J. R. Lindner, C. M. Rumack, S. R. Wilson, J. W. Charboneau, . Diagnostic-ultrasound et al., Ultrasound. in Molecular Imaging: Principles and Practice Multimodality molecular imaging with combined optical and SPECT/PET modalities New Strategies for Fluorescent Probe Design in Medical Diagnostic Imaging, J. Nucl. Cardiol. J. Nucl. Med. Chem. Rev, vol.49, issue.1106, pp.169-2620, 1998.

T. Watanabe, A. Hasegawa, P. L. Choyke, H. Kobayashi, E. Toth et al., Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes (7) Caravan, P., Strategies for increasing the sensitivity of gadolinium based MRI contrast agents The Chemistry of contrast agents in medical magnetic resonance imaging, Gadolinium(III) chelates as MRI contrast agents: Structure, dynamics, and applications, pp.104-512, 1999.

A. Tsourkas, D. L. Thorek, A. Chen, and J. Czupryna, Superparamagnetic iron oxide nanoparticle probes for molecular imaging, Ann. Biomed. Eng, issue.10, pp.34-57, 2006.

E. Toth and C. S. Bonnet, Towards highly efficient, intelligent and bimodal imaging probes: Novel approaches provided by lanthanide coordination chemistry, File:Bluthirnschranke_nach_Infarkt_nativ_und_KM.png C. R. Chim, issue.1112, pp.13-700, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00529261

M. W. Brechbiel, K. Nwe, and L. H. Bryant, Poly(amidoamine) Dendrimer Based MRI Contrast Agents Exhibiting Enhanced Relaxivities Derived via Metal Preligation Techniques, Bioconjugate Chem, issue.14, 1014.

M. W. Brechbiel, K. Nwe, D. Milenic, L. H. Bryant, and C. A. Regino, Preparation, characterization and in vivo assessment of Gd-albumin and Gd-dendrimer conjugates as intravascular contrast-enhancing agents for MRI, J. Inorg. Biochem, issue.15, pp.105-722, 2011.

M. A. Lodge, H. Braess, F. Mahmoud, J. Suh, N. Englar et al., Developments in nuclear cardiology: transition from single photon emission computed tomography to positron emission tomography-computed tomography, J. Invasive Cardiol, issue.1617, pp.17-491, 2005.

H. F. Kung, Radiochemistry of SPECT: Examples of 99mTc and 111In Complexes, Molecular Imaging: Principles and Practice, 2010.

J. M. Mountz, H. G. Liu, and G. Deutsch, Neuroimaging in cerebrovascular disorders: Measurement of cerebral physiology after stroke and assessment of stroke recovery, Seminars in Nuclear Medicine, vol.33, issue.1, pp.33-56, 2003.
DOI : 10.1053/snuc.2003.127293

D. S. Lee, H. Y. Lee, J. C. Paeng, J. S. Lee, C. W. Oh et al., Efficacy assessment of cerebral arterial bypass surgery using statistical parametric mapping and probabilistic brain atlas on basal/acetazolamide brain perfusion SPECT, J. Nucl. Med, pp.45-202, 2004.

K. Inoue, H. Ito, R. Goto, S. Kinomura, Y. Taki et al., Database of normal human cerebral blood flow measured by SPECT: I. Comparison between I-123-IMP, Tc-99m-HMPAO, and Tc-99m-ECD as referred with O-15 labeled water PET and voxel-based morphometry, Ann. Nucl. Med, pp.20-131, 2006.

R. Schibli, T. L. Mindt, C. Muller, M. Melis, and M. De-jong, Click-to-Chelate": In vitro and in vivo comparison of a Tc-99m(CO)(3)-labeled N(tau)-histidine folate derivative with its isostructural, Bioconjugate Chem, vol.12, issue.23, pp.3-1689, 2008.

R. Schibli, H. Struthers, B. Spingler, and T. L. Mindt, Click-to-Chelate": Design and incorporation of triazole-containing metal-chelating systems into biomolecules of diagnostic and therapeutic interest, Chem. Eur. J, pp.14-6173, 2008.

T. L. Mindt, C. Muller, F. Stuker, J. F. Salazar, A. Hohn et al., A ???Click Chemistry??? Approach to the Efficient Synthesis of Multiple Imaging Probes Derived from a Single Precursor, Bioconjugate Chemistry, vol.20, issue.10, p.20, 1940.
DOI : 10.1021/bc900276b

H. J. Rennen, O. C. Boerman, E. B. Koenders, W. J. Oyen, and F. H. Corstens, Labeling proteins with Tc-99m via hydrazinonicotinamide (HYNIC): optimization of the conjugation reaction, Nuclear Medicine and Biology, vol.27, issue.6, pp.27-599, 2000.
DOI : 10.1016/S0969-8051(00)00134-7

F. G. Blankenberg, J. Vanderheyden, H. W. Strauss, and J. F. Tait, Radiolabeling of HYNIC???annexin V with technetium-99m for in vivo imaging of apoptosis, Nature Protocols, vol.15, issue.1, p.108, 2006.
DOI : 10.1038/nprot.2006.17

M. Jong, W. H. Bakker, E. P. Krenning, W. A. Breeman, M. E. Pluijm et al., Yttrium-90 and indium-111 labelling, receptor binding and biodistribution of [DOTA0,d-Phe1,Tyr3]octreotide, a promising somatostatin analogue for radionuclide therapy, European Journal of Nuclear Medicine, vol.265, issue.4, pp.24-368, 1997.
DOI : 10.1007/BF00881807

A. Otte, E. Jermann, M. Behe, M. Goetze, H. C. Bucher et al., DOTATOC: a powerful new tool for receptor-mediated radionuclide therapy, Eur. J. Nucl. Med, pp.24-792, 1997.

T. Ido, C. N. Wan, V. Casella, J. S. Fowler, A. P. Wolf et al., Labeled 2-deoxy-D-glucose analogs. 18F-labeled 2-deoxy-2-fluoro-D-glucose, 2-deoxy-2-fluoro-D-mannose and 14C-2-deoxy-2-fluoro-D-glucose, Journal of Labelled Compounds and Radiopharmaceuticals, vol.15, issue.2, pp.14-175, 1978.
DOI : 10.1002/jlcr.2580140204

X. Y. Chen, Z. F. Liu, G. Niu, and F. Wang, Ga-labeled NOTA-RGD-BBN peptide for dual integrin and GRPR-targeted tumor imaging, Eur. J. Nucl. Med. Mol. Imaging, vol.68, pp.36-1483, 2009.

H. R. Maecke, R. Mansi, X. J. Wang, F. Forrer, S. Kneifel et al., Evaluation of a 1,4,7,10-Tetraazacyclododecane-1,4,7,10- Tetraacetic Acid-Conjugated Bombesin-Based Radioantagonist for the Labeling with Single-Photon Emission Computed Tomography, Positron Emission Tomography, and Therapeutic Radionuclides, Clin. Cancer Res, pp.15-5240, 2009.

M. Eder, S. Knackmuss, L. Gall, F. Reusch, U. Rybin et al., Ga-labelled recombinant antibody variants for immuno-PET imaging of solid tumours, Eur. J. Nucl. Med. Mol. Imaging, vol.68, pp.37-1397, 2010.

J. Feldwisch, R. P. Baum, V. Prasad, D. Muller, C. Schuchardt et al., Molecular Imaging of HER2-Expressing Malignant Tumors in Breast Cancer Patients Using Synthetic (111)In-or (68)Ga-Labeled Affibody Molecules, J. Nucl. Med, issue.36, pp.51-892, 2010.

M. Fani, L. Del-pozzo, K. Abiraj, R. Mansi, M. L. Tamma et al., PET of Somatostatin Receptor-Positive Tumors Using 64Cu- and 68Ga-Somatostatin Antagonists: The Chelate Makes the Difference, Journal of Nuclear Medicine, vol.52, issue.7, p.52, 1110.
DOI : 10.2967/jnumed.111.087999

M. Ogawa, C. A. Regino, J. Seidel, M. V. Green, W. Xi et al., Dual-Modality Molecular Imaging Using Antibodies Labeled with Activatable Fluorescence and a Radionuclide for Specific and Quantitative Targeted Cancer Detection, Bioconjugate Chemistry, vol.20, issue.11, 2009.
DOI : 10.1021/bc900362k

M. Gutowski, M. Carcenac, D. Pourquier, C. Larroque, B. Saint-aubert et al., Intraoperative immunophotodetection for radical resection of cancers: evaluation in an experimental model, Clin. Cancer Res, 1142.

