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Résumé de la thèse 

0.1  Introduction et Objectif 

Les sources et les détecteurs courramment utilisés en optique et en électronique présentent une 

chute de leurs performances dans la gamme de fréquence térahertz (THz). Il apparaît aujourd’hui 

que ce type de dispositifs présente un intérêt fort pour des domaines tels que la physique, la 

chimie, la biologie et l'astronomie. Mon travail de thèse s’inscrit dans le cadre du développement 

de composants THz peu onéreux, compacts, accordables en fréquence et facile à intégrer. Ce 

travail comprend deux parties: 1/ Une analyse et une optimisation de la détection d’ondes THz et 

2/ une optimisation de la propagation THz dans des guides planaires dans la bande [10-1000] 

GHz. Chacune de ces études a un volet de modélisation, de fabrication et de caractérisation. 

0.2 Optimisation de la détection THz Résonante en utilisant les 

Plasmon-Polariton dans des puits quantiques (QWs) 

0.2.1 Principe : couplage entre radiation THz (photon) et plasmon 2D 

Un plasmon correspond à des oscillations collectives de charges dans un environnement à trois 

ou deux dimensions (3D ou 2D). Nous avons analysés les plasmons issus d’un gaz 2D d’électrons 

(2DEG) dans des hétérostructures semi-conductrices. Dans la limite des grandes longueurs 

d'onde ( 2 sk N ), la dispersion des plasmons 2D dans un diélectrique homogène infini 

(permittivité s ) est dérivée de la relation suivante [Stern1967]: 
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où k est le vecteur d'onde de plasmon et   est la fréquence de plasmon. La dispersion de la 

radiation THz est 1

2 sin

c
f k

 
 . À 1 THz, le vecteur d'onde est d'environ 4.105  m-1 pour plasmon 

2D dans GaN ( s  = 9,7, NS = 1,7.1016  m-2), tandis que le photon incident présente un vecteur 

d'onde incident d'environ 2.104  m-1. Par conséquent, le couplage ne peut avoir lieu. Pour 

compenser le décalage du vecteur d'onde, un réseau métallique de période L et de largeur de 

ruban métallique W est placé au-dessus de l’hétérostructure (Figure 1).  

 

Figure 1: Réseau métallique sur hétéro-jonction AlGaN/GaN 

Ainsi, l'onde diffractée par le réseau présente un vecteur d'onde de 2
, 0, 1, 2...xn x

n
k k n

L


     . Si la 

période du réseau L est de l’ordre du micromètre alors le vecteur d’onde kxn est de l'ordre de 105 

ou 106 m-1, ce qui rend possible l’existence d’un plasmons-polaritons (PP, couplage de l’onde avec 

le plasmon 2D). Le champ électrique de l'onde incidente doit suivre une polarisation transverse 

magnétique (TM), qui est une condition nécessaire au couplage PP.  Pour traiter ce type 
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d’hétérostructure corruguée, nous avons développé sous Matlab un code numérique basé sur la 

méthode des ondes couplées (CWM, coupled wave method) [Wendler1999, Wendler2005]. Le 

2DEG y est modélisé par une conductivité de type Drude soit quasi 2D si on le considère 

comme une couche mince, soit 2D si on le considère d’épaisseur nulle. Ceci nous permet de 

calculer les spectres de transmission, de réflexion et d’absorption des  hétérostructures en tant 

que systèmes multicouches et de déceler les résonances de PP à partir desquelles nous avons tracé 

la dispersion de PP. Un autre moyen pratique pour modéliser ces dispositifs est d’utiliser le 

logiciel commercial Ansoft  HFSS. Les deux méthodes de calculs (CWM et HFSS) ont été 

comparées validant ainsi l’utlisation de notre code écrit sous Matlab pour ce type d’application. 
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Figure 2: Comparaison entre la dispersion de plasmon 2D dans le GaN et les dispersions des PP 

(W/L = 0,75) sur une hétérostructure d’AlGaN/GaN avec 2DEG quasi-2D (d2DEG = 12 nm) et 2D. 

NS = 1,2 × 1017 m-2, L = 2,2 µm, et d = 25 nm. 

A titre d’ilustration sur la Figure 2, la dispersion de plasmon 2D dans le GaN et du PP dans le cas 

d’un puits quantique d’AlGaN/GaN avec réseau avec W/L = 0,75 ont été tracées. Les 

métallisations sont en or, leur épaisseur est fixée à t = 200 nm et la conductivité vaut or = 4,1.107  

S/m. On peut voir que le vecteur d'onde de PP est plus grand que celui de plasmon 2D dans le 

GaN à la même fréquence.  

De plus, nous pouvons constater que la prise en compte (ou non) de l’épaisseur du gaz 2D, 

(d2DEG = 12 nm et d2DEG = 0) n’induit pas de modifications remarquables de la courbe de 

dispersion du PP et 2. DEGk d <<1. Le modèle simple du gaz (d2DEG = 0) peut donner des résultats 

satisfaisants. La dispersion d’un PP avec W/L = 0,75 a un comportement proche de celle du PP 

dans le cas d’un QW recouvert d’un film métallique (W/L = 1).  

Les courbes de dispersions de PP avec un réseau métallique 2D (sans épaisseur, t = 0) sont 

équivalentes à celles obtenues avec un réseau métallique 3D (épaisseur de métal finie fixée à t = 

200 nm) pour le rapport W/L = 0,75 et ce quel que soit le modèle du gaz 2D choisi (quasi-2D ou 

2D).  
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Seuls les résultats du puits quantique d’AlGaN/GaN sont présentés, les mêmes conclusions ont 

été vérifiées pour trois autres hétérostructures qui sont décrites dans la section suivante. 

0.2.2   Description des structures étudiées 

Les hétérostructures étudiées sont : AlGaN/GaN, InAlN/GaN et AlGaAs/GaAs SiGe/Si/SiGe. 

Pour cette dernière structure, le silicium (Si) est contraint biaxiallement en tension sur une couche 

de silicium germanium (SiGe) relaxée. Les matériaux de substrats GaN, GaAs ou SiGe sont 

modélisés comme des semi-conducteurs semi-infinis sans pertes (les tangentes de pertes sont 

nulles). Le Tableau 1 présente les paramètres géométriques du réseau (L) pour obtenir une 

résonance PP à 1 THz et les caractéristiques des matériaux pour chaque hétérostructure. Si les 

paramètres dans les simulations ne sont pas mentionnés explicitement, leurs valeurs par défaut 

sont : l'épaisseur de la couche 2DEG d2DEG = 12 nm, angle d'incidence θ = 0°, épaisseur du métal 

t = 200 nm, conductivité du métal σOr= 4,1 × 107 S/m.  

Tableau 1: Paramètres des quatre hétérostructures nominales dans la simulation 

Matériel  m*/m
0 
 NS  

(10
16

m
-2
)  

L  
(µm)  

d 
(nm)  

µ
2DEG

 à 300K  

(m
2
/Vs)  

µ
2DEG

 à 77K  

(m
2
/Vs)  

AlGaN/GaN  0,22 12  2,2  25  0,2  1,0  

InAlN/GaN  0,22 12  1,55  10  0,11  0,33  

SiGe/Si/SiGe  0,19 5  1,3  25  0,3  3,2  

AlGaAs/GaAs  0,063 1  1,0  25  0,8  5  

0.2.3   Etude paramétrique pour l’optimisation de la détection THz pour un 

gaz d’électrons 2D de concentration de porteurs homogène 

La Figure 3 montre le spectre d'absorption PP (courbe noire) pour la structure AlGaN / GaN. Il 

est obtenu en soustrayant l'absorption normale (courbe solide) par les contributions de 2DEG 

(courbe brisée) et le réseau (courbe discontinue). De manière générale, trois, parfois quatre pics 

de résonance PP apparaissent sur les spectres d’absorption. L'amplitude de PP (A1, A2 et A3) à la 

fréquence de résonance (f1, f2 et f3) est utilisée comme un paramètre clé pour évaluer l'efficacité 

du couplage PP et pour comparer les performances des différentes structures. 
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Figure 3: Spectres d'absorption de PP pour la structure AlGaN/GaN à 300 K modélisés avec 

Ansoft HFSS.  

Afin de définir la meilleure hétérostructure, la résonance de PP a été analysée en terme 

d’amplitude, de position en fréquence, de largeur à mi-hauteur (FWHM : Full Width at Half 

Maximum en anglais) en fonction de plusieurs paramètres: la pérode du réseau L, l'angle 

d'incidence , la température, la concentration d'électrons Ns, l'épaisseur de la barrière d et le 

rapport du réseau W/L. 

0.2.3.1  Influence de la période L et de l'angle d'incidence sur le spectre 

d’absorption 

La Figure 4 (a) représente la position en fréquence f1 en fonction de la période L pour les quatre 

matériaux nominaux à 300K. La relation 1 ~1/f L  [Muravjov2010, Hirakawa1995] est vérifiée 

pour W/L = 0,75.  

Les résonances d'ordre plus élevé (f2 ou f3) peuvent également être adaptées en fonction de la 

période du réseau L ou par un vecteur d'onde d'ordre élevé kxn = kx + 2πn/L (n = 2 ou 3). Dans 

la plupart des cas, la résonance PP à f1 est la plus intense en amplitude. L’ajustement de la 

fréquence de résonance dans la gamme THz [0,3-3] THz s’effectue par le choix de L comprise 

entre 0,5 et 5 µm. Les périodes du réseau pour chacune des quatre hétérostructures 

correspondant à une résonance PP f1 fixée à 1 THz sont énumérées dans le Tableau 1.  
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Figure 4:  (a) Accordabilité en fréquence f1 de la première résonance PP  en fonction de la période 

du réseau L pour les quatre hétérostructures à 300 K et pour W/L = 0,75. (b) Spectres 

d’absorption pour la structure AlGaN/GaN à 300 K avec différents angles d'incidence modélisés 

avec Ansoft HFSS.  

Cependant, deux cas limites pour la période L doivent être distingués et discutés: 

(1) Lorsque L est extrêmement faible (  0,5 µm), les champs évanescents seront plus confinés au 

voisinage de l'interface métal/barrière, rendant inefficace le couplage entre l’onde et le plamson 

2D. Par exemple, si L = 0,1 µm, le vecteur d'onde de la première onde évanescente dans la 
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direction x s’écrit kx1 = 2π/L = 2π × 107  m-1. La composante du vecteur d’onde dans la direction 

z est égale à 2 2 2

1/b xc k    jkx1 m-1, où 
b  est la permittivité de la barrière. Ainsi, la 

profondeur de propagation est D1 = 
1

1zk


= 16 nm. Elle est plus petite voire comparable à 

l'épaisseur de la barrière d=10 nm (InAlN/GaN) ou 25 nm pour les trois autres matériaux. Pour 

des ondes d'ordres supérieurs (n> 1), la profondeur de propagation Dn est encore plus petite et 

l'observation des résonances PP devient difficile. 

(2) Lorsque L est supérieure ou égale à 5 µm, aucun résonance sur le spectre n’apparaît. La raison 

est liée à la condition de détection de résonance [Knap2002-1] ωτ >> 1 (où  est la pulsation et  

est le temps de relaxation). Cette relation n'est plus satisfaite lorsque ω est petite. Par exemple, 

pour AlGaN/GaN à 300 K, si L = 5 µm, f1 = 0,34 THz, et τ = 2,5×10-13 s, ce qui donne le 

facteur ωτ = 0,5 qui bien inférieur à 1. 

La Figure 4 (b) représente les spectres d'absorption pour la structure AlGaN/GaN avec θ 

compris entre 0° et 89°. Le champ électrique Ex qui est essentiel pour l'interaction avec les 

plasmons longitudinaux 2D, est maximale lorsque que θ = 0°. Ce qui permet d’obtenir les 

résonances les plus élevées en amplitude. Si on s’intéresse au premier pic de résonance celui-ci 

passe de 0,48 en incidence normale à 0,12 à 89°. Par conséquent, pour la suite de l’étude nous 

avons travaillé exclusivement en incidence normale.  

La fréquence f1 = 1 THz ne varie quasiment pas du fait que le vecteur d'onde incident ( sin / c  ) 

reste inférieur à 2 / L .  

0.2.3.2  Influence de la température sur le spectre PP 
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Figure 5: Spectre d’absorption pour les quatre hétérostructures étudiées avec W/L = 0,75 à (a) 

300 K et (b) 77 K. 

La Figure 5 montre les spectres d'absorption PP pour les quatre matériaux à tempréature 

ambiante (300 K) et cryogénique (77 K) pour W/L=0,75. A basse température, les résonances PP 

sont plus étroites et d’amplitude plus élevée. Par exemple pour AlGaN/GaN, les deux premières 

résonances PP (A2 et A3) augmentent respectivement leur amplitude de 20 % et 40 %. Ceci est 
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attribué à l'absorption de type Drude du 2DEG qui diminue à basse température. Aux résonances 

PP (fn), l'absorption dans le matériau SiGe/Si/SiGe et AlGaAs/GaAs augmentent rapidement en 

raison de la forte augmentation de la mobilité des électrons à 77 K. À 300 K, les matériaux à base 

de nitrure ont les amplitudes An maximales quelque soit l'ordre de la résonance (fn). 

L’hétérostructure d’InAlN/GaN apparaît comme optimale en raison de sa grande concentration 

d'électrons et sa petite épaisseur de barrière comparé à celle d’AlGaN/GaN. Cependant, 

AlGaAs/GaAs et SiGe/Si/SiGe  présentent des absorptions aussi intéressantes notamment à 

basse température. 

À certaines conditions, l'amplitude d'absorption PP (An) d'ordre supérieur (n > 1) peut devenir 

plus grande que celle d’ordre 1 (A1). Le spectre d’absorptions d’AlGaN/GaN et SiGe/Si/SiGe à 

77 K vérifient cette observation où l’amplitude A2 > A1. Ceci peut s’expliquer avec deux 

hypothèses : 1/Lorsque le facteur W/L augmente, le champ électrique (Ex) pour l'onde avec n>1 

a une amplitude comparable, voire supérieure au champ Ex pour l'onde avec n=1. 

2/Deuxièmement, Ex à basse température peut également être plus fort par référence à leur 

valeur à 300 K. 

Un rapport W/L élevé et une température cryogénique sont deux critères spécifiques et 

favorables pour intensifier fortement les amplitudes An des résonances PP (n>1).  

0.2.3.3  Influence de Ns, d et W/L sur le spectre PP 

Dans cette section on étudie, la variation des amplitudes (A1, A2, A3) (Figure 6 (a)) des résonances 

PP en fonction de la la concentration NS. Une forte absorption s’obtient à partir de 

l'augmentation du nombre d'électrons par unité de surface qui intéragissent davantage avec les 

ondes évanescentes. Avec la même Ns (par exemple, 1016 m-2), la structure AlGaAs/GaAs 

présente une amplitude de maximale A1 en raison de la grande mobilité des électrons. 

En ce qui concerne la fréquence PP (f1, f2 et f3),  elle suit une loi en racine carrée qui peut être 

prédite par la dispersion d’un plasmon 2D recouvert d’un réseau (souvent noté « gated » dans kes 

articles en anglais) 
2

0

1 1

2 coth( )

s

s b

e N k
f

m kd   



 [Eguiluz1975].  

L'influence de l'épaisseur de la barrière (d) sur la fréquence PP peut être également prédite par  
2

0

1 1

2 coth( )

s

s b

e N k
f

m kd   



 [Eguiluz1975]. Lorsque kd<<1, f est proportionelle à la racine carrée 

de l'épaisseur d. 

Sur la Figure 6 (b), l’amplitude des résonances PP diminue lorsque d est au-delà de 50 nm. 

L’amplitude² maximale A1 a été obtenue avec dopt = 50 nm pour AlGaN/GaN et dopt = 25 nm 

pour InAlN/GaN. Pour les deux autres matériaux, A1 ne fait que décroître en fonction de d. A 

ces distances optimales, le facteur est de 1,98 (AlGaN/GaN), 1,2 (InAlN/GaN). Quand d < 

dopt,   chute rapidement et devient inférieure à 1 d'après la dispersion PP. La détection 

deviendra le type non résonant [Knap2002-2], résultant de l'amortissement de l'oscillation de 

plasma, en particulier lorsque la concentration d'électrons est élevée. Si NS augmente jusqu’à 

5.1016 m-2 dans AlGaAs/GaAs (ce qui n’est pas physiquement possible !) , une distance optimale 

(dopt = 20 nm) apparaitrait également.  



Résumé de la thèse 

ix 

 

0

0,05

0,1

0,15

0,2

0 5 10 15 20

A
b

so
rp

ti
o

n
 (

a
. 

u
.)

Ns (10
16

m
-2

)

A
1
(AlGaN/GaN) A

2
(AlGaN/GaN)

A
3
(AlGaN/GaN)

A
2
(AlGaAs/GaAs)

A
2
(SiGe/Si/SiGe)

A
1
(SiGe/Si/SiGe)

A
1
(AlGaAs/GaAs)

A
1
(InAlN/GaN)

A
2
(InAlN/GaN)

A
3
(InAlN/GaN)

(a)

0

0,05

0,1

0,15

0,2

0 50 100 150 200

A
b

so
rp

ti
o

n
 (

a
.u

.)

d (nm)

A
1
(AlGaN/GaN)

A
1
(SiGe/Si/SiGe)

A
2
(AlGaN/GaN)

A
2
(AlGaAs/GaAs) A

2
(SiGe/Si/SiGe)

A
1
(AlGaAs/GaAs)

A
2
(InAlN/GaN)

A
3
(InAlN/GaN)

A
1
(InAlN/GaN)

(b)

 

0

0,05

0,1

0,15

0,2

0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

A
b

so
rp

ti
o

n
 (

a
.u

.)

W/L

A
3
(AlGaAs/GaAs)

A
2
(AlGaAs/GaAs)

A
1
(AlGaAs/GaAs)

A
3
(SiGe/Si/SiGe)

A
2
(SiGe/Si/SiGe)

A
1
(SiGe/Si/SiGe)

A
1
(AlGaN/GaN)

A
1
(InAlN/GaN)

A
3
(InAlN/GaN)

A
2
(AlGaN/GaN)

A
2
(InAlN/GaN)

A
3
(AlGaN/GaN)(c)

 

Figure 6: Influences de (a) la concentration homogène Ns , (b) l'épaisseur de la barrière d et (c) 

le rapport W/L sur des amplitudes (A1, A2, A3) des résonances PP à 300 K. 

Avec la même valeur de d (par exemple, 50 nm), la structure GaN présente l'amplitude de 

maximale A1 en raison de sa grande concentration d'électrons Ns. 

La Figure 6 (c) représente la variation des amplitudes (A1, A2, A3) des résonances PP en fonction 

du rapport W/L du réseau. 

An ont tendance à augmenter significativement avec W/L en raison de l'amélioration du champ 

électrique longitudinal Ex. Par exemple, A1 est de 0,045 pour W/L=0,25 et de 0,16 pour 

W/L=0,9. Nous avons calculé Ex au voisinage du réseau avec W/L variant de 0.25 à 0.95 pour 

une période de réseau L fixée à 1 µm. Avec la diminution de la largeur du gap entre deux 

métallisations successives, Ex devient plus intense à l'interface air/hétérostructure et il s'étend 

plus profondément vers l’hétérostructure, ce qui rend le couplage avec les plasmons 2D plus fort.  

Quand W/L augmente de 0.25 à 0.9, la position en fréquence de la résonance PP décroît de 

façon monotone. Au-delà de 0,6, fn est quasiment constante. Par exemple, f1 est de 1.76, 1.16, 

1.06, 1.0 et 1.0 THz pour W/L=0.25, 0.5, 0.6,0.75 et 0.9, respectivement. 



Résumé de la thèse 

x 

 

Pour la même valeur de W/L (par exemple, 0,75), la structure basée sur nitrure présente 

l'amplitude de maximale A1 en raison de sa grande concentration d'électrons Ns. 

0.2.4  Résonances PP : comparaison modélisation/mesure 

Un échantillon Al0.25 Ga0.75 N/GaN sur substrat saphir avec réseau périodique métallique a été 

mesurée par spectroscopie infrarouge à transformée de Fourier (Fourier Transform Infrared en 

anglais -FTIR-) à température ambiante et cryogénique. Ce travail a été réalisé en collaboration 

avec Marie-Antoinette Poisson de III/V Lab à Marcoussis qui nous a fourni l’hétérostructure et 

Isabelle Sagnes et Luc Le Gratiet du Laboratoire de Photonique et Nanostructures (LPN) à 

Marcoussis qui ont réalisé le dépôt des réseaux métalliques par lithographie électronique. Les 

spectres de transmission expérimentaux ont ainsi pu être comparés à ceux obtenus 

numériquement pour différentes valeurs du rapport W/L = [0.25, 0.5, 0.6, 0.75] de 0.6 à 1.8 THz. 
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Figure 7: Comparaison des spectres de transmission mesurés (Mes) et modélisés via la méthode 

CWM (Simu) à 300, 78 et 10 K pour la structure Al0.25 Ga0.75 N/GaN (W/L = 0,6, Ns = 8.1016 m-2) 

Sur la Figure 7 sont montrés les spectres de transmission simulés (Sim) et mesurés (Mes) de 0,6 à 

1,7 THz à différentes températures (300 K, 78 K et 10 K) pour un rapport W/L = 0,6. Lorsque 

la température baisse de 300 K à 10 K, l'amplitude de la premiere résonance apparaît de plus en 

plus. A température ambiante, la faible absorption est liée principalement à la faible mobilité des 

électrons, on ne peut distinguer précisément en amplitude et fréquence la première résonance. 

Les mobilités des électrons dans la simulation ont été fixées à  0.1 m2/Vs pour 300 K, 0.35 

m2/Vs pour 78 K et 0.45 m2/Vs pour 10 K. La position en fréquence notée f1 de cette résonance 

PP se situe à 0.81 THz (± 0.05 THz comme la résolution de la fréquence dans la mesure) 

expérimentalement alors qu’elle était prédite à 0.88 THz numériquement à 10K. La fréquence et 

l’amplitude en transmission T1 relevée expérimentalement est équivalente à celle calculée. 

L'amplitude descend jusqu’à 0.5 en unité arbitraire à 10 K et 0.55 à 300 K. Comme la mobilité est 

plus importante à 10 K, un second pic de résonance PP commence à se dessiner sur le spectre de 

transmission, avec une position en fréquence f2 égale à 1.6 THz et une amplitude en transmission 

T1 à 0.8. On ne la distingue pas à 78 K et 300 K sur la gamme de fréquence choisie. Cette 

confrontation modélisation/expérience se montre très prometteuse pour l’optimisation de la 

détection THz notamment dans la prédiction des résonances PP à des fréquences THz 

prédéfinies. 
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Figure 8: Spectres de transmission avec différents rapport W/L pour la structure Al0.25 Ga0.75 

N/GaN (Ns = 8. 1016  m-2) à 78 K, (a) mesure et (b) simulation avec 2DEG = 0,3 m2/Vs avec la 

méthode CWM 

La Figure 8 représente les spectres de transmission mesurés (a) et modélisés (simulation) (b) pour 

différents rapport W/L à 78 K, avec 2DEG = 0,3 m2/Vs sur l’intervalle de fréquence [0.6 -1.8] 

THz. Expérimentalement, lorsque le rapport W/L croît, la position en fréquence f1 du premier 

pic de résonance se déplace vers les basses fréquences. On a une diminution de 0.5 THz entre la 

position obtenue pour le rapport W/L=0 .25 et celui de 0.75. Une deuxième résonance PP n’est 

observable que pour les deux plus grands rapports W/L c’est-à-dire 0.75 et 0.6 dont les positions 

en fréquences respectives sont f2 = 1.40 THz et 1.76 THz.  De plus, lorsque le rapport W/L 

augmente on s’aperçoit que l’amplitude T1 du premier pic de résonance s’accentue atteignant une 

valeur minimale de 0.48 pour W/L = 0.75. Si on compare ces données avec celles calculées 

numériquement, on retrouve un bon accord entre les positions en fréquence et les amplitudes des 

résonances. Par conséquent, l’utilisation d’une fonction de distribution homogène pour la 

concentration des porteurs dans la direction x, NS (x) = NS semble être une hypothèse 

raisonnable dans le cas d’une hétérostructure de type AlGaN/GaN. 

