i
the contracted lemon

Mi, and by S ′
i

the contracted Si.
If some vertex of W belongs to WZy, or if some vertex of Z belongs to WZx, or if WZu

intersects both W and Z, then the xy edge-connectivity increases in G ′
1

. Indeed, in all
these cases, there exists an xy-path inG ′

1
without edges of λ(x,y)-cut inG1. This improves

the invariant, but we cannot directly conclude since the edges of the backbone may not be
critical any longer. Indeed, the connectivity between vi and vi+1 in M ′

i
could be smaller

148 CHAPTER 7. MULTICUT IS FPT

than the connectivity of another lemon M ′
j
, in which case the backbone edge vjvj+1 is

not critical. To get a correct instance of BACKBONE MULTICUT, we simply branch on the
connectivity of the lemon M ′

i
corresponding to the chosen edge vivi+1. In the branch cor-

responding to connectivity l, we contract the backbone edges vivi+1 where M ′
i

has con-
nectivity distinct from l.

Hence we can assume without loss of generality that W is partitioned into WZu and
WZx, and that Z =WZy. As we contract WZy to vi+1, the vertex vi+1 has now degree λ

in M ′
i
, and Ti is a vi+1-cherry. Let us assume that WZu 6= ;. As we have contracted the

vertices of W to vi and ui, the set S ′
i

has exactly two vertices with a neighbour in M ′
i
\S ′

i
,

namely vi and ui. Note that the degree of vi in M ′
i
\S ′

i
is exactly the number of vertices wj

chosen in WZx (with multiplicity, since WZx is a multiset). We denote this degree of vi in
M ′

i
\S ′

i
by d. Note that d does not depend on i since we have chosen in every Mi the same

subset WZx inside {w2, . . . ,wλ}.
Let λS be the viui edge-connectivity in S ′

i
. If λS > f1, then ui and vi cannot be sepa-

rated, so we contract ui and vi. We branch in order to assume that λS is some fixed value.
In the branch corresponding to connectivity λS, we contract backbone edges vivi+1 where
Si has connectivity distinct from λS. Let P ′

1
, . . . ,P ′

λS
be a collection of edge disjoint paths

between ui and vi in S ′
i
. We denote by S ′ the slice of vi in S ′

i
, and once again we consider

the rightmost vertices W ′ = {w ′
1
, . . .,w ′

λS
} of S ′ in the paths P ′

j
. We branch over all pos-

sible partitions of W ′ into W ′
x,W

′
y,W

′
u. Once again, if W ′

y is not empty, we increase the
connectivity between x and y. Observe that W ′

u can be contracted to WZu, hence to ui.
In particular if W ′

u is not empty, we increase the connectivity between vi and ui in S ′
i
. We

iterate this process in S ′
i

until either W ′
u is empty in which case vi has degree λS in S ′

i
, or

λS exceeds f1 in which case we contract vi and ui.
We apply Lemma 161 to G ′

1
. Therefore, we can assume that no cherries are left and that

if a solution exists, one multicut is contained in some M ′
i
. Two cases can happen:

If f1 ≥d+λS+λ−1, and the edge vivi+1 is chosen in the backbone, then we can assume
that the restriction of the multicut to M ′

i
simply consists of all the edges incident to vi and

vi+1 inM ′
i
. Indeed vi is incident tod+λS free edges, and vi+1 is incident to λ−1 free edges.

This is clearly the best solution since it separates all vertices of M ′
i
\ {vi,vi+1} from vi and

vi+1. Therefore, we project every request (u,x,v) where u ∈M ′
i

to (vi+1,x,v) and project
every request (u,y,v) where u ∈M ′

i
to (vi,y,v). Finally we reduce f1 to 0 and we delete all

vertices of G ′
1

which are not in P1.
Assume now that f1 < d+ λS+ λ− 1. We branch over 2(λ− 1) choices, where the

branches are named Bj and B ′
j

for all j = 2, . . .,λ. In the branch Bj, we assume that only

one edge of the solution is selected in Pj, and that this edge is critical. In the branch B ′
j
, we

assume that all the edges of the solution selected in Pj are not critical. In the branch B ′
j
,

we contract non critical edges of Pj and improve the invariant. In the branch Bj, we find
a new backbone Pj. In this last case, we delete the edges of P1 and reduce the number of
free edges to f1−1. We also translate the clauses in terms of edges of the new backbone Pj.

7.6. BACKBONE MULTICUT IS FPT 149

Indeed the number of edges in the backbone of G1 has changed. Clauses of the form c1 ≤ i

become c1 ≤ ǫ(i) where ǫ(i) denotes the index of the rightmost edge of Pj in the lemon
M ′

i
.
This branching process covers all the cases where vi =ui since in this case f1 < 2λ−2

and therefore one path Pj contains only one edge of the multicut. In the case vi 6= ui,
assume that a multicut F is not of a type treated in one of the branches. In other words,
F contains at least two edges in each path Pj for j = 2, . . .,λ, and at least one of them is
critical. Then F contains two edges in each of the d paths Pj not containing ui since F

does not respect the branches Bj for j = 2, . . .,λ. Also, F contains one edge outside S ′
i

in
each path Pj containing ui since edges in S ′

i
are not critical and F is not treated in the

branches B ′
j
. Thus F contains at least 2d+(λ−d−1) free edges outside S ′

i
. Hence less

than λS edges of F lie in S ′
i
, thus vi and ui belong to the same component in G−F. This

case is covered in another branch in which vi and ui are contracted. Hence this branching
process is exhaustive, and this completes the proof of Theorem 163.

7.6.7 Reducing to 2-SAT

We are left with instances in which the Y-components with two attachment vertices
only consist of a backbone. We now reduce the last components.

Lemma 164. We can assume that there is no component with one attachment vertex.

Proof. Let Y = {y1, . . .,yp} and let k be the number of free edges in the multicut. A vertex
yi ∈ Y is safe if there is no request between two components attached only to yi. If yi
is not safe then there is a request (u,yi,v), with u and y in components attached to yi,
hence yi must be either disconnected from u or disconnected from v by the solution. We
explore one branch where u is added to Y, and one branch where v is added to Y. This
creates a component with two attachment vertices. This component has a backbone, and
the number of free edges decreases.

Hence, we can assume that all the vertices of Y are safe. The yi-cherry is the union of
all the components attached to yi. We branch over all possible integer partitions of k into
a sum k1+k2+ · · ·+kp = k. In each branch, we require that ki edges are deleted in the yi-
cherry for i= 1, . . .,p. By Lemma 144, the yi-cherry has a bounded active set Li, hence in
theyi-cherry we can consider only a bounded number of cuts of size ki: all subsets of Li of
size ki. We branch over these different choices. In a given branch, we delete a particular set
of edges Fi in theyi-cherry. Thus, we delete the vertices of theyi-cherry isolated fromyi by
Fi, and contract the other vertices of the yi-cherry to yi. Finally, no Y-cherry remains.

Theorem 165. Multicut is FPT.

Proof. By Lemma 164, to prove that BACKBONE MULTICUT is FPT, we only have to deal
with an input graph G which is a subdivision of a graph with at most k edges, and where a

150 CHAPTER 7. MULTICUT IS FPT

multicut must consist of exactly one edge in each subdivided path. Let us consider a half-
request (vi,x,v

′
j
). Assume without loss of generality that vi ∈ G1, v ′

j
∈ G2, and x belongs

to G1 and G2 (if x does not belong to G1 or G2, then splitting Y automatically results in
cutting the half-request (vi,x,v ′

j
)). For simplicity, we assume that the edges of both P1 and

P2 are enumerated in increasing order from x. We add to C the clauses x1 ≥ i⇒ x2 ≤ j−1

and x2 ≥ j⇒ x1 ≤ i−1. We transform all the half requests in this way. We are only left with
a set of clauses which we have to satisfy.

We finally add all the relations xi ≥a⇒ xi ≥a−1 and xi ≤a⇒ xi ≤a+1 and xi ≥a⇒
¬(xi ≤a−1) and xi ≤a⇒¬(xi ≥a+1) to ensure the coherence of a satisfying assignment.
We now have a 2-SAT instance which is equivalent to the original multicut instance. As 2-
SAT is solvable in polynomial time, this shows that BACKBONE MULTICUT is FPT. Hence
the simpler COMPONENT MULTICUT problem is FPT. Together with Theorem 146 which
reduces MULTICUT to COMPONENT MULTICUT, this concludes the proof of Theorem 165.

To sum up, the invariants in the proof that BACKBONE MULTICUT is FPT are (in decreas-
ing order of importance):

– The total number of free edges in the multicut, to minimize, bounded by k.
– The sum of the free connectivity in each component, to maximize, bounded by k.
– The sum of the slice connectivity in each component, to minimize, bounded by k. 3

The algorithm starts by branching over the tag XY of the backbone edge chosen in
the multicut in a given component. When X 6= Y, the invariant improves by Lemma 155.
The dominant complexity term comes from the O(2k) branches where X = Y. Tags may
change, and another such branching is done, and again the dominant term comes from
the 22k cases where X= Y. If the chosen edge is unstable, we improve the invariant with a
factor two branching in Lemma 156. If the edge is stable, we branch over k choices to de-
cide which part of a partition modulo k+1 does not intersect the solution F in Lemma157,
and branch again over k+1 choices for the rank of the backbone edge chosen in the so-
lution. This yields O(k222k) cases where all vertices are full. If a backbone vertex is not a
cut-vertex, we increase the invariant by Lemma 158. Otherwise, we apply Theorem 163,
which branches over 3O(k) cases, in which either the component consists only in its back-
bone, or the invariant has improved.

When the whole process described in the previous paragraph has been performed
over all components with two attachment vertices, yielding O∗(kO(k)) branches, we ap-
ply Lemma 164. If a vertex in Y is not safe, the invariant improves. When all vertices are
safe, the tree which represents the branchings made by the algorithm thus far (where child
nodes are instances with a better invariant) has depth at mostk3 and the degree of its nodes

3. By "bounded" we mean bounded above, all the invariants described in this chapter being trivially non-
negative. In both cases, maximize or minimize, the upper bound corresponds to the maximum number of
times an invariant can be improved.

7.7. HINTS FOR VERTEX-MULTICUT 151

is bounded by O∗(kO(k)). Hence the total number of leaves in the branching process thus

far is O∗(kO(k4)).
Lemma 164 proceeds by branching over O(kk) cases to fix the number of edges chosen

by the solution in each component, and then applies Lemma 144, branching exhaustively
over all subsets with the adequate number of active edges in each component. This gives
a branching factor of O((|K|(k+1)!)k), where K is the set of terminals in a given cherry,

which is bounded by O(kO(k3)) by Theorem 143. The total number of branches obtained

thus far is O(kO(k4)). Finally, Theorem 165 directly translates to a 2-SAT instance. Thus:

Remark 166. The FPT algorithm for BACKBONE MULTICUT runs in time O∗(kO(k4)).

7.7 Hints for Vertex-Multicut

This section contains a sketch of a translation of our proof for edge-multicut in terms
of vertex-multicut. The proof has the same outline, and we just explain how the notions
introduced for edge-multicut can be transferred to the vertex-multicut setting. What fol-
lows is more intended as a hint rather than a complete proof of the fact that the following
version of Multicut is FPT:

VERTEX MULTICUT:
Input: A graph G, a set of requests R, a subset of vertices S, an integer k.
Parameter: k.
Output: TRUE if there is a vertex-multicut of size at most k which does not
intersect S, otherwise FALSE.

In the standard version of VERTEX MULTICUT, the set S is empty. We use this slightly
more general version for technical reasons. Let us now explain how we can translate the
results of the previous sections for VERTEX MULTICUT.