J. Kuil, A. H. Velders, and F. W. Van-leeuwen, Multimodal Tumor-Targeting Peptides Functionalized with Both a Radio- and a Fluorescent Label, Bioconjugate Chemistry, vol.21, issue.10, 1709.
DOI : 10.1021/bc100276j

T. Buckle, A. C. Van-leeuwen, P. T. Chin, H. Janssen, S. H. Muller et al., A self-assembled multimodal complex for combined pre- and intraoperative imaging of the sentinel lymph node, Nanotechnology, vol.21, issue.35, p.355101, 2010.
DOI : 10.1088/0957-4484/21/35/355101

S. L. Troyan, V. Kianzad, S. L. Gibbs-strauss, S. Gioux, A. Matsui et al., The FLARE??? Intraoperative Near-Infrared Fluorescence Imaging System: A First-in-Human Clinical Trial in Breast Cancer Sentinel Lymph Node Mapping, Annals of Surgical Oncology, vol.196, issue.10, pp.16-2943, 2009.
DOI : 10.1245/s10434-009-0594-2

H. G. Van-der-poel, T. Buckle, O. R. Brouwer, R. A. Valdes-olmos, and F. W. Van-leeuwen, Intraoperative Laparoscopic Fluorescence Guidance to the Sentinel Lymph Node in Prostate Cancer Patients: Clinical Proof of Concept of an Integrated Functional Imaging Approach Using a Multimodal Tracer, European Urology, vol.60, issue.4, pp.60-826, 2011.
DOI : 10.1016/j.eururo.2011.03.024

S. Achilefu, H. N. Jimenez, R. B. Dorshow, J. E. Bugaj, E. G. Webb et al., Synthesis, In Vitro Receptor Binding, and In Vivo Evaluation of Fluorescein and Carbocyanine Peptide-Based Optical Contrast Agents, Journal of Medicinal Chemistry, vol.45, issue.10, p.45, 2002.
DOI : 10.1021/jm010519l

H. Xu, K. Baidoo, A. J. Gunn, C. A. Boswell, D. E. Milenic et al., Design, Synthesis, and Characterization of a Dual Modality Positron Emission Tomography and Fluorescence Imaging Agent for Monoclonal Antibody Tumor-Targeted Imaging, Journal of Medicinal Chemistry, vol.50, issue.19, pp.50-4759, 2007.
DOI : 10.1021/jm070657w

W. B. Edwards, B. Xu, W. Akers, P. P. Cheney, K. Liang et al., Agonist???Antagonist Dilemma in Molecular Imaging: Evaluation of a Monomolecular Multimodal Imaging Agent for the Somatostatin Receptor, Bioconjugate Chemistry, vol.19, issue.1, 0192.
DOI : 10.1021/bc700291m

M. Liang, X. Liu, D. Cheng, G. Liu, S. Dou et al., Multimodality Nuclear and Fluorescence Tumor Imaging in Mice Using a Streptavidin Nanoparticle, Bioconjugate Chemistry, vol.21, issue.7, 1385.
DOI : 10.1021/bc100081h

M. A. Cobleigh, C. L. Vogel, D. Tripathy, N. J. Robert, S. Scholl et al., Multinational Study of the Efficacy and Safety of Humanized Anti-HER2 Monoclonal Antibody in Women Who Have HER2-Overexpressing Metastatic Breast Cancer That Has Progressed After Chemotherapy for Metastatic Disease, Journal of Clinical Oncology, vol.17, issue.9, pp.17-2639, 1999.
DOI : 10.1200/JCO.1999.17.9.2639

J. Lister, K. Wey, D. Shen, and B. K. Dallaire, Rituximab chimeric Anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: Half of patients respond to a four-dose treatment program, J. Clin. Oncol, pp.16-2825, 1998.

T. E. Witzig, L. I. Gordon, F. Cabanillas, M. S. Czuczman, C. Emmanouilides et al., Randomized Controlled Trial of Yttrium-90???Labeled Ibritumomab Tiuxetan Radioimmunotherapy Versus Rituximab Immunotherapy for Patients With Relapsed or Refractory Low-Grade, Follicular, or Transformed B-Cell Non-Hodgkin???s Lymphoma, Journal of Clinical Oncology, vol.20, issue.10, 2002.
DOI : 10.1200/JCO.2002.11.076

M. S. Kaminski, J. Estes, K. R. Zasadny, I. R. Francis, C. W. Ross et al., Radioimmunotherapy with iodine I-131 tositumomab for relapsed or refractory B-cell non- Hodgkin lymphoma: updated results and long-term follow-up of the University of Michigan experience, Blood, pp.96-1259, 2000.

D. Baty and P. Chames, Le point sur??les??anticorps autoris??s en??imagerie et??en??immunoth??rapie, Immuno-analyse & Biologie Sp??cialis??e, vol.21, issue.5, p.255, 2006.
DOI : 10.1016/j.immbio.2006.07.003

P. Holliger and P. J. Hudson, Engineered antibody fragments and the rise of single domains, Nature Biotechnology, vol.10, issue.9, p.1126, 2005.
DOI : 10.1182/blood-2005-03-1153

J. P. Mach, J. F. Chatal, J. D. Lumbroso, F. Buchegger, M. Forni et al., Tumor localization in patients by radiolabeled monoclonal antibodies against colon carcinoma, Cancer Res, pp.43-5593, 1983.

P. Schmidt, S. Smith, and P. Bundesen, 188Re DD-3B6/22 Fab??? for use in therapy of ovarian cancer: labelling and animal studies, Nuclear Medicine and Biology, vol.25, issue.7, pp.25-639, 1998.
DOI : 10.1016/S0969-8051(98)00036-5

M. S. Dennis, H. K. Jin, D. Dugger, R. H. Yang, L. Mcfarland et al., Imaging Tumors with an Albumin-Binding Fab, a Novel Tumor-Targeting Agent, Cancer Research, vol.67, issue.1, pp.67-254, 2007.
DOI : 10.1158/0008-5472.CAN-06-2531

R. Misri, K. Saatchi, and U. O. Häfeli, Radiolabeling of fab and f(ab???)2 antibody fragments with 99mTc(I) tricarbonyl core using a new bifunctional tridentate ligand, Nuclear Medicine Communications, vol.32, issue.4, pp.32-324, 2011.
DOI : 10.1097/MNM.0b013e328343dee5

T. Olafsen and A. M. Wu, Antibody Vectors for Imaging, Seminars in Nuclear Medicine, vol.40, issue.3, pp.40-167, 2010.
DOI : 10.1053/j.semnuclmed.2009.12.005

D. Colcher, R. Bird, M. Roselli, K. D. Hardman, S. Johnson et al., In Vivo Tumor Targeting of a Recombinant Single-Chain Antigen-Binding Protein, JNCI Journal of the National Cancer Institute, vol.82, issue.14, pp.82-1191, 1990.
DOI : 10.1093/jnci/82.14.1191

M. A. Nedelman, D. J. Shealy, R. Boulin, E. Brunt, J. I. Seasholtz et al., Rapid infarct imaging with a technetium-99m-labeled antimyosin recombinant singlechain Fv: evaluation in a canine model of acute myocardial infarction, J. Nucl. Med, pp.34-234, 1993.

G. A. Pietersz, M. R. Patrick, and K. A. Chester, Preclinical characterization and in vivo imaging studies of an engineered recombinant technetium-99m-labeled metallothioneincontaining anti-carcinoembryonic antigen single-chain antibody, J. Nucl. Med, pp.39-47, 1998.

M. E. Schott, D. E. Milenic, T. Yokota, M. Whitlow, J. F. Wood et al., Differential metabolic patterns of iodinated versus radiometal chelated anticarcinoma single-chain Fv molecules, Cancer Res, pp.52-6413, 1992.

R. M. Reilly, P. K. Maiti, R. Kiarash, A. K. Prashar, D. G. Fast et al., Rapid imaging of human melanoma xenografts using an scFv fragment of the human monoclonal antibody H11 labelled with In-111, Nucl. Med. Commun, issue.68, pp.22-587, 2001.

G. P. Adams, R. Schier, A. M. Mccall, R. S. Crawford, E. J. Wolf et al., Prolonged in vivo tumour retention of a human diabody targeting the extracellular domain of human HER2/neu, British Journal of Cancer, vol.77, issue.9, pp.77-1405, 1998.
DOI : 10.1038/bjc.1998.233

J. D. Marks, U. B. Nielsen, G. P. Adams, and L. M. Weiner, Targeting of bivalent anti-ErbB2 diabody antibody fragments to tumor cells is independent of the intrinsic antibody affinity, Cancer Res, pp.60-6434, 2000.

D. W. Schneider, T. Heitner, B. Alicke, D. R. Light, K. Mclean et al., In-Antimindin/RG-1, Engineered Antibody Fragments in LNCaP Tumor-Bearing Nude Mice, In Vivo Biodistribution, PET Imaging, and Tumor Accumulation of J. Nucl. Med, issue.86111, pp.50-435, 2009.

