E. Arenal-gutierrez and C. Matran, A zero-one law approach to the central limit theorem for the weighted bootstrap mean, The Annals of Probability, vol.24, issue.1, 1996.
DOI : 10.1214/aop/1042644731

I. Armendáriz and M. Loulakis, Conditional distribution of heavy tailed random variables on large deviations of their sum. Stochastic Process, Appl, vol.121, issue.5, pp.1138-1147, 2011.

P. Barbe and P. Bertail, The Weighted Bootstrap, Lecture Notes in Statistics, vol.98, 1995.
DOI : 10.1007/978-1-4612-2532-4

P. Barbe and M. Broniatowski, Blowing number of a distribution for a statistics and loyal estimators, Statistics & Probability Letters, vol.69, issue.4, pp.465-475, 2004.
DOI : 10.1016/j.spl.2004.06.042

URL : https://hal.archives-ouvertes.fr/hal-00097034

. Bar-lev, K. Shaul, and P. Enis, Reproducibility and Natural Exponential Families with Power Variance Functions, The Annals of Statistics, vol.14, issue.4, pp.1507-1522, 1986.
DOI : 10.1214/aos/1176350173

O. Barndorff-nielsen, Information and exponential families in statistical theory, Wiley Series in Probability and Mathematical Statistics, 1978.

A. Barvinok, Lecture note: Math 710: Measure Concentration, 2005.

J. Beirlant, M. Broniatowski, . Teugels, L. Jozef, and P. Vynckier, The mean residual life function at great age: applications to tail estimation . Extreme value theory and applications, 1992.

R. N. Bhattacharya, . Rao, and R. Ranga, Normal approximation and asymptotic expansions, 2010.
DOI : 10.1137/1.9780898719895

N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular Variation, 1987.
DOI : 10.1017/CBO9780511721434

S. A. Book, Probabilities of very large deviations, Journal of the Australian Mathematical Society, vol.736, issue.03, pp.332-347, 1978.
DOI : 10.2307/3315135

S. Bouzebda and A. Keziou, A test of independence in some copula models, Mathematical Methods of Statistics, vol.17, issue.2, pp.123-137, 2008.
DOI : 10.3103/S1066530708020038

M. Broniatowski, Grandes, très grandes et petites déviations pour des suites de variables aléatoires réelles indépendantes. (French) [Large, very large and small deviations for sequences of independent identically 108 Bibliography distributed real random variables, C. R. Acad. Sci. Paris Sér. I Math, vol.305, issue.13, pp.627-630, 1987.

M. Broniatowski, Estimation of the Kullback-Leibler divergence, Math. Methods Statist, vol.12, issue.4, pp.391-409, 2003.

M. Broniatowski, Minimum divergence estimators, maximum likelihood and exponential families, Statistics & Probability Letters, vol.93, 2011.
DOI : 10.1016/j.spl.2014.06.014

URL : https://hal.archives-ouvertes.fr/hal-00613126

M. Broniatowski and V. Caron, Long runs under a conditional limit distribution, The Annals of Applied Probability, vol.24, issue.6, 2012.
DOI : 10.1214/13-AAP975

URL : https://hal.archives-ouvertes.fr/hal-00666182

M. Broniatowski and A. Fuchs, Tauberian Theorems, Chernoff Inequality, and the Tail Behavior of Finite Convolutions of Distribution Functions, Advances in Mathematics, vol.116, issue.1, pp.12-33, 1995.
DOI : 10.1006/aima.1995.1062

M. Broniatowski and A. Keziou, Minimization of ??-divergences on sets of signed measures, Studia Scientiarum Mathematicarum Hungarica, vol.43, issue.4, pp.403-442, 2006.
DOI : 10.1556/SScMath.43.2006.4.2

URL : https://hal.archives-ouvertes.fr/hal-00467649

M. Broniatowski and A. Keziou, Parametric estimation and tests through divergences and the duality technique, Journal of Multivariate Analysis, vol.100, issue.1, pp.16-36, 2009.
DOI : 10.1016/j.jmva.2008.03.011

M. Broniatowski and S. Leorato, An estimation method for the Neyman chi-square divergence with application to test of hypotheses, Journal of Multivariate Analysis, vol.97, issue.6, pp.1409-1436, 2006.
DOI : 10.1016/j.jmva.2006.02.001

M. Broniatowski and D. M. Mason, Extended large deviations, Journal of Theoretical Probability, vol.19, issue.3, pp.647-666, 1994.
DOI : 10.1007/BF02213574

M. Broniatowski and I. Vajda, Several applications of divergence criteria in continuous families, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00430179

H. Chernoff, A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of Observations, The Annals of Mathematical Statistics, vol.23, issue.4, pp.493-507, 1952.
DOI : 10.1214/aoms/1177729330

H. Chernoff and H. Scheffe, A Generalization of the Neyman-Pearson Fundamental Lemma, The Annals of Mathematical Statistics, vol.23, issue.2, pp.213-225, 1952.
DOI : 10.1214/aoms/1177729438

H. Cramer, Sur un nouveau th??or??me-limite de la th??orie des probabilit??s, Actualites Sci. Ind, issue.736, 1938.
DOI : 10.1007/978-3-642-40607-2_8

I. Csiszár, Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten. (German) Magyar Tud, Akad. Mat. Kutató Int. Közl, vol.8, pp.85-108, 1963.

