A. P. French and M. G. Ebison, Introduction to Classical Mechanics, 1986.
DOI : 10.1007/978-94-009-4119-9

L. N. Hand and J. D. Finch, Analytical Mechanics, 2008.

C. Lanczos, The Variational Principles of Mechanics, 1986.

V. I. Arnold, Mathematical Methods of Classical Mechanics, 1989.

P. L. De-maupertuis, Essai de cosmologie (Amsterdam, 1750) Accord de différentes lois de la nature qui avaient jusqu'ici paru incompatibles

. Sc and . Paris, Les lois de mouvement et du repos déduites d'un principe de métaphysique, Hist. Acad. Roy. Sci. Belles Lettres Berlin, pp.417-267, 1744.

D. J. Griffiths, Introduction to Quantum Mechanics, 2005.

J. P. Keating, The cat maps: quantum mechanics and classical motion, Nonlinearity, vol.4, issue.2, p.309, 1991.
DOI : 10.1088/0951-7715/4/2/006

R. M. Mazo, Brownian Motion: Fluctuations, Dynamics and Applications, 2002.
DOI : 10.1093/acprof:oso/9780199556441.001.0001

P. Hänggi and F. Marchesoni, 100 Years of Brownian motion, arXiv:cond- mat, 502053.

F. Shibata, H. Kawasaki, and M. Watabe, Path integral theory of Brownian motion, Natural science report, Ochanomizu university, p.25, 1992.

M. Watabe and F. Shibata, Path Integral and Brownian Motion, Journal of the Physical Society of Japan, vol.59, issue.6
DOI : 10.1143/JPSJ.59.1905

A. Einstein, On the movement of small particles suspended in a stationary liquid demanded by the molecular kinetic theory of heat, Ann. Phys, vol.17, p.549, 1905.

A. Einstein, On the theory of the Brownian movement, Ann. Phys, vol.19, p.371, 1906.

B. Duplantier, Le mouvement brownien, 'divers et ondoyant', Séminaire Poincaré 1, p.155, 2005.

L. Onsager and S. Machlup, Fluctuations and Irreversible Processes, Physical Review, vol.91, issue.6, p.1505, 1953.
DOI : 10.1103/PhysRev.91.1505

L. Onsager and S. Machlup, Fluctuations and Irreversible Process. II. Systems with Kinetic Energy, Phys. Rev, vol.91, p.1512, 1953.
DOI : 10.1103/physrev.91.1505

H. Touchette, The large deviation approach to statistical mechanics, Physics Reports, vol.478, issue.1-3, 2009.
DOI : 10.1016/j.physrep.2009.05.002

M. I. Freidlin and A. D. , Random perturbation of dynamical systems, 1984.

R. Kikuchi, The path probability method, Prog. Theor. Phys, 1966.

A. Bach and D. Dürr, The Onsager-Machlup function as Lagrangian for the most probable path of a diffusion process, Comm. Math. Phys, vol.60, p.153, 1978.

H. Ge and H. Qian, ANALYTICAL MECHANICS IN STOCHASTIC DYNAMICS: MOST PROBABLE PATH, LARGE-DEVIATION RATE FUNCTION AND HAMILTON???JACOBI EQUATION, International Journal of Modern Physics B, vol.26, issue.24
DOI : 10.1142/S0217979212300125

W. T. Grandy, Entropy and the time evolution of macroscopic systems, 2008.

H. Poincaré, On the Three-body Problem and the Equations of Dynamics Sur le Probleme des trios corps ci les equations de dynamique, Acta mathematica, p.270, 1890.

E. E. Daub and . Maxwell-demon, Maxwell's demon, Studies in History and Philosophy of Science Part A, vol.1, issue.3, p.213, 1970.
DOI : 10.1016/0039-3681(70)90010-5

C. H. Bennett, Demons, Engines and the Second Law, Scientific American, vol.257, issue.5, p.108, 1987.
DOI : 10.1038/scientificamerican1187-108

Q. A. Wang, Maximum path information and the principle of least action for chaotic system, Chaos, Solitons & Fractals, vol.23, issue.4, p.1253, 2004.
DOI : 10.1016/S0960-0779(04)00375-3