A. M. Scott, M. P. Kelly, F. T. Lee, K. Tahtis, B. E. Power et al., Tumor targeting by a multivalent single-chain Fv (scFv) anti-Lewis Y antibody construct, Cancer Biother. Radiopharm, vol.23, p.411, 2008.

A. M. Wu, P. J. Yazaki, S. W. Tsai, K. Nguyen, A. L. Anderson et al., High-resolution microPET imaging of carcino-embryonic antigen-positive xenografts by using a copper-64-labeled engineered antibody fragment, Proc. Natl. Acad. Sci. U. S. A, pp.97-8495, 2000.

A. M. Wu, G. Sundaresan, P. J. Yazaki, J. E. Shively, R. D. Finn et al., I-124-labeled engineered Anti-CEA minibodies and diabodies allow high-contrast, antigen-specific smallanimal PET imaging of xenografts in athymic mice, J. Nucl. Med, p.44, 1962.

A. M. Wu, Antibodies and Antimatter: The Resurgence of Immuno-PET, Journal of Nuclear Medicine, vol.50, issue.1, p.50, 2009.
DOI : 10.2967/jnumed.108.056887

T. Olafsen, G. J. Tan, C. W. Cheung, P. J. Yazaki, J. M. Park et al., Characterization of engineered anti- pI85(HER-2) (scFv-C(H)3)(2) antibody fragments (minibodies) for tumor targeting, Protein Eng. Des. Sel, issue.76, pp.17-315, 2004.

V. E. Kenanova, G. Sundaresan, A. L. Anderson, D. Crow, P. J. Yazaki et al., Optimizing radiolabeled engineered anti-p185(HER2) antibody fragments for in vivo imaging, Cancer Res, pp.65-5907, 2005.

A. M. Wu, J. V. Leyton, T. Olafsen, E. J. Lepin, S. Hahm et al., Humanized Radioiodinated Minibody For Imaging of, Prostate Stem Cell Antigen- Expressing Tumors. Clin. Cancer Res, pp.14-7488, 2008.

A. M. Wu, V. Kenanova, T. Olafsen, D. M. Crow, G. Sundaresan et al., Tailoring the pharmacokinetics and positron emission tomography imaging properties of anti-carcinoembryonic antigen singlechain Fv-Fc antibody fragments, Cancer Res, pp.65-622, 2005.

J. T. Andersen, S. Justesen, B. Fleckenstein, T. E. Michaelsen, G. Berntzen et al., Ligand binding and antigenic properties of a human neonatal Fc receptor with mutation of two unpaired cysteine residues, FEBS Journal, vol.119, issue.16, pp.275-4097, 2008.
DOI : 10.1111/j.1742-4658.2008.06551.x

L. Huang, L. O. Gainkam, V. Caveliers, C. Vanhove, M. Keyaerts et al., SPECT imaging with (99m)Tc-labeled EGFR-specific nanobody for in vivo monitoring of EGFR expression, Mol. Imaging Biol, pp.10-167, 2008.

S. Stahl and M. Friedman, Engineered affinity proteins for tumour-targeting applications, Biotechnol. Appl. Biochem, issue.1, p.53, 2009.

C. R. Dias, S. Jeger, J. A. Osso-jr, C. Müller, C. De-pasquale et al., Radiolabeling of rituximab with 188Re and 99mTc using the tricarbonyl technology, Nuclear Medicine and Biology, vol.38, issue.1, p.38, 2011.
DOI : 10.1016/j.nucmedbio.2010.05.010

C. Bernhard, P. M. Smith-jones, S. Vallabahajosula, S. J. Goldsmith, V. Navarro et al., In vitro characterization of radiolabeled monoclonal antibodies specific for the extracellular domain of prostate-specific membrane antigen, Cancer Res, vol.85, pp.60-5237, 2000.

P. M. Smith-jones, D. B. Solit, T. Akhurst, F. Afroze, N. Rosen et al., Imaging the pharmacodynamics of HER2 degradation in response to Hsp90 inhibitors, Nature Biotechnology, vol.60, issue.8, pp.22-701, 2004.
DOI : 10.1053/sonc.2003.50027

T. Mukai, S. Namba, Y. Arano, M. Ono, Y. Fujioka et al., Synthesis and evaluation of a monoreactive DOTA derivative for indium-111-based residualizing label to estimate protein pharmacokinetics, Journal of Pharmacy and Pharmacology, vol.19, issue.8, pp.54-1073, 2002.
DOI : 10.1211/002235702320266226

C. Li, P. T. Winnard, T. Takagi, D. Artemov, and Z. M. Bhujwalla, Multimodal Image-Guided Enzyme/Prodrug Cancer Therapy, Journal of the American Chemical Society, vol.128, issue.47, pp.128-15072, 2006.
DOI : 10.1021/ja066199i

Z. Kovacs and L. M. De-leon-rodriguez, The synthesis and chelation chemistry of DOTApeptide conjugates, Bioconjugate Chem, pp.19-391, 2008.

A. Capretta, R. B. Maharajh, and R. A. Bell, Synthesis and characterization of cyclomaltoheptaose-based metal chelants as probes for intestinal permeability, Carbohydrate Research, vol.267, issue.1, pp.267-316, 1995.
DOI : 10.1016/0008-6215(94)00289-R

S. Aime, A. Barge, M. Botta, L. Frullano, U. Merlo et al., Multinuclear and multifrequency NMR study of gadolinium(III) complexes with bis-amide derivatives of ethylenedioxydiethylenedinitrilotetraacetic acid, Journal of the Chemical Society, Dalton Transactions, issue.19, p.3435, 2000.
DOI : 10.1039/b004579i

J. Fichna and A. Janecka, Synthesis of Target-Specific Radiolabeled Peptides for Diagnostic Imaging, Bioconjugate Chemistry, vol.14, issue.1, p.14, 2003.
DOI : 10.1021/bc025542f

E. Zitha-bovens, R. N. Muller, S. Laurent, E. L. Vander, C. F. Geraldes et al., Structure and dynamics of lanthanide complexes of triethylenetetramine-N,N, hexaacetic acid (H6ttha) and of diamides H4ttha(NHR) derived from H6ttha as studied by NMR, NMRD, and EPR, pp.88-618, 2005.

M. N. Lub-de-hooge, J. G. Kosterink, P. J. Perik, H. Nijnuis, L. Tran et al., Preclinical characterisation of 111In-DTPA-trastuzumab, Br. J. Pharmacol, issue.96, pp.143-99, 2004.

M. W. Brechbiel, O. A. Gansow, R. W. Atcher, J. Schlom, J. Esteban et al., Synthesis of 1-(p-isothiocyanatobenzyl) derivatives of DTPA and EDTA. Antibody labeling and tumor-imaging studies, Inorganic Chemistry, vol.25, issue.16, pp.25-2772, 1986.
DOI : 10.1021/ic00236a024

M. E. Izard, G. R. Boniface, K. L. Hardiman, M. W. Brechbiel, O. A. Gansow et al., An improved method for labeling monoclonal antibodies with samarium-153: use of the bifunctional chelate 2-(p-isothiocyanatobenzyl)-6-methyldiethylenetriaminepentaacetic acid, Bioconjugate Chemistry, vol.3, issue.4, p.346, 1992.
DOI : 10.1021/bc00016a015

C. Bernhard, C. Goze, Y. Rousselin, and F. Denat, First bodipy???DOTA derivatives as probes for bimodal imaging, Chemical Communications, vol.10, issue.4, 2010.
DOI : 10.1039/c0cc02749a

D. A. Westerberg, P. L. Carney, P. E. Rogers, S. J. Kline, and D. K. Johnson, Synthesis of novel bifunctional chelators and their use in preparing monoclonal antibody conjugates for tumor targeting, Journal of Medicinal Chemistry, vol.32, issue.1, pp.32-236, 1989.
DOI : 10.1021/jm00121a042

T. J. Mcmurry, M. Brechbiel, K. Kumar, and O. A. Gansow, Convenient synthesis of bifunctional tetraaza macrocycles, Bioconjugate Chemistry, vol.3, issue.2, p.108, 1992.
DOI : 10.1021/bc00014a004

J. Peuralahti, L. Merioe, V. Mukkala, K. Blomberg, and J. Hovinen, Synthesis and properties of a neutral derivative of diethylenetriaminepentaacetic acid (DTPA), Bioorganic & Medicinal Chemistry Letters, vol.16, issue.18, pp.16-4760, 2006.
DOI : 10.1016/j.bmcl.2006.06.088

