
HAL Id: tel-00799284
https://theses.hal.science/tel-00799284

Submitted on 12 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Embedding security policies into pervasive computing
systems
Pengfei Liu

To cite this version:
Pengfei Liu. Embedding security policies into pervasive computing systems. Other [cs.OH]. Université
Sciences et Technologies - Bordeaux I, 2013. English. �NNT : 2013BOR14735�. �tel-00799284�

https://theses.hal.science/tel-00799284
https://hal.archives-ouvertes.fr

Département de formation doctorale en informatique

École doctorale EDMI Bordeaux

No d’ordre : 4735

Intégration de politiques de sécurité dans
des systèmes ubiquitaires

THÈSE

soutenue le 17 Janvier 2013

pour l’obtention du

Doctorat de l’Université de Bordeaux 1

(spécialité informatique)

par

Pengfei Liu

Jury

Président : Laurence Duchien, Professeur Université Lille 1

Rapporteurs : Laurence Duchien, Professeur Université Lille 1

Pierre-Etienne Moreau, Professeur Ecole Nationale Supérieure des Mines de Nancy

Encadrants : Charles Consel, Professeur l’Institut Polytechnique de Bordeaux

Hélène Kirchner, Directrice de la recherche de l’INRIA

Cette thése est librement téléchargeable sur hal.inria.fr

Copyright © 2013, Pengfei Liu,

LaBRI
UnitMixte de Recherche CNRS (UMR 5800),
351 cours de la libération,
F-33405 Talence cedex

INRIA Bordeaux Sud-Ouest
Bâtiment A 29,
351 cours de la libération,
F-33405 Talence Cedex

Université de Bordeaux 1

Cette œuvre est mise dis-
position selon le contrat
Attribution-ShareAlike 3.0
Unported disponible en ligne
:

http://creativecommons.org/licenses/by-sa/3.0/

Premiére édition, janvier 2013.

A B S T R A C T

specifying and enforcing security policies

via high-level programming framework

When developing pervasive computing applications, it is criti-
cal to specify security policies and develop security mechanisms
to ensure the confidentiality and integrity of the applications.
Numerous policy specification languages only focus on their ex-
pressive power. The emerging challenges in pervasive computing
systems can not be fulfilled by these approaches. For instance,
context awareness is a central aspect of pervasive computing
systems. Existing approaches rarely consider context information
in their language.

This thesis proposes a generative approach dedicated to spec-
ifying and enforcing security policies in pervasive computing
applications. To specify a policy, we propose a context-aware
policy specification language which helps developers to specify
policy rules and required entities (e.g. spatial description, roles,
context information). Policies are implemented by term rewriting
systems which offers great verification power. To enforce a policy,
we propose an architecture that embeds important concepts of
security policies (subject, object, security related context) into
pervasive computing applications. To apply our approach, we
enriched an existing approach which is dedicated to develop per-
vasive computing applications. Based on the policy specification
and the enriched pervasive computing application descriptions, a
dedicated programming framework is generated. This framework
guides the implementation and raises the level of abstraction
which can reduce the workloads of developers.

keywords : Domain-Specific Language, Generative Program-
ming, Pervasive computing system, security policy

iii

R É S U M É

Lors du développement des applications ubiquitaires, il est es-
sentiel de définir des politiques de sécurité et de développer
des mécanismes de sécurité pour assurer la confidentialité et
l’intégrité des applications. De nombreux langages de spécifica-
tion de politiques se concentrent uniquement sur leur puissance
d’expression. Les défis émergents dans les systèmes ubiquitaires
ne peuvent pas être résolus par ces approches. Par exemple,
la sensibilité au contexte est un élément central des systèmes
ubiquitaires. Les approches existantes tiennent rarement compte
des informations contextuelles dans leurs langages.

Cette thèse propose une approche générative pour spécifier et
implanter les politiques de sécurité dans les applications ubiq-
uitaires. Pour définir une politique de sécurité, nous proposons
un langage de spécification qui tient compte des informations
contextuelles. Il permet aux développeurs de spécifier les règles
de la politique et les entités requises (e.g. la description spa-
tiale, les rôles, le contexte). Les politiques sont implémentés par
des systèmes de réécriture, ce qui offre une grande puissance
de vérification. Pour appliquer une politique, nous proposons
une architecture qui intègre les concepts importants des poli-
tiques de sécurité (sujet, contexte, objet) dans des applications
ubiquitaires. Pour mettre en oeuvre notre approche, nous avons
enrichi une approche existante pour le développement des appli-
cations ubiquitaires. La spécification de la politique de sécurité
et la description de l’application ubiquitaire enrichie sont util-
isées pour générer un canevas de programmation qui facilite
l’implémentation des mécanismes de sécurité, tout en séparant
les aspects sécurités de la logique applicative.

mots clés: Architecture Logicielle, Langage Dédié, Systéme
ubiquitaire, Politique de sécurité

A C K N O W L E D G M E N T S

This thesis could never have been done without the help and
support of many people.

First of all, I want to thank my thesis advisers Charles Consel
and Hélène Kirchner. Despite the language barrier, they support
me unconditionally throughout my thesis. I’ve never seen anyone
like them who gives so much support for students.

The last year of my thesis was particularly difficult for Hélène,
as she worked in Paris and I worked in Bordeaux, and we often
met on Saturday mornings. She always encouraged me to go
further and deeper.

I also want to thank my two reviewers Laurence Duchien and
Pierre-Etienne Moreau. Thanks to their wise and careful reviews,
I have a new understanding of my work.

I would like to thank Guan HongYu and his wife Guo ZuoSha
for all their helps and supports. Especially after my achilles
tendon repair surgery, they took care of me and helped me.

Thanks to all members of the Phoenix team, my thesis has
been carried out in an ideal environment. Every member has
contributed to the perfect team ambiance. I would like to thank
Emilie Balland for her hints in writing articles and advice about
my work, Damien Martin-Guillerez for giving me good advice
about my presentation, Julien Bruneau for all the discussions
which helped me to improve my work, Quentin for his friendship,
Stephanie for her good humor, Henner for all the German words
he taught me and the discussions about my work, Ghislain for
explaining me the french jokes that I did not understand, Damien
C., Julien M. and Benjamin for answering my questions with
patience, Zoé for her sense of humor, Young-Joo for teaching me
korean, and the newest members Milan, Camille, Luc and Paul.
I want to thank everyone of you for the good time that we had
together.

Many of my professors transmit their passions for research to
me and introduce me to the world of research. I want to thank
Alexis Bès, Ammel Mammar, Marie Duflot-Kremer, Frédéric
Gervais and Gaétan Hains for their unconditional support when
I was their student.

Finally, I would like to thank all members of my family, and
my mother Zhou FengGe particularly who supports and loves
me unconditionally.

v

C O N T E N T S

1 introduction 1

1.1 Approach 3

1.2 Thesis contribution 4

1.3 Roadmap 5

i context 9

2 background 11

2.1 Pervasive computing systems 11

2.2 Developing pervasive computing applications 17

2.3 Security of pervasive computing system 30

2.4 Summary 41

3 case study 43

3.1 Scenario 43

3.2 Security requirements 44

ii developing security policies

in pervasive computing system 47

4 overview of our approach 49

4.1 Presentation of our approach 49

4.2 Design 50

4.3 Implementation stage 51

4.4 Verification and test stage 51

4.5 Deployment and Maintenance 51

5 security policy specification language 53

5.1 Domain analyses 53

5.2 DiaSecur 56

5.3 Summary 63

6 designing the secured pervasive computing ap-
plications 65

6.1 Design of security mechanism 65

6.2 Applying our approach in DiaSuite 68

6.3 Designing the applications in the case study 71

6.4 Summary 78

7 implementing the secured pervasive comput-
ing applications 79

7.1 Development of secured pervasive computing ap-
plication 79

7.2 Development of security management 84

7.3 Implementing the applications in the case study 85

7.4 Summary 89

8 verification and test, deployment and main-
tenance 91

8.1 Verification of the security policies 91

vii

viii contents

8.2 Testing security policies in a simulated environ-
ment 97

8.3 Deployment and maintenance 98

8.4 summary 100

iii conclusion 101

9 conclusion 103

10 future work 105

iv appendices 107

a specifying security policy with different ap-
proaches 109

a.1 Rei 109

a.2 Ponder 109

a.3 XACML 110

a.4 SPL 111

b grammar of diasecur 113

bibliography 117

L I S T O F F I G U R E S

Figure 1 Smart home and its resources 13

Figure 2 Classification Scheme for the assisted living
domain 14

Figure 3 The Aura bird’s-eye view 18

Figure 4 The MavHome agent architecture 20

Figure 5 The DiaSpec architecture with SCC pat-
tern 23

Figure 6 The DiaSuite development cycle 23

Figure 7 The graphical representation of the fire man-
agement architecture 24

Figure 8 The ACCESS NET model for securing a
museum 35

Figure 9 The IETF policy enforcement architecture 39

Figure 10 The strongman security policy management
architecture 40

Figure 11 The Self-Managed Cell architecture 40

Figure 12 A pervasive computing application scenario 43

Figure 13 The location description of the research fa-
cility 44

Figure 14 Enforcing security policy with our approach 50

Figure 15 The merger of the concepts of pervasive
computing system and security policy 57

Figure 16 Architecture of the security mechanism 65

Figure 17 Entities in security management. 84

Figure 18 The administration console for policy anal-
ysis 96

Figure 19 An example of a simulation in DiaSim 97

L I S T O F TA B L E S

Table 1 Definitions of the basic terms in domain
analysis 54

ix

x Listings

L I S T I N G S

Listing 1 Extract of the taxonomy of the fire detection
application 25

Listing 2 Extract of the architecture description of the
fire detection application 26

Listing 3 The generated Java interface for the OnOff
action which was declared in Listing 1 27

Listing 4 Extract of the abstract class of Alarm 27

Listing 5 A developer-supplied implementation of
an alarm device using the X10 protocol in
Java 27

Listing 6 A developer-supplied implementation of
the OnFire context in Java 28

Listing 7 A developer-supplied implementation of
the FireController 29

Listing 8 An example of action definition in DiaSpec 57

Listing 9 An example of role definition in DiaSe-
cur 58

Listing 10 An example of location definition in DiaSe-
cur 59

Listing 11 Authorization rules 59

Listing 12 An example of a generated signature of
term rewriting systems 61

Listing 13 An example of a generated rewrite rules of
term rewriting systems 62

Listing 14 An example of authentication enforcement
point in an user device 69

Listing 15 An example of policy enforcement point in
an action device 70

Listing 16 An example of security information collect-
ing point 71

Listing 17 Grammar of the security annotation 71

Listing 18 The taxonomy of the fire detection applica-
tion 72

Listing 19 Secured devices in the taxonomy 73

Listing 20 The architecture description of the remote
control application 74

Listing 21 The architecture description of the fire de-
tection application 74

Listings xi

Listing 22 The architecture description of the intrusion
detection application 75

Listing 23 The location definition 75

Listing 24 The role definition 76

Listing 25 Security policy rules to fulfil the security
requirements 77

Listing 26 The code fragment of class SecurityEnforce-
Point 80

Listing 27 The code fragment of abstract class Ab-
stractSmartPhone 80

Listing 28 The code fragment of abstract class Ab-
stractDoorLock 82

Listing 29 The code fragment of generated abstract
class AbstractOnFire 82

Listing 30 A developer-supplied implementation of
the OnFire context in Java 86

Listing 31 A developer-supplied implementation of
the smart phone in Android 2.2 87

Listing 32 An example of door lock implementation 88

Listing 33 Example of policy Meta-data queries 96

Listing 34 Example of policy content queries 96

Listing 35 Policy rule specifications in Rei 109

Listing 36 Policy rule specifications in Ponder 109

Listing 37 Policy rule specifications in XACML 110

Listing 38 Policy rule specifications in SPL 111

Listing 39 Example of event definition in SPL 111

Listing 40 Grammar of the DiaSecur language 113

1
I N T R O D U C T I O N

In the last ten years, hardware technology has continuously
evolved, making the embedded computational devices smaller
and cheaper. The advances in communication and sensor tech-
nology make pervasive computing applications more and more
present in everyday life. The vision of pervasive computing sys-
tems was originally proposed by Mark Weiser, chief technology
officer for Xerox’s Palo Alto Research Centre. In his paper [95],
he wrote : “The most profound technologies are those that disappear.
They weave themselves into the fabric of everyday life until they are
indistinguishable from it.”

The purpose of pervasive computing applications is to create
a heterogeneous and device-rich computing environment which
orchestrates all these devices and provides services to the user
at anytime and anywhere. To develop such an environment, a
great number of challenges need to be resolved [48, 83], such as
mobility and heterogeneity of devices, coordination of different
communication protocols of devices, interaction between user
and devices, device discovery. A lot of approaches have been
proposed (e.g. [25, 29, 36]) which make pervasive computing
systems more and more mature.

Maturity of pervasive computing systems makes it applicable
to an increasing number of areas, such as building automation,
health care and assisted living. Some of those areas are critical
areas, they have a critical effect on the physical world. For
instance, doors need to be opened to evacuate people in case of
fire. Rescuers need to be notified in case an elderly fell. Thus, the
failure of such system can put people’s life in danger.

To guarantee the pervasive computing system behaves as ex-
pected, its non-functional properties such as security (e.g. con-
fidentiality, authenticity, etc. [16]), reliability (quality of service
[20], fault-tolerance [28]) and efficiency need to be handled before
its deployment.

The nature of pervasive computing environments increases
the risks of security breaches. For instance, the data which are
gathered by movement sensors can reveal the presence of home
owners to housebreakers. Stalkers can use a camera in a pervasive
computing environment to spy on their victims. To prevent all
these scenarios from happening, we need to specify security
policies to define who can or can not do what action on which

1

2 introduction

devices, and provide a security-policy enforcement mechanism.
This thesis focuses on the specification of security policies and the
enforcement of security policies in pervasive computing systems.

In pervasive computing systems, a user interacts with pervasive
computing environments through a variety of computing devices
(e.g. smart-phone, PDA, tablet, RFID system) in the surrounding
environments. In general, the pervasive computing systems
consider those devices which represent a user as other common
devices. So there is no proper definition for devices which can
represent users. As a result, the notion of user needs to be explicit
and associated with a range of privileges over resources. Yet, this
notion must be pragmatic in that it should not burden the user
with strenuous authentication procedures, but instead, leverage
existing knowledge.

The set of devices which can provide services are extremely
dynamic, since a great number of those devices are mobile. They
can connect to or disconnect from the pervasive computing envi-
ronment at any time. Still, the host pervasive computing environ-
ment needs to use a specific notation to encapsulate these devices
with a security concept (i.e. object), because security policies may
need to monitor these devices.

Context awareness [4, 63] is a central feature of pervasive com-
puting applications that raises interesting challenges for security.
For instance, in the context where the event "fire" is detected in
the environment, the pervasive computing system has to trigger
the fire alarm and doors must be unlocked for evacuation. How-
ever security policies in traditional software systems depend only
on user privileges and are not context sensitive. In pervasive
computing systems, such security policies can not take into ac-
count the current situation of the environment and may impede
functionalities of pervasive computing system.

In pervasive computing system, security policies critically rely
on spacial information to grant access to a given resource. This
information needs to be introduced consistently throughout the
pervasive computing environment [73]. The spacial information
which are provided by sensors (e.g. GPS, infra-red, RFID tag)
are not readable by users. To reduce the workload for specifying
location-aware security policies, we need to refine these raw data
with an abstract location description which is human readable.

Dirk Balfanz et al. [12] wrote : “ The security community has long
argued that security must be designed into systems from the ground
up; it can not be "bolted on" to an existing system at the last minute”.
A lot of experiences have shown that it is difficult to retrofit
security into systems that have not been designed with security
concerns in mind. So security concerns of pervasive computing

1.1 approach 3

systems need to be considered throughout the design, imple-
mentation, verification and test, deployment and maintenance
stage [14]. But existing approaches focus on the expressive power
of their security policy specification languages. None of them
has addressed how to systematically integrate security policies
into pervasive computing applications and to provide support
throughout the application life-cycle.

The main requirements for developing security policies in
pervasive computing systems are:

• Support for embedding the domain-specific notions (e.g.
subject, object, security related context) to enforce security
policies.

• Support for involving context in the security policies deci-
sion.

• Support for designing and enforcing security policies
throughout the pervasive computing application life-cycle.

1.1 approach

In this thesis, to facilitate the specification of security policies, we
propose a domain specific language for security policies which is
based on a rule-based formalism. Our language allows users to
specify not only the basic concepts in security policies such as role
hierarchy, but also to manipulate abstract location descriptions
which are an important concept in pervasive computing systems.
It also allows security policies to leverage security relevant context
information (e.g. fire, intrusion).

To reduce the workload of the development of security poli-
cies in pervasive computing systems, we propose an architecture
that embeds important concepts of security policies (e.g. subject,
object) into pervasive computing applications. It separates the
security policy management from the implementation of perva-
sive computing applications. Therefore, an administrator can
dynamically modify the security policy without changing the im-
plementation of the pervasive computing application or interrupt
its services.

To develop our approach, we leverage DiaSuite [25], a tool
based development methodology dedicated to the development
of pervasive computing systems. The core of DiaSuite is DiaSpec
which is a domain-specific design language for specifying per-
vasive computing applications. A generator named DiaGen is
provided by DiaSuite, which can generate programming frame-
works based on DiaSpec specifications. The generated program-

4 introduction

ming frameworks guide developers throughout the development
life-cycle of pervasive computing applications.

We enriched the description of DiaSpec with specific annota-
tions. These annotations encapsulate basic DiaSpec entities (e.g.
sensor, actuator and context) with more abstract notions. These
annotations also indicate where to add new functionalities or
modify existing ones in the generated programming framework.

To make the policy rules aware of the context related to the
physical environment, policy rules must have constraints based
on the context information which is provided by pervasive com-
puting systems (e.g. professors can unlock all the doors if fire
is detected). So we need a rule-based formalism which can rea-
son over the rules with constraints to implement security policy
specifications. In this thesis, the policy specification are compiled
into a term rewriting system [10]. A term rewriting system is
a collection of rewrite rules which are used to transform terms
into equivalent forms. A term rewriting system offers good veri-
fication capabilities [19] and tools [13] which can interpret and
reason about the term rewrite rules with constraints.

Our approach covers the pervasive computing applications
life-cycle: 1) it enriches the description of pervasive comput-
ing applications with specific annotations; 2) it enables security
policies at the design stage; 3) it guides developers by generat-
ing programming framework at the implementation stage; 4) it
provides verification and testing tool at the verification stage;

The expressiveness of our language is limited. Our policy lan-
guage can not express delegation policies or obligation policies.
Because, there are already many languages which can express
these kinds of policies, our approach focuses on how to facil-
itate the specification and enforcement of security policies. In
this thesis, we only apply our approach on a specific domain
of pervasive computing systems (i.e. smart home). However,
the solutions which we proposed should be general enough to
support other pervasive computing systems.

1.2 thesis contribution

In this work, we propose a security-policy specification language
and a security-policy enforcement mechanism that respectively
leverage term rewriting systems [10] and a tool-based develop-
ment methodology dedicated to pervasive computing systems,
named DiaSuite [25]. Our contributions can be summarized as
followed.

Context awareness. We introduce security-relevant context infor-
mation in the design of a pervasive computing system by

1.3 roadmap 5

enriching the description of pervasive computing applica-
tions. Our policy specification language DiaSecur allows
security policy rules to use the security relevant context
information as activation condition. These constraints make
security policies context sensitive.

Security throughout the application life-cycle. We have identified
the requirements to specify and enforce security policies
in pervasive computing applications at different stages of
the application life-cycle. By enriching the description of
pervasive computing applications, the enforcement of se-
curity policies has been automatically, systematically and
seamlessly integrated into the applications life-cycle.

Security-policy enforcement mechanism. We propose a security-
policy enforcement mechanism to fulfil the special require-
ments of pervasive computing applications. The security-
policy enforcement mechanism embeds security policies
automatically into all devices in pervasive computing ap-
plication which improves the scalability. To support the dy-
namicity of pervasive computing applications, we separate
the policy from the implementation of pervasive comput-
ing application. As a result, the modification of pervasive
computing application do not impact the security policy.

Experiments in the pervasive computing domain. Our approach
has been applied to the development of various pervasive
computing applications, including a physical access control
system of a research facility and a parental control system.
These experiments have demonstrated that our approach
can effectively guide the development of pervasive comput-
ing applications with security concerns addressed during
the entire process.

1.3 roadmap

This thesis is split into three parts: the first part proposes a
state of the art that introduces the context and the challenges of
specifying and enforcing security policies in pervasive computing
systems; the second part presents our approach that consists of
a security-policy specification language and a security-policy
enforcement mechanism; and the third part concludes the thesis
and outlines future work.

Context

In Chapter 2, we present the related work and the context of
my thesis. In Section 2.1, we first introduce the basic terminolo-

6 introduction

gies and concepts of pervasive computing systems. Then we
present the application domains and requirements of pervasive
computing system. In Section 2.2, we present several existing
approaches which are dedicated to develop pervasive computing
applications. At the end of this section, we highlight an approach,
named DiaSpec which we enriched to apply our approach. In
Section 2.3, we first give an overview of security policies. Then
we present several existing approaches for specifying a security
policy. Lastly, we present several approaches for enforcing a
security policy in a pervasive computing system.

In Chapter 3, we give a scenario of a pervasive computing ap-
plication. In Section 3.1, we describe the required devices and the
physical environment of this pervasive computing application. In
Section 3.2, we present the security requirements of this scenario.

Embedding security policies in pervasive computing systems

The second part presents our domain specific policy specification
language (DiaSecur) and our policy enforcement mechanism. We
illustrate our approach step by step from the design stage to the
deployment stage.

In Chapter 4, we give an overview of our approach. We present
the key concepts and requirements which we have identified, and
solutions that we propose to address these requirements at each
stage of the application life-cycle.

In Chapter 5, we present our policy specification language
(DiaSecur) dedicated to specify authorization policies in perva-
sive computing systems. In Section 5.1, we present the domain
analysis which identifies the basic components of our language.
In Section 5.2, we present the basic entities of our language.

In Chapter 6, we present the support which we provide at the
design stage. In Section 6.1, we present the architecture of our
policy enforcement mechanism. In Section 6.2, we present how
we use the enriched DiaSpec specification to develop pervasive
computing applications with security policies enforcement. In
Section 6.3, we use the applications which we introduced in
the case study (Chapter 3) to illustrate how to design a concrete
secured pervasive computing applications by using our approach.

In Chapter 7, we present how to implement the secured per-
vasive computing system and the security management. In Sec-
tion 7.1, we present how we enrich the generated programming
framework to embed the security enforcement mechanism into
pervasive computing applications. In Section 7.2, we present
the basic entities of the security management. In Section 7.3,
we present how to implement the applications in the case study

1.3 roadmap 7

based on the design specification which we described in Sec-
tion 6.3.

In Chapter 8, we first present how to verify and test security
policies in a pervasive computing environment. Then, we present
how we provide support at deployment and maintenance stage.
In Section 8.1, we first present several properties of the security
policies which we want to verify. Then we present how to verify
these properties. In Section 8.2, we give a brief introduction
about the simulator which we use to test our security policies. In
Section 8.3, we present how our approach supports the change
of secured pervasive computing systems and security policies.