URL : https://hal.archives-ouvertes.fr/hal-00011132

Q. A. Wang, F. Tsobnang, S. Bangoup, F. Dzangue, A. Jeatsa et al., Reformulation of a stochastic action principle for irregular dynamics, Chaos, Solitons & Fractals, vol.40, issue.5, p.2550, 2009.
DOI : 10.1016/j.chaos.2007.10.047

E. T. Jaynes, Information Theory and Statistical Mechanics, Physical Review, vol.106, issue.4, p.620, 1957.
DOI : 10.1103/PhysRev.106.620

E. T. Jaynes, Information Theory and Statistical Mechanics. II, Physical Review, vol.108, issue.2, p.171, 1957.
DOI : 10.1103/PhysRev.108.171

C. E. Shannon, A Mathematical Theory of Communication, Bell System Technical Journal, vol.27, issue.3, pp.379-423, 1948.
DOI : 10.1002/j.1538-7305.1948.tb01338.x

S. Sieniutycz and H. Farkas, Variational and Extremum Principles in Macroscopic Systems, 2005.

L. Herrera, L. Nunez, A. Patino, and H. Rago, A variational principle and the classical and quantum mechanics of the damped harmonic oscillator, American Journal of Physics, vol.54, issue.3, p.273, 1986.
DOI : 10.1119/1.14644

B. J. Torby, Advanced Dynamics for Engineers (Holt-Saunders International Editions, 1984.

H. Bateman, On Dissipative Systems and Related Variational Principles, Physical Review, vol.38, issue.4, p.815, 1931.
DOI : 10.1103/PhysRev.38.815

M. A. Sanjuan, Comments on the Hamiltonian formulation for linear and non-linear oscillators including dissipation, Journal of Sound and Vibration, vol.185, issue.4, p.734, 1995.
DOI : 10.1006/jsvi.1995.0413

F. Riewe, Mechanics with fractional derivatives, Physical Review E, vol.55, issue.3, p.3581, 1997.
DOI : 10.1103/PhysRevE.55.3581

R. J. Duffin, Pseudo-Hamiltonian mechanics, Archive for Rational Mechanics and Analysis, vol.9, issue.1, p.309, 1962.
DOI : 10.1007/BF00253353

D. Schuch, A new lagrange-hamilton formalism for dissipative systems, International Journal of Quantum Chemistry, vol.23, issue.S24, p.767, 1990.
DOI : 10.1002/qua.560382475

C. E. Smith, Lagrangians and Hamiltonians with friction, Journal of Physics: Conference Series, vol.237, p.12021, 2010.
DOI : 10.1088/1742-6596/237/1/012021

A. Moroz, On a variational formulation of the maximum energy dissipation principle for non-equilibrium chemical thermodynamics, Chemical Physics Letters, vol.457, issue.4-6, p.448, 2008.
DOI : 10.1016/j.cplett.2008.04.050

]. A. Moroz, A Variational Framework for Nonlinear Chemical Thermodynamics Employing the Maximum Energy Dissipation Principle, The Journal of Physical Chemistry B, vol.113, issue.23, p.8086, 2009.
DOI : 10.1021/jp9015646

A. Moroz, Cooperative and collective effects in light of the maximum energy dissipation principle, Physics Letters A, vol.374, issue.19-20, 2005.
DOI : 10.1016/j.physleta.2010.02.066

A. Moroz and D. I. Wimpenny, On the variational framework employing optimal control for biochemical thermodynamics, Chemical Physics, vol.380, issue.1-3, p.77, 2011.
DOI : 10.1016/j.chemphys.2010.12.009

Q. A. Wang and R. Wang, Is it possible to formulate least action principle for dissipative systems?

C. G. Gray, Principle of least action, Scholarpedia, vol.4, issue.12, 2009.
DOI : 10.4249/scholarpedia.8291

C. G. Gray and E. F. Taylor, When action is not least, American Journal of Physics, vol.75, issue.5, p.434, 2007.
DOI : 10.1119/1.2710480

C. G. Gray, G. Karl, and V. A. Novikov, Progress in classical and quantum variational principles, Progress in classical and quantum variational principles, p.159, 2004.
DOI : 10.1088/0034-4885/67/2/R02

C. G. Gray, G. Karl, and V. A. Novikov, Direct use of variational principles as an approximation technique in classical mechanics, American Journal of Physics, vol.64, issue.9, p.1177, 1996.
DOI : 10.1119/1.18340

E. F. Taylor, A call to action, American Journal of Physics, vol.71, issue.5, p.423, 2003.
DOI : 10.1119/1.1555874

E. F. Taylor and J. Hanc, From conservation of energy to the principle of least action: A story line, Am. J. Phys, vol.72, p.514, 2004.

