D. Meoh, following procedure C2 using benzyl-indole-C4-TFA 84 (286 mg, 0.58 mmol) DIEA (111 µL, 0.64 mmol), N?-Boc-L-Tryptophane (CAS: 144599-95-1) (194 mg, 0.64 mmol), CDI (112 mg, 0.70 mmol), DMF (3 mL + 6 mL) as a yellow crude oil, Biligand 91 was obtained, p.9

D. Meoh, following procedure C2 using benzyl-indole-C2-TFA 85 (150 mg, 0.32 mmol) DIEA (61 µL, 0.35 mmol), N?-Boc-L-Phenylalanine (CAS: 13734-34-4) (93 mg, 0.35 mmol, CDI (62 mg, 0.38 mmol), DMF (2 mL + 5 mL) as a yellow crude oil (96 mg, 0.16 mmol, 50%), p.9

N. Dimethylquinoline, . Ho, and . Oh, 7 g/mol Quinoline 195 (93 mg, 0.32 mmol) was engaged with MeOH (15 mL) and KOH (0.179 g, 3.2 mmol, 10 eq.) and heated to reflux for 24 h. The mixture was neutralized with HCl (1 M). The solvent was removed and the residue was purified by filtration HCl (3 M) through a column of Amberlite® (IRA-401), p.37

B. 1. Jubb, H. Higueruelo, A. P. Winter, A. Blundell, and T. L. , Structural biology and drug discovery for protein???protein interactions, Trends in Pharmacological Sciences, vol.33, issue.5, pp.241-248, 2012.
DOI : 10.1016/j.tips.2012.03.006

S. Fletcher and A. D. Hamilton, Protein surface recognition and proteomimetics: mimics of protein surface structure and function, Current Opinion in Chemical Biology, vol.9, issue.6, pp.632-638, 2005.
DOI : 10.1016/j.cbpa.2005.10.006

M. B. Kennedy, Origin of PDZ (DHR, GLGF) domains, Trends in Biochemical Sciences, vol.20, issue.9, p.350, 1995.
DOI : 10.1016/S0968-0004(00)89074-X

S. Gianni, A. Engström, M. Larsson, N. Calosci, F. Malatesta et al., The Kinetics of PDZ Domain-Ligand Interactions and Implications for the Binding Mechanism, Journal of Biological Chemistry, vol.280, issue.41, pp.34805-34812, 2005.
DOI : 10.1074/jbc.M506017200

A. C. Hamilton, J. Inglese, and M. Ferrer, A PDZ domain-based assay for measuring HIV protease activity: Assay design considerations, Protein Science, vol.12, issue.3, pp.458-467, 2003.
DOI : 10.1110/ps.0235603

D. A. Doyle, A. Lee, J. Lewis, E. Kim, M. Sheng et al., Crystal Structures of a Complexed and Peptide-Free Membrane Protein???Binding Domain: Molecular Basis of Peptide Recognition by PDZ, Cell, vol.85, issue.7, pp.1067-1076, 1996.
DOI : 10.1016/S0092-8674(00)81307-0

K. K. Dev, Making protein interactions druggable: targeting PDZ domains, Nature Reviews Drug Discovery, vol.19, issue.12, pp.1047-1056, 2004.
DOI : 10.1073/pnas.092130099

N. Basdevant, H. Weinstein, M. Ceruso, M. Anton, S. Febs-lett-fabre et al., Thermodynamic Basis for Promiscuity and Selectivity in Protein???Protein Interactions:?? PDZ Domains, a Case Study, Journal of the American Chemical Society, vol.128, issue.39, pp.12766-12777, 2000.
DOI : 10.1021/ja060830y

URL : https://hal.archives-ouvertes.fr/hal-00157806

S. Maudsley, A. M. Zamah, N. Rahman, J. T. Blitzer, L. M. Luttrell et al., Platelet-Derived Growth Factor Receptor Association with Na+/H+ Exchanger Regulatory Factor Potentiates Receptor Activity, Molecular and Cellular Biology, vol.20, issue.22, pp.8352-8363, 2000.
DOI : 10.1128/MCB.20.22.8352-8363.2000

