L. Appareillage, G. Utilisé-pour-la-mesure-d, O. Van-oss, . Wendt, and . Calculées, angle de contact est un goniomètre DSA 100 (Krüss) La mesure de l'angle se fait à partir d'images capturées par un PC via une caméra. Le logiciel Visiodrop permet de numériser le contour de la goutte par traitement des images. Il détermine ensuite l'angle de contact grâce à des méthodes d'interpolation. Le logiciel utilise les méthodes d'interpolation par polynôme ou par arcs de cercles pour déterminer l

D. 'une-manière-générale and L. Mesure, angle de contact permet d'accéder à plusieurs informations : En utilisant l'eau comme liquide, les propriétés hydrophobes (grand angle, faibles énergies de surface) ou hydrophiles (petits angles, grandes énergies de surface

R. Alcántara, J. L. Tirado, J. C. Jumas, L. Monconduit, and . Olivier-fourcade, Electrochemical reaction of lithium with CoP3, Journal of Power Sources, vol.109, issue.2, p.308, 2002.
DOI : 10.1016/S0378-7753(02)00081-2

A. Anani and R. A. Huggins, Multinary alloy electrodes for solid state batteries I. A phase diagram approach for the selection and storage properties determination of candidate electrode materials, Journal of Power Sources, vol.38, issue.3, p.351, 1992.
DOI : 10.1016/0378-7753(92)80125-U

A. R. Amstrong, Advanced materials, p.862, 2005.

C. G. Barlow, Reaction of Water with Hexafluorophosphates and with Li Bis(perfluoroethylsulfonyl)imide Salt, Electrochemical and Solid-State Letters, vol.2, issue.8, p.362, 1999.
DOI : 10.1149/1.1390838

R. C. Boehm and A. Bannerjee, Theoretical study of lithium intercalated graphite, The Journal of Chemical Physics, vol.96, issue.2, p.1150, 1992.
DOI : 10.1063/1.462202

H. Buqa, M. Holzapfel, F. Krumeich, C. Veit, and P. Novak, Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries, Journal of Power Sources, vol.161, issue.1, p.617, 2006.
DOI : 10.1016/j.jpowsour.2006.03.073

C. K. Chan and H. Peng, High-performance lithium battery anodes using silicon nanowires, Nature Nanotechnology, vol.4, issue.8, p.31, 2008.
DOI : 10.1038/nnano.2007.411

L. Chen and K. Wang, Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries, Journal of Power Sources, vol.174, issue.2, p.538, 2007.
DOI : 10.1016/j.jpowsour.2007.06.149

C. A. Vincent, Lithium batteries: a 50-year perspective, 1959???2009, Solid State Ionics, vol.134, issue.1-2, p.159, 2000.
DOI : 10.1016/S0167-2738(00)00723-2

J. R. Dahn, Dependence of the electrochemical intercalation of lithium in carbons on the crystal structure of the carbon, Electrochimica Acta, vol.38, issue.9, p.1179, 1993.
DOI : 10.1016/0013-4686(93)80048-5

C. Damas and T. Leprince, Behavior study of polyvinyl alcohol aqueous solution in presence of short chain micelle-forming polyols, Colloid and Polymer Science, vol.39, issue.8-9, p.999, 2008.
DOI : 10.1007/s00396-008-1862-6

M. K. Datta and P. N. Kumta, Silicon and carbon based composite anodes for lithium ion batteries, Journal of Power Sources, vol.158, issue.1, p.557, 2006.
DOI : 10.1016/j.jpowsour.2005.09.016

P. S. Gopalakrishnan, Preparation of fibre-like silicon nitride from silicon powder, Journal of Materials Science Letters, vol.49, issue.18, p.1422, 1993.
DOI : 10.1007/BF00591595

P. Gu and R. Cai, Si/C composite lithium-ion battery anodes synthesized from coarse silicon and citric acid through combined ball milling and thermal pyrolysis, Electrochimica Acta, vol.55, issue.12, p.3876, 2010.
DOI : 10.1016/j.electacta.2010.02.006

T. T. Hien and C. Ishizaki, Surface Structure of Commercial Si3N4 Powders Analyzed by X-Ray Photoelectron Spectroscopy (XPS), Journal of the Ceramic Society of Japan, vol.113, issue.1322, p.647, 2005.
DOI : 10.2109/jcersj.113.647