Conclusion

In chapter 9, we present the conclusion of this thesis. In chap-
ter 10, we suggest directions for future work.

Part I

C O N T E X T

2
B A C K G R O U N D

The first part of this chapter introduces pervasive computing
systems, their application domains and requirements. The second
part of this chapter presents the existing approaches dedicated to
develop pervasive computing systems. We highlight the DiaSuite
approach which is used later on. In the third part of this chapter,
we first give an overview of security systems, then we present
the existing approaches of security-policy specification language
and we highlight a rule-based formalism to implement our policy
engine. Lastly, we present some approaches which are dedicated
to enforce security policies.

2.1 pervasive computing systems

Pervasive computing

In the article "The computer of 21st century" [95], Mark Weiser
shaped the vision of pervasive computing (also called ubiquitous
computing) as an omnipresent infrastructure for information and
communication technologies. The purpose of pervasive comput-
ing applications is to create a device-rich computing environment
which orchestrates devices and provides services to users at any-
time and anywhere. According to Weiser [96, 97], to meet the
claim of "everything, always, everywhere", the following condi-
tions need to be met:

Smart objects. Computational and communication components
are integrated into physical objects of any shape and of-
fer services (e.g. air-conditioner, light). The embedded
computational and communication components enrich the
objects with a new array of digital capacities. Those digital
capacities make the physical objects "smart".

Networking. Smart objects are connected to each other and
can communicate via wired or wireless connections. The
availability of services relies on the communication between
devices and applications, not on the devices themselves.
This point is what distinguishes pervasive computing from
mobile networks.

Transparency. Sensors read signs and gestures of users and
collect environment information. Based on the collected

11

12 background

information, the pervasive computing system readjusts its
behaviour automatically.

Several years after the birth of pervasive computing, a novel
feature context has been proposed. Context information
can be any information (e.g. time, location, temperature,
etc.) which describes the physical world that influences the
pervasive computing applications.

Ambient intelligence

The term "Ambient intelligence" was originally proposed by the
European Commission in 2001. Sadri Fariba [78] describes the
vision of ambient intelligence as an environment which is sensi-
tive to the needs of its inhabitants, and capable of anticipating
their needs and behavior. The environment is aware of their
personal requirements and preferences, and interacts with people
in a user-friendly way. Many people [2, 3, 86] consider that the
ambient intelligence paradigm is built upon pervasive comput-
ing, context awareness and human-centric computer interaction
design, and that ambient intelligence is characterized by systems
and technologies that are:

Embedded. Many networked devices are integrated into the
environment

Context aware. These devices can recognize a user and his situa-
tional context

Personalized. They can be tailored to fulfil the needs of inhabi-
tants.

Adaptive. They can be easily reconfigured in response to users
desires.

Anticipatory. They can anticipate the desires of users without
conscious mediation.

2.1.1 Application area of pervasive computing systems

Pervasive computing systems have potential applications in many
domains such as smart home, assisted living and health care.
Some of them are already realized, and others look more like
science fiction. In this thesis, we focus on the domain of smart
homes and professional buildings.

2.1.1.1 Smart home

Keith Edwards and Rebecca Grinter [37] define smart home (also
called aware home) as “domestic environments in which we are sur-

2.1 pervasive computing systems 13

rounded by interconnected technologies that are, more or less, responsive
to our presence and actions”.

Aldrich [8] sees a smart home as“a residence equipped with com-
puting and information technology, which anticipates and responds to
the needs of the occupants, working to promote their comfort, conve-
nience, security, and entertainment through the management of technol-
ogy within the home and connections to the world beyond”.

Figure 1 shows a typical example of smart home environment
and the common resources which are usually used in smart
home environment. The internet gateway plays an important
role in this environment. In the first place, it is responsible
for connecting all the deployed devices within the smart home
environment. Secondly, it is responsible for connecting the smart
home environment with the internet. By connecting with the
internet, the gateway can integrate web services into applications
within the smart home environment (e.g. weather forecasts). The
gateway is the ideal candidate to host the runtime environment
for applications.

Figure 1: Smart home and its resources

According to Sadri Fariba [78], tasks envisaged in a smart
home include the following:

• performing many everyday tasks automatically to reduce
the burden of managing the house. For example, open
window blinds when inhabitants wake up.

• improving economy of usage of utilities. For instance, save
energy by turning off the lights when no one is in the house.

• improving safety and security. For example, activate sprin-
klers when a fire is detected.

• improving quality of life. For instance, play a specific music
based on the mood of inhabitants.

14 background

• supporting independent living for people with some cog-
nitive impairment. For example, remind a user to take his
pills.

2.1.1.2 Assisted living

Due to the increasing number of elderly people, the domain
of assisted living is attracting much attention. Assisted living
environments provide services ranging from emergency detection
to cooking assistance, in order to improve the quality of life of
elderly people living independently in their homes. Compared
to smart homes, assisted living systems need to provide not only
the indoor assistance, but also outdoor assistance when users are
doing some outdoor activities. Figure 2 shows assisted-living
services classification which is proposed by Jurgen Nehmer et
al. [65].

Figure 2: Classification Scheme for the assisted living domain

2.1.1.3 Health care

In the health care domain, pervasive computing systems are
usually used to gather biological and physiological data of an
individual and offers supports to enhance environments for diag-
nosis, therapy, prevention and early detection of diseases.

Reinhold Haux [46] describes pervasive computing health-
enabling technologies as “technologies include wearable devices, such
as microsensors embedded in textiles ans personal computers. These
technologies are aimed at making it easier for individuals to monitor
and maintain their own health while enjoying lives in normal social
settings.”

2.1 pervasive computing systems 15

2.1.2 Challenges in smart home systems

The notions of smart home has been proposed since 1970. With
the advance of pervasive computing technologies, we could al-
ready develop various applications to realize certain function-
alities of smart homes. But some of the social and technical
problems [37, 48] remain to be addressed.

Based on the work of Edwards et al. [37] and Karen et al. [48],
we could divide the various challenges to successfully develop a
smart home into two main categories: functional challenges and
non-functional challenges.

Functional challenges

The various technologies involved in smart home systems make
the design and development of applications complicated.

1. Dynamicity.

Smart objects (computational devices) are the core of smart
homes. Computational devices may become available as
they get deployed in smart homes. They may become
unavailable due to malfunction or network failure. Smart
homes need to support the dynamicity of devices which
can appear and disappear at any time.

2. Heterogeneity and Interoperability

Smart objects run on specific platforms, feature various
interaction models, and provide non-standard interfaces.
This raises the question of how a smart home orchestrates
all these devices. The devices may use new technologies
unsupported by the smart home. This raises the question
of how the smart home integrates the new technologies
seamlessly.

3. Computational devices management

In a smart home, computational devices need to be man-
aged. Users need to be informed what devices the smart
home possesses, what services they provide, what are their
status, and how they can be used.

4. Feedback to user

Smart homes collect information of users and their sur-
rounding environment and make decision proactively.
Some of those decisions may not serve user needs. The
users need to understand how and why the smart homes
make such decisions in a given situation.

16 background

5. No system administrator

All the new devices which users want to deploy at their
smart homes have to be installed and configured in some
way. Tasks that were performed by professionals a few
years back will now need to be done by the end users.

Non-Functional challenges

When pervasive computing systems are applied to the domain
of health care or assisted living for elderly people, the well func-
tioning of pervasive computing systems is critical. To guarantee
the well functioning of pervasive computing system after deploy-
ment, the non-functional properties such as dependability and
security need to be addressed.

dependability Avizienis et al. [9] define dependability of a
system as “the ability to avoid service failures that are more frequent
and more severe than is acceptable”. They believe that the depend-
ability of a system consists of the following attributes:

• availability: the services which are provided by pervasive
computing systems need to be ready when users need them.

• reliability: the services in pervasive computing systems need
to continue to work even when there is a device failure.

• safety: services which are provided by pervasive computing
systems will never lead to catastrophic consequences on the
users and the environment.

• integrity: absence of improper system alteration.

• maintainability: ability for a process to undergo modification
and repairs.

security The goal of security is also to guarantee the well
functioning of pervasive computing systems. But form another
point of view, security ensures the availability, integrity and
confidentiality of pervasive computing systems in the presence
of possible threats. Compared to the dependability of systems,
security requires more restrictions. For instance, in security
the availability means that the services which are provided by
systems are only available for authorized users, the integrity of
data means that only authorized users can modify the data. In
Section 2.3, we will discuss security in details.

2.2 developing pervasive computing applications 17

2.2 developing pervasive computing applications

We have seen the various challenges to develop pervasive com-
puting applications. Many approaches have been proposed to
overcome these challenges. As pervasive computing systems
orchestrate various devices, interconnecting and running applica-
tions across a set of devices is the main challenge. Many of the
early works in pervasive computing focused on interconnecting
and managing a large set of devices. Many middleware [45]
approaches have been proposed such as iROS (Interactive Room
Operating System) [51] and Gaia [76].

As pervasive computing systems require the transparency of
devices, research efforts have been devoted to simplify the in-
teraction between users and smart environments. Tools such as
the Context Toolkit [79] have been proposed to provide contextual
information about the environment surrounding users.

But people start to realize that those approaches focus on
only few aspects of pervasive computing systems. For instance,
the middleware approaches address only the networking aspect,
Approaches like Context Toolkit address only the transparency
aspect. We need more sophisticated approach which can cover all
the aspects of pervasive computing systems. In this section, we
present the existing approaches which help developers to address
the functionalities of pervasive computing applications.

2.2.1 Vigil

In 2001, Vigil [55, 56] was proposed by a research group of uni-
versity of Maryland. Lalana Kagal et al. use an agent-oriented
paradigm to model the interactions between computational enti-
ties. Vigil is developed based on the work of Centaurus [53, 54],
which is an infrastructure and communication protocol for inter-
connecting heterogeneous computational entities.

A Vigil system consists of six functional components within
the Vigil architecture.:

• Communication manager. It provides a communication gate-
way between a client and a Service Manager.

• Capability manager. It maintains a static capability matrix for
system entities and responds to initial requests for access
control.

• Service manager. It finds out the matching services which
users request.

18 background

• Certificate manager. It generates X.509 digital certificates for
each system entity and responds to certificate validation
queries.

• Security agent. It interprets and enforces the security policy
to provide access control services.

• Role Assignment Manager. It is responsible for the assign-
ment of roles to entities.

Vigil is one of the few approaches who has a strong focus on
security. The certificate controller, security agent and role assignment
manager are specially designed to address security concerns. But
how these components collaborate together is not clear. In fact,
Vigil was built from scratch to easily integrate security concerns.
The authors do not focus on how to support developers for
designing and implementing pervasive computing applications.

2.2.2 Aura

In 2002, the aura approach was proposed. The goal of Aura
project [43, 89] is to maximize the use of available resources,
minimize user distraction and drain users attention. To achieve
these goals, the concept of personal aura has been proposed. The
personal aura acts as a proxy for the user which the Aura repre-
sents. When a user enters a new environment, his personal aura
discovers appropriate resources to support the user’s tasks.

To enable the functionalities of such a personal Aura. An
architectural framework has been proposed. Figure 3 shows a
bird’s-eye view of the architectural framework of Aura.

Figure 3: The Aura bird’s-eye view

Aura consists of four basic component: task manager (called
Prism), context observer, environment manager and suppliers.

• Task manager. It implements the concept of personal aura.
It can coordinate the information related to the user task
and negotiates the task support with the new environment.
Task manager monitors quality of service of suppliers. For

2.2 developing pervasive computing applications 19

instance, if a supplier fails, the task manager will find an
alternative supplier.

• Context observer. It provides information on the physical
world and reports the useful information to the Task man-
ager.

• Environment manager. It embodies the gateway to the envi-
ronment which can marshal various suppliers.

• Suppliers. They provide the abstract services which tasks are
composed of. These abstract services can be implemented
by concrete application such as Emacs or Notepad.

The personal aura concept facilitates the designing of user-
centric applications, because the personal aura manages which
actual services will be used at each pervasive computing envi-
ronment. But, this raises the problem of mapping the actual
services with the required services of personal aura. To accom-
plish the mapping, all actual services need a wrapper and an
abstract service description. Aura does not provide enough sup-
port for implementing services. These increase the workload of
upgrading and maintaining the system.

2.2.3 MavHome

In 2004, the MavHome (Managing An Intelligent Versatile Home)
approach was proposed. The objective of MavHome project is
to create a home full of devices which can acquire and apply
information about the inhabitants to provide comfort and effi-
ciency [32, 100].

The MavHome system consists of a group of agents; each
agent contains fours layers: physical layer, communication layer,
information layer and decision layer. All these layers are realized
through a set of concrete functional components. Figure 4 shows
the functional components of each layer [32].

• Physical layer. The physical layer contains all physical hard-
ware such as devices and network equipments. This layer
collects the raw data which are provided by the physical
devices (e.g. camera, temperature sensor, etc.).

• Communication layer. The communication layer can not only
communicate with all layers within the agent, but also
with external layers of other agents. The communication
layer discovers services from physical layers and transfers
data to information layers. In the communication layer, the
Common Object Request Broker Architecture (CORBA) [22]
is used to perform the communications.

20 background

Figure 4: The MavHome agent architecture

• Information layer. The information layer gathers and stores
the data collected by the physical layers. Based on these
data, the information layer generates knowledge useful1 for
decision making.

• Decision layer. The decision layer takes in useful knowledge,
learns from stored knowledge, makes decisions on actions
to automate the everyday tasks in the environment, and
develops policies while checking for safety and security.

The MavHome system provides a clear architecture to develop
pervasive computing applications. But it does not provide any
support at the design stage. It makes the applications hard to
extend and maintain.

2.2.4 Olympus

Roy Campbell et al. propose a new concept of Active Spaces [72].
The authors define active spaces as spaces with computing and
communication devices that provide support to users. They have
developed a middleware, named Gaia [76] for developing active
spaces.

Gaia [29] provides an authentication service which includes
various protocols (e.g. Kerberos 2) and hardware technologies
(e.g. fingerprint). Sampemane et al. [80] propose an access control

1 We could consider those useful knowledge as contextual information
2 http://web.mit.edu/kerberos/

2.2 developing pervasive computing applications 21

model dedicated to active spaces [72]. They use an access list to
specify access rights for each service in the active space. But, Gaia
offers no support for creating coherent security policies which
are dedicated to the deployed applications and resources. As a
result, it is error prone for enforcing the security policies.

To provide more guidance to developers, they proposed Olym-
pus [72] in 2005. The main feature of Olympus is that developers
can specify computational entities, services, locations and users
at an abstract level. The high-level programming model allows
developers to develop active spaces without worrying about how
space operations are implemented and which concrete devices
will be used. To realize such functionalities, their model provides
an entity discovery component. The entity discovery component
can map the abstract entities which are specified by developers
with the concrete entities (e.g. light, air-conditioner, etc.) based
on the current context, space configuration and user preferences.

The Olympus offers an abstract way to describe active space
operations. But it does not provide enough support at the design
stage. It is hard to extend the space operations.

2.2.5 PervML

In 2009, PervML [85] was developed by a research group of the
Technical University of Valencia. To facilitate the development
of a pervasive computing system, they propose a model-driven
development method, which covers the entire development life-
cycle. PervML is a domain-specific modelling language that
allows developers to represent pervasive computing systems in
an abstract model (PervML model).

PervML specifies a context-aware pervasive computing system
in a way that is independent from a platform and a technology.
To do so, PervML uses conceptual primitives such as users, ser-
vices, interactions and component structure. PervML isolates these
conceptual primitives and represents each primitive with a dedi-
cated model. For instance, a UML-like class diagram is used to
specify services and a UML package diagram is used to describe
the different areas where the user can move or where services
can be located.

PervML provides tools that can generate the dedicated frame-
work in Java and OWL (Ontology Web Language [94]) based
on the PervML models. Then the generated applications can be
deployed by using OSGi (Open Service Gateway initiative [34]).

PervML has no clear notion of security-policy. But it provides
a User Profile Model which allows developers to specify the types

22 background

of user (profiles). The administrators can associate a list of autho-
rized operations to each profile. According to the authors, this
model “provides support for the privacy, the security and the views
of the system, since users can see and execute only system actions that
they are authorized to use”.

PervML represents each primitive with a dedicated model. For
instance, an application requires six different models: 1) a UML-
like class diagram, 2) a UML package diagram to describe the
different areas, 3) a graphical state transition diagram, 4) a UML
interaction diagram, 5) a OCL description, 6) a user profile model.
As a result, developers need to master these technologies. All
these models make the PervML hard to use and master, compared
to other approaches.

2.2.6 DiaSuite

In this section, we highlight DiaSuite [25], a tool based develop-
ment methodology dedicated to the development of pervasive
computing systems. In this thesis, we use this approach to il-
lustrate how to embed security policy into pervasive computing
systems, which justifies why we introduce this approach with
more details.

The core of DiaSuite is DiaSpec which is a domain-specific
design language for specifying pervasive computing applications.
A generator named DiaGen is provided by DiaSuite, which can
generate programming frameworks based on DiaSpec specifica-
tions. The generated programming frameworks guide developers
throughout the development life-cycle of pervasive computing
applications.

The sense-compute-control pattern

The DiaSpec language is inspired by an architecture pattern,
named sense-compute-control (SCC) [90]. The SCC pattern is
often applied to the applications which interact with an environ-
ment. The environment could contain physical devices, services
which are provided by software (e.g. web services, data base, etc.).
The SCC pattern embodies four layers: sensing layer, refinement
layer, control layer, action layer.

The DiaSpec language uses three kinds of components (i. e.
devices, contexts and controllers) to cover the SCC pattern. Fig-
ure 5 gives a graphic representation of the DiaSpec architecture
which represents the SCC pattern. Devices sense the information
about pervasive computing environment and send the raw data
to context. Devices also provide actions that can be executed by

2.2 developing pervasive computing applications 23

controllers. Contexts collect the raw data from devices and refine
them to produce more abstract data. Controllers make decisions to
activate devices based on the information received from contexts.

Figure 5: The DiaSpec architecture with SCC pattern

Overview of the DiaSuite approach

Distributed
back-end

Programming
framework

Simu-
lation Devices Appli-

cations

Taxonomy
Specifier

Application
Architect

Tester Devices
Developer

Application
Developer

System
Administrator

DiaGen
DiaSpec

description

D
ia

S
p

e
c
 a

p
p

li
c
a
ti

o
n

2

1

3

456

7

Figure 6: The DiaSuite development cycle

The DiaSuite approach proposes a development process un-
derlying DiaSpec. This process revolves around key stages and
roles depicted in Figure 6. At the design stage, a domain expert
defines a taxonomy of devices which are available in the perva-
sive computing environment and actions that the devices provide.
An architect describes the architecture of pervasive computing
application based on the taxonomy definition. At development
stage, DiaSuite provides a compiler, named DiaGen. DiaGen
can generate a customized programming framework based on
a taxonomy and the architecture description of an application.
Then the application developers use the generated framework

24 background

to implement the application. Device developers instantiate the
abstract entities with actual devices. At the test stage, DiaSuite
provides a 2D-simulator, named DiaSim [23]. It produces a hy-
brid simulation environment which contains simulated devices
and actual devices. At the deployment stage, the system admin-
istrator chooses a distributed systems technology such as Web
Services [15], RMI [71], CORBA [68] and SIP [77] to deploy the
pervasive computing system.

In the next two paragraphs, we focus on the design stage and
development stage of the development process.

Designing a pervasive computing application with DiaSpec

Figure 7 shows an architecture of a fire emergency management
application. The arrows indicate the flow of data. To detect a
fire, the application uses two kinds of devices: a temperature
sensor and a smoke sensor. When a fire is detected, the alarm
and sprinkler will be turned on. This application is a typical
context-aware application in a smart home environment. Based
on the context information, the application makes decisions for
users autonomously.

Figure 7: The graphical representation of the fire management archi-
tecture

To describe the available resources (software or hardware) of a
pervasive computing environment, DiaSuite provides a domain
specific language DiaSpec. The domain expert uses DiaSpec to
write a taxonomy. A taxonomy is a collection of device dec-
larations, each of which characterizes a set of possible device
implementations sharing common functionalities. Device func-
tionalities consist of data sources and actions. A data source

2.2 developing pervasive computing applications 25

specifies values sensed by a device. An action declares a set of
operations supported by a device. To distinguish each instance of
a class of devices, the device declarations may have one or more
attributes such as identity and location. Device declarations are
organized hierarchically, allowing devices to inherit attributes,
sources and actions from other devices.

Listing 1 shows a fragment of the taxonomy of the fire emer-
gency management application. The entity description starts with
keyword device. The first device description defines a root device
(lines 2 to 4 of Listing 1), which encapsulates the basic attributes
of an entity such as identity and location. These attributes serve
mainly as filters for entity discovery in the pervasive computing
environment.

DiaSpec uses the keywords source and action to define the
capabilities of a device. The keyword source defines the sensing
capabilities of an entity. The keyword action defines the actu-
ating capabilities of an entity. For instance, line 7 of listing 1

defines that the device TemperatureSensor provides a float value
which describes the temperature of the pervasive computing en-
vironment. Line 15 of listing 1 defines that the device sprinkler

provides the action OnOff which is defined further in lines 19 to
20.

1 device Devices{

2 attribute identity as String;

3 attribute location as Location;

4 }

5

6 device TemperatureSensor extends Devices{

7 source temperature as Float;

8 }

9

10 device SmokeSensor extends Devices{

11 source smoke as Boolean;

12 }

13

14 device Sprinkler extends Devices{

15 action OnOff;

16 }

17

18 device Alarm extends Devices{

19 action OnOff;

20 }

21 /* Description of the supported actions*/

22 action OnOff {

23 On();

24 Off();

25 }

Listing 1: Extract of the taxonomy of the fire detection application

26 background

To design the architecture of the pervasive computing applica-
tions, the DiaSpec language provides two building blocks: context
and controller. The context can refine the raw data collected from
deployed devices and provide more abstract context informa-
tion. The controller can make a decision to execute actions based
on the context information. Listing 2 shows a fragment of the
architecture description of the fire detection application.

Lines 1 to 3 of listing 2 defines a context. It starts with keyword
context, and followed by the name (i.e. OnFire) of this context.
The keyword as followed by the type boolean indicates the type of
the output value. The keyword source followed by temperature

indicates the name of the input data (line 2). The keyword from
followed by TemperatureSensor indicates which kind of devices
provides the input data (line 2). For instance, the context OnFire
collects temperature from temperature sensors and smoke from
smoke sensors (lines 1 to 3).

Lines 6 to 9 of listing 2 defines a controller. It starts with
keyword controller, and followed by a controller name (e.g. Fire-
Controller). The keyword context followed by a context name
indicates the source of input context data (line 7). The keyword
action indicates which specific actuators can be invoked by the
controller. For instance, the controller FireController receives
contextual information fire from context OnFire, and can turn on
and off Alarm and Sprinkler (lines 7 to 9).