L. Josephson, C. Tung, A. Moore, and R. Weissleder, High-Efficiency Intracellular Magnetic Labeling with Novel Superparamagnetic-Tat Peptide Conjugates, Bioconjugate Chemistry, vol.10, issue.2, p.186, 1999.
DOI : 10.1021/bc980125h

V. Vazquez-dorbatt, Z. P. Tolstyka, C. Chang, and H. D. Maynard, Synthesis of a Pyridyl Disulfide End-Functionalized Glycopolymer for Conjugation to Biomolecules and Patterning on Gold Surfaces, Biomacromolecules, vol.10, issue.8, pp.10-2207, 2009.
DOI : 10.1021/bm900395h

S. Lacerda, M. P. Campello, F. Marques, L. Gano, V. Kubicek et al., A novel tetraazamacrocycle bearing a thiol pendant arm for labeling biomolecules with radiolanthanides, Dalton Transactions, vol.25, issue.23, p.4509, 2009.
DOI : 10.1039/b820375j

URL : https://hal.archives-ouvertes.fr/hal-00525104

G. M. Dubowchik, S. Radia, H. Mastalerz, M. A. Walker, R. A. Firestone et al., Doxorubicin immunoconjugates containing bivalent, lysosomally-Cleavable dipeptide linkages, Bioorganic & Medicinal Chemistry Letters, vol.12, issue.11, pp.12-1529, 2002.
DOI : 10.1016/S0960-894X(02)00194-4

L. Lattuada and M. Gabellini, Straightforward Synthesis of a Novel Maleimide???DTPA Bifunctional Chelating Agent, Synthetic Communications, vol.7, issue.18, pp.35-2409, 2005.
DOI : 10.1039/p19900002567

M. W. Brechbiel, H. Xu, K. E. Baidoo, and K. J. Wong, A novel bifunctional maleimido CHX-A '' chelator for conjugation to thiol-containing biomolecules, Bioorg. Med. Chem. Lett, 2008.

T. L. Schlick, Z. B. Ding, E. W. Kovacs, and M. B. Francis, Dual-Surface Modification of the Tobacco Mosaic Virus, Journal of the American Chemical Society, vol.127, issue.11, pp.127-3718, 2005.
DOI : 10.1021/ja046239n

J. M. Hooker, E. W. Kovacs, and M. B. Francis, Interior Surface Modification of Bacteriophage MS2, Journal of the American Chemical Society, vol.126, issue.12, pp.126-3718, 2004.
DOI : 10.1021/ja031790q

P. G. Holder and M. B. Francis, Integration of a self-assembling protein scaffold with watersoluble single-walled carbon nanotubes, Angew. Chem., Int. Ed, issue.112, pp.46-4370, 2007.

N. S. Joshi, L. R. Whitaker, and M. B. Francis, A Three-Component Mannich-Type Reaction for Selective Tyrosine Bioconjugation, Journal of the American Chemical Society, vol.126, issue.49, pp.126-15942, 2004.
DOI : 10.1021/ja0439017

D. W. Romanini and M. B. Francis, Attachment of Peptide Building Blocks to Proteins Through Tyrosine Bioconjugation, Bioconjugate Chemistry, vol.19, issue.1, pp.19-153, 2008.
DOI : 10.1021/bc700231v

J. M. Mcfarland, N. S. Joshi, and M. B. Francis, Characterization of a Three-Component Coupling Reaction on Proteins by Isotopic Labeling and Nuclear Magnetic Resonance Spectroscopy, Journal of the American Chemical Society, vol.130, issue.24, pp.130-7639, 2008.
DOI : 10.1021/ja710927q

H. Ban, J. Gavrilyuk, and C. F. Barbas, Tyrosine Bioconjugation through Aqueous Ene-Type Reactions: A Click-Like Reaction for Tyrosine, Journal of the American Chemical Society, vol.132, issue.5, pp.132-1523, 2010.
DOI : 10.1021/ja909062q

E. M. Sletten and C. R. Bertozzi, Bioorthogonal Chemistry: Fishing for Selectivity in a Sea of Functionality, Angewandte Chemie International Edition, vol.458, issue.38, pp.48-6974, 2009.
DOI : 10.1002/anie.200900942

A. E. Speers, G. C. Adam, and B. F. Cravatt, Activity-Based Protein Profiling in Vivo Using a Copper(I)-Catalyzed Azide-Alkyne [3 + 2] Cycloaddition, Journal of the American Chemical Society, vol.125, issue.16, pp.125-4686, 2003.
DOI : 10.1021/ja034490h

A. J. Link, M. K. Vink, and D. A. Tirrell, Presentation and Detection of Azide Functionality in Bacterial Cell Surface Proteins, Journal of the American Chemical Society, vol.126, issue.34, p.126, 2004.
DOI : 10.1021/ja047629c

N. J. Agard, J. M. Baskin, J. A. Prescher, A. Lo, and C. R. Bertozzi, A Comparative Study of Bioorthogonal Reactions with Azides, ACS Chemical Biology, vol.1, issue.10, p.644, 2006.
DOI : 10.1021/cb6003228

J. M. Baskin, J. A. Prescher, S. T. Laughlin, N. J. Agard, P. V. Chang et al., Copper-free click chemistry for dynamic in vivo imaging, Proceedings of the National Academy of Sciences, vol.104, issue.43, p.16793, 2007.
DOI : 10.1073/pnas.0707090104

J. A. Codelli, J. M. Baskin, N. J. Agard, and C. R. Bertozzi, Second-Generation Difluorinated Cyclooctynes for Copper-Free Click Chemistry, Journal of the American Chemical Society, vol.130, issue.34, pp.130-11486, 2008.
DOI : 10.1021/ja803086r

URL : http://doi.org/10.1021/ja803086r

N. K. Devaraj, R. Weissleder, and S. A. Hilderbrand, Tetrazine-Based Cycloadditions: Application to Pretargeted Live Cell Imaging, Bioconjugate Chemistry, vol.19, issue.12, 2008.
DOI : 10.1021/bc8004446

M. Karver, R. Weissleder, and S. A. Hilderbrand, Synthesis and Evaluation of a Series of 1,2,4,5-Tetrazines for Bioorthogonal Conjugation, Bioconjugate Chemistry, vol.22, issue.11, 2011.
DOI : 10.1021/bc200295y

B. M. Zeglis, P. Mohindra, G. I. Weissmann, V. Divilov, S. A. Hilderbrand et al., A Modular Strategy for the Construction of Radiometallated Antibodies for Positron Emission Tomography Based on Inverse Electron Demand Diels-Alder Click Chemistry, Bioconjugate Chem, issue.126, 2011.

W. R. Harris, Y. Chen, and K. Wein, Equilibrium Constants for the Binding of Indium(III) to Human Serum Transferrin, Inorganic Chemistry, vol.33, issue.22, pp.33-4991, 1994.
DOI : 10.1021/ic00100a024

W. R. Harris and L. Messori, A comparative study of aluminum(III), gallium(III), indium(III), and thallium(III) binding to human serum transferrin, Coordination Chemistry Reviews, vol.228, issue.2, pp.228-237, 2002.
DOI : 10.1016/S0010-8545(02)00037-1

M. A. Green, M. J. Welch, C. J. Mathias, P. Taylor, and A. E. Martell, Evaluation of PLED as a chelating ligand for the preparation of gallium and indium radiopharmaceuticals, International Journal of Nuclear Medicine and Biology, vol.12, issue.5, pp.12-381, 1985.
DOI : 10.1016/S0047-0740(85)80008-5

W. R. Harris and V. L. Pecoraro, Thermodynamic binding constants for gallium transferrin, Biochemistry, vol.22, issue.2, pp.22-292, 1983.
DOI : 10.1021/bi00271a010

H. R. Maecke, A. Riesen, and W. Ritter, The Molecular Structure of Indium-DTPA, J. Nucl. Med, 1235.

A. Safavy, D. C. Smith, A. Bazooband, and D. J. Buchsbaum, De Novo Synthesis of a New Diethylenetriaminepentaacetic Acid (DTPA) Bifunctional Chelating Agent, Bioconjugate Chemistry, vol.13, issue.2, pp.13-317, 2002.
DOI : 10.1021/bc0100861

E. N. Sabbah, J. Kadouche, D. Ellison, C. Finucane, D. Decaudin et al., In vitro and in vivo comparison of DTPA- and DOTA-conjugated antiferritin monoclonal antibody for imaging and therapy of pancreatic cancer, Nuclear Medicine and Biology, vol.34, issue.3, pp.34-293, 2007.
DOI : 10.1016/j.nucmedbio.2007.01.004

T. K. Nayak, C. A. Regino, K. J. Wong, D. E. Milenic, K. Garmestani et al., PET imaging of HER1-expressing xenografts in mice with (86)Y-CHX-AaEuro(3)-DTPA-cetuximab, Eur. J. Nucl. Med. Mol. Imaging, issue.135, pp.37-1368, 2010.