For Section 7.4, the results are based on the submodularity of edge cuts. The vertex cuts
being also submodular, we can transfer the results for vertices. Here an indivisible xy-cut
is a set of vertices K which deletion separates x from y and such that no strict subset of K
separates x from y. For the reduction from VERTEX MULTICUT to COMPONENT MULTICUT,
the proof is essentially the same. One particularity of VERTEX MULTICUT is the following.
When we contract vertices, we have to add the resulting vertex toS, the set of non-deletable
vertices. Let Y be the vertex-multicut of size k+ 1 given by iterative compression. We
can branch to decide which vertices of Y belong to the solution and then branch over the
possible contractions of the set Y. Hence we can assume that Y ⊆ S. We have to replace
arguments of the type “we add a vertex to Y” by “we branch to know if the vertex is added
to Y or if it belongs to the solution”. The connectivity between x and y is the maximum
number of paths between x and y whose intersections with the set of deletable vertices are
pairwise disjoint. The connectivity can be computed by flows with weight 1 for deletable

152 CHAPTER 7. MULTICUT IS FPT

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
����
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
����
��
��
��
��
��
��
����
��
��
����
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
����
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
����
��
��
��
��
��
��
��

��
��
��
����
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
����
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
����
��
��
��

��
��
��
����

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
����

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

x y

Figure 7.7: The transformation into lemons for VERTEX MULTICUT. The backbone is the
path at the bottom. All even vertices of the backbone are full, with X= {1,2,3,4}, and all
odd vertices belong to S.

vertices and ∞ for non-deletable vertices. A vertex of λ-cut is a deletable vertex which
deletion decreases the connectivity. In the vertex-multicut context, a backbone is a path in
which only one vertex will be selected in the multicut and where every odd vertex belongs
to the set S. Additionally, all the deletable vertices of the backbone must be vertices of
λ-cut.

To prove the existence of a backbone, we have to generalise Lemma 151. The border of
the slice of xi has size at most k but the number of vertices which touch this border can
be arbitrarily large. We can branch to know if a vertex is deleted in the slice. If this is not
the case then the slice can be contracted to xi, hence xi has only λ neighbours. Otherwise,
we can branch to know if each vertex in the border is in the component of yi or a new
component. In each of these case the invariant improves. Hence, the only relevant case is
when all the vertices of the border of xi will lie in the same connected component as xi. In
this case, we can contract xi with the border of its slice, which yields a cherry in which we
have to delete vertices. By Lemma 144, we can bound the number of possible cuts. We can
branch these cuts and decrease the deletion allowance.

Let us now turn to the BACKBONE MULTICUT problem for vertex-multicuts. A key def-
inition of Section 7.6 is the notion of full vertex. We have to modify this notion, as con-
tracted vertices are not deletable. Hence all the vertices of the backbone cannot be full
as for edge-multicuts. Instead, we transform the instance to make all non-deletable ver-
tices of the backbone full (see Figure 7.7). The slice S(v) of a non-deletable vertex v is
the connected component of v in G minus the vertices of λ-cut. We define the tag as for
edge-multicut. A vertex v of the backbone is X-stable if v is deletable, and the tag of each
of its two neighbours in the backbone is X, and the tag after the contraction of v with its
two neighbours is still X. As for edge-multicuts, we can assume that we delete an X-stable
vertex in the backbone. We can similarly define classes for Lemma 157, and remark that
one class does not intersect the solution. All the vertices of each slice in this class can be
contracted. This ensures that all the vertices which are non-deletable are full. We can write

7.8. CONCLUSION 153

as in Lemma 158 that a non-deletable vertex is left (resp. right) clean if the vertex to its left
(resp. right) is X-stable and then we can assume that X= {1, ...,λ} as for edge-multicut.

In the reduction of the lemons for Vertex-Multicut, we cannot contract x with the bor-
der of its slice since it does not ensure that the degree of x is λ. Hence we have to contract x
with vertices of its slice which touch the vertices of the border. The set of such vertices can
be restricted to a bounded size with Lemma 144. Hence the same inductive method used
for edge-multicut also holds.

7.8 Conclusion

7.8.1 A Single-Exponential Algorithm

Our proof was originally designed only to prove that MULTICUT is FPT, with no par-
ticular focus on algorithmic efficiency. For the sake of completeness, we briefly analysed
the complexity after each of the two major parts of the proof. MULTICUT is reduced to

COMPONENT MULTICUT in time O∗(kO(k6)) by Remark 153, and BACKBONE MULTICUT is

solved in time O∗(kO(k4)) by Remark 166. Hence the overall running time of the algorithm

is O∗(kO(k6)). This algorithm and its complexity analyis are definitely not fine tuned, and
the running time could probably be vastly improved with slight changes to the proof and
to the analysis.

7.8.2 Comparison with Marx and Razgon’s Proof in [100]

Marx and Razgon independently proved that MULTICUT is FPT in [100]. Both proofs
start with the Iterative Compression technique originally used in [99]. Reducing Y-
components (our vertex-multicut Y is denoted by W in [100]) with three or more attach-
ment vertices as we do in Lemma 150 essentially corresponds to Lemma 5.3 in [100]. The
basic connectivity tools, important cuts in [100] and left cuts here are identical. At this
point, the two proofs drastically diverge. While we concentrate on linearly structuring the
(restriction inside a component of the) multicuts, Marx and Razgon focus on non-isolating
solutions, i.e. solutions where no vertex is disconnected from Y. They exhibit a transfor-
mation from a positive instance to an instance which admits a non-isolating solution with

a large enough probability (2−O(k3)). This probabilistic transformation can be derandom-

ized into a single-exponential algorithm running in time O∗(2O(k3)) (Lemma 4.1). Finally,
with an instance admitting a non-isolating solution, they reduce to Almost 2-SAT, which
was proved FPT in [109].

Roughly speaking, the two proofs are about as much technically intricate. On the plus
side, our proof is self-contained, while [100] uses Almost 2-SAT, which Fixed-Parameter
Tractability had remained an important open question until recently. Also, not going

154 CHAPTER 7. MULTICUT IS FPT

p4 p5 p6p2 p3
u=p1 p7= v

Figure 7.8: A double path on seven vertices.

through randomization and through Almost 2-SAT allows us to (arguably) get more in-
sight on the structure of the problem. On the minus side, Marx and Razgon’s algorithm is
more efficient and "cleaner". Also, their proof works directly with vertex-multicuts, while
our proof has been originally written in terms of edge-multicut. Finding a shorter proof
retaining the best characteristics of each would be very interesting.

7.8.3 Other Leads

The approach developed in this chapter was not our original idea of how an FPT al-
gorithm for MULTICUT should be designed. We made our first significant progress with
a structural approach based on treewidth, pathwidth and minors. Chapter 4 uses the ex-
tra structure given by a large grid minor to reduce MULTICUT to bounded treewidth, and
we hoped to proceed with the structure given by arbitrarily large pathwidth to reduce to
graphs of bounded pathwidth, and hopefully deal with bounded pathwidth instances in
a similar fashion. We could not execute this strategy, but this is one interesting direction
for attempts towards a different proof / a better proof / a simpler algorithm / a faster algo-
rithm.

In our solution, we do not use the fact that the treewidth can be assumed bounded, but
this is a fact which can be used if helpful thanks to Chapter 4.

Considering finer concepts than the notion of request can also be envisioned. In the
simpler case of MULTICUT IN TREES, a request is simply a path. In general graphs, a request
can be seen as the set of paths between its endpoints. In our proof, we simulate requests by
half-requests, partitioning the set of paths naturally associated to a request according to an
intermediate point. This could be done thanks to the vertex-multicut Y. But we originally
wanted to go much further, and consider the more general problem of cutting a prescribed
set of paths, not necessarily all paths between given pairs of vertices. The obvious problem
is that a request can be realized by exponentially many paths (exponentially many in n),
but we loosely conjectured that this difficulty can be avoided as follows:

Question 167. Given a graph G on n vertices, an integer k and two vertices u,v of G, does
there always exist a setS of at most f(k)∗poly(n) paths betweenu and v such that removing
at most k edges of G to disconnect all paths in S must actually disconnect u and v? In other
words, can an FPT number of paths simulate a request with respect to k-multicuts?

Consider for starters the multigraphG consisting of a path onn vertices with endpoints
u= p1 and v= pn, where each edge has been duplicated (into a 2-cycle), as in Figure 7.8.

7.8. CONCLUSION 155

p4 p5 p6p2 p3
u=p1 p7= v

Figure 7.9: Assuming k = 4, one constraint would be generated by T = {2,3,4,6} parti-
tioned into T = {2,6} (corresponding to the dashed edges) in and T = {3,4} (corresponding
to the dotted edges). A solution must contain a uv-path avoiding all dotted edges and
dashed edges.

We are looking for a small set of uv-paths, such that every hitting set of these paths is a
uv-edge-cut.

Given a (simple) uv-path P and an integer i ∈ {1, . . .,n−1}, let us say that P takes i if
P contains the top edge in position i, i.e. between pi and pi+1. We can reformulate the
constraint on the solution set S as follows: for every set T of k positions and for every
bipartition of T into T and T , there must exist a path in S which takes all positions in T and
takes no position in T . Indeed, if this is not the case, then the bottom edges for positions

in T and the top edges for positions in T form a set of k edges which hits S but does not cut
u from v. See Figure 7.9 for an example.

Hence every bipartitioned set of k positions gives a constraint. There are (nk)2
k such

constraints and a given simple uv-path satisfies (in the above sense) (nk) such constraints.

Hence a random simple path satisfies a fraction 1
2k

of the constraints. In particular, there

exists one path P which satisfies at least a fraction 1
2k

of the constraints. We pick the path
P in our solution S and repeat. This process (not taking into account the computability of
P) finds a solution of size at most log2k((

n
k)2

k) paths, which is actually even better than
needed, with a logarithmic dependence on n rather than a polynomial dependence.

Question 168. If Question 167 has a positive answer, can such an FPT set of paths emulating
the request uv be computed in FPT time?

In the simple example worked out above, the randomized process should easily be de-
randomizable into an FPT algorithm.

If Question 167 and Question 168 turn out to have positive answers, then MULTICUT

can be reduced to the following problem:

PATH HITTING:
Input: A graph G, a set R of paths in G, an integer k.
Parameter: k.
Output: TRUE if there is a set at most k edges of G which hits R, otherwise
FALSE.

It is not clear a priori whether this problem should be easier or harder than MULTICUT.
Directly emulating a MULTICUT instance with PATH HITTING would require an exponential

156 CHAPTER 7. MULTICUT IS FPT

number of paths, and conversely the structure of the objects to be hit can be more compli-
cated in PATH HITTING than in MULTICUT.

Question 169. Is PATH HITTING FPT?

We did not pursue this insight further when the ideas exposed in this chapter proved
to be fruitful, but Questions 167, 168 and 169 remain very interesting nonetheless, on their
own right as well as with respect to MULTICUT.

CHAPTER

8
Parameterized Algorithms for

Finding Trees with Many Leaves

Sections 8.1 and 8.2 are devoted to a parameterized algorithm for MAXIMUM LEAF OUT-
BRANCHING running in time O∗(3.72k). Section 8.3 applies this algorithm to derive an
exponential exact algorithm for MAXIMUM LEAF OUT-BRANCHING, and was actually sug-
gested by Serge Gaspers. These sections are based on [39], a joint work with Gregory Gutin,
Eun-Jung Kim and Anders Yeo. In Section 8.4, we briefly discuss the randomized mono-
mial technique of Koutis and Williams and its (non)-applicability to MAXLEAF, and we use
this technique to provide a fast randomized algorithm for finding trees with many internal
vertices.