0.2.5  Modélisation d’un gaz d’électron 2D héterogène 

Dans les sections qui vont suivre, nous allons aborder l’influence de la modulation d’un gaz 

d’électron 2D par l’intermédiaire de la modification de la concentration des porteurs en-dessous 

(N1) et entre (N2) les métallisations du réseau ; notamment, sous l’effet d’une polarisation en 

tension appliquée sur les métallisations. Nous n’aborderons ici que le cas de l’hétérostructure 

d’AlGaAs/GaAs. Ceci est dû à la différence entre la hauteur de barrière à l'interface métal/semi-

conducteur et le niveau de Fermi à l'interface air/semi-conducteur, qui conduit à N1  N2. A 

chaque variation de la concentration N1 correspond une tension de polarisation notée VG qui est 

appliquée sur le réseau métallique. La méthode CWM et le logiciel HFSS d’Ansoft peuvent être 

utilisés pour calculer les spectres d’absorption de ce type de configurations où N1 N2. 
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Figure 9 : Spectre d’absorption de la structure AlGaAs/GaAs pour différentes concentrations 

d'électron N1 à 300 K et W/L = 0.75 avec N2 fixée à 1,65.1016 m-2. 

Sur la Figure 9, est représentée l’influence de la concentration N1 (respectivemnt VG) sur le 

spectre d'absorption pour une hétérostructure d'AlGaAs/GaAs à température ambiante avec 

W/L = 0,75 et une concentration N2 fixée à 1,65.1016 m-2.  

En fixant la concentration N2, un peu plus élevé (inférieur) N1 décale l'amplitude et la fréquence 

de résonance à haute (basse) valeur. L'accordabilité en fréquence est possible par la tension. 

Pour la plus petite des concentrations N1 = 0,12 × 1016 m-2 (N1 << N2), la forme du spectre 

d’absorption est complètement modifiée : on ne retrouve pas de minimum d’absorption à 0,3 

THz. En revanche, nous observons un seul pic de résonance qui est décalé vers les hautes 

fréquences à 2,3 THz avec une amplitude de 0,12. Avec ce fort contraste entre N1 et N2, 

l'absorption présente une amplitude comparable avec le cas homogène (N1 = N2). Le pic de 

résonance est due à l'oscillation dipolaire fondamentale lorsque la répartition de densité 

d'électrons est antisymétrique des deux côtés de la fente WG = L-W [Alsmeier1989, Matov2002, 

Popov2003]. La simulation montre que la fréquence et l'amplitude de l'absorption peut également 

être modifiées par le rapport W/L.  

0.2.6  Conclusion 

L’hétérostructure à base de III - Nitrure a l’absorption PP maximale en raison des grandes 

polarisations spontanées et piézoélectriques. 

La fréquence et l’amplitude de résonance peuvent être contrôlées dans la gamme de fréquences 

THz à la fois par la période du réseau (L), la largeur du métal (W) et la tension (VG).  

Des mesures ont été réalisés sur l’échantillon AlGaN/GaN. Les modélisations se comparent 

favorablement aux mesures. 

Dans la région de forte modulation où la concentration d’ électrons N1 << N2, la grille métallique 

est indispensable pour l’accordabilité en fréquence et prometteuse pour la détection THz.  
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0.3 Optimisation de la transmission THz dans les guides d'onde 

planaires 

La deuxième partie de ce travail de thèse concerne  l’optimisation de la transmision THz via 

l’étude de la dispersion et de l'atténuation de quatre types de guide d'ondes (coplanaire (CPW), 

microruban, Slotline et triplaque) en fonction des dimensions géométriques, des propriétés des 

matériaux (diélectriques et métallisation) avec des logiciels commerciaux Ansoft HFSS ® 

(http://www.ansys.com/) et MWS CST ® (http://www.cst. com /). Une comparaison de leurs 

pertes et de leur dispersion pour une même impédance caractéristique de 100  à 20 GHz est 

aussi présentée. Les avantages et les limites de chaque guide  sont présentés afin de proposer une 

structure optimale. Une comparaison des résultats numériques avec des mesures électriques 

réalisées en Allemagne à l’institut Fraunhoffer de Fribourg a pu être effectuée entre 340-500 GHz.  

L'étude des guides a été réalisée principalement sur substrat polymère : le benzocyclobutène 

(BCB). Elle s’inscrit dans la continuité d’une première analyse appliquée à la transmission THz 

via des lignes coplanaires sur substrat semi-conducteur semi-isolant de phosphure d’indium (InP)  

utilisées pour des photocommutateur d’InGaAs qui fût effectuée dans notre groupe [Grimault 

2012]. 

0.3.1  CPW 

Un guide coplanaire (CPW) est défini par trois rubans métalliques : deux plans de masse externes 

et un ruban central (Figure 10). Chaque ruban est espacé de la dimension W. Les plans de masse 

sont supposés infinis et le ruban central de dimension finie notée S1. L’ensemble repose sur 

substrat diélectrique. Le guide CPW sur InP (r=12,5) avec W = 6,6 µm a une impédance 

caractéristique (Zc) de 50L'influence de W sur la dispersion et les pertes a été analysée. Dans 

le cas avec le substrat BCB (r=2,42), les mêmes dimensions de W sont utilisées pour étudier 

l'influence de la nature du substrat. 

 

Figure 10: Configuration de CPW 

0.3.1.1 Dispersion 

La Figure 11 (a) représente la dispersion des deux modes (symétrique (CPW) et antisymétrique 

(Slotline)) qui se propagent dans la structure CPW sur BCB et InP en fonction de la fréquence 

pour W = 6,6 um. La ligne TEM représente la dispersion de l'onde de type tranverse 

électromagnétique (TEM) dans substrat semi-infini.  
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Pour la ligne CPW sur BCB, la courbe de dispersion du mode CPW ne croise pas celle du mode 

slotline sur toute la gamme de fréquence considérée et ce jusqu'à 3 THz. Contrairement au cas du 

CPW sur InP, pourlequel le mode CPW peut tranférer de l’énergie au mode slotline à partir de 

600 GHz. Il convient de noter également que pour la structure sur InP un mode d’ordre 

supérieur apparaît avec une fréquence de coupure de 800 GHz, il n’est pas repésenté ici. Pour le 

BCB, le premier mode d’ordre supérieur apparaît au-delà de 1,5 THz. 

Le coefficient de couplage est calculé à 0,0033 à 3 THz pour CPW sur BCB, tandis que pour 

CPW sur InP, la courbe de dispersion du mode Slotline couple celle du mode CPW à 0,6 THz. 

Ceci confirme la possibilité d'échange d'énergie entre les deux modes, car le coefficient de 

couplage vaut 0,2764 à 600 GHz et augmente ensuite.  

D’autre part, le mode CPW peut rayonner vers le substrat parce que la vitesse de phase du mode 

CPW est toujours plus grande que l'onde TEM dans le substrat [Kasilingam1983]. Plus l'angle de 

radiation () est élevé, plus le rayonnement augmente.  est calculée à 33,87° pour CPW sur 

BCB et 40,62° pour CPW sur InP.  
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Figure 11: Comparaisons pour la configuration, CPW (AB/BC) pour différents substrats BCB et 

InP: (a) dispersion avec W = 6,6 µm, (b) perte par rayonnement, (c) perte métallique (Or = 4,1.107 

S/m), (d) perte diélectrique (tanBCB=0,007 et InP=2,4 S/m), et (e) pertes totales. 

0.3.1.2  Perte par rayonnement R 

D’après la littérature, deux principaux effets contribuent aux pertes par rayonnement. Le premier 

est le transfert d'énergie de l'onde guidée dans le substrat telle une onde de choc 

[Kasilingam1983].  

Le second effet est dû au couplage entre l'onde guidée et d'autres ondes comme on le voit dans 

les courbes de dispersion, lorsque cela est possible. Plusieurs modes peuvent se propager dans le 

guide CPW il est dit multi-modes. Le coefficient de couplage entre le mode CPW et le mode 

Slotline est cent fois plus petit que dans le cas d’un CPW sur InP. 

La Figure 11 (b) montre les pertes par rayonnement par rapport à la fréquence avec les deux 

types de substrats. Pour une fréquence située en-dessous de 400 GHz, la dépendance des pertes 

en fonction de la fréquence est faible, alors qu’au-delà, les pertes suivent une relation polynomiale 

dépendant du cube de la fréquence f3. La courbe analytique a été reportée sur la figure dans le cas 

de W = 6,6 µm pour les deux substrats. Les pertes calculées suivent globalement  la tendance de 

la courbe analytique à basse fréquence (<400 GHz) mais on s’aperçoit qu’au-delà de 400 GHz les 

pertes par rayonnement d’une ligne coplanaire sur substrat InP sont sous estimées npar ces 

relations quasi statiques et que seules des mesures ou des modelisations electromagnétqiues 3D 

sont pertinentes. 

Les pertes par rayonnement dépendent également de la géométrie de la ligne et elles sont 

proportionnelles au facteur (S1+2W)2. La perte de rayonnement augmente drastiquement avec W. 

L'avantage du substrat BCB est sa permittivité faible dans la gamme de fréquence THz, ce qui 

conduit à des plus faibles pertes. 

Nous verrons par la suite que les pertes par rayonnement contribuent significativement dans les 

pertes totales notamment à hautes fréquences. 
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0.3.1.3  Perte de conduction C 

Dans la Figure 11 (c), les pertes de conduction (Or = 4,1.107 S/m) sont tracées en fonction de la 

fréquence pour différents W. L'expression analytique a également été ajoutée pour W = 6,6 µm, 

et on peut remarquer qu’elle sous-estime les pertes par conduction. Quand W diminue, la densité 

de courant parasite circule dans une section plus limitée dans le ruban central, entraînant 

l'augmentation des pertes ohmiques (C) qui évoluent en 1/ où  est l’épaisseur de peau qui est 

proportionnelle à la racine carrée de la fréquence (=79 nm à 1 THz). Pour un même espacement 

W, si l'on compare le CPW sur InP avec le CPW sur BCB on s’aperçoit que les pertes par 

conduction sont atténuées en raison de la nature du substrat. Cela confirme encore une fois 

l'avantage d'utiliser le BCB. Les pertes par conduction sont les pertes qui contribuent le plus aux 

pertes totales dans un guide CPW à basse fréquence. Les pertes par rayonnement prennent le 

relais, ensuite, à plus haute fréquence. 

0.3.1.4  Perte diélectrique D 

Les pertes diélectriques sont proportionnelles au facteur ( tanf  ). Comme le montre la Figure 

11 (d), les pertes diélectriques calculées pour un guide CPW sur BCB et InP présentent des 

caractéristiques différentes. Ceci car nous avons modélisé les pertes dans chacun des substrats de 

manière différente. Les pertes sur InP restent toujours supérieures à celles obtenues sur BCB. Les 

pertes diélectriques restent toutefois très faibles par rapport aux deux autres pertes que sont le 

rayonnement et la conduction. L'approche analytique sous-estime les valeurs calculées 

numériquement à hautes fréquences. 

Un modèle précis de la tangente de perte du BCB (4026-46 Cyclotene résines de Dow Chemical 

Company) a été introduit dans nos modèles à partir de mesures de membranes de  BCB dans la 

gamme THz au FTIR réalisées dans notre groupe en 2008 [Perret2008 ]. On a de ce fait comparé 

les pertes diélectriques du CPW sur BCB avec le modèle de tangente de perte suivant (tan = 

0,0073 + 0,0017 × f (en THz)) et la valeur constante (tan = 0,007) qui a toujours été utilisée 

jusqu’à présent dans nos modélisations. Le modèle qui dépend de la fréquence produit plus de 

pertes à hautes fréquences. L'augmentation maximale des pertes diélectriques est d'environ 0,3 dB 

/ mm à 1500 GHz pour W = 12 um. Lorsque l'on compare avec les autres types de pertes dans 

une structure CPW, cette perte supplémentaire reste cependant négligeable.  

0.3.1.5  Pertes totals T 

L'atténuation totale du mode CPW dans la Figure 11 (e) est considérée comme la somme des 

trois types de pertes (
T R D C      ). Pour un même espacement W et à une même 

fréquence, un guide CPW sur BCB présente le moins de pertes et sera plus performant pour la 

transmission THz. Un guide CPW avec un faible espacement W = 1,6 µm est celui qui a le plus 

de pertes par conduction alors que le guide large avec W=12 µm est celui qui a le plus de pertes 

par rayonnement. La structure optimale (pertes totales minimales) est celle dont W = 6,6 µm et 

ce pour les deux substrats, même si le guide avec W = 12 um a des pertes légèrement inférieures 

à certaines fréquences c’est-à-dire 800 GHz pour BCB et 600 GHz pour InP où un compromis 

peut être établi pour choisir ce guide. 
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0.3.2 Structure optimale entre guides d'onde THz sur BCB à Zc fixée 

 

 

Figure 12: Dimensions des guides d'onde à 100  . 

Dans le cadre de cette étude, on a comparé le guide CPW avec trois autres guides d'ondes 

(microruban, triplaque et slotline) pour une même impédance caractéristique fixée à 100 Ω à 

basse fréquence (20 GHz). Leurs dimensions géométriques sont indiquées sur la Figure 12. 

Du point de vue de la dispersion, la ligne triplaque possède une vitesse de phase égale à la vitesse 

de phase de l'onde TEM qui se propage dans le substrat polymère BCB. La vitesse de phase des 

guides CPW et triplaque est quasi-constante avec la fréquence. Les quatre types de guides d'ondes 

peuvent être triés en fonction de leur dispersion croissante comme suit : Slotline > Microruban > 

CPW > Triplaque.  
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Figure 13: Pertes dans les quatre types de guide d'onde. (a) perte par rayonnement, (b) perte 

métallique (σOr = 5.106 S/m) et (c pertes totales (σOr = 5.106 S/m) 

0.3.2.1  R 

Pour les pertes par rayonnement (Figure 13 (a)), la ligne Slotline présente la plus grande 

atténuation de 7,63 dB/mm à 1 THz bien au-dessus des trois autres lignes à cause de sa grande 

dispersion. Sans surprise, celles de la ligne triplaque sont quasi nulles de l’ordre de 0,006 dB/mm 

pour la même fréquence. Microruban et CPW présentent également des performances 

satisfaisantes, avec 1,48 dB/mm et 0,43 dB/mm respectivement à 1 THz.  

0.3.2.2  D 

Pour les quatre types de guides d'ondes, les pertes diélectriques maximales observées restent 

inférieures à 1 dB/mm à 1 THz. Les pertes diélectriques sont faibles et comparables aux pertes 

par rayonnement dans les lignes CPW et microruban. 
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0.3.2.3  C 

Les lignes qui présentent le moins de pertes par conduction sont les guides slotline et microruban 

environ 1,6 dB/mm à 1 THz (Figure 13 (b)). La ligne CPW et la ligne triplaque ont une valeur 

relativement élevée de l’ordre de 4,7 dB/mm à 1 THz. 

0.3.2.4  T 

Les pertes totales sont illustrées sur la Figure 13 (c). La ligne microruban est la ligne de 

transmission THz optimale montrant une atténuation de 4,0 dB/mm à 1 THz. Les pertes liées 

aux différents guides sont répertoriées dans le Tableau 2. 

Tableau 2: Atténuation dans les quatre types de guide à 1 THz.  

 αR (dB/mm) αD (dB/mm) αC (dB/mm) αT (dB/mm) 

CPW 0,43 0,59 4,77 5,84 

Microruban 1,48 0,82 1,63 4,00 

Triplaque 0,006 1,00 4,68 5,64 

Slotline 7,63 0,94 1,71 9,60 

 

L'atténuation dans CPW et triplaque est limitée par la perte par conduction. Elle peut être réduite 

en choisissant la combinaison optimale de S1/W pour CPW et W/H pour triplaque à Zc = 100 . 

Dans le guide slotline, les pertes par rayonnement sont le plus importantes. En déposant une 

couche de BCB au-dessus de la structure, la réduction du rayonnement et de la dispersion est 

possible. 

Les pertes par conduction des guides triplaque et CPW peuvent être réduit en jouant sur les 

dimension pour une impédance caractéristique fixée. 

0.3.3  Résultats de la mesure CPW sur BCB 

Suite à cette étude paramétrique réalisée via de multiples modélisations sous HFSS et CST, nous 

avons décidé de fabriquer des échantillons en salle blanche de la centrale de technologie Minerve 

de l’IEF. Nous avons mis en place l’ensemble des étapes technologiques pour élaborer des guides 

coplanaires en vue de les mesurer expérimentalement avec un analyseur de réseau vectoriel dans 

la gamme de fréquence [340 – 500] GHz. Ces mesures ont été effectuées à l’Institut Fraunhoffer 

IAF (Allemagne). Les dimensions S1/W que nous avons fixées pour fabriquer et mesurer des 

lignes CPW sur BCB (30 µm) sur wafer de Si sont énumérées dans le titre de la Figure 14. 

Sur les Figure 14 (a) et (b) sont représentées les atténuations mesurées et modélisées. Un bon 

accord entre les données numériques et expérimentales a été trouvé pour les cinq dimensions de 

guide. Si la largeur du ruban central reste fixée à S1 = 36 µm, et que l’espacement W augmente de 

3 à 10 µm, l'atténuation augmente. Les pertes évoluent en fonction du cube de la fréquence 

laissant supposer qu’elles sont directement liées à la croissance des pertes par rayonnnement. Par 

rapport à la confrontation avec les mesures le choix d’une conductivité pour le métal de  σOr = 

4,1.107 S/m dans les modélisations demeure toutefois raisonnable et relativement adaptée. 
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Si S1> 36 µm alors nous obtenons des pertes totales plus importantes qui peuvent atteindre 16 

dB/mm à 500 GHz avec S1 = 100 µm. Ceci est cohérent avec la littérature. L’augmentation des 

dimensions du guide a une répercussion directes sur les pertes métalliques et/ou sur des pertes 

par rayonnement. Les fluctuations des données expérimentales sont attribuées aux incertitudes de 

mesures mais également à la réalisation technologique. Pour résumer, la structure la plus 

satisfaisante au regard de ses pertes est celle dont les dimensions sont S1 = 36 µm et W = 3 µm 

car nous obtenons une atténuation de 2,7 dB/ mm à 400 GHz et 3,5 dB/mm à 500 GHz. Ce qui 

constitue l’état de l’art actuel pour des guide d’onde dans cette gamme de fréquence. 
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Figure 14: Constante d'atténuation (dB/mm) mesurée (a) et simulée (b) de CPW avec 

différentes dimensions (S1/W) : 36/6, 36/10, 36/3, 70/4,28 et 100/6 µm. Échantillon : Métal (500 

nm)/BCB (~30 µm)/substrat Si (300 µm), Modèle: σOr = 4,1.107 S/m, tanδ (BCB) = 0,007, BCB = 

2,42, 30 µm BCB sur substrat de Si semi-infini (Si = 11,9, σSi = 10 S/m).  

0.4 Conclusion 

Le CPW sur BCB est meilleur que le CPW sur InP pour une même dimension.  

La perte par rayonnement augmente avec W (la largeur du ruban ou l’espacement entre deux 

rubans) et la perte par conduction diminue avec W.  La perte diélectrique est quasiment constante 

en fonction de W pour tous les guides (≤ 1 dB/mm à 1 THz).  

Nous avons comparé les quatre familles de guide d'onde étudié pour une même impédance 

caractéristique. A Zc = 100 Ω, la ligne triplaque n’est quasiment pas dispersive, et la perte par 

rayonnement est quasiment nulle. La ligne microruban a le minimum d’atténuation (H = 30 µm). 

La ligne microruban semble le meilleur compromis. 

Une atténuation expérimentale de 2,7 dB/mm à 400 GHz est obtenue pour la ligne CPW sur 

BCB. Les modélisations sont en bon accord avec les mesures. Ces mesures constituent l'état de 

l'art.  
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Abstract 

 

In the Terahertz (THz) frequency gap between electronics and optics, the development of 

compact, tunable, less costly and room temperature operating sources, detectors, amplifiers and 

passive devices is growing. Electronic devices based on two dimensional (2D) plasmons in 

heterostructures open up the possibility of tunable emission and detection of THz radiation. For 

short distance THz transmission, the increased radiation loss as well as other types of loss 

(dielectric and ohmic loss) may handicap the applications of conventional planar waveguides well 

studied in the microwave band. Reevaluation of their propagation properties and comprehension 

of the physical nature of each kind of loss are necessary. 

This work is divided into two main sections. The first part deals with the optimization of THz 

resonant detection by quasi 2D plasmons-polaritons (PP) in the quantum wells (QW) among four 

heterostructures:  III-V (AlGaN/GaN, InAlN/GaN, AlGaAs/GaAs) and IV-IV (SiGe/Si/SiGe). 

With the aid of metallic grating coupler, both ANSOFT HFSS and an indigenously developed 

program are used to investigate quantitatively the influences of structural parameters (grating 

period, metal strip width and thickness of barrier layer) and natural properties of 2D plasmons 

(electron concentration and mobility) on the PP resonances (frequency and amplitude) up to 5 

THz. Transmission spectra of sample AlGaN/GaN have been measured by Fourier Transform 

Infrared Spectroscopy (FTIR) in 0.6-1.8 THz for various metal filling factor and at different 

temperatures to compare with the simulated results. At last, two types of modulated 2D electron 

gas in AlGaAs/GaAs are analyzed. One is the natural electron variation below and between metal 

fingers due to the difference between the barrier height at the interface metal/semiconductor and 

Fermi level pinning at the interface air/semiconductor. The other type is the forced modulated 

2DEG by biasing voltage on metal fingers. These two parametric studies allow us to analyze and 

tune the frequency and amplitude of the THz detection.  

The second part separately studies the dispersions and attenuations of four waveguides (Coplanar 

waveguide (CPW), Microstrip, Stripline and Slotline) with the variation of geometric dimensions 

and properties of dielectric and metal by ANSOFT HFSS and CST MWS. Their performances 

are compared until 1 THz based on the same characteristic impedance. The advantages and the 

limitations of each waveguide are outlined and an optimal THz transmission line is proposed. 

Furthermore, preliminary measured attenuation of CPW in the frequency range 340-500 GHz are 

demonstrated and compared with numerical results. The design of transitions for adapting 

experimental probes by HFSS and the de-embedding method for extracting scattering and 

attenuation parameters of CPW by Agilent Advanced Design System (ADS) are also presented. 

 





 

 

General Introduction 

 

The electronic and optical devices like sources (photoconductive switch, diodes, quantum 

cascade lasers) and detectors (transistors) need to be improved in the terahertz (THz) range due 

to the lack of output power and the lack of understanding on some physical processes in this 

frequency domain. Currently, the increasing potential applications in physical, chemical, 

astronomical and biological disciplines have driven the advancement of THz technology, notably 

by integrating emitters, detectors, amplifiers based on semiconductor heterostructures, and 

passive elements (transmission lines and antennas). The objective of these researches is to realize 

THz components which are cheap, compact, tunable and easily integrated.  