J. C. Timmons and T. J. Hubin, Preparations and applications of synthetic linked azamacrocycle ligands and complexes, Coordination Chemistry Reviews, vol.254, issue.15-16, pp.254-1661, 2010.
DOI : 10.1016/j.ccr.2009.09.018

L. Lattuada, A. Barge, G. Cravotto, G. B. Giovenzana, and L. Tei, The synthesis and application of polyamino polycarboxylic bifunctional chelating agents, Chemical Society Reviews, vol.66, issue.4, pp.40-3019, 2011.
DOI : 10.1039/c0cs00199f

L. Camera, S. Kinuya, K. Garmestani, C. C. Wu, M. W. Brechbiel et al., Evaluation of the Serum Stability and in-Vivo Biodistribution of Chx-Dtpa and Other Ligands for Yttrium Labeling of Monoclonal-Antibodies, J. Nucl. Med, issue.140, pp.35-882, 1994.

C. S. Cutler, C. J. Smith, G. J. Ehrhardt, T. T. Tyler, S. S. Jurisson et al., Current and Potential Therapeutic Uses of Lanthanide Radioisotopes, Cancer Biotherapy & Radiopharmaceuticals, vol.15, issue.6, pp.15-531, 2000.
DOI : 10.1089/cbr.2000.15.531

D. K. Cabbiness and D. W. Margerum, Macrocyclic effect on the stability of copper(II) tetramine complexes, Journal of the American Chemical Society, vol.91, issue.23, pp.91-6540, 1969.
DOI : 10.1021/ja01051a091

E. J. Billo, ChemInform Abstract: KINETICS OF DISSOCIATION AND ISOMERIZATION OF CIS-NI((14)ANEN4)(H2O)22+ IN AQUEOUS PERCHLORIC ACID SOLUTIONS, Chemischer Informationsdienst, vol.23, issue.17, p.236, 1984.
DOI : 10.1002/chin.198417312

P. Hermann, J. Kotek, V. Kubicek, and I. Lukes, Gadolinium(iii) complexes as MRI contrast agents: ligand design and properties of the complexes, Dalton Transactions, vol.361, issue.186, p.3027, 2008.
DOI : 10.1016/j.jinorgbio.2008.02.002

E. T. Clarke and A. E. Martell, Ga(Iii) and in(Iii) Chelates of N,N',N''- Triazacyclononanetriacetic Acid, Stabilities of the Fe(Iii), pp.181-273, 1991.

T. J. Wadas, E. H. Wong, G. R. Weisman, and C. J. Anderson, Coordinating Radiometals of Copper, Gallium, Indium, Yttrium, and Zirconium for PET and SPECT Imaging of Disease, Chemical Reviews, vol.110, issue.5, pp.110-2858, 2010.
DOI : 10.1021/cr900325h

E. T. Clarke and A. E. Martell, Stabilities of trivalent metal ion complexes of the tetraacetate derivatives of 12-, 13- and 14-membered tetraazamacrocycles, Inorganica Chimica Acta, vol.190, issue.1, p.37, 0190.
DOI : 10.1016/S0020-1693(00)80229-7

A. E. Martell, R. J. Motekaitis, E. T. Clarke, R. Delgado, Y. Sun et al., Stability constants of metal complexes of macrocyclic ligands with pendant donor groups, Supramolecular Chemistry, vol.6, issue.3-4, p.353, 1996.
DOI : 10.1039/c39940001007

S. Liu, Z. He, W. Hsieh, and P. E. Fanwick, In-Labeled DOTA-Biomolecule Conjugates, Inorganic Chemistry, vol.42, issue.26, pp.42-8831, 2003.
DOI : 10.1021/ic0349914

A. Riesen, T. A. Kaden, W. Ritter, and H. R. Maecke, Synthesis and x-ray structural characterization of seven-coordinate macrocyclic indium(3+) complexes with relevance to radiopharmaceutical applications, J. Chem. Soc., Chem. Commun, p.460, 1989.

R. Delgado, Y. Sun, R. J. Motekaitis, and A. E. Martell, Stabilities of divalent and trivalent metal ion complexes of macrocyclic triazatriacetic acids, Inorganic Chemistry, vol.32, issue.15, pp.32-3320, 1993.
DOI : 10.1021/ic00067a022

C. Broan, J. P. Cox, A. S. Craig, R. Kataky, D. Parker et al., Structure and solution stability of indium and gallium complexes of 1,4,7-triazacyclononanetriacetate and of yttrium complexes of 1,4,7,10-tetraazacyclododecanetetraacetate and related ligands: kinetically stable complexes for use in imaging and radioimmunotherapy. X-Ray molecular structure of the indium and gallium complexes of 1,4,7-triazacyclononane-1,4,7-triacetic acid, Journal of the Chemical Society, Perkin Transactions 2, vol.44, issue.1, pp.7-17, 1991.
DOI : 10.1039/p29910000087

A. Heppeler, S. Froidevaux, H. R. Maecke, E. Jermann, M. Behe et al., Radiometal-labelled macrocyclic chelator-derivatized somatostatin analogue with superb tumour-targeting properties and potential for receptor-mediated internal radiotherapy, Chem. Eur. J, vol.5, 1974.
DOI : 10.1002/(sici)1521-3765(19990702)5:7<1974::aid-chem1974>3.3.co;2-o

V. Tolmachev, M. Altai, M. Sandstrom, A. Perols, A. E. Karlstrom et al., Evaluation of a Maleimido Derivative of NOTA for Site-Specific Labeling of Affibody Molecules, Bioconjugate Chemistry, vol.22, issue.5, pp.22-894, 2011.
DOI : 10.1021/bc100470x

R. Ma, M. J. Welch, J. Reibenspies, and A. E. Martell, Stability of metal ion complexes of 1,4,7-tris(2-mercaptoethyl)-1,4,7-triazacyclononane (TACN-TM) and molecular structure of In(C12H24N3S3), Inorg. Chim. Acta, issue.155, pp.236-75, 1995.

M. Forsterova, M. Petrik, A. Laznickova, M. Laznicek, P. Hermann et al., Complexation and biodistribution study of 111In and 90Y complexes of bifunctional phosphinic acid analogs of H4dota, Applied Radiation and Isotopes, vol.67, issue.1, pp.67-88, 2009.
DOI : 10.1016/j.apradiso.2008.08.013

Y. Rousselin, N. Sok, F. Boschetti, R. Guilard, and F. Denat, Efficient synthesis of new Cfunctionalized macrocyclic polyamines, Eur. J. Org. Chem, issue.159, p.1688, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00474575

G. Herve, H. Bernard, N. Le-bris, M. Le-baccon, J. Yaouanc et al., Condensation of glyoxal with triethylenetetraamine. Stereochemistry, cyclization and deprotection, Tetrahedron Letters, vol.40, issue.13, pp.40-2517, 1999.
DOI : 10.1016/S0040-4039(99)00260-9

F. Chuburu, R. Tripier, M. Le-baccon, and H. Handel, Bis-Aminals of Linear Tetraamines: Kinetic and Thermodynamic Aspects of the Condensation Reaction, European Journal of Organic Chemistry, vol.2003, issue.6, 1050.
DOI : 10.1002/ejoc.200390147

F. Boschetti, F. Denat, E. Espinosa, J. Lagrange, and R. Guilard, A powerful route to Cfunctionalized tetraazamacrocycles, Chem. Commun, issue.162, p.588, 2004.

S. Brandes, C. Gros, F. Denat, P. Pullumbi, and R. Guilard, New facile and convenient synthesis of bispolyazamacrocycles using Boc protection. Determination of geometric parameters of dinuclear copper(II) complexes using ESR spectroscopy and molecular mechanics calculations, Bull. Soc. Chim. Fr, issue.163, pp.133-65, 1996.

E. Kimura, S. Aoki, T. Koike, M. Shiro, and . Tris, -tetraazacyclododecane) Complex as a New Receptor for Phosphate Dianions in Aqueous Solution, J. Am. Chem. Soc, issue.164, pp.119-3068, 1997.
URL : https://hal.archives-ouvertes.fr/in2p3-00509098

F. Denat, S. Brandes, and R. Guilard, ChemInform Abstract: Strategies for the Regioselective N-Functionalization of Tetraazacycloalkanes. From Cyclam and Cyclen Towards More Sophisticated Molecules, ChemInform, vol.31, issue.31, p.561, 2000.
DOI : 10.1002/chin.200031289

J. Jazwinski and R. A. Kolinski, Tricyclic tetraamines by glyoxal-linear tetraamine condensation, Tetrahedron Lett, pp.22-1711, 1981.