1 context OnFire as boolean{

2 source temperature from TemperatureSensor;

3 source smoke from SmokeSensor;

4 }

5

6 controller FireController{

7 context OnFire;

8 action OnOff on Alarm;

9 action OnOff on Sprinkler;

10 }

Listing 2: Extract of the architecture description of the fire detection
application

Implementing a pervasive computing application

To complete the development, DiaSuite provides a compiler,
named DiaGen. DiaGen is implemented by using the ANTLR
parser generator [70]. Based on the taxonomy and architecture
description, DiaGen generates a dedicated Java programming
framework and a distributed backend which encapsulates vari-
ous communication technologies, and manages the component
registration and discovery. The backend abstracts over the com-

2.2 developing pervasive computing applications 27

munication layer, allowing to transparently deploy the application
implementation.

Given a DiaSpec design declaration, the DiaGen compiler gen-
erates dedicated code to implement each basic building blocks.
For instance, each action defined in a taxonomy generates a Java
interface. Listing 3 shows an example of the generated Java
interface for the action OnOff which was declared in Listing 1.

1 public interface OnOff {

2 void On(RmiRemoteServiceInfo source) throws RemoteException;

3 void Off(RmiRemoteServiceInfo source) throws RemoteException;

4 }

Listing 3: The generated Java interface for the OnOff action which was
declared in Listing 1

DiaGen produces an abstract class for each device, context
and controller declaration, providing methods to support the
development (discovery and interactions). It also generates ab-
stract method declarations to allow the developer to write the
code that implements the expected behaviour of the application
(e.g. a controller activates the fire alarm when a fire is detected).
Implementing a DiaSpec-declared entity is done by subclassing
the corresponding generated abstract class. In doing so, the
developer is required to implement each abstract method.

Let us use an example to illustrate the implementation of the
devices. Listing 4 shows the generated abstract class of the device
declaration Alarm in Listing 1. The abstract class has two abstract
methods On and Off that the developers need to implement.

1 public abstract class AbstractAlarm{

2 protected void updateIdentity(String identity) {...}

3 protected void updateLocation(Location location) {...}

4 public abstract void on();

5 public abstract void off();

6 ...

7 }

Listing 4: Extract of the abstract class of Alarm

Listing 5 shows a code fragment that wraps a alarm device that
is controlled by using X10 [1], commonly used in smart home
platform.

1 public class Alarm_X10 extends AbstractAlarm{

2

3 ... // defines x10Ctrl and x10Addr

4

5 @Override

6 public void on() {

7 x10Ctrl.addCommand(new Command(x10Addr, Command.ON));

8 }

28 background

9 @Override

10 public void off() {

11 x10Ctrl.addCommand(new Command(x10Addr, Command.OFF));

12 }

13 }

Listing 5: A developer-supplied implementation of an alarm device
using the X10 protocol in Java

Based on the OnFire context declaration of Listing 2, DiaGen
generates an abstract class to support developers. The abstract
class allows distributed devices to be selected through service
discovery. To implement the context processing logic (i.e. how the
context refines the raw data which are provided by the sensors),
we need to extend the generated abstract class of the context
OnFire. The code fragment in Listing 6 presents the implemen-
tation of the OnFire context declaration in Listing 2. This is
done by extending the corresponding generated abstract class
AbstractOnFire (We do not show the code of the abstract class
here, it is similar to the one in Listing 4).

The OnFire context is declared as taking a smoke input source
from smoke sensors (line 13 of Listing 2). We highlight the
onSomkeFromSmokeSensor method in Listing 6. This method is
triggered when the smoke sensors sense fresh data. In this imple-
mentation, we first check the smoke value (line 20 of Listing 6),
then we check the temperature of the place where the smoke
is detected (lines 22 to 27). If the temperature is higher than
fifty degrees celsius, the context OnFire publishes a new boolean
value to indicate the presence of fire at this specific location (line
30).

1

2 public class OnFireContext extends AbstractOnFire {

3 @Override

4 public void postInitialize() {

5 for (SmokeSensorProxy smokeSensors :

this.discoverSmokeSensorForSubscribe

6 .all()) {

7 smokeSensors.subscribeSmoke();

8 }

9

10 }

11 @Override

12 public FireContextIndexedValuePublishable

onSmokeFromSmokeSensor(

13 SmokeFromSmokeSensor smoke,

14 GetContextForSmokeFromSmokeSensor getContext,

15 DiscoverForSmokeFromSmokeSensor discover) {

16 //Tests whether smoke is detected

17 if(smoke.value==true){

18 //Gets the location of where the smoke is detected

19 String location = smoke.indices().location();

20 TempSensorCompositeForSmokeFromSmokeSensor temp =

2.2 developing pervasive computing applications 29

21 discover.tempSensors().whereLocation(location);

22 Boolean fire;

23 //Checks whether the temperature is abnormal

24 if(temp.anyOne().getTemperature()>50)

25 fire=true;

26 else fire=false;

27 return new FireContextIndexedValuePublishable(fire,

location, true);

28 }

29 else return null;

30 }

31

32 }

Listing 6: A developer-supplied implementation of the OnFire context
in Java

To realize the functionality of the application, the applica-
tion logic needs to be implemented in the generated abstract
classes, which represent context and controller declarations. List-
ing 7 shows a code fragment that implements the abstract class
of FireController. The abstract method onFireContext has
three parameters: FireContextValue provides the data which
is computed by the context OnFire. GetContextForFireContext
contains a set of proxies of other context components which
connects to this controller. DiscoverForFireContext contains a
set of proxies that allows the FireController to discover the
instances of the deployed devices. In this example, we use
DiscoverForFireContext to discover alarms and sprinklers (lines
14 to 16).

To implement the application logic, first, we retrieve the
boolean value which indicates if a fire has been detected (line 10).
Then we get the location of fire (line 11). Lastly, if there is a fire,
we activate all the alarms (line 14) and the sprinklers located at
the fire zone (lines 16 to 20).

1 public class MyFireController extends AbstractFireController {

2

3 public MyFireController(ServiceConfiguration

serviceConfiguration) {

4 super(serviceConfiguration);

5 }

6

7 @Override

8 public void onFireContext(FireContextValue fireContext,

9 GetContextForFireContext getContext,

DiscoverForFireContext discover) {

10 Boolean fire = fireContext.value();

11 String location = fireContext.indices().location();

12 if (fire) {

13 //Discover all alarms and turn them on

14 discover.alarms().all().on();

15 /*Discover all sprinklers and turn the sprinklers which

located at the fire zone on*/

30 background

16 SprinklerCompositeForFireContext sprinklers=

discover.sprinklers().all();

17 for (SprinklerProxyForFireContext sprinkler : sprinklers) {

18 if (sprinkler.location().equals(location)) {

19 sprinkler.on();

20 }

21 }}

22 else { /*If there is no fire detected, do nothing.*/ }

23 }

24 }}

25 }

Listing 7: A developer-supplied implementation of the FireController

We choose DiaSpec to apply our approach, because it provides
strong support at the design stage. It allows us to address se-
curity concerns at the design stage. For instance, the taxonomy
in DiaSpec which describes the available devices facilitates the
enforcement of security policies. The architecture description
provides context information which may be used by security
policy. The generated framework allows us to embed security
mechanism automatically.

2.3 security of pervasive computing system

The National Security Telecommunications and Information Sys-
tems Security Committee (NSTISSC) of United States defines
computer security as “Measures and controls that ensure confidential-
ity, integrity, and availability of the information processed and stored
by a computer”. A lot of similar definitions for computer security
have been proposed by other scientists [17]. Confidentiality of
information refers to preventing the information leakage. In-
tegrity of information refers to preventing the modification of
information. Availability refers to preventing the denial of access
of information.

Authentication, access control and access audit are the basic
technologies to ensure confidentiality, integrity and availabil-
ity. Authentication helps access control system to distinguish
legitimate users from malicious users. An access control system
restricts the accesses to system resources to legitimate users. An
access control system consists of a security policy and a secu-
rity mechanism to enforce this policy. Access audit verifies and
guarantees the well functioning of access control system.

2.3 security of pervasive computing system 31

2.3.1 Access control models

Access control has been intensively studied for decades. Several
access control models have been identified. Security policies were
originally divided into discretionary policies and mandatory
policies, based on who is allowed to define the access of users to
the information. With the development of computer technology,
some systems need to allow owners of the objects to modify
the access rights, while the access rights of some specific objects
can only be modified by the administrator. As a result, the
discretionary and mandatory policies can no longer fulfil the new
requirements. Therefore, new security policy models have been
proposed. Let us examine the main models.

2.3.1.1 Discretionary policy

Discretionary Access Control (DAC) [67] is defined by the United
States Department of Defence. In DAC, subjects are capable to
pass the permission on the objects which they own, to other
subjects. This feature of discretionary model makes the notion of
delegation of access rights essential in any discretionary policy.
The problem with DAC is that it is hard to enforce a system-wide
policy, because the owner of an object can delegate the access
rights of the object to whoever he wants.

2.3.1.2 Mandatory policy

Mandatory Access Control (MAC) Policy is often used in military
systems. In MAC, the access control is determined entirely on
the basis of the security classification of subjects and objects. The
Bell-LaPadula lattice-based model [61] is the most representative
of mandatory security policy models. The Bell-LaPadula model
identifies a set of objects (O) and a set of subjects (S) with: S is a
subset of O, and defines the following actions that subjects can
perform on objects:

• Execute (no observation, no alteration)

• Read (observation, no alteration)

• Append (no observation, alteration)

• Write (observation, alteration)

The model defines a set of totally ordered classifications C (Top-
secret, Secret, Classified, Unclassified), and a set of categories K
(e.g. France, China, Japan, etc.). A level is defined as: L = C×K.
Each object O is assigned exactly one level. L(O) is called the
classification of the object. A Subject is assigned with two levels:
L(S) and maxL(S). maxL(S) is called clearance and L(S) is called

32 background

security level. The clearance of the subject is static, and L(S) ∝
maxL(S) must be true. Here, ∝ means "dominate". A security
level (c1, k1) dominates (c2, k2) iff c1 > c2 and k2 ⊆ k1, where
c1, c2 ∈ C, k1, k2 ∈ K

The model defines the following properties, which constitute
the mandatory access rules of the model:

• The Simple Security Property - a subject with a given clear-
ance may not read an object at a higher security level (no
read-up), i.e. for a subject S to be able to read object O, the
following must be true: L(O) ∝ maxL(S).

• The Star-Property - a subject at a given security level must
not write to any object at a lower security level (no write-
down), i.e. for subject S to be able to write object O, the
following must be true: L(S) ∝ L(O).

Subjects can never change the categories of objects, so the own-
ership between subject and object has disappeared. In MAC
model, individual users can not alter access rights. This fea-
ture makes the MAC model an nightmare for general account
administration in a dynamic and evolving system.

2.3.1.3 Non-Discretionary policy

Non-Discretionary Access Control (NDAC) policy [5] is appropriate
for the situations in which some authorized users can modify
the security policy, but the modification must be under control.
A non-discretionary policy not only contains the access control
policies, but also administrative policies to explicitly define which
subject has rights to delegate rights to access an object.

The NDAC model can compensate the deficiencies of the MAC
model and the DAC model.

2.3.1.4 Role based policy

Role Based Access Control (RBAC) policy [39, 81] is one of the most
popular access control models. The key concept is to associate
a Role for every subject. Privileges are no longer assigned to
individual subjects, but to roles. So RBAC can considerably
simplify authorisation management.

The disadvantage of RBAC is that it does not provide flexibility.
The access right of a certain entity is bound to the role. It is rare
that very large groups of entities all need exactly same access
rights.

2.3 security of pervasive computing system 33

2.3.1.5 Other security models

Some models are proposed to address specific problems. The
Clark-Wilson model [30] is designed to ensure the integrity of data.
The policies describe how the data should be manipulated to
preserve the integrity.

Chinese wall policy [21] is designed to avoid conflict of interest.
The main idea is that a subject can only access information which
is not in conflict with any other information that it already has.

2.3.2 Policy specification languages

Matt Bishop defines a security policy as “a specific statement of
what is and is not allowed”. To specify security policies, we need to
use policy specification languages. Many policy specification ap-
proaches have been proposed. Some of those languages are close
to human language. Some of them are close to logic expression.

2.3.2.1 ASL

In 1997, ASL (Authorization specification language) was proposed
by Jajodia et al. [50]. ASL uses first-order logic to express autho-
rization policies. ASL uses predicate cando to specify authoriza-
tion policy. The following formula is an example of authorization
rule.

cando(file-a, user, +write)← in(user, professor)

This rule defines that all users who belong to the group profes-
sor are allowed to write on file-a. ASL provides two predicates do
and done to specify history based authorization rules. However,
ASL is not able to specify authorisation rules for groups of target
objects that have the same type. ASL has been extended with new
predicates [49] to evaluate the hierarchical relationships between
users role.

2.3.2.2 RDL

In 1998, RDL (Role definition language) was proposed by Hayton
et al. [47]. RDL defines a service as a set of proof rules (Horn
clauses) that specify who can use it and in what way. RDL allows
developers to specify authorization policies and delegations. In
RDL, there are rules which define under which conditions a user
can obtain a role. New roles can be assigned to users based on
their actual roles. For instance, if a user has role Physicist and
SeniorProfessor, this user can have a new role SeniorPhysicist.

34 background

The following example shows the RDL rule which defines the
new role assignment.

SeniorPhysicist(s)← Physicist(s)∧ SeniorPorfessor(s)

However, RDL can only allow the delegation of roles. It does
not support the delegation of individual access rights.

2.3.2.3 Ponder

Ponder is a declarative, object oriented language which was pro-
posed in 2001. Ponder allows developers to specify authorization
policies and obligations [33]. Ponder can express delegation by
means of specific delegation rules. Based on the delegation rules
and authorization rules, we could determine which access rights
can be delegated. The Ponder language is designed to specify
security policies which can map onto various domains, such as
firewalls, operating systems. Ponder also provides support to
analyze conflicts and consistency.

Ponder is a declarative language, easy to read and write. But it
is not domain specific. As a result, important concepts of perva-
sive computing applications (e.g. context) are not considered.

2.3.2.4 Rei

The policy language Rei was proposed in 2003; it is based on
deontic concepts [52]. Rei is designed for pervasive computing
applications. Rei provides constructs for expressing rights (per-
missions), prohibitions, obligations, and dispensations. Rei uses
a meta policy to resolve conflicts between policies. Rei allows
users to delegate not only rights to access services, but also to
delegate rights to other users to allow them to delegate rights to
access services. On the one hand, this feature allows end users to
delegate privileges to whoever they want. On the other hand, it
increases the workload of end-users and makes security concern
no longer transparent for end user. A subset of the Rei language
(authorization, delegation and revocation) has been applied in
the Vigil [52] pervasive environment.

Although Rei can express authorization, obligation and delega-
tion policies, it does not support any event triggered actions. We
are not aware of any validation tool or approach for Rei.

2.3.2.5 XACML

XACML (eXtensible Access Control Markup Language) is also a
declarative policy language which is based on an extension of
XML [38]. XACML can express conditional authorisations and

2.3 security of pervasive computing system 35

obligations. The first version of XACML was proposed in 2003.
Then the XACML 2.0 was proposed in 2005. In the newest
version (XACML 3.0), it includes an owner-centric delegation
mechanism which is very similar to the delegation mechanism of
Rei. XACML can be used to describe context constraints such as
time and environment constraints.

Due to the fact that XACML is built upon XML, it is hard to
read for humans. Even though there are approaches to retrofit
XACML with appropriate validation tools such as Margrave [40]
and RW [101], validation has never been a concern during the
design of XACML.

2.3.2.6 Access Nets

The Access Nets approach was proposed in 2011, it uses an ex-
tension of Petri nets [74] to model the access control in physical
places, such as offices or buildings [42]. Figure 8 shows an exam-
ple of the access nets model for a museum. They use tokens to
represent different kinds of users (e.g. visitor, guard, administra-
tor). They use places to represent the physical places (e.g. lobby,
gallery and archive). In transition, they can specify access control
policies. For instance the transition main(in) (see Figure 8) defines
that the visitors may only be in the museum between 9:00 and
17:00.

Figure 8: The ACCESS NET model for securing a museum

Access Nets models only the physical access control. The
authors of Access Nets did not explain how to extend their
approach in other domains (e.g. firewalls, pervasive computing
systems, etc.).

2.3.3 Access control policies based on term rewriting system

This section presents formal approaches of access control policy
based on term rewriting systems [10]. A term rewriting system
is a Turing complete computational model. In this thesis, we use
this approach to implement the security policy engine. The choice
of a term rewriting approach is motivated by its expressivity, by

36 background

the numerous available proof techniques, and by the efficiency
of the various available implementations of rewrite engines. To
be self-contained, we briefly recall several basic notions used in
term rewriting system.

signatures A many-sorted signature Σ = (S,F,P) is given by
a set of sorts S, a set of function symbols F and a set of predicate
symbols P.

A function symbol f with arity s1, . . . , sn ∈ S and co-arity
s has type f:s1, . . . , sn 7→ s. A predicate symbol p with arity
s1, . . . , sn ∈ S has type p:s1, . . . , sn.

Equality and inequality are the two predicates which we used
in this thesis.

terms T(Σ,X) is the set of well-sorted terms built from a
given finite set F of function symbols and a denumerable set X
of variables. Variables are also sorted, and x : s means that the
variable x in X has sort s. The set Xs denotes a set of variables of
sort s, and X =

⋃
s∈SXs. We may omit sort names when they are

clear from the context.

The set of variables occurring in a term t is denoted by Var(t).
If Var(t) is empty, t is called a ground term (we may also call it a
closed term). T(Σ) is the set of all ground terms.

De�nition 1. A substitution σ is a mapping from X to T(Σ,X), with
a finite domain {x1, ..., xk}. It is denoted σ = {x1 7→ t1, ..., xk 7→ tk}.
For all i ∈ {1, ..., k}, xi, ti are of the same sort. The application of a
substitution σ to a term t is denoted σ(t).

De�nition 2. (Rewrite rule). Given a signature Σ, a rewrite rule is
an oriented pair of terms denoted l→ r where l, r ∈ T(Σ,X). We call
l and r respectively left-hand side and right-hand side of the rule. A
rewrite system is a set of rewrite rules.

De�nition 3. (Rewrite Relation). Given a signature Σ and a rewrite
system R over T(Σ,X), the rewrite relation associated to R is denoted
→R and is defined as follows: t→R s if there exists a position p in t, a
rewrite rule l→ r in R and a substitution σ such that t |p= σ(l) and
s = t[σ(r)]p.

A term t is said irreducible by R, if there is no term s such that
t→R s

A constrained rewrite rule over a signature Σ is a 3-tuple
(l, ϕ, r) ∈ TΣ,X × ForΣ,X × TΣ,X, denoted by l ϕ−→ r, such that
Var(r) ⊆ Var(l) ∪ FVar(ϕ), where FVar(ϕ) is the set of free
variables in ϕ. A constrained term rewrite system (CTRS) R is
a set of constrained rewrite rules. The symbol →R denotes the

2.3 security of pervasive computing system 37

rewrite relation with a CTRS that generalize the rewrite relation
→R on terms.

In this case, a constrained rewrite rule (l→ r if ϕ) applies in a
Σ-model M if the formula σ(ϕ) holds in M [19].

strategic rewriting The notion of strategy is fundamental
in rewriting to express control on the rules application. Here, we
only give a general presentation of the main ideas. The formal
definition and the related properties can be found in [35].

In a term rewrite system R, if a term can be rewritten by two or
more than two rewrite rules at the same time, we need to control
how we apply these rewrite rules. The strategy allows controlling
the application of rules on a term.

For instance, the strategy universal means that all rules are
applied in any order. Suppose we have two rewrite rules a →
b, a → c and a term a. If we apply the strategy universal on
a, then we get three results {a, b, c}. The strategy first-applicable
selects in the ordered set of rules the first one that applies to the
term. With the list of rules (a→ b, a→ c) and the strategy first
applicable, the term a rewrites to b.

security policies In access control policies based on term
rewriting systems, policies are defined by a set of rewrite rules,
governed by a rewrite strategy. The access requests and the envi-
ronment where policies are enforced are represented as algebraic
terms. When applied to an access request the rewrite rules induce
an evaluation process which eventually returns an authorization
decision.

Anderson et al. [35] give a formalization of access control policies
based on term rewriting system. They define a security policy, ℘,
as a five-tuple(Σ,D, R,Q, ζ) where:

1. Σ is a many-sorted signature;

2. D is a non-empty set of ground terms called decisions:
D ⊆ T(Σ);

3. R is a set of constrained rewrite rules over T(Σ,X);

4. Q is a set of terms from T(Σ,X), called access requests;

5. ζ is a rewrite strategy for the set of rewrite rules R.

Anderson gives an example of a ticket system of the public
transportation to illustrate their approach. The magnetic ticket
can store the number of remaining trips and the time and data
of the last validation. Users can take buses as many times as
they want within 60 minutes. This is expressed by the following
policy:

38 background

• The signature Σ contains :

ticket: Nature × Time→ Decision
q: Ticket × Time→ Decision
deny: → Decision

• The set of decision D={deny, ticket(t0, t1) | t0, t1 ∈ T(Σ)}

• The set of rewrite rules R contains:

q(ticket(n,time), current time)→ ticket(n-1, current time)
if (current time > time + 60)→ true
q(ticket(n,time), current time)→ ticket(n, time)
if (current time 6 time + 60)→ true
q(ticket(0,time), current time)→ deny

• The access request q is a term from T(Σ,X), for instance,
q(ticket(10, t0), t1) is an access request, where t0, t1 are of
sort Time.

• The strategy ζ = universal(R)

We give more details about the properties (e.g. consistency,
termination) of the security policies based on term rewriting
system in Section 8.1.1.3.

Tony Bourdier et al. [19] focus not only on the security policy,
but also the system on which the security policies apply. They
consider that a secured system “consists of two parts: on the one
hand, the set of rules describing the way the decisions are taken and
on the other hand, the information used by the rules and the way these
evolve in the system. We call the former the policy rules and the latter
the security system.”

In this approach, a security system is “ a transition system that
describes the way security information evolves. The states of the system
are defined intensionally by a set of kernel information (that can be
modified by the transition rules of the system) and an immutable set of
closure rules used to compute the complete security information.”

They use transition rules to formalize the evolution of the
system. A transition is triggered by an event. An event contains
two terms: authorization query and decision. With the help of
transition rules, they formalize the impact of a security policy on
the system which it controls.

2.3.4 Policy management architecture

We have seen how to specify a security policy with policy speci-
fication languages. To realize those policies, we need to enforce
them in the actual computing systems. In this section, we present
three architectures which are dedicated to the management of
security policies.

2.3 security of pervasive computing system 39

2.3.4.1 IETF security policy management architecture

Figure 9 shows the architecture which the IETF has proposed
for the enforcement of policies. In the IETF architecture, the

Figure 9: The IETF policy enforcement architecture

policy management tool is expected to provide a graphical user
interface. The GUI needs to allow an administrator to specify
security policies and store policies in the policy repository. The
policy enforcement point (PEP) is responsible for enforcing policies
with respect to authentication of subject, authorization to access
and services. The Policy Decision Point (PDP) is responsible for
managing one or more policy enforcement points. The PDP
receives policy decision requests from PEPs and returns policy
decisions to them. Policy enforcement involves the PEP applying
actions according to the PDP’s decision.

Verma [93] presents a detailed description of the IETF frame-
work in his book. He describes the concepts and the implementa-
tion of the IETF architecture including policy validation, policy
distribution, policy enforcement point and translation algorithms.

This architecture is considered the best approach for policy
management. It has been used by many approaches. The ar-
chitecture which we propose in this thesis is inspired by this
architecture.