THz radiation lies between microwave and far infrared frequencies in the electromagnetic 

spectrum. It is broadly referred to the sub-millimeter wave which fills the wavelength range 1-0.1 

mm (0.3-3 THz). The border between THz and far infrared is still blurry.  

More efforts are still needed from the research side to improve the emission power and detection 

efficiency at room temperature, as well as to reduce the attenuation of THz signal propagation. 

This work aims to optimize THz detection and transmission based on compact semiconductor 

materials and passive devices. 

The objective of this thesis contains two distinct parts: (1) to develop original compact plasmonic 

devices as the THz detectors and (2) to study the transmission performances of some planar 

waveguides in the THz frequency range. Numerical modeling for the optimization of THz 

detection device is conducted with both a commercial code (HFSS) and an indigenously 

developed solver. Moreover, parametric simulations are scheduled to evaluate the losses 

(dielectric, conduction and radiation) and dispersion in the THz transmission line. The two both 

studies contain a technological part. For THz detection, samples provided by III/V lab have 

been processed in the clean room of Laboratoire de Photonique et de Nanostructures (LPN). For 

the passive transmission devices, the fabrication has been performed in totality in the clean room 

MINERVE/CTU at Institut d'Electronique Fondamentale (IEF). The experiments on THz 

detection were realized at IEF whereas waveguides were measured at Fraunhofer Institute for 

Applied Solid State Physics (Fraunhofer IAF) in Germany. 

The content of the manuscript is organized as follows. 

Chapter 1 introduces the state-of-the-art THz sources, detectors and wave guiding structures. 

THz applications are reviewed. Then the performances of existing THz detectors and waveguides 

are summarized and compared.  

In Chapter 2, we present an analysis of resonant THz detection of the 2D plasmon in four types 

of heterostructures (AlGaN/GaN, InAlN/GaN, AlGaAs/GaAs, and SiGe/Si/SiGe) by periodic 

metal grating coupler with both ANSOFT HFSS and an indigenous developed code in between 0 

and 5 THz. Spectroscopy measurements have been made on the basis of the best simulated 

material structure analyzed for THz detection. A good agreement between the modeled and 

experimental transmission results has been achieved.  Inhomogeneous electron distribution 

modulated both by the existence of metal grating and the biasing voltage on the metal is also 

considered in the numerical work for AlGaAs/GaAs structure in the last section. 
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Chapter 3 deals with the dispersions and losses of four types of planar waveguide (Coplanar 

waveguide (CPW), microstrip line, Slotline and Stripline) with commercial code ANSOFT HFSS 

and CST MWS in THz frequency range (20 GHz-1.0 THz). Optimal structure is proposed by 

comparing the dispersions and losses of the studied four waveguides on the same substrate based 

on the same characteristic impedance. Some preliminary measurement data of CPW will be 

compared with the simulated results. 

Finally, Chapter 4 gives the general conclusions and perspectives. 

 



 

 

Chapter 1 Introduction 
The sub-millimeter wavelength range (1 mm-100 µm) or the terahertz frequency band (0.3 THz-3 

THz) is sandwiched between microwave and far infrared wave in the electromagnetic spectrum. 

One terahertz corresponds to a wavelength of 300 µm (wave number of 33 cm-1, or photon 

energy of 4.1 meV). In this ''THz gap'', the demand of sources, detectors and amplifiers, which 

are tunable, coherent, compact, less costly and operational at room temperature, is growing. A 

typical THz system is composed by the sources, the detectors and the waveguides, as shown in 

Figure 1-1. 

 

Figure 1-1: Schematic representation of a THz system 

1.1 THz applications 

Recently, with the fast development of semiconductor fabrication technology, the THz frequency 

receives considerable attentions in many applications like spectroscopy, imaging and ultrahigh 

speed wireless communications.  

THz radiation have many unique features in the electromagnetic spectrum [Kemp2006]: short 

wavelength to satisfy the spatial resolution for imaging purposes, penetration into those non-

polar substances to show the concealed objects, non-ionizing radiation to ensure the safety of 

people with moderate intensities... Here, some representative application areas among medical, 

material, physical, chemical, biological, spatial and communication domains are briefly introduced. 

The terahertz technology has been reviewed in detail from other contributions [Siegel2002, 

Dragoman2004, Chamberlain2004]. Equation Chapter 1 Section 1 

1.1.1 THz time domain spectroscopy (THz TDS) 

The basic THz spectroscopy optical setup is schematically represented in Figure 1-2, with 

photoconductive (PC) antenna as the emitter and detector. The femtosecond duration pulses 

emitted from a laser is separated by a beamsplitter into two beams going to the THz source and 

detector with equivalent power. THz sub-picosecond pulse is produced by the dipole antenna at 

the emission side excited by one half of the optical pulse, then is focused and directed to the 

sample under test. The transmitted THz pulse shape will be changed after passing through the 

sample. At the detection side, THz pulse is mapped out by changing the delay time between the 

THz radiation and the other half of the optical pulse. Similarly, the detected THz signal without 

sample in the same configuration is also recorded as the reference pulse. The frequency spectrum 

of the transmitted and reference pulse is obtained by Fourier transformation. The material 

properties (refractive index ( )n   and the absorption coefficient ( )k   ) can be calculated by 

analyzing the spectroscopic information of the transmittance signal. 



Chapter 1: Introduction 

6 

 

 

Figure 1-2: THz time domain spectroscopy (TDS) system using photoconductive (PC) antenna 

as a THz source and detector 
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Where ( ) ( ) ( )n n jk     is the complex material refractive index, d is the sample thickness, 

( )T   and ( )  are the measured amplitude and phase shift of the relative transmission power 

signal in the frequency domain. In some cases, the reflection THz pulse from the sample can be 

detected and analyzed to obtain material permittivity. Besides the PC antenna, nonlinear 

electrooptic (EO) crystals are also frequently used as the emission and detection elements 

[Zhao2002]. 

1.1.2 THz Imaging (T-ray) 

Most insulators are transparent to THz radiation, making its convenient application in checking 

baggage at airports, scanning letters for drugs and screening persons for weapons. To accomplish 

the process of imaging, CCD (Charge Coupled Device) cameras are needed to collect optical 

intensity and map the sample object with lens on one or an array of photo-detectors when the 

sample is scanned in two dimensions vertical to the THz beam. Based on PC antennas 

technologies, an imaging system at NiCT, Japan has realized a THz imaging of a structure of 3 × 

2 apertures with a spatial resolution in the sub-millimeter range, while another group at the 

Rensselaer Polytechnic Institute has shown the possibility of real time THz imaging using two 

dimensional EO sampling technologies [Wu1996]. The minimum spatial resolution of these 

pulses THz imaging systems are mainly limited by the diffraction of THz radiation. Recent 

development of field effect transistor (FET) based on the nonlinearity of two dimensional 

plasmons in the channel also demonstrated the experimental transmission imaging of metals with 

a GaAs nanometric transistor responded to continuous THz radiations at 1.63 THz and 2.54 

THz at room temperature, where the resolution is achieved at 300 µm [Nadar2010].  
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1.1.3 Telecommunication 

The frequency band [275-3000] GHz has not been allocated for specific use, and presents great 

interests for future wireless telecommunications with ultrahigh data rate of 10 Gbit/s or even 

higher, which is higher needed in high resolution television signal transition and the future 

personal communication. The main problem is associated with the strong interaction of THz 

radiation with the polar molecules H2O in the atmosphere. Figure 1-3 shows the attenuation 

constant of THz transmission in free space in function of frequency and propagation distances. 

Some transmission windows which have local minimum attenuation are located around 300 GHz, 

350 GHz, 410 GHz, 670 GHz and 850 GHz. At 300 GHz, for an indoor distance of 10 m, the 

overall attenuation reaches 102 dB, while it is 100 dB/km for outdoor environment due to 

scattering on hydrometeors. In practical application, the high gain antennas and amplifiers are 

indispensible to enhance the detected signal between the transmitter and receiver. A wireless link 

has achieved error free transmission of over 10 Gbit/s data signals in a distance about 1 km at 

200 GHz for broadcast live TV programs during Beijing Olympic Games [Hirata 2009]. Towards 

100 Gbit/s wireless communications, larger bandwidth is appreciated. The development in the 

300 to 500 GHz frequency range is now possible thank to the increasing cutoff frequency of 

semiconductor devices and circuits. 

 

Figure 1-3: Attenuation constant of THz radiation propagated in free space versus the frequency 

and the transmitted distance [Thomas2011] 

1.2 Terahertz sources 

Various kinds of sources exist, and here you will find an exhaustive list. At the aspect of optics, 

different lasers, such as the p-type germanium (Ge) lasers [Hübers2005] and the THz quantum 

cascade lasers (QCLs) [Williams2007] begin to operate as THz sources. CW QCL operates at 

cryogenic temperature. Below 1.5-2 THz, it does not seem realistic to develop CW QCL at room 

temperature.  



Chapter 1: Introduction 

8 

 

From the side of electronics, both the two-terminal diodes and three-terminal transistors have 

been extensively researched. Among the diodes, IMPATT (Impact Ionization Avalanche Transit 

Time Diodes) [Mishra1997], TUNNETT (Tunneling Transit Time Diodes) [Nishizawa1979], 

Gunn diodes [Yilmazoglu2008] or RTDs (Resonant Tunneling Diodes) [Asada2008] are the 

typical examples. Although the room temperature operation is realized, their output frequency 

range needs to be further pushed into THz range. Figure 1-4 illustrates the emission power of 

different sources in function of the frequency. In these sources, the tunability of frequency is 

hard to achieve. Two dimensional (2D) plasmons oscillation near the surface of semiconductors 

seems to be a candidate for tunable solid state far infrared source, where the tunability is allowed 

by the variation of carrier concentration. Coupling component, like metallic grating is required to 

couple out the radiation. The emission power, coupling efficiency and radiation frequency left 

room to be improved. 

 

Figure 1-4: Emission power versus frequency [Tonouchi2007] 

With slight modifications, the sources can be used in the detection mode. For example, in the 

THz time domain spectroscopy (THz-TDS) configuration, the photoconductive antennas are 

used both as the generation and detection components for THz pulse. 

In the following paragraph, we mainly discuss on the detection and propagation of THz which 

are the two central themes of my thesis.  

1.3 Terahertz detectors 

The function of a detector is to convert incident THz radiation into measurable parameters. 

These physical parameters can be as temperature variation, resistance change, current flow or 

voltage drop. In coherent detection, both the THz amplitude and phase are recorded. One 

example is the determination of the complex permittivity of a material in the THz-TDS system. 

For the incoherent detection, only the amplitude information is recorded. Infrared detectors are 
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generally classified into two categories: thermal detectors and photodetectors [Rogalski2010]. 

Thermal detectors absorber the radiation energy by changing its temperature, while for 

photodetectors, the radiation is absorbed within the material by interaction with free electrons or 

electrons bounded to lattice (or impurity) atoms. The photodetectors has high signal to noise 

ratio and fast response time.  

1.3.1 Detector figures of merit 

To evaluate the performances of a detector, the most general and useful parameters are operation 

frequency and temperature, response time, responsivity and noise equivalent power (NEP). 

1.3.1.1 Responsivity 

The responsivity is the ratio of the RMS (root mean square) value between the output electrical 

signal and incident THz radiation power P. Its unit is V/W or A/W, depending on whether the 

output signal is voltage drop (V) or current flow (I). High responsivity contributes to large 

sensitivity. 

/ /,  V W A W

V I
R or R

P P
                                                       (1-2) 

1.3.1.2 Noise equivalent power (NEP) 

The noise equivalent power (NEP) is the incident signal power which generates an electrical 

output equal to the detector noise output, saying the signal to noise ratio (SNR) is 1. When the 

reference bandwidth is assumed to be 1 Hz, the NEP has the unit W/Hz1/2. In the expression 

(1-3), nv and ni are the noise voltage and current spectral density respectively.  

/ /

,  n n

V W A W

v i
NEP or

R R
                                                          (1-3) 

1.3.2 THz detection methods 

One possible classification of THz detector is similar to microwave detectors: direct and 

heterodyne detections. 

1.3.2.1 Direct detection 

Table 1-1 lists the performances of THz direct detectors. Their functional mechanisms will be 

discussed respectively. 
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Table 1-1: Performances of THz direct detectors 

Detector f (THz) Responsivity Response(s) NEP(W/Hz1/2) Ref. 

Golay cell 0.02 - 20 10000 V/W 25.10-3 10-8 (300K) 
Commercial 

(Microtech) 

Pyroelectric 

(LiTaO3 crystal) 
0.02 - 3 1000 V/W 10-3-10-2 10-9 (300K) 

Commercial 

(Microtech) 

Silicon bolometer 0.15 - 20 - 10-3 10-13 (4.2K) 
Commercial 

(IR Labs) 

HEB 0.62 - 10-9 10-19 (0.36K) [Karasik2011] 

PC sampling 

(LT-GaAs) 

0.375 

(3dB bandwidth) 
0.1 A/W 1.2.10-12 - [Chen1991] 

EO sampling 

(GaP and ZnTe) 

3.6 and 37 

(3dB bandwidth) 
- - - 

[Wu1997-1] 

[Wu1997-2] 

AlGaN/GaN HFET 

(Gate length = 150 nm) 
0.2 - 2.5 

0.2 V/W 

at 0.2 THz 
- 

5.10-9 at 0.2 and 0.7 

THz (300 K) 
[Fatimy2006] 

AlGaAs/GaAs DQW 

FET 

(Grating period = 4µm) 

0.57 - 0.66 0.89 mV/W 7.10-7 
6.10-6 

(25 K) 
[Peralta2002] 

AlGaAs/GaAs FET 

(Gate length = 250 nm) 
0.3 11 V/W - 13.3.10-9 (300 K) [Blin2012] 

Si MOSFET 

(Length = 130 nm) 
0.27 - 1.05 

5000 V/W 

at 0.3 THz 
- 

10-12 at 0.3 THz 

(300K) 
[Schuster2011] 

Schottky diode 

(Zero bias) 
0.1 (0.9) 

4000 (400) 

V/W 
10-9 

1.5.10-12 at 0.15 THz 

and  

20.10-12 at 0.8 THz 

 (300 K) 

[Hesler2007] 

 

I Thermal detectors 

A Golay cell 

Golay cell [Golay1947] is an opto-acoustic detector. When absorbing THz radiation, the gas is 

heated and the resulting pressure causes the deformation of a membrane. An optical reflectivity 

measurement detects the membrane deformation. If there are mechanical disturbs, the sensitivity 

and response will be degraded. A commercial Golay cell works below 20 THz and the response 

time and NEP values are tens of ms and 10-8 W/Hz1/2, respectively. No cooling system is needed. 

B Bolometer 

Bolometer [Richards1994] operates on the principle that temperature change due to THz 

radiation absorption produces a variation of material resistance. When passing bias current 

through the detector, the output voltage will be monitored. To achieve high sensitivity, a material 

with small thermal capacity and large temperature coefficient (the resistance change factor per 

degree of temperature change) is needed, and cooled at liquid helium temperature. Several types 

exist: metal bolometers, thermostats and semiconductor bolometers. The commercial silicon 

bolometer has a response time in ms range and NEP value of 10-13 W/Hz1/2 in a wide frequency 
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band [0.15-20] THz. The high NEP value is achieved at the expense of liquid helium cooling at 

4.2 K. 

C Pyroelectric detector 

When a pyroelectric crystal undergoes a temperature variation, surface charge appears due to the 

change of its spontaneous electrical polarization. Charge number change can produce current 

flow. This means that pyroelectric detector is sensitive to the variation of incident THz power. 

Large pyroelectric coefficient (the change in the spontaneous polarization vector with 

temperature) and low thermal conductivity are attractive crystal properties for the improvement 

of sensitivity. The common crystal materials are LiTaO3 (Lithium tantalate), SBN (Strontium 

barium niobate) and DTGS (Deuterated triglycine sulfate) [Aggarwal2010]. It has lower 

responsivity than Golay cell but owns fast response (10-3-10-2 s) and small NEP value (10-9 

W/Hz1/2) at room temperature. 

An advantage of thermal detectors is that they can respond to incident radiation in a broad 

spectrum range. However, they suffer from low response time, bulky volume or usually required 

cooling system, compared with the photon detectors. 

II Photon detectors 

A Photoconductor (PC) sampling 

When an ultrafast optical pulse excites on a micron scale dipole antenna in a semiconductor, a 

rapid change of conductivity is produced. The current flow proportional to the amplitude of 

incident THz field can be recorded in function of the time. In the THz-TDS schema (Figure 1-2), 

PC sampling method is utilized to coherently detect the THz pulse. The antenna dimension 

design and carrier lifetime in the semiconductor affects the detection efficiency. Lifetime of 1 ps 

or less, which is short compared to T = 1/f (f is incident THz wave frequency), is required. 

Commonly used semiconductor materials are LT-GaAs (low temperature grown gallium arsenide) 

[Zheng2003] and ion implanted SOS (silicon on sapphire) [Pfeifer1994]. The PC detector based 

on LT-GaAs was demonstrated to have a 1.2 ps response time with a 3dB bandwidth of 375 

GHz [Chen1991]. 

B Electrooptic (EO) crystals sampling 

When optical laser beam passes through a nonlinear crystal, a DC or low frequency polarization 

arises in the optical rectification process. A change of polarization appears from the incident THz 

electric filed according to the linear electrooptic effect (Pockels' effect). THz electric field is 

measured linearly by the induced phase modulation of the femtosecond optical pulse [Wu1995]. 

High linear electrooptic coefficient of a crystal will enhance detection sensitivity. The reported 

nonlinear materials include LiNbO3 (lithium niobate), GaAs, InP (indium phosphore), DAST (4-

dimethylamino-N-methyl-4-stilbazolium tosylate) and metals [Dexheimer2008]. A 37 THz 

bandwidth was obtained using ZnTe [Wu1997-2]. 

C Nonlinear rectification 

For tunable continuous THz wave detection, 2D plasmon located in semiconductor devices was 

investigated since the end of last century. Two dimensional (2D) plasmon in the silicon inversion 
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layer was observed more than thirty years ago [Allen1977]. The detection process by the plasmon 

waves origins from the rectification of THz current in the transistor channel induced by the 

incident THz field. This was initiated by the pioneering work of Dyakonov and Shur 

[Dyakonov1993]. After the theoretical demonstration of the non-linear properties of 2D 

plasmons in FET [Dyakonov1996-1], a lot of contributions have been devoted experimentally to 

the detection of THz radiation as well as emission [Knap2002-1, Popov2005, Muravjov2010]. A 

large concentration of electrons with high mobility is the main properties for heterojunctions 

based transistors, such as AlGaAs/GaAs, AlGaN/GaN, InAlN/GaN, SiGe/Si/SiGe, and 

GaInP/GaAs. The advantages of the plasma wave detector include: frequency tunability, fast 

temporal response, small size, easy to use in array and room temperature operation. A high value 

of NEP = 5 × 10-9 W/Hz1/2 at 200 GHz and 700 GHz was reported at room temperature in a 

AlGaN/GaN HEMT [Fatimy2006]. 

However, the transistor based detection suffers from low coupling with THz wave. How to 

couple effectively the incident THz radiation with 2D plasmon is the key issue to increase the 

detection sensitivity. This will be studied in detail and discussed in Chapter 2. 

Other detection mechanism under development includes quantum dot single electron transistor 

[Komiyama2000], which is capable of detecting single photon at very low temperature (100 mK). 

1.3.2.2 Heterodyne detection 

Schottky diode is used either in direct detection or as nonlinear element in heterodyne mixer in 4-

300 K. It has strong nonlinear properties of current-voltage and capacity-voltage. The local 

oscillator signal with large and stable power is provided by a gas laser. The output signal, with the 

intermediate frequency proportional to the frequency difference between continuous wave THz 

radiation and local source signal, drops into the microwave range where it can be amplified and 

analyzed easily. Its amplitude is proportional to THz field. At THz frequency, planar Schottky 

diode is preferred for integration with other components on GaAs [Siegel1999], InP or 

semiconductor heterojunctions. The most important parameter of a heterodyne is the mixer 

noise temperature, which indicates the noise contributions from the mixer. Cryogenic 

temperature can improve the noise performance, or reducing the noise temperature. Schottky 

diode mixer is the most sensitive detector in THz range at room temperature because of the large 

local source power, but it has the disadvantages like: both local and incident beams should be 

coincident and polarized in the same direction, difficulty of utilizing in arrays.  

Other heterodyne detectors receiving great attention in the astronomy community are SIS 

(superconductor-insulator-superconductor) tunneling junction mixer [Tucker1985] and HEB (hot 

electron bolometer) mixer [McGrath1995]. They are competitive at millimeter wavelength and 

require cryogenic cooling. 

The noise equivalent temperature of the three types of detectors in double sideband operation 

(DSB) is shown in Figure 1-5 from 0.3-5 THz. Among them, SIS mixer is the best around 1 THz. 
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Figure 1-5: Noise temperature of heterodyne THz detectors [Hübers2008] 

1.4 Terahertz waveguide 

Concerning THz propagation, low loss and dispersion single mode waveguide structures and 

related emitting and receiving antennas are desirable for short distance transmission and also for 

the integration with detectors and sources based on semiconductor technology. 

Among existing structures, THz waveguides can be generally divided into two classes. One 

confines THz radiation generated in free space or dielectric, the other is the on-chip waveguide in 

which THz field is confined near a surface, such as air/dielectric and metal/dielectric interfaces. 

1.4.1 Free space and dielectric waveguide 

The circular [McGowan1999] or rectangular [Gallot2000] metal waveguide filled with air is 

frequently used in the quasi-optical techniques to couple freely propagating THz pulses. The key 

issue is to strongly couple the linearly polarized incident THz focused beam with the dominant 

waveguide mode. This type of waveguide finds application in THz-TDS system for measuring 

absorption coefficient. Their performances of low attenuation surpass over the planar 

waveguides, such as microstrip and coplanar waveguides, but the large dispersion hinders their 

application in communications due to great phase delay. Dielectric waveguides fabricated with 

sapphire and high density polyethylene (HDPE) and polyethylene (PE) have achieved less than 1 

Np/cm in THz range [Jamison2000, Mendis2000, Chen2006].  

To further reduce the dispersion, parallel plate copper waveguide which supports single TEM 

mode is shown to own undistorted, low loss (below 0.1 Np/cm at 1 THz) propagation 

[Mendis2001]. Then, the transmission of THz pulse on stainless steel bare metal was 

demonstrated [Wang2004], although the efficient coupling between EM wave and single metal 

waveguide is difficult. This was improved by the two wire waveguide, which offers both low loss 

and good coupling to most photoconductive (PC) antennas [Pahlevaninezhad2010]. Table 1-2 

lists typical performances of the non planar THz waveguide. Although they have attractive 
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attenuation and dispersion properties, the difficulties in fabrication and circuit integration will 

limit their applications. This can be overcome by the planar type waveguide. 