G. Herve, H. Bernard, N. Le-bris, J. Yaouanc, H. Handel et al., A new route to cyclen, cyclam and homocyclen, Tetrahedron Letters, vol.39, issue.38, pp.39-6861, 1998.
DOI : 10.1016/S0040-4039(98)01497-X

G. R. Weisman, S. C. Ho, and V. Johnson, Tetracyclic tetraamines by glyoxal-macrocyclic tetraamine condensation, Tetrahedron Letters, vol.21, issue.4, p.335, 1980.
DOI : 10.1016/S0040-4039(01)85466-6

G. Herve, H. Bernard, L. Toupet, and H. Handel, Condensation of glyoxal with triethylenetetramine; isomerization and cyclization, Eur. J. Org. Chem, p.33, 2000.

J. E. Richman and T. J. Atkins, Nitrogen analogs of crown ethers, Journal of the American Chemical Society, vol.96, issue.7, pp.96-2268, 1974.
DOI : 10.1021/ja00814a056

I. Tabushi, Y. Taniguchi, and H. Kato, Preparation of C-alkylated macrocyclic polyamines, Tetrahedron Letters, vol.18, issue.12, 1049.
DOI : 10.1016/S0040-4039(01)92825-4

S. Liu and D. S. Edwards, Bifunctional chelators for therapeutic lanthanide radiopharmaceuticals, Bioconjugate Chem, issue.173, pp.12-19, 2001.

T. J. Mcmurry, M. Brechbiel, C. Wu, and O. A. Gansow, Synthesis of 2-(pthiocyanatobenzyl )-1,4,7-triazacyclononane-1,4,7-triacetic acid: Application of the 4- methoxy-2,3,6-trimethylbenzenesulfonamide protecting group in the synthesis of macrocyclic polyamines, Bioconjugate Chem, issue.174, 1993.

K. P. Pulukkody, T. J. Norman, D. Parker, L. Royle, and C. J. Broan, Synthesis of charged and uncharged complexes of gadolinium and yttrium with cyclic polyazaphosphinic acid ligands for in vivo applications, Journal of the Chemical Society, Perkin Transactions 2, issue.4, p.605, 1993.
DOI : 10.1039/p29930000605

E. A. Lewis, R. W. Boyle, and S. J. Archibald, Ultrastable complexes for in vivo use: a bifunctional chelator incorporating a cross-bridged macrocycle, Chem. Commun, 2004.

A. Barge, L. Tei, D. Upadhyaya, F. Fedeli, L. Beltrami et al., Bifunctional ligands based on the DOTA-monoamide cage, Organic & Biomolecular Chemistry, vol.12, issue.7, 1176.
DOI : 10.1039/b715844k

C. A. Boswell, C. A. Regino, K. E. Baidoo, K. J. Wong, A. Bumb et al., Synthesis of a Cross-Bridged Cyclam Derivative for Peptide Conjugation and 64Cu Radiolabeling, Bioconjugate Chem, issue.178, p.1476, 2008.

P. J. Riss, C. Kroll, V. Nagel, and F. Roesch, NODAPA-OH and NODAPA-(NCS)n: Synthesis, 68Ga-radiolabelling and in vitro characterisation of novel versatile bifunctional chelators for molecular imaging, Bioorganic & Medicinal Chemistry Letters, vol.18, issue.20, pp.18-5364, 2008.
DOI : 10.1016/j.bmcl.2008.09.054

W. Liu, G. Hao, M. A. Long, T. Anthony, J. Hsieh et al., Imparting Multivalency to a Bifunctional Chelator: A Scaffold Design for Targeted PET Imaging Probes, Angew. Chem., Int. Ed, issue.180, pp.48-7346, 2009.

W. B. Cai, K. Chen, L. N. He, Q. H. Cao, A. Koong et al., Quantitative PET of EGFR expression in xenograft-bearing mice using Cu-64-labeled cetuximab, a chimeric anti-EGFR monoclonal antibody, Eur. J. Nucl. Med. Mol. Imaging, pp.34-850, 2007.

S. Rasaneh, H. Rajabi, M. H. Babaei, F. J. Daha, and M. Salouti, Radiolabeling of trastuzumab with (177)Lu via DOTA, a new radiopharmaceutical for radioimmunotherapy of breast cancer, Nucl. Med. Biol, issue.182, pp.36-363, 2009.

R. Albert, P. Smith-jones, B. Stolz, C. Simeon, H. Knecht et al., Direct synthesis of [DOTA-DPhe1]-octreotide and [DOTA-DPhe1, Tyr3]-octreotide (SMT487): Two conjugates for systemic delivery of radiotherapeutical nuclides to somatostatin receptor positive tumors in man, Bioorganic & Medicinal Chemistry Letters, vol.8, issue.10, p.1207, 1998.
DOI : 10.1016/S0960-894X(98)00187-5

D. Leon-rodriguez, L. M. Kovacs, Z. Dieckmann, G. R. Sherry, and A. D. , Solid-Phase Synthesis of DOTA???Peptides, Chemistry - A European Journal, vol.10, issue.5, pp.10-1149, 2004.
DOI : 10.1002/chem.200305389

V. Tolmachev, A. Orlova, T. Tran, C. Widstrom, T. Engfeldt et al., Preclinical evaluation of [In-111]-benzyl-DOTA-Z(HER2 : 3429) a potential agent for imaging of HER2 expression in malignant tumors, Int. J. Mol. Med, pp.20-397, 2007.

T. A. Tran, D. Rosik, L. Abrahmsen, M. Sandstrom, A. Sjoberg et al., Design, synthesis and biological evaluation of a multifunctional HER2-specific Affibody molecule for molecular imaging, European Journal of Nuclear Medicine and Molecular Imaging, vol.64, issue.11, pp.36-1864, 2009.
DOI : 10.1007/s00259-009-1176-z

D. J. Hnatowich, W. W. Layne, and R. L. Childs, The preparation and labeling of DTPAcoupled albumin, Int. J. Appl. Radiat. Isot, issue.188, pp.33-327, 1982.

H. R. Maecke, K. P. Eisenwiener, and P. Powell, A convenient synthesis of novel bifunctional prochelators for coupling to bioactive peptides for radiometal labelling, Bioorg. Med. Chem. Lett, 2000.

M. Botta, F. Kielar, L. Tei, and E. Terreno, Large Relaxivity Enhancement of Paramagnetic Lipid Nanoparticles by Restricting the Local Motions of the Gd(III) Chelates, J. Am. Chem. Soc, pp.132-7836, 2010.

H. A. Mayer, J. Henig, E. Toth, J. Engelmann, and S. Gottschalk, Macrocyclic Gd(3+) Chelates Attached to a Silsesquioxane Core as Potential Magnetic Resonance Imaging Contrast Agents: Synthesis, Physicochemical Characterization, and Stability Studies, Inorg. Chem, pp.49-6124, 2010.

F. Carniato, L. Tei, M. Cossi, L. Marchese, and M. Botta, A Chemical Strategy for the Relaxivity Enhancement of GdIII Chelates Anchored on Mesoporous Silica Nanoparticles, Chemistry - A European Journal, vol.82, issue.35, pp.16-10727, 2010.
DOI : 10.1002/chem.201000499

D. Cordier, F. Forrer, S. Kneifel, M. Sailer, L. Mariani et al., Neoadjuvant targeting of glioblastoma multiforme with radiolabeled DOTAGA???substance P???results from a phase I study, Journal of Neuro-Oncology, vol.29, issue.Suppl 3, p.129, 2010.
DOI : 10.1007/s11060-010-0153-5

K. A. Stephenson, J. Zubieta, S. R. Banerjee, M. K. Levadala, L. Taggart et al., A New Strategy for the Preparation of Peptide-Targeted Radiopharmaceuticals Based on an Fmoc- Lysine-Derived Single Amino Acid Chelate (SAAC) Automated Solid-Phase Synthesis, NMR Characterization, and in Vitro Screening of fMLF(SAAC)G and fMLF[(SAAC- Re(CO)3)+]G, pp.15-128, 2004.

J. Culver, W. Akers, and S. Achilefu, Multimodality Molecular Imaging with Combined Optical and SPECT/PET Modalities, Journal of Nuclear Medicine, vol.49, issue.2, pp.49-169, 2008.
DOI : 10.2967/jnumed.107.043331

L. E. Jennings and N. J. Long, ???Two is better than one??????probes for dual-modality molecular imaging, Chemical Communications, vol.128, issue.24, p.3511, 2009.
DOI : 10.1039/b821903f

J. Gao, X. Chen, and Z. Cheng, Near-Infrared Quantum Dots as Optical Probes for Tumor Imaging, Current Topics in Medicinal Chemistry, vol.10, issue.12, pp.10-1147, 2010.
DOI : 10.2174/156802610791384162

E. J. Noga and P. Udomkusonsri, Fluorescein: A Rapid, Sensitive, Nonlethal Method for Detecting Skin Ulceration in Fish, Veterinary Pathology, vol.1, issue.6, pp.39-726, 2002.
DOI : 10.1354/vp.39-6-726

M. Heger, I. I. Salles, W. Van-vuure, H. Deckmyn, and J. F. Beek, Fluorescent labeling of platelets with polyanionic fluorescein derivatives, Anal. Quant. Cytol. Histol, pp.31-227, 2009.

