F. Calderero and F. Marques, Region Merging Techniques Using Information Theory Statistical Measures, IEEE Transactions on Image Processing, pp.1-5, 2010.
DOI : 10.1109/TIP.2010.2043008

URL : http://upcommons.upc.edu/bitstream/2117/7488/1/getPDF.pdf

G. Camps-valls and L. Bruzzone, Kernel-based methods for hyperspectral image classification, IEEE Transactions on Geoscience and Remote Sensing, vol.43, issue.6, pp.1351-1362, 2005.
DOI : 10.1109/TGRS.2005.846154

J. S. Cardoso and L. Corte, Toward a generic evaluation of image segmentation, IEEE Transactions on Image Processing, vol.14, issue.11
DOI : 10.1109/TIP.2005.854491

C. I. Chang, Hyperspectral Imaging : Techniques for Spectral Detection and Classification, 2003.
DOI : 10.1007/978-1-4419-9170-6

T. F. Cox, M. A. Cox-chapman, and &. Hall, Multidimensional Scaling
DOI : 10.1007/978-3-540-33037-0_14

E. Cramer and W. A. Nicewander, Some symmetric, invariant measures of multivariate association, Psychometrika
DOI : 10.1007/BF02293783

C. M. Cuadras, S. Valero, P. Salembier, and J. Chanussot, Some measures of multivariate association relating two spectral data sets, Proceedings of 19th International Conference on Computational Statistics, Compstat, 2010.

C. M. Cuadras, A. Arenas, and J. Fortiana, Some computational aspects of a distancebased model for prediction, Communications in Statistics : Simulation and Computation

J. Shi and J. Malik, Normalized Cuts and Image Segmentation, IEEE Transactions

J. A. Gualtieri and J. C. Tilton, Hierarchical Segmentation of Hyperspectral Data 2002 AV I R I S E a r t h S c i e n ce a n d A p p l i ca t i o n s Wo r k s h o p, 2002.

H. Ling and K. Okada, Diffusion distance for histogram comparison, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp.246-253, 2006.

P. Salembier and L. Garrido, Binary partition tree as an efficient representation for image processing, segmentation, and information retrieval, IEEE Transactions on Image Processing
DOI : 10.1109/83.841934

J. Tilton, Image segmentation by region growing and spectral clustering with a natural convergence criterion, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174)
DOI : 10.1109/IGARSS.1998.703645

S. Valero, P. Salembier, and J. Chanussot, Comparison of merging orders and pruning strategies for Binary Partition Tree in hyperspectral data, 2010 IEEE International Conference on Image Processing, 2010.
DOI : 10.1109/ICIP.2010.5652595

URL : https://hal.archives-ouvertes.fr/hal-00578963

S. Valero, P. Salembier, J. Chanussot, and C. Cuadras, Improved Binary Partition Tree construction for hyperspectral images: Application to object detection, 2011 IEEE International Geoscience and Remote Sensing Symposium, 2011.
DOI : 10.1109/IGARSS.2011.6049723

URL : http://hdl.handle.net/2117/14623

S. Valero, P. Salembier, and J. Chanussot, Hyperspectral Image Representation and Processing With Binary Partition Trees, Accepted in IEEE Transactions on Image Processing
DOI : 10.1109/TIP.2012.2231687

URL : https://hal.archives-ouvertes.fr/hal-00798351

T. Wu, C. Lin, and R. C. Weng, Probability estimates for multi-class classiffication by pairwise coupling, Journal of Machine Learning Research, vol.5, 2004.

A. Plaza, J. A. Benediktsson, J. Boardman, J. Brazile, L. Bruzzone et al., Advanced Processing of Hyperspectral Images, 2006 IEEE International Symposium on Geoscience and Remote Sensing, pp.110-122, 2009.
DOI : 10.1109/IGARSS.2006.511

URL : https://hal.archives-ouvertes.fr/hal-00130816

C. I. Chang, Hyperspectral Imaging: Techniques for Spectral Detection and Classification, 2003.
DOI : 10.1007/978-1-4419-9170-6

D. A. Landgrebe, Signal Theory Methods in Multispectral Remote Sensing, 2003.
DOI : 10.1002/0471723800

G. Camps-valls and L. Bruzzone, Kernel-based methods for hyperspectral image classification, IEEE Transactions on Geoscience and Remote Sensing, vol.43, issue.6, pp.1351-1362, 2005.
DOI : 10.1109/TGRS.2005.846154