Table 1-2: Performances of THz free space and dielectric waveguide (1 Np = 8.686 dB) 

Waveguide Dimensions Materials f (THz) (Np/cm) 

an 

and 

dB/mm 

Dispersion References 

Circular 
Diameter = 240 µm 

Length = 24 mm 

Stainless 

steel 
0.8 - 3.5 < 1 1 - 20 ps [McGowan1999] 

Rectangular 
250 µm × 125 µm 

Length = 25 mm 
Brass 0.65 - 3.5 - 1 - 13 ps [Gallot2000] 

Parallel Plate 
Gap = 108 µm 

Length = 24.4 mm 
Copper 0.1 - 4 < 0.3 Almost zero [Mendis2001] 

Single Wire Diameter = 0.9 mm 
Stainless 

steel 
0.25 - 0.75 < 0.03 Almost zero [Wang2004] 

Two Wire 

Diameter =  

0.2 -1 mm 

Center distance = 

0.2 - 3.5 mm 

 

Gold 1 0.005 - 0.06 Almost zero 
[Pahlevaninezhad

2010] 

Dielectric 

waveguide 

(wire) 

Diameter = 150, 

250 and 325 µm 

Length = 7.3, 7.8 

and 8.3 mm 

Sapphire < 2.5 < 6 0.6 - 13 [Jamison2000] 

Dielectric 

waveguide 

(wire) 

Diameter = 200 µm 

Length = 6, 13 and 

17.5 cm 

PE 0.31 - 0.35 < 0.01 - [Chen2006] 

Dielectric 

waveguide 

(strip) 

150 µm × 2 cm 

Length = 20 mm 

HDPE 

 
0.1 - 3.5 < 1 1 - 40 [Mendis2000] 

1.4.2 Planar on-chip waveguide 

The printed transmission line is widely used because of many advantages, such as their 

compactness, easy and economical for fabrication, convenient for integration and connection in 

circuits. The characteristic parameters can be adjusted simply by the dimensions of metal width, 

the gap width between metals and the substrate thickness or permittivity. However, loss and 

dispersion prove to be the major obstacles. 

Different types of waveguides applied in microwave community have been exhaustively studied 

both numerically and experimentally. Figure 1-6 shows the planar waveguides, including coplanar 

waveguide (CPW), microstrip, slotline, coplanar strip (CPS), Goubau line and stripline.  
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Figure 1-6: Standard planar waveguides 

When the frequency is raised into THz region, the radiation loss will increase rapidly, which 

deteriorates the transmission performance [Gupta1996]. For instance in CPW and CPS, 

Grischkowsky [Grischkowsky1987] demonstrated experimentally that the radiation loss will 

dominates in the total losses when the frequency is over 200 GHz for line dimensions in several 

tens of micrometers. Rutledge [Rutledge1983] derived a cubic frequency dependency of 

attenuation loss under quasi static approximations. He explained the radiation loss of the 

transmission line mode as the electromagnetic shock wave into the substrate when its thickness is 

infinite or as the leakage into the surface waves in finite substrate, provided that the phase 

velocity of the transmission line mode is higher than that of the substrate wave. The attenuation 

amplitude depends critically on the discrepancy of phase velocities. Phatak [Phatak1990]  and 

Frankel [Frankel1991] have modified the radiation loss of CPW and CPS using non quasi static 

effect (frequency dependent effective permittivity). This analytic formula was verified by the EO 

sampling measurement results until 1 THz on thick semiconductor substrate. While for other 

types of lines, the radiation loss is often neglected or cannot be predicted by present analytic 

theory. The present PhD work aimed to study numerically and systematically the radiation loss as 

well as other types of losses in dielectric and conductors by the variation of substrate permittivity, 

waveguide dimensions and configurations. 
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Table 1-3: Performances of THz planar waveguide 

Waveguide Dimension Material f (THz)  (dB/mm) Dispersion References 

Slotline 

Gap = 270 µm, 

Conductor thickness 

= 300 nm, 

Metal width = 20 mm 

Si wafer (with 

slit), 

Ti/Au 

0.1 - 1 0.006 - 0.05 Almost zero [Wächter2007] 

 

Slotline 

(Simulation) 

Gap = 20 µm 

Conductor thickness 

= 100 nm 

Metal width  

= 240 µm 

GaAs 

substrate 

Au 

1 

20.7 - 

 

[Pahlevaninez

had2011] 

Gap = 10 µm, 

Conductor thickness 

= 100 nm 

Metal width  

= 245 µm 

Homogeneous 

GaAs 

Au 

1.7 Zero 

Gap = 10 µm, 

Conductor thickness 

= 100 nm 

Metal width  

= 245 µm 

Periodic 

Si/SiO2 

layered 

substrate 

Au 

2.6 - 

CPW 

Substrate thickness  

= 500 µm 

Metal thickness =  

400 nm (50/350) 

GaAs 

substrate 

Ti/Au 

0 - 1 0 - 13 eff  = 7-7.7 [Frankel1991] 

Gap = 15 µm 

Central metal  

= 20 µm 

Substrate thickness  

= 620 µm 

Metal thickness  

= 1.2 µm 

GaAs 

substrate 

Au 

0 - 0.22 0 - 2.25 - [Lok2008] 

Gap = 10 µm 

Central metal  

= 10 µm 

Ground metal  

= 30 µm 

Substrate thickness  

= 8/270 µm 

Metal thickness  

= 2 µm 

SiO2/Si 

substrate 

 

0 - 0.11 0 - 1.2 eff  = 3.7  

at 60 GHz 
[Shi2009] 

CPW 

(Simulation) 

Gap = 5 µm 

Central metal  

= 16 µm 

BCB = 25 µm 

Metal thickness 

 = 0.8µm 

BCB/low 

resistivity Si 

substrate 

Al 

0 - 0.9 0 - 4 eff  =  

2 - 1.75 
[Heiliger1997] 
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CPS 

Substrate thickness  

= 430 µm 

Metal thickness  

= 400 nm 

Sapphire 

substrate 

Al 

0 - 1 0 - 18.2 eff  =  

5.8 - 7.8 
[Frankel1991] 

Strip width = 20 µm 

Gap = 20 µm 

Membrane thickness 

= 700/300/400 nm 

GaAs 

substrate and 

membrane 

(SiO2/Si3N4/S

iO2) 

Al 

0.025 - 

0.6 and 

0.025 - 1 

0.9 - 11.3 and 

0.5 - 0.9 

Vp/c =  

0.38 - 0.355  

and 0.9 

[Cheng1994] 

Strip width = 20 µm 

Gap = 20 µm 

Metal thickness  

= 5/200 nm 

Polymer 

substrate PAX 

or ZEON, 

quartz  and 

sapphire 

Ti/Au 

0 - 1.7, 

1.0 and 

0.6 

0 - 4.3, 6.9 and 

8.7 

effn  = 1.25, 

1.75 - 1.85 

and 2.3 - 2.5 

[Kadoya2008] 

Microstrip 

Metal width = 8 µm 

BCB thickness  

= 1.7 and 5.4 µm 

Metal thickness  

= 0.8 µm 

BCB/low 

resistivity Si 

substrate Al 

0 - 1 0 - 10 and 0 - 4 
eff  =  

2.7 - 2.4 and 

2.5 - 2.0 

[Heiliger1997] 
Metal width = 8 µm 

SiO2 thickness  

= 0.8 µm 

Metal thickness  

= 0.8 µm 

SiO2/low 

resistivity Si 

substrate Al 

0 - 1 0 - 23 eff  =  

4.9 - 4.3 

Metal width = 20 µm 

Film thickness  

= 10 - 20 µm 

Metal thickness  

= 5/200 nm 

Polyimide film 

TORAY 

Ti/Au 

0 - 1.2 0 - 8.7 effn  = 1.6 [Kadoya2008] 

Planar 

Goubau line 

Metal width = 5 µm 

Meal thickness  

= 300 nm (50/250) 

Quartz 

substrate 

Ti/Au 

0.14 - 

0.22 
2.8 - 4 - [Akalin2006] 

 

Table 1-3 lists the attenuation and dispersion properties of planar waveguide in THz range. 

Compared with the non planar waveguides, they demonstrate more losses and dispersions. For 

example, the slotline (gap width = 20 µm) on GaAs substrate has an attenuation of 20.7 dB/mm 

at 1 THz [Pahlevaninezhad2011]. This kind of performance is not acceptable when using such a 

structure as transmission line in circuits and the amelioration should be found. These measured 

or simulated (slotline) results will be compared in the frame of this work. Detailed analysis will be 

conducted in Chapter 3 in order to evaluate the dispersion and losses of planar guiding structure 

in THz range. Preliminary measurement results will also be presented.  

 





 

 

Chapter 2 Modeling and Measurement of  Plasmon-

Polariton for Resonant Terahertz Detection  

2.1 Introduction 

Conventional electronic devices are mainly limited by the small cutoff frequency in microwave 

range. Significant efforts are still being put into the ensemble of electronic devices in order to use 

them in THz frequency and to make them functional at room temperature. Plasmonic sources 

and detectors are based on the coupling between the plasma and THz radiation via specific 

coupling structures. A high coupling efficiency is researched. Plasma frequency in semiconductor 

material can be possibly controlled in THz range. 

Now, two dimensional electron gas (2DEG) presents a growing interest in THz for the 

development of compact, tunable, room temperature operating and low cost detectors and 

sources [Knap2009]. The high electron concentration, the large electron mobility and mainly the 

complex dispersion relation of plasmons are the main advantages of 2DEG confined in a 

quantum well (QW) based on heterostructures. From the aspect of device optimization, it is 

critical to study the coupling between the two dimensional (2D) plasmon and the THz 

electromagnetic (EM) field, namely the properties of the plasmon-polariton (PP). The PP can be 

excited through a metal grating deposited on top of the heterostructures. The PP are 

characterized by resonance phenomena which occur on transmission, reflection or absorption 

spectra. The electron density below metal fingers can be controlled by a bias voltage applied on 

metallization and the PP resonance will be tuned both in frequency and in amplitude. 

To study PP resonances, we have chosen four kinds of heterostructures: AlGaAs/GaAs, 

AlGaN/GaN, InAlN/GaN and SiGe/Si/SiGe. Band diagrams and electron transport properties 

of Si, Ge, SiGe, GaAs and GaN quantum well have been extensively studied in our group 

[Aniel1996, Aniel2000, Richard2004, Richard2005]. Simulations of PP in this article are based on 

the known material parameters. Among the typical heterostructures, AlGaAs/GaAs has smaller 

lattice mismatch, while the modulation doping is indispensable to achieve high electron density. 

SiGe/Si material in the IV-IV group, owns its main advantages over the III-V group materials 

due to that it is compatible with the cheap and mature silicon technology [Paul2004]. High 

electron concentration and mobility have been achieved experimentally in modulation doped 

SiGe/Si heterostructures [Ismail1995]. Recently, GaN based structures attract more attention due 

to the large polarizations induced electron density without doping and find applications in grating 

gated field effect transistors (FET) [Muravjov2010, Popov2011, Wang2012].  

Many numerical and analytical methods have been developed to study such corrugated 

heterostructure. Allen et al. [Allen1977] initially solved the problem of grating coupled 

transmission of light through 2D plasmon in silicon metal-oxide-semiconductor FET (MOSFET) 

by an analytical perturbative method. Zheng et al. [Zheng1990] generalized and improved the 

theory in regimes of high electron scattering time by a numerical non perturbative approach. 

Concerning complicated stratified system with perfect grating of finite thickness, Ager and 

Hughes [Ager1991] described a computational scattering matrix technique. This method was also 

applied to study 2D plasmon in AlGaAs/GaAs system [Tyson1994, Ager1992-1]. By considering 

the radiation capabilities of 2D plasmon through grating, Matov et al. [Matov1993] have 



Chapter 2: Modeling and Measurement of Plasmon-Polariton for Resonant Terahertz Detection 

20 

 

calculated numerically the complex plasmon frequency in a heterostructure, where the grating 

was treated as planar perfect strips. In a later article, Popov et al. [Popov2008-1] extended the 

EM theory with finite conductivity metal for THz emission and amplification in FET arrays and 

Muravjov et al. [Muravjov2010] demonstrated this approach for THz detection in a AlGaN/GaN 

HEMT. All of these work ignored the thickness of the QW and the ohmic loss in the actual 

grating of finite thickness. Wendler et al. [Wendler1999, Wendler2005] analyzed the spectrum of 

quasi 2D plasmon in AlGaAs/GaAs with lossy 3D grating by means of the transfer matrix 

method. The periodic grating issue was solved by the equivalent coupled wave method (CWM) 

and modal expansion method (MEM). For the purpose of resonance tunability, Ager and Hughes 

[Ager1992-2] studied the plasmon frequency in a modulated grating coupled 2DEG system based 

on scattering matrix method. Matov et al. [Matov2002] observed a dipole like resonant peak in a 

strongly modulated 2DEG system with semi-transparent NiCr grating.  

Until now, direct comparisons of dispersion and absorption properties of quasi 2D plasmon in 

different structures coupled by the three dimensional (3D) lossy grating under the same 

numerical method have not yet been reported. In this work, we compare and synthesize the 

coupling effect between incident THz wave and 2D plasmons in four typical heterostructures 

(AlGaN/GaN, SiGe/Si/SiGe, AlGaAs/GaAs and InAlN/GaN) based on reported practical 

structure parameters in order to find out the best material for technical realization of THz 

detection. We used CWM for homogeneous and inhomogeneous 2DEG systems. For this latter 

case, the CWM was slightly modified. We demonstrate for the first time, that the commercial 

code ANSOFT HFSS based on finite element method (FEM) can solve the sophisticated 

problem of periodic screened heterostructures. For modulated 2DEG, the non uniform 2DEG 

charge distribution below and between metal fingers is considered for the structure 

AlGaAs/GaAs without and with bias voltage. For GaN based materials, the non uniform effect 

is not obvious without biasing, so the homogeneous 2DEG model is sufficient. In modulated 

AlGaAs/GaAs structure, three kinds of 2DEG concentration profiles (piecewise, linear and 

parabolic) have been used and compared to calculate the absorption spectrum. A strongly 

modulated 2DEG in AlGaAs/GaAs leads to a distinct PP resonance but its position cannot be 

predicted by the dipole like formula as in [Matov2002] due to the screening effect of metal. 

This chapter is scheduled as follows: Some generalities will be discussed in the first section about 

3D plasma and quasi-2D plasmon in heterostructures. Numerical method for analyzing the 

spectrum response of 2D plasmon to THz radiation in a grating assisted heterostructure are 

presented in section 2.3 by HFSS and CWM. Comparisons have been made between the two 

approaches. Section 2.4 focuses on the optimization of THz absorption in homogeneous 2DEG 

system through a parametric study (grating period, metal width, electron density, barrier thickness 

and temperature) in frequency range [0-5] THz by HFSS. The roles of the finite thicknesses of 

lossy metal grating and 2DEG layer on observed absorption are also emphasized. Section 2.5 is 

about the measurement setup and results. Section 2.6 mainly concentrates on the tunability of PP 

resonances in a modulated 2DEG system. The effect of metallic bias on the tunability of 

absorption spectrum is evaluated using the slightly modified CWM code.  
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2.2 Plasma in semiconductor 

2.2.1 3D plasma in bulk semiconductor 

In a metal, plasma is neutral and consists in a large amount of positively charged ions and 

negatively charged electrons. The heavy ions are assumed to be at rest, while the electrons move 

relatively to the ions. The plasma also exists in a doped semiconductor material, where the 

electrons (holes) move in the presence of positive donor (negative acceptor) ions. In the 

semiconductors, the density of electrons or holes can be controlled by the doping level.  

The interaction of incident electric field with the free electrons in a metal is described by the 

movement equation of electrons [Ashcroft1976],  Equation Chapter 2 Section 1 

p p
 E,  p = ν

d
e m

dt 


                                                          (2-1) 

where e and m are the unit charge value and mass of electrons. ν  and p  are the velocity and 

momentum.  is the mean free time between ionic collisions. 

If the excitation monochromatic wave takes the form 
0E(t) = E j te  , the Maxwell equations in 

the metal can be written as, 

0 ,  = 
E

H J J E
t

 


  


                                                      (2-2) 

The frequency dependent conductivity and relative permittivity of metals are 
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where n is the electron concentration per unit volume (cm-3). If the mean free time is much larger 

than the period of excitation signal (  >> 1), the dielectric function has only the real part, 

2 2

2

0

1 ,
p

p

ne

m


 

 
                                                          (2-4) 

where p  is the 3D plasma frequency in a metal, which is proportional to the square root of 

electron density n. A typical electron density n = 5.86 × 1022  cm-3 in gold corresponds to the 

plasma frequency pf  = p /(2π) = 2175 THz. The plasma frequency does not depend on the 

wavevector of the incident field.  

For the plasma in the bulk n-type semiconductor material, the above procedures can also be 

applied. One should replace the mass of free electrons by the effective mass of electrons in 

semiconductor, and take the material permittivity s  in the calculation. Plasmon, or the quantum 
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of plasma oscillation, is the phenomena of the collective oscillation of carriers at the plasma 

frequency. 

Plasma also exists in low dimensional electron systems, where the motion of electron is limited in 

one (quantum wells), two (quantum wires) and even three dimensions (quantum dots). In low 

dimensional electron system, the plasmon frequency depends on the wavevector. Exact 

calculation of the dielectric function requires sophisticated quantum mechanisms, including 

electron correlation in many body problems [Pines1952]. Under certain approximations, good 

analytic formulas of permittivity can be obtained and introduced in calculation. 

2.2.2 Heterojunctions and two dimensional electron gas 2DEG 

2DEG has been intensively studied in the n-type inversion layer of metal-SiO2/Si structure when 

a voltage bias is applied to the gate metal [Stern1967] and observed experimentally at the surface 

of liquid helium [Grimes1976]. Apart from the inversion layer, 2DEG also can be found in the 

heterostructures and the associated plasma frequency can be located or tuned in THz frequency 

by modifying the electron concentration through the bias voltage on overlying conductors for 

example. Electron concentration and mobility are the main characteristic parameters of 2DEG 

for thermalized carriers plasmon. With the development of semiconductor epitaxial growth 

technology, large carrier concentration has been measured at the interface of heterojunctions. In 

addition, -doping can be used during the growth process, and then very high electron mobility 

can be obtained even for small distance between the QW and the surface (20-25 nm). 

2.2.2.1 About heterojunctions 

The heterojunctions are divided into three types according to the relative alignment of 

conduction band (CB) bottom and valence band (VB) top of the two semiconductors, as shown 

in Figure 2-1. The type I is the most common alignment referred to as the straddled alignment, 

for instance, the most exhaustively studied heterostructure AlGaAs/GaAs, InAlN/GaN and 

AlGaN/GaN. For type II, or the staggered gap, the steps of the VB and CB are in the same 

direction. Strained Si/SiGe and GaInAs/GaAsSb are among this material group. The third type 

is the most extreme case, broken gap. InAs/GaSb is in this material system. 

 

Figure 2-1: The three types of heterojunctions: type I (straddling gap), type II (staggered gap) 

and type III (broken gap) 

For the application requiring high speed integrated circuit, devices based on 2DEG system are 

expected to operate at high voltage, high power and high temperature [Ozgur2005]. The 
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requirements on 2DEG are to have large carrier concentration NS (m-2) and high electron 

mobility 2DEG  (cm2/Vs). The carrier density is obtained by solving the Schrödinger equation 

coupled with the Poisson equation. Accurate band structure can be calculated by ab initio 

methods or via semi empirical approach (k.p, tight binding, and pseudo-potential). The 

conduction band discontinuity is of great interest for us because only the electron system in 

considered in this work. We have calculated the conduction band profile in the frame of the 

effective masse approximation (EMA) and of the envelope function [Tan1990]. Figure 2-2 

illustrates the type I heterojunctions AlGaN/GaN. The conduction band offset is the reason for 

the formation of 2DEG layer. Compared with AlGaAs/GaAs structure, nitride based material 

has a large band offset ∆EC, partly due to its large band gap, and mainly due to the high 

spontaneous and piezoelectric polarizations. Therefore, for the AlGaN/GaN heterojunctions, 

the polarization induced charge has to be contained in the Poisson equation.  

 

 

Figure 2-2: AlGaN/GaN heterojunctions (a) and the conduction band diagram (b) 

In the following, we discuss the conduction band modeling method for GaN based 

heterostructure. However, it also applies for AlGaAs/GaAs if the polarizations are not taken into 

account. Calculation of the band diagram of strained SiGe/Si/SiGe structure is introduced briefly 

in section 2.2.2.4, where more rigorous theory is required. 

2.2.2.2 Electron concentration 

The Schrödinger equation and Poisson equation have been solved numerically to calculate the 

2DEG density. The polarizations (both spontaneous and piezoelectric) induced charges are taken 

into account. Following the growth direction (for example along the z direction) of the 

(b) 
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heterostructure as in the Figure 2-2, the electron wavevector is quantified and in the interface 

plane, the motion is considered as quasi free. For example in GaN, a triangular quantum well is 

formed at the side of smaller bandgap semiconductor. The confined electron layer thickness or 

the single well width is usually in the order of 10 nm and not above 100 nm. First of all, the 

conduction band of electrons confined in one dimension in AlGaN/GaN is modeled. 

I Conduction band modeling 

In the framework of EMA, one dimensional Schrödinger equation is written as, 

2 1
( ) ( ) ( ) ( ) ( )

2 ( )

d d
z V z z E z

dz m z dz
    


                                    (2-5) 

where  is the Planck's constant divided by 2π, ( )m z  is the position dependent effective mass 

of electron, ( )z  is the electron envelop wave function, ( )V z  is the potential energy seen by the 

electron, and E is the electron energy. 

For wurtzite semiconductor such as GaN, the polarization ( )P z must be included in the 

displacement field D(z). 

The Poisson equation is given as, 

0

( )
( ) ( ) ( ) ( ) ( ) ( )s D A

d d z
z P z e p z n z N z N z

dz dz


    

        
 

             (2-6) 

Where n (p) is the electron (hole) charge concentration (m-3), and  ( )D AN N  is the ionized donor 

(acceptor) volume density. 

The polarization P of the barrier AlGaN layer or the substrate GaN is the sum of two parts: the 

spontaneous polarization PSP in the equilibrium, and the piezoelectric polarization PPE. 

 

Figure 2-3: Polarization bound surface charge and 2DEG in pseudomorphic heterojunction with 

Ga-face wurtzite polarity 
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Due to the polarization discontinuity at the interface a charge density is induced. As shown in 

Figure 2-3, the polarization induced charge is positive at the interface AlGaN/GaN, for a Ga-

face GaN layer [Ambacher1999]. 

The polarization induce surface charge density s , 

( ) ( )s P AlGaN P GaN                                            (2-7) 

The spontaneous polarization of GaN is -0.029 C/m2 [Bernardini1997]. For a relaxed AlxGa1-xN 

layer the spontaneous polarization is a function of Al mole fraction x [Ambacher2000], 

PSP (AlxGa1-xN) = -0.052x-0.029 C/m2                              (2-8) 

The piezoelectric polarization for a biaxial tensile strained AlxGa1-xN layer is, 

0 13
1 31 33

0 33

( ) ( ) ( )
( ) 2 ( ( ) 1) ( ( ) ( ) )

( ) ( )
PE x x

a x a GaN C x
P Al Ga N r x e x e x

a x C x



                  (2-9) 

Where r(x) is the barrier relaxation degree, a0 is the equilibrium values of the lattice parameter, e31 

and e33 are the piezoelectric constant, C13 and C33 are the elastic constants. 

For barrier thickness around d = 30 nm, the relaxation degree of AlGaN on GaN layer is 

approximately [Angerer1997], 

0,                                 0 0.38

( ) 3.5 1.33,             0.38 0.67,  30

1,                             0.67 1
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r x x x for d nm

x
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
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  

                (2-10) 

The other x dependent parameters (a0, e31, e33, C13 and C33) can be calculated in the frame of a 

linear interpolation of the two binary AlN and GaN. The spontaneous and piezoelectric 

parameters of III-Nitride binary are summarized in Table 2-1. 