2.3.4.2 Strongman security policy management architecture

Keromytis et al. propose the Strongman security policy manage-
ment architecture [57]. Figure 10 illustrates the main concepts
of the Strongman architecture. Their main idea is to support
various global high-level policy specification written in different

40 background

languages. They provide a common lower-level policy interop-
erability layer which is implemented by using KeyNote. The
interoperability layer is responsible for enforcing high-level poli-
cies on various network devices.

Figure 10: The strongman security policy management architecture

This architecture can enforce policies which are written in
different languages in a system. But the authors do not explain
how the high-level policies are managed by administrator. We do
not have a clear idea of where the high-level policies are stored,
how they interact with the network information.

2.3.4.3 Self-Managed Cell architecture

The SMC (Self-Managed Cell) architecture is proposed by Sloman
et al [88]. Figure 11 [88] shows a graphical presentation of the
SMC architecture.

Figure 11: The Self-Managed Cell architecture

The service discovery component discovers nearby components
capable of becoming members of the SMC (e.g. intelligent sen-

2.4 summary 41

sors), and other SMCs when they come into communication
range. A policy management component manages the policies
specifying the behaviour of the cell as well as policies supplied
to new members to control their behaviour and how they inter-
act with other SMC members. A security component performs
authentication, confidentiality support and anomaly detection
if needed. A context component determines and disseminates
context information. A event bus is used for interaction between
components and disseminating events which trigger policies

The SMC architecture was proposed to structure pervasive
computing systems. This architecture gives us a first idea how the
security policies interact with other components of the pervasive
computing systems. However, the authors do not explain how
the security policies are managed by the administrators.

2.4 summary

In this chapter, we first presented the pervasive computing sys-
tem and its application domains. Then we presented the existing
approaches which help programmers develop pervasive comput-
ing systems. We noticed that there are only few approaches that
addressed the security concerns. But, most of them neglect the
security concerns completely at design time. Few of them pro-
vide support for enforcing a security policy. None of them guides
developers throughout the pervasive computing application life-
cycle. We introduced the traditional approaches that addressed
security policies. We noticed that there are some concepts in
a security policy that are not present in pervasive computing
system and vice versa. To specify appropriate security policy
for pervasive computing system, we need to adapt the missing
concepts, such as context information, to security policy.

3
C A S E S T U D Y

In this chapter, we give a scenario of three typical pervasive com-
puting applications. We first describe the required devices and
the physical environment of the pervasive computing applica-
tions. Then we present the security requirements of this scenario.
This scenario will be used throughout this thesis.

3.1 scenario

As we mentioned before, our approach focuses on the domain
of smart home. The scenario which we present in this section
includes three typical pervasive computing applications of the
smart home domain. The anti-intrusion application prevents
unauthorized access to a building. The fire-detection application
detects a fire in a building. The remote control application allows
a user to control certain devices. Figure 12 shows the required
entities of these applications.

Figure 12: A pervasive computing application scenario

The anti-intrusion application uses motion detectors to detect
unauthorized entrance in the building. If it detects an intrusion, it
will trigger the alarm. The fire-detection application uses smoke

43

44 case study

sensors and temperature sensors to detect a fire. If it detects a
fire, it activates sprinklers and sound alarms. The remote control
application uses smart phones to receive control orders from
authorized users. Authorized users can turn on or turn off lights
and lock or unlock doors.

We suppose these applications are deployed in a building
named A29. Figure 13 shows the location description of the
research facility. We noticed that there are four rooms in the
hallway East which are located on the second floor of building
A29. We named the second floor F2.

Figure 13: The location description of the research facility

These three pervasive computing applications can effectively
illustrate our approach. The fire-detection application and anti-
intrusion application can produce context information which
may influence the decision of the security policies. The remote
control application can effectively illustrate how we introduce
the required concept to enforce security policies.

3.2 security requirements

We suppose there are five kinds of users in this research facility:
professor, intern, phd-student, student and janitor. Interns and
phd-students are the students who have particular privileges. We
suppose that room R1 is the office of a professor named Alice,
room R2 is the office of a professor named Bob, room R3 is the
office of phd-students and interns, room R4 is the meeting room.

We suppose that only authorized users can access the research
facility and use the devices. All unauthorized users’ request will
be denied. It means:

1. Only professor Alice can access to his office (i.e. room R1)
and use the device in the office .

2. Only professor Bob can access to his office (i.e. room R2)
and use the device in the office.

3. Phd-students can access to room R3 and turn on or off the
light.

3.2 security requirements 45

4. Students of the research facility can access room R4.

5. In case of the fire emergency, all members of the research
facility can unlock all doors.

6. In case of the intrusion, only janitor can unlock doors.

7. In case of none of the above rules can be applied to a
request, this request will be denied.

Part II

D E V E L O P I N G S E C U R I T Y P O L I C I E S

IN PERVASIVE COMPUTING SYSTEM

4
O V E RV I E W O F O U R A P P R O A C H

In this chapter, we give an overview on our approach. We present
the key concepts and requirements which we have identified, and
solutions that we propose to address these requirements at each
stage of the application life-cycle.

4.1 presentation of our approach

A successful deployment of security policy in a pervasive comput-
ing system requires two basic entities: a specification of security
policy and a security-policy enforcement mechanism. Specifying
and enforcing a security policy involves different stages of the ap-
plication life-cycle. Due to the special requirements of pervasive
computing systems (e.g. dynamicity, scalability, etc.), enforcing
a security policy is tricky and time-consuming. To facilitate the
task of specifying and enforcing a security policy, we propose a
systematic approach to embed security policies into pervasive
computing applications and illustrate it on a specific application.

Our starting point is the description of a pervasive computing
application and the description of a security policy by rules
expressing permissions and prohibitions.

The only assumptions that are made on these descriptions are
as follow:

• The pervasive computing system has sensors and actuators,
that are the two facets of entities corresponding to devices,
whether hardware or software, deployed in an environment.
In addition, a pervasive computing system may have ways
to collect and transmit information.

• The security policy is expressed by constrained rules in
first-order logic where constraints have variables taking
values in finite or denumerable domains, and satisfiability
of constraints is decidable.

For the sake of clarity, we use two concrete languages (i.e. Dia-
Spec [25] and DiaSecur1) to illustrate our approach. Figure 14

shows how to develop a secured pervasive computing application
with our approach. In the following sections, with the idea that
security should be integrated all along the life-cycle of pervasive

1 A domain specific policy specification language defined in Chapter 5

49

50 overview of our approach

Figure 14: Enforcing security policy with our approach

computing applications, we show how security policies are de-
fined, enforced, developed, tested, deployed, and reconfigured if
security requirements change.

4.2 design

To facilitate the specification of security policies, we propose a
security policy specification language named DiaSecur. To en-
force the security policy, we propose an approach to manage the
security policies and the interface between pervasive computing
systems and security policy management mechanisms.

At the design stage, the application designer describes basic
components (e.g. devices, context, controller) and the design
of pervasive computing applications (stage À). To secure this
pervasive computing system, a security expert analyzes the se-
curity requirements and the description of pervasive computing
applications. After the analysis, he identifies the components
which need to be secured and tag them with specific security
annotations (stage Á). Lastly, the security expert specifies security
policies to fulfil security requirements (stage Á).

4.3 implementation stage 51

4.3 implementation stage

At the implementation stage, the secured pervasive computing
application descriptions are passed to two compilers. The Dia-
Spec compiler generates a programming framework (stage Â).
This framework contains an abstract class for each entity (e.g.
devices, contexts and controllers). The abstract classes contain
abstract methods which can facilitate the implementation of the
pervasive computing application. Based on the security annota-
tions, by adding new methods or modifying existing ones in the
generated abstract class, the enforcement of security policies is
seamless. Based on the secured pervasive computing description
and a DiaSecur description, the DiaSecur compiler generates a se-
curity manager which manages the security policies and security
related information (stage Ã). The security manager treats the
authentication and authorization requests based on the security
policies and context information. Lastly, the application devel-
oper implements each entity by extending the generated abstract
class (stage Ä).

4.4 verification and test stage

After the design and implementation stage, and before the de-
ployment stage, the security policies need to be verified. The
crucial properties such as absence of conflicts and termination of
request evaluation need to be ensured to prevent potential secu-
rity breaches. We propose a tool which allows an auditor to verify
certain properties of security policy (e.g. conflicts) (stage Å), and
provides help to resolve conflicts and incompleteness.

To test the behavior of security policy in pervasive computing
applications prior to deploying a real environment, we use a 2D
simulator, named DiaSim [23]. Security policy auditor can test the
impact of security policy in the simulated pervasive computing
environment (stage Å).

4.5 deployment and maintenance

To deploy the security policy, some security relevant information
such as user profiles and device profiles need to be initialized.
The class of entities (e.g. sensors, actuators) which the appli-
cation developer implemented need to be instantiated. After
deployment, the maintenance of the secured pervasive comput-
ing system may require that the system administrator adds or
deletes user profiles or reconfigures policy rules.

52 overview of our approach

We propose a graphical user interface which allows the sys-
tem administrator to manage the security policy rules and other
security relevant information (stage Æ).

5
S E C U R I T Y P O L I C Y S P E C I F I C AT I O N L A N -
G U A G E

In this chapter, we present our policy specification language
DiaSecur dedicated to specify authorization policies in pervasive
computing systems. We first present the domain analysis which
identifies the basic components of our language. Then we present
the basic entities of our language. Lastly, we present how to use
term rewriting systems to implement security policies in our
approach.

5.1 domain analyses

Many computer languages are domain specific rather than gen-
eral purpose such as Microsoft-Excel, SQL. Domain-specific lan-
guages (DSLs) focus on a particular application domain. By using
specific notations and constructs, domain-specific languages offer
substantial gains in expressiveness and ease of application devel-
opment. Dave Thomas wrote in his paper [91] “Domain-specific
languages lift the platform's level, reduce the underlying APIs' surface
area, and let knowledgeable end users live in their data without complex
software centric models and the API field of dreams.”. Martin Fowler
said “Domain specific languages (DSLs) are very good at taking certain
narrow parts of programming and making them easier to understand
and therefore quicker to write, quicker to modify and less likely to breed
bugs” [41].

To identify the terms and concepts to be used in our language,
we need to analyze our problem domain. Domain analysis can
give us a clear understanding of desired system features and
the required functionalities to implement those features. In DSL
development, domain analysis is essential to define and exploit
commonalities and variabilities in a given problem domain. The
table 1 shows us some definitions of the basic terms in domain
analysis.

Most of DSLs are developed with informal domain analysis.
Because it is much easier to realize. Formal domain analysis is
difficult to accomplish, but the output is richer. In this thesis, we
use a formal analysis method, named FAST [98, 99].

53

54 security policy specification language

Term Definition

Context: The circumstances, situation, or envi-
ronment in which a particular system
exists.

Domain: A set of current and future applica-
tions which share a set of common
capabilities and data.

Domain analysis: The process of identifying, collecting,
organizing, and representing the rel-
evant information in a domain based
on the study of existing systems and
their development histories, knowl-
edge captured from domain experts,
underlying theory, and emerging tech-
nology within the domain. Domain
engineering: An encompassing pro-
cess which includes domain analysis
and the subsequent construction of
components, methods, and tools that
address the problems of system/-
subsystem development through the
application of the domain analysis
products.

Domain model: A definition of the functions, objects,
data, and relationships in a domain.

Table 1: Definitions of the basic terms in domain analysis

5.1.1 Domain analysis with FAST

FAST approach uses SCV analysis [98] to identity, formalize and
document commonalities and variabilities in a given problem
domain. SCV stands for Scope, commonality, and variability.
There are five main steps in SCV analysis as followed:

1. Establish the scope: the collection of objects under consid-
eration.

2. Identify the commonalities and variabilities.

3. Bound the variabilities by placing specific limits such as
maximum values on each variability.

4. Exploit the commonalities.

5. Accommodate the variabilities

5.1.1.1 Establish the scope

At this step, we identify and define the domain which we work
on. As I mentioned before, our problem domain consists of
security policy and pervasive computing system.

5.1 domain analyses 55

A security policy is a set of objectives, rules of behaviors for
users and administrators, and requirements for system configu-
ration and management that collectively are designed to ensure
Security of computer systems in an organization. In this domain,
our objective is to define security policies which can limit the
activities of a user. A security policy is a group of policy rules
which define and govern the right behaviors of a system. A policy
rule defines actions that subject can perform on an object when a
set of conditions are satisfied. Actions represent the operations
which subjects want to perform. Subjects and objects are the basic
entities in the system. For example, a subject could be a user or
a process, an object could be a door or an alarm. The condition
defines in which situation the policy rule can be applied. Decision
is given when system send a request to enquiry the security policy.
We can identify policy rule, action, subject, object, condition,
request, decision as basic terms.

A pervasive computing system consists of intelligent computa-
tional entities (software or hardware) which can collect, commu-
nicate and reason about data of the environment and providing
services to users. SOUPA [27] defines a standard ontology for
pervasive computing systems which has been used by many ap-
proaches (e.g. [62], [26], [66]). It identifies basic entities such as
device, person, event, action and location.

5.1.1.2 Commonalities and variabilities

David.M Weiss [98] proposed several mechanisms(Procedures,
Inheritance, etc.) for exploiting commonalities and variabilities in
FAST approach. We choose Parametric polymorphism mechanisms
for our domain analysis, because it is the one most widely used.
In this mechanism, we implement the same operation with differ-
ent existing approaches. Then we observe the identical parts and
different parts.

We introduce a little scenario which describes security require-
ments. Then we use different approaches (e.g. Rei, Ponder,
XACML, SPL) to write security policy rules to fulfil these require-
ments. The scenario and policy speifications can be found in
appendix A.

In the policy specifications of Rei, Ponder, XACML, the con-
cepts such as subject, object, action, condition and decision are
explicit. In SPL, author(subject), target(object), action are rep-
resented as attributes of events. The concept of condition and
decision are hidden in the acceptability of the event (Listing 38,
line 2). The decision of policy rule is not explicit, it depends
on the evaluation of the logical expression. However we are

56 security policy specification language

convinced that subject, object, action, condition and decision
are commonalities.

Variabilities in a domain are the elements which are optional
or alternative. We can imagine that the characteristic of subject
and object could be different in different scenario. For instance,
in an on-line DVD rental shop, we want to set a security policy
which can prevent the teenager to rent a DVD for adult. So the
age is indispensable for the subject. Nevertheless if we want to
set a security policy for printer access in a school, the age is no
longer needed. So the attributes which we use to characterize
subjects and objects are variabilities.

5.1.2 Identified Concepts and Terminology

We have identified the key concepts of pervasive computing
systems and the security policies. To develop a security policy
dedicated to pervasive computing systems, the security policy
needs to adapt some concepts of pervasive computing system.
To embed a security policy into pervasive computing systems,
the pervasive computing system needs to adapt some concepts
of security policy.

Figure 15 shows how we combine the concepts of pervasive
computing systems and security policies. We have three pairs
of "common concept". Person in pervasive computing system
describes the profile of a user which is capable of executing an
action on the devices. Subject is the entity which wants to gain
access to an Object. The concept of person maps into the concept
of subject, the concept of device maps into the concept of object,
and the concept of action exists both in pervasive computing
system and security policy. For the sake of clarity, we named the
three pairs of "common concept" as subject, object and action. To
enforce security policies, these three basic concepts are essential.

A concept such as location which describes the ambient infor-
mation of pervasive computing system is essential for context
aware security policies. The security policy needs to adapt these
concepts to fulfil the requirements of pervasive computing sys-
tems. The pervasive computing system needs to form requests to
apply security policy.

5.2 diasecur

In this section, we present the basic entities which we identified
in the domain analysis. These entities are the basic building
blocks of our security policy specification language dedicated to
specify authorization policies in pervasive computing systems.

5.2 diasecur 57

Figure 15: The merger of the concepts of pervasive computing system
and security policy

5.2.1 Basic entities

5.2.1.1 Subject

We identified three key attributes to characterize subject: identity,
role, location. We use the attribute identity to distinguish one user
from another. We use the attribute role to group the users who
have the same privileges. It prevents duplicating the policy rules
for different subjects which have the same role. The attribute lo-
cation is also a very important characteristic for subjects, because
in pervasive computing system, the privilege of a subject could
be different in different location.

5.2.1.2 Object

We use three key attributes to characterize object: identity, object-
Type, location. We use the attribute identity to distinguish one
object from another. We use the attribute objectType to group the
objects which are the same kind. It can avoid assigning privileges
to objects one by one, when they possess the same properties. We
use the attribute location to group objects which are located at
the same place.

5.2.1.3 Action

Actions are the activities which can be executed by actuators. The
action definition in DiaSpec starts with keyword action, followed
by the name of action. An action could contain one or several
methods. List 8 is an example of action definition. We borrow
this language fragment from DiaSpec to define actions.

1 action AlarmAction{

58 security policy specification language

2 On();

3 Off();

4 }

Listing 8: An example of action definition in DiaSpec

5.2.1.4 Role

In contrast to the access control systems without roles, we can
associate privileges to a set of users instead of only one user.

A role system definition starts with keyword Roles, followed by
a set of role definitions. The role definition consists of two parts.
The first part declares the name of the role. It starts with keyword
Role, followed by the name of the role. The second part describes
the role hierarchy. It starts with keyword inherit, followed by
a list role names. The role hierarchy can not only express the
relationship of roles, but also delegate rights to senior role. List 9

shows an example of role definition. Role phd_student inherits
all rights from role student (Line 5).

1 Roles {

2 Role professor;

3 Role student;

4 Role intern inherit student;

5 Role phd_student inherit student;

6 Role janitor;}

Listing 9: An example of role definition in DiaSecur

5.2.1.5 Location

In pervasive computing, the location given by sensors (e.g. GPS,
RFID tag, etc.) are not readable by human users. So, in our
language we use abstract locations.

Such a smart space could be a single room, an entire building
or a set of buildings. We define a location with the keyword
Locations followed by a set of smart space definitions. A smart
space definition could contain one or more buildings. A building
contains one or several floors, a floor contains one or several
hallways, a hallway contains one or several rooms.

When we define a location, we have several constraints. We can
not have two rooms which have the same name in the same floor,
or two floors with the same name in a building. In other words,
location names must be unique. Listing 10 shows an example of
location definition.

5.2 diasecur 59

1 Locations{ Building A29 {

2 Floor F1{

3 Hallway West {

4 Room R1;

5 Room R2;}

6 }

7 Floor F2{

8 Hallway East {

9 Room R3;

10 Room R4; }

11 }

12 }

13 }

Listing 10: An example of location definition in DiaSecur

5.2.2 Authorization rules

Authorization rules define which subject can do or can not do
which action on which object under which condition. In our case,
we declare the authorization rules at the design stage. We do not
have the concrete information of the device and user instances.
As a result, we can only assign privilege of a group of objects to
a role. To be more precise, we define which kind of subjects can
do or can not do which action on which kind of objects. As a
result, we can define a positive authorization rule as in line 1 of
Listing 11. It starts with the keyword Permission, followed by
the role of the subject, the action and the type of the object. We
can define a negative authorization rule as in line 2 of Listing 11.
It starts with the keyword Prohibition, followed by the role of
the subject, the action and the type of the object. We use the
keyword if to declare the conditions.

1 Permission(professor, open, door) if condition.

2 Prohibition(professor, close, door) if condition.

Listing 11: Authorization rules

The role of the subject can be concrete roles (e.g. professor,
student, etc.). It also can be a variable, denoted by subRole. The
action and the type of object also can be variables, denoted by
action and objType. For instance, we can write a rule Prohibi-
tion(subRole, action, objType). As we give no constraints to these
variables, this rule means "anyone is prohibited to do any action
on any object".

condition In DiaSecur, a condition is a decidable quantifier-
free logic expression, built as a set of comparisons which are

60 security policy specification language

separated by boolean operators: ’or’ and ’and’. In a comparison,
values can be compared by: ’==’ (equality) and ’!=’ (inequal-
ity). We can divide the comparisons into two categories: context
comparisons and attribute comparisons.

A context comparison starts with a context variable, followed
by an operator (i.e. ’==’, ’!=’), followed by a value which has the
same type as the context variable. For instance, XOnFire == true

is a context comparison. A context variable is built based on the
name of a context. The context name and the type of the context
value are both provided by the pervasive computing application
description.

An attribute comparison starts with an attribute variable, fol-
lowed by an operator (i.e. ’==’, ’!=’), followed by a attribute value.
For instance, subjectId!=alice is an attribute comparison. An
attribute variable is built based on the name of an attribute. In
this work, we fix that a subject only has three attributes (subjectId,
subjectRole, subjectLocation), an object only has three attributes
(objectId, objectType, targetLocation).

At design time, in the pervasive computing system, the name
of contexts and their types are already defined. In the security
management, to be aware of the context value, We need to store
the context names and the type of these contexts. The context
names are used as the keys to access the context values.

At run time, the context values are provided by the pervasive
computing environment. Then this context value is stored in the
security management. For instance, if the pervasive computing
system produce a context value true of the context OnFire, in
the security management, the value associated to the context
name OnFire is replaced by the value true. When a policy rule
needs to evaluate his condition such as XOnFire == true, the
context variable XOnFire is replaced by the value associated to
the context name OnFire. In this example, the context variable
is replaced by the value true. In Section 6.2.2, we give more
details of how we define security relevant contexts, and how they
provide context values. The attribute values are provided by the
profile of subjects and objects.

5.2.3 Generated term rewriting system

To enforce the security policies, the policy specification is com-
piled into a term rewriting system which is defined with a signa-
ture and a set of rewrite rules.

5.2 diasecur 61

5.2.3.1 Signature of the generated term rewriting system

In the signature, we use functions, sorts and constants to repre-
sent subject, object, action and their attributes (e.g. location, roles
and types of objects). Listing 12 is an example of a generated
signature where sorts are in blue.

location A term of sort location consists of four subterms of
sorts: building, �oor, hallway and room (lines 4 to 8). Building, floor,
hallway and room are declared as sorts.

subject A term of sort subject consists of three subterms of
sorts: subjectId, subjectRole and location (line 12). SubjectId is
declared as a sort which has a primitive type (e.g. String, int).
SubjectRole is declared as a sort (line 2).

object A term of sort object consists of three subterms of sorts:
objectId, objectType and location (line 11). ObjectId is declared
as a sort which has a primitive type. ObjectType is declared as a
sort (line 3).

1 Signature {

2 janitor, professor, student, intern: -> subjectRole

3 doorlock : -> objectType

4 loc : building * floor * hallway * room -> location

5 A29 : -> building

6 F1 : -> floor

7 West, East : -> hallway

8 R1, R2 , R3, R4: -> room

9 DoorAction_close, DoorAction_open : -> action

10 req : subject * action * object -> request

11 obj : objectId * objectType * location -> object

12 sub : subjectId * subjectRole * location -> subject

13 deny, permit : -> decision

14 }

Listing 12: An example of a generated signature of term rewriting
systems

request and decision Based on the domain analysis in
Section 5.1, we decide that an authorization request is built with
the function symbol req, followed by three subterms of sort
subject, action and object. The decision consists of two constants:
permit and deny (see listing 12).

policy rules The policy rules of DiaSecur generate a term
rewriting system. Listing 13 shows an example of the generated
rewrite rules. The first rule defines that the student who has the
identity chuck is allowed to unlock the door located at building

62 security policy specification language

A29, floor F1, hallway east and room R2 (lines 2 to 4). The left-
hand side of the rewrite rule is a term built with the function
symbol req and three subterms of sort subject, action and object.
The term of sort subject is built with the function symbol sub and
three parameters. These parameters can be constants or variables.
The constants are declared in the previous signature. To express
a more abstract subject, variables of sorts subjectId, subjectRole
and subjectLocation may be used. For instance, the term subject
contains two variables subId and subLocation and a constant
student of sort subjectRole the role of the subject. These variables
can be used in the conditions. The terms of sorts action and object
in the rules are built the same way as we build the subject.