D. E. Neuenschwander, E. F. Taylor, and S. Tuleja, Action: Forcing energy to predict motion, The Physics Teacher 44, p.146, 2006.

J. Ogborn, J. Hanc, and E. F. Taylor, Action on stage: Historical introduction, The Girep conference 2006, Modeling in Physics and Physics Education, 2006.

J. Hanca, S. Tuleja, and M. Hancova, Simple derivation of Newtonian mechanics from the principle of least action, American Journal of Physics, vol.71, issue.4, p.386, 2003.
DOI : 10.1119/1.1528915

T. A. Moore, Getting the most action out of least action: A proposal, American Journal of Physics, vol.72, issue.4, p.522, 2004.
DOI : 10.1119/1.1646133

V. R. Kaila and A. Annila, Natural selection for least action, Proc. R. Soc. A. 464, p.3055, 2008.
DOI : 10.1016/j.bpc.2007.01.005

A. Annila, All in Action, Entropy, vol.12, issue.11, p.2333, 2010.
DOI : 10.3390/e12112333

M. Koskela and A. Annila, Least-action perihelion precession, Monthly Notices of the Royal Astronomical Society, vol.417, issue.3, p.1742, 2011.
DOI : 10.1111/j.1365-2966.2011.19364.x

URL : http://arxiv.org/abs/1009.1571

S. Salthe and A. Annila, On intractable tracks, Phys. Essays, vol.25, issue.232, 2012.

C. L. Dym and I. H. Shames, Solid Mechanics: A Variational Approach, 1973.
DOI : 10.1007/978-1-4614-6034-3

W. Yourgrau and S. Mandelstam, Variational Principles in Dynamics and Quantum Theory, 1968.

Q. A. Wang, A probabilistic mechanics theory for random dynamics

Q. A. Wang, Maximum Entropy Change and Least Action Principle for Nonequilibrium Systems, Astrophysics and Space Science, vol.26, issue.3, p.273, 2006.
DOI : 10.1007/s10509-006-9202-0

URL : https://hal.archives-ouvertes.fr/hal-00011131

Q. A. Wang, Seeing maximum entropy from the principle of virtual work
URL : https://hal.archives-ouvertes.fr/hal-00140657

Q. A. Wang, Probability distribution and entropy as a measure of uncertainty, Journal of Physics A: Mathematical and Theoretical, vol.41, issue.6, p.65004, 2008.
DOI : 10.1088/1751-8113/41/6/065004

URL : https://hal.archives-ouvertes.fr/hal-00117452

M. Gell-mann, Fundamental sources of unpredictability, Complexity, vol.3, issue.9, 1997.

M. Gell-mann, The Quarks and the Jaguar: Adventures in the Simple and the Complex, 1994.

R. S. Maier and D. L. Stein, Escape problem for irreversible systems, Physical Review E, vol.48, issue.2, p.931, 1993.
DOI : 10.1103/PhysRevE.48.931

URL : http://arxiv.org/abs/chao-dyn/9303017

E. Aurell and K. Sneppen, Epigenetics as a First Exit Problem, Physical Review Letters, vol.88, issue.4, p.48101, 2002.
DOI : 10.1103/PhysRevLett.88.048101

. Mukhopadhyay, Optimal path to epigenetic switching, Phys. Rev. E, vol.71, p.11902, 2005.

E. G. Cohen, Properties of nonequilibrium steady states: a path integral approach, Journal of Statistical Mechanics: Theory and Experiment, vol.2008, issue.07, p.293, 2005.
DOI : 10.1088/1742-5468/2008/07/P07014

J. Wang, K. Zhang, and E. Wang, Kinetic paths, time scale, and underlying landscapes: A path integral framework to study global natures of nonequilibrium systems and networks, The Journal of Chemical Physics, vol.133, issue.12, p.125103, 2010.
DOI : 10.1063/1.3478547

P. Sadhukhan and S. M. Bhattacharjee, Thermodynamics as a nonequilibrium path integral, Journal of Physics A: Mathematical and Theoretical, vol.43, issue.24, p.245001, 2010.
DOI : 10.1088/1751-8113/43/24/245001