Throughout this chapter, we denote the set of arcs of a digraph D by A(D). Given a
vertex x which belongs to a subgraph H of a digraph D, N+

H
(x) and N−

H
(x) denote the sets

of out-neighbours and in-neighbours of x in H, respectively. Also, let A+
H
(x) = {xy : y ∈

N+
H
(x)}, d+

H
(x) = |N+

H
(x)|, and d−

H
(x) = |N−

H
(x)|. When H =D we omit the subscripts in

the notation above.
Let D be a digraph, let T be an out-tree and consider a set of vertices L ⊆ V(D). A

(T,L)-out-tree of D is an out-tree T ′ of D such that:

1. A(T)⊆A(T ′).

2. Vertices of L are leaves in T ′.

3. T and T ′ have the same root.

A (T,L)-out-branching is a (T,L)-out-tree which is spanning. Let ℓmax(D,T,L) be the
maximum number of leaves over all (T,L)-out-branchings of D. We set this number to 0 if
there is no (T,L)-out-branching. For an out-tree T in a digraph D, Leaf(T) denotes the set
of leaves in T and Int(T)=V(T)−Leaf(T), the set of internal vertices of T . Given a vertex x
in an out-tree T let Tx denote the subtree of T rooted at x.

157

158 CHAPTER 8. ALGORITHMS FOR MAXLEAF

Throughout this chapter we use a triple (D,T,L) to denote a given digraph D, an out-
tree T of D and a set of vertices L ⊆ V(D)− Int(T). We denote by D̂(T,L) the subgraph of
D obtained from D by:

– deleting all out-arcs of vertices in L.
– deleting all arcs not in A(T) which go into a vertex in V(T).
Informally, D̂(T,L) corresponds to the available arcs when we want to extend a partial

solution T into an out-branching, having decided that vertices in L must be leaves. This
will be formally stated in Lemma 170. Note that by definition, vertices in L are either leaves
of T or vertices not in T . When T and L are clear from the context we will omit them and
denote D̂(T,L) by D̂.

8.1 Another 4knO(1) Time Algorithm

The algorithm of this section is similar to the branching algorithm in [88] briefly de-
scribed on pages 117-118, with the following differences. We decide at an earlier stage
which of the current leaves of T cannot be leaves in a final (T,L)-out-branching and turn
them directly into internal vertices thanks to Lemma 171. This is Step 2 in Algorithm
A(D,T,L). This decision works as a preprocessing of the given instance and gives us a
better chance to come up with a (T,L)-out-tree with at least k leaves more quickly. A more
important reason for this step is the fact that our algorithm is easier than the main algo-
rithm in [88] to transform into a faster algorithm.

In the following, r denotes the root of the desired out-branching.

Lemma 170. Given a triple (D,T,L), we have ℓmax(D,T,L)= ℓmax(D̂,T,L).

Proof. If there is no (T,L)-out-branching in D, the subgraph D̂ does not have a (T,L)-out-
branching either and the equality holds trivially. Hence suppose that T∗ is a (T,L)-out-
branching in D with ℓmax(D,T,L) leaves. Clearly, ℓmax(D,T,L) ≥ ℓmax(D̂,T,L). Since the
vertices of L are leaves in T∗, all arcs out of vertices in L do not appear in T∗, i.e. A(T∗)⊆
A(D)\{A+

D
(x)|x ∈L}. Moreover, A(T)⊆A(T∗) and thus all arcs not in A(T) which go into

a vertex in V(T) do not appear in T∗. Indeed, otherwise we would have a vertex in V(T)

with more than one in-arc in T∗, or r would have an in-arc. Hence A(T∗)⊆A(D̂) and the
above equality holds.

Lemma 171. Given a triple (D,T,L), the following equality holds for each leaf x of T .

ℓmax(D,T,L)=max{ℓmax(D,T,L∪ {x}), ℓmax(D,T ∪A+

D̂
(x),L)}

Proof. If ℓmax(D,T,L)= 0 then the equality trivially holds, so we assume that ℓmax(D,T,L)≥
1. Since a (T,L∪ {x})-out-branching or (T ∪A+

D̂
(x),L)-out-branching is also a (T,L)-out-

branching, the inequality ≥ holds. To prove the opposite direction, assume T ′ is an op-
timal (T,L)-out-branching. If x is a leaf in T ′, then T ′ is a (T,L∪ {x})-out-branching and
ℓmax(D,T,L)≤ ℓmax(D,T,L∪ {x}).

8.1. ANOTHER 4KNO(1) TIME ALGORITHM 159

Suppose x is not a leaf in T ′. Denote by T ′′ the digraph obtained from T ′ by deleting all
arcs enteringN+

D̂
(x) in T ′, and adding the arcs A+

D̂
(x). Note thatd−

T ′′(y)= 1 for each vertex

y 6= r in T ′′, and A(T ′′)⊆A(D̂). In order to show that T ′′ is an out-branching it suffices to
see that there is no cycle in T ′′ containing x. If there is a cycle C containing x in T ′′ and
xy ∈A(C), then C− {xy} forms a directed (y,x)-path in D̂. As x ∈V(T) and y 6∈V(T), this
contradicts the fact that there is no path from V(D)−V(T) to V(T) in D̂. Hence, T ′′ is an
out-branching.

As no vertex in L has an out-arc in D̂ we have that L ⊆ Leaf(T ′′). Furthermore,
A(T) ⊆ A(T ′′) as A(T) ⊆ A(T ′) and all arcs we deleted from A(T ′) go to a vertex not in
V(T). Therefore T ′′ is a (T,L)-out-branching with as many leaves as T ′. This proves that
ℓmax(D,T,L)≤ ℓmax(D,T ∪A+

D ′(x),L).

Given a triple (D,T,L) and a vertex x ∈ Leaf(T)−L, define T root
D,L

(x) as follows:

(1) Let T root
D,L

(x) :=; and x ′ := x.
(2) While d+

D̂
(x ′) = 1, add A+

D̂
(x ′) = {x ′y} to T root

D,L
(x) and let x ′ :=y.

(3) Add A+

D̂
(x ′) to T root

D,L
(x).

The idea behind this definition is the following: during the algorithm, we will decide
that a given leaf x of the partial out-tree T built thus far is not a leaf of the out-branching we
are looking for. Then adding the out-arcs of x to T is correct. To make sure that the number
of leaves of T has increased even when d+

V−V(T)
(x) = 1, we add T root(x) to T instead of just

adding the single out-arc of x, as described in the following.

Lemma 172. Consider a triple (D,T,L) and a leaf x ∈ Leaf(T)−L. If ℓmax(D,T,L∪ {x})≥ 1

then the following holds:

(i) If |Leaf(T root
D,L

(x))| ≥ 2 then ℓmax(D,T,L) = max{ℓmax(D,T,L ∪ {x}), ℓmax(D,T ∪
T root
D,L

(x),L).

(ii) If |Leaf(T root
D,L

(x))|= 1 then ℓmax(D,T,L)= ℓmax(D,T,L∪ {x}).

Proof. Let us start with (ii). Note that if |Leaf(T root
D,L

(x))| = 1 then an optimal (T,L)-out-
branching T ′ must verify |Leaf(T ′

x)|= 1. Assume that T ′ is an optimal (T,L)-out-branching
and that |Leaf(T ′

x)| = 1. Let us show that ℓmax(D,T,L∪ {x}) = |Leaf(T ′)| = ℓmax(D,T,L). If
x is a leaf of T ′ then this is clearly the case, so assume that x is not a leaf of T ′. Let y be
the unique out-neighbour of x in T ′. As ℓmax(D,T,L∪ {x})≥ 1, there exists a path P= p0(=

r)p1p2 . . .pr(= y) from the root r of T to y in D̂(T,L∪ {x}). Assume that q is chosen such
that pq 6∈ T ′

x and {pq+1,pq+2, . . . ,pr} ⊆ V(T ′
x). In the digraph D∗ =D[V(T ′

x)∪ {pq}− {x}],
every vertex is reachable from pq inD∗. Therefore there exists an out-branching inD∗, say
T∗, with pq as the root. Let T ′′ be the out-branching obtained from T ′ by deleting all arcs
in T ′

x and adding all arcs in T∗. We have that |Leaf(T ′′)|≥ |Leaf(T ′)| as vertices in Leaf(T∗)∪
{x} are leaves in T ′′ and vertices in Leaf(T ′

x)∪ {pq} are the only leaves in T ′ which may
not be leaves in T ′′, and |Leaf(T ′

x)∪ {pq}| = 2. Therefore, ℓmax(D,T,L∪ {x})≥ |Leaf(T ′)| =

160 CHAPTER 8. ALGORITHMS FOR MAXLEAF

ℓmax(D,T,L). We always have ℓmax(D,T,L)≥ ℓmax(D,T,L∪ {x}), which completes the proof
of (ii).

Let us turn to the proof of (i), where |Leaf(T root
D,L

(x))|≥ 2. Let Q denote the set of leaves
of T root

D,L
(x) and let R = V(T root

D,L
(x)) −Q. Note that by the construction of T root

D,L
(x) the

vertices of R can be ordered (x =)r1,r2, . . . ,ri such that r1r2 . . . ,ri is a path in T root
D,L

(x).
Once again, let T ′ be an optimal (T,L)-out-branching. If a vertex rj with 1 ≤ j ≤ i is
a leaf of T ′ then |Leaf(T ′

x)| = 1 and the above gives us ℓmax(D,T,L∪ {x}) = ℓmax(D,T,L).
This proves part (i) in this case, as we always have ℓmax(D,T,L)≥ ℓmax(D,T ∪T root

D,L
(x),L).

Therefore, let us assume that no vertex in {r1,r2, . . .,ri} is a leaf of T ′ and that all arcs
(x =)r1r2,r2r3, . . . ,ri−1ri belong to T ′. By Lemma 171 we may furthermore assume that
T ′ contains all the arcs from ri to vertices in Q. Thus, T root

D,L
(x) is a subtree of T ′ and

ℓmax(D,T,L)= ℓmax(D,T ∪T root
D,L

(x),L). This completes the proof of part (i).

The following is an O(4knO(1)) algorithm. Its complexity can be obtained similarly to [88],
and was briefly sketched on pages 117-118. We restrict ourselves only to proving its cor-
rectness.

For every vertex x ∈V(D), do A(D, {x},;).

If one of the returns of A(D, {x},;) is “TRUE” then output “TRUE”.

Otherwise, output “FALSE”.

A(D,T,L):

(1) If ℓmax(D,T,L)= 0, return “FALSE”.

(2) While there is a vertex x ∈ Leaf(T)−L such that ℓmax(D,T,L∪ {x})= 0, add
the arcs A+

D̂
(x) to T .

(3) If |L|≥ k, return “TRUE”.
If the number of leaves in T is at least k, return “TRUE”.
If all leaves in T belong to L, return “FALSE”.

(4) Choose a vertex x ∈ Leaf(T)−L.
B1 :=A(D,T,L∪ {x}) and B2 :=“FALSE”.
If |Leaf(T root

D,L
(x))|≥ 2 then let B2 :=A(D,T ∪T root

D,L
(x),L).

Return “TRUE” if either B1 or B2 is “TRUE”. Otherwise return “FALSE”.

Remark 173. While the first line in Step 3 is unnecessary, we keep it since it is needed in
the next algorithm where L ⊆ Leaf(T) is not necessarily true, see (4.2) in the next algorithm
B(D,T,L), where p0 6∈V(T).

Theorem 174. Algorithm A(D,T,L) works correctly. In other words, D has a (T,L)-out-
branching with at least k leaves if and only if Algorithm A(D,T,L) returns “TRUE”.

8.2. FASTER ALGORITHM 161

Proof. Let us first show that in a call to A(D,T,L) the argument (D,T,L) is proper, i.e. T is
an out-tree of D and L∩ Int(T) = ;. Obviously the initial argument (D, {x},;) is proper.
Assuming that (D,T,L) is a proper argument, then clearly (D,T,L∪ {x}) is proper, so let us
consider (D,T ∪T root

D,L
(x),L). By the definition of T root

D,L
(x), T ∪T root

D,L
(x) is an out-tree in D.

Since we consider the digraph D̂ at each step in the definition of T root
D,L

(x), no vertex in L is
an internal vertex of T ∪T root

D,L
(x). Hence (D,T ∪T root

D,L
(x),L) is a proper argument.

