N

N

*OMi"B#miBOQM iQ M MQ Q  KB+"Q + vbi HHB
BM bBHB+ @# b2/ ;H bb #v 72KiQb2+QM/ H
*?2 tBM; 6 M

hQ +Bi2 i?Bb p2 ' bBQM,

*2 tBM; 6 MX *QMi"B#miBQM iQ M MQ Q  KB+'Q + vbi HHBx iBQM BM/|
iQb2+QM/ H b2 B " /B iBQMX Pi?2 X IMBp2 ' bBiG S 'Bbam/ @ S 'Bb s/
M/ i2+?MQHQ:;v Ua? M;? B- *?BM2V- kyRkX 1M;HBb?X LLh, kyRkS RR

> G A/, iZH@yydNekRN
2iiTbh,ffi2HX "+?2Bp2b@Qmp2 i2bX7 fi2H@yydN
am#KBii2/ QM k J ~ kyR]j

> G Bb KmHiB@/Bb+BTHBM v GOT24WB p2 Dmbp2 "i2 THm B/BbBIBTHBN
"+?Bp2 7Q i?72 /2TQbBi M/ /Bbb2KIBEBMBR MNQ@T™+B2® " H /BzmbBQM /2 /
2MiB}+ "2b2 "+?2 /Q+mK2Mib- r?2i?@+B2MMiB}2mM2b#/@ MBp2 m "2+?22 +?22- T
HBb?2/ Q° MQiX h?2 /IQ+mK2Mib MK VW+RK2Z2EF IQKHBbb2K2Mib /62Mb2B;M
i2 +?BM; M/ "2b2 "+? BMbiBimiBQWER BM?8 7M#M2I @b Qm (i~ M;2 b- /2b H
#Q /-Q 7 QK Tm#HB+ Q T ' Bp i2T2HRAB+B @2MT2BIpXib X


https://tel.archives-ouvertes.fr/tel-00796219
https://hal.archives-ouvertes.fr

FR WXWHOIOMXHOOHPHQW

81,9(56,3$5,6 68"
($67&+,181,9(56,7x68&,(1&L'7(&+12/2*%<

e&2/('2&725%/(&KLPGHDUGNG
IDERUDWR QWK GWXWPLROHFXO®OWHUGDXY/D |

'6&,3/,10DWHULALOI\D FH

7+6('( '2&72587

VRXWHMX H

SDU

&KD[L)31

&ROWULBYRYORQLFBR\VWDOOL]DW
LOGXFMW@IR@LFD EDVEMSHPWRVHFER QG
ODVHUDGLDWLRQ

'L UHFWGHWHW H %HUWBDEDG//(& 'U ,&002 836

&R GLUHBWN¥H *X R U RSQHY 1 3URI(&867

&RPSRVIGNUMRQ\

3PVLGHOMXU| <RQJIVKHQJ 3URI(&867

([DPLODWHXUYV 0D W W K HRG < $VV 3URIO02 836
<XQ[EB1* 3URI(&867

+XLGHQ* $VV 3URI (&867



&R QW U i BDYWIGRD Q G X FILIR®P LF BRLVWDOOLVDWLF
G D G WH UjUB-DVGHY L OjLOPH G BO D VHHRIW RVHF R Q G H

5pV XP

/HWUD L VG BD&B @MRW R V HEFIRGNERHDIY L DV [ D Q V S DSAHRPHW W H X U
GXDIGM BRV V ph & HARIDAHOURSWGpQ H UG DO W H PES® D QVH V SDF H

, R X YIJIH@GVHS/R V V B\VE D Q MWD \SVR DAKDDHEWU L FADHY/R. R QHPIMY L D X [

FRP SR \PXYVOMM. | R Q FV@PLIRELSHEMD QMO DR AFHHG RULHGWWW LR Q
FULVW R R pmL UG @HWH U RHHINWMKHF R Q W SIUEDQH L S D @P HQ W
POW UGWHQ D RRPLFBR LV WD GO D¥YXW UREN\GHY L 0% R MH
@PYHORSSIEMOQWY HPDOWLD XPHFWUR P\WWILX FRQ BWUR QQHOV
OL U U D G DBA\DLVRHB W R V H EFR@RERHQ VOUDE L V p D@D L WGHPH Q W

P DWW L DXDQ@B D VHRIW R V FSARRQIEMHR COHOW RBVR.S W L O ML H V

H @R @ pmL LRI 1 DD E U L FEOWLLARUGRD @RulID VDV, QNKIB H R U PHHW

O HRW L H Q WHDADLLRVD ZF pUD MIHMOGRY U L TOWD LIDMHEW. VW U LE XW LR QV
QF K HOXOH P L FAUWRLPT X H

/HPpPRLIGE XV BXF KD SLQYW H RGHOE QY. HV WG BDENLLRER U H
ODVYRABXOVKRYUBOEUEI OS ¥ WH QXIED QWHY BB GH LO L F H

D | LGHE L HP@W U IOK @ UV F U DY WF ERROX Y W DSBHO D VIHRIXM L V F XOHR/Q V

H | | HGAHS/D UVRIGD D WEK® B U L WAKHUTHOBIY L W KE\M¥SHO D FHE K Q W

IDLV FH\D XS R O D U LG/XXD\D VRIQO HS/U ROBWR S W L FXBHXW U X FW X U H V
DW R P LS BHI[W P S L Q J FDOGHRKID R53F R Q W UBDW B MVIHQYJH P H Q W

AP UUDQJ B WHREW.TOHN WL VH QpY LGHGFHM I THRWLHQW DMW. RQQH OV
GLUHFWVYEQQHGWN QW H UG FFWW RIGHHD D \CHUHIFHWH U UH V
PFDQLBRMRBISWRED E Q8 WHQIW HQRUGQY D RGMB K DG M

FKD B3PS X O0S/DUBDG RS/ D F HFPXDQW FGHDOXMR OL G H

/DSHFLSLWDONVUR QWD KPR U LM G VQW H UDHIEUUD GODWH B Q
IHPW RV HPVRID GISVD @ DEX Q HIT X H GEFHAHW L W RRY W\ S
N+]SHUP H®DWDXQRX G DR® XA L VRADMIMWNWOHDI[US ROD L U H
DO @D @\ L UHFEIVQ R PU IGSO/DL Qi | DE WUAXP D QLS XD Q W
JUDG IGHMWHRID WE DB HpJ O D 3H '8 D UWVRJ BXOD VHIUPD JH U L H
PLFURVFRSIp®mY BWERMFRRIGUPRQEGX PR Q VOWRD UgD AW
FULVVDYQW UQAMWR X UGHMQ IR U P DAXDRIRYVLHQWRWPLROQWHV
IDY RMDWRE NSAU R F HOMY X IVV W D OOV B VA IB QYIVU DOFWHR QY URQV
WWURGWLI(%E' IRXUQLENM®DIWUP DGWIR@MXORULHQWBWLRQ
F ULV MABYED HQBW U X G WOXLU FHM. @/RHW D P\R' B QO IHWS HENM YR Q