G. B. Dantzig and A. Wald, On the Fundamental Lemma of Neyman and Pearson, The Annals of Mathematical Statistics, vol.22, issue.1, pp.87-93, 1951.
DOI : 10.1214/aoms/1177729695

D. A. Darling, The influence of the maximum term in the addition of independent random variables, Transactions of the American Mathematical Society, vol.73, issue.1, pp.95-107, 1952.
DOI : 10.1090/S0002-9947-1952-0048726-0

A. Dembo and O. Zeitouni, Refinements of the Gibbs conditioning principle, Probability Theory and Related Fields, vol.36, issue.1, pp.1-14, 1996.
DOI : 10.1007/BF01303799

A. Dembo and O. Zeitouni, Large Deviations Techniques And Applications, 1998.

P. Diaconis and D. A. Freedman, Conditional limit theorems for exponential families and finite versions of de Finetti's theorem, Journal of Theoretical Probability, vol.93, issue.4, pp.381-410, 1988.
DOI : 10.1007/BF01048727

D. Donoho, P. J. Huber, . L. Erich, and . Lehmann, The notion of breakdown point. A Festschrift for, Probab. Ser, pp.157-184, 1983.

B. Efron, Bootstrap Methods: Another Look at the Jackknife, The Annals of Statistics, vol.7, issue.1, pp.1-26, 1979.
DOI : 10.1214/aos/1176344552

P. Erd?s and A. Rényi, On a new law of large numbers, Journal d'Analyse Math??matique, vol.1, issue.1, pp.103-111, 1970.
DOI : 10.1007/BF02795493

W. Feller, An introduction to probability theory and its applications, 1971.

C. Field and E. Ronchetti, Small sample asymptotics, Institute of Mathematical Statistics Lecture Notes-Monograph Series, 13. Institute of Mathematical Statistics, 1990.

U. Frisch and D. Sornette, Extreme Deviations and Applications, Journal de Physique I, vol.7, issue.9, pp.1155-1171, 1997.
DOI : 10.1051/jp1:1997114

URL : https://hal.archives-ouvertes.fr/jpa-00247388

J. Geffroy, Stabilité presque complète des valeurs extrêmes d'un échantillon et convergence presque complète du milieu vers une limite certaine, French) C. R. Acad. Sci. Paris, pp.224-226, 1958.

J. Geffroy, Etude de la stabilité presque certaine des valeurs extrêmes d'un échantillon et de la convergence presque certaine de son milieu, French) C. R. Acad. Sci. Paris, pp.1154-1156, 1958.

J. Geffroy, Contribution à la théorie des valeurs extrêmes. (French) Publ, Inst. Statist. Univ. Paris, vol.74, issue.3, pp.37-121, 1958.

S. Ghosal, J. K. Ghosh, and A. W. Van-der-vaart, Convergence rates of posterior distributions, The Annals of Statistics, vol.28, issue.2, pp.500-531, 2000.
DOI : 10.1214/aos/1016218228

M. Grendar and G. Judge, Asymptotic equivalence of empirical likelihood and Bayesian MAP, The Annals of Statistics, vol.37, issue.5A, pp.2445-2457, 2009.
DOI : 10.1214/08-AOS645

F. R. Hampel, A General Qualitative Definition of Robustness, The Annals of Mathematical Statistics, vol.42, issue.6, pp.1887-1896, 1971.
DOI : 10.1214/aoms/1177693054

P. Harremoës and I. Vajda, On the Bahadur-Efficient Testing of Uniformity by Means of the Entropy, IEEE Transactions on Information Theory, vol.54, issue.1, pp.321-331, 2008.
DOI : 10.1109/TIT.2007.911155

X. He, J. Jure?ková, R. Koenker, and S. Portnoy, Tail Behavior of Regression Estimators and their Breakdown Points, Ecnometrica, pp.1195-1214, 1990.

J. L. Hodges and . Jr, Efficiency in normal samples and tolerance of extreme values for some estimates of location, Proc. Fifth Berkeley, p.110, 1967.

T. Höglund, A unified formulation of the central limit theorem for small and large deviations from the mean, Zeitschrift f???r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.10, issue.No. 1, pp.105-117, 1979.
DOI : 10.1007/BF00534343

J. L. Jensen, Saddlepoint Approximations, Oxford Statistical Science Series, vol.16, 1995.

B. Jørgensen, Exponential dispersion models. With discussion and a reply by the author, J. Roy. Statist. Soc. Ser. B, vol.49, issue.2, pp.127-162, 1987.

J. Jure?ková, Finite-sample comparison of L-estimators of location, Comment. Math. Univ. Carolin, vol.20, issue.3, pp.507-518, 1979.