Consider the search tree ST that we obtain by running the algorithm A(D,T,L). First
consider the case when ST consists of a single node. If A(D,T,L) returns “NO" in Step 1,
then clearly we do not have a (T,L)-out-branching. Step 2 is valid by Lemma 171, i.e. it
does not change the return of A(D,T,L). Let us now consider Step 3. As ℓmax(D,T,L)≥ 1

after Step 1, and by Lemma 171 the value of ℓmax(D,T,L) does not change with Step 2, we
note that ℓmax(D,T,L) ≥ 1 before we perform Step 3. Therefore there exists a (T,L)-out-
branching inD. If |L|≥ k or |Leaf(T)|≥ k then, by Observation 42, a (T,L)-out-branching in
D has at leastk leaves and the algorithm returns “TRUE”. If Leaf(T)⊆ L then the only (T,L)-
out-branching in D is T itself and as |Leaf(T)|< k the algorithm correctly returns “FALSE”.
Thus, the Algorithm A(D,T,L) is correct when the search tree ST is just a node.

Assume now that ST has at least two nodes and the theorem holds for all succes-
sors of the root R of ST . As R makes further recursive calls, we have ℓmax(D,T,L) ≥ 1

and there exists a vertex x ∈ Leaf(T)−L. If there is a (T,L)-out-branching with at least k
leaves, then by Lemma 172 there is a (T,L∪ {x})-out-branching with at least k leaves or
(T ∪T root

D,L
(x),L)-out-branching with at least k leaves. By induction hypothesis, one of B1

or B2 is “TRUE” and thus A(D,T,L) correctly returns "TRUE". Else if ℓmax(D,T,L)< k, then
again by Lemma 172 and induction hypothesis both B1 and B2 are “FALSE”. Therefore the
theorem holds for the root R of ST , which completes the proof.

8.2 Faster Algorithm

We make the algorithm from the previous section faster by adding an extra vertex to the
set L in certain circumstances. Recall that Step 2 in the above algorithm A(D,T,L) and in
our new algorithmB(D,T,L) is new compared to the algorithm in [88]. We will also allow L

to contain vertices which are not leaves of the current out-tree T . The improved algorithm
is now described.

For every vertex x ∈V(D), do B(D, {x},;).

If one of the returns of B(D, {x},;) is “TRUE” then output “TRUE”.

Otherwise, output “FALSE”.

B(D,T,L) :

(1) If ℓmax(D,T,L)= 0, return “FALSE”.

162 CHAPTER 8. ALGORITHMS FOR MAXLEAF

(2) While there is a vertex x ∈ Leaf(T)−L such that ℓmax(D,T,L∪ {x})= 0, add
the arcs A+

D̂
(x) to T .

(3) If |L|≥ k, return “TRUE”.
If the number of leaves in T is at least k, return “TRUE”.
If all leaves in T belong to L, return “FALSE”.

(4) Choose a vertex x ∈ Leaf(T)−L, colour x red and let Hx := D̂.

(4.1) Let z be the nearest ancestor of x in T coloured red, if it exists.

(4.2) Let L ′ :=L∪ {x}.
If z exists and Tz has exactly two leaves x and x ′ and x ′ ∈L then:
Let P= p0p1 . . .pr be a path in Hz−A+

D̂
(z) such that V(P)−V(Tz) =

{p0} and pr ∈N+

D̂
(z), and let L ′ :=L∪ {p0,x}.

(4.3) B1 :=B(D,T,L ′) and B2 :=“FALSE”.

(4.4) If |Leaf(T root
D,L

(x))|≥ 2 then let B2 :=B(D,T ∪T root
D,L

(x),L).

(4.5) Return “TRUE” if either B1 or B2 is “TRUE”. Otherwise return
“FALSE”.

The existence of P in Step (4.2) follows from the fact that z was coloured red, hence
adding z to L would not have destroyed all out-branchings. Note that p0 does not neces-
sarily belong to T .

For the sake of simplifying the proof of Theorem 176 below we furthermore assume that
the above algorithm picks the vertex x in Step 4 in a depth-first manner. That is, the vertex
x is chosen to be the last vertex added to T such that x ∈ Leaf(T)−L.

Theorem 175. Algorithm B(D,T,L) works correctly. In other words, D has a (T,L)-out-
branching with at least k leaves if and only if Algorithm B(D,T,L) returns “TRUE”.

Proof. The only difference between B(D,T,L) and A(D,T,L) is that in Step (4.2) we may
add an extra vertex p0 to L which was not done in A(D,T,L). We will now prove that this
addition does not change the correctness of the algorithm.

Assume that there is an optimal (T,L)-out-branching T ′ with x ∈ Leaf(T ′) but p0 6∈
Leaf(T ′). Let us show that an optimal solution is found in the branch of the search tree
where we put z into L. This will complete the proof as if an optimal (T,L)-out-branchingT ′

does not contain x as a leaf, then by Lemma 172 it is found in B(D,T ∪T root
D,L

(x),L), and if
it includes both x and p0 as leaves then it is found in B(D,T,L ′) in Step (4.3).

Note that Tz = T ′
z as Tz had exactly two leaves x and x ′ and x ′ ∈ L and we have just

assumed that x is a leaf of T ′. Let D∗=D[V(T ′
z)∪{p0}−{z}] and consider the following two

cases.
Assume first that p0 can reach all vertices of D∗ in D∗. Let T∗ be an out-branching in

D∗ with p0 as the root. Let T ′′ be the out-branching obtained from T ′ by deleting all arcs
in T ′

z and adding all arcs in T∗. Note that |Leaf(T ′′)|≥ |Leaf(T ′)| as Leaf(T∗)∪ {z} are leaves

8.2. FASTER ALGORITHM 163

Figure 8.1: Real lines represents T ′
z arcs; dashed lines represent the reachability of p0; dot-

ted lines represent the reachability of wa.

in T ′′ and Leaf(T ′
z) are the only two leaves in T ′ which may not be leaves in T ′′. Therefore

an optimal solution is found when we add z to L.
Assume now that p0 cannot reach all vertices of D∗ in D∗. There exists a vertex u ∈

N+
T
(z) which cannot be reached by p0 in D∗. All such unreachable vertices lie on the same

branch of Tz (the branch not containing pr). Let W =w0w1w2 . . .wlu be a path from the
root of T to u, which does not use any arcs out of z. Such a path exists as z was coloured
red in Step (4.1), so adding z to L at this stage would not destroy all out-branchings. Let a
be such that wa 6∈ T ′

z and {wa+1,wa+2, . . . ,wl,u}⊆V(T ′
z) (see Figure 8.1).

Consider the digraphD ′′ =D[V(T ′
z)∪{p0,wa}−{z}]. Every vertex in D ′′ can be reached

by either p0 or wa in D ′′. Therefore, there exists two vertex disjoint out-trees Tp0 and Twa

rooted at p0 and wa, respectively, such thatV(Tp0)∪V(Twa) =V(D ′′). Furthermore, since
p0 cannot reach u in D∗, both Tp0 and Twa must contain at least two vertices. Let T ′′′ be
the out-branching obtained from T ′ by deleting all arcs in T ′

z and adding all arcs in Tp0 and
in Twa . We have that |Leaf(T ′′′)| ≥ |Leaf(T ′)| as vertices in Leaf(Tp0)∪Leaf(Twa)∪ {z} are
leaves in T ′′′ and vertices x, x ′ and wa are the only three vertices which may be leaves in T ′

but not in T ′′′. Once again, an optimal solution is found when we add z to L.

Theorem 176. Algorithm B(D,T,L) runs in time O(3.72knO(1)).

Proof. For an out-treeQ, let ℓ(Q)= |Leaf(Q)|. Recall that we have assumed thatB(D,T,L)

picks the vertex x in Step 4 in a depth-first manner.
Consider the search treeST obtained by running the algorithmB(D,{x},;). The root of

ST is the triple (D, {x},;). The children of this root is (D, {x},L ′) when we make a recursive
call in Step (4.3) and (D,T root

D,L
(x),;) if we make a recursive call in Step (4.4). The children

of these nodes are again triples corresponding to the recursive calls.
Let g(T,L) be the number of leaves in a subtree R of ST with triple (D,T,L). Clearly,

g(T,L) = 1 when (D,T,L) is a leaf of ST . For a non-trivial subtree R of ST , we will prove by

164 CHAPTER 8. ALGORITHMS FOR MAXLEAF

induction that g(T,L)≤ cαk−ℓ(T)βk−|L|, where α= 1.96, β= 1.896 and c ≥ α2β2. Assume
that this holds for all smaller non-trivial subtrees. Note that the value of c is chosen in such
a way that in the inequalities in the rest of the proof, we have upper bounds for g(T∗,L∗)
being at least 1 when (D,T∗,L∗) is a leaf of ST .

Recall that x ∈ Leaf(T)−L was picked in Step (4). Now consider the following possibili-
ties.

Assume that |L ′| = |L|+ 2. If a call is made to B(D,T ∪ T root
D,L

(x),L) in (4.4) then the
number of leaves of T increases by at least one, so the number of leaves of R is at most the
following:

g(T,L ′)+g(T ∪T root
D,L

(x),L) ≤ cαk−ℓ(T)βk−|L|−2+cαk−ℓ(T)−1βk−|L|

= cαk−ℓ(T)βk−|L| (1
β2 +

1
α)

≤ cαk−ℓ(T)βk−|L|.

So we may assume that |L ′|= |L|+1 in (4.3). Assume now that |Leaf(T root
D,L

(x))| 6= 2 in
(4.4). In this case, either no recursive call is made in (4.4) or we increase the number of
leaves in T by at least two. Therefore, the number of leaves of R is at most:

cαk−ℓ(T)βk−|L|−1+cαk−ℓ(T)−2βk−|L| = cαk−ℓ(T)βk−|L| (1β + 1
α2)

≤ cαk−ℓ(T)βk−|L|.

So we may assume that |L ′|= |L|+1 in (4.3) and |Leaf(T root
D,L

(x))|= 2 in (4.4). Let T ′ =
T ∪ T root

D,L
(x) and consider the recursive call to B(D,T ′,L). If we increase the number of

leaves in T ′ in Step (2) of this recursive call, then the number of leaves of the subtree of ST
rooted at (D,T ′,L) is at most:

cαk−ℓ(T ′)−1βk−|L|−1+cαk−ℓ(T ′)−2βk−|L| = cαk−ℓ(T ′)βk−|L| (1
αβ + 1

α2) .

Therefore, as ℓ(T ′) = ℓ(T)+1, the number of leaves in R is at most:

g(T,L ′)+g(T ′,L) ≤ cαk−ℓ(T)βk−|L|−1+cαk−ℓ(T)−1βk−|L| (1
αβ + 1

α2)

= cαk−ℓ(T)βk−|L| (1β + 1
α2β

+ 1
α3)

≤ cαk−ℓ(T)βk−|L|.

So we may assume that we do not increase the number of leaves in Step (2) when we
consider (D,T ′,L). Let y and y ′ denote the two leaves of T ′

x (after possibly adding some
arcs in Step (2)). Consider the recursive call to B(D,T ′,L∪ {y}). If we increase the number
of leaves of T ′ in Step (2) in this call, then the number of leaves in R is at most

g(T,L∪ {x}) + g(T ′,L∪ {y}) + g(T ′∪ (T ′)root
D,L

(y),L)

≤ cαk−ℓ(T)βk−|L| (1β+(1
α2β2 +

1
α3β

)+ 1
α2)

≤ cαk−ℓ(T)βk−|L|.

So we may assume that we do not increase the number of leaves in Step (2) when we
consider (D,T ′,L∪ {y}). However, in this case |L ′|= |L|+2 in this recursive call. Indeed,

8.3. EXPONENTIAL ALGORITHM FOR DIRECTED MAXIMUM LEAF 165

when we considery ′ the conditions of (4.2) are satisfied as, in particular, Tx has exactly two
leaves. So, in this last case, the number of leaves in R is at most

g(T,L∪ {x}) + g(T ′,L∪ {y}) + g(T ′∪ (T ′)root
D,L

(y),L)

≤ cαk−ℓ(T)βk−|L| (1β+(1
αβ3 +

1
α2β

)+ 1
α2)

≤ cαk−ℓ(T)βk−|L|.