The electron concentration n(z) is calculated as follow 

1

( ) ( ) ( )
m

k k k

k

n z z z n  



                                                       (2-11) 

Assuming Fermi-Dirac statistics, the electron occupation in the subband k is given by, 
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                        (2-12) 

EF is the system Fermi level, Bk  is the Boltzmann constant, and T is the temperature in Kelvin. 

The procedure of the self consistent calculation of equation (2-5) to (2-12) can be found in 

[Tan1990]. 
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Table 2-1: Spontaneous and piezoelectric parameters of III-Nitride wurtzite binary materials 

Parameters AlN GaN InN References 

a0 (Å) 3.112 3.189 3.54  

Lattice constant [Ambacher1998] c0 (Å) 4.982 5.185 5.705 

Eg (eV) 6.2 3.4 1.9 Energy gap at 300 K 

r 8.5 9.7 15.3 Relative static dielectric constant 

me 0.48 0.22 0.11 Effective electron mass in unit of m0 

c13 (GPa) 108 103 92  

Elastic constant [Wright1997] c33 (GPa) 373 405 224 

e31 (C/m2) -0.60 -0.49 -0.57  

Piezoelectric constant [Bernardini1997] e33 (C/m2) 1.46 0.73 0.97 

PSP (C/m2) -0.081 -0.029 -0.032 Spontaneous polarization [Bernardini1997] 

 

As the barrier layer is not infinite, polarization induced negative charge can also appear at the 

interface air/barrier layer. For the application of heterojunctions based devices, a metal electrode 

is deposited on the top of the barrier layer to form the Schottky contact. The polarization 

induced charge at the top of the barrier layer (AlGaN) will be compensated either by charged 

surface states for a surface air/AlGaN, or by the carriers in the metal for the contact 

metal/AlGaN. In both cases, a potential barrier height is formed in reference to the Fermi level. 

The electron density will be modified more or less depending on the value of barrier height. 

For AlGaAs/GaAs heterojunctions, the total polarization is negligible. 

II Numerical results 
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Figure 2-4: Conduction band profile and electron concentration for pseudomorphic 

heterojunctions Al0.3 Ga0.7 As/GaAs with (solid line) and without (broken line) modulation doping. 

The donor concentration is ND = 2 × 1019 cm-3 
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Here, we use the free available code based on finite difference method which has been developed 

by G.Snider [Snider1990, http://www.nd.edu/~gsnider/] to calculate numerically the electron 

band diagram and electron density. 

Figure 2-4 shows the conduction band and electron wave function distribution for Al0.3 Ga0.7 

As/GaAs heterojunctions. The barrier layer thickness AlGaAs is 25 nm. When the modulated 

doping technology is used, the conduction band is bended below the Fermi level at the interface 

AlGaAs/GaAs, and a 2DEG sheet concentration of NS = 1.65 × 1012 cm-2 is achieved, where the 

doping density ND = 2 × 1019  cm-3 is in a 2 nm thick layer at a distance of 3 nm from the GaAs 

surface. For the application of this specific heterojunctions, the doping is indispensable. 

The influences of the total polarizations (spontaneous and piezoelectric) on the band profile and 

carrier density are displayed in Figure 2-5 for Al0.25 Ga0.75 N/GaN heterojunctions without and 

with modulation doping. Here the doping density is ND = 1019 cm-3, and the doping layer 

thickness and location is the same as in AlGaAs/GaAs. Without doping, no 2DEG is formed if 

no polarization (both spontaneous and piezoelectric) is considered, however, a high 2DEG 

concentration NS = 1.21 × 1013  cm-2 is obtained when the polarization is included. The large 

polarizations induced charges contribute to the high electron confinement at AlGaN/GaN 

interface. If the barrier AlGaN is doped, the corresponding 2DEG concentration is NS = 1.36 × 

1013 cm-2 and 5.82 × 1011 cm-2 for the polarization and non polarization cases, respectively. The 

modulation doping increases slightly the carrier density. 2DEG concentration of undoped 

AlGaN/GaN is usually larger than that of doped AlGaAs/GaAs heterojunctions. This is the 

most attractive advantage of III-Nitride materials. Moreover, in the application of HEMT 

structure, the doping in AlGaN barrier will deteriorate the device performance: higher pinch off 

voltage, large gate leakage current and noise [Rizzi2002]. The undoped nitride HEMT structure is 

preferred for the ease of fabrication. Of course, the higher electron concentration is always 

appreciated for efficient coupling with incident THz in the detection applications (section 2.3).  
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Figure 2-5: Conduction band profile and electron concentration for pseudomorphic 

heterojunctions Al0.25 Ga0.75 N/GaN without (a) and with modulation doping (b). The donor 

concentration is 1019 cm-3. In each plot, the polarization effect is compared (solid line stands for 

the case with polarizations, broken line for the case without polarizations) 
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At last, for the influence of temperature in the expression (2-12), it should be mentioned that the 

2DEG density is almost not dependent on the temperature, but this is not the case for the 

electron mobility, as we will see in section 2.2.2.3. 

2.2.2.3 Electron mobility 

Another distinct advantage for a modulated doped 2DEG system is the high electron mobility, 

which can be much higher than the doped bulk semiconductors. Scattering mechanisms control 

the mobility. If different scattering effects μi are assumed to be independent with each other, the 

effective mobility μ2DEG can be determined by Matthiessen's rule, 

2

1 1

iDEG i 
                                                               (2-13) 

Electrons in a low dimensional electron system scatter from crystal lattice, defects, interface 

roughness, alloy, dislocations and other charges. These scattering mechanisms will be overviewed 

briefly in the following part. Detailed discussions can be found in the referred publications in 

each case.  

I Remote donors scattering  

The background impurities, or the residual ionized impurities in the substrate bulk material where 

the 2DEG layer is located is usually small for an undoped substrate, however, the scattering with 

remote impurities in the doped barrier is significant if the spacer layer (the undoped barrier layer 

between 2DEG and doped layer) is thin (3-5 nm).For the AlGaAs/GaAs heterojunctions, the 

electron scattering is negligible when the spacer is larger than 15 nm at an electron concentration 

NS = 1012  cm-2 [Manasreh2005]. 

II Interface roughness scattering  

The interface roughness between the barrier layer and the substrate influences the electron 

transport along the interface. The fluctuation of material thickness at the interface induces the 

electron scattering. This type of scattering can dominate at low temperatures [Masaki1989].  

III Electron-electron scattering  

The interaction of electron-electron can be divided into two components: short range and long 

range due to the fact that the electron gas exhibits both collective and individual particle 

behaviors. The long range interaction gives rise to the plasma oscillation, or the collective 

oscillation of electron gas, and manifest over distances greater than the characteristic screening 

length of the system. For short range electron-electron scattering, the electron gas behaves more 

as a collection of individual charged particles. This  scattering is supposed to be elastic for low 

energy carriers [Brennan1999].  

It has been pointed out that the electron-electron short range scattering has the same order of 

magnitude of mobility obtained for remote impurity and surface roughness scatterings for a 

typical AlGaAs/GaAs heterostructure with NS = 1012  cm-2.  

 



Chapter 2: Modeling and Measurement of Plasmon-Polariton for Resonant Terahertz Detection 

29 

 

IV Phonon scattering 

Phonon is caused by the atom vibrations around equilibrium positions in the crystal lattice. In 

face centered cubic semiconductor there are 6 phonon branches and 9 for wurtzite 

semiconductor. In polar semiconductor, the coupling is done both through deformation potential 

and piezoelectric coupling. In QW not only the electrons but also the acoustic phonons are 

confined leading to differences between 2D and 3D (bulk) transport properties.  In most cases, 

2D carrier mobility associated with phonons is higher than in bulk. 

V Dislocation scattering 

The defects in the substrate and the lattice mismatch between the barrier and substrate material 

have the potential to affect the electron transport and the 2DEG mobility.  

The record 2DEG mobility is 51700 cm2/Vs at 13 K with line dislocation density Ndisl = 108 cm-2 

and NS = 2.23 × 1012  cm-2, which is much higher than the electron mobility 100 cm2/Vs in a 3D 

bulk GaN at 13 K with a carrier density n = 1018  cm-3 [Jena2000-1]. The dislocation scattering can 

be reduced by novel method of epitaxy to decrease the dislocation density in the growth process, 

such as the lateral epitaxy overgrowth (LEO) [Kato1991]. 

VI Dipole scattering 

For AlGaN/GaN structure, the dipole will be formed in the barrier alloy AlGaN. Every Al or Ga 

plane has dipoles in each primitive cell, and the dipole moment at Al sites are higher than that at 

the Ga sites owing to the higher spontaneous polarization and piezoelectric constants in AlN 

than in GaN. The fluctuations of a perfect periodic structure in the AlGaN alloy will produce a 

random distribution of microscopic dipoles in AlN and GaN regions, and causing the scattering 

of electrons in 2DEG. The mobility limited by dipole scattering was studied theoretically by Jena 

et al. [Jena2000-2]. The dipole scattering mobility increases as the Al mole fraction x from 0 to 1 

without modulation doping. At low temperatures, the mobility is in the range 2-4 × 105  cm2/Vs 

for x in the range 0.1-0.4. By growing periodically either purely Al or Ga layers to overcome the 

random nature of the alloy, digital alloy growth method is suggested to reduce the dipole 

scattering, although it suffers from interdiffusion of atoms in the growth process [Jena2000-2].  

VII Numerical results 

As an example, the motilities due to different scattering mechanisms and the total mobility are 

shown from 1 K to 300 K in Figure 2-6 for Al0.15 Ga0.85 N/GaN modulation doped 

heterojunctions without spacer. Donor concentration is 1018 cm-3 in AlGaN corresponds to a 

2DEG density of 1.59 × 1012 cm-2. The residual ionized impurities in GaN are: 4 × 1015 cm-3. The 

temperature independent scatterings due to dislocation, dipole and surface roughness are not 

included in the calculation. At low temperatures, the mobility is mainly limited by the remote 

donors, alloy disorder and residual impurity. From 10 K, the acoustic phonon scattering becomes 

important through the deformation potential and piezoelectric effects. At temperatures above 

200 K, the mobility is limited nearly only by the optical phonon scattering and drops quickly with 

the temperature.  The saturation mobility is about 2.7 × 107 cm2/Vs.  
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Figure 2-6: Calculated temperature dependence of the mobility of electrons in a Al0.15 Ga0.85 

N/GaN modulation doped heterojunctions. The residual ionized impurity concentration in this 

calculation is 4 × 1015 cm-3 and the doping level 1018 cm-3 corresponds to a electron gas density of 

1.59 × 1012 cm-2. [Hsu1997] 

To improve electron mobility, besides the above mentioned lateral epitaxy overgrowth method to 

decrease the dislocation scattering and the digital alloy growth technique to alleviate the dipole 

scattering in the barrier, there are other ways to reduce others scattering mechanism by 

ameliorate the substrate and the barrier materials. The alloy disorder scattering can be eliminated 

by inserting a thin layer of AlN into the AlGaN/GaN structure [Smorchkova2001], or by 

reducing the remote doping concentration. The remote donor scattering is reduced when 

increasing the spacer layer. High substrate purity helps to lower the residual impurity scattering. 

2.2.2.4 SiGe/Si/SiGe heterostructure 

A biaxial tensile strained Si layer grown on relaxed SiGe or virtual SiGe substrate produces a 

quantum well for electrons (2DEG). The biaxial stress can be divided into hydrostatic stress and 

uniaxial stress. The uniaxial stress causes the splitting of six-fold degenerated  valleys of the 

conduction band into two-fold and four-fold degenerate valleys, where the lowest valleys are the 

two-fold D valley along the 100 direction leading to a QW. Calculations of electron density and 

modeling of electron mobility in SiGe/Si/SiGe are beyond the scope of this work and have 

already been done in the team. Calculations based on 30 bands k.p can be found in references 

[Aniel2000, Richard2004].  

Modulation doping has been also transferred to Si/SiGe system [People1984]. The main low 

temperature electron scattering mechanisms in modulation doped Si/SiGe are ionized impurity 
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scattering from the doped barrier layer, residual impurities scattering in the channel, surface 

roughness scattering [Stern1992]. High temperature mobility is mainly limited by the optical 

phonon scattering. The improvement of epitaxy growth conditions have greatly improved the 

electron mobility, combining with SiGe buffer layer [Schäffler1992]. A high electron mobility of 8 

× 105  cm2/Vs has been obtained at 15 K [Yutani1997, Sugii1998]. The large carrier density and 

mobility in strained Si/SiGe heterostructure have considerably exceeded the peak values in 

silicon inversion layer [Kukushkin1988] and further make it comparable with its III-V 

counterpart, for example, in the MODFET [Lee2005] and CMOS [Oh2012] applications. 

Based on the descriptions of 2DEG properties (concentration and mobility), the interaction of 

the 2DEG with incident wave will be studied in the following section for THz detection. Firstly, 

the dispersion relation of 2D Plasmons-Polaritons is calculated both analytically and numerically. 

Then the spectrum is obtained numerically. 

2.3 Dispersion and spectrum of Plasmon-Polariton (PP)  

The heterostructures studied in the frame of this work constitute a multi-layers homogeneous 

system if the 2DEG concentration is constant in the interface plane x-y. If metal electrodes are 

deposited on top of the structure to control the electron concentrations, this will be considered 

as a non homogenous material layer. The interaction of an incident (I) THz radiation with 2DEG 

system is represented by the spectrum of transmission (T), reflection (R), or absorption (A), as 

shown in Figure 2-7 for example for the simplified AlGaN/GaN single heterojunctions. At the 

frequency of incident wave, if the coupling between THz radiation and 2D plasmon happens, a 

transmission minimum and an absorption maximum will appear at that frequency in the spectra. 

The absolute strengths of transmitted and absorbed signals are proportional to the incident wave 

intensity. Hence both the amplitude and frequency of the incident wave can be possibly predicted 

by the spectra. The remaining question is how to make this coupling occur. 

 

Figure 2-7: Spectrum analysis for a multi-layers system containing 2DEG layer 

The notation “plasmon-polariton (PP)” represents the interaction of photons (Boson) and 

electrons (Fermions). We lead a spectrum analysis to study the PP dispersion in grating covered 

heterostructures. In this section, the dispersion discrepancy between 2D plasmon embedded in 

an infinite dielectric and PP at the interface of a heterostructure is emphasized by numerical 
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methods (CWM and HFSS). Although the spectrum calculation is discussed on nitride based 

material, modeling has also been applied to other structures following the same method. 

2.3.1 Dispersion of 2D plasmon 

In order to achieve the coupling between THz wave (photons) and plasma wave (plasmon), 

velocity phase condition has to be satisfied. Namely, at a certain frequency, the THz wave and 

plasmon should have the same wavevector. In long wavelength limit ( 2 sk N ), the 

dispersion of 2D plasmon in an infinite homogeneous dielectric (permittivity
s ) is derived from 

the following relation [Stern1967], 
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Where k is the plasmon wavevector and  is the plasmon frequency. Depending on the incident 

angle, the THz wave dispersion is
1

2 sin

c
f k

 
 . Figure 2-8 plots the dispersions of 2D 

plasmon buried in GaN ( s  = 9.7, NS = 1.7 × 1016  m-2) and the light line, where the incident 

angle is assumed to be θ = 90° to reach the maximum in-plane wavevector component. At 1 THz, 

the plasmon wavevector is about 4 × 105  m-1 (this value is larger at lower NS), while the 

maximum incident wavevector is about 2 × 104  m-1, which is one order lower than the plasmon 

wavevector. Therefore, the 2D plasmon is not radiative and cannot coupler directly with THz 

radiation. That is why coupling components for THz detection are needed. 
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Figure 2-8: Dispersion of 2D plasmon buried in GaN and light line 

2.3.2 Grating assisted coupling 

To compensate the wavevector mismatch between incident wave and 2D plasmon, grating 

couplers are necessary. The metallic grating is schematized in Figure 2-9. The metal strips are 
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located on top of the barrier layer of the heterojunctions. They are uniform in y direction and 

periodic in x direction. L is the period and W is the metal strip width. The ratio W/L is usually 

called the filling factor in the air/metal periodic configuration. Incident electric field is polarized 

in the incident plane x-z. According to the electromagnetic theory of grating [Petit1980], the 

wavevector of the scattered waves (both reflected and transmitted waves) along the periodic 

direction x depends on the grating period (L) and the scattering order (n) : 

2
, 0, 1, 2...xn x n x

n
k k G k n

L


       , while the y component of the incident wavevector is 

conserved as the y component of the incident wave in the multi-layers system. 0sin /xk c   

and 
0cos /zk c  are the x and z components of the incident wavevector. Gn is the reciprocal 

lattice vector. If the period of grating L is chosen in the micrometer range, then the in-plane wave 

vector kxn will be in the order of 106 m-1, making the coupling with 2D plasmon possible 

according to the 2D plasmon dispersion in Figure 2-8.  

The dispersion of the entire layered system is described by the plasmon-polariton, which differs 

from both the dispersion of the incident THz wave and the dispersion of 2D plasmons buried in 

infinite dielectric. At these discrete resonant frequencies determined by the actual PP dispersion 

through the discrete in-plane wavevector, the collective oscillation of electrons (plasma waves) is 

pronounced and the corresponding interactions with EM waves are intense. If this oscillation is 

not damped by electron scattering, it will be expressed in the absorption spectrum of EM wave 

passing through the structure, which can be measured and detected in conventional spectroscopic 

transmission setup. However, no explicit formula exists for the dispersion of PP. It should be 

solved numerically with the existence of metal grating (0 < W/L < 1). Concerning the different 

models of both the grating and 2DEG layer (finite and zero layer thickness), the dispersions will 

be calculated in each case accordingly. 

 

Figure 2-9: Grating coupler on top of the heterojunction AlGaN/GaN 

2.3.3 Modeling of PP spectrum  

The analysis of the layer with grating coupler can be conducted with either integral or differential 

method [Loewen1997]. Different profile and thickness of the grating have been treated with the 

modal expansion method [Li1993]. The electromagnetic field in the air gap and in the metal 
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finger are expanded with the product of a periodic part and a phase part jkxe  (x is periodic 

direction) according to the Floquet-Bloch theory [Sun1997]. Continuous boundary conditions 

(tangential components of E and H) at the lateral interface plane y-z between metal and air are 

used to link the field amplitudes in each region, and an eigenvalue equation is produced 

accordingly to calculate the wavevector along the z direction.  

A root finding program must be employed to find the complex eigenvalues and eigenfunctions 

for fields in the periodic material layer. Another approach is the coupled wave method (CWM) 

[Granet1996]. As described in [Petit1980], this method is considered as the conformal mapping 

in differential method, expanding the field components in the quasi-Fourier series (Rayleigh 

expansions) and the permittivity of the whole layer in Fourier series. In this way, the problem of 

corrugated surface is converted into the planar surface. The two methods (modal expansion 

method and CWM) have been compared and give the same spectroscopic results to a high 

precision in an anisotropic multi-layers system [Wendler2005], where the permittivity of metals is 

modeled as the 3D frequency dependent Drude dielectric constant. In this work, the CWM is 

adopted for the ease of numerical implantation in Matlab program. And the results will be 

compared with the commercially available software HFSS. 

According to the nature of grating (3D with finite thickness or 2D with zero thickness), different 

calculation formula are adopted to conduct the spectrum analysis. 

2.3.3.1 CWM analysis of PP with 3D grating 

The metallic rectangular grating with finite thickness t in the z direction is shown in Figure 2-10. 

The metal occupies in the region nL < x < nL+W, and the gaps nL+W < x < (n+1)L are filled 

with air, where n are integers. The metal dielectric constant is assumed to be isotropic 

1( ) ( ) ( ) ( )xx yy zz           and frequency dependent. 

 

Figure 2-10: Periodic grating with finite thickness t 

For TM polarization field at normal incidence, the y component of magnetic field H is expressed 

as the quasi-Fourier series (Rayleigh expansions), 
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Where An and Bn are the incident (-z direction) and reflected (z direction) field amplitude, 

respectively. The x component of incident wave vector kx=0.  

The electric field components in this layer (0 < z < t) are calculated automatically as, 
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The dielectric constant in the form of Fourier series 
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For the specific problem here, the meal is rectangular in the cross section x-z. The frequency 

domain Fourier component ( )n   has its explicit expressions. The permittivity in function of 

the position x can be expressed as: 

1( ),  ,  
( | )
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With its Fourier component: 
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Similar expressions for the reciprocal of the permittivity, 
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The second order wave function for Hy is, 
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In numerical calculation, the sum expressions should be truncated to a value of nmax, which stands 

for the maximum order of scattering waves included in the entire system. After 

substituting ( | )xnE z   and ( | )znE z   in the function (2-21), and following the Fourier 

factorization described in [Li1996] to get better numerical convergence, we have to calculate an 

eigenvalue problem to solve the z-component of the wavevector in the grating region,  
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Where <M> stands for the (2nmax+1) × (2nmax+1) matrix with its (p,q) entry Mp-q given by the 

Fourier component of dielectric or the reciprocal of dielectric. diag(kxn) is a diagonal matrix with 

the non zero element kxn, diag(I) is the (2nmax+1) × (2nmax+1) unit matrix and the eigenfunction 

Cn is a column vector. The 2nmax+1 eigenvalues kzl (l = 1,2,...2nmax+1) and the corresponding 

vectors Cnl finally will appear in the EM field expression, 
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Once the EM distribution and wave vector are calculated in the grating layer, the spectrum of the 

transmission, reflection, and absorption spectrum of the whole system responding to incident 

THz wave can be obtained by the standard transfer matrix method developed for a multi-layers 

system and easily implanted in matrix form by a computer program [Wendler1999]. 

Since the other materials are homogenous, there are no variation of permittivity in x and y 

directions, and the z component of wave vector in these layers are given directly according to the 

wave equation, 
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In our simulation, nmax  ≥ 20 in the grating layer is sufficient to achieve a better convergence 

criteria (max(∆T) < 10-6). The field amplitudes An and Bn in each material layer are linked by the 

boundary conditions (continuity of Ex and Hy at the surface and interfaces). By applying suitable 

initial excitations, the spectrum are given by the corresponding field amplitudes of the n=0 order 

wave in the semi-infinite air (z > t) and substrate GaN (see Figure 2-9).  
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Now the only unknown parameter in the calculation is the model of 2DEG. Two models are 

classified according to its thickness value. 

I Quasi-2D plasmon 

When the 2DEG layer has a finite and small thickness as in actual heterostructures, the CWM 

method is employed to investigate the dispersion and spectrum based on an anisotropic 2DEG 

permittivity and the results will be compared with the software HFSS based on FEM. 

A CWM method 

To include the 2DEG layer with a typical thickness of about 10 nm in the calculation, one needs 

the dielectric model of 2DEG in THz range. As illustrated previously, the motion of electrons in 

the plane x-y perpendicular to the growth axis is quasi free, so the Drude type permittivity model 

for free electrons in the metal (section 2.2.1) can be modified and implanted as the 2DEG model 

with finite thickness. Assuming the majority electrons are confined at the lowest state E0 (Figure 

2-2) and the smallest intersubband separation (E1-E0) is larger than the submillimeter wave or 

THz excitation energy at 300 K, the intersubband transitions will not be considered in the 

motion of electrons in z direction. The properties of 2DEG in the z direction conserve those of 

the materials where QW locates. The frequency dependent permittivity of 2DEG is expressed by 

a local diagonal tensor [Wendler1999], 
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With the non-zero diagonal components, 
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And the three dimensional conductivity in S/m, 
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Where 
s

 is the static relative permittivity of the substrate (GaN in Figure 2-9).
2 DEG

d  is the 2DEG 

layer thickness, or QW width. ( )
S

N x is the electron sheet density distribution in the x direction. 