1 Rewrite rule {

2 req(sub(subjectId, student, subjectLocation),

3 DoorAction_open,

4 obj(objectId, doorlock, loc(A29,F1,East,R2))) -> permit

5 if subjectId=="chuck" ;

6

7 req(sub(subjectId, professor, subjectLocation),

8 DoorAction_open,

9 obj(objectId, doorlock, loc(A29,F1,West,R2))) -> deny

10 if subjectLocation!=loc(A29,F1,West,R2) ;

11 }

Listing 13: An example of a generated rewrite rules of term rewriting
systems

5.2.3.2 Request evaluation

Request evaluation in our approach is based on term evaluation
by rewriting. When applied to an authorization request (a term of
sort request) the rewrite rules induce an evaluation process which
eventually returns a decision. The evaluation process using term
rewriting systems is precisely defined in [10, 35].

Here, we only give a general presentation of the main ideas.
Suppose we have a set of policy rules R = {r1, ..., rn}, a con-
text environment Con, a strategy first-applicable and a set
of decisions D = {permit, deny}. A request q is a term of
the form req < sub, act, obj >, where sub, act and obj are
terms which are built by constants. For instance, sub can
be expressed as sub(alice, student, loc(A29,F1,West,R2)), where
’alice’ is a constant of sort subjectId, student is a constant of
sort subjectRole, loc(A29,F1,West,R2) is a term of sort location.
Since a policy rule in the term rewriting systems has the form
req(subject, action, object) → d if c,where d ∈ D and c is
a condition, matching policy rules to the requests is easy and
amounts to check a system of simple equations. If there is a
solution σ which matches the left-hand side of the policy rule

5.3 summary 63

against the request, and if σ(c) is true in context environment
Con (provided by the pervasive computing environment), then
the right-hand side of this rewrite rule is the decision of the
request. If there is no solution σ, then we continue to apply the
next policy rule. If no rule of the policy can be applied, then the
policy is incomplete. We will explain how to resolve this problem
in Section 8.1.3.

condition evaluation We have defined a context environ-
ment Con as a set of contexts. At run time, a context has the form
<contextName, contextValue>. As described in Section 5.2.2, the
condition is a set of equality comparisons, the condition evalua-
tion amounts to prove a set of equalities. For instance, suppose
we have a context condition XOnFire==true in a policy rule that
is selected for application, and a context <OnFire, contextValue>
in Con. At run time, the contextValue is provided by the perva-
sive computing environment (e.g. false). The context condition
evaluation amounts to instantiated the variable XOnFire by the
context value false and compare the equality of two constants.

The evaluation of an attribute condition is the same as the
context condition. Indeed the condition evaluation also involves
the disjunction and conjunction of the results of the context and
attribute comparison evaluations.

5.3 summary

In this chapter, we presented our policy specification language
DiaSecur dedicated to specify authorization policies in pervasive
computing systems. Based on the domain analysis, we presented
the basic entities of our language. We also presented how to
use the term rewriting system to implement policies in our lan-
guage. Compared to other approaches, our language takes care
of context information (e.g. location description) in order to make
the policies context aware. In this work, we fix the attributes in
subject and object. However, new attributes could be added in
subject and object definitions to support other pervasive comput-
ing systems. For example, we could add a new attribute age in
the subject for the assisted living applications.

6
D E S I G N I N G T H E S E C U R E D P E RVA S I V E C O M -
P U T I N G A P P L I C AT I O N S

In this chapter, we first present how our approach enforces and
manages security policy in a pervasive computing system. Then
we use enriched DiaSpec specifications to illustrate how to apply
our approach in DiaSuite. Lastly, we use the applications which
we introduced in the case study (Chapter 3) to illustrate how to
design a concrete secured pervasive computing applications by
using our approach.

6.1 design of security mechanism

A security policy needs to be enforced to fulfil the security re-
quirement. To do that, we need a security mechanism to enforce
security policy. Figure 16 shows the design of our security mech-
anism.

Figure 16: Architecture of the security mechanism

Our security mechanism can be divided into two parts. To
support the dynamicity of the pervasive computing system, we
isolate the components which are independent of the pervasive
computing system and call them as security management. To
enforce security policies in pervasive computing applications,
we introduce three key concepts (subjects, objects and security
related context). We introduce security enforcement points that
enrich the existing entities of the pervasive computing system

65

66 designing the secured pervasive computing applications

and establish interface between the pervasive computing system
and the security management.

6.1.1 Security management

Verma [93] describes that a policy management tool is expected to
provide a graphical user interface which allows an administrator
to specify security policies and store policies, it also can receive
requests and return decisions based on the provided policies with
respect to authentication of subject.

Based on the above description, we decide that a security man-
agement consists of a security information repository (SIRsm),
an authentication decision module (ADPsm), a policy engine
(PEPsm), a policy decision module (PDPsm), a policy repository
(PRsm) and an Administration Console (ACsm).

• The security information repository stores security informa-
tion such as user profiles, device profiles, context informa-
tion (e.g. fire, intrusion).

• The authentication decision module is responsible for han-
dling authentication requests and making decision based
on requests and user profiles.

• The policy decision module is responsible for handling
authorization requests and sends decisions back to the
pervasive computing system.

• The policy engine processes the authorization requests
based on the policy rules and context information.

• The policy repository is responsible for storing the security
policies.

• The administration console provides a graphical user inter-
face to help users manage the security policy and security
data such as user profiles and device profiles.

6.1.2 Interface between pervasive computing system and security
policy

Developing the interface between pervasive computing systems
and security mechanisms requires the mapping of the key con-
cepts of the two domains. Based on the domain analysis in
Section 5.1, we have identified three key concepts: subjects, ob-
jects and security related contexts.

The concept of context in pervasive computing systems does
not exist in traditional security policies. In pervasive computing
systems, the security policies which can not take into account

6.1 design of security mechanism 67

the context information may impede functionalities of pervasive
computing systems. To effectively support pervasive comput-
ing, we encapsulate context with the concept of security related
context and import this concept in security policy. Our secu-
rity management mechanism is capable to receive and store the
context information which is provided by pervasive computing
environment. Our policy specification language is based on rule
based formalism [19]. Policy rules are constrained rewriting rules.
The constraints allow us to handle the concept of security related
context in security policy.

6.1.2.1 Security enforcement points

We propose three kinds of security entities to introduce the basic
entities (subject, object and security related context) in perva-
sive computing systems: security information collecting point
(SICPse), authentication enforce point (AEPse), policy enforce
point (PEPse). For the sake of clarity, we call the SICPse, AEPse
and PEPse security enforcement points.

A security information collecting point (SICPse) is used to build
the concept of security relevant context. If the pervasive com-
puting environment can provide directly the security relevant
context information, the security information collecting point is
responsible for sending the context information to the security in-
formation repository (SIRsm). If the pervasive computing system
does not have the concept of context, the security information
collecting point is responsible for collecting raw data from sen-
sors and refining these raw data to produce the security relevant
context information. Then it sends the context information to the
security information repository.

An authentication enforcement point (AEPse) is used to build
the concept of subject. In some cases, the pervasive computing
system contains already the concept of user. In these pervasive
computing systems, the authentication enforcement point creates
credentials based on the identity of users and expiration time.
Then the request sent by users will be tagged by the credential.
If the pervasive computing system does not have the concept of
user. The authentication enforcement point is responsible for em-
bedding the concept of device in the concept of user (subject). It
forces the users who use these devices to authenticate themselves.
To do so, the authentication enforcement point introduces the
identity and identity proof of users. Based on the identity and
identity proof, it forms the authentication request and sends it to
the authentication decision module.

The policy enforcement point (PEPse) is used to build the concept
of object. The policy enforcement point is responsible for embed-

68 designing the secured pervasive computing applications

ding the concept of actuating devices in the concept of objects.
Objects need to be monitored by security policies. To do that, a
policy enforcement point forms the authorization requests based
on the credential of the receiving data and the identity of the
device. Then it sends the request to the policy decision module.

6.1.3 Embedding security enforcement points in pervasive computing
systems

The security enforcement points play the role of the bridge be-
tween pervasive computing systems and security policies. They
guide the implementation of the required functionalities of the
key concepts. They need to be embedded at the right places of
the pervasive computing systems. So the first step is to identify
the entities which represent the key concepts in pervasive com-
puting systems. Then tag them with security enforcement points.
These entities may be concrete or abstract. For instance, a con-
crete device such as smoke sensor can be used to provide context
information, an abstract context class "Fire" also can be used to
provide context information. We propose specific annotations to
tag basic entities with security enforcement points.

6.1.3.1 Annotations for security enforcement points

An annotation, in our approach is a structural declaration to mark
different entities (e.g. devices with actuating capabilities) with
dedicated security enforcement points (e.g. Policy enforcement
point). The annotation allows us to use more abstract concepts
to encapsulate low level entities. For instance, an entity smart
phone tagged with an annotation authentication enforcement
point represents the concept of user. This smart phone needs to
realize the user required functionalities which we described in
Paragraph 6.1.2.1.

The annotations allows us to automatically generate the func-
tionalities of the security enforcement points inside the entities.
We illustrate how we define an annotated entities in Section 6.2.
In Section 7.1, we present how we generate support to implement
the required functionalities in the annotated devices.

6.2 applying our approach in diasuite

In this section, we use DiaSuite [31] to illustrate our approach. We
can separate DiaSpec declarations for devices into two categories:
sensing devices and actuating devices. We annotate a sensing
device declaration to promote it to type subject, an actuating

6.2 applying our approach in diasuite 69

device declaration to promote it to type object, and a context
declaration to introduce a type security related context. For
simplicity we write subjects (resp. objects and security related
contexts) instead of entities of type subject (resp. object and
security related context).

6.2.1 Device

Devices are used to describe the computational entities and their
sensing or actuating capacities. In DiaSpec, there is no explicit
definition of users. Everything is represented by devices. So
we divide sensing devices into two different types: user device,
infrastructure device.

• User devices are responsible for representing users and
reflecting the intention of users. The user devices must
have sensing capabilities to collect the intentions of users.
Then they translate the intentions of users into requests
which can be managed by the pervasive computing system.

• Infrastructure devices collect the information of the physical
environment such as temperature and smoke.

• Actuating devices provide services that can be executed by
users.

User devices may need to be used to represent more than one
user. The user devices need to provide authentication to support
this kind of capabilities. To avoid the abuse of the services pro-
vided by the pervasive computing system, the actuating devices
need to be monitored by the security policy. To achieve the se-
curity requirements at the design stage, we enriched the devices
declaration with security enforcement point annotations.

6.2.1.1 Enrich user device

In DiaSpec, we enriched user devices (sensing device in DiaSpec)
to introduce the concept subject in pervasive computing applica-
tion. We use authentication enforce point annotations to indicate
which user device need to be enriched. Listing 14 shows a user
device UserDevice declaration in DiaSpec with an authentication
enforcement point annotation.

1 device UserDevice {

2 attribute id as String;

3 source userRequest as request;

4 security{ require AEP on source userRequest; }

5 }

Listing 14: An example of authentication enforcement point in an user
device

70 designing the secured pervasive computing applications

Inside the security statement, we can declare a security en-
forcement point. Line 4 shows how we tag a device source with
authentication enforcement point. It starts with key word require,
followed by AEP (the type of security enforcement points). The
key word on indicates which source is tagged by user’s credential.
In this example, the authentication enforcement point indicates
that when a UserDevice wants to send a userRequest, it needs
the user to identify himself. The declaration also indicates that
the userRequest are tagged with users credentials.

6.2.1.2 Enrich actuating device

In DiaSpec, we enriched actuating devices to introduce the con-
cept of object. We use policy enforce point annotations to indicate
which action device needs to be enriched. Listing 15 shows an
action device ActionDevice declaration with the policy enforce-
ment point. The policy enforcement point declaration indicates
that the action DeviceAction of this device are monitored by the
security policies.

1 device ActionDevice{

2 attribute id as String;

3 action DeviceAction;

4 security{ require PEP on action DeviceAction; }

5 }

Listing 15: An example of policy enforcement point in an action device

Line 4 shows how we declare a policy enforcement point.
In this example, the policy enforcement point declaration in-
dicates when the device ActionDevice wants to execute action
DeviceAction, it must ask the authorization of the security poli-
cies.

6.2.2 Enrich Context

In DiaSpec, the entity context is designed for refining the raw data
collected from devices. Some of the context can produce data
which describes the surrounding environment of users. These
data may influence the decision of security policy. The security
policy needs to be aware of these data.

We enriched the context declaration to introduce the concept of
security related context. We use security information collecting
point (SICP) to indicate which context need to be enriched. List-
ing 16 shows an example of a context declaration enriched by a
security information collecting point. We suppose the name of the
context is ContextA. It receives data which has type dataA from

6.3 designing the applications in the case study 71

DeviceA and data which has type dataB from DeviceB. It refines
these data and produces more abstract data (context information).

1 context ContextA as Boolean{

2 source dataA from DeviceA;

3 source dataB from DeviceB;

4

5 security{ require SICP on context ContextA; }

6

7 }

Listing 16: An example of security information collecting point

Line 5 shows how we declare security information collecting
point. To make the security policies aware of this context infor-
mation, the SICP sends the context information to the security
information repository.

In listing 17, we give a grammar of the security enforcement
point annotation.

1 annotation: 'security' '{' annotation_body '}';

2

3 annotation_body: aep_annotation

4 | pep_annotation

5 | sicp_annotation

6 ;

7

8 aep_annotation : 'require' 'AEP' 'on' sensor_source ';' ;

9

10 pep_annotation : 'require' 'PEP' 'on' actuator_action ';' ;

11

12 sicp_annotation : 'require' 'SICP' 'on' context_info ';' ;

13

14 sensor_source: 'source' sourceName ;

15

16 actuator_action: 'action' actionName ;

17

18 context_info: 'context' contextName ;

19

20 sourceName: ID;

21 actionName: ID;

22 contextName: ID;

23

24 ID: ('a'..'z' | 'A'..'Z')('a'..'z'|'A'..'Z'|'0'..'9'|'_')* ;

Listing 17: Grammar of the security annotation

6.3 designing the applications in the case study

In this section, we use the scenario which we give in Chapter 3

to illustrate how to design a secured pervasive computing appli-
cation with our approach.

72 designing the secured pervasive computing applications

At the design stage, we introduce two kinds of developers: a
pervasive computing application designer and a security expert.
The pervasive computing application designer first describes the
available entities of the pervasive computing environment. Then
he designs the architecture of the pervasive computing applica-
tion. The security expert first identifies the DiaSpec entities which
can be encapsulated by the security concepts (subject, object and
security related context), based on the security requirements and
the architecture of the pervasive computing applications. Then
the security expert tags the identified entities with security en-
forcement point to indicate which entity needs to be encapsulated.
Lastly, the security expert specifies security policies to fulfil the
security requirements.

6.3.1 Design of the secured pervasive computing application

First, the designer of the pervasive computing applications needs
to identify the required entities. Then he gives the descriptions of
those entities by using DiaSpec. Listing 18 shows the taxonomy
of the three pervasive computing applications of the scenario (see
Section 3.1).

1 device Devices{

2 attribute identity as String;

3 attribute location as Location;

4 }

5

6 device TemperatureSensor extends Devices{

7 source temperature as Float;

8 }

9

10 device SmokeSensor extends Devices{

11 source smoke as Boolean;

12 }

13

14 device MotionDetector extends Devices{

15 source intrusion as Boolean;

16 }

17

18 device SmartPhone extends Devices{

19 source userRequest as Request;

20 }

21

22 device Sprinkler extends Devices{

23 action OnOff;

24 }

25

26 device Alarm extends Devices{

27 action OnOff;

28 }

29

30 device Light extends Devices{

31 action OnOff;

6.3 designing the applications in the case study 73

32 }

33

34 device DoorLock extends Devices{

35 action DoorAction;

36 }

37

38 device logger {

39 attribute fileLocation as String;

40 action LogAccessEvent;

41 }

42 /* Description of the supported actions*/

43 action OnOff {

44 on();

45 off();

46 }

47

48 action DoorAction {

49 open();

50 close(); }

51

52 action Log{

53 LogAccessEvent(event as String);

54 }

Listing 18: The taxonomy of the fire detection application

The security expert analyzes both the security requirements
and the taxonomy, then he decides which devices are user devices,
and which actuating devices require security policy monitoring.
We have two criteria for identifying the user devices which are
enriched to represent the concept of subject. Firstly, these devices
must have sensing capabilities. Secondly, these devices can re-
ceive direct orders from users. The actuating devices which can
be encapsulated by the concept object must have the actuating
capabilities. And their action can be activated by users. Then the
security expert tags these devices with policy enforcement points
and authentication enforcement points.

In this scenario, based on the description of the pervasive com-
puting applications and the security requirements, the security
expert identifies that device smart phones are user devices, and
device door locks and lights are actuating devices. Because smart
phones can interact with users, door locks and lights can be
activated or deactivated by users. The security expert tags the
smart phone with the authentication enforcement point. He tags
door lock and light with the policy enforcement point. Listing 19

shows how we use the security enforcement point annotations to
tag devices.

1 device Light extends Devices{

2 action OnOff;

3 security{ require PEP on action OnOff; }

4 }

5

74 designing the secured pervasive computing applications

6 device DoorLock extends Devices{

7 action DoorAction;

8 security{ require PEP on action DoorAction; }

9 }

10

11 device SmartPhone extends Devices{

12 source userRequest as Request;

13 security{ require AEP on source userRequest;}

14 }

Listing 19: Secured devices in the taxonomy

Then the designer of the pervasive computing system describes
the architecture of the pervasive computing applications. List-
ing 20 shows the architecture description of the remote control
application with DiaSpec.

1 context DoorContext as Request{

2 source request from SmartPhone;

3 }

4

5 controller DoorController{

6 context UserContext;

7 action DoorAction on Door;

8 action Log on Logger;

9 }

10

11 controller LightController{

12 context UserContext;

13 action OnOff on Light;

14 }

Listing 20: The architecture description of the remote control
application

Listing 21 shows the architecture description of the fire detec-
tion application. In this application, we could notice that the
entity context OnFire can produce the context information which
indicates if the building is on fire. The security requirement
also requires the security policies to be aware of this context
information to determine whether a user can open a door or
not. The security expert tags the context OnFire with the security
information collecting point annotation (Line 4 of listing 21). This
annotation indicates that this context provides context informa-
tion named OnFire with type boolean. This context information
can be used in the conditions of policy rules .

1 context OnFire as boolean{

2 source temperature from TemperatureSensor;

3 source smoke from SmokeSensor;

4 security{require SICP on context OnFire;}

5 }

6

7 controller FireController{

6.3 designing the applications in the case study 75

8 context OnFire;

9 action OnOff on Alarm;

10 action OnOff on Sprinkler;

11 action Log on Logger;

12 }

Listing 21: The architecture description of the fire detection application

Listing 22 shows the architecture description of the intrusion
detection application in DiaSpec. This application detects an
intrusion. The security requirement requires the security policies
to be aware of the intrusion. As a result, the security expert tags
the context Intrusion with the security information collecting
point annotation. This annotation indicates that this context
provides context information named Intrusion with type boolean.
This context information can be used in the conditions of policy
rules.

1 context Intrusion as boolean{

2 source intrusion from MotionDetector;

3 security{require SICP on context Intrusion;}

4 }

5

6 controller IntrusionController{

7 context Intrusion;

8 action OnOff on Alarm;

9 action Log on Logger;

10 }

Listing 22: The architecture description of the intrusion detection
application

6.3.2 Specifying security policies

After the design of the pervasive computing applications with
security enforcement. The security expert specifies the security
policy. First he needs to specify the basic entities such as location
and role. Based on these entities, he could write positive and
negative authorization rules.

6.3.2.1 Location definition

Based on the description of the location in Figure 13, we can
define the location as shown in Listing 23.

1 Locations{ Building A29 {

2 Floor F2{

3 Hallway East {

4 Room R1;

5 Room R2;

6 Room R3;

76 designing the secured pervasive computing applications

7 Room R4;

8 } } }

9 }

Listing 23: The location definition

6.3.2.2 Role definition

Based on the description of the scenario, we have five kinds of
users: professor, student, intern, phd student and janitor. Interns
and phd students are the special students. Listing 24 presents
the role definition of this scenario.

1 Roles {

2 Role professor;

3 Role student;

4 Role intern inherit student;

5 Role phd_student inherit student;

6 Role janitor;}

Listing 24: The role definition

6.3.2.3 Actions and the type of the objects

The taxonomy with policy enforcement point indicates which
kind of devices represents the concept object. The name of the
entity description represents the object type. For instance, Lines 1

to 9 of Listing 19 is the description of device light and door lock
with a policy enforcement point. As a result, in this scenario, the
type of the objects consists of Light and DoorLock.

The taxonomy also provides the description of the supported
actions. We use the name of the action and method to generate
the action which is used in policy rules. For each method, we
generate an action. For instance, The declarations in lines 43 to
50 of listing 18 define action DoorAction and OnOff. Based on
these declarations, the set of actions consists of DoorAction_open,
DoorAction_close, OnOff_on and OnOff_off.

The definition of action and the type of the objects are provided
by the taxonomy. The security expert does not need to specify
them.

6.3.2.4 Policy rule specifications

Based on the security requirement descriptions in Section 3.2,
the security expert specifies policy rules. Listing 25 shows an
example of policy rules.