We increase either |L| or ℓ(T) whenever we consider a child in the search tree and no
non-leaf in ST has |L| ≥ k or ℓ(T) ≥ k. Therefore, the number of nodes in ST is at most
O(kαkβk) = O(3.72k). The amount of work we do in each recursive call is polynomial,
which concludes the proof of Theorem 176.

It would be interesting to see whether DIRECTED k-LEAF admits an algorithm of signif-
icantly smaller running time, say O(3knO(1)).

8.3 Exponential Algorithm for DIRECTED MAXIMUM LEAF

The unparameterized DIRECTED MAXIMUM LEAF problem can be solved in time
O∗(2n) by an exhaustive search using Observation 47. The same complexity would be
reached by using a O∗(4k) parameterized algorithm to check the existence of an out-
branching with at least k leaves for k = 1, . . ., n2 , and using the brute-force algorithm for
k = n

2 , . . . ,n. Our improvement over the O∗(4k) algorithm breaks the bottleneck in the
first case (the values of k close to n

2) and allows to shift the threshold for the algorithm
swap away from n

2 , which gets rid of the bottleneck in the second case as well.
More formally, let a= 0.526. The value an is our new threshold for the algorithm swap.

We can solve DIRECTED MAXIMUM LEAF for a digraph D on n vertices with the following
algorithm ADML:

Stage 1. Setk := ⌈an⌉. For each x ∈V(D), applyB(D, {x},;) to decide whetherD contains
an out-branching with at least k leaves. If D contains such an out-branching, go
to Stage 2. Otherwise, using binary search and B(D, {x},;), return the maximum
integer ℓ for which D contains an out-branching with ℓ leaves.

Stage 2. Set ℓ := ⌈an⌉. For k= ℓ+1,ℓ+2, . . .,n, using Observation 47, decide whether there
exists a vertex set S of D of cardinality k such that D̂(;,S) has an out-branching, and
when the answer is “FALSE”, return k−1.

The correctness of Algorithm ADML is obvious. Let us now evaluate its time complexity.
Let r= ⌈an⌉. Since 3.72a < 1.996, Stage 1 takes time at most 3.72rnO(1)=O(1.996n). Since

1
aa(1−a)1−a < 1.9973, Stage 2 takes time at most

(
n

r
) ·nO(1) =(

1

aa(1−a)1−a
)
n

nO(1)=O(1.9973n).

Thus, we obtain the following:

166 CHAPTER 8. ALGORITHMS FOR MAXLEAF

Theorem 177. There is an algorithm to solve DIRECTED MAXIMUM LEAF in time
O(1.9973n).

The same also holds for the undirected MAXLEAF problem, which has been improved
by Raible and Fernau. In [108] they obtain a parameterized algorithm for MAXLEAF

running in time O∗(3.4581k), which gives an exponential algorithm running in time
O∗(1.8961n) for finding the spanning trees with the maximum number of leaves in undi-
rected graphs.

8.4 A Randomized Algorithm for Finding Trees with many
Internal Nodes

Koutis and Williams [89] have developed a randomized technique to find a multilinear
monomial of degree k in a polynomial presented as a circuit, in randomized time O∗(2k).
Several problems can be expressed in this paradigm, such as finding a path with k vertices,
or a tree on k vertices, as a subgraph. More formally:

Lemma 178 (Lemma 1 of [89]). Let P(X,z) be a polynomial represented by a commutative
arithmetic circuit C. The existence of a term of the form ztQ(X) in P(X,z), where Q(X) is
a multilinear monomial of degree at most k, can be decided in time O∗(2kt2|C|) and space
O(t|C|).

Originally, [89] claimed that this statement also directly applies to the MAXIMUM LEAF

SPANNING TREE problem, but the construction is flawed, and does not appear to be easily
patchable.

This technique fits well with problems where we search for a structure of bounded size.
In MAXLEAF, we have to find a structure with k leaves but an arbitrary number of internal
vertices, which we could not express in this framework. In the rest of this section, we de-
scribe how to apply this randomized monomial method to the dual MINLEAF problem (the
construction will also work for the directed version).

MINIMUM LEAF SPANNING TREE:

Input: A graph G, an integer k.

Parameter: k.

Output: TRUE if there is a spanning tree of G with at least k internal nodes,
otherwise FALSE.

MINIMUM LEAF OUT-BRANCHING and ROOTED MINIMUM LEAF OUT-BRANCHING are
defined similarly for directed graphs and rooted directed graphs respectively. As in the
case of MAXLEAF, the dual parameterization by n−k gives a W[1]-hard problem. Indeed,
the case n−k = 2 is the NP-hard problem Hamiltonian Path. In other words, finding a
spanning tree with at most k leaves is not tractable when parameterized by k.

8.4. RANDOMIZED ALGORITHM FOR MIST 167

To explicitely express MINIMUM LEAF SPANNING TREE in terms of the search for a
bounded size subgraph, let us reformulate as follows:

Lemma 179. A graph G contains a spanning tree with at least k internal nodes if and only
if G contains a tree with exactly k internal vertices and at most k leaves.

Lemma 179 also holds for digraphs and rooted digraphs. Hence we can restrict our-
selves to searching for a structure of bounded size (at most 2k in all), and this makes the
problem tractable with the randomized monomial method. Note that, contrary to the max-
imum leaf problems, a vertex can never become unreachable due to a choice in the con-
struction of a partial solution. When deciding that a vertex will be a leaf in the final solution
for MAXIMUM LEAF SPANNING TREE, one might make another vertex unreachable from the
root, but deciding that a vertex will be internal in minimum leaf problems does not rule
out any edge or arc.

The following result has been obtained with EunJung Kim:

Theorem 180. There exists a randomized O∗(4k) algorithm to decide MINIMUM LEAF

SPANNING TREE, MINIMUM LEAF OUT-BRANCHING and ROOTED MINIMUM LEAF OUT-
BRANCHING.

The best non-randomized algorithms known for MINIMUM LEAF SPANNING TREE and
MINIMUM LEAF OUT-BRANCHING run in time O∗(8k) [63] and O∗(16k+o(k)) [65] respec-
tively. [63] actually gives a linear 3k kernel for MINIMUM LEAF SPANNING TREE. The rest of
this section is devoted to the proof of Theorem 180.

We define a u-rooted tree to be a tree containing u where u is counted as an internal
vertex even if u a leaf.

Given a graph G= (V,E), and an integer k≥ 2 we define a polynomial P(G,k):

P(G,k)=

2k∑

t=k+2

∑

(u,v)∈E

t−2∑

t ′=2

k−1∑

k ′=1

xuxvCk ′,t ′,uCk−k ′,t−t ′,v

We want Ck,t,u to contain the monomial x1 . . .xt if and only if u,x1, . . .,xt is a u-rooted
tree with k internal nodes. Informally, the above definition of P(G) enforces that in the
original calls to Ck ′,t ′,u and Ck−k ′,t−t ′,v, u and v will indeed be internal nodes in the global
tree, hence it is safe to consider u-rooted and v-rooted trees. Indeed, u (resp. v) must have
a neighbour besides v (resp. u) as t ′ ≥ 2 and t≥ 2 in the above formula.

We define recursively the polynomials Ck,t,u:

Ck,t,u=
∑

(u,v)∈E

xvCk,t−1,u+
∑

(u,v)∈E

t−1∑

t ′=2

k−1∑

k ′=1

xvCk ′,t ′,vCk−k ′,t−t ′,u

C1,1,u = 1

Ck,t,u= 0 when k≥ t and k≥ 2

168 CHAPTER 8. ALGORITHMS FOR MAXLEAF

Lemma 181. Ck,t,u contains only terms of degree t−1 when Ck,t,u 6= 0.

Proof. We prove this by induction. The hypothesis clearly holds for the base cases, and
also holds in the induction step as well: the term xvCk,t−1,u contains only terms of degree
(t−1)−1+1= t−1 and in the term xvCk ′,t ′,vCk−k ′,t−t ′,u, the degree is (t ′−1)+(t−t ′−
1)+1= t−1.

Lemma 182. Ck,t+1,u contains the monomial x1 . . .xt if and only ifu,x1, . . . ,xt is au-rooted
tree with k internal nodes.

Proof. We prove this by induction on Ck,t+1,u. The hypothesis holds for the base cases.
Assume that Ck,t,u contains the monomial x1 . . .xt. This monomial either comes from

a term xvCk,t−1,u or from a term xvCk ′,t ′,vCk−k ′,t−t ′,u with v ∈ N(u), say v = x1. In the
former case, Ck,t−1,u contains the monomial x2 . . .xt, so by induction u,x2, . . . ,xt is a
u-rooted tree with k internal nodes, hence u,x1, . . . ,xt is a u-rooted tree with k inter-
nal nodes since v = x1 is adjacent to u. In the latter case, by Lemma 181, we can as-
sume w.l.o.g that Ck ′,t ′,v contains the monomial x2 . . .xt ′ and thatCk−k ′,t−t ′,u contains the
monomial xt ′+1 . . .xt. By induction v,x2, . . .,xt ′ is a v-rooted tree Tv with k ′ internal nodes
and u,xt ′+1, . . .,xt is a u-rooted tree Tu with k−k ′ internal nodes. Tu and Tv are disjoint as
x1 . . .xt is a monomial. Also, Tu∪Tv is a tree as (u,v) ∈E. Vertex v is internal in Tu∪Tv as v
has at least two neighbours: u and another neighbour in Tv. Indeed t ′ ≥ 2, hence Tv is not
reduced to its root v. Thus, Tu∪Tv is a u-rooted tree with k ′+(k−k ′) = k internal nodes.

Conversely, assume that u,x1, . . .,xt is a u-rooted tree T with k internal nodes. Let v
be a neighbour of u in T . If v is a leaf, then T −v is a u-rooted tree on t−1 vertices and
k internal vertices. Hence, by induction Ck,t−1,u contains a monomial corresponding to

T −v, so the term
∑

(u,v)∈E

xvCk,t−1,u contains the monomial x1 . . .xt. If v is internal in T ,

consider the subtree Tv of T −u rooted at v and the subtree Tu of T −v rooted at u. We
have Tu∪Tv = T . Denote by I the set of internal nodes of T . By induction, Ck ′,t ′,v contains
a monomial corresponding to the vertices of Tv−v, and Ck−k ′,t−t ′,u contains a monomial
corresponding to the vertices of Tu−u. Hence xvCk ′,t ′,vCk−k ′,t−t ′,u contains a monomial
corresponding to the vertices of T −u.

Lemma 183. When k ≥ 2, P(G,k) contains a monomial of degree t ≥ 1 if and only if G
contains a tree with t vertices and k internal nodes.

Proof. Note that by Lemma 181, P(G,k) contains only terms of degree 2+(t ′−1)+(t−

t ′−1) = t.
If G contains a tree T with t vertices and k internal nodes, let u and v be adjacent

internal nodes of T . Denote by I the set of internal vertices of T , and by Tu (resp. Tv) the
subtree of T containingu (resp. v) in T−v (resp. T−u). Letk ′ = |I∩Tv| and t ′= |V(Tv)|. The
polynomial P(G,k) contains the term xuxvCk ′,t ′,vCk−k ′,t−t ′,u. By Lemma 182 and as Tu
and Tv are disjoint, the term Ck ′,t ′,vCk−k ′,t−t ′,u contains a monomial, which is the product

8.4. RANDOMIZED ALGORITHM FOR MIST 169

of the variables xw for w ∈ V(T)− {u,v}. Hence P(G,k) contains a monomial of degree t,
namely Πw∈V(T)xw.