For a homogeneous 2DEG concentration, we have ( )
S sN x N , where Ns is calculated by the self 

consistent Schrödinger-Poisson solutions described in section 2.2.2. 2 */DEGm e   is the 

phenomenological relaxation time and 2DEG is the electron mobility. 
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B FEM Method 

The coupled wave method (CWM) integrated in the transfer matrix approach is a numerical 

model well suited  for the periodic grating problems in the multi-layers system. Other methods 

are also available, such as the commercial code ANSOFT HFSS (www.ansoft.com) based on 

finite element method (FEM) in the frequency domain and CST Microwave Studio 

(www.cst.com) using finite integration technique (FIT) in the time domain. These commercial 

software are user friendly and versatile and address a large amount of physical problems.  Many 

kind of boundary conditions are available.. 

Figure 2-11 illustrates the 3D model simulated in HFSS for an infinite heterostructure with 

periodic metallic grating on top of the barrier layer. With the specific Master/Slave boundary 

conditions around the peripheral four surfaces and Floquet excitation pots (Port 1 and 2 on top 

and at the bottom surfaces), only one of the multiple periods of structure (unit cell) needs to be 

modeled and one has to assign the material attributes to 3D models in the whole structure: 3D 

conductivity for the metal, and the relative permittivity and dielectric loss tangent (nonzero for 

2DEG and zero for the barrier and substrate in this work) for the other volume layers. The 

whole configuration is infinite in the x-y plane (periodic in x and infinite in y direction) and the 

excitation signal is TM polarized plane wave with variable incident angle. This is consistent with 

the boundary conditions and the properties of the excitation wave assumed in the CWM. The 

spectra are calculated through the standard scattering parameters S, which are equivalent to the 

expression (2-25). 

   
2 2

, , 1
21 11

T S R S A R T                                        (2-29) 

 

Figure 2-11: HFSS model for a heterostructure with periodic metallic grating 
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Figure 2-12: HFSS simulated distribution of electric field Ex and Ez in the vicinity of metal 

grating, f = 1 THz, L = 1 µm, W/L = 0.75, TM polarization and normal incidence 

HFSS has allowed to clarify the evanescent nature of the scatted waves, which express as the 

resonances in the spectra. In Figure 2-12, the distribution of the Ex and Ez components of the 

scattering waves in HFSS is shown to locate in the vicinity of the periodic grating and decay 

rapidly from the interface. The normally incident wave is TM polarized at 1 THz. The 

dimensions of grating are L = 1 µm and W = 0.75 µm. The effective electric field component 

possibly interacting (Ex) with longitudinal plasma wave is strengthened in the gap region between 

grating finger, particular at the interface air/substrate. Below the metal center, electric field is 

weak because the conductor thickness (t = 200 nm) is much higher than the Au skin depth (79.5 

nm, 74.1 10  S/mAu   ) at 1 THz and little field can penetrate through the metal. Far away 

from the interface, only the propagating wave (n = 0) exists, which has Ex but no Ez component. 

The evanescent waves (n > 0) have both Ex and Ez, and the penetration depth of these waves 

into the substrate can be clearly demonstrated by the right figure. Therefore, the 2DEG layer 

should be close to the grating in order to coupler efficiently with these evanescent fields. 

C Screened and unscreened quasi-2D plasmon 

In the domain, one used to distinguish two special cases of quasi-2D plasmon [Shur2003, 

Popov2010] for theoretical investigation. One is the unscreened plasmon (W/L = 0), where the 

top material is air. The other is the screened plasmon (W/L = 1), where the top material is metal. 

For the two types of plasmon, explicit, simple and useful dispersion relations of PP will be 

derived under certain assumptions. They can be considered as the limit cases for a normal grating 

structure discussed above with 0 < W/L < 1 and their dispersions provide qualitative guidance 

for the behavior of PP dispersion with grating. However, the screened and unscreened plasmon 

can hardly be observed experimentally without grating coupler. 

For each case, the composition of the layered structure will be clarified and followed by a 

rigorous EM analysis. Analytic expressions of PP dispersion are derived and their simplified 

forms under assumptions are discussed.   
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Figure 2-13: Screened and unscreened multi-layers structure with finite thickness 2DEG 

The finite 2DEG layer (d2DEG) is sandwiched between the barrier AlGaN and the semi-infinite 

substrate GaN. On top of the barrier, a semi-infinite thick air (W/L = 0) or metal (W/L = 1) is 

modeled. The multi-layer structure in the calculation is shown in Figure 2-13.  

The procedure of numerical calculation without grating is as follows: Firstly, the EM field in each 

layer (finite and semi-infinite) is expressed based on the permittivity models inserted into the 

Maxwell equations. Then the field amplitudes in two adjacent layers are linked by the boundary 

conditions at the interface (the tangential components of electric and magnetic fields are 

continuous). Finally, the dispersion relation of the whole system is equivalent to the non trivial 

solution of an eigenvalue equation, assuming no incident field from the top material 1. The 

spectrum information is obtained by the ratio of Poynting power flux in the semi-infinite bottom 

and top layers. 

The electric field polarization in each material is assumed to be TM type: 

,( 0, ), (0, ,0)x z yE E E H H  . The electric field can be obtained by the magnetic component 
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Where the material is supposed to be anisotropic. For isotropic material, xx yy zz      . 

From the Maxwell equations, the EM components in layer 1 (semi-infinite air or metal) are 
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     for z>d+d2DEG                   (2-31) 

where k is the wavevector in the x direction, 1  is the attenuation constant in semi-infinite 

material 1, which is positive to ensure that the wave is decaying in the +z direction. No wave 

propagates in the -z direction due to the semi-infinite material. For layers with finite thickness, 

propagating constants are not zero in both +z and -z directions. The field in layer 2 (AlGaN) and 

layer 3 (QW) are given as, 
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  for d2DEG<z<d+d2DEG,   (2-32) 

and 
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 for 0<z<d2DEG.              (2-33) 

Where 2 and 3 are the attenuation constants in the barrier and QW layers, respectively. For 

2DEG layer, the anisotropic permittivity model is used. All other layers are assumed to be 

isotropic. The field in the layer 4 (semi-infinite substrate GaN) should decay in the -z direction. 
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                     for z<0.                        (2-34) 

In the above expressions, iH  and iH   ( i = 1, 2, 3 and 4) are unknown magnetic field amplitude 

determined by the initial conditions. At the interfaces z = 0, z = d2DEG and z = d + d2DEG, the 

continuous boundary conditions are used. After a complex algebra and matrix manipulation, the 

dispersion relation of PP is finally expressed through an eigenvalue equation, 
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(2-35) 

Until now, no approximations are made in deriving expression (2-35). The material permittivity 

can be either constant or frequency dependent. More layers can be added in the calculation 

following the same procedures, and the dispersion expression will become more complex. No 

explicit relation between the wavevector k and the frequency ω is obtained, so the dispersion 

relation should be solved numerically (only the real part of the frequency and the wavevector is 

calculated for all the dispersion curves in this work). 

Based on the above expression, if the material 1 is metal, for instance, a gold layer, which 

corresponds to W/L = 1. If the material 1 is air, 1  = 0 , which corresponds to W/L = 0 in 

Figure 2-9. The frequency dependent complex Drude type permittivity model can be used for 

metals including the damping term [Ordal1983], 

2

1( ) 1
( )

p

j 


 

  
 


                                                  (2-36) 

Where 
1

40.71 /rad s


   is the damping frequency.  is the electron lifetime. 
2

0

p

ne

m



 is 

the plasma frequency in metal as defined in section 2.2.1.  For gold , we have 
4

, 1.37 10  /p gold rad s    at a free electron concentration 28 35.86 10  n m  . 

Since the dispersion of PP (expression (2-35)) for a thin layer of 2DEG is still complex, some 

approximations will be made to simplify the equation and give explicit results. 
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II 2D plasmon 

If the 2DEG layer thickness is much smaller than the plasmon wavevector (k × d2DEG  << 1), its 

thickness could be ignored in EM modeling [Theis1978].  Exact 2D plasmon will be produced. 

A CWM method 

If 
2 DEG

d  = 0, the motion of electrons will become exactly 2D at the interface. One arrives at the 

simplified model of 2DEG by the sheet frequency dependent Drude type conductivity in 

Siemens (S) [Muravjov2010],  

2
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N e
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                                                       (2-37) 

In this case, at the interface between the barrier and the substrate layer, the tangential component 

of H is no longer continuous, so the boundary conditions are modified as (see Figure 2-14), 
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                                 (2-38) 

Then the spectrum analysis of the structure is similar to the calculation with finite 2DEG layer 

thickness, except for the above different boundary conditions. The detailed numerical formula 

will not be reproduced here, and at the last part, the 2D PP dispersion will be compared with that 

of the quasi-2D PP. It should be pointed out that HFSS is not able to model 2D frequency 

dependent complex sheet conductivity like (2-37).  

B Screened and unscreened 2D plasmon 

As shown in Figure 2-14, the layer 3 is now replaced by a plane at z=0, where 2DEG locates. 

Electromagnetic analysis of the structure is similar to the calculation with finite 2DEG layer 

thickness (quasi-2D), except that at the interface  z = 0, the tangential magnetic field Hy is no 

longer continuous due to the existence of conduction electron interface. The tangential electric 

field Ex is still continuous.  

 

Figure 2-14: Screened and unscreened multi-layers structure with zero thickness 2DEG 
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The dispersion relation of exact 2D PP can be calculated by solving an eigenvalue equation, and 

ultimately is given explicitly as [Nakayama1974], 
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The expression (2-39) is still so complex that it is difficult to tell the dependency of the frequency 

  on the plasma wavevector k. Two assumptions are often used for deriving further explicit 

dispersion equations. Fortunately, both the two conditions are satisfied for normal grating 

dimensions (L, W) and 2DEG properties (NS, μ2DEG). 

(1) The plasmon wavevector k is much larger than the propagating wavevector in the bulk barrier 

and substrate materials. This is true as we have shown in Figure 2-14, because the static dielectric 

constant 2,4  for the semiconductors studied here is around 10. Then one has 
2,4 /k c  , or 

equivalently 2 4 k   as in equation (2-32) and (2-34). 

(2) The phenomenological electron scattering time   is larger than 1/ω (ω is the frequency of 

incident wave). For high mobility 2DEG layer at low temperatures, the scattering time  is 

around 10-12 s or even larger. At f = 1 THz, the value of 1/ω is about 0.16 × 1012 s. For larger 

frequencies, the assumption is more reasonable. In fact, 1   is also the condition for 2DEG 

responding resonantly to the THz radiation [Lü1998]. Within this approximation (ω  >> 1), the 

2DEG sheet conductivity is purely imaginary, 
2

( ) sje N

m
 





as in equation (2-37). 

For unscreened plasmon, 1  = 1. The inequality 1 1 2 2/ /     holds, and the factor 

1 2 1 2

1 2 1 2

( ) /( - )
   

   
  is close to -1. The dispersion relation for unscreened 2D PP is written as 

[Okisu1986], 
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                               (2-40) 

Where 2 and 4  are the permittivity of the barrier AlGaN and the substrate GaN, respectively. 

For screened plasmon, the amplitude of 1  at THz frequency is large according to the expression 

(2-36). The inequality 1 1 2 2/ /     holds at THz frequency range, and the factor 

1 2 1 2

1 2 1 2

( ) /( - )
   

   
  is close to 1. The dispersion relation for the screened 2D PP is written as 

[Eguiluz1975, Meissner1976], 
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For 0 kd   , coth( )kd  can be expanded into the Laurent series, 
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Where Bn is the nth Bernoulli number. 

If a further approximation kd << 1 is valid (the barrier thickness is much smaller than the 2D 

plasmon wavelength), then
1

coth( )kd
kd

 , therefore, the screened 2D PP dispersion is reduced 

to [Zheng1990],   
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Where 
2

2 0

se N d
s

m  
 is the plasma phase velocity. In this limit case, the plasmon frequency is 

proportional to the plasmon wavevector. For a typical AlGaN/GaN heterostructure, s = 2.1 × 

106  m/s with a concentration NS = 1.2 × 1017  m-2.  

2.3.3.2 CWM analysis of PP with 2D grating 

Metal grating are used only as the coupling element. The effects of metal thickness on the 

coupling efficiency are expected to be as small as possible. The incident wavelength should be 

larger than the thickness of the metallization and the width of QW. Thus, the problem can be 

ideally considered to be the coupled response of the planar grating conductor and the 2DEG 

sheet surface [Zheng1990]. When the metal thickness is comparable to the grating period 

[Zheng1991], it begins to influence the transmission spectrum.  

In the 2D grating case, the magnetic component Hy is not continuous at the interface between 

the upper semi-infinite air and the barrier layer AlGaN. The sheet conductivity (in Siemens) is 

periodic along the x direction. The conductivity follows the frequency dependent Drude type 

1( )   for metals, and is null in the air region. 
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A the interface z=0 between air and the barrier layer, the boundary conditions have 
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Where the surface current is given by 
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These expressions relate the field amplitudes in each layer. The transfer matrix method described 

above for 3D grating can be also applied for the spectroscopic calculation with zero metal 

thickness (2D grating). The spectrum results will be presented in the following section. 

2.3.4 Results and discussions 

In this part, numerical dispersion and spectrum results of AlGaN/GaN heterostructures 

calculated in the frame of models described above are shown. Firstly, the comparisons will be 

made between CWM and FEM assuming 3D grating and quasi-2D plasmon. Then the simulated 

dispersion of PP by CWM is compared to the theoretical dispersion of 2D plasmon in infinite 

GaN and the approximate formula of totally screened and unscreened 2D plasmon. Both 

similarities and discrepancies are presented and discussed. 

2.3.4.1 Comparison between CWM and FEM 
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Figure 2-15: Comparisons of HFSS (FEM) and CWM calculated dispersions of (a) plasmon-

polariton and (b) spectra (L = 2.2  µm, k = 2.86.106 m-1, TM and TE polarizations) for 

AlGaN/GaN heterostructure at 300K, Ns = 1.2 × 1017 m-2, W/L = 0.75, and d = 25 nm 

The PP dispersions with metallic grating are obtained by tracing the resonant frequency in the 

spectrum in function of the wavevector k (or the grating period L). In Figure 2-15, the 

comparisons of the PP dispersions (a) and spectra (b) have been made between HFSS (FEM) and 

CWM for AlGaN/GaN heterostructure at 300K with the electron sheet density NS = 1.2 × 1017 
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m-2. The 2DEG layer thickness is d2DEG = 12 nm. The electron mobility is μ2DEG = 0.2 m2/Vs at 

300 K. Metal grating are assumed to be gold with a conductivity σAu = 4.1 × 107  S/m. Its 

geometrical dimensions are: period L = 2.2 µm, metal filling factor W/L = 0.75 and metal 

thickness t = 200 nm. The choice of the values of these parameters will be justified in section 2.4.  

The incident wave is TEM type from the air region and its electric field can be polarized either in 

TE (electric field in y direction) or in TM (electric field in x direction) when the incident angle θ= 

0° (normal incidence). The frequency range is from 0 to 5 THz. All layers are assumed to extend 

infinitely in the x-y plane. The substrate GaN is assumed to be infinitely thick. Both the barrier 

and the substrate layers are modeled as the static dielectric constant without loss tangent 

(imaginary part is null). Figure 2-15 (a) shows the PP dispersions with the two methods by 

varying the grating period L and recording the first resonant frequency f1 at normal excitation of a 

TM polarized wave, where the wavevector k = 2π/L.  

The good agreement of dispersions validates the correctness of the CWM, and the consistency 

will be further proved by the spectra information. Figure 2-15 (b) demonstrates that, at TM 

polarizations, there are resonances peaks or valleys at the same positions on the three spectra: 

transmission, reflection and absorption. The coupling between incident THz radiation and 2D 

plasmon takes place at these resonant frequencies (f1 ≈ 1 THz, f2 ≈ 2 THz and f3 ≈ 3 THz). The 

resonant amplitudes reflect the coupling efficiency. The discrete resonant frequencies are selected 

by the different wavevector in x direction kxn = 2πn/L of the scattered wave. While for TE 

polarization, no absorption peaks appear due to the zero electric components in x direction. The 

small nonzero absorption is caused only by the conduction loss in the metal grating. In order to 

carried out the coupling, the incident electric field should be directed perpendicularly to the metal 

strips, and its wavevector is modulated by the periodic grating.  

There is no doubt that the calculation with HFSS owns benefit of intuitive visual representation, 

especially for the EM field illustration. However, CWM has some advantages over FEM in HFSS: 

easy parametric variation, fast convergence and simulation time (this is why only several discrete 

points by HFSS are shown in Figure 2-15 (a)), convenient modeling for the inhomogeneous 

2DEG distribution which will be illustrated in section 2.6. Last but not least, CWM is able to 

model 2D plasmon with frequency dependent sheet conductivity, while this cannot be treated by 

HFSS. Since both the two methods give the same dispersions and spectra results for the same 

structure under study, we will not distingue the results calculated by FEM or CWM, except for 

the non uniform 2DEG with gradual distribution functions in section 2.6. 

2.3.4.2 Dispersion of Plasmon-Polariton 

Now we concentrate on the influences of the finite thickness of 2DEG layer on the PP 

dispersion relations obtained by CWM. The results calculated by HFSS for 3D grating and quasi-

2D plasmon validate the CWM results as demonstrated above. The dispersions for screened 

(W/L = 1) and unscreened PP (W/L = 0) in expression (2-39) are solved by a complex root 

finding program based on the Newton-Raphson algorithm [Ben1966]. They are compared with 

the dispersion of PP with grating (W/L = 0.75). 

Figure 2-16 shows the complete dispersion curves for 2D plasmon in homogeneous GaN and 

dispersion of PP in AlGaN/GaN heterostructure, where 2DEG layer thickness has a finite 
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thickness (anisotropic permittivity) or no thickness (sheet conductivity). Three regions can be 

defined on top of the barrier AlGaN: a screened zone (continuous layer with infinitely thick 

metals), an unscreened zone (open surface with infinitely thick air) or a partially screened zone 

(filling factor W/L = 0.75 for example). The dispersion of a unscreened PP is close to the 

dispersion of 2D plasmon in infinite GaN, but it is difficult to observe experimentally the 

unscreened PP dispersion.  
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Figure 2-16: Dispersions of PP for screened (W/L = 1), unscreened (W/L = 0) and partially 

screened (W/L = 0.75) heterostructure AlGaN/GaN with 12nm thickness (quasi-2D) and zero 

thickness (2D) 2DEG layer. NS = 1.2 × 1017 m-2, L = 2.2 µm, and d = 25 nm. Dispersion of 2D 

plasmon in infinite GaN dielectric is plotted for reference (expression (2-14), NS = 1.2 × 1017 m-2) 

The approximations of zero thickness 2DEG and the Okisu formula (2-40) also give the similar 

results in the plasmon wavevector range k, because the following assumptions to derive the 

expression (2-40) are valid in the simulations: k × d2DEG << 1, l , /A GaN GaNk c  ,   >> 1, 

and 0 0/ /AlGaN AlGaN    ,where  is the attenuation constant as defined in (2-32) and (2-34).  

On the other hand, we turn to the lower part in this figure. The screened PP frequency  is 

proportional to k  at low wavevector ( k  ) and proportional to k  at high wavevector 

( k  ) (lowest four curves in Figure 2-16) where the 3D metal thickness is t = 200 nm and 

the metal conductivity is 4.1 × 107  S/m. Again, the screened PP dispersions with d2DEG = 0 

(screened 2D PP) and d2DEG = 12 nm (screened quasi-2D PP) do not make remarkable 

differences because the product k × d2DEG is well below 1 using the grating with micrometer 

periodicity. Grating-assisted PP at W/L = 0.75 shows similar results as the totally screened PP, 

demonstrating the plasmons between the metal fingers do not play an important role as the 
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plasmons below the metals in this case. The linear approximation formula fails to predict the 

dispersion in high wavevector region because of the relation k × d << 1 is no longer valid, where 

d = 25 nm is the thickness of AlGaN. 

Finally, it should be pointed out that the PP dispersions with 2D grating (t = 0) are as the same as 

those of 3D grating with finite metal thickness at W/L = 0.75, no matter whether the quasi-2D 

or 2D plasmons is modeled. These results are not shown for the clarity of the Figure 2-16. 

Similar PP dispersion relations have been experimentally observed for the emission spectrum in 

AlGaAs/GaAs heterojunctions with metal grating [Hirakawa1995]. Although only the results of 

AlGaN/GaN are shown, the same conclusions also apply to other heterostructures under study. 

2.3.5 Conclusions 

In summary, the general numerical method of spectrum analysis of grating assisted 2D plasmon 

in heterostructures has been presented in detail. Both zero and nonzero thicknesses of grating 

and 2DEG layer are considered. Spectra calculated by HFSS and CWM show the same results, 

validating the accuracy of CWM developed during this work. Dispersion of PP differs from that 

of 2D plasmon embedded in an infinite substrate. Theoretical simplified formula can give correct 

PP dispersion if the conditions of plasma wavelength is satisfied: k × d2DEG << 1 and k × d << 1. 

2.4 Optimization of resonant THz detection of PP in the 

heterojunctions III-V and IV-IV 

Based on the anisotropic permittivity model of 2DEG layer, a parametric study of the influences 

of geometrical dimensions and material properties on the resonances (frequencies and amplitudes) 

in the absorption spectra have been done to find the optimal structure showing strongest 

resonances at room and cryogenic temperatures. Although the parametric study is mainly realized 

in HFSS by default, CWM also gives the same results.   

2.4.1 Parameters of the studied structures 

The heterostructures under study are III-V group (type I: AlGaN/GaN, InAlN/GaN and 

AlGaAs/GaAs) and IV-IV group (type II: SiGe/Si/SiGe). In the latter structure, the Si QW layer 

is a biaxially strained Si layer on relaxed SiGe buffer. The electric field of incident wave is TM 

polarized, which is prerequisite for the coupling of PP as demonstrated in Figure 2-15. The 

substrate materials GaN, GaAs or SiGe are modeled as semi-infinite semiconductors without 

losses (the loss tangents are null). If the parameters in the simulations are not mentioned 

explicitly, their values are by default : the 2DEG layer thickness is d2DEG = 12 nm, incident angle θ 

= 0°, metal thickness t = 200 nm, metal conductivity σAu= 4.1 × 107 S/m. Table 2-2 lists the 

nominal heterostructure parameters taken from the following publications [Aniel1996, Aniel2000, 

Richard2004, Richard2005, Paul2004, Dyakonov1996-2, Poisson2006, Poisson2010, Ismail1995, 

Takakuwa1986, Fischer1984, Nelson1993]. The choice of L will be explained in section 2.4.3. At 

present, we assume that the 2DEG distribution over one period of the grating is uniform (N(x) = 

NS), and the non homogeneous case will be discussed in section 2.6.  
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Table 2-2: Simulation parameters for the four nominal heterostructures 

Material m*/m
0
 

NS 

(10
16

m
-2

) 

L 
(µm) 

W/L 




d 
(nm) 

µ
2DEG

 (m
2

/Vs) 

300 K 77 K 

AlGaN/GaN 0.22 12 2.2 0.75 0 25 0.2 1.0 

InAlN/GaN 0.22 12 1.55 0.75 0 10 0.11 0.33 

SiGe/Si/SiGe 0.19 5 1.3 0.75 0 25 0.3 3.2 

AlGaAs/GaAs 0.063 1 1.0 0.75 0 25 0.8 5 

 

2.4.2 Absorption of PP 
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Figure 2-17: Separated different types of absorptions in the nominal heterostructure AlGaN/GaN 

at room temperature with W/L = 0.75 by HFSS 

The absorption spectrum for the multi-layers system with lossy metallic grating and 2DEG can 

be decomposed into independent three parts: the Drude background absorption due to 2DEG 

without grating, the absorption due to conduction loss in the grating and the resonant absorption 

due to the PP coupling. The latter is used as a key parameter to evaluate the coupling efficiency. 