RULH QW QRW\REGHEE X \§ W R 8 L V DRAQMRYID PUS/R X/UE L U IYHHIV



X QMW UG ¥iiHp U L \@& K OUWWHJ X EWRLUWHWAY. VW DOOLQHYV

8QBXWHHVXPPORLUBS SRWWGEM H | R U PDDWLURIDD GR. DK R Q

O D VHRW R V FGARMGRIS D GWRE R @ BUW.S R BN\K D V LGB QMH U U H

j ED\GHV L OLHF\® D Q R S D (GWRGEXED B 3040 H) PR QW' S pF L $ULSD U
WUDLWWRHQRSSHHI UUD G ISDWMIHRQVEBHPHV X REBW L TXH V

G DE VR GHMiB QQ J MRS L FWB R QMY H | | HIFWSR W X GQ Bl U
PRGLILFOMIDRQ PGIHQD QR S D UGN REX @WWH U HHW LPXODWLRQV
WHR U L TR P Hi®1 \B R XD WoA/BERHI X O W [BWL\WP H QEDBVX/[X © D

WHR UG HD QH/@/PIR 60 B HU X ®H IDFFR Q V WGRKDNFNWE R X R U

(QILQHWWIIDNBHF R Q F H 8 W L R RN \AXLpH b R XOUHX WSKRIX U
GHVSSOLFS M \RIGEWHYOBRKIVE LWDWRBRHY RULHGWDYWLRQ
PLFUR QDQRB@UWLFXOHYV

ORW VWFD®DVHPWRVHBROGBX W UL DB LYWD RO LMRWLR Q
/L1E20 R@RQQ RISHW IQTR@PML U H



&RQW U MVEFXMRRQF BBR\VWD O@IGRRMERRQFD EDVHG
JOD\EXIHHWPWRVEBBRBGDGLDWLRQ

$SEVWUDFW

YHPWR V HODRGHER FHY QL QD QVEBDWH Q WEIURP LR ZQ QU H
DFFHVVRE ®WHRM GHS R VLW LR®IGY S D FOW KULNJLPRS M Q
IDQWBS®R B WWMRD®X | D DR XRDEV L | X Q FRARIPFSRIYQW HEL D OV
PDQLSXQODKWAL]N KD BB B ULHQ W DMWRIQFOQFQUN VW DWW ULQVLF
V\PPHWRE H GLGHID VAMHLEI/L V V H PP\I DR R @ UW BRMGMRFOM U R O
QD@®®LFERE\VWDO@NMDEGWLRF®] ED VR BNGH Y H O RRSIGRYQI\D
PXOWLIXQHFOHRQDRP B $/\W LERD@® R W R V FOCR@EU D G LBIW LR Q
GHPR Q WHMHDW HE R TH.RWALRIWIODRABGV H 8 U R O MMMLMKD SLQ J
OLQBIQ@ERQ ORSWBHRS HAMN IOH V¥ D] 8 DEMM@GG X RWQEULFDWLQJ
GLIIH®PHBDWR FODXWRV\E b COOM K F/IKLD SIHQY& U L H Q WHDAB HFEEQ D O O \
D V\P P HFEADUKLVAY H] NWDGL V W U\ B WMAR/EXFEQP L F UNRFPIHGNHH U

, QW KW Y HMAM\W VAR @ YDB K D SIW WIHLHD Y H V WR. QGOMLURTY TP\PW W U L F
RULH QWD WRER WH OD ZH @X /L O L F DJ B DIMR G GMRH O O
PDVWHKED ZHUW HGIL VXN HRWVODSBUWDPROMWPWPHWULF

Z U L WWGHK\Z U L WMLSHIE Q'@ KGHD \SHRWD D U L DMWKLBRRW RVHFR QG ODVH
JHQH UDSWHSFIRS HYQWEW V X FRV SBHWH UL S KD RB QUGG

VXU I DFRIS R J URD SWKFHU RV M F WR.IFOD VWM UD FIKYP H F K D QRIV P

R U L H Q WETH/S IHFRZBIMO) N GHON W KRHE O LSDMEHY R\@ 0 MA FEN H G

W ISHR O D U IR] D MHLRSEDDAHR GUED.J | HD G IOWR S/KIRRB RNV HQ VLW LY LW\

SKRWR SUHRIRSLVHDWIERQ LKW\ VWQ@ODBXMIKPWRVHFRQG
O D VW D G L YD\U MAE® L HDWRIGIKH S H WIDMIMRS) N+] 2ULHQWHG
F U\ V & DWKK IS RO UR/R V \B O L JDLHABKKOHD WHFD Q GLQH K\ ¥ RIQ
EHHREUL FEDMHEL S X @ DVWKIARH@ S H U D VG URBGE/M X W@V H U
SDUDP H\W ARKEU P RIGILGFH U BWt. PQ F U R VE R BR Q V RIS\ MWAHD\O
D F W LRYIE WAV W DHODOALB@IRWR Y V& RPAU L H Q WQDIW URDXVILRIQ W LY H
RIF H U WSIRLRQ. QROWDDAY R IRHUGE H Q W(ED\M E REIDRAQ  V F DGWWIKDIEQWL R Q
(%6 UHVXSQVRYPRRBHGH W DQRFEED V R/DIOH Q WO M IUP@® W GR Q
L OO XV QYW Bl W H D W/ IRQUNHVAN U X R WY KBHHQZHMAKH J LRIGY VW LQ FW O\
GLIIHJUHINWGG BQRULHQWROUWLRBFRE HBVKHH P S H U D BVGIUHHQ W
ZD$UR S RRVBIGWVOIEW UV WER GPQRIHRKD RINRULHQRIDWLRQ

IHPWRVBPREG LRUG X WHEZKH WY YRR Y HGRVQ Q QV K H
VW PWR GH



4XDVL VSREXDNLIRE® QR S DIUWLFICAHDYEDAVDEBU H VKD SHG
E\ IHPW R V HOFCRWHGWU D G IVIWAX IGRVIDR U RW KKBLUWR S H D\ BHR/MH L U
RULH Q IVDSWIERRDE D U DIDRD KHD L WOW EFR\OGD Q R S DIUQGW KAQ H V
UDQBH QPZHUSUHFLSEWRMMDW W U$i DVKRIHNDWD DIV HW

LU UD G LIDSWLIRFE\OR U SE. URIQU L Q DHELFAK U RH\DRY X UHBH B W V
SHUIR UWPRIGY HV W/IKPIRVEH | L FRM R R@D Q R S DWUKDLEEDE D V V

7 KHR U R P K D OKVD YBIDIND U IRDBIBR Q W HW KIS WU L PLHHOAX D@V V
EDVRGNKHD QWKHRQG X GRR G W@ J H IMKMKKNHQ R BQ HOHFWULF
FRQV\R DRWG

)X UW K HUPRUDES 19 L FIDQWEL R B H @ WU D UM WK | H IRWH G
IXW BUN LEFWRI@LFQRQRFOXSWHELNS MK D BIL@GELHQWDWLRQ
PDVWHULQJ