A. Takeda, J. Z. Baffi, M. E. Kleinman, W. G. Cho, M. Nozaki et al., CCR3 is a target for age-related macular degeneration diagnosis and therapy, Nature, vol.13, issue.7252, pp.460-225, 2009.
DOI : 10.1038/nature08151

E. J. Kunkel, J. Boisvert, K. Murphy, M. A. Vierra, M. C. Genovese et al., Expression of the Chemokine Receptors CCR4, CCR5, and CXCR3 by Human Tissue-Infiltrating Lymphocytes, The American Journal of Pathology, vol.160, issue.1, pp.160-347, 2002.
DOI : 10.1016/S0002-9440(10)64378-7

A. Facciabene, X. Peng, I. S. Hagemann, K. Balint, A. Barchetti et al., Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and Treg cells, Nature, vol.31, issue.7355, pp.475-226, 2011.
DOI : 10.1038/nature10169

M. Jullian, A. Hernandez, A. Maurras, K. Puget, M. Amblard et al., Nterminus FITC labeling of peptides on solid support: the truth behind the spacer, Tetrahedron Lett, issue.206, pp.50-260, 2009.

K. M. Erixon, C. L. Dabalos, and F. J. Leeper, Synthesis and biological evaluation of pyrophosphate mimics of thiamine pyrophosphate based on a triazole scaffold, Organic & Biomolecular Chemistry, vol.72, issue.19, p.3561, 2008.
DOI : 10.1039/b806580b

D. Halim, K. Caron, and J. W. Keillor, Synthesis and evaluation of peptidic maleimides as transglutaminase inhibitors, Bioorganic & Medicinal Chemistry Letters, vol.17, issue.2, pp.17-305, 2007.
DOI : 10.1016/j.bmcl.2006.10.061

V. Josserand, J. Coll, V. Stupar, E. Barbier, C. Remy et al., Ultrasmall Rigid Particles as Multimodal Probes for Medical Applications, Angew. Chem., Int. Ed, pp.50-12299, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00658275

M. M. Siegel, I. J. Hollander, P. R. Hamann, J. P. James, L. Hinman et al., Matrix-assisted UV-laser desorption/ionization mass spectrometric analysis of monoclonal antibodies for the determination of carbohydrate, conjugated chelator, and conjugated drug content, Analytical Chemistry, vol.63, issue.21, pp.63-2470, 1991.
DOI : 10.1021/ac00021a016

D. S. Ashton, C. R. Beddell, D. J. Cooper, S. J. Craig, A. C. Lines et al., Mass Spectrometry of the Humanized Monoclonal Antibody Campath 1H, Analytical Chemistry, vol.67, issue.5, pp.67-835, 1995.
DOI : 10.1021/ac00101a008

E. Levine, S. L. Graziano, R. Diasio, J. Mortimer, A. P. Venook et al., and response to paclitaxel in node-positive breast cancer, N. Engl. J. Med, pp.357-1496, 2007.

M. M. Moasser, The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis, Oncogene, vol.15, issue.45, pp.26-6469, 2007.
DOI : 10.1158/1078-0432.CCR-04-0112

J. Baselga and J. Albanell, Mechanism of action of anti-HER2 monoclonal antibodies, Annals of Oncology, vol.12, issue.suppl 1, pp.12-35, 2001.
DOI : 10.1093/annonc/12.suppl_1.S35

C. Desmedt, J. Sperinde, F. Piette, W. Huang, X. Jin et al., Quantitation of HER2 Expression or HER2:HER2 Dimers and Differential Survival in a Cohort of Metastatic Breast Cancer Patients Carefully Selected for Trastuzumab Treatment Primarily by FISH, Diagnostic Molecular Pathology, vol.18, issue.1, pp.18-22, 2009.
DOI : 10.1097/PDM.0b013e31818ebc69

D. Gupta, L. P. Middleton, M. J. Whitaker, and J. Abrams, Comparison of Fluorescence and Chromogenic In Situ Hybridization for Detection of HER-2/neu Oncogene in Breast Cancer, American Journal of Clinical Pathology, vol.119, issue.3, pp.119-381, 2003.
DOI : 10.1309/P40P2EAD42PUKDMG

I. Ferrusi, J. E. Brock, and S. L. Van-bebber, Clinical practice patterns and cost effectiveness of human epidermal growth receptor 2 testing strategies in breast cancer patients, Cancer, pp.115-5166, 2009.

M. Allison, The HER2 testing conundrum, Nature Biotechnology, vol.25, issue.2, pp.28-117, 2010.
DOI : 10.1038/nbt0210-117

D. C. Allred, Issues and updates: evaluating estrogen receptor-??, progesterone receptor, and HER2 in breast cancer, Modern Pathology, vol.76, p.52, 2010.
DOI : 10.1095/biolreprod.105.050070

A. Santinelli, E. Pisa, D. Stramazzotti, and G. Fabris, HER-2 status discrepancy between primary breast cancer and metastatic sites. Impact on target therapy, International Journal of Cancer, vol.70, issue.5, pp.122-999, 2008.
DOI : 10.1002/ijc.23051

P. J. Perik, M. N. Lub-de-hooge, J. A. Gietema, W. T. Van-der-graaf, M. A. De-korte et al., Indium-111???Labeled Trastuzumab Scintigraphy in Patients With Human Epidermal Growth Factor Receptor 2???Positive Metastatic Breast Cancer, Journal of Clinical Oncology, vol.24, issue.15, pp.24-2276, 2006.
DOI : 10.1200/JCO.2005.03.8448

C. L. Ferreira, D. T. Yapp, S. Crisp, B. W. Sutherland, S. S. Ng et al., Comparison of bifunctional chelates for (64)Cu antibody imaging, Eur. J. Nucl. Med. Mol. Imaging, pp.37-2117, 2010.

S. K. Sahu, A. I. Kassis, G. M. Makrigiorgos, J. Baranowska-kortylewicz, and S. J. Adelstein, The Effects of Indium-111 Decay on pBR322 DNA, Radiation Research, vol.141, issue.2, p.141, 0193.
DOI : 10.2307/3579047

J. Alvarez and C. Arriaga, Contradictions observed in labeling with indium, J. Radioanal. Chem, pp.43-295, 1978.

K. J. Valenzano, W. Miller, J. N. Kravitz, P. Samama, D. Fitzpatrick et al., Development of a Fluorescent Ligand-Binding Assay Using the AcroWell Filter Plate, Journal of Biomolecular Screening, vol.5, issue.6, p.455, 2000.
DOI : 10.1177/108705710000500608

K. Mclarty, B. Cornelissen, D. A. Scollard, S. J. Done, K. Chun et al., Associations between the uptake of 111In-DTPA-trastuzumab, HER2 density and response to trastuzumab (Herceptin) in athymic mice bearing subcutaneous human tumour xenografts, European Journal of Nuclear Medicine and Molecular Imaging, vol.27, issue.Suppl. 3, pp.36-81, 2009.
DOI : 10.1007/s00259-008-0923-x

T. Luo, I. C. Tang, Y. Wu, K. Hsu, S. Liu et al., Evaluating the potential of 188Re-SOCTA???trastuzumab as a new radioimmunoagent for breast cancer treatment, Nuclear Medicine and Biology, vol.36, issue.1, pp.36-81, 2009.
DOI : 10.1016/j.nucmedbio.2008.10.014

P. M. Harari, Epidermal growth factor receptor inhibition strategies in oncology, Endocrine Related Cancer, vol.11, issue.4, p.689, 2004.
DOI : 10.1677/erc.1.00600

J. Mendelsohn and J. Baselga, Epidermal Growth Factor Receptor Targeting in Cancer, Seminars in Oncology, vol.33, issue.4, pp.33-369, 2006.
DOI : 10.1053/j.seminoncol.2006.04.003

J. Capdevila, E. Elez, T. Macarulla, F. J. Ramos, M. Ruiz-echarri et al., Antiepidermal growth factor receptor monoclonal antibodies in cancer treatment, Cancer Treat. Rev, pp.35-354, 2009.