6.3 designing the applications in the case study 77

1 //Rules for room R1

2 Permission(professor, DoorAction_open, DoorLock) if subjectId ==

Alice and targetLocation == A29/F2/East/R1 and Intrusion ==

false;

3 Permission(professor, DoorAction_close, DoorLock) if subjectId ==

Alice and targetLocation == A29/F2/East/R1 and Intrusion ==

false;

4 Permission(professor, OnOff_on, Light) if subjectId == Alice and

targetLocation == A29/F2/East/R2;

5 Permission(professor, OnOff_off, Light) if subjectId == Alice and

targetLocation == A29/F2/East/R2;

6 //Rules for room R2

7 Permission(professor, DoorAction_open, DoorLock) if subjectId ==

Bob and targetLocation == A29/F2/East/R2 and Intrusion ==

false;

8 Permission(professor, DoorAction_close, DoorLock) if subjectId ==

Bob and targetLocation == A29/F2/East/R2 and Intrusion ==

false;

9 Permission(professor, OnOff_on, Light) if subjectId == Bob and

targetLocation == A29/F2/East/R2;

10 Permission(professor, OnOff_off, Light) if subjectId == Bob and

targetLocation == A29/F2/East/R2;

11 //Rules for room R3

12 Permission(phd_student, DoorAction_open, DoorLock) if

targetLocation == A29/F2/East/R3 and Intrusion == false;

13 Permission(phd_student, DoorAction_close, DoorLock) if

targetLocation == A29/F2/East/R3 and Intrusion == false;

14 Permission(phd_student, OnOff_on, Light) if targetLocation ==

A29/F2/East/R3;

15 Permission(phd_student, OnOff_off, Light) if targetLocation ==

A29/F2/East/R3;

16 //Rules for room R4

17 Permission(student, DoorAction_open, DoorLock) if targetLocation

== A29/F2/East/R4 and Intrusion == false;

18 Permission(student, DoorAction_close, DoorLock) if targetLocation

== A29/F2/East/R4 and Intrusion == false;

19 Permission(student, OnOff_on, Light) if targetLocation ==

A29/F2/East/R4;

20 Permission(student, OnOff_off, Light) if targetLocation ==

A29/F2/East/R4;

21 //Rule for fire emergency

22 Permission(subRole, DoorAction_open, DoorLock) if Onfire == true;

23 //Rules for janitor

24 Permission(janitor, DoorAction_open, DoorLock);

25 Permission(janitor, DoorAction_close, DoorLock);

26 //Rule for denying all undefined requests

27 Prohibition(_, _, _);

Listing 25: Security policy rules to fulfil the security requirements

The policy rules in lines 2 to 5 of listing 25 represent that
professor Alice is allowed to access to room R1 and use the light
(fulfil the first requirement description in Section 3.2). In the
condition, the last statement (i.e. Intrusion == false) defines that
the access permission is given if no intrusion is detected. The
policy rules in lines 7 to 10 assign privileges to professor Bob

78 designing the secured pervasive computing applications

to access his office and use lights. Rules in lines 12 to 15 define
all users with role phd_student are allowed to access to room
R3 if no intrusion has been detected (fulfil the third requirement
description). Rules in lines 17 to 20 define all student are allowed
to access to room R4. As role intern and phd_student inherit
rights from role student (lines 4 to 5 of Listing 24), all interns and
phd-students can access to room R4 and use lights. Line 22 gives
the rule which defines all members can open all doors in case of
fire emergency. In this rule, we use variable subRole without any
constraint which represents all possible roles. Line 27 gives the
default rule which denies all undefined requests.

6.4 summary

In this chapter, we presented the architecture of our approach.
Then, we explained how to apply our approach in DiaSuite at the
design stage. We used the applications which we introduced in
the case study (Chapter 3) to illustrate how to design a secured
pervasive computing applications by using our approach.

7
I M P L E M E N T I N G T H E S E C U R E D P E RVA S I V E
C O M P U T I N G A P P L I C AT I O N S

In this chapter, we first present how we enrich the generated
programming framework to embed the security mechanism into
pervasive computing applications. Then we present the basic
entities of the security management. Lastly, we present how to
implement the applications in the case study based on the design
specification which we described in Section 6.3.

7.1 development of secured pervasive computing

application

DiaSuite provides a compiler, named DiaGen which can generate
a Java programming framework based on the DiaSpec specifica-
tion. We enriched the generated framework with the code which
can realize the functionalities of the required concepts (subject, ob-
ject and security related context). The programming framework
is dedicated to guide developers. It contains an abstract class for
each entity declaration (devices, context and controller). These
abstract classes provide methods to support the development.
Implementing a DiaSpec-declared entity is done by subclassing
the corresponding generated abstract class. To enforce the secu-
rity policies in pervasive computing applications, we create new
classes in the programming framework and enrich the generated
abstract classes.

7.1.1 Security enforcement points

To realize the functionalities of the concept subject, object and
security related context, we need to establish communication
channels between secured pervasive computing applications and
security management. We introduce class SecurityEnforcePoint
in the generated framework. This class establishes communi-
cation between secured pervasive computing applications and
security management by using the request/decision mechanism.
Listing 26 shows the code fragment of this class. This class im-
plements protocol SSL V3.0 to communicate with the security
management. To enable the SSL communication, the developer
needs to create the keystore to store the certificate which the

79

80 implementing the secured pervasive computing applications

security management provided. This class provides three meth-
ods: authenticate, authorize and securityInformation. The
method authenticate takes the identity of the user and his proof,
then forms the authentication request and sends the request to
the security decision point. Lastly, this method returns the de-
cision based on the results which are sent back by the security
decision point. The method authorize is responsible for forming
the authorization request and return decisions. The method se-
curityInformation is responsible for sending the security relevant
information to the security information repository.

1 public class SecurityEnforcePoint{

2 protected boolean authenticate(String userId, object

proof)

3 {...}

4 protected boolean authorize(String userId, String

action, String targetId)

5 {...}

6 protected void securityInformation

7 (String informationName, Object

securityInformation)

8 {...}

9 }

Listing 26: The code fragment of class SecurityEnforcePoint

7.1.2 Enrich user device

We use authentication enforcement point to encapsulate user
device (sensing device in DiaSpec) with the concept of subject.
Sensing devices in DiaSpec collect raw data from the pervasive
computing environment and send them to context. The main
functionality consists of sensing data and sending data.

The concept subject requires three functionalities which con-
sists of forming the authentication requests, sending the requests
to the authentication decision module and waiting for the deci-
sion of the authentication decision module. After the authentica-
tion, it creates a credential with subject’s identity and the validity
of the credential.

To encapsulate the user devices with the concept subject. We
enriched the generated abstract class of user devices. The abstract
class AbstractSmartPhone depicted in Listing 27 are generated
based on the DiaSpec specification showed in Listing 19.

1 public abstract class AbstractSmartPhone{

2 ...

3 private Credential userCredential=null;

4

5 public void logIn(String userId, Object proof){

6 if (SecurityEnforcePoint.authenticate(userId, proof))

7.1 development of secured pervasive computing application 81

7 userCredential= new Credential(userId,ExpiryTime);

8 else throw new SecurityException("Unauthorize authentication

request ...");

9 }

10 public void logOut(){

11 userCredential=null;

12 }

13 protected void publishRequest(Request newRequestValue) {

14 if ((userCredential!=null) && !userCredential.isExpired())

15 { getProcessor().publishValue(getOutProperties(),

"request",

newRequestValue.setCredential(userCredential)); }

16 else throw new SecurityException()

17 }

18 ...

19 }

Listing 27: The code fragment of abstract class AbstractSmartPhone

We added an object userCredential (line 3), two methods
logIn (lines 5 to 8) and logOut (lines 10 to 12) and enriched the
method publishRequest. The method logIn is responsible for
authenticating the subjects who are using these devices. The
method logOut allows user to log out.

The method publishRequest is originally generated in DiaSpec
programming framework which allows the device SmartPhone

to send his source data to the context DoorContext. After we
enriched the method, the method checks first if a user has the
credential to send the source. If the user has no credential or his
credential is expired, the system raises a security exception. If
the user has the valid credential, then the method tags the user
requests with the user’s credential and sent them (lines 13 to 18)
to the dedicated context.

7.1.3 Enrich actuating device

We use policy enforcement point to encapsulate actuating devices
with the concept of object. Actuating devices receive orders from
controllers, then execute actions based on these orders.

The concept object requires two functionalities which consists
of forming the authorization request and sending the requests to
the policy decision module and waiting for the decision of the
policy decision module.

For instance, the abstract class AbstractDoorLock are gener-
ated to support the development of the device DoorLock. List-
ing 28 shows a fragment of the class AbstractDoorLock based
on the DiaSpec description showed in Listing 19. The method
orderCalled is generated as an interceptor which can block

82 implementing the secured pervasive computing applications

the order "open/close" sent by the controller DoorController.
We enriched this method to archive the required functionali-
ties. This method first forms an authorization request and sends
it to the security management by calling method in the class
SecurityEnforcePoint. If the decision is positive, then the ded-
icated action can be executed. Otherwise the action can not be
executed, and the system raises a security exception (lines 8 and
14 in listing 28).

1 public abstract class AbstractDoorLock{

2 ...

3 public abstract void open();

4 public abstract void close();

5 public final Object orderCalled(..., RemoteServiceInfo source,

String orderName,...)

6 throws Exception {

7 if (orderName.equals("open")) {

8 if(SecurityEnforcePoint.authorize(source.getId(),

"open", this.Id))

9 {open();

10 return null;}

11 else throw new SecurityException("Unauthorize request

... ");

12

13 } else if (orderName.equals("close")) {

14 if(SecurityEnforcePoint.authorize(source.getId(),

"close", this.Id))

15 {close();

16 return null;}

17 else throw new SecurityException("Unauthorize request

... ");

18 } else

19 throw new InvocationException("Undefined method name " +

orderName);

20 }

21 ...

22 }

Listing 28: The code fragment of abstract class AbstractDoorLock

7.1.4 Enrich context

We use security information collecting point to encapsulate con-
text with the concept of security related context. Contexts receive
raw data from sensing devices and refine them to produce more
abstract data (i.e. context information). Then they send the con-
text information to dedicated controllers or contexts. As a result,
the main functionality consists of refining data and sending data.
The main functionality of the concept security related context is
to send the context information to the security management.

1 public abstract class AbstractOnFire extends Service{

2

7.1 development of secured pervasive computing application 83

3 public void valueReceived(RemoteServiceInfo source, String

eventName, ...) {

4 if (eventName.equals("smoke")) {

5 ...

6 FireContextIndexedValuePublishable mayPublish =

onSmokeFromSmokeSensor(smokeFromSmokeSensor,

getContext, discover);

7 //Security information collecting point sent the

context information to Security information

repository

8 SecurityEnforcePoint.sendSecurityInformation("Onfire",

mayPublish.getValue());

9

10 if (mayPublish != null && mayPublish.doPublish())

11 setFireContext(mayPublish.getValue() ,

mayPublish.getLocation());

12 }

13 if (eventName.equals("temperature")) {

14 ...

15 FireContextIndexedValuePublishable mayPublish =

16 onTemperatureFromTempSensor(temperatureFromTempSensor,

getContext, discover);

17 //Security information collecting point sent the context

information to Security information repository

18 SecurityEnforcePoint.sendSecurityInformation("Onfire",

mayPublish.getValue());

19

20 if (mayPublish != null && mayPublish.doPublish())

21 setFireContext(mayPublish.getValue() ,

mayPublish.getLocation());

22 }

23 }

24 public abstract

25 FireContextIndexedValuePublishable

26 onSmokeFromSmokeSensor(...);

27

28 public abstract

29 FireContextIndexedValuePublishable

30 onTemperatureFromTempSensor(...);

31

32 }

Listing 29: The code fragment of generated abstract class
AbstractOnFire

For instance, the abstract class AbstractOnFire are generated to
support the development of context OnFire. Listing 29 shows
a fragment of the generated class AbstractOnFire based on the
DiaSpec description showed in Listing 21. We highlight three
methods in this class. The method valueReceived is called, when
a new event has been received by the context Onfire. Based on
the name of event, it calls method onSmokeFromSmokeSensor or
onTemperatureFromTempSensor (lines 4 to 6 and lines 13 to 16 of
Listing 29).

84 implementing the secured pervasive computing applications

These two methods are generated to refine the raw data
submitted by devices and produce context information. Then
method valueReceived sends this context information to other
contexts or controllers. We enriched the method valueReceived

to send the context information to the security information repos-
itory. To realize this functionality, this method calls the method
sendSecurityInformation in class SecurityEnforcePoint (lines
8 and 18 of listing 29).

7.2 development of security management

In this section, we present the basic entities in security manage-
ment. These entities are implemented by using Java. For the
sake of clarity, we do not show the Java code, we only show the
functionalities of these entities.

The security management contains a security information
repository (SIRsm), an authentication decision module (ADPsm),
a policy engine (PEPsm), a policy decision module (PDPsm), a
policy repository (PRsm) and an administration console (ACsm).
Figure 17 shows the functionalities of these entities and their
relationship.

Figure 17: Entities in security management.

The security information repository stores security related
information (e.g. subject profile, device profile and context) and
offers functions to access or edit these information (see figure 17):
to get the role of a specific subject, to get its location, to get the
type of a specific object which the subject wants to access to, to
add new subject profiles, to deletes subject profiles, to add new
device profiles, to delete device profiles.

The authentication decision module gets the registered proof
of the specific subject’s identity from the security information

7.3 implementing the applications in the case study 85

repository, and compares it with the proof submitted by the
subject, and returns true if they are identical, false otherwise.

The policy decision module handles the access control/au-
thorization requests. It contains several auxiliary functions to
respectively get the role of the specific subject, the location of the
specific subject, the location of the object which the subject wants
to access.

To decide whether the authorization request is permitted or
denied, the policy engine retrieves policy rules from the policy
repository that may contain several policies (but for simplicity
we will consider only one here), and applies the policy rules to
rewrite the authorization request with an appropriate strategy
(defined in the policy) until getting an irreducible form. In
general, an analysis of the policy rules and strategy ensures that
there is always a unique irreducible form which is permit or deny
(or some other chosen decision). We will give more details in
Chapter 8.

An access control/authorization request can be seen as a term
whose constants are values in the security information repository
(actual subject’s identity, actual object, contextual value,...). To
compute a decision, the policy rules are matched against the
request and the rule variables are instantiated by constant values,
giving a matching substitution σ. If C is the constraint associated
to the rewrite rule, σ(C) is checked for satisfiability. If it is
satisfiable, the rule can be applied. Otherwise the application of
this rule fails and another one (according to the chosen strategy)
can be tried. Again, an analysis of the policy rules and strategy
guarantees that at least one rule applies if the request is different
from permit or deny.

The administration console allow administrators to edit the
subject profiles, device profiles and policy rules. It contains
several functions to realize these functionalities (see figure 17)
: to return the list of policy rules which are stored in policy
repository, to add new policy rules, to delete policy rules, to add
new subject profiles, to delete subject profiles, to add new device
profiles, to delete device profiles.

7.3 implementing the applications in the case

study

In this section, we use the scenario which we described in Sec-
tion 3.1 to illustrate how to implement a secured pervasive com-
puting application by using our approach.

At development stage, we introduce a new kind of developers
which is the application developers. They are responsible for

86 implementing the secured pervasive computing applications

implementing the entities of the pervasive computing application
by using the generated framework. The security expert needs
to generate a RSA key pair and publishes the certificate of the
public key. As we presented in Section 7.1.1, the functionality of
the security enforcement points has been integrated into the gen-
erated framework. So most of the functionalities are transparent
to the application developers.

7.3.1 Implementation of the secured pervasive computing application

7.3.1.1 Implementing context

1 public class OnFire extends AbstractOnFire{

2 ...

3 @Override

4 public FireContextIndexedValuePublishable

onSmokeFromSmokeSensor(SmokeFromSmokeSensor smoke,

5 GetContextForSmokeFromSmokeSensor getContext,

6 DiscoverForSmokeFromSmokeSensor discover)

7 {

8 Location location = smoke.indices().location();

9

10 TemperatureSensorComposite temperatureSensor =

discover.TemperatureSensors().whereLocation(location);

11

12 if(temperatureSensor.getTemperature()>50)

13

14 return new FireContextIndexedValuePublishable(fire, location,

true);

15 }

16 ...

17 }

Listing 30: A developer-supplied implementation of the OnFire context
in Java

For instance, the code fragment in Listing 30 presents the
implementation of the OnFire context declaration in Listing 21.
This class extends the generated abstract class AbstractOnFire

(not shown here, in Listing 29). When a smoke sensor
sends a new smoke value to the context OnFire, the method
onSmokeFromSmokeSensor are called. In this example, the method
checks also the temperature of the area where smoke is detected
to make sure there is a fire (lines 8 to 11). Now the context OnFire
has the new security relevant context information, it needs to
send them to the security information repository. There are gener-
ated methods in the abstract class AbstractOnFire which can send
the context information to the security information repository
(see line 8 and line 18 of Listing 29).

7.3 implementing the applications in the case study 87

7.3.1.2 Implementing the user devices

To implement the user devices, the application developer needs
to do more work. When he extends the abstract class AbstractS-
martPhone of the generated framework, he obtains a Java class
SmartPhone. He needs to map this Java class to a real device. In
this scenario, we choose a smart phone with the Android OS as
the concrete device.

1 public class HttpAuthenticationActivity extends Activity {

2 ...

3 @Override

4 public void onCreate(Bundle savedInstanceState) {

5 ...

6 button.setOnClickListener(new View.OnClickListener() {

7

8 @Override

9 public void onClick(View v) {

10 String login;

11 String password;

12 login = edit1.getText().toString();

13 password = edit2.getText().toString();

14 SmartPhone client = new SmartPhone();

15 boolean decision = client.logIn(login, password);

16

17 if (decision == true) {

18 // Jump to GUI of remote control of the door and light

19 Intent myIntent = new

Intent(v.getContext(),ClientInterface.class);

20 myIntent.putExtra("UserId", login);

21 startActivityForResult(myIntent, 0);

22 }

23 else { ... } }

24 });

25 }

26 }

Listing 31: A developer-supplied implementation of the smart phone
in Android 2.2

Listing 31 shows a developer supplied implementation of the
smart phone in Android 2.2. This class provides a graphic user
interface which allows users to enter his identity and his proof
(line 12 and line 13). In this case, the proof is a password. Then
this class calls the method logIn of class SmartPhone which extends
the class AbstractSmartPhone of the generated framework (line 14

to line 15 of Listing 27). The code of the class AbstractSmartPhone
is shown in Listing 27. If the authentication succeeds, this class
jump to a new GUI which allows users to control the devices
(line 17 to line 22 of Listing 27). This step of the development
needs to be done manually by the application developer, because
the concrete implementation of each device is different due to the
different variety of the hardware and software. But they can all

88 implementing the secured pervasive computing applications

benefit the methods such as logIn and logOut of the generated
class. This can facilitate the development of the devices.

7.3.1.3 Implementing the action devices

To implement the action devices, the application developer needs
to extend the generated abstract class of the framework. Then he
maps this Java class with real devices. Listing 32 is an example
of the door lock implementation which extends the generated
abstract class showed in listing 28. As we enriched the framework
with the functionalities of the concept object. The enforcement of
the security policies is completely transparent to the application
developers. They do not need to worry about how to enforce
security policies.

1 public class DoorLock_X10 extends AbstractDoorLock{

2

3 ... // defines x10Ctrl and x10Addr

4

5 @Override

6 public void close() {

7 x10Ctrl.addCommand(new Command(x10Addr, Command.OFF));

8 }

9 @Override

10 public void open() {

11 x10Ctrl.addCommand(new Command(x10Addr, Command.ON));

12 }

13 }

Listing 32: An example of door lock implementation

7.3.2 Implementation of the security management

The implementation of the security management is totally au-
tomatic from the developers’ point of view. The only work for
developers is to configure the certificates to secure the communi-
cation and databases to store the profile of users and devices.

The crucial component of our architecture is the policy engine.
Our policy engine is implemented by using the term rewriting
system. In Section 5.2.3.2, we already presented how to use the
term rewriting system to evaluate an authorization request. The
generation of the term rewriting system is ensured by our gener-
ator. The rewriting engine is ensured by the tool Tom [13]. The
other components (e.g. policy decision module, authentication
decision module) in our architecture are also generated by our
generator.

7.4 summary 89

7.4 summary

This chapter presented how we enriched the generated program-
ming framework of DiaSpec to embed the security mechanism
into pervasive computing applications. The enriched program-
ming framework embeds security policies seamlessly. Then we
presented the basic entities of the security management. Lastly,
we used the scenario in the case study to illustrate how to imple-
ment the pervasive computing applications based on the design
specification which we described in Section 6.3. As we mentioned
before, a successful deployment of security policies requires ver-
ification and test support. The next chapter presents how we
provide support at verification and test stage.

8
V E R I F I C AT I O N A N D T E S T, D E P L O Y M E N T A N D
M A I N T E N A N C E

In this chapter, we present how to verify and test security policies
in a pervasive computing environment. In Section 8.1, we first
present several properties of the security policies which we want
to verify before the deployment. Then we present how to detect
conflicts between policy rules. In Section 8.2, we give a brief
introduction about the simulator which we use to test our security
policies. In Section 8.3, we present how our approach supports
the change of secured pervasive computing systems and security
policies.

8.1 verification of the security policies

The key requirement for the successful deployment of security
policies is the availability of tools for analyzing policies. Kami
Vaniea et al. [92] said “Managing large sets of access-control rules
is a complex task for security administrators. Each addition, deletion
or modification of a rule may cause potential and unknown side effects
ranging from rule con�icts to security breaches”.

According to Kami, many properties (e.g. conflict, termination,
completeness and conformity) need to be verified. In this thesis,
we concentrate on how to detect conflicts between policy rules, it
is the most vital property of a security policy. We also give hints
to check completeness and termination.

8.1.1 Policy analysis

For the sake of clarity, in our work, we use the terminologies
and classification of the approach, named Exam [59]. It is useful
to highlight that there are two types of policy analysis: policy
property analysis and policy similarity analysis [6, 7, 11]. Policy
property analysis refers to the verification of a given property on
a single policy. Policy similarity analysis refers to a comparison
among two or more policies. In this thesis, we suppose there is
only one policy in a pervasive computing system. As a result, we
only address the policy property analysis.

91

92 verification and test, deployment and maintenance

The authors of Exam identify three main categories of pol-
icy property analysis: policy metadata analysis, policy content
analysis and property analysis.

8.1.1.1 Meta-data of security policy

The meta-data of the security policies such as author of the
security policy, date of the creation and date of the modification
are important for security administrators. For instance, if a policy
rule leads to a security breach, the meta-data of this rule can help
administrator to find out since when the security breach exists.

8.1.1.2 Content of security policy

According to the authors of Exam, the content of a security policy
such as the number of rules in the policy, the total number of
attributes referenced in the policy, the privilege of a specific role,
can help the security administrator to maintain the security policy.
For instance, checking the privilege of a specific role verifies if
there are rules in the policy which fulfil a specific requirement.

8.1.1.3 Property of security policy

A security policy evaluates a given request, in a given environ-
ment context, and is expected to return one and only one decision.
With a given request, if a security policy can not return a deci-
sion, then this policy is incomplete. If a security policy returns
more than one decision, then this policy has conflicts and is not
consistent.

8.1.2 Property verifications

As we use a term rewriting approach [35] to implement our policy
engine, we leverage the verification power of this framework.
As our generated rewrite rules have some particularities (e.g.
decisions are constants). Some verification techniques need to be
adapted to better fit the particularities of our approach. In this
work, we focus on how to detect conflicts between rewrite rules.

To be self-contained, we need to introduce some basic termi-
nologies.

The derivation tree or evaluation tree of a request in a term
rewriting system (TRS) can be expressed as a directed graph (O, S)
in which nodes represent terms and edges represent rewrites. For
instance, if the term a can be rewritten into b, this is represented
by using arrow notation: a→ b. Intuitively, this means that the

8.1 verification of the security policies 93

corresponding graph has a directed edge from a to b. The nodes
in O are called objects, the oriented edges in S are called steps.

If there is a path between two graph nodes (for instance c and
d), then the intermediate nodes form a reduction sequence. For
instance, if c → c1 → c2 → ... → dn → d, then we can write
c
∗→ d

De�nition 4. (Con�uence and local con�uence). An element a ∈ O
is said to be con�uent if for all b, c ∈ O with a ∗→ b and a ∗→ c there
exists d ∈ O with b ∗→ d and c ∗→ d.
An element a ∈ O is said to be locally (or weakly) con�uent if for all
b, c ∈ O with a→ b and a→ c there exists d ∈ O with b ∗→ d and
c
∗→ d.