J. E. Brenman, D. S. Chao, S. H. Gee, A. W. Mcgee, S. E. Craven et al., Interaction of Nitric Oxide Synthase with the Postsynaptic Density Protein PSD-95 and ??1-Syntrophin Mediated by PDZ Domains, Cell, vol.84, issue.5, pp.757-767, 1996.
DOI : 10.1016/S0092-8674(00)81053-3

G. Birrane, J. Chung, and J. A. Ladias, Novel Mode of Ligand Recognition by the Erbin PDZ Domain, Journal of Biological Chemistry, vol.278, issue.3, pp.1399-1402, 2003.
DOI : 10.1074/jbc.C200571200

Y. Zhang, J. Dasgupta, R. Z. Ma, L. Banks, M. Thomas et al., Structures of a Human Papillomavirus (HPV) E6 Polypeptide Bound to MAGUK Proteins: Mechanisms of Targeting Tumor Suppressors by a High-Risk HPV Oncoprotein, Journal of Virology, vol.81, issue.7, pp.3618-3626, 2007.
DOI : 10.1128/JVI.02044-06

T. Kaneko, S. S. Sidhu, and S. S. Li, Evolving specificity from variability for protein interaction domains, Trends in Biochemical Sciences, vol.36, issue.4, pp.183-190, 2011.
DOI : 10.1016/j.tibs.2010.12.001

S. Gaudet, D. Branton, and R. A. Lue, Characterization of PDZ-binding kinase, a mitotic kinase, Proceedings of the National Academy of Sciences, vol.97, issue.10, pp.5167-5172, 2000.
DOI : 10.1073/pnas.090102397

F. Bossard, A. Robay, G. Toumaniantz, S. Dahimene, F. Becq et al., NHE-RF1 protein rescues ??F508-CFTR function, AJP: Lung Cellular and Molecular Physiology, vol.292, issue.5, pp.1085-1094, 2007.
DOI : 10.1152/ajplung.00445.2005

J. H. Lee, W. Richter, W. Namkung, K. H. Kim, E. Kim et al., Dynamic Regulation of Cystic Fibrosis Transmembrane Conductance Regulator by Competitive Interactions of Molecular Adaptors, Journal of Biological Chemistry, vol.282, issue.14, pp.10414-10422, 2007.
DOI : 10.1074/jbc.M610857200

K. K. Dev and J. M. Henley, The schizophrenic faces of PICK1, Trends in Pharmacological Sciences, vol.27, issue.11, pp.574-579, 2006.
DOI : 10.1016/j.tips.2006.09.007

L. Fallon, F. Moreau, B. G. Croft, N. Labib, W. Gu et al., Parkin and CASK/LIN-2 Associate via a PDZ-mediated Interaction and Are Co-localized in Lipid Rafts and Postsynaptic Densities in Brain, Journal of Biological Chemistry, vol.277, issue.1, pp.486-491, 2002.
DOI : 10.1074/jbc.M109806200

M. C. Hammond, B. Z. Harris, W. A. Lim, and P. A. Bartlett, ?? Strand Peptidomimetics as Potent PDZ Domain Ligands, Chemistry & Biology, vol.13, issue.12, pp.1247-1251, 2006.
DOI : 10.1016/j.chembiol.2006.11.010

URL : http://doi.org/10.1016/j.chembiol.2006.11.010

E. Klosi, D. Saro, and M. R. Spaller, Bivalent peptides as PDZ domain ligands, Bioorganic & Medicinal Chemistry Letters, vol.17, issue.22, pp.6147-6150, 2007.
DOI : 10.1016/j.bmcl.2007.09.035