C. S. Johnson, J. S. Kim, and M. M. Thackeray, The significance of the Li2MnO3 component in ???composite??? xLi2MnO3??(1???x)LiMn0.5Ni0.5O2 electrodes, Electrochemistry Communications, vol.6, issue.10, p.1085, 2004.
DOI : 10.1016/j.elecom.2004.08.002

. Kawashimay and G. Katagiri, Fundamentals, overtones, and combinations in the Raman spectrum of graphite, Physical Review B, vol.52, issue.14, p.10053, 1995.
DOI : 10.1103/PhysRevB.52.10053

H. Kim and D. Im, Electrochemical properties of Ni-based inert phases incorporated Si/graphite composite anode, Journal of Power Sources, vol.174, issue.2, p.588, 2007.
DOI : 10.1016/j.jpowsour.2007.06.121

I. Kim and P. N. Kumta, High capacity Si/C nanocomposite anodes for Li-ion batteries, Journal of Power Sources, vol.136, issue.1, p.145, 2004.
DOI : 10.1016/j.jpowsour.2004.05.016

S. Komaba, T. Ozeki, and K. Okushi, Functional interface of polymer modified graphite anode, Journal of Power Sources, vol.189, issue.1, p.197, 2009.
DOI : 10.1016/j.jpowsour.2008.09.092

Y. Kumai and H. Kadoura, Si???C composite anode of layered polysilane (Si6H6) and sucrose for lithium ion rechargeable batteries, Journal of Materials Chemistry, vol.5, issue.32, p.11941, 2011.
DOI : 10.1039/c1jm10532a

J. La and H. Guo, Preparation and characterization of flake graphite/silicon/carbon spherical composite as anode materials for lithium-ion batteries, Journal of Alloys and Compounds, vol.530, p.30, 2012.
DOI : 10.1016/j.jallcom.2012.03.096

J. Lee and J. Bae, Effect of Randomly Networked Carbon Nanotubes in Silicon-Based Anodes for Lithium-Ion Batteries, Journal of The Electrochemical Society, vol.156, issue.11, p.905, 2009.
DOI : 10.1149/1.3223963

D. Lemordant, Fluorinated Materials for Energy Conversion, 2005.

B. Lestriez, E. Ligneel, D. Guy, and D. Guyomard, Advanced Materials and Methods for Lithium-Ion Batteries, 2007.

B. Lestriez, E. Ligneel, D. Guy, and D. Guyomard, Advanced Materials and Methods for Lithium-Ion Batteries, 2007.

J. Li and J. R. Dahn, An In Situ X-Ray Diffraction Study of the Reaction of Li with Crystalline Si, Journal of The Electrochemical Society, vol.154, issue.3, p.156, 2007.
DOI : 10.1149/1.2409862

J. Li, R. B. Lewis, and J. R. Dahn, Sodium Carboxymethyl Cellulose, Electrochemical and Solid-State Letters, vol.10, issue.2, p.17, 2007.
DOI : 10.1149/1.2398725

W. R. Liu, M. H. Yang, H. C. Wu, S. M. Chiao, and N. L. Wu, Enhanced Cycle Life of Si Anode for Li-Ion Batteries by Using Modified Elastomeric Binder, Electrochemical and Solid-State Letters, vol.8, issue.2, p.100, 2005.
DOI : 10.1149/1.1847685

W. R. Liu, Effect of electrode structure on performance of Si anode in Li-ion batteries: Si particle size and conductive additive, Journal of Power Sources, vol.140, issue.1, p.139, 2005.
DOI : 10.1016/j.jpowsour.2004.07.032

Y. Liu and K. Hanai, Silicon/Carbon Composites as Anode Materials for Li-Ion Batteries, Electrochemical and Solid-State Letters, vol.7, issue.10, p.369, 2004.
DOI : 10.1149/1.1795031

Y. Liu and T. Matsumura, Preparation and Characterization of Si???C Composite Coated with Polyaniline as Novel Anodes for Li-Ion Batteries, Electrochemical and Solid-State Letters, vol.8, issue.11, p.599, 2005.
DOI : 10.1149/1.2056427

Y. Liu and Z. Y. Wen, Electrochemical behaviors of Si/C composite synthesized from F-containing precursors, Journal of Power Sources, vol.189, issue.1, p.733, 2009.
DOI : 10.1016/j.jpowsour.2008.08.016