If all elements in O are (locally) confluent, we say that the
relation ∗→ induced by the term rewriting system is (locally or
weakly) confluent. For short, we simply say that the term rewrit-
ing system is (locally or weakly) confluent.

For terminating term rewriting systems, (local) confluence is
checked by computing superposition between rules obtained by
unification of the left-hand sides.

De�nition 5. (Unification). An equation is a formula of the form
s == t where s and t are terms. An unification problem is a
conjunction of equations denoted P = (s1 == t1∧ ...sn == tn).

• Two terms s and t are unifiable if there is a substitution σ such
that σ(s) = σ(t). σ is called an unifier.

• A substitution σ is a solution for P if σsi == σti for i = 1, . . . ,
n. The set of all unifiers of an unification problem P is denoted
U(P).

Anderson [35] defines a security policy, ℘, as a five-
tuple(Σ,D, R,Q, ζ) (see Section 2.3.3). He addressed three prop-
erties: consistency, termination and decision completeness.

consistency A security policy is consistent if it computes at
most one access decision for a given input request.

De�nition 6. (Consistency). A policy ℘ = (Σ,D, R,Q, ζ) is consistent
if for every query q ∈ Q, q rewrites to at most one result with the rules
in R applied with the strategy ζ.

This definition means that for every query evaluation, a deter-
ministic result is computed by rewriting.

With the strategy universal, a policy (Σ,D, R,Q, universal(R))
is consistent if the set of rewrite rules R is confluent, and all
elements in the decision set D are irreducible.

94 verification and test, deployment and maintenance

In our case, the consistency is easy to check. Let us note first
that our policy rules rewrite an access request into a decision in
one step, and the decisions are constant and irreducible which
can be easily checked. Let us examine more precisely how to
detect conflicts among rules.

conflict Suppose we have two rules R1 and R2 in a security
policy of the form:

• R1: l1 → r1 if c1

• R2: l2 → r2 if c2

where r1 and r2 are constants

Suppose that these two rules are applied in an environment
context denoted by Con.

De�nition 7. (Con�ict). R1 and R2 are in con�ict, if ∃σ, σ(l1) =

σ(l2), r1 6= r2, and σ(c1), σ(c2) are true in the environment Con.

In other words, if the left-hand sides of R1 and R2 are unifiable,
and the right-hand sides of R1 and R2 are different, and the
constraints c1 and c2 instantiated by the unifier σ are true in the
environment context Con, then we can say that R1 and R2 are in
conflict.

For instance, let us consider two policy rules written in our
policy specification:

1. r1: Permission(sr1, a1, ot1) if c1

2. r2: Prohibition(sr2, a2, ot2) if c2

Suppose SR is a set of subject roles, A is a set of actions, OT
is a set of object types, C is a set of constraints and sr1, sr2 ∈
SR ; a1, a2 ∈ A ; ot1, ot2 ∈ OT ; c1, c2 ∈ C. These two rules
generate two rewrite rules as follows:

1. R1: req(sub(sid1, sr1, sloc1), a1, obj(oid1, ot1, oloc1)) →
d1 if c1

2. R2: req(sub(sid2, sr2, sloc2), a2, obj(oid2, ot2, oloc2)) →
d2 if c2

Note that sid1, sr1, sloc1, a1, oid1, ot1, oloc1, sid2, sr2, sloc2,
a2, oid2, ot2 and oloc2 are constants or variables. The left-hand
sides of the policy rules have the same form. As a result, the
unification problem is trivial and amounts to solve a system of
simple equations (e.g. sid1==sid2, sr1==sr2, etc.). If there is a
solution σ, we need to instantiate c1 and c2 by σ and check if c1

and c2 are true in the environment context Con.

8.1 verification of the security policies 95

termination Termination is crucial for rewriting based poli-
cies. To check the termination of term rewriting system, tech-
niques have been developed [84].

De�nition 8. (Termination). A security policy ℘ = (Σ,D, R,Q, ζ) is
terminating if for every query q ∈ Q, all derivations of q in ζ are finite.

In our case, our policy rules rewrite an access request into a
decision in at most one step to a constant term. As a result, the
termination problem is trivial.

completeness

De�nition 9. (Completeness). A security policy ℘ = (Σ,D, R,Q, ζ) is
complete if for every query q ∈ Q, ∃d ∈ D, such that q rewrites to d
with R applied with strategy ζ

In other words, for any term in the set of requests, the evalu-
ation of this term following the rewrite strategy defined by the
policy will result in a term in the set of decisions.

There are existing approaches (e.g. [18, 44]) for checking the
completeness of constrained term rewriting systems. In our case,
to verify whether a security policy is complete is complicated
at design time. To make sure a policy is complete, we must
guarantee that for all possible requests, the policy can give back
a decision. At design time, we do not have enough information
to generate all possible requests. But subject roles, actions and
object types are already defined. If there is a role, a type or an
action who has never been used in policy rules, we can be sure
this policy is not complete. In Section 8.1.3, we explain how to
resolve the incomplete policies.

8.1.3 Query language

A tool for analyzing security policies should allow users to eas-
ily specify the properties which they want to analyze. Some
approaches [58, 64, 69, 82] use Datalog-like language [60]. Anu
Singh et al. use deductive spreadsheets to analyze security poli-
cies [87].

To allow administrators to easily analyze security policies, we
propose a little query language. Listing 33 shows examples of
policy meta-data queries. First query inquires about the author
of a specific policy rule. It starts with keywords show author of,
followed by the identity1 of a policy rule. Second query inquires
about the creation time of a policy rule.

1 In our approach, we attribute an unique identity to every policy rules

96 verification and test, deployment and maintenance

1 /*ask the author of a policy rule "r1"*/

2 show author of r1;

3

4 /*ask the time of creation of a policy rule "r1"*/

5 show CRtime of r1;

Listing 33: Example of policy Meta-data queries

Listing 34 shows examples of policy content queries. First
query inquires about the privilege of a specific subject. It starts
with keywords get right of user, followed by the identity of a
user. The second query inquires about the privilege of a specific
role. The third query inquires about the subjects which can
execute action open on a specific object.

1 /*ask the privilege of subject "Alice" in policy*/

2 get right of user "Alice";

3

4 /*ask the privilege of professor in policy*/

5 get right of professor;

6

7 /*ask who can open door d1*/

8 who can open door d1;

Listing 34: Example of policy content queries

We also provide queries to find conflicts. Figure 18 shows the
administration console for policy analysis. We first show the
groups of policy rules which are in conflict. Then we give the
situations in which the policy rules are in conflict.

Figure 18: The administration console for policy analysis

conflict resolution To resolve the conflicts, we adopt in
this work a very simple methodology inspired from XACML.

8.2 testing security policies in a simulated environment 97

XACML uses the notion of evaluation strategy (e.g. first-
applicable, permit-override, deny-override and only one applica-
ble). The concept of strategy has been already included in security
policy design based on rewrite system [35]. Strategies in rewrite
systems define in which order rewrite rules are executed. In the
specific context handled in this thesis, all policies use the strategy
first-applicable. This means that the first rule which can be applied
gives the final decision. In this strategy, the policy rule which
has the lower rank has the higher priority. Indeed the language
supports other strategies, which is especially useful when several
strategies are composed. This is not the topics of this thesis.

incomplete policy resolution To resolve incomplete
policy, we propose two default rules: "Permission(_, _, _)" and
"Prohibition(_, _, _)". The default rule "Permission(_, _, _)" defines
that which is not explicitly denied is permitted. The default rule
"Prohibition(_, _, _)" defines that which is not explicitly permitted
is denied.

8.2 testing security policies in a simulated envi-
ronment

In Section8.1, we presented that conflicts between rules can be
detected. However, we can not verify whether a policy fulfils
the security requirement or not. As a result, it is helpful for
the administrators to test whether certain security requirements
are fulfilled or not. To overcome this problem, we introduce a
2D simulator DiaSim [23]. In this section, we present how we
use DiaSim to test the behaviour of the security policies in a
simulated pervasive computing environment.

Figure 19: An example of a simulation in DiaSim

98 verification and test, deployment and maintenance

Figure 19 shows an example of the DiaSim simulator. The
simulation renderer uses the same framework that we generate to
deploy the secure pervasive computing system. The security con-
cepts are already embedded inside the generated programming
framework.

Suppose we want to verify the first security requirement which
we give in Section 3.2 (i.e. Only professor Alice can access to his
office). The events are triggered by moving emulated users into
special zone. In this example, when we move Alice near to the
emulated device door of room 1, the event "Alice wants to open
the door of room 1" is triggered. When the simulated pervasive
computing environment emits this event in the framework, the
security mechanism is automatically triggered.

When the framework receives the event "Alice wants to open
the door of room 1", the dedicated actuator door is invoked to
execute action "open". When the actuator door receives this order,
it triggers the security mechanism to verify whether Alice has
the right to execute action "open" or not. If the decision of the
security policy is positive, the actuator door orders the emulated
door to print a message "open" in the simulation renderer. If the
decision is negative, the simulation renderer prints a message
"Alice does not have the right to access this service". In this case,
we know that this policy does not fulfil the security requirement.
The simulated pervasive computing environment also provides
simulated context information. This allows us to test the behav-
ior of security policies with the simulated pervasive computing
environment.

This simulator has already been used in several secured per-
vasive computing applications to test the behaviors of security
policy with hundreds of simulated users and devices.

8.3 deployment and maintenance

In this section, we present how our approach facilitates the de-
ployment and maintenance of secured pervasive computing ap-
plications. First, we present how we deploy a secured pervasive
computing application. Then, we present how we maintain it.

8.3.1 Deployment

The deployment of a secured pervasive computing application
can be divided into two parts: the deployment of pervasive
computing applications and the deployment of security policies.

8.3 deployment and maintenance 99

8.3.1.1 Deployment of pervasive computing applications

The deployment of pervasive computing application consists of
building a back-end to connect the distributed entities and in-
stantiating the declared entities of the taxonomy. The DiaSuite
approach offers back-ends to support distributed system technol-
ogy. The instantiation of the entities is done by instantiating the
Java class of the programming framework. This is not relevant to
our work, more information can be found in Section 6 of [24].

8.3.1.2 Deployment of security policies

The deployment of pervasive computing application consists of
instantiating the user profiles and device profiles. We offer a GUI
which allows developers to initialize and modify user and device
profiles.

8.3.2 Maintenance

With time, the pervasive computing application may need to be
modified to adapt to new situations. As a result, the security
policy needs to be maintained to adapt the change of pervasive
computing system. Even if the pervasive computing application
does not change, new users or devices may enter to the pervasive
computing environment.

8.3.2.1 Change the pervasive computing application

DiaSuite allows developers to add new entities, delete existing en-
tities or changing the application design by changing the DiaSpec
specification. Then the generator of DiaSuite generates a new
programming framework for the changed pervasive computing
application. The classes which extend the abstract classes in the
old framework need to be modified or deleted to adapt to the
new framework. It is beyond the scope of our work, more details
are given in Section 6 of [24].

8.3.2.2 Change the secured entities

By adding or deleting the security enforcement annotations in
DiaSpec specification, we create new secured entities (i.e. sub-
ject, object, security related context), or delete old entities at
any moment. The generator generates dedicated code in the
programming framework to realize the functionalities of these
entities.

100 verification and test, deployment and maintenance

8.3.2.3 Change the security policies

The attribute declarations of the subject or object (e.g. role dec-
laration, location declaration) can be changed by modifying the
DiaSecur specification. The changed specification is used to gen-
erate a new signature. The deletion of an attribute may cause
compilation errors. For instance, if a policy rule contains an
attribute which has been deleted, this causes a compilation error.
These errors need to be corrected by the human developers.

A policy rule can be added, deleted and modified at any
moment in the DiaSecur specification. The enforcement of the
change of policy rules requires no human intervention. The gen-
erator generates automatically dedicated rewrite rules to adapt
to the change.

8.3.2.4 Change the user and device profile

The profile of users and devices can be modified at any moment.
We propose a GUI to facilitate the workload of administrators.
The change does not require to regenerate the security manage-
ment.

8.4 summary

In this chapter, we presented how to verify and test security
policies in a pervasive computing environment. In this work,
we just check some basic properties. We need more sophisti-
cated approaches to verify whether a security policy fulfils the
security requirements or whether a security policy is safe under
attack. We also presented how our approach supports the change
of secured pervasive computing systems and security policies.
Some changes can be done dynamically, some changes need to
recompile the DiaSpec or DiaSecur specifications.

Part III

C O N C L U S I O N

9
C O N C L U S I O N

We have presented our policy specification language and the se-
curity mechanism to enforce the security policies. In this chapter,
we give some overvall conclusions about this thesis.

Pervasive computing systems provide promising applications
in different domains (e.g. smart home, assisted living, health
care). On the other hand, it also leads to the emergence of new
security challenges. To address these challenges, we propose a
policy specification language based on term rewriting systems
and a security mechanism to enforce the security policies in
pervasive computing systems.

Pervasive computing environments contain a variety of hetero-
geneous computational entities (hardware or software). Pervasive
computing applications use software infrastructures to orches-
trate these computational entities and provide services to users
in their daily activities.

Since developing pervasive computing applications involves
several domains (e.g. networking, smart objects), the applica-
tion developers need support to facilitate their work. We have
presented several approaches which are dedicated to develop
pervasive computing applications. Most of them focus on the
functional challenges (e.g. dynamicity, heterogeneity and inter-
operability).

The advance of the pervasive computing systems makes people
more and more dependant on the pervasive computing appli-
cations. The non functional properties such as security become
more and more essential, because the security breaches of critical
applications can put people and their property at risk.

We have presented several approached which are used to spec-
ify security policies in pervasive computing applications. They
are focusing on the expressiveness of their language. Therefore,
none of them addresses how to support developers to enforce the
security policies in pervasive computing applications. Due to the
nature of pervasive computing applications, the main challenge
is to make security policies context sensitive.

To address all these challenges, we propose an approach which
consists of a domain specific policy specification language and a
security mechanism. Our approach provides support throughout
the life-cycle of pervasive computing applications. The architec-
ture of our security mechanism allows us to enforce our security

103

104 conclusion

policies in any pervasive computing applications without chang-
ing the implementation of the security policies. The security
mechanism can collect and store the context information which
are provided by the pervasive computing environments. To make
the security policy context sensitive, the policy rules are parame-
terized with respect to context information; decisions are made
with respect to context values drawn from the running pervasive
computing environment.

We have embedded our approach in a tool based approach,
named DiaSuite which is dedicated to develop pervasive com-
puting applications. At the design stage, we enriched the design
language DiaSpec with specific annotations. These annotations
tag the basic entities of DiaSpec with security enforcement points.
These annotations allow us to use more abstract concepts to
encapsulate the basic building blocks of DiaSpec. At the devel-
opment stage, based on the annotations, the generator produces
the dedicated function for each tagged entities in the generated
framework. At the verification and test stage, we provide a tool
which allows system administrators to analyze the meta-data, the
content and the property of security policies. We leverage the 2D
simulator DiaSim to test security policies with simulated perva-
sive computing environments. At deployment and maintenance
stage, our approach provides a GUI which allows administrators
to manage security policies and the profile of users and devices.

10
F U T U R E W O R K

An interesting challenge is to analyze security policies within per-
vasive computing applications, because even if a security policy is
complete and has no conflict, it does not mean the security policy
fulfil the security requirements and is safe under attack. We want
to use Petri net to model the pervasive computing applications
by using the DiaSpec (i.e. taxonomy, architecture description
of the pervasive computing application) and DiaSecur (i.e. user
profile, location descriptions) declarations. Based on the per-
vasive computing application model and a given attack model
(e.g. Ciphertext-Only Attack, Known-Plaintext Attack, Chosen-
Plaintext Attack and Chosen-Ciphertext Attack), we can evaluate
the knowledge of the attacker. By using model checking, we
could verify which states the attacker can reach. Thus we could
verify whether our pervasive computing application is secure
under attack.

When an end user wants to access a service, if his request has
been denied by security policies, this end user may want to know
why he can not access this service. In this case, the feedback on
the security policy is essential. For now, our approach can not
give a specific reason when a request has been denied. Therefore,
it would be useful to provide feedbacks to end users in our
framework.

A further step is to add the concept of time and "special area"
in our approach. Thus we could express obligations triggered
by time (e.g. users have to change their password every three
months). The "special area" is useful in many cases: for instance, a
research institute has several research groups, located in different
offices. The leader of research groups may want to administrate
security policy inside his research group’s offices. But there are
also public spaces inside the research institute where the leaders
do not have specific rights. With the notion of special area, we
could delegate the right of administrator to area administrator.
When a user enters a special area (e.g. a research group), the
global role (e.g. student) will be changed into a special area role
(e.g. group member) which has privileges only in this special area.
For now, attributes and their data-types of object and subject are
fixed. We want to allow developers to define their own attributes
and data-types to adapt to other environments.

105

Part IV

A P P E N D I C E S

A
S P E C I F Y I N G S E C U R I T Y P O L I C Y W I T H D I F F E R -
E N T A P P R O A C H E S

Suppose we are in a teaching facilities, we have two kinds of
user professor and student. We suppose there is a printer named
p1, professors can use this printer, and student can not use this
printer.

a.1 rei

Listing 35 shows policy rule specification in Rei [52]. The first
rule specifies that professor can print. The second rule specifies
that student can not print.

1 has(Variable, right(printOnP1,(professor(Variable))))

2 has(Variable, prohibition(printOnP1,(student(Variable))))

3 action(printOnP1,printer-p1)

Listing 35: Policy rule specifications in Rei

Rei uses the basic structure has(Subject, PolicyObject) to grant
privileges to user. PolicyObject could be right(Action, Condi-
tion)(positive decision) or prohibition(Action, Condition)(negative
decision) The professor(Variable) and student(Variable) are con-
straints which means the subject must has the role professor
or student. The third rule defines action printOnP1 whose target
object is printer-p1. We can identify key concept such as subject,
target object, action, decision and constraint.

a.2 ponder

List 36 shows policy rule specification in Ponder [33]. Ponder
uses inst auth+ to express positive decision, and inst auth- to
express negative decision. Every rule contains a subject, a target,
an action and a when statement. Based on these two rules, we
can identify key concept such as subject, target, action, decision
and constraint.

1 inst auth+ Proprint{

2 subject variable;

3 target p1;

4 action print();

5 when variable.role="Professor";

109

110 specifying security policy with different approaches

6 }

7 inst auth- Proprint{

8 subject variable;

9 target p1;

10 action print();

11 when variable.role="Student";

12 }

Listing 36: Policy rule specifications in Ponder

a.3 xacml

Listing 37 shows policy rule specification in XACML 2.0 [38]. In
XACML Rule is the most elementary unit. The main components
of a rule are:

• target

• effect

• condition

The target contains resources, subjects and actions. The effect indi-
cates the decision of the rule. Two values are allowed: permit
and deny. Condition represents a Boolean expression that refines
the applicability of the rule beyond the predicates implied by its
target. Therefore, it may be absent.

1 <Rule RuleId="Rule01" Effect="Permit">

2 <Description>

3 professors can print on a printer named p1

4 </Description>

5 <Target>

6 <Subjects>

7 <Subject>

8 <SubjectMatch MatchId="string-equal">

9 <AttributeValue DataType="string">

10 Professor

11 </AttributeValue>

12 <SubjectAttributeDesignator AttributeId="role"

DataType="string"/>

13 </SubjectMatch>

14 </Subject>

15 </Subjects>

16 <Resources>

17 <Resource>

18 <ResourceMatch MatchId="string-equal">

19 <AttributeValue DataType="string">

20 p1

21 </AttributeValue>

22 <ResourceAttributeDesignator

23 AttributeId="printer-name"

24 DataType="string"/>

25 </ResourceMatch>

26 </Resource>

A.4 spl 111

27 </Resources>

28 <Actions>

29 <Action>

30 <ActionMatch MatchId="string-equal">

31 <AttributeValue DataType="string">

32 print

33 </AttributeValue>

34 <ActionAttributeDesignator

35 AttributeId="action-id"

36 DataType="string"/>

37 </ActionMatch>

38 </Action>

39 </Actions>

40 </Target>

41 </Rule>

Listing 37: Policy rule specifications in XACML

a.4 spl

Listing 38 shows policy rule specification in SPL [75]. A policy
rule in SPL is comprised of two logical binary expressions. The
first one is used to establish the domain of applicability such as
target name and action name. The other one is used to decide on
the acceptability of the event.

1 rule01: ce.target.name="p1" & ce.action.name="print"

2 :: ce.author.role="professor";

3 rule02: ce.target.name="p1" & ce.action.name="print"

4 :: ce.author.role!="student"

Listing 38: Policy rule specifications in SPL

In the police rules, ce stands for current event. We can consider
events as requests. The first part of rule01 means this rule is appli-
cable for the event (request) which has target with name "p1" and
action with name "print". The decision is given by the second part.
If the author’s role is professor then ce.author.role="professor"
will return true (Permit), otherwise it will return false (Deny).
Listing 39 shows an example of event definition given by SPL. SPL
consider all entities are typed objects with an explicit interface by
which their properties can be queried.

1 type object {

2 string name; // The name of the object

3 user owner; // The owner of the object

4 object set groups;// The sets containing the object

5 string homeHost; // The host where the user is defined

6 }

7 type user extends object{

8 rule set userPolicy; // User private policies

9 }

112 specifying security policy with different approaches

10 type operation extends object{

11 number ID; // operation Id

12 }

13 type event extends object{

14 user author; // The author of the event

15 object target; // The target of the event

16 operation action; // The performed action

17 number time; // The time instant

18 }

Listing 39: Example of event definition in SPL

B
G R A M M A R O F D I A S E C U R

In this page, we present the grammar of our policy specification
language (DiaSecur). The syntax which we chose is close to EBNF
(Extended Backus-Naur Form) and is used by ANTLR1.

1 document : typeDef

2 policyDef

3 EOF

4 ;

5

6 typeDef : locationDef

7 rolesDef

8 ;

9

10 locationDef : 'Locations' '{' building + '}'

11 ;

12

13 building : 'Building' building_ref '{' floor + '}'

14 ;

15

16 floor : 'Floor' floor_ref '{' hallway + '}'

17 ;

18

19 hallway : 'Hallway' hallway_ref '{' room + '}'

20 ;

21

22 room : 'Room' room_ref ';'

23 ;

24

25 rolesDef : 'Roles' '{' roleDef+ '}'

26 ;

27

28 roleDef : 'Role' ID ('inherit' role_ref (',' role_ref)*)? ';'

29 ;

30

31

32 policy_def : 'Policy' '{'

33 strategy

34 policyRules +

35 '}'

36 ;

37

38 strategy : 'Use' 'strategy' strategyName ';'

39 ;

40

41 policyRules : permission | prohibition

42 ;

43

1 ANother Tool for Language Recognition (ANTLR), is a parser generator that
uses LL(*) parsing. http://en.wikipedia.org/wiki/ANTLR

113

114 grammar of diasecur

44 permission : 'Permission' '(' ruleBody ')' ('if' conditions)? ';'

45 ;

46

47 prohibition : 'Prohibition' '(' ruleBody ')' ('if' conditions)?