.H\ZRUGHWPW R VB BDRIEMAP P HXWULIWR QUHBWM® D O/Q L FPW LR Q
JROYEDSQANDOLQHDU



&R QW U i BDYWIGRD Q G X FILIR®P LF BRLVWDOOLVDWLF
G D G ¥IWH UjUB-DVGHY L Oj LOPH GM @ D VHHRIWW RVHFR Q G H

7 L WHUWHQ J OOR § W U MBRWR R IOF B R\ V W D Q. QIG B MMY RRQ F DJ & D \EW 16V

IHPWRVEBBRRBGDGLDWLRQ

0pP RLG MY 16 1& K D [) ®T pWV X G H F Q@ W XMHEQRA WELIBAKX \ROLRYE X O Bl BUHH/
ODMW LDGRUVBYQLY HYUVUBNAE D P SORUV BRW 'L U H FGVRM BU %
3RXPHOQBHEFH FK H& EXK&H WA \/D E R U DREROUWN UDD MGHB DD Q V\RW U \
(G XFD WREIRRBRRO® W H B EDOYE(® J L Q H DML QLY HRFEMWHR G B

THFKQRORHLORRDGEKD QIJKDL &KLQDUHFG®MIM HU 3URIRU R®HQ

5pV XPV X E V WHDEUVBIH @

/HW U D L VE D@ B @MW R V HEIRGWDIY L D [ D Q V S DINHROPHW W H X U
G XD IGWD BRV V h & HQRIQOHOUES, WGpQ H UG DHQW H PESWD QVH V SD F H

, R X Y IHQ@BHS/R V V pvE D Q MWD \SVR DABDHEWU L FADHYR. R QHPIDMY L D X [

FRP SR \PDYDRWL | R Q F\GPLIR@LCSHARD QMDDR AFHG RULHGWWWLRQ
FULVWR R ML UGIY@HWH U RHHNWMMHHE R Q W SIUEDQHF L S ) @HP H Q W
POWUGWHR D RRPLF BR LYV W D G D DWW UREN\GHY L 0% R MH
@PYHORS S HEHO@WY HPDIWLD P HFWUR BPX\WWMTXRQ FSDLR QQH OV
OL U U D G DBO\DL\RHB W R V H EQ@RRHQ VOWB L V [p BLD@/LWD L WGHPH Q W

P DPWL DXD@B D Y HRW R V HRRQEHR GHHMH RIGVRS W L O KM H V

H @R QpmL LR 1 DD E U L FORLLARUGRD @RoUD VDV QNKIB H R U PHHW
OHRULHQW BGBLIRIQVL BXMLID WDW \V U L T XOHHN D L © O/ Y
GLVWU Lj EpFWHRQEA P L FAURLPT X H



/HPPPRLGEXVEBX@EKDSLQYWH RGYEE YWY HV WG BPBVLLVER WH
ODVABX OV KR YUHBOEQBLOI X WH QKIED QWHY BB GHY LO L F H

D | LGHE L P@W U I0K € U F U DY WF ERROX Y W DRHO D VIFRXE L V F XOWHR/Q V

H | | HGAHS/D UVRIGHYD D WHKT B U L WAKHUIOBI Y L W IG\H$HO D FHB K Q W

IDLV FH\DXS R O D U LG/XDWD VRO HS/U RoBWR S W L FXBHHXW U X FW X UH V
DWRPLS B[V P SORHpW L Q J HDGFKD PGH R Q W UHDR BKMDHMI HP HQ W
GPUUDQJ B WHREWTOHN AL VH QoY LG H GFIM I T HRAWLH QW DAMWLR QQH O V
GLUHFWVYFQQHG Y QW H UG FFWM RSGHHD D \CHYUHIFHWH U U H V
PPFDQLPF MR BISWRED E Q 8 WHHQW HQROGQY D RGM®E K DG K

FKD B3PS X O0YDUBDB HRGS/DO D F HRXDQW FAHDOMR O L G H

/HVHFRFE® S H\DPH® 1B E R BMR U p®IH F W PR/ P IGIHGT X DWG R Q V
OD[ZHOBM@HS UHP HSDU\MVKVR QWD FUODSUR S D J B\ IRR)G H V

PO H F W R/ P D BE@VIDHR/DIY L DW[U D Q V STXUGS®I\WAZD U J H 8 HIDwW

WS R Q@ BML B B LIVX VR Q pDLLGHHI | HHAUSIDRI[H P SGHF HR'DPWL D X |

GO H F W U D D¥FHHW WADLYHVS Bl X\ \P H®HW UD QVIR SFADWRRBQ W V
G HR/DpW L DR P PGIHRK D Q J H BIHQGVBRH U D F VB IREpIW L Q J KEQIF H
OBULVW D QLR B WILRIBH\ESH WK L P L /0B XP HS D UGHE H
FKDSWWUREIS UR S D JORVQIQIGHL P S X GBWO R @MWV U D BRXQWW H V
FHRrP H Y DAWL DWW U D Q V S DOUBH.AQMAQG-HS/U R F HVH/QX FPRIDWWFH

O D VAHRIQWRQ XS X O WIRRQIWH S L T X8 B B @ WH FRRIG\ETRXIHV H U
IHPW RV HRRRF®I® DR @ DPVL /X0 D Q VIS0 GHEWKYGLORQLVDWLRQ
L/ H5 U R GH.SW R F HW \DXEW R Q R\ hRIQUBIE VR UBXVAWR DS KRWR QLT X
VXLEKBSKRWR L RIDHY IDANLORES! MY D O HQ\EK H

JHFKDSLWVAR Q$DKEHWDHOLPHQMP R VEBIRRQ G LB RQV

SESDUDWHE& U H OVAW UKHHE D V VIIMWHH/[BJ LH QAWMU D GDBW LR Q
PR\HQHWG Lpd HQGWLW SR WVIDV I BINVgVXHO HE Lpd H Q WiWAK R GHIV

F D UpD E WDXMLIROE X Y RJLOVE K HPIOAHU R V FIR Q) IDTORY



/ HE K D' S LMABRIQ V6 DA ¥ X GMDY H UWHHU GELIDRLAQH E 6L2

8 QHW X G HPWD W LEKKKDQJHFHQ@&SH# UDF\SKR® R LSDAX LWV
ODVIHPWRVHFEQGWHEGHQF¥SN+] HVG HOIPLFURVWGMNFW X UH
PRGLILFIBWURQQBRRWR L Q@GN HVHF W DLV IV Q WIOHY
FRQG L @LLLRLDG LHD WQRQBRIO D U L VIDOWAHR DY R XD Y RNV

U H P DpUWOTXpY H Q@XIQ pY H Q W K H D\OWI D GO IB\RMWVRRANS S DELHY

VW U X FHWHMO DOIRVAU L X B R WUV 8L.S SD U BWQRRS RUWD QW
FKDQJH®HQWIHEIK D F\GLBRWM XY T X HWX QEIPWLQJHQFH
UHODW LpD it H Q Wi 'DQV B O X SDHMY D DPHD S IGGHHH W W H
ElpWLQJHDAH D OB L U H B\RIER Q WGEISHO D F HPIE RMD QW LOORQ
GHY DODW V FHDE W S H Q (& IDQ\BYQ. M/ G\ L WIXME B VOHH U J L H