J. A. Menendez, L. R. Radovic, B. Xia, and J. Phillips, Low-Temperature Generation of Basic Carbon Surfaces by Hydrogen Spillover, The Journal of Physical Chemistry, vol.100, issue.43, p.17243, 1996.
DOI : 10.1021/jp961243+

M. H. Meyer, Advanced materials, p.439, 1998.

R. Nemanich and S. Solin, First- and second-order Raman scattering from finite-size crystals of graphite, Physical Review B, vol.20, issue.2, p.392, 1979.
DOI : 10.1103/PhysRevB.20.392

S. H. Ng and J. Wang, Spray-pyrolyzed silicon/disordered carbon nanocomposites for lithium-ion battery anodes, Journal of Power Sources, vol.174, issue.2, p.823, 2007.
DOI : 10.1016/j.jpowsour.2007.06.165

M. N. Obrovac and L. Christensen, Structural Changes in Silicon Anodes during Lithium Insertion/Extraction, Electrochemical and Solid-State Letters, vol.7, issue.5, p.93, 2004.
DOI : 10.1149/1.1652421

M. N. Obrovac and L. Christensen, Structural Changes in Silicon Anodes during Lithium Insertion/Extraction, Electrochemical and Solid-State Letters, vol.7, issue.5, p.93, 2004.
DOI : 10.1149/1.1652421

M. N. Obrovac and L. J. Krause, Reversible Cycling of Crystalline Silicon Powder, Journal of The Electrochemical Society, vol.154, issue.2, p.103, 2007.
DOI : 10.1149/1.2402112

O. , M. William, and C. , Handbook of Semiconductor Silicon Technology, pp.349-352, 1990.

D. M. Pickup, 6Li MAS NMR study of stoichiometric and chemically delithiated LixMn2O4 spinels, Journal of Materials Chemistry, vol.13, issue.4, p.963, 2003.
DOI : 10.1039/b206077a

F. Riley, Silicon Nitride and Related Materials, Journal of the American Ceramic Society, vol.71, issue.10, p.245, 2004.
DOI : 10.1111/j.1151-2916.2000.tb01182.x

J. H. Ryu, J. W. Kim, Y. E. Sung, and S. M. Oh, Failure Modes of Silicon Powder Negative Electrode in Lithium Secondary Batteries, Electrochemical and Solid-State Letters, vol.7, issue.10, p.306, 2004.
DOI : 10.1149/1.1792242

J. Saint and M. Morcrette, Towards a Fundamental Understanding of the Improved Electrochemical Performance of Silicon???Carbon Composites, Advanced Functional Materials, vol.73, issue.82, p.1765, 2007.
DOI : 10.1002/adfm.200600937

URL : https://hal.archives-ouvertes.fr/hal-00169730

W. A. Schalkwijk and B. Scrosati, Advances in Lithium-ion Batteries, Kluwer Academic, p.16, 2002.

J. Schultz and M. Nardin, Modern Approaches to Wettability: Theory and application, Ch4, 1992.

J. Schultz and M. Nardin, Theories and Mechanisms of Adhesion, in Handbook of Adhesive Technology, Second Edition, p.53, 2003.

S. Tanuma and J. C. Powel, Calculations of electron inelastic mean free paths (IMFPS). IV. Evaluation of calculated IMFPs and of the predictive IMFP formula TPP-2 for electron energies between 50 and 2000 eV, Surface and Interface Analysis, vol.23, issue.1, p.77, 1993.
DOI : 10.1002/sia.740200112

F. Tenegal, Structural determination of sintered Si3N4/SiC nanocomposite using the XPS differential charge effect, Journal of Electron Spectroscopy and Related Phenomena, vol.109, issue.3, p.241, 2000.
DOI : 10.1016/S0368-2048(00)00180-8

F. Tuinstra and J. Koenig, Raman Spectrum of Graphite, The Journal of Chemical Physics, vol.53, issue.3, p.1126, 1970.
DOI : 10.1063/1.1674108

K. Ui and J. Towada, Influence of the binder types on the electrochemical characteristics of natural graphite electrode in room-temperature ionic liquid, Journal of Power Sources, vol.196, issue.8, p.3900, 2011.
DOI : 10.1016/j.jpowsour.2010.12.007