';'

48 ;

49

50 conditions : andcondition ('or' andcondition)*
51 ;

52

53 andcondition : negcondition ('and' negcondition)*
54 ;

55

56 negcondition : 'not' simplecondition

57 | simplecondition

58 ;

59

60 simplecondition : locCondition | subidCondition | obidCondition |

ambientCondition;

61

62

63 locCondition: ('targetLocation' | 'subjectLocation')('!=' | '==')

location_ref

64 ;

65

66 subidCondition : 'subjectID' ('!=' | '==') (ID | CAP_ID)

67 ;

68

69 obidCondition : 'targetID' ('!=' | '==') (ID | CAP_ID)

70 ;

71

72 ambientCondition

73 : contextName ('!=' | '==') contextValue

74 ;

75

76 ruleBody

77 : role_ref ',' action_ref ',' objectType_ref

78 ;

79

80 location_ref

81 : building_ref '/' floor_ref '/' hallway_ref '/' room_ref

82 ;

83

84 building_ref : CAP_ID;

85

86 floor_ref : CAP_ID;

87

88 hallway_ref : CAP_ID;

89

90 room_ref : CAP_ID;

91

92 role_ref : ID ;

93

94 action_ref: CAP_ID;

95

96 objectType_ref: CAP_ID ;

97

98 contextName: CAP_ID ;

grammar of diasecur 115

99

100 contextValue: INT | BOOL | ID;

101

102 strategyName: CAP_ID ;

103

104

105 ID: ('a'..'z')('a'..'z'|'A'..'Z'|'0'..'9'|'_')* ;

106 CAP_ID: 'A'..'Z' ('a'..'z' | 'A'..'Z' | '0'..'9' | '_')* ;

107 INT : '0'..'9' + ;

108 BOOL : 'true' | 'false' ;

109 WS: (' '| '\t' | '\n' | '\r'| '\f')+ ;

Listing 40: Grammar of the DiaSecur language

B I B L I O G R A P H Y

[1] Standard and extended x10 code protocol, 1993. URL
http://software.x10.com/pub/manuals/xtdcode.pdf.

[2] E. Aarts, R. Harwig, and M. Schuurmans. The invisible
future: The seamless integration of technology into everyday life.
McGraw-Hill Companies, 2002.

[3] E. H. L. Aarts and S. Marzano. The New Everyday View on
Ambient Intelligence. Uitgeverij 010 Publishers, 2003.

[4] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith,
and P. Steggles. Towards a better understanding of context
and context-awareness. In Proceedings of the 1st international
symposium on Handheld and Ubiquitous Computing, HUC ’99,
pages 304–307, London, UK, 1999. Springer-Verlag.

[5] M. D. Abrams. Renewed understanding of access control
policies. In Proceeding of the 16th National Computer Secu-
rity Conference, pages 87–96, Baltimore, Maryland, USA,
September 1993.

[6] D. Agrawal, J. Giles, K. won Lee, and J. Lobo. Policy
ratification. In Proceedings of the Sixth IEEE International
Workshop on Policies for Distributed Systems and Networks,
pages 223–232. IEEE Computer Society, 2005.

[7] T. Ahmed and A. R. Tripathi. Static verification of security
requirements in role based cscw systems. In Proceedings
of the eighth ACM symposium on Access control models and
technologies, SACMAT ’03, pages 196–203, New York, NY,
USA, 2003. ACM.

[8] F. Aldrich. Smart homes: Past, present and future. In Inside
the Smart Home, pages 17–39. Springer London, 2003.

[9] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr.
Basic concepts and taxonomy of dependable and secure
computing. IEEE Transaction on Dependable and Secure Com-
puting, 1(1):11–33, Jan. 2004.

[10] F. Baader and T. Nipkow. Term rewriting and all that. Cam-
bridge University Press, New York, NY, USA, 1998.

[11] M. Backes, W. Bagga, G. Karjoth, and M. Schunter. Efficient
comparison of enterprise privacy policies. In Proceedings

117

118 bibliography

of the 2004 ACM symposium on Applied computing, pages
375–382. ACM Press, 2004.

[12] D. Balfanz, G. Durfee, D. Smetters, and R. Grinter. In search
of usable security: five lessons from the field. Security
Privacy, IEEE, 2(5):19 –24, sept.-oct. 2004.

[13] E. Balland, P. Brauner, R. Kopetz, P.-E. Moreau, and
A. Reilles. Tom: Piggybacking rewriting on java. In Confer-
ence on Rewriting Techniques and Applications, volume 4533

of LNCS, pages 36–47, Paris, France, June 2007. Springer-
Verlag.

[14] L. Bass, P. Clements, and R. Kazman. Software Architecture
in Practice (2nd Edition). Addison-Wesley Professional, 2

edition, Apr. 2003.

[15] D. Benslimane, S. Dustdar, and A. Sheth. Services mashups:
The new generation of web applications. IEEE Internet
Computing, 12(5):13–15, Sept. 2008.

[16] M. Bishop. What is computer security? In Security &
Privacy, IEEE, volume 1, pages 67–69, Davis, CA, USA, Jan
2003.

[17] M. Bishop. Introduction to Computer Security. Addison-
Wesley Professional, 2004.

[18] A. Bouhoula and F. Jacquemard. Automatic verification of
sufficient completeness for conditional constrained term
rewriting systems. Rapport de recherche RR-5863, INRIA,
2006.

[19] T. Bourdier, H. Cirstea, M. Jaume, and H. Kirchner. For-
mal specification and validation of security policies. In
Foundations & Practice of Security, volume 6888 of Lecture
Notes in Computer Science, pages 148–163, Paris, France,
2011. Springer, Heidelberg.

[20] T. Braun, M. Diaz, J. Enrquez-Gabeiras, and T. Staub. End-to-
End Quality of Service Over Heterogeneous Networks. Springer
Publishing Company, Incorporated, 1 edition, 2008.

[21] D. Brewer and M. Nash. The chinese wall security policy. In
Security and Privacy, 1989. Proceedings., 1989 IEEE Symposium
on, volume 2, pages 206 –214, may 1989.

[22] G. Brose, A. Vogel, and K. Duddy. Java Programming with
CORBA, Third Edition. John Wiley & Sons, Inc., New York,
NY, USA, 3rd edition, 2001.

bibliography 119

[23] J. Bruneau, W. Jouve, and C. Consel. DiaSim: A Parame-
terized Simulator for Pervasive Computing Applications.
In 6th International Conference on Mobile and Ubiquitous Sys-
tems: Computing, Networking and Services (Mobiquitous'09),
Toronto, Canada, 2009. IEEE.

[24] D. Cassou. Développement logiciel orienté paradigme de concep-
tion: la programmation dirigée par la spécification. PhD thesis,
Université de Bordeaux, 2011.

[25] D. Cassou, B. Bertran, N. Loriant, and C. Consel. A gen-
erative programming approach to developing pervasive
computing systems. In GPCE '09: Proceedings of the 8th inter-
national conference on Generative programming and component
engineering, pages 137–146, october 2009.

[26] T. Chaari, F. Laforest, and A. Celentano. Adaptation in
Context-Aware Pervasive Information Systems: The SECAS
Project. Int. Journal on Pervasive Computing and Communica-
tions(IJPCC), 3(4):400–425, Dec. 2007.

[27] H. Chen, F. Perich, T. Finin, and A. Joshi. Soupa: Stan-
dard ontology for ubiquitous ans pervasive applications.
In International Conference on mobile and ubiquitous system:
Networking and Services, 2004.

[28] S. Chetan and R. Campbell. Towards fault tolerant perva-
sive computing. In Pervasive 2004 Workshop on Sustainable
Pervasive Computing, pages 38–44, 2004.

[29] R. C. Christopher, C. K. Hess, M. Roman, and R. H. Camp-
bell. Gaia: A development infrastructure for active spaces.
In Workshop on Application Models and Programming Tools for
Ubiquitous Computing (held in conjunction with the UBICOMP
2001, 2001.

[30] D. D. Clark and D. R. Wilson. A comparison of commer-
cial and military computer security policies. Security and
Privacy, IEEE Symposium on, 0:184, 1987.

[31] C. Consel. DiaSuite:A Paradigm-Oriented Software Devel-
opment Approach (invited paper). In 20th ACM SIGPLAN
workshop on Partial evaluation and program manipulation :
PEPM'11, pages 77–78, Austin, TX, United States, Jan. 2011.
ACM.

[32] D. J. Cook, M. Youngblood, and S. K. Das. A Multi-agent
Approach to Controlling a Smart Environment, volume 4008,
pages 165–182. Springer-Verlag, 2006.

120 bibliography

[33] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The
ponder policy specification language. In Proceedings of the
International Workshop on Policies for Distributed Systems and
Networks, POLICY ’01, pages 18–38, London, UK, 2001.
Springer-Verlag.

[34] A. De Castro Alves. OSGi in Depth. Manning Publications,
2011.

[35] A. S. de Oliveira. Réécriture et Modularité pour les Politiques
de Sécurité. PhD thesis, Université Henri Poincaré, 2008.

[36] A. K. Dey, G. D. Abowd, and D. Salber. A context-based
infrastructure for smart environments, 1999.

[37] W. K. Edwards and R. E. Grinter. At home with ubiquitous
computing: Seven challenges. In Proceedings of the 3rd
international conference on Ubiquitous Computing, UbiComp
’01, pages 256–272, London, UK, 2001. Springer-Verlag.

[38] M. T. et al. Extensible access control markup lan-
guage(xacml) version 2.0. Technical report, OASIS, 2005.

[39] D. Ferraiolo and R. Kuhn. Role-based access control. In 15th
NIST-NCSC National Computer Security Conference, pages
554–563, 1992.

[40] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C.
Tschantz. Verification and change-impact analysis of access-
control policies. In Proceedings of the 27th international confer-
ence on Software engineering, ICSE ’05, pages 196–205, New
York, NY, USA, 2005. ACM.

[41] M. Fowler. Domain-Specific Languages (Addison-Wesley Signa-
ture Series (Fowler)). Addison-Wesley Professional, 1 edition,
Oct. 2010.

[42] R. Frohardt, B.-Y. E. Chang, and S. Sankaranarayanan. Ac-
cess nets: modeling access to physical spaces. In Proceedings
of the 12th international conference on Verification, model check-
ing, and abstract interpretation, VMCAI’11, pages 184–198,
Berlin, Heidelberg, 2011. Springer-Verlag.

[43] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste.
Project aura: Toward distraction-free pervasive computing.
IEEE Pervasive Computing, 1:22–31, 2002.

[44] T. Genet. Decidable approximations of sets of descendants
and sets of normal forms. In 9th Conference on Rewriting
Techniques and Applications, volume 1379 of Lecture Notes
in Computer Science, pages 151–165, Tsukuba, Japan, 1998.
Springer-Verlag.

bibliography 121

[45] S. Hadim and N. Mohamed. Middleware: Middleware
challenges and approaches for wireless sensor networks.
IEEE Distributed Systems Online, 7(3):1–16, Mar. 2006.

[46] R. Haux. Individualization, globalization and health about
sustainable information technologies and the aim of medi-
cal informatics. International Journal of Medical Informatics,
75(12):795 – 808, 2006.

[47] R. Hayton, J. Bacon, and K. Moody. Access control in an
open distributed environment. IEEE Symposium on Security
and Privacy, 0:3–15, 1998.

[48] K. Henricksen, J. Indulska, and A. Rakotonirainy. In-
frastructure for pervasive computing: Challenges. In GI
Jahrestagung (1), pages 214–222, 2001.

[49] S. Jajodia, P. Samarati, M. L. Sapino, and V. S. Subrahma-
nian. Flexible support for multiple access control policies.
ACM Transaction on Database Systems, 26(2):214–260, jun
2001.

[50] S. Jajodia, P. Samarati, and V. S. Subrahmanian. A logical
language for expressing authorizations. In Proceedings of
the 1997 IEEE Symposium on Security and Privacy, SP ’97,
pages 31–42, Washington, DC, USA, 1997. IEEE Computer
Society.

[51] B. Johanson, O. Fox, and T. Winograd. The interactive
workspaces project: Experiences with ubiquitous comput-
ing rooms. IEEE Pervasive Computing, 1:67–74, 2002.

[52] L. Kagal, T. W. Finin, and A. Joshi. A policy language for a
pervasive computing environment. In IEEE 4th International
Workshop on Policies for Distributed Systems and Networks,
pages 63–74, June 2003.

[53] L. Kagal, V. Korolev, S. Avancha, A. Joshi, T. Finin, and
Y. Yesha. Centaurus: an infrastructure for service man-
agement in ubiquitous computing environments. Wireless
Network, 8(6):619–635, november 2002.

[54] L. Kagal, V. Korolev, H. Chen, A. Joshi, and T. W. Finin.
Centaurus: A framework for intelligent services in a mobile
environment. In Proceedings of the International Workshop
on Smart Appliances and Wearable Computing, pages 195–201,
2001.

[55] L. Kagal, F. Perich, A. Joshi, and T. Finin. A security ar-
chitecture based on trust management for pervasive com-
puting systems. In Grace Hopper Celebration of Women in
Computing, October 2002.

122 bibliography

[56] L. Kagal, J. Undercoffer, F. Perich, A. Joshi, T. Finin, and
Y. Yesha. Vigil: Providing trust for enhanced security in per-
vasive systems. Technical report, University of Maryland
Baltimore County, 2001.

[57] A. D. Keromytis, S. Ioannidis, M. B. Greenwald, and J. M.
Smith. Scalable security policy mechanisms, 2001.

[58] A. Kissinger and J. C. Hale. Lopol: A deductive database
approach to policy analysis and rewriting. In Second Annual
SELinux Symposium, 2006.

[59] D. Lin, P. Rao, E. Bertino, N. Li, and J. Lobo. Exam - a
comprehensive environment for the analysis of access con-
trol policies. Technical report, Dept of Computer Science,
Purdue University, 2007.

[60] D. Maier and D. Warren. Computing with logic: logic pro-
gramming with Prolog. Benjamin/Cummings Pub. Co., 1988.

[61] J. McLean. A comment on the “Basic Security Theorem” of
Bell and LaPadula. Information Processing Letters, 20(2):67–
70, 1985.

[62] S. Mokhtar, D. Fournier, N. Georgantas, and V. Issarny.
Context-aware service composition in pervasive computing
environments. In N. Guelfi and A. Savidis, editors, Rapid
Integration of Software Engineering Techniques, volume 3943

of Lecture Notes in Computer Science, pages 129–144. Springer
Berlin / Heidelberg, 2006.

[63] D. J. Moore, I. A. Essa, and M. H. H. Iii. Exploiting human
actions and object context for recognition tasks. Computer
Vision, IEEE International Conference on, 1:80, 1999.

[64] P. Naldurg, S. Schwoon, S. Rajamani, and J. Lambert. Ne-
tra:: seeing through access control. In Proceedings of the
fourth ACM workshop on Formal methods in security, FMSE
’06, pages 55–66, New York, NY, USA, 2006. ACM.

[65] J. Nehmer, M. Becker, A. Karshmer, and R. Lamm. Living
assistance systems: an ambient intelligence approach. In
Proceeding of the 28th international Conference on Software
Engineering, pages 43–50. ACM Press, 2006.

[66] R. d. F. B. Neto and M. d. G. C. Pimentel. Toward a domain-
independent semantic model for context-aware computing.
In Proceedings of the Third Latin American Web Congress, LA-
WEB ’05, pages 61–, Washington, DC, USA, 2005. IEEE
Computer Society.

bibliography 123

[67] U. S. D. of Defense. Trusted computer system evaluation
criteria, December 1985.

[68] R. Orfali and D. Harkey. Client/server programming with Java
and CORBA (2nd ed.). John Wiley & Sons, Inc., New York,
NY, USA, 1998.

[69] X. Ou and S. Govindavajhala. Mulval: A logic-based net-
work security analyzer. In 14th USENIX Security Symposium,
pages 113–128, 2005.

[70] T. Parr. The Definitive ANTLR Reference: Building Domain-
Specific Languages. Pragmatic Programmers. Pragmatic
Bookshelf, first edition, May 2007.

[71] E. Pitt and K. McNiff. Java.rmi: The Remote Method Invoca-
tion Guide. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2001.

[72] A. Ranganathan, S. Chetan, J. Al-Muhtadi, R. H. Campbell,
and M. D. Mickunas. Olympus: A high-level programming
model for pervasive computing environments. In Proceed-
ings of the Third IEEE International Conference on Pervasive
Computing and Communications, PERCOM ’05, pages 7–16,
Washington, DC, USA, 2005. IEEE Computer Society.

[73] I. Ray, M. Kumar, and L. Yu. Lrbac: A location-aware
role-based access control model. In Proceedings of the 2nd In-
ternational Conference on Information Systems Security, pages
147–161, 2006.

[74] W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets
I: Basic Models, volume 1491 of Lecture Notes in Computer
Science. Springer-Verlag, Berlin, 1 edition, 1998.

[75] C. Ribeiro, A. Zuquete, P. Ferreira, and P. Guedes. Spl: An
access control language for security policies and complex
constraints. In NDSS, 2001.

[76] M. Román, C. Hess, R. Cerqueira, A. Ranganathan, R. H.
Campbell, and K. Nahrstedt. A middleware infrastructure
for active spaces. IEEE Pervasive Computing, 1(4):74–83, Oct.
2002.

[77] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston,
J. Peterson, R. Sparks, M. Handley, and E. Schooler. Sip:
Session initiation protocol, 2002.

[78] F. Sadri. Ambient intelligence: A survey. ACM Computing
Survey, 43(4):36:1–36:66, Oct. 2011.

124 bibliography

[79] D. Salber, A. K. Dey, and G. D. Abowd. The context toolkit:
aiding the development of context-enabled applications.
In Proceedings of the SIGCHI conference on Human factors
in computing systems: the CHI is the limit, CHI ’99, pages
434–441, New York, NY, USA, 1999. ACM.

[80] G. Sampemane, P. Naldurg, and R. H. Campbell. Access
control for active spaces. In Proceedings of the 18th Annual
Computer Security Applications Conference, ACSAC ’02, pages
343–, Washington, DC, USA, 2002. IEEE Computer Society.

[81] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman.
Role-based access control models. Computer, 29:38–47,
February 1996.

[82] B. Sarna-Starosta and S. D. Stoller. Policy analy-
sis for security-enhanced linux. In Proceedings of
the 2004 Workshop on Issues in the Theory of Secu-
rity (WITS), pages 1–12, April 2004. Available at
http://www.cs.sunysb.edu/˜stoller/WITS2004.html.

[83] M. Satyanarayanan. Pervasive computing: Vision and chal-
lenges. IEEE Personal Communications, 8:10–17, 2001.

[84] P. Schneider-Kamp, J. Giesl, A. Serebrenik, and R. Thie-
mann. Automated termination analysis for logic programs
by term rewriting. In Proceedings of the 16th international
conference on Logic-based program synthesis and transforma-
tion, LOPSTR’06, pages 177–193, Berlin, Heidelberg, 2007.
Springer-Verlag.

[85] E. Serral, P. Valderas, and V. Pelechano. Towards the model
driven development of context-aware pervasive systems.
Pervasive and Mobile Computing, 6(2):254–280, Apr. 2010.

[86] N. Shadbolt. Ambient intelligence. IEEE Intelligent Systems,
18(4):2–3, July 2003.

[87] A. Singh, C. R. Ramakrishnan, I. V. Ramakrishnan, S. D.
Stoller, and D. S. Warren. Security policy analysis using
deductive spreadsheets. In Proceedings of the 2007 ACM
workshop on Formal methods in security engineering, FMSE ’07,
pages 42–50, New York, NY, USA, 2007. ACM.

[88] M. Sloman and E. Lupu. Engineering policy-based ubiq-
uitous systems. Computing Journal, 53(7):1113–1127, Sept.
2010.

[89] J. a. P. Sousa and D. Garlan. Aura: an architectural frame-
work for user mobility in ubiquitous computing environ-
ments. In Proceedings of the IFIP 17th World Computer

bibliography 125

Congress, WICSA 3, pages 29–43, Deventer, The Nether-
lands, The Netherlands, 2002. Kluwer, B.V.

[90] R. N. Taylor, N. Medvidovic, and E. M. Dashofy. Software
Architecture: Foundations, Theory, and Practice. Wiley, 2009.

[91] D. Thomas. Mda: Revenge of the modelers or uml utopia.
IEEE Software, 21:15–17, 2004.

[92] K. Vaniea, Q. Ni, L. Cranor, and E. Bertino. Access con-
trol policy analysis and visualization tools for security
professionals. In USM'08: Workshop on Usable IT Security
Management 2008, Carnegie Mellon University, Pittsburgh,
July 2008.

[93] D. C. Verma. Policy-Based Networking: Architecture and Algo-
rithms. New Riders Publishing, Thousand Oaks, CA, USA,
2000.

[94] T. D. Wang, B. Parsia, and J. Hendler. A survey of the
web ontology landscape. In Proceedings of the International
Semantic Web Conference, ISWC, 2006.

[95] M. Weiser. The computer for the 21st century. Scientific
American, 265(3):66–75, September 1991.

[96] M. Weiser and J. S. Brown. The coming age of calm tech-
nology, 1996.

[97] M. Weiser, R. Gold, and J. S. Brown. The origins of ubiq-
uitous computing research at parc in the late 1980s. IBM
Systems Journal, 38(4):693–696, 1999.

[98] D. M. Weiss. Commonality analysis: A systematic process
for defining families. Lecture Notes in Computer Science,
1429:214–225, 1998.

[99] D. M. Weiss and L. C.T.R. Software Product Line Engineering.
Addison-Wesley, 1999.

[100] M. Youngblood and D. J. Cook. The mavhome architecture.
Technical report, Department of Computer Science and
Engineering, University of Texas at Arlington, 2004.

[101] N. Zhang, M. Ryan, and D. P. Guelev. Synthesising verified
access control systems in xacml. In Proceedings of the 2004
ACM workshop on Formal methods in security engineering,
FMSE ’04, pages 56–65, New York, NY, USA, 2004. ACM.

	Abstract
	Resume
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	1 Introduction
	1.1 Approach
	1.2 Thesis contribution
	1.3 Roadmap

	i CONTEXT
	2 background
	2.1 Pervasive computing systems
	2.2 Developing pervasive computing applications
	2.3 Security of pervasive computing system
	2.4 Summary

	ii Developing security policies in pervasive computing system
	4 Overview of our approach
	4.1 Presentation of our approach
	4.4 Verification and test stage
	4.5 Deployment and Maintenance

	5 Security policy specification language
	5.1 Domain analyses
	5.2 DiaSecur
	5.3 Summary

	6 Designing the secured pervasive computing applications
	6.2 Applying our approach in DiaSuite
	6.3 Designing the applications in the case study
	6.4 Summary

	7 Implementing the secured pervasive computing applications
	7.1 Development of secured pervasive computing application
	7.3 Implementing the applications in the case study
	7.4 Summary

	8 Verification and test, deployment and maintenance
	8.1 Verification of the security policies
	8.3 Deployment and maintenance
	8.4 summary

	iii Conclusion
	9 Conclusion
	10 Future work

	iv Appendices
	A Specifying security policy with different approaches
	A.1 Rei
	A.2 Ponder
	A.3 XACML
	A.4 SPL

	B Grammar of DiaSecur
	Bibliography