G LPSXOVDRHIRM B IpW LQJ B QHSEWO h DY MG LU H BIBIUR @/ X U H
HWQ G LT XHLVGY MQ BEMNV DL O QHG KHMWR Q ILSTR EVHU BGHW LR Q
OB R SR JGINEXW HO A K D Q WDLSU RO L YIDWPIR \ HEX QSR L Q W H
GLD D @MX\VEDK\WRALFUR 1UD S S/DXWHIDY RELGHMAD QW D 4V H
HQYLUR Q EDINQWBHDH/EHVU D F WRUBIAE H XY\ S R QJLW XML QD O H V
WUDQV Y HH 8 D B FIMH BIHQ G L DXBHY H Q BN Q HF R Q W UBHVQW\S H
©FLVDLOOHWHWMFRBGHI DLV HPE O®XDHPEDQWH Q VBXW LR Q
YR OXMFLILTF)XQHD L ERQD X J P H G ¥ DAM RISDON X F\ALIQYGDS IDMIH V
LUUD G DIDW HRIQ V



)LJ D,PD JGIS$KD&HW U PRLWEVMER Q | L J X;U DEASLLRRG X D \BHALXQO LJ Q H
LQGALH @ R L QWE DO@RV UD @ HWIVI SKRWR L QIVG IUUL MIBIRBLIRFOP U IGWD W L R Q

G
ODVH—HIPJWRVHEH—Q\GAHFB'H@IWX@JDLJX[DJ‘{‘II-MLU H BWBLLRRE D J DIVH R D

GLUHmm@D\ng\wawmwmm\QVFuwa\@mLYD@Q\WUSDHJ
LP S X ONNGRHQ - X QBIR Q J BHRX@GIH Q PX QIHIT X H GBABEIW L VB IHRIG [X Q H
YLWIBH/BIOD®HH PV XQBXHWG LPSXGHWLRIQ IR XY H UQAKRULHT & H
O RENW BN H®BURIR GEHRRDO LY WPR@OWX U IGEIBKDQWLOORQ

8 Q R L VHHRY L G HEXFHBIV \(RV LG F U L \8 B (1P DOWL DXRW UR S W X U H
GH/\RPWULHKHUWDULRNHYY@VQ W H UG XM URVGHF HP SXOVLRQ

FR X G NGLAL QW pipQ WAR Q R/ X Y HIVB[U S UHRQHDAYUANT \KIBR Q
SHRWEVHG WGP HQAD W DB IREF KD QWEBQW QiRWJ PP X HDMH

DLV FGH® Y Rj LMD B FROB K D X FjKGHU RO HG H D X\ DRXG HED V

H @ D XWJ U R X B BDQLD/Y D3P R QoW ¥X Q$ID UGMEKID ISS&IRUPDWLR Q
L Q G YILQW H WQFODWMR PR QWP D L Q W I ODQWL W TFWIBWHDRH QW LR Q
GL QG GFp UDFWXRBIPW L Q J HYRIHI H QWXHD D R Q J XGHOXPR Q H

AL Q W H UHDVBAHL R QIVX i H GoB H GBGD B R O D U LWIBXNAIHRG® H GG

O B L W BIVBUH V& KWNBIW RV LRLUHL H Q W DDV @RRM-YCERVEHLEG® Q V
OULOL¥®BDGWUWHURXOWLFRPGRQBBUWVRBUEK\VLFR FKLPLTXHV
VR @ WHQR pH G 10 B L O FHHAK D S L \M MDA GARLQ 6 PIFRIVD W\ERV U L H
RULHQW D QRVX@HEWHRIG I L J X GPPWLREXWMH <[ <\ GDQV
OHVTXHOOHNH Q\UBQWH BUISFOD F HE X Q WHIRW R V HHFR Q G H

\ UH®E H QW BQ WH BWSLRRALD U G0 BABRI@ [H P S:Q H. Q G LTIXBID

G LU H BWRR@MD FHE MPW HP W R V HARIR G YD @YVHW D QToXUYD

G L U H BWSLRRAID U 1G//O DNHIREL LpH QRO Q\[MDILJ X URR Q W Q H

LP D &HS K DNWG U RH[ W (GHLHL BWIHSHR OB R Q 1 L J XU DVOBRIG W
FODLURENEGWSHWGHODL I X EHT X O MpSKDVBKRWR HY@®/XLW
G LpU H  RVGLHO/L J @FHM. @THEWG/L U H FRASLSERQMWV D Y R (BUKQ R® H

X O'W U DGURDUBLLMB ¥\ U L T X H



)LJ 5HWDUGDESH U VW DRQQH Q OHREG! MK\ X&HW U DOFDH@WHLUL GIHGY V
GLUHFWEFRQM HQWB®RYB WV R QI LJX BEPRLLRMRUDMIAX L Y D Q WH V
'\ E<[ FHW G/H[BJLHDQMHD QHIVFED @Y HWWH/L2 12 &KDTXH

ILJXShMH QW R X UEWMWR FIG HoZ U L WWOUHNG D QW \R U L H Q R B Bl RO Y
HW HWRXWSRODUIOMIMER@QH J /H\D X WUHYWRIB\NQVFULSWLRQ

VR QWAXLY DQOWHUSDHP SXONYR) - XQBRQJGHRQIH QPXQH

| T X H @ASOW L VEIHRNG X QUL W IBVEWDHO DEHIH P V X QGHG LPSXGNLRQ
IVIRXY H DQXRULH XD RE MW BWAVIHEZBURIR GHMREDOLE B W IPRQ

VROWXUIGEIBKDQWLOORQ

IDILIXWPHR QWUDODHW D IBER@WHH ISR WHWRIGILIXYDWLRQV
<[ <\ pULWXRAF\G KRQ W &WhHSHD D F HEX Q WEDLS SWNUMR Q H
WUIR URNANU L Q I HEEWR W R IS(OAIXUL WDHG @ D WHDR BV HEIRFRHU W H V
UHW D UGHIRQUFGBYH | QP/TPULWX MU LIEKNWRIE VPHS R X U

GHWRQILJIXEPPWILROM N HW &HSHQ GHDI OMIMQELY SDUDLW UH
SRXAHYLW HENBEWO D FHPHBMW RUKHEDQGH PV &HW XOWDW YV

H[B8J L P H QR\RIDY THHEFFW L \B X R U L YQARDH X O HOpH QWL W H V V H
GHPSODFHEBKIDMHBW R V HIF R IQNGHD VIWX VYl j] OB L U H FOMLR Q
SRODUIG)ODVRBKDS LW H QUHO H PHOEVWP D AMMULQFLSDOHYV



RULJIGOHS KQ R H MpPW S U RBRVAH WW S VERURBW ULWHR Y LH Q Q H
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Chapter 1 Introduction

Chapter 1

Introduction

1.1 Motivation and aims

Glasses containing micro/maclusters have potentially @pled an increasing number
of applications in various fields of saee and technology because of their unique
linear and nonlinear optical @perties [1]. This offers wg promising opportunity to
manufacture new nonlinear materials.eatto-optical nano-deéces and optical
elements by manipulation of the struetluproperties of the composite medium.
However, is it possible tooatrol size, shape and evere ttrystallographic orientation

of such micro/nanoclusters insite dielectric matrix? And how?