M. Ulldemolins, L. Cras, and F. , Investigation on the part played by the solid electrolyte interphase on the electrochemical performances of the silicon electrode for lithium-ion batteries, Journal of Power Sources, vol.206, p.245, 2012.
DOI : 10.1016/j.jpowsour.2012.01.095

URL : https://hal.archives-ouvertes.fr/cea-00677078

R. Vehring and W. R. Foss, Particle formation in spray drying, Journal of Aerosol Science, vol.38, issue.7, p.728, 2007.
DOI : 10.1016/j.jaerosci.2007.04.005

G. X. Wang, Characterization of Nanocrystalline Si-MCMB Composite Anode Materials, Electrochemical and Solid-State Letters, vol.7, issue.8, p.250, 2004.
DOI : 10.1149/1.1764411

W. Wang and M. K. Datta, Silicon-based composite anodes for Li-ion rechargeable batteries, Journal of Materials Chemistry, vol.76, issue.121, p.3229, 2007.
DOI : 10.1016/j.jpowsour.2007.05.025

L. J. Webb and E. J. Nemanick, High-Resolution X-ray Photoelectron Spectroscopic Studies of Alkylated Silicon(111) Surfaces, The Journal of Physical Chemistry B, vol.109, issue.9, p.3930, 2005.
DOI : 10.1021/jp047199c

C. J. Wen and R. A. Huggins, Chemical diffusion in intermediate phases in the lithium-silicon system, Journal of Solid State Chemistry, vol.37, issue.3, p.271, 1981.
DOI : 10.1016/0022-4596(81)90487-4

Y. Wu and Y. Lee, The improvement on capacity retention of silicon/graphite composites with TiN additive as anode materials for Li-ion battery, Journal of Materials Processing Technology, vol.208, issue.1-3, p.35, 2008.
DOI : 10.1016/j.jmatprotec.2007.12.096

K. Xu, Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries, Chemical Reviews, vol.104, issue.10, p.4303, 2004.
DOI : 10.1021/cr030203g

J. S. Xue and J. R. Dahn, Dramatic Effect of Oxidation on Lithium Insertion in Carbons Made from Epoxy Resins, Journal of The Electrochemical Society, vol.142, issue.11, p.3668, 1995.
DOI : 10.1149/1.2048397

J. S. Xue and J. R. Dahn, Dramatic Effect of Oxidation on Lithium Insertion in Carbons Made from Epoxy Resins, Journal of The Electrochemical Society, vol.142, issue.11, p.3668, 1995.
DOI : 10.1149/1.2048397

X. Yang and Z. Wen, High-Performance Silicon/Carbon/Graphite Composites as Anode Materials for Lithium Ion Batteries, Journal of The Electrochemical Society, vol.153, issue.7, p.1341, 2006.
DOI : 10.1149/1.2199435

M. Yoshio and T. Tsumura, Electrochemical behaviors of silicon based anode material, Journal of Power Sources, vol.146, issue.1-2, p.10, 2005.
DOI : 10.1016/j.jpowsour.2005.03.143

M. Yoshio and T. Tsumura, Electrochemical behaviors of silicon based anode material, Journal of Power Sources, vol.146, issue.1-2, p.10, 2005.
DOI : 10.1016/j.jpowsour.2005.03.143

M. Yoshio and T. Tsumura, Electrochemical behaviors of silicon based anode material, Journal of Power Sources, vol.146, issue.1-2, p.10, 2005.
DOI : 10.1016/j.jpowsour.2005.03.143

J. Zhao and W. Li, A Si???SnSb/pyrolytic PAN composite anode for lithium-ion batteries, Electrochimica Acta, vol.53, issue.24, p.7048, 2008.
DOI : 10.1016/j.electacta.2008.05.040

P. Zuo and G. Yin, Electrochemical stability of silicon/carbon composite anode for lithium ion batteries, Electrochimica Acta, vol.52, issue.15, p.4878, 2007.
DOI : 10.1016/j.electacta.2006.12.061

P. Zuo and G. Yin, Improvement of cycle performance for silicon/carbon composite used as anode for lithium ion batteries, Materials Chemistry and Physics, vol.115, issue.2-3, p.757, 2009.
DOI : 10.1016/j.matchemphys.2009.02.036