H. O. Xiong, A. Rosenberg, A. Lobuglio, W. Schmidt, R. A. Wolff et al., Cetuximab, a Monoclonal Antibody Targeting the Epidermal Growth Factor Receptor, in Combination With Gemcitabine for Advanced Pancreatic Cancer: A Multicenter Phase II Trial, Journal of Clinical Oncology, vol.22, issue.13, p.22, 2004.
DOI : 10.1200/JCO.2004.12.040

C. D. Thienelt, P. A. Bunn, . Jr, N. Hanna, A. Rosenberg et al., Multicenter Phase I/II Study of Cetuximab With Paclitaxel and Carboplatin in Untreated Patients With Stage IV Non???Small-Cell Lung Cancer, Journal of Clinical Oncology, vol.23, issue.34, 2005.
DOI : 10.1200/JCO.2005.03.1997

J. A. Bonner, P. M. Harari, J. Giralt, N. Azarnia, D. M. Shin et al., Radiotherapy plus cetuximab for squamous-cell carbinoma of the head and neck, N. Engl. J. Med, issue.236, pp.354-567, 2006.

D. A. Frieze and J. S. Mccune, Current Status of Cetuximab for the Treatment of Patients with Solid Tumors, Annals of Pharmacotherapy, vol.351, issue.4, pp.40-241, 2006.
DOI : 10.1345/aph.1G191

N. Personeni, S. Fieuws, H. Piessevaux, H. G. De, S. J. De et al., Clinical Usefulness of EGFR Gene Copy Number as a Predictive Marker in Colorectal Cancer Patients Treated with Cetuximab: A Fluorescent In situ Hybridization Study, Clinical Cancer Research, vol.14, issue.18, pp.14-5869, 2008.
DOI : 10.1158/1078-0432.CCR-08-0449

F. Loupakis, L. Pollina, I. Stasi, A. Ruzzo, M. Scartozzi et al., PTEN Expression and KRAS Mutations on Primary Tumors and Metastases in the Prediction of Benefit From Cetuximab Plus Irinotecan for Patients With Metastatic Colorectal Cancer, Journal of Clinical Oncology, vol.27, issue.16, pp.27-2622, 2009.
DOI : 10.1200/JCO.2008.20.2796

L. R. Perk, G. W. Visser, M. J. Vosjan, M. Stigter-van-walsum, B. M. Tijink et al., 89Zr as a PET surrogate radioisotope for scouting biodistribution of the therapeutic radiometals 90Y and 177Lu in tumor-bearing nude mice after coupling to the internalizing antibody cetuximab, J. Nucl. Med, pp.46-1898, 2005.

M. Eiblmaier, L. A. Meyer, M. A. Watson, P. M. Fracasso, L. J. Pike et al., Correlating EGFR Expression with Receptor-Binding Properties and Internalization of 64Cu-DOTA-Cetuximab in 5 Cervical Cancer Cell Lines, Journal of Nuclear Medicine, vol.49, issue.9, pp.49-1472, 2008.
DOI : 10.2967/jnumed.108.052316

T. K. Nayak, K. Garmestani, D. E. Milenic, K. E. Baidoo, and M. W. Brechbiel, HER1-Targeted 86Y-Panitumumab Possesses Superior Targeting Characteristics than 86Y-Cetuximab for PET Imaging of Human Malignant Mesothelioma Tumors Xenografts, PLoS ONE, vol.29, issue.3, 2011.
DOI : 10.1371/journal.pone.0018198.s001

M. Nestor, Effect of cetuximab treatment in squamous cell carcinomas, Tumor Biology, vol.41, issue.3, pp.31-141, 2010.
DOI : 10.1007/s13277-010-0018-8

D. D. Meira, I. Nobrega, A. V. De, J. S. Mororo, A. M. Cardoso et al., Different antiproliferative effects of matuzumab and cetuximab in A431 cells are associated with persistent activity of the MAPK pathway, European Journal of Cancer, vol.45, issue.7, pp.45-1265, 2009.
DOI : 10.1016/j.ejca.2008.12.012

S. Li, K. R. Schmitz, P. D. Jeffrey, J. J. Wiltzius, P. Kussie et al., Structural basis for inhibition of the epidermal growth factor receptor by cetuximab, Cancer Cell, vol.7, issue.4, 2005.
DOI : 10.1016/j.ccr.2005.03.003

D. Martina, A. Allemann, E. Bettinger, T. Bussat, P. Lassus et al., Grafting of abciximab to a microbubble-based ultrasound contrast agent for targeting to platelets expressing GP IIb/IIIa -Characterization and in vitro testing, Eur. J. Pharm. Biopharm, pp.68-555, 2008.

B. Polack, J. Schved, and B. Boneu, Preanalytical Recommendations of the ???Groupe d???Etude sur l???H??mostase et la Thrombose??? (GEHT) for Venous Blood Testing in Hemostasis Laboratories, Pathophysiology of Haemostasis and Thrombosis, vol.31, issue.1, pp.31-61, 2001.
DOI : 10.1159/000048046

E. J. Favaloro, G. Lippi, and M. Franchini, Contemporary platelet function testing, Clinical Chemistry and Laboratory Medicine, vol.48, issue.5, pp.48-579, 2010.
DOI : 10.1515/CCLM.2010.121

H. B. Dixon and R. N. Perham, Reversible blocking of amino groups with citraconic anhydride, Biochemical Journal, vol.109, issue.2, p.312, 1968.
DOI : 10.1042/bj1090312

N. Hézard, D. Metz, P. Nazeyrollas, P. Nguyen, G. Simon et al., Free and total platelet glycoprotein IIb/IIIa measurement in whole blood by quantitative flow cytometry during and after infusion of c7E3 Fab in patients undergoing PTCA, Thromb. Haemost, pp.81-869, 1999.

M. J. Quinn, R. T. Murphy, M. Dooley, J. B. Foley, and D. J. Fitzgerald, Occupancy of the Internal and External Pools of Glycoprotein IIb/IIIa following Abciximab Bolus and Infusion, J. Pharmacol. Exp. Ther, pp.297-496, 2001.

T. Gautier, A. Klein, V. Deckert, C. Desrumaux, N. Ogier et al., Effect of Plasma Phospholipid Transfer Protein Deficiency on Lethal Endotoxemia in Mice, Journal of Biological Chemistry, vol.283, issue.27, pp.283-18702, 2008.
DOI : 10.1074/jbc.M802802200

URL : https://hal.archives-ouvertes.fr/hal-00284576

T. Gautier, C. Paul, V. Deckert, C. Desrumaux, A. Klein et al., Innate immune response triggered by triacyl lipid A is dependent on phospholipid transfer protein (PLTP) gene expression, The FASEB Journal, vol.24, issue.9, pp.24-3544, 2010.
DOI : 10.1096/fj.09-152876

T. Gautier and L. Lagrost, Plasma PLTP (phospholipid-transfer protein): an emerging role in ???reverse lipopolysaccharide transport??? and innate immunity, Biochemical Society Transactions, vol.55, issue.4, pp.39-984, 2011.
DOI : 10.1111/j.1749-6632.1998.tb09016.x

V. S. Trubetskoy, N. V. Koshkina, V. G. Omel-'yanenko, V. Vov, L. Dmitriev et al., FITC-labeled lipopolysaccharide: use as a probe for liposomal membrane incorporation studies, FEBS Letters, vol.42, issue.1, pp.269-79, 1990.
DOI : 10.1016/0014-5793(90)81123-6

A. Troelstra, P. Antal-szalmas, L. A. De-graaf-miltenburg, A. J. Weersink, J. Verhoef et al., Saturable CD14-dependent binding of fluorescein-labeled lipopolysaccharide to human monocytes, Infect. Immun, pp.65-2272, 1997.

K. Triantafilou, M. Triantafilou, and N. Fernandez, Lipopolysaccharide (LPS) labeled with Alexa 488 hydrazide as a novel probe for LPS binding studies, Cytometry, pp.41-316, 2000.

Y. Fujimoto, E. Kimura, S. Murata, S. Kusumoto, and K. Fukase, Synthesis and bioactivity of fluorescence-and biotin-labeled lipid A analogs for investigation of recognition mechanism in innate immunity, Tetrahedron Lett, pp.47-539, 2006.

J. T. Rosenbaum, P. A. Hendricks, J. E. Shively, and I. R. Mcdougall, Distribution of radiolabeled endotoxin with particular reference to the eye: concise communication, J. Nucl. Med, pp.24-29, 1983.

R. S. Munford, L. C. Deveaux, J. E. Cronan-jr, and P. D. Rick, Biosynthetic radiolabeling of bacterial lipopolysaccharide to high specific activity, Journal of Immunological Methods, vol.148, issue.1-2, pp.148-115, 1992.
DOI : 10.1016/0022-1759(92)90164-O