L. Bruzzone, M. Chi, and M. Marconcini, A Novel Transductive SVM for Semisupervised Classification of Remote-Sensing Images, IEEE Transactions on Geoscience and Remote Sensing, vol.44, issue.11, pp.3363-3373, 2006.
DOI : 10.1109/TGRS.2006.877950

M. Chi and L. Bruzzone, Semisupervised Classification of Hyperspectral Images by SVMs Optimized in the Primal, IEEE Transactions on Geoscience and Remote Sensing, vol.45, issue.6, pp.1870-1880, 2007.
DOI : 10.1109/TGRS.2007.894550

C. Chang, Spectral information divergence for hyperspectral image analysis, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293), pp.509-511, 1999.
DOI : 10.1109/IGARSS.1999.773549

A. Plaza, P. Martinez, R. Perez, and J. Plaza, Spatial/spectral endmember extraction by multidimensional morphological operations, IEEE Transactions on Geoscience and Remote Sensing, vol.40, issue.9, pp.2025-2041, 2002.
DOI : 10.1109/TGRS.2002.802494

N. Gorretta, J. Roger, G. Rabatel, V. Bellon-maurel, C. Fiorio et al., Hypersectral image segmentation: The butterfly approach, IEEE Proceedings of Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, 2009.
DOI : 10.1109/whispers.2009.5289062

URL : https://hal.archives-ouvertes.fr/hal-00468859/document

M. Fauvel, J. A. Benediktsson, J. Chanussot, and J. R. Sveinsson, Spectral and Spatial Classification of Hyperspectral Data Using SVMs and Morphological Profiles, IEEE Transactions on Geoscience and Remote Sensing, vol.46, issue.11, pp.3804-3814, 2008.
DOI : 10.1109/TGRS.2008.922034

URL : https://hal.archives-ouvertes.fr/hal-00283769

A. Farag, R. Mohamed, and A. El-baz, A unified framework for MAP estimation in remote sensing image segmentation, IEEE Transactions on Geoscience and Remote Sensing, vol.43, issue.7, pp.1617-1634, 2005.
DOI : 10.1109/TGRS.2005.849059

J. Li, J. Bioucas-dias, and A. Plaza, Semi-Supervised Hyperspectral Image Segmentation Using Multinomial Logistic Regression with Active Learning, IEEE Transactions on Geoscience and Remote Sensing, vol.48, issue.11, pp.4085-4098, 2010.
DOI : 10.1109/tgrs.2010.2060550

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.386.1516

J. Angulo, S. Velasco-forero14, ]. A. Jain, M. N. Murty, and P. J. Flynn, Semi-supervised hyperspectral image segmentation using regionalized stochastic watershed Data clustering: A review, Proceedings of the SPIE, pp.264-323, 1999.

P. Salembier and L. Garrido, Binary partition tree as an efficient representation for image processing, segmentation, and information retrieval, IEEE Transactions on Image Processing, pp.561-576, 2000.
DOI : 10.1109/83.841934

F. Van-der-meer, The effectiveness of spectral similarity measures for the analysis of hyperspectral imagery, International Journal of Applied Earth Observation and Geoinformation, vol.8, issue.1, pp.3-17, 2006.
DOI : 10.1016/j.jag.2005.06.001

F. Calderero and F. Marqués, Region Merging Techniques Using Information Theory Statistical Measures, IEEE Transactions on Image Processing, pp.1567-1586, 2010.
DOI : 10.1109/TIP.2010.2043008

URL : http://upcommons.upc.edu/bitstream/2117/7488/1/getPDF.pdf

F. Calderero, F. Marques, and A. Ortega, Performance evaluation of probability density estimators for unsupervised information theoretical region merging, 2009 16th IEEE International Conference on Image Processing (ICIP), pp.4397-4400, 2009.
DOI : 10.1109/ICIP.2009.5413621

S. Lee and M. Crawford, Unsupervised multistage image classification using hierarchical clustering with a Bayesian similarity measure, IEEE Transactions on Image Processing, pp.312-320, 2005.