There are not any losses in the bulk barrier and substrate materials. Figure 2-17 shows the 

different absorption spectrum in material AlGaN/GaN with W/L = 0.75 at 300 K. The 

conduction loss in this case is negligible and the Drude type absorption dominates at low 

frequencies. The PP absorption begins as zero at DC frequency and it will terminate as zero at 

very large frequency. As we can see, there are at least three resonant peaks in the frequency range 

from 0 to 5 THz. The frequency positions and the amplitudes of the PP absorption peaks are 

noted as f1, f2, f3 and A1, A2, A3, respectively. fn are different order plasma frequency 

corresponding to different plasmon wavevector kxn. An reflects the coupling amplitude of 
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scattered wave kxn with 2D plasmons. For the following analysis, only the first three peaks (if 

exist) will be compared in different materials until 5 THz.  

Various parametric studies have been lead to optimize the PP resonances. We analyzed the 

following influences: the period L of the metallic grating, the incident angle θ between 0° and 89°, 

the metal thickness t and the metal (gold) conductivity σAu, the temperature (300 K and 77 K), the 

electron surface concentration NS, the barrier thickness d, or the distance between the grating 

and the 2DEG layer, and the filling factor W/L at 0.25, 0.5, 0.6 and 0.9. In each section, only one 

parameter is varied, and the values of the other parameters are listed by default in the Table 2-2. 

2.4.3 Tunability of the resonant frequency versus the grating period  

For the ease of comparison of the absorption amplitudes An between different materials, the first 

peak position f1 is fixed at 1THz, and the other two resonant frequencies will slightly derivate 

from 2 THz and 3 THz due to the non linear PP dispersion behavior at high frequency as already 

seen in Figure 2-17.  
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Figure 2-18: Tunability of the grating period L on the first resonant peak f1 for the four 

heterostructures at 300 K and W/L = 0.75 

The PP dispersion frequency is approximately proportional to the square root of the in-plane 

wave vector kxn for plasmon without surface metallization [Okisu1986], and is proportional to kxn 

for plasmon overlaid by continuous metals [Eguiluz1975]. Figure 2-18 plots f1 in function of the 

period L for the four nominal materials at 300K with W/L = 0.75. The approximated relation 

holds [Muravjov2010, Hirakawa1995]: 1 ~1/f L  at this high filling factor.  

Of course, the high order resonances at f2 (or f3) can also been tuned by L via high order 

scattered wavevector kxn = kx + 2πn/L (n = 2 or 3). At most cases, the first peak at f1 is the most 

pronounced and is easily distinguished and recorded in the spectrum. The resonant frequency can 

be tuned in THz range [0.3-3] THz by the period L in micrometers [0.5-5] µm. If f1 = 1 THz, the 

corresponding grating period of the four investigated structures are listed in Table 2-2. For III-V 
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nitride based materials, L is higher, because of their larger carrier concentrations which tend to 

make the resonant frequency higher. 

However, two limit cases about the value of the period L should be distinguished and discussed: 

(1) When L is extremely small (  0.5 µm), the evanescent electric fields will be more confined at 

the vicinity the metal/barrier interface and the attenuation depth of the scattering wave becomes 

short. The amplitude of EM field reaching the 2DEG layer is not sufficient to interact with it and 

correspondingly the coupling becomes inefficient because the attenuation depth is equivalent or 

even larger than the barrier thickness d. For example, if L = 0.1 µm, the wave vector of the first 

evanescent wave (n = 1) in the direction x is kx1 = 2π/L = 2π × 107  m-1. In the direction y, the 

materials are homogeneous which gives ky1 = 0. The component kz1 depends on kx1 and it is equal 

to 2 2 2

1/b xc k    jkx1 m
-1, where b is the dielectric constant in the barrier. Thus, the field 

attenuation depth perpendicular to the interface is D1 = 
1

1zk


= 16 nm. It is smaller or 

comparable to the barrier thickness d = 10 nm (InAlN/GaN) or 25 nm for the three other 

materials. For high order evanescent waves (n > 1), the attenuation depths (Dn = 
1

znk


) are even 

smaller and the observation of the PP resonances is difficult. 

(2) When L is much large (  5 µm), no resonant phenomena on the spectrum will appear. The 

reason is linked to a resonant detection condition given by ωτ >> 1. This relation is no longer 

satisfied at small frequency ω. For AlGaN/GaN at 300 K, if L = 5 µm, the PP frequency is f1 = 

0.34 THz, and the electron momentum relaxation time τ = 2.5×10-13 s, giving the factor ωτ = 0.5. 

In this case, the detection becomes non resonant with little sensitivity [Knap2002-2]. 

2.4.4 Influence of incident angle θ 

In Figure 2-19, the original absorption spectra (including contributions from Drude absorption 

and grating loss) with different incident angles (θ = 0° - 89°) are displayed for the structure 

AlGaN/GaN (thickness = 3 µm). With the increase of incident angle (measured in reference to 

the surface normal), the PP resonances become weak. The peak’s frequency does not increase 

greatly due to the fact that the incident maximum wavevector in x direction sin / c   is well 

below 2 / L . Normal incidence wave (θ = 0°) has the maximum electric field component Ex 

which is essential for the interaction with longitudinal 2D plasmon in the interface plane. For all 

the other simulations, the wave is assumed to be the normal incidence because the maximum PP 

resonances are obtained at this angle. Other materials give the same results. 
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Figure 2-19: Original absorption of the  heterostructure AlGaN/GaN (3µm) at room temperature 

with different incident wave angles by HFSS 

2.4.5 Influence of the metal thickness, the conductivity and the QW width 

Figure 2-20 shows the original absorptions when the metal thickness (a) and the gold 

conductivity (b) vary. The thickness range is t = [0.1-2] µm and the conductivity σAu is between 5 

× 106 and 4.1 × 107 S/m. This study was only performed for AlGaN/GaN at room temperature 

with normal incident waves. Thick and low conductivity metals bring more conduction loss in the 

absorptions, but these influences are not evident, particularly at those resonances in comparison 

with other losses, such as the Drude background absorption.  

Here we emphasize the influences of the thicknesses of lossy grating and 2DEG layer on the 

absorptions in Figure 2-21, where the original absorptions of nominal AlGaN/GaN structure 

calculated by CWM at different values of t and d2DEG. Figure 2-21(a) plots only the conduction 

losses without 2DEG (NS = 0). As the grating thickness t increases, the absorption rises 

accordingly due to larger ohmic losses in the metal. If t is comparable to grating period L, the 

contribution of the conductor attenuation to the total absorption is no longer negligible, 

especially at high frequency. 3D grating with finite conductivity should be used in the calculation. 

Of course, small metal conductivity (5 × 106 S/m) causes the increase of conduction losses at 

high frequency which may become a dominant factor in absorption. Figure 2-21 (b) shows the 

original absorptions for exact 2D plasmon (d2DEG = 0, 
2

2

*(1- )
( ) S

D

N e

m j





  as in [Muravjov2010]) 

and quasi-2D plasmon (d2DEG = 12 nm). The absorption amplitudes are nearly not affected by the 

thickness of the thin 2DEG layer, however, the resonant positions for quasi-2D plasmon move 

to slightly higher frequencies. The small frequency variation cannot be distinguished in present 

spectral experiments. 
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As we are only interested in the PP absorptions, the conduction loss in metals will finally be 

subtracted from the total absorption spectrum (Figure 2-17) and the influences of metal thickness 

and conductivity are excluded in PP resonances. t = 200 nm, σAu = 4.1 × 107 S/m, and d2DEG = 12 

nm are used as the default thickness and conductivity of metal for the optimization of PP 

resonances. 
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Figure 2-20: Original absorption of the heterostructure AlGaN/GaN at room temperature with 

different metal thicknesses (a) and conductivities (b) by HFSS 
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Figure 2-21: Original absorption spectrum of the nominal AlGaN/GaN structure calculated by 

CWM at 300 K, where L = 2.2 µm, W/L = 0.75 and Ns = 1.2 × 1017 m-2. (a) Conduction losses due 

to finite conductivity of grating (σAu = 4.1 × 107 and 5 × 106 S/m) at different grating thicknesses. 

No 2DEG layer exists. The case with perfect grating is plotted for reference. (b) Absorptions at 

different 2DEG layer thicknesses. Grating parameters: t = 200 nm, σAu = 4.1 × 107 S/m 
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2.4.6 Influence of temperatures on the PP resonances 
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Figure 2-22: PP absorption spectrum of the four nominal structures with W/L = 0.75 at (a) 300 K 

and (b) 77 K 

As discussed in section 2.2.2.3, the 2DEG mobility μ2DEG decreases as the temperature increases 

due to the different scattering mechanisms while the electron concentration NS is nearly constant 

from 1 K to 300 K. Figure 2-22 shows the PP absorption spectrums for the four materials at 

cryogenic (77 K) and room temperatures. At low temperature, the resonant peaks are narrow and 

high. This is attributed to the reduced Drude type absorption by 2DEG at low temperature, as 

shown in Figure 2-23. At the resonances (fn), the absorption in material SiGe/Si/SiGe and 

AlGaAs/GaAs drops rapidly due to the large increase of electron lifetime τ at 77 K. For 

InAlN/GaN, the PP absorption in Figure 2-22 (b) is not enhanced greatly from 300 K to 77 K, 

because the Drude absorption is slightly reduced (Figure 2-23), in other words, the increase of 

2DEG mobility (from 0.11 to 0.33 m2/Vs) is not as considerable as in other materials . We can 

deduce that a strong coupling effect can occur when the electron lifetime τ between adjacent two 

scatterings becomes longer. Similar temperature dependant absorptions have been shown in a 

short gate FET structure [Popov2005]. The resonant frequencies do not change greatly because 

the approximation ωτ > 1 is valid for both temperatures. At 300 K, the nominal material based 

on nitride have the maximum absorption peaks whatever the order of the resonance (fn). 

InAlN/GaN appears as the optimal one due its large electron concentration and its small barrier 

thickness (compared with AlGaN/GaN). However, AlGaAs/GaAs and SiGe/Si/SiGe present 

also interesting performances notably at low temperature due to their large increase of electron 

relaxation time related to the mobility used in the simulations. 
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Figure 2-23: Absorption spectrum of the four nominal structures without grating at (a) 300 K and 

(b) 77 K 

At certain conditions, the higher order PP absorption amplitude (An (n>1)) may becomes higher 

than the fundamental one (A1). Figure 2-22 (b) demonstrates for AlGaN/GaN and 

SiGe/Si/SiGe materials at 77 K and W/L = 0.75 : A2 > A1. There are two reasons to explain this 

effect.  

Firstly, as the metal filling factor W/L increases, the in-plane electric field component (Ex) of 

scattered waves with different orders will be improved, particularly for higher order wave (n > 1). 

It is the Ex component that interacts effectively with the 2D plasmon. Figure 2-24 shows the 

normalized Ex components of the first three order waves versus W/L (0.25-0.9) at the QW plane 

(25 nm from the interface) in AlGaN/GaN structure at 300 K and L = 2.2 µm. The calculation is 

finished by CWM. Structure SiGe/Si/SiGe has similar results. Ex of the higher order waves (n = 

2 and 3) increases more rapidly than that of the first order (n = 1). As W/L > 0.6, Ex at n =2 and 

3 becomes comparable and even stronger than Ex (n = 1) at their corresponded resonant 

frequency fn. This will possibly make the higher order PP resonances more intensive at high 

values of W/L. 

Secondly, a large value of the factor n   can be reached at higher order frequencies (fn). This is 

to say that, the possibility of electron scattering with the semiconductor lattice atoms is reduced. 

Therefore, the Drude absorption decreases at high n, as clearly seen in Figure 2-23. Furthermore, 

Ex filed of different waves at low temperature can also be raised in reference to their values at 

300 K. Figure 2-24 (d) shows Ex of the second order (n = 2) wave at 77 K. Compared with 

Figure 2-24 (b), the enhancement of Ex is evident at 77 K. The other waves (n = 1 and 3) have 

similar results. 
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Figure 2-24: Amplitude of electric field Ex of different scattered waves versus W/L (0.25-0.9) at 

the plane of 2DEG layer (a distance of 25 nm from the surface) in AlGaN/GaN structure. (a) n = 

1, (b) n = 2, (c) n = 3 at 300 K, and (d) n = 2 at 77 K. They were calculated by CWM. L = 2.2 µm 

To further illustrate the stronger excitation of PP resonances by high order waves, Figure 2-25 

plots the PP absorption of the four materials with metal filling factor (0.6 and 0.9) around the 

nominal value (0.75 in Figure 2-22). At W/L = 0.6, the amplitudes of higher order PP are always 

lower than the fundamental PP amplitude (n = 1) at both room and cryogenic temperature, 

because the higher order field Ex are not strong enough. At W/L = 0.9, GaN based materials 

show higher order PP resonances (A2 > A1) at room temperature (Figure 2-25 (c)). At 77 K in 

Figure 2-25 (d), all materials except AlGaAs/GaAs have stronger higher order PP resonances: 

A2,3 and 4 > A1 for AlGaN/GaN, A2 and 3 > A1 for InAlN/GaN and A2 > A1 for SiGe/Si/SiGe. In 

AlGaAs/GaAs, A2 is slightly lower than A1. To achieve A2 > A1 in AlGaAs/GaAs, increasing 

W/L or decreasing the temperature is possible solution. 
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Figure 2-25: PP absorption spectrum of the four structures. (a) 300 K, W/L = 0.6, (b) 77 K, W/L = 

0.6, (c) 300 K, W/L = 0.9, and (d) 77 K, W/L = 0.9 

To conclude the discussion, high filing factor and low temperature are helpful to excite strongly 

the higher order PP resonances (An, n > 1). This can push further the maximum frequency in the 

THz resonant detection. Based on the material parameters used in the simulation, stronger higher 

order PP resonances are possible: AlGaN/GaN (W/L   0.9 at 300 K and W/L   0.75 at 77 K), 

AlGaAs/GaAs (W/L > 0.9 at 77 K), SiGe/Si/SiGe (W/L   0.75 at 77 K), and InAlN/GaN 

(W/L   0.9 at 300 K and 77 K). 

2.4.7 Influences of the electron concentration and the geometric parameters 

on PP resonances at 300 K 

The influences of carrier concentration NS, barrier thickness d and filling factor W/L on the 

frequency and amplitude at room temperature are displayed from Figure 2-26 to Figure 2-29, 

respectively. For each material, PP resonances with five discrete values around the nominal 

parameters are considered in a reasonable range for technological realization, as listed in Table 

2-3. The 2DEG anisotropic permittivity model (2-26) is assumed to be valid for different carrier 

concentrations in this parametric study. Similar studies of the influences of NS, d, and W/L have 

been reported in AlGaAs/GaAs structure ignoring the finite width of QW [Tyson1994, 
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Ager1992-1, Mikhailov1998]. Here we concentrate on the comparative analysis between materials 

based on practical device parameters. 

Table 2-3: Simulated range of Ns, d and W/L based on the four nominal structures 

Material NS (10
16

m
-2 

) d (nm) W/L 

AlGaN/GaN 
1, 5, 8, 12 and 20 

10, 25, 50, 100 and 
200 0.25, 0.5, 0.6, 

0.75 and 0.9 

InAlN/GaN 

SiGe/Si/SiGe 0.5, 1, 3, 5 and 6 
10, 25, 50, 80 and 100 

AlGaAs/GaAs 0.1, 0.5, 0.8, 1 and 1.5 

 

2.4.7.1 Influence of Ns  

As shown in Figure 2-16, at high filling factor W/L = 0.75, the screened PP dispersion formula 

(2-41) can predict correctly that f is proportional to the square root of NS. Figure 2-26 (a) shows 

the observed resonant frequency (f1, f2 and f3) in function of the electron density. This tendency 

of square root relation is well observed in all the resonant peaks. Concerning the resonance peaks 

A1, A2 and A3 (Figure 2-26 (b)), high electron concentration produces strong absorption due to 

the increased number of electrons per unit area participating in the interaction with the scattered 

waves. For device application, NS is varied by applying voltage on the metal fingers. The 

dependency of the resonant frequency on the carrier concentration and the absorption spectrum 

with different bias voltage have also been reported in other publications [Mikhailov1998, 

Theis1978].   
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Figure 2-26: Influences of carrier surface concentration Ns on PP absorption spectrum of the four 

nominal structures at 300 K with W/L = 0.75. (a) resonant frequency and (b) absorption 

amplitude 
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2.4.7.2 Influence of the distance d  
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Figure 2-27: Influences of barrier thickness d on PP absorption spectrum of the four nominal 

structures at 300 K with W/L = 0.75. (a) resonant frequency and (b) absorption amplitude 

According to the dispersion relation of screened PP (2-41), the resonant frequency depends on 

the barrier thickness d following the relation of screened PP: 
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          (2-47) 

As seen in Figure 2-27 (a), a square root relation at small d and a quasi constant behavior at large 

d appear. Figure 2-27 (b) represents the evolution of the amplitude of each PP peak versus d. The 

resonant amplitude decreases when d is beyond 50 nm because of the evanescent nature of the 

scattering wave at the vicinity of metal grating. 

An optimal distance corresponded to maximum PP absorption exists around 50 nm for 

AlGaN/GaN and 25 nm for InAlN/GaN if we look only the first peak A1 in Figure 2-27 (b). For 

the other two materials, the optimal distance does not appear with the variation of d in [10-100] 

nm.  
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Figure 2-28: (a) Original absorption with 2DEG and grating, (b) Absorption without grating, and 

(c) PP absorption (A1) of the four nominal structures versus barrier thickness d (1-100 nm) at the 

first resonant frequency (f1) at 300 K with W/L = 0.75. A1 for AlGaAs/GaAs at NS = 5.1016 m-2 is 

superimposed in (c) for comparison 

In order to find the origin of this optimal distance, the total absorption with grating and 2DEG 

(can be measured directly in the experiment), Drude type absorption without grating, and PP 

absorption (A1) at the first resonance of the four nominal materials are plotted versus d (1-100 

nm) at room temperature in Figure 2-28. The absorption due to metal grating is omitted (< 

0.005). The total absorption in Figure 2-28 (a) increases monotonically as the barrier becomes 

thinner. This is mainly attributed to the great enhancement of Drude absorption in 2DEG layer 

at low frequency f1 (< 1 THz) when d is decreased below 50 nm as shown in Figure 2-28 (b). 

Strictly speaking, the absorption in Figure 2-28 (b) is caused by the imaginary part of 2DEG 

permittivity, which increases with the growth of electron concentration NS and with the decrease 

of frequency (small d). Indeed, the large NS in GaN based structures have more absorptions over 

other two materials with relatively low NS. When the absorption in Figure 2-28 (a) is subtracted 

by the Drude absorption in Figure 2-28 (b), the resulting PP absorption in Figure 2-28 (c) drops 

from the following specific distances as d is reduced from 100 nm to 1 nm : 44 nm 

(AlGaN/GaN), 25 nm (InAlN/GaN), 19 nm (SiGe/Si/SiGe). The absorption for 

AlGaAs/GaAs does not decline until d = 1 nm.  
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The other direct explanation of the optimal distance can be possible described in the following 

quantitative manner. At these optimal distances, the factor   is 1.98 (AlGaN/GaN), 1.2 

(InAlN/GaN) and 1.85 (SiGe/Si/SiGe). As d is further decreased,   falls rapidly to be lower 

than 1. The possibility of scattering of electrons by the background semiconductor lattice 

increases, resulting in the strong damping of plasma oscillation, particularly at high electron 

concentration. While for AlGaAs/GaAs structure with the lowest NS (1016 m-2) among the four 

materials, the electron scattering does not begin to attenuate the PP absorption even at d =1 nm 

(  = 0.79). If NS is increased to 5.1016 m-2 in AlGaAs/GaAs structure, an optimal distance (d = 

20 nm) also appears as shown in Figure 2-28 (c). 

It should be noted that the results in Figure 2-28 (c) cannot be measured directly in the 

experiment. Normally, the absorptions in Figure 2-28 (a) are characterized and they 

monotonically depend on the barrier thickness (d). Moreover, when d is reduced below 10 nm, 

the technological realization becomes difficult. 

2.4.7.3 Influence of the filling factor W/L  

In this section we first study the influence of the ratio W/L which varies between 0.25 and 0.9 

for the four nominal materials. The period L is fixed.  

As shown in Figure 2-16, at the same plasmon wavevector k, the unscreened (W/L = 0) PP 

resonant frequency is always greater than the screened one (W/L = 1). As the value W/L 

increases from 0.25 to 0.9, the PP frequency decreases monotonically in Figure 2-29 (a). From 

W/L = 0.6, the PP frequency is nearly equal to the totally screened case, indicating that screened 

plasmon becomes dominant in the resonant absorption at these high W/L values. At low filling 

factor (W/L < 0.5), the observed PP frequency raises and approaches the unscreened case. So we 

can assume that the effect of the unscreened plasmon becomes important at W/L < 0.5. In 

Figure 2-29 (b), the absorption amplitudes increase drastically with W due to the enhancement of 

scattered field component Ex.  
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Figure 2-29: Influences of filling factor W/L (0.25-0.9) on PP absorption spectrum of the four 

nominal structures at 300 K. (a) resonant frequency and (b) absorption amplitude 
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Figure 2-30 shows the distribution of the electric field Ex in the vicinity of grating at different 

filling factor from 0.25 to 0.95, where L is fixed at 1 µm. With the decrease of gap width, the 

amplitude of the evanescent field component Ex becomes intense at the interface air/substrate 

and it extends deeper into the substrate, making the coupling with the underlying 2D plasmons 

stronger. And the PP absorption is strengthened [Allen1977, Theis1978]. 

 

Figure 2-30: Electric field Ex distribution in the vicinity of metal grating at 1 THz by HFSS. L = 1 

µm and W/L = 0.25-0.95 
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Figure 2-31: Influences of filling factor W/L (0.25-1) on PP absorption spectrum of nominal 

structure AlGaAs/GaAs at 300 K 
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However, the absorption amplitude does not increase monotonically when W/L approaches 1 in 

the simulation. Figure 2-31 shows the PP absorption spectrum for AlGaAs/GaAs nominal 

structure versus W/L from 0.25 to 1 at room temperature. A maximum absorption locates at 

W/L = 0.95. Beyond W/L = 0.95, the absorption amplitudes begin to decrease. At this limit 

condition, the normal scattering theory will lose its correctness. The extremely narrow gap will 

not be seen by the incident THz wave and the grating is approximately considered to be a 

continuous conductor layer. If its thickness is larger than the metal skin depth at the frequency of 

the incident field, little power will be transmitted though the metal and the corresponded 

absorption of the system will be nearly zero. Moreover, in the limit case where the gap width WG 

= L-W is smaller than 50 nm, some technological difficulties in the sample realization by 

lithography may be generated. For the limit case of the totally screened plasmon (W/L = 1), the 

absorption is zero. 