Conversely, if P(G,k) contains a monomial M of degree t, let (u,v) be the corre-
sponding edge in the P(G,k) construction. Let Mu and Mv be the monomials asso-
ciated to Ck ′,t ′,v and Ck−k ′,t−t ′,u. With a slight abuse of language we identify a mono-
mial M with the set of vertices associated to the variables appearing in M. We have that
M = Mu ∪Mv∪ {u,v}. By Lemma 182, let Tu be a tree associated to Mu ∪u and let Tv
be the tree associated to Mv∪v. The trees Tu and Tv are disjoint, and Tu∪Tv is a tree in
which both u and v are internal since t≥ 2 and t ′ ≥ 2. Hence T is a tree on t vertices with
k ′+(k−k ′)= k internal nodes.

By Lemma 183 we only have to test whether P(G) contains a monomial of degree twith
k+2≤ t≤ 2k to decide if G contains a tree with at least k internal nodes. This can be done
in randomized time O∗(4k) by Lemma 178.

The same construction works for directed graphs. It is even somewhat simpler, since
we do not need to be careful with the internality of the root. The polynomial P(D,k) for a
digraph D becomes:

P(D,k)=

2k∑

t=k+2

∑

u∈V(D)

xuCk,t,u

The other definitions do not change; (u,v) ∈E becomes (u,v) ∈A. The same construc-

tion also holds for rooted directed graphs: P(D,k) =

2k∑

t=k+2

xuCk,t,u where u is the root of

D.

Concluding Remarks

Results

Throughout this thesis, we have stated the following results in the area of parameter-
ized complexity:

– MULTICUT parameterized by the solution size k is FPT. The running time is single
exponential in k.

– MAXIMUM LEAF OUT-BRANCHING has an O∗(3.72k) algorithm.
– MAXIMUM LEAF OUT-BRANCHING has an O(1.9973n) algorithm, combining the pa-

rameterized algorithm with brute force search.
– ROOTED MAXIMUM LEAF OUT-BRANCHING has an edge-quadratic kernel.
– ROOTED MAXIMUM LEAF OUT-BRANCHING has a constant factor approximation al-

gorithm.
– MULTICUT IN TREES has a poynomial O(k6) kernel.

Open Problems

The following questions are left open in this thesis and seem worth investigating:
– To obtain a polynomial kernel for MULTICUT IN TREES, can the Wingspan rule be

replaced by a simpler and more natural reduction rule?
– Is it possible to significantly improve the kernel for MULTICUT IN TREES, to a cubic

kernel for instance?
– The proof that Vertex-Multicut is FPT mentioned in Section 7.7 is very sketchy. Is

there a simple proof of the fact that the Fixed-Parameter Tractability of Edge-Multicut
implies that of Vertex-Multicut?

171

172 CONCLUDING REMARKS

– Is it always possible to emulate a request with a bounded (in k) number of paths, as
formulated in Question 167?

– Is there a linear kernel for ROOTED MAXIMUM LEAF OUT-BRANCHING? For a positive
answer, focusing on 2-cycles seems logical. For a negative answer, the lower bound
technique developped in [45] leading to results such as Theorem 5 seems like a good
starting point.

– Is it possible to significantly improve over the factor 92 in a constant approximation
algorithm for MAXIMUM LEAF OUT-BRANCHING, say to a single-digit factor?

– Is it possible to significantly improve over the O∗(3.72k) algorithm for MAXIMUM

LEAF OUT-BRANCHING, to an O∗(3k) algorithm for example?
– Can a more efficient exponential algorithm for MAXIMUM LEAF OUT-BRANCHING be

designed without the help of a parameterized algorithm? Alternatively, can the pa-
rameterized / brute force paradigm be improved with a parameterized / cleverer al-
gorithm approach?

– Can the randomized monomial detection technique be used for finding trees with
many leaves?

Bibliography

[1] F. Abu-Khzam. Kernelization algorithms for d-hitting set problems. In Algorithms
and Data Structures, volume 4619 of Lecture Notes in Computer Science, pages 434–
445. 2007. Cited page 25.

[2] N. Alon. Transversal numbers of uniform hypergraphs. Graphs and Combinatorics,
6:1–4, 1990. Cited page 29.

[3] N. Alon, F. Fomin, G. Gutin, M. Krivelevich, and S. Saurabh. Parameterized algo-
rithms for directed maximum leaf problems. In Proc. ICALP 2007, LNCS 4596, pages
352–362, 2007. Cited page 30.

[4] N. Alon, F. Fomin, G. Gutin, M. Krivelevich, and S. Saurabh. Spanning directed trees
with many leaves. SIAM Journal on Discrete Mathematics, 23(1):466–476, 2009. Cited
page 30.

[5] N. Alon, R. Yuster, and U. Zwick. Color-coding: a new method for finding simple
paths, cycles and other small subgraphs within large graphs. In Proceedings of the
twenty-sixth annual ACM symposium on Theory of computing, STOC ’94, pages 326–
335, 1994. Cited page 19.

[6] A. Asratian, T. Denley, and R. Häggkvist. Bipartite Graphs and Their Applications.
Cambridge, 1998. Cited page 59.

[7] J. Bang-Jensen and G. Gutin. Digraphs: Theory, Algorithms and Applications.
Springer, 2nd edition, 2008. Cited page 59.

[8] J. Barrionuevo, A. Calvo, G. Durán, and F. Protti. New advances about a conjecture on
Helly circle graphs. Electronic Notes in Discrete Mathematics, 18:31–36, 2004. Latin-
American Conference on Combinatorics, Graphs and Applications. Cited page 110.

173

174 BIBLIOGRAPHY

[9] H. Bodlaender. A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on Computing, 25:1305–1317, 1996. Cited pages 21 and 64.

[10] H. Bodlaender. Treewidth: Structure and algorithms. In Structural Information
and Communication Complexity, volume 4474 of Lecture Notes in Computer Science,
pages 11–25. Springer Berlin / Heidelberg, 2007. Cited page 63.

[11] H. Bodlaender, L. Cai, J. Chen, M. Fellows, J.A. Telle, and D. Marx. Open problems
in parameterized and exact computation. In Proceedings of the 2nd International
Workshop on Parameterized and Exact Computation, IWPEC 2006, 2006. Cited pages
6, 28, and 31.

[12] H. Bodlaender, R. Downey, M. Fellows, and D. Hermelin. On problems without poly-
nomial kernels. Journal of Computer and System Sciences, 75(8):423–434, 2009. Cited
pages 23, 24, and 30.

[13] H. Bodlaender, M. Fellows, P. Heggernes, F. Mancini, C. Papadopoulos, and F. Rosa-
mond. Clustering with partial information. In Proceedings of the 33rd international
symposium on Mathematical Foundations of Computer Science, MFCS ’08, pages
144–155, 2008. Cited page 27.

[14] H. Bodlaender, F. Fomin, D. Lokshtanov, E. Penninkx, S. Saurabh, and D. Thilikos.
(Meta) kernelization. In Proceedings of the 2009 50th Annual IEEE Symposium on
Foundations of Computer Science, FOCS ’09, pages 629–638, 2009. Cited pages 24
and 25.

[15] H. Bodlaender, B. Jansen, and S. Kratsch. Cross-composition: A new technique for
kernelization lower bounds. In STACS, pages 165–176, 2011. Cited page 24.

[16] H. Bodlaender, S. Thomassé, and A. Yeo. Kernel bounds for disjoint cycles and dis-
joint paths. In ESA’09, pages 635–646, 2009. Cited page 24.

[17] P. Bonsma, T. Brueggemann, and G. Woeginger. A faster FPT algorithm for finding
spanning trees with many leaves. In Mathematical Foundations of Computer Science
2003, volume 2747 of Lecture Notes in Computer Science, pages 259–268. 2003. Cited
page 29.

[18] P. Bonsma and F. Dorn. An FPT algorithm for directed spanning k-leaf. Manuscript.
Cited page 30.

[19] P. Bonsmal and F. Zickfeld. A 3/2-approximation algorithm for finding spanning trees
with many leaves in cubic graphs. In Graph-Theoretic Concepts in Computer Science,
pages 66–77. Springer-Verlag, 2008. Cited page 29.

[20] A. Bouchet. Reducing prime graphs and recognizing circle graphs. Combinatorica,
7:243–254, 1987. Cited page 115.

BIBLIOGRAPHY 175

[21] A. Bouchet. Circle graph obstructions. Journal of Combinatorial Theory, Series B,
60:107–144, 1994. Cited page 109.

[22] N. Bousquet, J. Daligault, S. Thomassé, and A. Yeo. A polynomial kernel for multicut
in trees. In STACS, pages 183–194, 2009. Cited pages 28 and 31.

[23] L. Brunetta, M. Conforti, and M. Fischetti. A polyhedral approach to an integer mul-
ticommodity flow problem. Discrete Applied Mathematics, 101(1-3):13 – 36, 2000.
Cited page 26.

[24] J. Buss and J. Goldsmith. Nondeterminism within P. SIAM Journal on Computing,
22:560–572, 1993. Cited page 24.

[25] S. Chawla, R. Krauthgamer, R. Kumar, Y. Rabani, and D. Sivakumar. On the hardness
of approximating multicut and sparsest-cut. Computational Complexity, 15(2):94–
114, 2006. Cited page 26.

[26] J. Chen, Y. Kanj, and G. Xia. Improved parameterized upper bounds for vertex cover.
In Mathematical Foundations of Computer Science 2006, volume 4162 of Lecture
Notes in Computer Science, pages 238–249. 2006. Cited pages 19 and 25.

[27] J. Chen and Y. Liu. On the parameterized max-leaf problems: digraphs and undi-
rected graphs. Technical report, Department of Computer Science, Texas A&M Uni-
versity, 2008. Cited page 30.

[28] J. Chen, Y. Liu, and S. Lu. An improved parameterized algorithm for the minimum
node multiway cut problem. Algorithmica, 55(1):1–13, 2009. Cited pages 26 and 126.

[29] J. Chen, Y. Liu, S. Lu, B. O’Sullivan, and I. Razgon. A fixed-parameter algorithm for
the directed feedback vertex set problem. In Proceedings of the 40th annual ACM
symposium on Theory of computing, STOC ’08, pages 177–186, 2008. Cited pages 21
and 124.

[30] Y. Chen., J. Flum, and M. Müller. Lower bounds for kernelizations and other pre-
processing procedures. In Mathematical Theory and Computational Practice, vol-
ume 5635 of Lecture Notes in Computer Science, pages 118–128. 2009. Cited pages 21
and 23.

[31] J. Cheriyan and J. Reif. Directed s-t numberings, rubber bands, and testing digraph
k-vertex connectivity. Combinatorica, 14(4):435–451, 1994. Cited page 48.

[32] M.-C. Costa, L. Létocart, and F. Roupin. Minimal multicut and maximal integer mul-
tiflow: A survey. European Journal of Operational Research, 162(1):55–69, 2005. Cited
page 26.

[33] B. Courcelle. The monadic second-order logic of graphs. I. recognizable sets of finite
graphs. Information and Computation, 85:12–75, 1990. Cited pages 20 and 64.

176 BIBLIOGRAPHY

[34] B. Courcelle. Circle graphs and monadic second-order logic. Journal of Applied
Logic, 6(3):416–442, 2008. Cited page 109.

[35] B. Courcelle, J. Engelfriet, and G. Rozenberg. Handle-rewriting hypergraph gram-
mars. Journal of Computer and System Sciences, 46:218–270, 1993. Cited page 95.

[36] W. Cunningham. Decomposition of directed graphs. SIAM Journal on Algebraic and
Discrete Methods, 3(2):214–228, 1982. Cited page 115.

[37] J. Daligault, N. Bousquet, and S. Thomassé. Multicut is FPT. In Proceedings of the
43rd annual ACM symposium on Theory of computing, STOC ’11, pages 459–468,
2011. Cited page 117.

[38] J. Daligault, D. Gonçalves, and M. Rao. Diamond-free circle graphs are Helly circle.
Discrete Mathematics, 310(4):845–849, 2010. Cited page 67.