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2169291

H. J. Lee, N. X. Wang, Y. Shao, and J. J. Zheng, Identification of tripeptides recognized by the PDZ domain of Dishevelled, Bioorganic & Medicinal Chemistry, vol.17, issue.4, pp.1701-1708, 2009.
DOI : 10.1016/j.bmc.2008.12.060

J. Shan, X. Zhang, J. Bao, R. Cassell, and J. Zheng, Synthesis of Potent Dishevelled PDZ Domain Inhibitors Guided by Virtual Screening and NMR Studies, Chemical Biology & Drug Design, vol.48, issue.4, pp.376-383, 2012.
DOI : 10.1111/j.1747-0285.2011.01295.x

N. Fujii, J. J. Haresco, K. A. Novak, D. Stokoe, I. D. Kuntz et al., A Selective Irreversible Inhibitor Targeting a PDZ Protein Interaction Domain, Journal of the American Chemical Society, vol.125, issue.40, pp.12074-12075, 2003.
DOI : 10.1021/ja035540l

M. Joshi, C. Vargas, P. Boisguerin, A. Diehl, G. Krause et al., Discovery of Low-Molecular-Weight Ligands for the AF6 PDZ Domain, Angewandte Chemie International Edition, vol.13, issue.23, pp.3790-3795, 2006.
DOI : 10.1002/anie.200503965

X. Chen, J. C. Longgood, C. Michnoff, S. Wei, D. E. Frantz et al., High-Throughput Screen for Small Molecule Inhibitors of Mint1-PDZ Domains, ASSAY and Drug Development Technologies, vol.5, issue.6, pp.769-784, 2007.
DOI : 10.1089/adt.2007.092

H. J. Lee, N. X. Wang, D. L. Shi, and J. J. Zheng, Sulindac Inhibits Canonical Wnt Signaling by Blocking the PDZ Domain of the Protein Dishevelled, Angewandte Chemie International Edition, vol.19, issue.35, pp.6448-6452, 2009.
DOI : 10.1002/anie.200902981

M. V. Doucet, A. Harkin, and K. K. Dev, The PSD-95/nNOS complex: New drugs for depression?, Pharmacology & Therapeutics, vol.133, issue.2, pp.218-229, 2011.
DOI : 10.1016/j.pharmthera.2011.11.005

L. Blanc-de-la-douleur, Le Pen, C., Ensemble face à la douleur: prévention, traitement et prise en charge The integrative action of the nervous system. 1906. 71, Chaouch, A., Physiological Rev, pp.67-186, 1987.

J. Besson, G. Guilbaud, A. Chaouch, S. R. Marchand, and J. Thiollet, Pain 1987, 354. 76. Mann, C., Neuro-physiologie de la douleur, J. Physiol. Beydoun, A.; Backonja, M. M., J. Pain Symptom Manage, vol.78, issue.25, pp.7-107, 1982.

D. M. Aronoff, J. A. Oates, and O. Boutaud, New insights into the mechanism of action of acetaminophen: Its clinical pharmacologic characteristics reflect its inhibition of the two prostaglandin H2 synthases, Clinical Pharmacology & Therapeutics, vol.79, issue.1, pp.9-19, 2006.
DOI : 10.1016/j.clpt.2005.09.009

L. Michel, Revue du rhumatisme, pp.1-5, 2003.

N. Anzai, E. Deval, L. Schaefer, V. Friend, M. Lazdunski et al., The Multivalent PDZ Domain-containing Protein CIPP Is a Partner of Acid-sensing Ion Channel 3 in Sensory Neurons, Journal of Biological Chemistry, vol.277, issue.19, pp.16655-16661, 2002.
DOI : 10.1074/jbc.M201087200

URL : https://hal.archives-ouvertes.fr/hal-00090949

B. Zhang, F. Tao, W. Liaw, D. S. Bredt, and R. A. Johns, Effect of knock down of spinal cord PSD-93/chapsin-110 on persistent pain induced by complete Freund??s adjuvant and peripheral nerve injury, Pain, vol.106, issue.1, pp.187-196, 2003.
DOI : 10.1016/j.pain.2003.08.003