As far as concerned, traditional fabricatimethods such as melting-quenching [2],
ultrasonic surface treatment [3], mechanicat extrusion [4], crystallization under
electric field or magnetic field [5-6] ettave been carried out and found out the
shortage of controlling the size and salatlistribution of naoparticles in glass.
Recently, femtosecond laser-based techniques have become of great interest since it
allows the engineering of ¢hoptical propertie®f the material via gaining control
over size and spatial distributiaf nanoclusters in glass matrix [7-8]. In such a way,
femtosecond laser can be a fantastic tookealize three dimension (3D) spatial
photo-induction and shapingf micro/nanoclusters irglass for their linear and
non-linear optical properties on demand. The wadsented in thighesis will mainly
focus on the induction and control of the micranoclusters sizend shape as well as
their distribution and orientation insiddich-based glass by means of femtosecond

laser and their related formation mechanism.
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The evolution and revolution of femtoseconsdlamaterial processy have given rise

to the improvement of existing materialsdaihe development of new materials for a
widespread applications in various fieldsall modern technolies [8-10]. During
femtosecond laser processing, the absorbed pakgy only can transf to the lattice

on the order of 10 ps through nonlinear apson [8]. Compared to nanosecond or
longer laser pulses, it can produce a very clean modified region with minimum
collateral damage making it a promisieghnique for high precisn micro-structuring
materials. It is well known that femtesond laser materials processing can induce a
myriad of material interactions, suchssface ablation [11], thermal annealing [12],
and 3D refractive index changes profilifif8]. Recently, femtosecond laser-induced
photosensitivity and the subsequent refractindex modifications in silica glass have
been exploited for a wide range obhotonic applications from various
micro-waveguides to nanodevices, such asreleone plates [14], three-dimensional
couplers [15], polarization sensitive devi¢&6-17] and opticamemory [18]. Among

a variety of material processing mentiongobove, orientational writing potentially
enables one more opportunity to mangtel photoinscription and photolithography
inside transparent materials. In the few pgesdrs, resemblant "quill" or asymmetric
orientational writing in puresilica has been interpreted in terms of a spatially
asymmetric phase distribution in the beenmss-section [19-22JAs a matter of fact,
they are originated from laser beam asymmetry. Furthermore, two evidences
accounted for orientational writing effects i@edemonstrated from different textures

in the cross section of the written lines. One is depicted by Kazansky's group, which is
correlated with difference in nanogratinggether with a collateral damage due to
thermal effect in one direction [21]. Tloher is stated by our group, which is about
the micro-shearing in the head of lasexcks dependent on theriting direction by
measuring the surface topography of a cleasikch glass (chiragffect) [22]. These
specificities provide a deep understandamgthe orientation geendent writing while
asymmetric writing dependent on the laser po#dion in silica-based glass is firstly
discovered in our work. Therefore, it iggessary to discuss asymmetric writing in

pure silica as well as in silica-based glasthercomparison between them in order to
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completely understand the laser writing.

Compared with traditional fabricath methods [2-6], femtosecond laser
crystallization can enable various kinds afystals with geometrically designed
structures precipitated in tvelume of glass. With ultrashiopulse and ultrahigh peak
power, femtosecond laser can be localizedransparent materials due to strong
nonlinear nature of the teraction [8]. At high rpetition rate (> 200 kHz)
femtosecond laser, the phase transition procesiica-based glass considered take
place due to the thermal effect of the laser irradiation. Pulse energy is deposited
repeatedly at the focal point thigtu nonlinear multiphoton absorption, and heat
accumulation leads to a temperature risd #ms sustains broad cooling profile
resulting in crystal growth. Subseqtgn thermal diffusion will induce radial
migrations of elements to make up chesh gradients, which determines the
orientation of crystallites. Ithe past decade, a seriesnminlinear crystals such as
-BaB,O, [23-24], BaTiSi,Os [25-27], LINbO; [24, 26], BaTiGe,Og [28] and
SKTiSi,0g[29] as well as crystalline Ge [30]dide bulk glass were space-selectively
precipitated using femtosecond laser irradiations. In addition, with the additional
assistance of heating equipment, Ston@le{31-32] have succeeded in patterning
three-dimensional ferroelectringle crystal architecture with its c-axis aligned along
the femtosecond laser scanning inside a LaB&g&¥s. However, as far as we know,
the control of crystal orientation insidgasses by solely adjusting femtosecond laser
irradiation parameters ®ill on demand. In this #sis, we demonstrate LiNBdke
crystals formation within glass volume mgespace-selectively nucleated and grown
by femtosecond laser irradiation. It has bésund that well-oriented micro-crystals
can be achieved by adjusting the laserapeeters including peetition rate, pulse
energy, writing speed as well as laser polarization. Furthermore, a systematic study on
its efficient crystallization and the factorglirencing the orientadin such as repetition
rate, writing velocity, pulse energy and laser polarization is performed in order to

better understand the formation medkanleading to the orientation.
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On the other hand, femtosecond laser indudefdrmation of gold nanoparticles in
glass is investigated. The origin and untirding of dielectric materials containing
metallic nanoparticles is one of the mastive and challenging areas of solid state
science owing to their uniquénear and nonlinear optical properties. Recently,
femtosecond laser-based techniques hage aken applied te@ontrol the shape
transformation of metal nanoparticles in gamatrix resulting inntriguing optical
properties [33-36]. Permanent deformationnoétallic nanoclusters via irradiation
with intense ultrashort lasgulses was realized by kiag use of strong surface
plasmon resonance (SPR) of these nanamisisThese results strongly depend on the
laser processing parameters and the charaateres the irradiated glass. For instance,
starting from silica-based glasses with spte@ nanoclusters, the strong fields of
linearly polarized femtosecond or picosecondsesiwith a wavelengtin the vicinity

of SPR together with a well controlled intégscan deform particles (size > 3 nm) to
uniformly oriented ellipsoids [35]Due to this shape modification, the original
plasmon resonance splits into two spectrally separated bands caused by electron
oscillations parallel or pegmdicular to the symmetry axid the shaped nanopatrticles,
which resulted in optical dichroism. Thischnique can be applied to materials with
anisotropic particles where the aspect ratio can be increased or decreased. Until now,
high intensity femtosecond laser re-shapsilger nanoparticles in glass has been
extensively reported [33-36]. To our knedge, however, re-shaping of pure gold
nanoparticles modified by ultra$t laser inside solid dieleict materials is still vacant
whereas the interest is large for tailoring rioear optical propers in glasses. In

this thesis, it is demonstrated that mgshg by means of femtosecond laser irradiation,
which was found for silver nanoparticles in multicomponent glass, are also possible

for gold nanopatrticles.

The last chapter refers to comparisomtesecond laser processing with traditional
methods for the preparation of glassesntaining micro/nanoclusters and their
feasible applications. An opportunitgf sensors relying on femtosecond laser

reshaping gold nanopatrticles in glassvadl as frequency doubling devices based on
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femtosecond laser-induced oriented LiNm®ystals is demonstrated and discussed.
Moreover, such components enable to develope advanced applications in various
fields such as integratemptics, nano-optics, optical mgponents, optoelectronics or

bio-photonics.
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Chapter 2

Background

Since this thesis contains a number of key results involving linear and nonlinear
optical properties resulting from ligimhatter interaction, in this chapter | firstly recall
the OD[ZHOO YV Ibl K& setiRiQagnetic theory ah electromagnetic wave
propagation The propagation of electromagnetic wamehe optical materiastrongly
depends onhe linear and nonlinearesponse of the medium and can resulthe
permanent modificationSection 2.2 review/the properties of ulashort laser pulse
nonlinear propagation in transparent materidlse interaction of a tight focusing
femtosecond lasewith transparentglassesat an intensity above the ionization
thresholddrives highly nonlinearabsorptionprocessesncluding plasmaformation,
seltfocusing, selphase modulation, plasma defocusing and relaxaBewation 2.3
gives a bit recall about the nonlinear excitation and relaxation mechanisms. Finally, a
classical example about the damage thresholds in femtosecond lasesipgosiisa

is presented.