Y. Tarabalka, J. A. Benediktsson, and J. Chanussot, Spectral–Spatial Classification of Hyperspectral Imagery Based on Partitional Clustering Techniques, IEEE Transactions on Geoscience and Remote Sensing, vol.47, issue.8, pp.2973-2987, 2009.
DOI : 10.1109/TGRS.2009.2016214

Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and J. C. Tilton, Multiple Spectral?Spatial Classification Approach for Hyperspectral Data, IEEE Transactions on Geoscience and Remote Sensing, vol.48, issue.11, pp.4122-4132, 2010.
DOI : 10.1109/tgrs.2010.2062526

URL : https://hal.archives-ouvertes.fr/hal-00578869

J. A. Gualtieri and J. Tilton, Hierarchical Segmentation of Hyperspectral Data, Proceedings os AVIRIS Earth Science and Applications Workshop, pp.5-8, 2002.

P. Coupe, P. Yger, S. Prima, P. Hellier, C. Kervrann et al., An Optimized Blockwise Nonlocal Means Denoising Filter for 3-D Magnetic Resonance Images, IEEE Transactions on Medical Imaging, pp.425-441, 2008.
DOI : 10.1109/TMI.2007.906087

URL : https://hal.archives-ouvertes.fr/inserm-00169658

M. Dimiccoli and P. Salembier, Hierarchical region-based representation for segmentation and filtering with depth in single images, 2009 16th IEEE International Conference on Image Processing (ICIP), pp.3533-3536, 2009.
DOI : 10.1109/ICIP.2009.5414079

Y. Escoufier, Le Traitement des Variables Vectorielles, Biometrics, vol.29, issue.4, pp.751-76, 1973.
DOI : 10.2307/2529140

C. M. Cuadras, S. Valero, P. Salembier, and J. Chanussot, Some measures of multivariate association relating two spectral data sets, Proceedings of Compstat 2010

C. M. Cuadras, Multidimensional and Dependencies in Classification and Ordination, Analyses Multidimensionelle des Donnees, pp.15-25

T. F. Cox and M. A. Cox, Multidimensional Scaling, 1994.
DOI : 10.1007/978-3-540-33037-0_14

T. W. Anderson, An Introduction to Multivariate Analysis, Third Edition Wiley, 2003.

C. R. Rao, H. Toutenburg, A. Fieger, C. Heumann, T. Nittner et al., Linear Models: Least Squares and Alternatives, Springer Series in Statistics, 1999.

E. Cramer and W. A. Nicewander, Some symmetric, invariant measures of multivariate association, Psychometrika, pp.43-54, 1979.
DOI : 10.1007/BF02293783

J. C. Gower, Some Distance Properties of Latent Root and Vector Methods Used in Multivariate Analysis, Biometrika, vol.53, issue.3/4, pp.325-338, 1966.
DOI : 10.2307/2333639

C. M. Cuadras, A. Arenas, and J. Fortiana, Some computational aspects of a distance???based model for prediction, Communications in Statistics: Simulation and Computation, pp.593-609, 1996.
DOI : 10.1007/BF02293796

M. H. Kutner, C. J. Nachtsheim, and J. Neter, Applied Linear Regression Model, 2004.

K. M. Rajpoot and N. M. Rajpoot, Wavelet based segmentation of hyperspectral colon tissue imagery, 7th International Multi Topic Conference, 2003. INMIC 2003., pp.38-43, 2003.
DOI : 10.1109/INMIC.2003.1416612

I. Silverman, S. R. Rotman, and C. E. Caefer, Segmentation of Hyperspectral Images from the Histograms of Principal Components, Proceedings of SPIE, 2002.

G. Noyel, J. Angulo, and D. Jeulin, MORPHOLOGICAL SEGMENTATION OF HYPERSPECTRAL IMAGES, Image Analysis & Stereology, vol.26, issue.3, pp.101-109, 2007.
DOI : 10.5566/ias.v26.p101-109

URL : https://hal.archives-ouvertes.fr/hal-01220414

M. Servais, T. Vlachos, and T. Davies, Motion-compensation using variable-size blockmatching with binary partition trees, IEEE Procedings of ICIP'05, p.157, 2005.

V. Vilaplana, F. Marques, and P. Salembier, Binary Partition Tree for Object Detection, IEEE Transactions on Image Processing, pp.2201-2216, 2008.