E. M. Garry, E. Jones, and S. M. Fleetwood-walker, Nociception in vertebrates: key receptors participating in spinal mechanisms of chronic pain in animals, Brain Research Reviews, vol.46, issue.2, pp.216-224, 2004.
DOI : 10.1016/j.brainresrev.2004.07.009

E. Deval, V. Friend, C. Thirant, M. Salinas, M. Jodar et al., Exchanger Regulatory Factor-1, Journal of Biological Chemistry, vol.281, issue.3, pp.1796-1807, 2006.
DOI : 10.1074/jbc.M509669200

E. Deval, M. Salinas, A. Baron, E. Lingueglia, and M. Lazdunski, ASIC2b-dependent Regulation of ASIC3, an Essential Acid-sensing Ion Channel Subunit in Sensory Neurons via the Partner Protein PICK-1, Journal of Biological Chemistry, vol.279, issue.19, pp.19531-19539, 2004.
DOI : 10.1074/jbc.M313078200

URL : https://hal.archives-ouvertes.fr/hal-00091475

C. Bécamel, S. Gavarini, B. Chanrion, G. Alonso, N. Galéotti et al., Receptors Interact with Specific Sets of PDZ Proteins, Journal of Biological Chemistry, vol.279, issue.19, pp.20257-20266, 2004.
DOI : 10.1074/jbc.M312106200

Z. Xia, S. J. Hufeisen, J. A. Gray, and B. L. Roth, The PDZ-binding domain is essential for the dendritic targeting of 5-HT2A serotonin receptors in cortical pyramidal neurons in vitro, Neuroscience, vol.122, issue.4, pp.907-920, 2003.
DOI : 10.1016/S0306-4522(03)00589-X

Z. Xia, J. A. Gray, B. A. Compton-toth, and B. L. Roth, A Direct Interaction of PSD-95 with 5-HT2A Serotonin Receptors Regulates Receptor Trafficking and Signal Transduction, Journal of Biological Chemistry, vol.278, issue.24, pp.21901-21908, 2003.
DOI : 10.1074/jbc.M301905200

X. Pichon, A. S. Wattiez, C. Becamel, I. Ehrlich, J. Bockaert et al., Disrupting 5-HT2A Receptor/PDZ Protein Interactions Reduces Hyperalgesia and Enhances SSRI Efficacy in Neuropathic Pain, Molecular Therapy, vol.18, issue.8, pp.1462-1470, 2010.
DOI : 10.1038/mt.2010.101

N. Mahindroo, C. Punchihewa, A. M. Bail, and N. Fujii, Indole-2-amide based biochemical antagonist of Dishevelled PDZ domain interaction down-regulates Dishevelled-driven Tcf transcriptional activity, Bioorganic & Medicinal Chemistry Letters, vol.18, issue.3, pp.946-949, 2008.
DOI : 10.1016/j.bmcl.2007.12.039

M. Inman and C. J. Moody, A two step route to indoles from haloarenes???a versatile variation on the Fischer indole synthesis, Chem. Commun., vol.74, issue.2, pp.788-790, 2011.
DOI : 10.1039/C0CC04306K

J. Chae and S. L. Buchwald, Palladium-Catalyzed Regioselective Hydrodebromination of Dibromoindoles:?? Application to the Enantioselective Synthesis of Indolodioxane U86192A, The Journal of Organic Chemistry, vol.69, issue.10, pp.3336-3339, 2004.
DOI : 10.1021/jo035819k

T. Choi and E. Ma, Structural Necessity of Indole C5-O-Substitution of seco-Duocarmycin Analogs for Their Cytotoxic Activity, Molecules, vol.15, issue.11, pp.7971-7984, 2010.
DOI : 10.3390/molecules15117971

Z. Shi, C. Zhang, S. Li, D. Pan, S. Ding et al., Indoles from Simple Anilines and Alkynes: Palladium-Catalyzed C???H Activation Using Dioxygen as the Oxidant, Angewandte Chemie International Edition, vol.40, issue.25, pp.4572-4576, 2009.
DOI : 10.1002/anie.200901484