G. Stock, K. Ghosh, and K. A. Dill, Maximum Caliber: A variational approach applied to two-state dynamics, The Journal of Chemical Physics, vol.128, issue.19, p.194102, 2008.
DOI : 10.1063/1.2918345

H. Fujisaki, M. Shiga, and A. Kidera, Onsager???Machlup action-based path sampling and its combination with replica exchange for diffusive and multiple pathways, The Journal of Chemical Physics, vol.132, issue.13, p.134101, 2010.
DOI : 10.1063/1.3372802

R. M. Evans, Detailed balance has a counterpart in non-equilibrium steady states, Journal of Physics A: Mathematical and General, vol.38, issue.2, p.293, 2005.
DOI : 10.1088/0305-4470/38/2/001

S. G. Abaimov, General formalism of non-equilibrium statistical mechanics, a path approach

N. Wiener, The Average of an Analytic Functional, Proc. Natl. Acad. Sci. USA, p.253, 1921.
DOI : 10.1073/pnas.7.9.253

N. Wiener, The Average of an Analytic Functional and the Brownian Movement, Proc. Natl. Acad. Sci. USA, p.294, 1921.
DOI : 10.1073/pnas.7.10.294

M. Pavon, Stochastic mechanics and the Feynman integral, Journal of Mathematical Physics, vol.41, issue.9, pp.6060-6078, 2000.
DOI : 10.1063/1.1286880

Q. A. Wang, Non-quantum uncertainty relations of stochastic dynamics, Chaos, Solitons & Fractals, vol.26, issue.4, p.1045, 2005.
DOI : 10.1016/j.chaos.2005.03.012

URL : https://hal.archives-ouvertes.fr/hal-00003562

H. Risken, The Fokker-Planck Equation: Methods of Solution and Application, 2nd ed., Journal of Applied Mechanics, vol.58, issue.3, 1989.
DOI : 10.1115/1.2897281

Q. A. Wang, What can we still learn from Brownian motion? Proceedings of the First Franco, Mongolian International Conference on Materials Sciences and Theoretical Physics, 2010.

M. Stöltzner, The principle of least action as the logical empiricist's Shibboleth , Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, p.285, 2003.

Q. A. Wang, A dialectical view of variational principles of physics, invited talk at the Conference SigmaPhy, 2008.

K. Yasue, Quantum mechanics and stochastic control theory, Journal of Mathematical Physics, vol.22, issue.5, p.1010, 1981.
DOI : 10.1063/1.525006

]. X. Zhang, H. Qian, and M. Qian, Stochastic theory of nonequilibrium steady states and its applications. Part I, Physics Reports, vol.510, issue.1-2, pp.1-86, 2012.
DOI : 10.1016/j.physrep.2011.09.002

H. Ge, M. Qian, and H. Qian, Stochastic theory of nonequilibrium steady states. Part II: Applications in chemical biophysics, Physics Reports, vol.510, issue.3, pp.87-118, 2012.
DOI : 10.1016/j.physrep.2011.09.001

E. W. Weisstein, Second Fundamental Theorem of Calculus

L. Onsager, Reciprocal Relations in Irreversible Processes. I., Physical Review, vol.37, issue.4, p.405, 1931.
DOI : 10.1103/PhysRev.37.405

L. Onsager, Reciprocal Relations in Irreversible Processes. I., Physical Review, vol.37, issue.4, p.2265, 1931.
DOI : 10.1103/PhysRev.37.405

Y. Hyon, D. Kwak, and C. Liu, Energetic variational approach in complex fluids: Maximum dissipation principle, Discrete and Continuous Dynamical Systems, p.1291, 2009.

J. Lubliner, A maximum-dissipation principle in generalized plasticity, Acta Mechanica, vol.10, issue.3-4, p.225, 1984.
DOI : 10.1007/BF01179618

G. L. Eyink, Stochastic least-action principle for the incompressible Navier???Stokes equation, Physica D: Nonlinear Phenomena, vol.239, issue.14, p.1236, 2010.
DOI : 10.1016/j.physd.2008.11.011

A. Prados, A. Lasanta, and P. I. Hurtado, Large Fluctuations in Driven Dissipative Media, Physical Review Letters, vol.107, issue.14, p.140601, 2011.
DOI : 10.1103/PhysRevLett.107.140601