V. Vilaplana and F. Marques, On Building a Hierarchical Region-Based Representation for Generic Image Analysis, 2007 IEEE International Conference on Image Processing, pp.325-328, 2007.
DOI : 10.1109/ICIP.2007.4380020

T. Adamek and N. E. Connor, Using dempster-shafer theory to fuse multiple information sources in region-based segmentation Haindl, and J. Zerubia. A hierarchical finite-state model for texture segmentation, IEEE Proceedings IEEE Proceedings of ICASSP '07, pp.269-2721209, 2007.

Z. Liu, J. Yang, and N. Peng, An efficient face segmentation algorithm based on binary partition tree, Signal Processing Image Communication, pp.295-314, 2005.
DOI : 10.1016/j.image.2004.12.005

H. Lu, J. C. Woods, and M. Ghanbari, Image segmentation by binary partition tree, Electronics Letters, pp.966-967, 2006.
DOI : 10.1049/el:20061398

S. Cooray, N. O-'connor, S. Marlow, N. Murphy, and T. Curran, Semi-Automatic Video Object Segmentation Using Recursive Shortest Spanning Tree and Binary Partition Tree, Workshop on Image Analysis for Multimedia Interactive Services, 2001.

J. Pont-tuset and F. Marques, Contour detection using Binary Partition Trees, 2010 IEEE International Conference on Image Processing, pp.1609-1612, 2010.
DOI : 10.1109/ICIP.2010.5652339

C. , F. Bennstrom, and J. R. Casas, Binary partition tree creation using a quasi-inclusion criterion, Proceedings of 8th International Conference on Information Visualization, 2004.

T. Adamek, N. E. O-'connor, and N. Murphy, Region-based segmentation of images using syntactic visual features, Proceedins of 6th International Workshop on Image Analysis for Multimedia Interactive Services, 2005.

H. Lu, J. C. Woods, and M. Ghanbari, Binary Partition Tree for Semantic Object Extraction and Image Segmentation, IEEE Transactions on Circuits and Systems for Video Technology, pp.378-383, 2007.
DOI : 10.1109/TCSVT.2006.888943

L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and Regression Trees, Wadsworth International Group

J. S. Cardoso and L. Corte, Toward a generic evaluation of image segmentation, IEEE Transactions on Image Processing, pp.1773-1782, 2005.
DOI : 10.1109/TIP.2005.854491

J. S. Cardoso, Metadata Assisted Image Segmentation, Ph.D. dissertation in Faculdade de Engenharia da Universidade do Porto, 2006.

D. Martin, An empirical approach to grouping and segmentation, Ph.D. dissertation, 2003.

D. Martin, C. Fowlkes, D. Tal, and J. Malik, A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, pp.416-423, 2001.
DOI : 10.1109/ICCV.2001.937655

J. P. Barthelemy and B. Leclerc, The median procedure for partitions, DIMACS Series In Discrete Mathematics and Theoretical Computer Science, pp.3-34, 1995.

H. Lu, J. C. Woods, and M. Ghanbari, Binary Partition Tree Analysis Based on Region Evolution and Its Application to Tree Simplification, IEEE Transactions on Image Processing, pp.1131-1138, 2007.
DOI : 10.1109/TIP.2007.891802

L. Garrido, P. Salembier, and D. Garcia, Extensive operators in partition lattices for image sequence analysis, Proceedings of EURASIP Signal Processing, pp.157-180, 1998.
DOI : 10.1016/S0165-1684(98)00004-8

O. Morris, M. Lee, and A. G. Constantinides, Graph theory for image analysis: an approach based on the shortest spanning tree, IEEE Proceedings of Communications, Radar and Signal Processing, pp.146-152, 1986.
DOI : 10.1049/ip-f-1.1986.0025

H. Ling and K. Okada, Diffusion distance for histogram comparison, Proceedings of Conference on Computer Vision and Pattern Recognition, pp.246-253, 2006.