N. Asao, T. Nogami, K. Takahashi, and Y. Yamamoto, Pd(II) Acts Simultaneously as a Lewis Acid and as a Transition-Metal Catalyst:?? Synthesis of Cyclic Alkenyl Ethers from Acetylenic Aldehydes, Journal of the American Chemical Society, vol.124, issue.5, pp.764-765, 2002.
DOI : 10.1021/ja017366b

Y. Xiao and J. Zhang, Tetrasubstituted Furans by a PdII-Catalyzed Three-Component Michael Addition/Cyclization/Cross-Coupling Reaction, Angewandte Chemie International Edition, vol.124, issue.10, pp.1903-1906, 2008.
DOI : 10.1002/anie.200704531

F. Glorius, Chiral Olefin Ligands???New???Spectators??? in Asymmetric Catalysis, Angewandte Chemie International Edition, vol.43, issue.26, pp.3364-3366, 2004.
DOI : 10.1002/anie.200301752

T. O. Vieira, L. A. Meaney, Y. Shi, and H. Alper, Tandem Palladium-Catalyzed N,C-Coupling/Carbonylation Sequence for the Synthesis of 2-Carboxyindoles, Organic Letters, vol.10, issue.21, pp.4899-4901, 2008.
DOI : 10.1021/ol801985q

Y. Fang and M. Lautens, -Dihaloolefins for a Modular, Efficient Synthesis of Highly Functionalized Indoles, The Journal of Organic Chemistry, vol.73, issue.2, pp.538-549, 2007.
DOI : 10.1021/jo701987r

URL : https://hal.archives-ouvertes.fr/in2p3-00459276

S. P. Wathen and A. W. Czarnik, Copper-catalyzed redox deacylation of isomeric N- and O-benzoylhydroxylamines, The Journal of Organic Chemistry, vol.57, issue.23, pp.6129-6133, 1992.
DOI : 10.1021/jo00049a016

A. V. Gulevich, A. G. Zhdanko, R. V. Orru, and V. G. Nenajdenko, Isocyanoacetate Derivatives: Synthesis, Reactivity, and Application, Chemical Reviews, vol.110, issue.9, pp.5235-5331, 2010.
DOI : 10.1021/cr900411f

Z. Wang and L. S. Jimenez, Synthesis of an Aziridinomitosene Analog, The Journal of Organic Chemistry, vol.61, issue.2, pp.816-818, 1996.
DOI : 10.1021/jo9511509

M. Akazome, T. Kondo, and Y. Watanabe, Palladium Complex-Catalyzed Reductive N-Heterocyclization of Nitroarenes: Novel Synthesis of Indole and 2H-Indazole Derivatives, The Journal of Organic Chemistry, vol.59, issue.12, pp.3375-3380, 1994.
DOI : 10.1021/jo00091a026

C. Chen, D. R. Lieberman, R. D. Larsen, T. R. Verhoeven, and P. J. Reider, a Palladium-Catalyzed Annulation between Iodoanilines and Ketones, The Journal of Organic Chemistry, vol.62, issue.9, pp.2676-2677, 1997.
DOI : 10.1021/jo970278i

M. Nazaré, C. Schneider, A. Lindenschmidt, and D. W. Will, A Flexible, Palladium-Catalyzed Indole and Azaindole Synthesis by Direct Annulation of Chloroanilines and Chloroaminopyridines with Ketones, Angewandte Chemie International Edition, vol.43, issue.34, pp.4526-4528, 2004.
DOI : 10.1002/anie.200460122

S. A. Worlikar, B. Neuenswander, G. H. Lushington, and R. C. Larock, Highly Substituted Indole Library Synthesis by Palladium-Catalyzed Coupling Reactions in Solution and on a Solid Support, Journal of Combinatorial Chemistry, vol.11, issue.5, pp.875-879, 2009.
DOI : 10.1021/cc900057n