[39] J. Daligault, G. Gutin, E.J. Kim, and A. Yeo. FPT algorithms and kernels for the di-
rected k-leaf problem. Journal of Computer and System Sciences, 76(2):144–152,
2010. Cited pages 32, 117, and 157.

[40] J. Daligault, C. Paul, A. Perez, and S. Thomassé. Reducing multicut to bounded tree-
width. http://www.lirmm.fr/∼daligault/MulticutTreewidthReduction.pdf, 2010. Cited
page 117.

[41] J. Daligault, M. Rao, and S. Thomassé. Well-quasi-order of relabel functions. Order,
27:301–315, 2010. Cited page 67.

[42] J. Daligault and S. Thomassé. On finding directed trees with many leaves. In Param-
eterized and Exact Computation, volume 5917 of Lecture Notes in Computer Science,
pages 86–97. 2009. Cited page 32.

[43] P. Damaschke. Induced subgraphs and well-quasi-ordering. Journal of Graph The-
ory, 14:427–435, 1990. Cited page 95.

[44] H. de Fraysseix. A characterization of circle graphs. European Journal of Combina-
torics, 5(3):223–238, 1984. Cited page 109.

[45] H. Dell and D. van Melkebeek. Satisfiability allows no nontrivial sparsification unless
the polynomial-time hierarchy collapses. In Proceedings of the 42nd ACM symposium
on Theory of computing, STOC ’10, pages 251–260, 2010. Cited pages 8, 24, and 172.

[46] E. Demaine, M. Hajiaghayi, and D. Marx. Open problems – parameterized complex-
ity and approximation algorithms. Number 09511 in Dagstuhl Seminar Proceedings,
2010. Cited pages 26 and 90.

[47] E. Dijkstra. Self-stabilizing systems in spite of distributed control. Communications
of the ACM, 17(11):643–644, 1974. Cited page 29.

BIBLIOGRAPHY 177

[48] G. Ding, T. Johnson, and P. Seymour. Spanning trees with many leaves. Journal of
Graph Theory, 37(4):189–197, 2001. Cited page 29.

[49] R. Downey and M. Fellows. Parameterized Complexity. Springer, 1999. Cited pages
19 and 25.

[50] M. Drescher and A. Vetta. An approximation algorithm for the maximum leaf span-
ning arborescence problem. ACM Transactions on Algorithms, 6:46:1–46:18, 2010.
Cited pages 7, 30, and 57.

[51] G. Duràn. On Intersection Graphs of Arcs and Chords in a Circle. PhD thesis, Univer-
sidad de Buenos Aires, Argentina, 2000. Cited pages 12, 67, and 110.

[52] G. Duràn, A. Gravano, M. Groshaus, F. Protti, and J. Szwarcfiter. On a conjecture
concerning helly circle graphs. Pesquisa Operacional, 23:221 – 229, 2003. Cited page
110.

[53] M. Tedder D. Corneil E. Gioan, C. Paul. Practical split decomposition via graph-
labelled trees. Manuscript, 2010. Cited page 115.

[54] M. Tedder D. Corneil E. Gioan, C. Paul. Quasi linear-time circle graph recognition.
Manuscript, 2010. Cited pages 12, 110, and 116.

[55] P. Erdős and R. Rado. Intersection theorems for systems of sets. Journal of the London
Mathematical Society, 35:85–90, 1960. Cited page 126.

[56] V. Estivill-Castro, M. Fellows, M. Langston, and F. Rosamond. Fixed-parameter
tractability is polynomial-time extremal structure theory I: The case of max leaf. In
Proc. of ACiD 2005. Cited page 29.

[57] V. Estivill-Castro, M. Fellows, M. Langston, and F. Rosamond. FPT is P-time extremal
structure I. In Algorithms and Complexity in Durham 2005, Proceedings of the first
ACiD Workshop, volume 4 of Texts in Algorithmics, pages 1–41. King’s College Publi-
cations, 2005. Cited page 29.

[58] U. Feige, M. Hajiaghayi, and J. Lee. Improved approximation algorithms for mini-
mum weight vertex separators. SIAM Journal on Computing, 38:629–657, 2008. Cited
page 64.

[59] M. Fellows, J. Guo, H. Moser, and R. Niedermeier. A generalization of Nemhauser
and Trotter’s local optimization theorem. In 26th International Symposium on The-
oretical Aspects of Computer Science (STACS 2009), volume 3, pages 409–420, 2009.
Cited page 24.

[60] M. Fellows, C. McCartin, F. Rosamond, and U. Stege. Coordinatized kernels and cat-
alytic reductions: An improved FPT algorithm for max leaf spanning tree and other
problems. In FSTTCS, pages 240–251, 2000. Cited page 29.

178 BIBLIOGRAPHY

[61] H. Fernau, F. Fomin, D. Lokshtanov, D. Raible, S. Saurabh, and Y. Villanger. Kernel(s)
for problems with no kernel: On out-trees with many leaves. In STACS, pages 421–
432, 2009. Cited pages 7, 24, and 30.

[62] J. Flum and M. Grohe. Parameterized complexity theory. Springer-Verlag, 2006. Cited
pages 19 and 25.

[63] F. Fomin, S. Gaspers, S. Saurabh, and S. Thomassé. A linear vertex kernel for maxi-
mum internal spanning tree. In Algorithms and Computation, volume 5878 of Lec-
ture Notes in Computer Science, pages 275–282. 2009. Cited page 167.

[64] F. Fomin, F. Grandoni, and D. Kratsch. Solving connected dominating set faster than
2n. Algorithmica, 52(2):153–166, 2008. Cited page 29.

[65] F. Fomin, D. Lokshtanov, F. Grandoni, and S. Saurabh. Sharp separation and appli-
cations to exact and parameterized algorithms. In LATIN, pages 72–83, 2010. Cited
page 167.

[66] F. Fomin, D. Lokshtanov, S. Saurabh, and D. Thilikos. Bidimensionality and kernels.
In SODA, pages 503–510, 2010. Cited page 25.

[67] L. Fortnow and R. Santhanam. Infeasibility of instance compression and succinct
PCPs for NP. In Proceedings of the 40th annual ACM symposium on Theory of com-
puting, STOC ’08, pages 133–142, 2008. Cited page 23.

[68] R. Fraïssé. Theory of Relations, volume 118 of Studies in Logic and the Foundations
of Mathematics. North-Holland, Amsterdam, 1986. Cited page 94.

[69] C. Gabor, K. Supowit, and W.-L. Hsu. Recognizing circle graphs in polynomial time.
Journal of ACM, 36:435–473, 1989. Cited page 115.

[70] G. Galbiati, F. Maffioli, and A. Morzenti. A short note on the approximability of the
maximum leaves spanning tree problem. Information Processing Letters, 52(1):45–
49, 1994. Cited page 29.

[71] N. Garg, V. Vazirani, and M. Yannakakis. Approximate max-flow min-(multi)cut the-
orems and their applications. In STOC, pages 698–707, 1993. Cited page 26.

[72] N. Garg, V. Vazirani, and M. Yannakakis. Primal-dual approximation algorithms for
integral flow and multicut in trees. Algorithmica, 18(1):3–20, 1997. Cited pages 26
and 36.

[73] J. Geelen and S. Oum. Circle graph obstructions under pivoting. Journal of Graph
Theory, 61:1–11, 2009. Cited page 109.

[74] G. Gottlob and S. Tien Lee. A logical approach to multicut problems. Information
Processing Letters, 103(4):136–141, 2007. Cited page 26.

BIBLIOGRAPHY 179

[75] J. Griggs and M. Wu. Spanning trees in graphs of minimum degree 4 or 5. Discrete
Mathematics, 104(2):167–183, 1992. Cited page 29.

[76] M. Grohe, K. Kawarabayashi, D. Marx, and P. Wollan. Finding topological subgraphs
is fixed-parameter tractable. In Proceedings of the 43rd annual ACM symposium on
Theory of computing, STOC ’11, pages 479–488. ACM, 2011. Cited page 21.

[77] S. Guillemot. FPT algorithms for path-transversals and cycle-transversals problems
in graphs. In IWPEC, pages 129–140, 2008. Cited page 26.

[78] J. Guo. Algorithm design techniques for parameterized graph modification problems.
PhD thesis, 2006. Cited pages 28 and 33.

[79] J. Guo, F. Hüffner, E. Kenar, R. Niedermeier, and J. Uhlmann. Complexity and exact
algorithms for multicut. In SOFSEM, pages 303–312, 2006. Cited page 26.

[80] J. Guo and R. Niedermeier. Fixed-parameter tractability and data reduction for mul-
ticut in trees. Networks, 46(3):124–135, 2005. Cited pages 6, 26, 28, 31, 33, and 69.

[81] J. Guo and R. Niedermeier. Invitation to data reduction and problem kernelization.
SIGACT News, 38:31–45, 2007. Cited page 23.

[82] F. Gurski and E. Wanke. Minimizing NLC-width is NP-complete. In Graph-Theoretic
Concepts in Computer Science, volume 3787 of Lecture Notes in Computer Science,
pages 69–80. 2005. Cited page 95.

[83] G. Higman. Ordering by Divisibility in Abstract Algebras. Proceedings of the London
Mathematical Society, s3-2(1):326–336, 1952. Cited pages 93, 98, and 99.

[84] O. Johansson. NLC2-decomposition in polynomial time. In Graph-Theoretic Con-
cepts in Computer Science, volume 1665 of Lecture Notes in Computer Science, pages
110–121. 1999. Cited page 95.

[85] M. Kaminski, V. Lozin, and M. Milanic. Recent developments on graphs of bounded
clique-width. Discrete Applied Mathematics, 157(12):2747–2761, 2009. Second Work-
shop on Graph Classes, Optimization, and Width Parameters. Cited page 107.

[86] P. Klein, A. Agrawal, R. Ravi, and S. Rao. Approximation through multicommodity
flow. Foundations of Computer Science, 2:726–737, 1990. Cited page 27.

[87] D. Kleitman and D. West. Spanning trees with many leaves. SIAM Journal on Discrete
Mathematics, 4:99–106, 1991. Cited page 29.

[88] J. Kneis, A. Langer, and P. Rossmanith. A new algorithm for finding trees with many
leaves. In Algorithms and Computation, volume 5369 of Lecture Notes in Computer
Science, pages 270–281. 2008. Cited pages 15, 30, 117, 158, 160, and 161.

180 BIBLIOGRAPHY

[89] I. Koutis and R. Williams. Limits and applications of group algebras for parameter-
ized problems. In Automata, Languages and Programming, volume 5555 of Lecture
Notes in Computer Science, pages 653–664. 2009. Cited pages 15, 20, and 166.

[90] I. Kríẑ. Well-quasiordering finite trees with gap-condition. Proof of Harvey Fried-
man’s conjecture. Annals of Mathematics, 130:215–226, 1989. Cited page 102.

[91] I. Kríẑ and J. Sgall. Well quasi ordering depends on the labels. Acta Scientiarum
Mathematicarum, 55:59–65, 1991. Cited page 94.

[92] J. Kruskal. Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture. Trans-
actions of the American Mathematical Society, 95:210–225, 1960. Cited pages 93, 95,
and 102.

[93] J. Kruskal. The theory of well-quasi-ordering: A frequently discovered concept. Jour-
nal of Combinatorial Theory, Series A, 13(3):297 – 305, 1972. Cited page 93.

[94] A. Lempel, S. Even, and I. Cederbaum. An algorithm for planarity testing of graphs.
In Theory of Graphs: International Symposium: Rome, pages 215–232, 1966. Cited
pages 47 and 48.

[95] N. Linial, L. Lovasz, and A. Wigderson. Rubber bands, convex embeddings and graph
connectivity. Combinatorica, 8:91–102, 1988. Cited page 48.

[96] D. Marx. Parameterized graph separation problems. Theoretical Computer Science,
351(3):394–406, 2006. Cited pages 26 and 124.