Y. Rubner, C. Tomasi, and L. J. Guibas, The earth mover's distance as a metric for image retrieval, International Journal of Computer Vision, vol.40, issue.2, pp.99-121, 2000.
DOI : 10.1023/A:1026543900054

A. Buades, B. Coll, and J. M. , A Non-Local Algorithm for Image Denoising, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), pp.60-65, 2005.
DOI : 10.1109/CVPR.2005.38

Y. Boykov and G. Funka-lea, Graph Cuts and Efficient N-D Image Segmentation, International Journal of Computer Vision, vol.18, issue.9, pp.109-131, 2006.
DOI : 10.1007/s11263-006-7934-5

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.90.657

Y. Boykov and V. Kolmogorov, Computing geodesics and minimal surfaces via graph cuts, Proceedings Ninth IEEE International Conference on Computer Vision, pp.26-33, 2003.
DOI : 10.1109/ICCV.2003.1238310

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.123.6433

Y. Boykov and V. Kolmogorov, An experimental comparison of min-cut/max-flow algorithms for Energy Minimization in Vision, IEEE Transactions on Pattern Analysis and Machine Intelligence, pp.1124-1137, 2004.

Y. Boykov, O. Veksler, and E. R. Zabih, Fast approximate energy minimization via graph cuts, IEEE Transactions on Pattern Analysis and Machine Intelligence, pp.1222-1239, 2001.
DOI : 10.1109/iccv.1999.791245

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.112.6806

J. Shi and J. Malik, Normalized Cuts and Image Segmentation, IEEE Transactions on pattern analysis and machine intelligence, pp.888-905, 2000.

J. Zu and R. Lealhy, An optimal Graph Theoretic Approach to Data Clustering: Theory and Its Application to Image Segmentation, IEEE Transactions on pattern analysis and machine intelligence, pp.1011-1113, 1993.

V. N. Vapnik, Statistical learning theory, 1998.

S. Valero, P. Salembier, and J. Chanussot, Comparison of merging orders and pruning strategies for Binary Partition Tree in hyperspectral data, 2010 IEEE International Conference on Image Processing, pp.2565-2568, 2010.
DOI : 10.1109/ICIP.2010.5652595

URL : https://hal.archives-ouvertes.fr/hal-00578963

S. Valero, P. Salembier, and J. Chanussot, New hyperspectral data representation using binary partition tree Distance-based measure of association with applications in relating hyperspectral images, IEEE Proceedings of IGARSS'10, pp.80-83, 2010.

D. Landgrebe, Hyperspectral image data analysis, IEEE Signal Processing Magazine, vol.19, issue.1, pp.17-28, 2002.
DOI : 10.1109/79.974718

G. F. Hugues, On the mean accuracy of statistical pattern recognizers, IEEE Transactions on Information Theory, pp.55-63, 1986.

P. Comon, Independent component analysis, A new concept?, Signal Processing, pp.287-314, 1994.
DOI : 10.1016/0165-1684(94)90029-9

URL : https://hal.archives-ouvertes.fr/hal-00417283

D. A. Landgrebe, Signal Theory Methods in Multispectral Remote Sensing, 2003.
DOI : 10.1002/0471723800

C. Lee and D. Langrebe, Decision boundary feature extraction for neural networks, [Proceedings] 1992 IEEE International Conference on Systems, Man, and Cybernetics, pp.75-83, 1997.
DOI : 10.1109/ICSMC.1992.271652

C. Lee and D. A. Landgrebe, Feature extraction based on decision boundaries, IEEE Transactions of Patttern Anal. Machine Intell, pp.388-400, 1993.
DOI : 10.1109/34.206958

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.78.9261

N. Gorreta, Proposition d'une approche de segmentation d'images hyperspectrales, 2009.

F. Tsai, C. Chang, and G. Liu, Texture analysis for three dimension remote sensing data by 3D GLCM, Proc. of 27th Asian Conference on Remote Sensing, pp.1-6, 2006.

X. Huang and L. Zhang, A comparative study of spatial approaches for urban mapping using hyperspectral ROSIS images over Pavia City, northern Italy, International Journal of Remote Sensing, vol.44, issue.12, pp.3205-3221, 2009.
DOI : 10.1080/01431160802559046

R. L. Kettig and D. A. Landgrebe, Classification of Multispectral Image Data by Extraction and Classification of Homogeneous Objects, IEEE Transactions on Geoscience Electronics, pp.19-26, 1976.
DOI : 10.1109/TGE.1976.294460

L. Zhang and X. Huang, Object-oriented subspace analysis for airborne hyperspectral remote sensing imagery, Neurocomputing, vol.73, issue.4-6, pp.927-936, 2010.
DOI : 10.1016/j.neucom.2009.09.011

S. V. Linden, A. Janz, B. Waske, M. Eiden, and P. Hostert, Classifying segmented hyperspectral data from a heterogeneous urban environment using Support Vector Machines, In Journal of Applied Remote Sensing, issue.1, p.13543, 2007.