2.1 Foundations of the linear and nonlinear light

propagation

According to OD[ZHO OV Hbf XPb iWaci®<@apic electromagnetic fielthe

electromagnetic theory oflght propagatiorin materialmediumcan be written by,

(2.1)

(2.2)
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(2.3)

(2.4)
with

(2.5)

(2.6)

(2.7)
where , arethe electric ad magneticfields, respectively; and are the
corresponding electric flux deiyg and magnetic flux density; is the induced
polarization; is the current density, is the conductivity of the medium, and
is the density of external charges; and are the electric and magnetic
permittivity in vacuum, respectively. In @onrmagnetic medion where there are no

electric charges or currents, . Thus after substitution oéquatiors

(2.5-2.7) in equations (21-2.4) the electromagnetic wave equation can be derived

(2.8)

Furthermore, the optical polarization induced in the medium is dependent on the

electric field of the electromagnetic wave and can be described by a Taylor series:

(2.9)
where ] « L\ wvdérsusceptibility, and is thej™ orderpolarization.
Therefore, the equation (2.8) can be modified to

(2.10)
where is the light speed in vacuum; is the linear
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refractive index.In conventional optics whethe electric field strength is small, the

nonlinear contribution can be negligible,
(2.11)

However, if the applied field is at high intensity strength, e.g. on or above the order of

10° V/m, an intense laser field, the nonlinear polarization may no longer be

neglected. Generally, the orders abo@® in the term can be omitted.

Furthermore,in a material that exhibit an inversion point (this symmetry operation
changes the sign of the coordinate of each point with respect to a center of symmetry or
inverdon poind, the second order respgavanishes, and thus the equation (2.9) can be

described as

(2.12)
Thus, the equation (2.10) can be simplified to
(2.13)
is the refractive index and can be given as
(2.14)
where is the nonlinear refractive index and is the laser

intensityor Kerr effect Thus, in the case of ultrashort pulse propagation through the
medium, the nonlinear polarization came induced and responsible for the

selffocusing and selphasemodulation

2.2 Nonlinear propagation of femtosecond laser pulses

Transparent dielectrics have a widptical banegap (e.g.,9 eV for SiQ glass) that
they are transparent in the visible arehrinfraredat low intensity{1]. Therefore, in

order to induce material modification with moderateergy pulses, the laser intensity
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should be increased to induce a stronginlinear response from the material, such as
plagnaformation.lt is well known that the formation of femtosecond filamentation is
mainly involving two nonlinearphysicalprocessesone is seHfocusing induced by
the optical Kerr effect and the otheneis defocusinggoverned bythe formation of
plasma In the following,we firstly investigate paraxial focusing of Gaussian beams
in a linear propagatiorregime by a geometrical approacland then the nonlinear
effects for the ultrashort pulse propagatiand finally their related nonlinear

excitation mechanisms.

2.2.1 Paraxial focusing of Gaussian beamsn a linear regime

When aGaussian beam propagatingdim or free space along z axitie Rayleigh

length is given by2]

(2.15)

where LV |We\eldngthandwy is thgbeamwaist the radial size of the beam at its

narrowest point.The radius of the beam at a distarcdrom the waist can be

described as [3]

(2.16)

The minimum value o#z) occurs atM0) =wp, by definition.When the pulse energy
of a tight focusing femtosecond laser is slightbove the damage threshold of
materials, the diameter of the modified zone will be confined in a very narrow region
at the very central part of th&aussianspot profile where the intensity is just
sufficient to trigger multiphoton ionization (Figure 2.IWhen the pulse energy
increases, the cylindrical rdike modification zone will elongate symmetrically

towards two sides.

12



Chapter 2 Background

Figure 2.1: The longitudinal view of the modification zone located at the focal point induced by
the multiphoton process [5].

When the pulse power is much smaller than the critical power as detailed

below in equation (2.18), linear propagation is only slightly perturbed by nonlinear
effects [4].Figure 22 presents a sketch map fofcusng across dlat interface from

air into the glass based on a linear regi@eis thecrossing point of the light axis
across the interface, and I8 the geometrical focus in air. The marginal rayand
anotherarbitrary ray , focus at different points; and F respectivelydue todifferent
incidert angles on the interface. Tiparaxial rays focus at;Kthe geometrical focus

in the sample|lO;F1| =n | O;F|, nis the refractive index of the sampléccording to

the geometricalcalculation from thesketch mapit can be calculate{D:P| = |O1F|

tan OjFs|tan. 7K the foci range (also called foc& LV SOD FHPR[gav G

berepreserdd as

(2.17)

where NAis numerical aperturef microscope objective, and ;

is the focusing depth in the glassurthermore, according to

SnellDescartes law . Apparently,the focusrange ismainly depadent

onfg and NAIn a linear extension.
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Figure 2.2: A sketch map of focusing across a place interface fag into the glass based on a
linear propagation [5].

As a matter of fact, the real length induced by femtosecond laser is much longer than
the above one due to the nonlinear processes. The effects of spherical aberration and
geometrical focal depth on the ultrashort laser nonlinear propagation play important
roles in the focusing process inside glass materials [5]. Figure 2.3 presents the
simulations of femtosecond laser beam profiles and intensity curves when the
geometrical focal depthd)(are 50, 100, 200 and 300m. Apparently, spherical
aberration significantly affects the beam profiles during femtosecond laser
propagation. For instance, when tpgometricafocal depth is set at 50m, the real

focal depth and full width at half maximum (FWHM) of intensity cuis€/2.8 m

and 2.4 m with spherical aberration compared to 27n3and 5.8 m for the case of

no spherical aberration. Furthermore, with the increase of the geometrical focal depth,
in the condition of no spherical aberration, the beam shape and thsitinteurves
including the shape and FWHM are almost unchanged. In contrast, with spherical
aberration, the beam profile dramatically changed. When the geometrical focal depth
Is increased to 200m, two selffocusing points appears. One is focused at2.0th

with the FWHM of 11.2 m, and the other one is focused at 115m with the

FWHM of 22.4 m. Furthermore, at=300 m, multiple selffocusing appears. It
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involves in four focal depthsorrespondingo 1515, 1641, 1762 and 1765 Hn,

respectively.

15



Chapter 2 Background

Figure 2.3: Simulations of the laser beam profiles (a, b, d, €) and intensity curves (c, f) when
femtosecond laser is focused at different geometrical depths with and without spherical aberration.