T. Koide and T. Kodama, Navier???Stokes, Gross???Pitaevskii and generalized diffusion equations using the stochastic variational method, Journal of Physics A: Mathematical and Theoretical, vol.45, issue.25, p.255204, 2012.
DOI : 10.1088/1751-8113/45/25/255204

. Wang, Path probability distribution of stochastic motion of non dissipative systems: a classical analog of Feynman factor of path integral

T. Lin, A. Allahverdyan, and Q. A. Wang, The Extrema of an Action Principle for Dissipative Mechanical Systems, Journal of Applied Mechanics, vol.81, issue.3
DOI : 10.1115/1.4024671

T. Li, S. Kheifets, D. Medellin, and M. Raizen, Measurement of the Instantaneous Velocity of a Brownian Particle, Science, vol.328, issue.5986, p.1673, 2010.
DOI : 10.1126/science.1189403

P. N. Pusey, Brownian Motion Goes Ballistic, Science, vol.332, issue.6031, 2011.
DOI : 10.1126/science.1192222

R. Huang, I. Chavez, K. M. Taute, B. Luki´cluki´c, S. Jeney et al., Direct observation of the full transition from ballistic to diffusive Brownian motion in a liquid, Nature Physics, vol.23, issue.7, p.576, 2011.
DOI : 10.1063/1.457480

P. Langevin and C. R. Sur-la-théorie-du-mouvement-brownien, see also: D. S. Lemons and A. Gythiel, Paul Langevin's 1908 paper " On the theory of Brownian motion Sur la théorie du mouvement brownien, Acad. Sci. (Paris) C. R. Acad. Sci. (Paris) Am. J. Phys, vol.146, issue.65, pp.530-533, 1908.

G. E. Uhlenbeck and L. S. Ornstein, On the Theory of the Brownian Motion, Physical Review, vol.36, issue.5, p.823, 1930.
DOI : 10.1103/PhysRev.36.823

M. C. Wang and G. E. Uhlenbeck, On the Theory of the Brownian Motion II, Reviews of Modern Physics, vol.17, issue.2-3, p.323, 1945.
DOI : 10.1103/RevModPhys.17.323

. Wang, Path probability of random motion of dissipative systems

A. Wang, Path probability distribution of stochastic motion of non dissipative systems: a classical analog of Feynman factor of path integral, submitted to Chaos

T. Lin, A. Allahverdyan, and Q. A. Wang, The Extrema of an Action Principle for Dissipative Mechanical Systems, Journal of Applied Mechanics, vol.81, issue.3, 2013.
DOI : 10.1115/1.4024671

T. Lin, G. Su, Q. A. Wang, and J. Chen, Casimir effect of an ideal Bose gas trapped in a generic power-law potential, EPL (Europhysics Letters), vol.98, issue.4, p.40010, 2012.
DOI : 10.1209/0295-5075/98/40010

T. Lin, C. Pujos, C. Ou, W. Bi, F. Calvayrac et al., Path probability for a Brownian motion, Chinese Science Bulletin, vol.40, issue.34, pp.3736-3740, 2011.
DOI : 10.1007/s11434-011-4803-6

T. Lin, B. Lin, G. Su, and J. Chen, STATISTIC CHARACTERISTICS OF QUANTUM GASES IN A CONFINED SPACE, International Journal of Modern Physics B, vol.25, issue.04, pp.479-486, 2011.
DOI : 10.1142/S0217979211058092

T. Lin, G. Su, C. Ou, B. Lin, A. L. Méhauté et al., THERMOSIZE EFFECTS IN CONFINED QUANTUM GAS SYSTEMS, Modern Physics Letters B, vol.24, issue.15, pp.1727-1737, 2010.
DOI : 10.1142/S0217984910024006

T. Lin, Y. Zhao, and J. Chen, Expressions for Entropy Production Rate of Fuel Cells, Chinese Journal of Chemical Physics, vol.21, issue.4, pp.361-366, 2008.
DOI : 10.1088/1674-0068/21/04/361-366

G. Su, L. Chen, T. Lin, and J. Chen, Thermosize Effects of Ideal Fermi Gases Confined in??Micro/Nano-Scale Tubes, Journal of Low Temperature Physics, vol.103, issue.5-6, pp.275-283, 2011.
DOI : 10.1007/s10909-011-0347-z