A. Darwish, K. Leukert, and W. Reinhardt, Image segmentation for the purpose of objectbased classification, IEEE Proceedings of IGARSS '03, pp.2039-2041, 2003.

Y. Tarabalka, Classification of Hyperspectral Data Using Spectral-Spatial Approaches, 2010.
URL : https://hal.archives-ouvertes.fr/tel-00557734

Y. Tarabalka, J. Chanussot, and J. A. Benediktsson, Segmentation and classification of hyperspectral images using watershed transformation, Pattern Recognition, pp.2367-2379, 2010.
DOI : 10.1016/j.patcog.2010.01.016

URL : https://hal.archives-ouvertes.fr/hal-00578860

G. Camps-valls, L. Gomez-chova, J. Muñoz-mari, J. Vila-france, and J. Calpe-maravilla, Composite Kernels for Hyperspectral Image Classification, IEEE Geoscience and Remote Sensing Letters, pp.93-97, 2006.
DOI : 10.1109/LGRS.2005.857031

J. Angulo and S. Velasco-forero, Semi-supervised hyperspectral image segmentation using regionalized stochastic watershed, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVI, 2010.
DOI : 10.1117/12.850187

URL : https://hal.archives-ouvertes.fr/hal-00834482

J. Angulo, S. Velasco-forero, and J. Chanussot, Multiscale stochastic watershed for unsupervised hyperspectral image segmentation, 2009 IEEE International Geoscience and Remote Sensing Symposium, pp.93-96, 2009.
DOI : 10.1109/IGARSS.2009.5418095

URL : https://hal.archives-ouvertes.fr/hal-00449454

G. Mercier and M. Lennon, Support vector machines for hyperspectral image classification with spectral-based kernels, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477), pp.288-290, 2003.
DOI : 10.1109/IGARSS.2003.1293752

R. C. Dubes and A. K. Jain, Random field models in image analysis*, Journal of Applied Statistics, vol.39, issue.5-6, pp.121-154, 1993.
DOI : 10.1109/TPAMI.1987.4767898

O. Pony, X. Descombres, and J. Zerubia, Classification d'images satellitaires hyperspectrales en zone rurale et periurbane, 2000.

G. Rellier, X. Descombes, X. Falzon, and J. Zerubia, Texture feature analysis using a gauss-Markov model in hyperspectral image classification, IEEE Transactions on Geoscience and Remote Sensing, vol.42, issue.7, pp.1543-1551, 2004.
DOI : 10.1109/TGRS.2004.830170

Q. Jackson and D. Landgrebe, Adaptive bayesian contextual classification based on Markov random fields, and A. El-Baz. A unified framework for MAP estimation in remote sensing image segmentation, IEEE Transactions in Geoscience and Remote Sensing IEEE Transactions in Geoscience and Remote Sensing, pp.2454-24631617, 2002.

F. Bovolo and L. Bruzzone, A Context-Sensitive Technique Based on Support Vector Machines for Image Classification, Proceedings of Pattern recognition and machine intelligence, pp.260-265, 2005.
DOI : 10.1007/11590316_36

D. Liu, M. Kelly, and P. Gong, A spatial???temporal approach to monitoring forest disease spread using multi-temporal high spatial resolution imagery, Remote Sensing of Environment, vol.101, issue.2, pp.167-180, 2006.
DOI : 10.1016/j.rse.2005.12.012

Y. Tarabalka, M. Fauvel, J. Chanussot, and J. A. Benediktsson, SVM- and MRF-Based Method for Accurate Classification of Hyperspectral Images, IEEE Geoscience and Remote Sensing Letters, pp.736-740, 2010.
DOI : 10.1109/LGRS.2010.2047711

URL : https://hal.archives-ouvertes.fr/hal-00578864

J. Li, J. Bioucas-dias, and A. Plaza, Semi-Supervised Hyperspectral Image Segmentation Using Multinomial Logistic Regression with Active Learning, IEEE Transactions on Geoscience and Remote Sensing, vol.48, issue.11, pp.4085-4098, 2010.
DOI : 10.1109/tgrs.2010.2060550

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.386.1516

J. Li, J. Bioucas-dias, and . Plaza, Supervised hyperspectral image segmentation using active learning, 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, 2010.
DOI : 10.1109/WHISPERS.2010.5594844

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.386.4768

J. Serra, Image Analysis and Mathematical Morphology, Ac. Press, 1982.

I. Pitas and C. Kotropoulos, Multichannel L filters based on marginal data ordering, IEEE Transactions on Signal Processing, pp.2581-2595, 1994.