S. D. Debenham, P. W. Snyder, and E. J. Toone, Solid-Phase Synthesis for the Identification of High-Affinity Bivalent Lectin Ligands, The Journal of Organic Chemistry, vol.68, issue.15, pp.5805-5811, 2003.
DOI : 10.1021/jo0207271

E. Bennett, Modulating protein-protein interactions: novel inhibitors of PDZ domains and tubulin dynamics, 2008.

S. V. Khansole, S. B. Junne, M. A. Sayyed, and Y. B. Vibhute, Convenient and Efficient Method for the Iodination of Aromatic Amines by Pyridinium Iodochloride, Synthetic Communications, vol.5, issue.11, pp.1792-1798, 2008.
DOI : 10.3390/71200867

T. V. Jones, M. M. Slutsky, and G. N. Tew, Extending helicity???capturing the helical character of longer ortho-phenylene ethynylene oligomers, New Journal of Chemistry, vol.90, issue.4, pp.676-679, 2008.
DOI : 10.1039/b714237b

C. A. Montalbetti and V. Falque, Amide bond formation and peptide coupling, Tetrahedron, vol.61, issue.46, pp.10827-10852, 2005.
DOI : 10.1016/j.tet.2005.08.031

A. Piserchio, M. Pellegrini, S. Mehta, S. M. Blackman, E. P. Garcia et al., The PDZ1 Domain of SAP90: CHARACTERIZATION OF STRUCTURE AND BINDING, Journal of Biological Chemistry, vol.277, issue.9, pp.6967-6973, 2002.
DOI : 10.1074/jbc.M109453200

L. J. Gooßen, A simple and practical protocol for the palladium-catalyzed cross-coupling of boronic acids with methyl iodide, Applied Organometallic Chemistry, vol.11, issue.11, pp.602-604, 2004.
DOI : 10.1002/aoc.746

P. K. Suryadevara, S. Olepu, J. W. Lockman, J. Ohkanda, M. Karimi et al., Structurally Simple Inhibitors of Lanosterol 14??-Demethylase Are Efficacious In a Rodent Model of Acute Chagas Disease, Journal of Medicinal Chemistry, vol.52, issue.12, pp.3703-3715, 2009.
DOI : 10.1021/jm900030h

O. Kivrakidou, S. Bräse, F. Hülshorst, and N. Griebenow, tetrazoles, Organic Letters, vol.6, issue.7, pp.1143-1146, 2004.
DOI : 10.1021/ol0498848

J. Zhu, J. Lin, Y. Xu, X. Shao, X. Jiang et al., Hydrogen-Bonding-Mediated Anthranilamide Homoduplexes. Increasing Stability through Preorganization and Iterative Arrangement of a Simple Amide Binding Site, Journal of the American Chemical Society, vol.128, issue.37, pp.12307-12313, 2006.
DOI : 10.1021/ja064218i

I. Sapountzis, H. Dube, R. Lewis, N. Gommermann, and P. Knochel, Synthesis of Functionalized Nitroarylmagnesium Halides via an Iodine???Magnesium Exchange, The Journal of Organic Chemistry, vol.70, issue.7, pp.2445-2454, 2005.
DOI : 10.1021/jo048132o

L. Capelli, P. Manini, A. Pezzella, and A. Napolitano, -Ethynylaniline-Based Strategy for the Construction of 2-Linked Biindolyl Scaffolds, The Journal of Organic Chemistry, vol.74, issue.18, pp.7191-7194, 2009.
DOI : 10.1021/jo901259s

URL : https://hal.archives-ouvertes.fr/hal-00018615

L. Lian and R. Gordon, Protein NMR Spectroscopy: Principal Techniques and Applications, 2011.

F. Caporuscio, G. Rastelli, C. Imbriano, and A. Del-rio, Structure-Based Design of Potent Aromatase Inhibitors by High-Throughput Docking, Journal of Medicinal Chemistry, vol.54, issue.12, pp.4006-4017, 2011.
DOI : 10.1021/jm2000689