2.2.2 Plasma formation

The formation of plasma iseseded fromthe nonlinear photoionizatiorand grows
through avalanche ionization until the plasma frequency approaché&sdgoency of

the incident laser radiatiomwhich is defined as

(2.18)
where are the plasma frequency and the electron density; are
the mass and charge of the electron.
Thus, can be deduced to denote the value of the critical plasma

density above which the plasma becomes opaque. This high density of plasma is
strongly dependent ondgHreecarrier absorption from the laser energywhs shown
that the plasma generated in the wake of the propagating polse modify the

dispersive properties of the medil, this will be discussed in Section 2.2.5.

2.2.3 Self-focusing

Seltfocusirg is a nonlinear optical processidgng from the spatial distribution of
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nonlinear phase in a laser beam in a Kerr medium, in which the index of refraction is

as described in equation (2.14)}8} Thus the spadi variation of the

laser intensity I(r) can create a spatially varying refractive index in dielechiicse
is positive in most materials (for instance, it is 2.27 X f/W for pure silica),

and owing to le typical Gaussian spatial profile of a femtosecond laser pulse, the
index of refraction is larger toward the center of the pulse. The spatial variation of n
causes a lenkke effect that tends to focus the laser beam inside the dielectrics
(Figure 2.4). The effect of curvature of thevavefrontsimilar to that of a lenss
involved, with the difference that here the effect is cumulative andlezth to a
catastrophic collapse of the beam on itgelthe absencef other saturating effects

[9]. It shouldbe notedf its powerexceedshe criticalthresholdfor selffocusing[4]:

(2.19)

where is the laser wavelength, and are the linear and nonlinear index of

refraction, respectivelyf the power is initially below the critical value the beam will
diffract. If the power is above the criticahlue sekfocusng overcomes diffraction

and the collapse of the pulse to a singularity is predictéelvertheless, other
mechanismssuch as defocusing due to nonlinear ionization will always balance
seltfocusing and prevent pulse collapse inside digtechaterials and gives rise to
filamentation. As the result of spatial sé&ftusing, the o+axis intensity of
femtosecond laser pulses inside dielectrics, especially at its temporal peak, can be
significantly larger than its original value. Consequentig pulse may be sharpened

(pulse sharpening) temporally with a steeper rise and decay of the temporal profile.

When the power of the pulses is much greater than the critical power ( ),

the beam will break up intoultiple filaments, each one carrying approximately the
critical power[10]. The position of selfocusing occurs at the place where Gaussian

beam collapses to a singularity]1
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(2.20)

where is the beam power, Is the wave number, and is the input

beam's radius at the level of intensity. The distance is measured from the waist

of the Gaussian beam at the sample's surt&en an external lens with focal length

is applied, the selfocusing position willmove to the fronbf the position of the

lens's focusccordingto [12]:
(2.2)

In a real mediumpther physicakffects, e.g.selfphase modulatignor multiphoton
absorption ad plasma defocusing may generally come into play during the

seltfocusing process and maktee nonlinear propagatianore complex.

2.2.4 Self-phase modulation

Since the intensity I(t) of femtosecond laser pulses is highly time dependent, the
refractive idex depends on time. Analogous to detfusing, the phase of the
propagating pulse can be modulated by the -timmain envelope of the pulse itself
(selfphase modulation).With a nonzero nonlinear refractive indexhe derivative

RI WKH SKDVH -] W RI WKH SXOV8:ZLWK UHVSHFW WR W

(2.22)
where is the carrier frequencgnd he linear dispersn is diminished. Thusthe
generation of new frequencies depends on the slope of the pulse, the

propagation distance in theKerr medium and its nonlinear index coeffiaie
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Figure 2.4 Schematic illustration ofa) selffocusing and(b) selfphase modulation resulting
from a nonlinear refractive indg4].

The timevarying term of the phase produces frequency shifts that énodd pulse
spectrum as illustrated in Rige 2.4. Spectral broadening depends on the nonlinear
index of refraction yand the time derivative of the laser pulse intensity, and for a
time-symmetric pulse the broadening will also be symmetric in frequency
Nevertheless, experimentally observed spectral broadening is seldom symmetric due
to processes such as photoionization, which also gives rise to aldpeadent

refractive index.

2.2.5Plasma defocusing

It is clear that the presence of electbole plamasresults in a decrease in the
refractive index, in contrast to the optical Kerr effecheTgeneration of a plasma

involves a local reduction in the refraction index according to th¢18jv

(2.23)

Thus, the plasma index change can be calculated as

(2.24)

The electron density is the highest in the center of the pulse and decetagas in

the radial direction due to the typical Gaussian spatial intensity praila.result, the
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refractive index is the smallest on the beam axis and the beam is defocused by the
plasma, which acts as a diverging lens, possibly balancindpseling. In some case
a balance between sdifcusing and plasmadefocusing leads to filamentary

propagation.

On the other hand{ was found thatlectron plasma also contribdtéo a spectral
broadening and shittowards blue in the leading part of the gml similarly to the
phenomenon of spectral broadening in laser breakdpilasma[14-15]. In the

presence ofthe nonlinear phoionization, the simplest model relates the

instantaneous frequenty the time dependent plasma density as
(2.25)

This is the counterpart @quation(2.22 when seHphase modulation induced by the

plasma is also included.
2.3 Nonlinear light-matter interaction

2.3.1Nonlinear excitation mechanisms

Whenthe photon energy exceeds the bandgap enérgyhe materialslight can be
absorbed by the materiglfomoting electrons from the valence band to the conduction
band (Figire 2.59 [16]. Linear absorption of femtosecond pulseghe same athe
linear absorption of any other light fieldvhere photons can bebsorbed through
free-carrier absorptionin thisprocessan electron gainenergy by absorbing a photon,
and gains momentum through an interaction wiptn@non (a lattie vibration) to move

to a highetlying level in the conduction bandT].

It is known that femtosecond laser 3D microfabrication in a transparent material
requires highly nonlinear lightatter interaction sinca single photon energy of

visible light does notexceed the bandgap energysoichmaterials[18]. Until now,
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two classes of nonlinear excitation mechanisms are well known that plays a role in
this absorption, photoionization and avalanche ionization [19]. Moreover,
photoionization involving irthe direct excitation of electrons ke laser fieldcan

also be dividednto two differentregimes which are depestt on laser frequency and

intensity: multiphoton ionzation (MPI) and tunnelling iomation.

Tunnelling ionkation is the dominanhonlinearionization regime for strong laser
fields and low lasefrequencies 19]. Under the iradiation, the band structucd a
dielectric can be distorted due to the presendaseir electridield, whichsuppresses
the potentiathat binds a valence electrtmits parent atorf20]. As a resultpand to
band transitionst high laser fiel&can occur wherebg bound electron tunnels out to
become a free electraas illustrated in Figire 2.5b At higher laser frequencies (but
still below that required folinear absorption)MPI occursdue to thesimultaneous
absorption of multiple photons by a single electirothe valence ban(Figure 2.5c)
This process has no threshold and hence the contribution of multiplooiaation

can be important even at relativelyMantensity. In this regimethe electron density

grows as:

(2.26)

where is themultiphoton absorption coefficient fon-photons absorptiorf-or an

interband transitioroccurence,the sum ofthe energy of all theghotons absorbed

must exceed the bandgap energy of the dielectric materials foulated as
, Wwhere is 3ODQFNTV FR Qt/iaNa34p theqieqQeiFor instance,

in fused silicawhich has a bandgap energy o#@ at least 6 photons arequired to
be absorbed by a single valence electron to @gnivénterband transitiowith 800 nm

wavelength
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Figure 2.5: Schematic diagram of absorption mechanisms in femtoséasadmicromachininda)
Linear, intraband asorption (left panel) dominates fonaterials withthe bandgap less thatie
photon energy. Nonlinear opticglrocesses such asinnelling ionization (b), multiphoton
ionization(c) and avalanchmnization(d) are required to deposit energy into transpamaterials,
where the material bandgagceedshe photon energyB: valence band; CB: conduction band.