A. Plaza, P. Martinez, R. Perez, and J. Plaza, Spatial/spectral endmember extraction by multidimensional morphological operations, IEEE Transactions on Geoscience and Remote Sensing, vol.40, issue.9, pp.2025-2041, 2002.
DOI : 10.1109/TGRS.2002.802494

S. Velasco-forero and J. Angulo, Spatial structures detection in hyperspectral images using mathematical morphology, 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, 2010.
DOI : 10.1109/WHISPERS.2010.5594961

URL : https://hal.archives-ouvertes.fr/hal-00904100

S. Velasco-forero and J. , Angulo Supervised ordering in Rp: Application tomorphological processing of hyperspectral images, 2011.

M. Pesaresi and J. A. Benediktsson, A new approach for the morphological segmentation of high-resolution satellite imagery, IEEE Transactions on Geoscience and Remote Sensing, vol.39, issue.2, pp.309-320, 2001.
DOI : 10.1109/36.905239

J. A. Palmason, J. A. Benediktsson, and K. Arnason, Morphological transformations and feature extraction of urban data with high spectral and spatial resolution, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477), pp.470-472, 2003.
DOI : 10.1109/IGARSS.2003.1293812

F. Dell-'acqua, P. Gamba, A. Ferrari, J. A. Palmason, J. A. Benediktsson et al., Exploiting spectral and spatial information in hyperspectral urban data with high resolution, IEEE Geoscience and Remote Sensing Letters, pp.322-326, 2004.

J. A. Benediktsson, J. A. Palmason, and J. R. Sveinsson, Classification of hyperspectral data from urban areas based on extended morphological profiles, IEEE Transactions on Geoscience and Remote Sensing, vol.43, issue.3, pp.480-491, 2005.
DOI : 10.1109/TGRS.2004.842478

J. A. Palmason, J. A. Benediktsson, J. R. Sveinsson, and J. Chanussot, Classification of hyperspectral data from urban areas using morphological preprocessing and independent component analysis, IEEE Proceedings of International Geoscience and Remote Sensing Symposium 2005, IGARSS '05, pp.176-179, 2005.

M. D. Mura, Advanced techniques based on mathematical morphology for the analysis of remote sensing images, 2011.

A. Plaza, P. Martinez, J. Plaza, and R. Perez, Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations, IEEE Transactions on Geoscience and Remote Sensing, vol.43, issue.3, pp.466-479, 2005.
DOI : 10.1109/TGRS.2004.841417

M. Fauvel, J. Chanussot, and J. A. Benediktsson, Kernel principal component analysis for feature reduction in hyperspectral images analysis, Proceedings of 7th Nordic Signal Processing Symposium NORSIG 2006, pp.238-241, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00096359

S. Jong, T. Hornstra, and H. Maas, An integrated spatial and spectral approach to the classification of Mediterranean land cover types: the SSC method, International Journal of Applied Earth Observation and Geoinformation, vol.3, issue.2, pp.176-183, 2001.
DOI : 10.1016/S0303-2434(01)85009-1

H. G. Akçay and S. Aksoy, Automatic Detection of Geospatial Objects Using Multiple Hierarchical Segmentations, IEEE Transactions on Geoscience and Remote Sensing, vol.46, issue.7, pp.2097-2111, 2008.
DOI : 10.1109/TGRS.2008.916644

J. M. Beaulieu and M. Goldberg, Hierarchy in picture segmentation: a stepwise optimization approach, IEEE Transactions on Pattern Analysis and Machine Intelligence, pp.150-163, 1989.
DOI : 10.1109/34.16711

J. Tilton, Image segmentation by region growing and spectral clustering with a natural convergence criterion, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174), pp.1766-1768, 1998.
DOI : 10.1109/IGARSS.1998.703645

J. Tilton, ]. Plaza, and J. Tilton, A split-remerge method for elimination processing window artifacts in recursive hierarchical segmentation In Technical Repors GSC 14994-1, NASA Hierarchical classification with single level shape features Segmentations of Remotely Sensed Hyperspectral Images, IEEE Proceedings of IGARSS, 2005.