W. Wang, J. Weng, X. Zhang, M. Liu, and M. Zhang, Creating Conformational Entropy by Increasing Interdomain Mobility in Ligand Binding Regulation: A Revisit to N-Terminal Tandem PDZ Domains of PSD-95, Journal of the American Chemical Society, vol.131, issue.2, pp.787-796, 2008.
DOI : 10.1021/ja8076022

T. Lengauer and M. Rarey, Computational methods for biomolecular docking, Current Opinion in Structural Biology, vol.6, issue.3, pp.402-406, 1996.
DOI : 10.1016/S0959-440X(96)80061-3

L. Wang, C. A. Maniglia, S. L. Mella, and A. C. Sartorelli, N-(substituted-phenyl)-D-glycopyranosylamines and their O-acetyl derivatives as potential modifiers of the formation of glycosaminoglycans, Journal of Medicinal Chemistry, vol.26, issue.9, pp.1323-1326, 1983.
DOI : 10.1021/jm00363a020

A. Isobe, J. Takagi, T. Katagiri, and K. Uneyama, Palladium-Catalyzed Chloroimination of Imidoyl Chlorides to a Triple Bond: An Intramolecular Reaction Leading to 4-Chloroquinolines, Organic Letters, vol.10, issue.13, pp.2657-2659, 2008.
DOI : 10.1021/ol800512m

T. Fujiwara, N. Hirashima, S. Hasegawa, M. Nakanishi, and T. Ohwada, Space-filling effects in membrane disruption by cationic amphiphiles, Bioorganic & Medicinal Chemistry, vol.9, issue.4, pp.1013-1024, 2001.
DOI : 10.1016/S0968-0896(00)00326-6

I. Niculescu-duvaz, M. Ionescu, A. Cambanis, M. Vitan, and V. Feyns, Potential anticancer agents. IV. Nitrogen mustards of methylbenzoic acids, Journal of Medicinal Chemistry, vol.11, issue.3, pp.500-503, 1968.
DOI : 10.1021/jm00309a020

R. Kublashvili, N-Glucosides of Aminobenzoic Acids and Aminophenols, Chemistry of Natural Compounds, vol.39, issue.6, pp.586-588, 2003.
DOI : 10.1023/B:CONC.0000018115.15793.d5

P. Les-protéines-À-domaine, en très grand nombre dans le génome humain, sont impliquées dans des interactions protéine-protéine. Elles participent ainsi à véhiculer des signaux à l'origine de différentes pathologies (cancer, douleur?.). L'interruption de l'interaction entre la protéine à domaine PDZ, PSD-95, et le récepteur de la sérotonine, 5-HT2A, entraîne une réduction de l'hyperalgie chez le rat neuropathique

. Nous-avons-réalisé, au cours de ces travaux, la synthèse de trois générations de ligands, comportant un noyau indolique, capables d'interagir avec le site S0

. Dans-un-premier and . Temps, nous avons préparé 15 biligands possédant un noyau indolique polysubstitué lié, via un espaceur de longueur variable (2 à 6 atomes de carbone), à différents acides aminés, dans le but d'interagir avec le site S1, montrant beaucoup de diversité en fonction du domaine. Nous avons ensuite, après une étude de relation structure/activité

. Nous-avons-montré, et chromatographie d'affinité, que deux de ces composés sont des inhibiteurs de l'interaction PSD-95/5-HT2A et présentent de fortes interactions avec le site S0 de PSD-95. Ces molécules présentent également des propriétés antalgiques particulièrement intéressantes in vivo. Nous avons également déterminé, par RMN NOESY, la structure du complexe protéine/ligand pour ces deux composés. L'orientation d'une de ces molécules dans le site de la protéine nous permet d'envisager le développement d'une nouvelle génération d'indoles polysubstitués, pp.5-7