Avalanche ionization involves collision of an electron already incihveduction band
with another in the valence barfBigure 2.5d) [21]. A few (seed) electrongnitially
producel by nultiphoton absorptiorand tunneling ionizationn the conduction band
oscillate in the electromagnetic field of the laser eadsequentially absorbs several
laser photons until its energy exceeds¢baduction bandninimum by more than the
bandgap energylhis electron can theeollisionally ionize another electrofrom the
valence bandeaving two electrons at the minimwuanduction bandFigure 2.5d) [19,
22]. This process will repeat as long as the laser fisldoresent causing the
conduction band electron density tiacrease exponentiallyln this case, the

conduction band electron densitgn be represented as:

(2.27)

where is the avalanche ionization coefficient.
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2.3.2 Relaxation mechanisms

After the nonlineaabsorption of the femtosecond laser pulsésctronhole pairsare
generagd Then, electrons relax partially withia fraction of ps forming setfapped
excitons (STE) by coupling with a positively charged local deformafi@h Also the
interaction with small lattice distortiorssich as an atomic displacement may lead to a
trapped excitonZ4)]. In puresilica, theseltrappingprocessesuls in a multitude of
characteristic absorption ataminescence spectr29,26]. At room temperature, the
STEs relax to permanent defects such §sdnaters anchonbridging oxygen hole
centers (NBOHCs)27,28]. The NBOHCs can terconvert into peroxy radicals
(AIFO FO ¥ by adding an interstitial O atom9p (Figure 2.6) These point defects
lead to a densification of the lasieradiated materiasince they reduce the valence

structure of the Sigxing structurg 30,31].

Relaxdion of electrons and STE annihilation contribute to the lattice heating. At the

end of a period of a fewRs (in silica based glasses), the irradiated matter is
thermalized, i.e. back to room temperature due to thermal diffusi@gass

modifications are th result of relaxation of photoexcited electritectrons relax first

into STE by electroiphonon coupling and then annihilate radiativ@ifetime of

nanoseconds at room temperatu@) not Coupling with lattice phonons)or

transform into point defest H J LQWR 6L(Y1 DQG 1%2+& ERQG EUHDNL
a silicon oxygen deficient center quoted as SIODC[BR33] following the reaction

scheme sketched below:
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Figure 2.6: Defects formation from setfapped exciton relaxation in pure sili@].

The vyield for defect production is smdlB4] compared to the other ways but
nevertheless can play a striking role in memory eff86t3q. The first observation

we canreport under irradiation powerful enough is the transmission decrease. It is
observed on a large wavelength range from IR to [8ide3g. This reveals that glass

is modified in its extended microstructure. We speculate that such glass modification
is the results of electron energy transmitted to the lattice byradiative coupling of
electron with the lattice. This coupling corresponds to an increase aquolibrium
tenperature of the lattice that can reach several thousands of degrees in the
illuminated area limited by thermal conducti¢89]. The increase of temperature
should be long eugh (i.e. longer than the glass relaxation tiff89]) for

transforming the glass and this defines a first threshold.

2.3.3Permanentmodificationsin pure silica

In pure dica, a& room temperature, th8TEs relax to permanent defects such §s E
centers andon-bridging oxygen hole centers (NBOKJ40-42]. These point defects

contribute to permanent modification of the laseadiated material43]. Depending
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onthe lasenntensity and numerical aperture of microscope objective, refractive index
changeshas been weldefined into three regimes with two "damage" thresholds
[44,45]. As shown in Figure 2.The first damage threshold; Te.g. 0.85 + 0.015

W /pulse in pure $ca, 800 nm, 160 fs, 100 kHz, 0.55 NA) being the appearance of
isotropic index change in the plan perpendicular to the direction of light propagation
and the second damage thresholdelg. 0.31d/pulse in pure silica, 800 nm, 160 fs,
100 kHz, 0.55 NA/for the polarization parallel to the writing direction) being the
appearance of form birefringence in the plan perpendicular to the light propagation
axis. The index change decays within a few seconds for pulse energy heldwera
permanent isotropicndex change appears above ahd below 3. Above T, the

index change is highly anisotropic and a strong linear birefringence is observed,
which is mainly due to the appearance of nanogratinggl$36/Nhen the polarization

is parallel to the scanning datgon, porositywith a diameterange between 10 and 30

nm is observed within the nanoplang®9]. In spite of form birefringence in silica
glass, local lasemodified anisotropic region with birefringent properties may also

appear due to the residual sseaccompanied with laser irradiation [50,51].

Figure 2.7: Pulse energy versumimerical aperture diagram in légg scale defining regions with
different kinds of laser interaction witlilica. N.B.: the blue discontinuous line marks the position
wherewe have precisely positiedthe thresholds by means of different typé observation$6].
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Chapter 3

Experimental section

In this chapter, glass preparation methods and experimertap get femtosecond
laser direct writing are described in section 3.1 and 3.2, respeciiVeyrest of the
chapter illustrates thstructuraland optical chaacterizationtechniques for analyzing

the laser induced modificationscanning electron microscope (SEM) giithase shift
interferometric microscope (P8) for observing the morphology of laser tracks,
transmission electron microscope (TEM) for observitige shapes of metal
nanoparticles, electron backscattered diffraction (EBSD) for determining the crystal
phase and its related orientation, polarized extinction spectra for calculating the linear
dichroism, second harmonic microscofr probing second haronic generation
(SHG) of the written linesquantitative phasenicroscopy(QPM) for measuring the
change of the refractive index agdantitative birefringencemicroscopy (QBM) for
measuring thguantitativebirefringenceand its slow axislirection Furthermore, one
more method based oré@&rmont compensator is also introduced to measure the

guantitativebirefringence

3.1 Glass preparation

Two different glassy system were selected for the research objectives. One was
LioO-Nb,Os-SiO, glass, which was ppared for the investigation afsymmetrical
writing dependence andemtosecondlaser crystallization. The other one was
gold-doped silicate glass, which was thermally treated for the precipitation of gold
nanoparticles. It was prepared for tingestigation of femtosecond laser -shaping

gold nanoparticles inside glass.
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3.1.1 Preparation of Li,O-Nb,0Os5-SiO, glass

A series ofLi,O-Nb,Os-SiO; glasses with different compositions were prepared using
a conventional meljuenching techniquépproximately 50 g atches ohigh-purity
powders ofLi,CO; (99.99%) Nb,O5(99.99%)and SiQ (99.99%)raw materials were
mixed and melted in Pt crucible in an electronic furnace at 3@36r 2 hr. Then the
melt was poured onto a steel plate Heeated at 506C, and trasferred to another
electronic furnac