L. Garrido, P. Salembier, and D. Garcia, Extensive operators in partition lattices for image sequence analysis, Signal Processing: Special issue on Video Sequence Segmentation, pp.157-180, 1998.
DOI : 10.1016/S0165-1684(98)00004-8

A. Cracknell, Review article Synergy in remote sensing-what's in a pixel?, International Journal of Remote Sensing, vol.19, issue.11, pp.2025-2047, 1998.
DOI : 10.1080/014311698214848

T. Pavlidis, Structural Pattern Recognition, 1980.
DOI : 10.1007/978-3-642-88304-0

J. M. Molion and W. G. Kropatsch, Graph based Representations, Proceedings of GbR'97, 1st IAPR Int Workshop on Graph based Representations, 1998.

K. Haris, S. N. Efstratiadis, N. Maglaveras, and A. K. Katsaggelos, Hybrid image segmentation using watersheds and fast region merging, IEEE Transactions on Image Processing, pp.1684-1699, 1998.
DOI : 10.1109/83.730380

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.80.8622

S. L. Horowitz and T. Pavlidis, Picture segmentation by a directed split and merge procedure, Proceedings of Second Intern. Joint Conf. on Pattern Recognition, pp.424-433, 1974.

A. Klinger, Patterns and search statistics In Optimizing Methods in Statistics, 1971.

E. Shusterman and M. Feder, Image compression via improved quadtree decomposition algorithms, IEEE Transactions on Image Processing, pp.207-215, 1994.
DOI : 10.1109/83.277901

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.452.9032

G. J. Sullivan and R. L. Baker, Efficient quadtree coding of images and video, IEEE Transactions on Image Processing, pp.327-331, 1994.

J. Cichosz and F. Meyer, Morphological multiscale image segmentation, Proceedings of Workshop on Image Analysis for Multimedia Interactive Services, pp.161-166, 1997.

S. Beucher and C. Lantuéjoul, Use of watersheds in contour detection In International workshop on image processing, real-time edge and motion detection, 1979.

F. Meyer and S. Beucher, Morphological segmentation, Journal of Visual Communication and Image Representation, vol.1, issue.1, pp.21-46, 1990.
DOI : 10.1016/1047-3203(90)90014-M

P. Salembier, A. Oliveras, and L. Garrido, Anti-extensive connected operators for image and sequence processing, IEEE Transactions on Image Processing, pp.555-570, 1998.
DOI : 10.1109/83.663500

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.55.9217

P. Monasse and F. Guichard, Fast computation of a contrast-invariant image representation, IEEE Transactions on Image Processings, pp.860-872, 2000.
DOI : 10.1109/83.841532

P. Salembier and L. Garrido, Connected operators based on region-tree pruning strategies, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000, pp.169-178, 2000.
DOI : 10.1109/ICPR.2000.903561

A. Alonso-gonzalez, C. Lopez-martinez, and P. Salembier, Filtering and segmentation of polarimetric SAR images with Binary Partition Trees, 2010 IEEE International Geoscience and Remote Sensing Symposium, pp.4043-4046, 2010.
DOI : 10.1109/IGARSS.2010.5653466

P. Salembier, F. Marqués, M. Pardás, R. Morros, I. Corset et al., Segmentation-based video coding system allowing the manipulation of objects, IEEE Transactions on Circuits and Systems for Video Technology, pp.60-73, 1997.
DOI : 10.1109/76.554418

L. Guigues, J. P. Cocquerez, and H. Le-men, Scale-Sets Image Analysis, International Journal of Computer Vision, vol.20, issue.6, pp.289-317, 2006.
DOI : 10.1007/s11263-005-6299-0

URL : https://hal.archives-ouvertes.fr/hal-00705364

L. Garrido, Hierarchical Region Based Processing of Images and Video Sequences: Application to Filtering, Segmentation and Information Retrieval, 2002.

D. Knuth, The art of computer programmingSorting and Searching), 1973.