[97] D. Marx. Chordal deletion is fixed-parameter tractable. Algorithmica, 57(4):747–768,
2010. Cited page 25.

[98] D. Marx, B. O’Sullivan, and I. Razgon. Treewidth reduction for constrained separa-
tion and bipartization problems. In STACS, pages 561–572, 2010. Cited pages 26
and 72.

[99] D. Marx and I. Razgon. Constant ratio fixed-parameter approximation of the edge
multicut problem. In ESA, volume 5757 of Lecture Notes in Computer Science, pages
647–658. Springer, 2009. Cited pages 13, 26, 132, and 153.

[100] D. Marx and I. Razgon. Fixed-parameter tractability of multicut parameterized by
the size of the cutset. In Proceedings of the 43rd annual ACM symposium on Theory
of computing, STOC ’11, pages 469–478. ACM, 2011. Cited pages iii, 21, 117, 119, 124,
126, and 153.

[101] K. Menger. Zur allgemeinen kurventheorie. Fundamenta Mathematicae, 10:96–115,
1927. Cited page 76.

[102] H. Nagamochi and T. Ibaraki. Algorithmic Aspects of Graph Connectivity. Cambridge
University Press, 1st edition, 2008. Cited page 124.

BIBLIOGRAPHY 181

[103] W. Naji. Reconnaissance des graphes de cordes. Discrete Mathematics, 54(3):329 –
337, 1985. Cited page 115.

[104] C. Nash-Williams. On well-quasi-ordering infinite trees. Mathematical Proceed-
ings of the Cambridge Philosophical Society, 61(03):697–720, 1965. Cited pages 100
and 107.

[105] R. Niedermeier. Invitation to Fixed Parameter Algorithms (Oxford Lecture Series in
Mathematics and Its Applications). Oxford University Press, 2006. Cited page 25.

[106] S. Oum. Excluding a bipartite circle graph from line graphs. Journal of Graph Theory,
60:183–203, 2009. Cited page 109.

[107] M. Pouzet. Un bel ordre d’abritement et ses rapports avec les bornes d’une multire-
lation. Comptes Rendus de l’Académie des Sciences, Paris, Séries A-B, 274:1677–1680,
1972. Cited pages 11, 94, and 106.

[108] D. Raible and H. Fernau. An amortized search tree analysis for k-leaf spanning tree.
In SOFSEM, pages 672–684, 2010. Cited pages 15 and 166.

[109] I. Razgon and B. O’Sullivan. Almost 2-SAT is fixed-parameter tractable. Journal of
Computer and System Sciences, 75:435–450, 2009. Cited pages 21 and 153.

[110] B. Reed, K. Smith, and A. Vetta. Finding odd cycle transversals. Operations Research
Letters, 32(4):299–301, 2004. Cited page 21.

[111] N. Robertson and P. Seymour. Graph minors. V. Excluding a planar graph. Journal of
Combinatorial Theory, Series B, 41(1):92–114, 1986. Cited page 65.

[112] N. Robertson and P. Seymour. Graph minors. IV. Tree-width and well-quasi-
ordering. Journal of Combinatorial Theory, Series B, 48:227–254, 1990. Cited page
65.

[113] N. Robertson and P. Seymour. Graph minors. XIII. The disjoint paths problem. Jour-
nal of Combinatorial Theory, Series B, 63(1):65–110, 1995. Cited page 82.

[114] N. Robertson and P. Seymour. Graph minors. XX. Wagner’s conjecture. Journal of
Combinatorial Theory, Series B, 92:325–357, 2004. Cited page 93.

[115] N. Robertson, P. Seymour, and R. Thomas. Quickly excluding a planar graph. Journal
of Combinatorial Theory, Series B, 62(2):323–348, 1994. Cited pages 65 and 81.

[116] P. Seymour and R. Thomas. Graph searching and a min-max theorem for tree-width.
Journal of Combinatorial Theory, Series B, 58(1):22–33, 1993. Cited pages 63 and 64.

[117] D. Shmoys. Cut problems and their application to divide-and-conquer. In Approxi-
mation algorithms for NP-hard problems. PWS, 1996. Cited page 27.

182 BIBLIOGRAPHY

[118] R. Solis-Olba. 2-approximation for finding trees with many leaves. In Proc. of ESA
1998, pages 441–452. Cited page 29.

[119] J. Spinrad. Recognition of circle graphs. Journal of Algorithms, 16:264–282, 1994.
Cited pages 12, 110, and 115.

[120] J. Storer. Constructing full spanning trees for cubic graphs. Information Processing
Letters, 13:8–11, 1981. Cited page 29.

[121] S. Thomassé. On better-quasi-ordering countable series-parallel orders. Transac-
tions of the American Mathematical Society, 352:2491–2505, 2000. Cited pages 95
and 107.

[122] S. Thomassé. A quadratic kernel for feedback vertex set. In Proceedings of the twenti-
eth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’09, pages 115–119,
2009. Cited page 24.

[123] E. Wanke. k-NLC graphs and polynomial algorithms. Discrete Applied Mathematics,
54:251–266, 1994. Cited page 94.

[124] J. Wu and H. Li. On calculating connected dominating set for efficient routing in ad
hoc wireless networks. In DIALM ’99: Proceedings of the 3rd international work-
shop on Discrete algorithms and methods for mobile computing and communica-
tions, pages 7–14, 1999. Cited page 29.

Abstract

This thesis tackles NP-hard problems with combinatorial techniques, focusing on the
framework of Fixed-Parameter Tractability. The main problems considered here are MUL-
TICUT and MAXIMUM LEAF OUT-BRANCHING. MULTICUT is a natural generalisation of the
cut problem, and consists in simultaneously separating prescribed pairs of vertices by re-
moving as few edges as possible in a graph. MAXIMUM LEAF OUT-BRANCHING consists in
finding a spanning directed tree with as many leaves as possible in a directed graph. The
main results of this thesis are the following. We show that MULTICUT is FPT when param-
eterized by the solution size, i.e. deciding the existence of a multicut of size k in a graph
with n vertices can be done in time f(k)∗poly(n). We show that MULTICUT IN TREES

admits a polynomial kernel, i.e. can be reduced to instances of size polynomial in k. We
give an O∗(3.72k) algorithm for MAXIMUM LEAF OUT-BRANCHING and the first non-trivial
(better than 2n) exact algorithm. We also provide a quadratic kernel and a constant factor
approximation algorithm. These algorithmic results are based on combinatorial results
and structural properties, involving tree decompositions, minors, reduction rules and s−t

numberings, among others. We present results obtained with combinatorial techniques
outside the scope of parameterized complexity: a characterization of Helly circle graphs
as the diamond-free circle graphs, and a partial characterisation of 2-well-quasi-ordered
classes of graphs.

Keywords: Parameterized Complexity, FPT, Parameterized Algorithms, Exponential Algo-
rithms, Approximation Algorithms, Kernels, Multicut, Trees with Many Leaves, Helly Circle
Graphs, Well-Quasi-Order

Résumé

184 BIBLIOGRAPHY

Dans cette thèse, nous abordons des problèmes NP-difficiles à l’aide de techniques
combinatoires, en se focalisant sur le domaine de la complexité paramétrée. Les prin-
cipaux problèmes que nous considérons sont les problèmes de Multicoupe et d’Arbre
Orienté Couvrant avec Beaucoup de Feuilles. La Multicoupe est une généralisation na-
turelle du très classique problème de coupe, et consiste à séparer un ensemble donné
de paires de sommets en supprimant le moins d’arêtes possible dans un graphe. Le pro-
blème d’Arbre Orienté Couvrant avec Beaucoup de Feuilles consiste à trouver un arbre
couvrant avec le plus de feuilles possible dans un graphe dirigé. Les résultats principaux
de cette thèse sont les suivants. Nous montrons que le problème de Multicoupe paramé-
tré par la taille de la solution est FPT (soluble à paramètre fixé), c’est-à-dire que l’exis-
tence d’une multicoupe de taille k dans un graphe à n sommets peut être décidée en
temps f(k)∗poly(n). Nous montrons que Multicoupe dans les arbres admet un noyau
polynomial, c’est-à-dire est réductible aux instances de taille polynomiale en k. Nous don-
nons un algorithme en temps O∗(3.72k) pour le problème d’Arbre Orienté Couvrant avec
Beaucoup de Feuilles et le premier algorithme exponentiel exact non trivial (c’est-à-dire
meilleur que 2n). Nous fournissons aussi un noyau quadratique et une approximation à
facteur constant. Ces résultats algorithmiques sont basés sur des résultats combinatoires
et des propriétés structurelles qui concernent, entre autres, les décompositions arbores-
centes, les mineurs, des règles de réduction et les s− t numberings. Nous présentons des
résultats combinatoires hors du domaine de la complexité paramétrée: une caractérisa-
tion des graphes de cercle Helly comme les graphes de cercle sans diamant induit, et une
caractérisation partielle des classes de graphes 2-bel-ordonnées.

Mots clefs : Complexité Paramétrée, FPT, Algorithmes Paramétrés, Algorithmes Exponen-
tiels, Algorithmes d’Approximation, Noyaux, Multicoupe, Arbres avec beaucoup de Feuilles,
Graphes de Cercle Helly, Bel-Ordre

LIRMM — 161, rue Ada — 34095 Montpellier cedex 5 — France

	Contents
	Remerciements
	Résumé de la thèse
	Preliminaries
	Introduction to the Thesis
	Fixed-Parameter Tractability
	Kernelization
	Introduction to Kernels
	Kernel Lower Bounds
	Polynomial Kernels

	Multicut
	Introduction to Multicut
	Expressing other Problems in the Multicut Framework
	Multicut In Trees

	Maximum Leaf Spanning Tree Problems

	Part I: Kernels
	A Polynomial Kernel for Multicut In Trees
	A Polynomial Kernel for Caterpillars
	General Trees

	Finding Directed Trees with Many Leaves
	Combinatorial Bounds
	Reduction Rules
	Quadratic Kernel
	Constant-Factor Approximation
	Linear Kernel for Acyclic Digraphs
	Conclusion

	Part II: Graph Structure and Decompositions
	Reducing Multicut to Bounded Treewidth
	Preliminaries
	General Reduction Rules for Multicut
	Clique Minor
	Finding a Nice Model
	Small and Giant Components
	Reducing the Instance

	Grid Minor
	On Grid Minors without Clique Minors
	Reducing the Instance

	Conclusion

	Well-Quasi-Ordering Induced Subgraphs
	Introduction
	Totally Ordered Sets of Functions
	Words on Functions
	Trees on Functions
	NLC with Restricted Relabelling Functions
	Further Well-Quasi-Ordering Problems

	Helly Circle Graphs
	Introduction
	Computing a Helly Circle Model
	Concluding Remarks

	Part III: Parameterized Algorithms
	Multicut is FPT
	Introduction
	Detailed Outline of the Proof
	Preliminaries
	Equivalence with Cluster Deletion variants
	Reductions, branchings and invariants

	Connectivity in FPT time
	Enumerating Cuts in FPT Time
	Irrelevant Requests
	Cherry Reduction

	Reducing Multicut to Component Multicut
	Component Multicut
	The Vertex-Multicut Y
	Reducing Attachment Vertices
	Backbones

	Backbone Multicut is FPT
	Backbone Multicut
	Invariants
	Contracting Edges
	Choosing a Stable Edge
	Contracting Slices
	Reducing the Lemons
	Reducing to 2-SAT

	Hints for Vertex-Multicut
	Conclusion
	A Single-Exponential Algorithm
	Comparison with Marx and Razgon's Proof in MR10
	Other Leads

	Algorithms for MaxLeaf
	Another 4knO(1) Time Algorithm
	Faster Algorithm
	Exponential Algorithm for Directed Maximum Leaf
	Randomized Algorithm for MIST

	Concluding Remarks
	Bibliography
	Bibliography