J. Jure?ková, Tail-Behavior of Location Estimators, The Annals of Statistics, vol.9, issue.3, pp.578-585, 1981.
DOI : 10.1214/aos/1176345461

J. Jure?ková, Tail-behaviour of location estimators in nonregular cases, Comment. Math. Univ. Carolin, vol.22, issue.2, pp.365-375, 1981.

D. Juszczak and A. V. Nagaev, Local large deviation theorem for sums of i.i.d. random vectors when the Cramer condition holds in the whole space, Probability and Mathematical Statistics, vol.24, pp.297-320, 2004.

A. Keziou, Dual representation of ??-divergences and applications, Comptes Rendus Mathematique, vol.336, issue.10, pp.857-862, 2003.
DOI : 10.1016/S1631-073X(03)00215-2

B. J. Kleijn and A. W. Van-der-vaart, Misspecification in infinite-dimensional Bayesian statistics, Misspecification in infinitedimensional Bayesian statistics, pp.837-877, 2006.
DOI : 10.1214/009053606000000029

J. Ku?nier and I. Mizera, Tail behavior and breakdown properties of equivariant estimators of location, Annals of the Institute of Statistical Mathematics, vol.53, issue.2, pp.244-261, 2001.
DOI : 10.1023/A:1012462404407

O. E. Lanford, Entropy and equilibrium states in classical statistical mechanics, Statistical Mechanics and Mathematical Problems, 1973.
DOI : 10.1007/BFb0112756

G. Letac and M. Mora, Natural Real Exponential Families with Cubic Variance Functions, The Annals of Statistics, vol.18, issue.1, pp.1-37, 1990.
DOI : 10.1214/aos/1176347491

F. Liese and I. Vajda, Convex statistical distances, pp.3-322, 1987.

F. Liese and I. Vajda, On Divergences and Informations in Statistics and Information Theory, IEEE Transactions on Information Theory, vol.52, issue.10, pp.4394-4412, 2006.
DOI : 10.1109/TIT.2006.881731

J. Lynch and J. Sethuraman, Large Deviations for Processes with Independent Increments, The Annals of Probability, vol.15, issue.2, pp.610-627, 1987.
DOI : 10.1214/aop/1176992161

E. Mammen and S. Nandi, Bootstrap and resampling. Handbook of computational statistics, pp.467-495, 2004.

D. M. Mason and M. A. Newton, A Rank Statistics Approach to the Consistency of a General Bootstrap, The Annals of Statistics, vol.20, issue.3, pp.1611-1624, 1992.
DOI : 10.1214/aos/1176348787

C. N. Morris, Natural Exponential Families with Quadratic Variance Functions, The Annals of Statistics, vol.10, issue.1, pp.65-80, 1982.
DOI : 10.1214/aos/1176345690

J. Najim, A Cramer type theorem for weighted random variables, Electron, J. Probab, vol.7, 2002.

J. Neyman and E. S. Pearson, On the Problem of the Most Efficient Tests of Statistical Hypotheses, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.231, issue.694-706, pp.289-337, 1933.
DOI : 10.1098/rsta.1933.0009

J. Neyman and E. S. Pearson, Contributions to the theory of testing statistical hypotheses, Stat. Res. Memoirs, vol.1, pp.1-37, 1936.

B. Pelletier, Inference in ??-families of distributions, Statistics, vol.12, issue.3, pp.223-236, 2011.
DOI : 10.1007/b105056

URL : https://hal.archives-ouvertes.fr/hal-00460631

V. V. Petrov, Sums of independent random variables, Band, vol.82, 1975.
DOI : 10.1007/978-3-642-65809-9

M. S. Pinsker, Information and information stability of random variables and processes, p.9420, 1964.

J. Praestgaard and J. A. Wellner, Exchangeably Weighted Bootstraps of the General Empirical Process, The Annals of Probability, vol.21, issue.4, pp.2053-2086, 1993.
DOI : 10.1214/aop/1176989011

T. R. Read and N. A. Cressie, Goodness-of-fit statistics for discrete multivariate data. Springer Series in Statistics, pp.0-387, 1988.

A. Rényi, On measures of entropy and information, Proc. 4th Berkeley Sympos, pp.547-561, 1961.

D. Sornette, Critical phenomena in natural sciences. Chaos, fractals, selforganization and disorder: concepts and tools, 2004.

A. Toma and M. Broniatowski, Dual divergence estimators and tests: Robustness results, Journal of Multivariate Analysis, vol.102, issue.1, pp.20-36, 2011.
DOI : 10.1016/j.jmva.2010.07.010

URL : https://hal.archives-ouvertes.fr/hal-00441124

J. Trashorras and O. Wintenberger, Large deviations for bootstrapped empirical measures, Bernoulli, vol.20, issue.4
DOI : 10.3150/13-BEJ544SUPP

URL : https://hal.archives-ouvertes.fr/hal-00633707

M. C. Tweedie, Functions of a statistical variate with given means, with special reference to Laplacian distributions, Proc. Cambridge Philos. Soc. 43, pp.41-49, 1947.
DOI : 10.1098/rspa.1934.0050

C. S. Withers and S. Nadarajah, On the compound Poissongamma distribution, Kybernetika (Prague), vol.47, issue.1, pp.15-37, 2011.