2.4.8 Conclusions 

(1) Materials based on III-nitride are the optimal structures for resonant THz detection, especially 

InAlN/GaN. This is mainly due to their higher carrier concentrations induced by large 

spontaneous and piezoelectric polarizations which eliminate the need of doping in the barrier 

semiconductor.  

(2) In order to realize a strong excitation of 2D PP, a high carrier concentration, a small barrier 

thickness, a large filling factor and a low temperature are appreciated.  However, very thin barrier 

can lead to low PP absorption amplitude due to the increase of Drude absorption. Lower 

temperature can improve the resolution of resonant peaks due to the increase of electron 

scattering time and evanescent field, and high temperature has the potential to drive the detection 

into non resonant type (without noticeable resonant peaks). 

(3) For PP frequency, a thick barrier layer and a large carrier density tend to increases the 

resonant frequencies, while wide metal finger will make the frequency drop when the period L is 

not varied. The temperature does not greatly influence the resonant frequency.  

(4) The period of grating L in micrometer can modulate significantly the frequency of absorption 

peaks in THz range. To achieve the frequency tunability when L has been designed after the 

sample was fabricated, the voltage bias on metal fingers will be applied and their functions will be 

discussed in the section of inhomogeneous 2DEG modeling. 

After the numerical investigation of THz detection with 2D PP in different heterostructures, the 

spectrum will be measured and compared with the calculated result for a heterostructure based 

on III-nitride.  

2.5 Measurement of the transmission spectrum of PP in 

AlGaN/GaN by FTIR 

In this section, a sample AlGaN/GaN on the substrate sapphire with deposited periodic metal 

grating has been prepared and measured by FTIR (Fourier transform infrared spectroscopy) at 

cryogenic and room temperatures. The simulated and experimental transmission spectra are 

compared at different filling factors W/L from 0.25 to 0.75. 
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2.5.1 Sample fabrication  

The heterostructure Al0.25Ga0.75N/GaN is grown on a 330 µm thick substrate of sapphire. The 

thickness of AlGaN and GaN is 25 nm and 3 µm, respectively. The measured average electron 

sheet concentration Ns = 8 × 1012 cm-2. Periodic Au gratings were carried out with the electron 

beam lithography at LPN (Laboratoire de Photonique et de Nanostructures). Its thickness t = 

200 nm and the period L = 2.2 µm. The ratio W/L has been chosen to be 0.25, 0.5, 0.6 and 0.75. 

Figure 2-32 shows the microscopic image of the sample surface, where the gaps between metal 

strips can be clearly identified. 

 

Figure 2-32: Microscopic image of the Au gratings on top of the sample AlGaN/GaN, L = 2.2 µm, 

W/L = 0.75 

2.5.2 Introductin to FTIR 

 

Figure 2-33: Schema of the standard FTIR setup 

Figure 2-33 shows the simplified quasi-optic FTIR measurement setup. The broadband beam 

from the mercury lamp is directed to the beam splitter (central point O), where one half of the 
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signal power is reflected to a fixed mirror (F) and the other part transmits the beam splitter and 

travels to a moving mirror (M). The position of the moving mirror is denoted as x. When x is 

scanned, the phase delay or retardation length between the two beams is achieved. The two parts 

recombine at the beam splitter and passed through the sample under test. The amplitude of the 

position dependent signal S(x) (transmitted or reflected beam) is detected by a thermal detector, 

with its output voltage or current proportional to the incident power in a certain frequency band. 

The upper part of the configuration (without the sample and the detector) is a typical Michelson 

interferometer [Griffiths2007]. 

The detected intensity signal is modulated by the position of the mobile mirror, 

0

0

( ) ( )
( ) (1 cos(2 ))

2 2 2

II k S x
I x kx dk



                                 (2-48) 

Where 1/k  is the wavenumber, 2( )x OM OF   is the retardation distance, and 

0

0

( )I I k dk



  is the incident intensity from the source. The frequency domain counterpart of the 

interferogram signal S(x) is I(k), 

0
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( ) ( )cos(2 ) exp( 2 )

2

I k
S x I k kx dk i kx dk 

 



                        (2-49) 

They constitute a pair of Fourier transform and FFT (fast Fourier transform) algorithm are 

available for computer operations. As the interferogram is measured, all frequencies are being 

measured simultaneously. The transmission and reflection spectra are obtained by the frequency 

function I(k) normalized to that detected without samples. 

The main advantages of FTIR are the high speed (all frequencies are measured simultaneously), 

improved sensitivity by fast scans of the mobile mirrors and reduced noise by signal averaging, 

simple mechanical configuration, the self calibrating by the internal HeNe laser, fine frequency 

resolution, and large bandwidth of THz signal. However, comparing with the THz-TDS system 

in transmission and reflection mode for studying the material properties (for example, the 

complex refractive index ( ) ( ) ( )n n jk    ), FTIR suffers from many disadvantages:  

 weak source signal peak optical intensity: FTIR uses the continuous wave (CW) non 

coherent broadband blackbody radiator, rather than the coherent narrow pulse sources 

(typically 1-2 ps duration) as in THz-TDS configuration. FTIR source intensity is several 

orders of magnitude smaller than the high brightness source in THz-TDS [Beard2001]. 

 lacks of direct phase information: FTIR only measures the field intensity and the 

absorption index ( )k  , in contrast, both parts of the complex refractive index ( )n   can 

be obtained directly by the measured amplitude and phase of the transmitted field in TDS. 

Although the refractive index ( )n  is related to ( )k  by Kramers-Kronig relations 

[Griffiths2007] for FITR experiment, the calculation is not straightforward and there are 

many potential sources of error [Naftaly2007]. 
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 small signal noise ratio (SNR): Due to the coherent pump-probe detection schema, THz-

TDS system has much higher SNR in power than that for FTIR [Leahy2009]. 

Since only the PP absorption spectrum is of interests for THz detection, the FTIR experiment 

applies for the present investigation. General agreement of the material absorption feature 

between FTIR and THz-TDS has been demonstrated [Huang2004]. 

2.5.3 Transmission spectrum excited by TM polarized FIR laser beam 

The transmission spectrum for the sample AlGaN/GaN is measured and compared with the 

simulation results from 0.6 THz to 1.7 THz. Numerical treatment is utilized to eliminate the 

Fabry-Pérot resonances in the spectrum caused by the thick substrate. One disadvantage is that 

the frequency resolution of the spectrum will be increased. 

2.5.3.1 Experiment setup 

The FTIR measurement for the sample AlGaN/GaN is conducted with Bruker IFS 66v/s 

system, which is shown in Figure 2-34. It operates in vacuum environment to reduce the strong 

atmosphere absorption and acoustic perturbation. A mercury lamp is used as the FIR blackbody 

source. The 50 µm Mylar beam splitter works at the frequency range [0.3 -1.7] THz. Silicon-

diamond composite bolometer cooled at 4.2 K is the detector to achieve higher sensitivity in 

rapid scan mode comparing with the DTGS-PE type. The beam is collimated focused onto the 

sample surface with a diameter around 4 mm. The TM polarized wave incidents at an angle of 

11°. The sample is mounted on a copper support in a cryostat cooled at liquid nitrogen (78 K) 

and liquid helium (10 K) temperatures for cryogenic measurements. 

 

Figure 2-34: Experimental setup of the FTIR measurement with a bolometer detector 
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2.5.3.2 Elimination of Fabry-Pérot resonances 
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Figure 2-35: CWM simulated transmission spectrum for AlGaN (25 nm)/GaN (3 µm)/Sapphire 

(330 µm) at 300 K: (a) without grating, Ns = 1.2 × 1017 m-2, (b) with grating, L = 2.2 µm, and W/L 

= 0.75. Dotted red curve: original spectrum, solid blue curve: averaged spectrum without Fabry-

Pérot resonances 
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In order to eliminate the Fabry-Pérot resonances due to the thick sapphire substrate (330 µm), 

the original transmission spectrum is averaged within a frequency interval of the Fabry-Pérot 

resonances ∆f, resulting in the increase of resolution from 7.5 GHz (0.25 cm-1) to around 0.146 

THz, as calculated by the expression (2-50).  

2 r

c
f

h
  = 0.146 THz                                                       (2-50) 

Where 
r  = 9.7 and h = 330 µm are the relative dielectric constant and thickness of the sapphire 

layer. Figure 2-35 shows the simulated original (dotted red curve) and averaged (solid blue curve) 

transmission spectra based on CWM for the structure AlGaN (25 nm)/GaN (3 µm)/Sapphire 

(330 µm) without and with metal grating. With the average method, the influence of the thick 

sapphire layer is minimized and the spectrum looks more like as the previous discussed cases 

AlGaN (25 nm)/GaN (semi-infinite). For the spectrum with metal grating, the three PP 

resonances (f1 = 1 THz, f2 = 2 THz and f3 = 3 THz) appear in the background spectrum with 

Fabry-Pérot resonances. Moreover, for the analysis of experimental FTIR data, the transmitted 

signal with the presence of metallic grating is usually normalized by that without grating to obtain 

the relative transmission [Muravjov2010]. The measured relative transmission spectrum will be 

compared with the simulated one based on the Drude model of 2DEG in the following part. 

2.5.3.3 Comparison of transmission spectrum between simulation and 

measurement 

Figure 2-36 shows the simulated and measured relative transmission spectra from 0.6 to 1.7 THz 

at different temperatures (300 K, 78 K, and 10 K) with W/L = 0.6. At low frequencies below 0.6 

THz, the Signal Noise Ratio (SNR) is small, resulting in poor spectrum information. At 

frequencies high than 1.7 THz, both the two types of detectors (bolometer and DTGS-PE) do 

not work well. With the decrease of environment temperature, the first resonant peak due to PP 

coupling becomes more pronounced, but the resonant frequency does not vary greatly. This is 

consistent with the previous simulation results. Near the maximum edge of the measured band, 

the second PP resonance appears at 1.6 THz at 10 K due to the large electron mobility. At room 

temperature, the small absorption amplitude is caused mainly by low mobility of electrons as 

shown in Figure 2-6. Electron motilities in the fitted simulation spectrum are 0.1, 0.35 and 0.45 

m2/Vs as the temperature decreases. The discrepancy between the experimental and theoretical 

results is due to several possible effects: firstly, the transparent polymer windows of the cryostat 

are not considered in the modeling. The resonant amplitudes will be influenced more or less. 

Secondly, the resolution of the spectrum increases to 0.146 THz, while the frequency step is only 

0.01 THz in the simulation. Finally, the assumed geometrical dimensions (L, W and d) and 

material properties (ɛ, NS and μ2DEG) may differ from the sample. Moreover, in the simulation, 

GaN layer is semi-infinite and no sapphire is present. All bulk materials are assumed to be 

lossless (without loss tangent). 
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Figure 2-36: Measured transmission spectrum at different temperatures for Al0.25 Ga0.75 N/GaN 

(W/L = 0.6, Ns = 8.1016 m-2) 

Figure 2-37 plots the experimental (a) and theoretical (b) relative transmission spectrum with 

different metal filling factor W/L (0.25, 0.5, 0.6 and 0.75) at 78 K. With the increase of the ratio 

W/L, the resonant frequency shifts to a smaller value and the absorption amplitudes becomes 

stronger, indicating a large coupling between incident THz radiation and plasmons in the 

heterostructure. At large W/L, the second resonance can also be seen.  The unscreened plasmons 

display as a small resonance at around 1.35 THz in the spectrum with W/L = 0.25. The good 

agreement between the modeled and measured transmission spectrum validates the function and 

efficiency of the metal grating on top of the structure as the coupler. The assumed homogenous 

2DEG distribution function NS (x) = NS over one period of the grating seems reasonable for the 

AlGaN/GaN heterostructure. 

Until now, we have considered the THz absorption in the homogeneous 2DEG system. After 

the sample is fabricated, a bias voltage could be applied on the metallization to tune the PP 

resonances. In this case, the distribution of electron becomes inhomogeneous in x direction and 

this is what we will discuss in the next section. 
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Figure 2-37: Transmission spectrum with different ratio W/L for Al0.25 Ga0.75 N/GaN (78 K, Ns = 

8. 1016  m-2), (a) measurement and (b) simulation with 2DEG = 0.3 m2/Vs 
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2.6 Modeling of non homogeneous 2DEG 

The modulated 2DEG has been investigated without [Matov1998] and with [Ager1992-2, 

Matov2002, Fateev2010] grating on AlGaAs/GaAs. The electron distribution is assumed to be 

piecewise constant or sinusoidal in theoretical modeling. Here we investigate the tunability of PP 

resonances through the biasing of the metallization over the AlGaAs/GaAs heterostructure.  

Three kinds of electron concentration profile (piecewise constant, linear and parabolic) along the 

axis perpendicular to the grating are compared. In high modulated condition, a distinct 

absorption peak is observed. Its position cannot be predicted correctly by existing formula with 

semitransparent NiCr grating [Matov2002] or without grating [Popov2003]. The screening effect 

of Au grating in our simulation causes the shift of resonant frequency. 

In addition, in most publications dealing with the PP resonances with metal grating, the carrier 

concentration is considered to be constant with the position in the x direction if no bias is 

applied. Due to the differences between barrier height at the interfaces metal/semiconductor and 

Fermi levels pinning at air/semiconductor, the electron density will vary within one period.  

2.6.1 Non homogeneous electron concentration 

The electron density distribution in 2DEG layer with and without metals on top of the structure 

can be calculated numerically (section 2.2.2), provided that the surface potentials are known. In 

Figure 2-38, the carrier concentration below and between the metals are denoted as N1 and N2. 

At the adjacent region of screened and unscreened 2DEG, a transition region t1 exists due to the 

abrupt variation of electron density. Firstly, a simple step function with abrupt change of 

concentration at the position x corresponding to the lateral edges will be discussed, and then two 

other types of distribution functions will also be studied to approximate the real gradual 

concentration variation: linear and parabolic curves in function of the position x.  

2.6.1.1 Electron concentration in the screened  and unscreened parts over 

one period of grating 

Table 2-4 lists the calculated N1, N2 and t1 (Figure 2-38) for the first three types of 

heterostructures at 300 K.  B is the Schottky barrier height (Au/Ti),  S is the surface Fermi level 

without metal. The potential values are referenced to reported experimental data, as for AlGaAs 

[Zhang1999] and GaN based materials [Hache1993, Yu1993-1]. Concerning the surface Fermi 

level of the SiGe/oxide interface no measurements data are available at the present. For the two 

hetero structures based on group III-nitride layers, the Fermi level pinning does not vary greatly 

in the two regions then the approximation of a homogeneous 2DEG distribution (N1 ≈ N2) is 

reasonable.  

Due to the relatively large variations between N1 and N2 in AlGaAs/GaAs heterostructure, only 

this structure will be considered for the non homogeneous 2DEG modeling with the home made 

program based on the CWM. In order to achieve the electron density in the order of 1016 m-2, the 

barrier AlGaAs layer of 25 nm thickness is delta-doped (Al0.3 Ga0.7 As (20 nm, NID)/Al0.3 Ga0.7 As 

(2 nm, ND = 2 × 1019 cm-3)/Al0.3 Ga0.7 As/GaAs (3 nm, NID)/GaAs (NID)). NID stands for non 

intentionally doping. For nitride based heterojunctions, the doping is not necessary in the barrier. 
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Figure 2-38: Non homogeneous distribution of electron concentration 

Table 2-4: Calculated concentration at 300 K by a self consistent 1D Poisson- Schrödinger solver 

Material  d 
(nm) 

ϕ
B
 

(eV)  

ϕ
S
 

(eV)  

N
1 
 

(10
16

m
-2

)  

N
2 
 

(10
16

m
-2

)  

t
1
 

(nm)  

Al
0.25

Ga
0.75

N/GaN  25 0.9 1.1 12.4  12.1  20  

In
0.18

Al
0.82

N/GaN  10 0.85 0.9 12.0  11.7  10  

Al
0.3

Ga
0.7

As/GaAs  25 0.85 0.65 1.28  1.65  20  

SiGe/Si/SiGe  No experimental data available on the strained SiGe/oxide interface  

2.6.1.2 Absorptions with non homogeneous 2DEG models 

The periodic dielectric properties of 2DEG with alternating electron concentration N1 and N2 

can be treated in a similar way as the metal grating (alternating Air/Metal), which has been 

addressed in section 2.3.3. According to the anisotropic permittivity of 2DEG layer, the 

components xx  ( yy ) depends on the position through the electron concentration and xx  is still 

assumed to be the static dielectric constant. For the application in the non uniform 2DEG, one 

just has to replace xx  in the program dealing with isotropic problem of grating by the constant 

value s  and expand xx  ( yy ) in Fourier series. For the step distribution function, both the 

program based on CWM and the code HFSS based on FEM apply, however, the latter is not 

suitable for the modeling of the other two types of distribution functions. Hence, only the CWM 

is employed to investigate the dispersion and spectrum of heterostructures with linear and 

parabolic 2DEG distribution functions at the transition part t1.  

To evaluate the validity and the accuracy of the program, the absorption spectrum are compared 

with those obtained by HFSS based on FEM, taking the structure AlGaN/GaN at 300 K as an 

example with a step 2DEG density distribution function, which is shown in Figure 2-39. N1 is 

fixed and N2 is taken arbitrarily around N1.The two methods agree well, showing the capability of 

the CWM to deal with the periodic and non uniform 2DEG problems. 
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Figure 2-39: Comparison of the two numerical methods: Absorption spectrum of the nominal 

AlGaN/GaN structure with different concentration N2 at 300 K, where W/L = 0.75, N1 = 1.2 × 

1017 m-2 (solid line: HFSS (FEM), ∆S=0.005. broken line: Matlab (CMW), nmax=20) 
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Figure 2-40: Comparison of the absorption spectrum with the three types of 2DEG density 

distribution functions (step, linear and parabolic) for AlGaAs/GaAs at 300 K, where N1 = 1.28 × 

1016 m-2, N2 = 1.65 × 1016 m-2, t1 = 20 nm, L = 1 µm and W = 0.75 µm 

Since it is only necessary to consider the large difference between N1 and N2 in AlGaAs/GaAs 

structure, the following calculation with CWM is focused on this material. In Figure 2-40, the 

three types of 2DEG distribution functions are compared for the AlGaAs/GaAs structure at 

room temperature. The sheet density N1 = 1.28 × 1016 m-2. The non zero absorption at low 

frequencies is attributed to the Drude absorption background, where the metal grating do not 

exist. The three models show exactly the same spectrum, and this is due to the connection region 
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width t1  (12 nm) which occupies a very weak portion in the whole gap region with the width WG 

= L-W (250 nm in minimum). For the structure AlGaAs/GaAs, we used the step function model. 

2.6.2 Variation of electron concentration N1 below biased metals  

Both the frequency and amplitude of the PP resonances strongly depend on the electron density, 

as it has been discussed in the homogenous 2DEG case. By applying a bias VG on the metal, the 

effective Schottky barrier height becomes 
B -VG × e and the density N1 (see Figure 2-38) will be 

altered accordingly. Positive VG can decrease the barrier height and the corresponding N1 will be 

increased. For negative VG, the influence on N1 is in the opposite direction. The tunability of the 

resonance frequency in the absorption spectrum can be possibly achieved by varying the applied 

bias, as it will be shown by the modeling (Figure 2-42).  

Table 2-5: Electron sheet concentration N1 in the screened region with applied voltage VG (V) for 

AlGaAs/GaAs structure, where N2 = 1.65 × 1016 m-2 

V
G
(V)  N

1
 (m

-2
)  

0.4  1.72×10
16

  
0.2  1.65×10
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Figure 2-41: Calculated wave function and energy bands in AlGaAs/GaAs for the two cases: VG = 

0 and VG = -0.8 V 
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The calculated wave function and energy bands corresponding to the first electron eigenstate are 

displayed in Figure 2-41 and sheet carrier concentration N1 is listed in Table 2-5 with different 

applied voltages, where N2 = 1.65 × 1016  m-2 is assumed to be not influenced. As demonstrated in 

the part 2.2.2.2, here we also use the code developed by G.Snider [Snider1990] with suitable 

applied barrier height at the surface. VG = 0.2 V gives a homogeneous 2DEG (N1 = N2) and the 

values around 0.2 V will alter slightly N1. Large negative VG can greatly reduce N1. At VG = -0.8 V, 

the electron conduction band is lifted above the system Fermi level and a small wave function 

peak locates around the interface AlGaAs/GaAs. In this condition, N1 is smaller than ten percent 

of N2, indicating most of electrons below the metal strips are pushed out of the region. 

Now we turn to the influences of “gate” biasing on the absorption spectrum. The electron 

concentration N2 in the unscreened region is kept constant and N1 in the screened region is 

varied between 0.12 × 1016 m-2 and 1.65 × 1016 m-2. The influence of N1 on the absorption 

spectrum of the AlGaAs/GaAs structure at room temperature is shown in Figure 2-42 with two 

typical metal filling factors W/L = 0.75 (a) and 0.5 (b). For W/L = 0.25, the absorptions at the 

resonance peaks are weak. 

Several observations can be made: 

(1) In comparison with the concentration N2, a slightly higher (lower) N1 will shifts the resonant 

peaks to high (low) frequencies. This is because the PP resonant frequency increases 

monotonically with the carrier density. The resonant amplitude has a higher value than that with 

the homogeneous 2DEG concentration N1 = N2 = 1.65 × 1016 m-2. The step distributed 2DEG is 

not equivalent to a homogeneous 2DEG with an average concentration Navg = N1 × W/L+N2 ×  

(L-W)/L, because plasmon overlaid by metallic conductor and open air follow different 

dispersions [Nakayama1974] and absorption mechanisms [Fateev2010]. 

(2) When the 2DEG is mostly overlaid by metals (W/L = 0.75) as in Figure 2-42 (a), the 

absorption amplitudes are reduced by decreasing N1. At N1 = 0.12 × 1016 m-2 (N1 << N2), the 

absorption (at 0.4 THz) becomes not discernible due to the extremely small N1. Moreover, a new 

resonance peak with a substantial amplitude appears and dominates at a higher frequency (2.3 

THz). As the metal strip width W decreases as shown in Figure 2-42 (b), two resonance peaks 

appear and the dominant peak shifts to low frequency (1.7 THz). The second peak exists at 5.05 

THz but it is not shown in Figure 2-42 (a) because it is beyond the maximum frequency of 5 THz 

in the simulation. Obviously, the dominant peak position depends on the gap width WG (= L-W). 

We attribute this phenomenon as the onset of microcavities in the region WG where the 

unscreened plasmon begins to play the most important role in the absorption spectrum. Further 

explications will be shown in next section on the strong modulated 2DEG (N1 ≈ 0). Finally, the 

resonant amplitude has a higher value than that with the homogeneous 2DEG concentration N1 

= N2 = 1.65 × 1016 m-2, showing that the plasmon in open surface region can be more efficient to 

couple with the incident THz signal [Popov2008-2]. 

(3) As the metal width W decreases, all the absorption amplitudes decrease and the resonant 

peaks of the screened plasmon move to a slightly larger values as discussed in section 2.4.7.3 for 

the influence of W/L on the resonant frequency, while the shift of the unscreened plasmon 

resonant position is in an opposite direction. 
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Figure 2-42: Absorption spectrum of the AlGaAs/GaAs structure with different 2DEG 

concentration N1 at 300 K, where the metal width (a) W = 0.75 µm and (b) W = 0.5 µm. The step 

function model is used with the parameters N2 = 1.65 × 1016 m-2 and L = 1 µm 
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2.6.3 Strongly modulated 2DEG 

 

         

Figure 2-43: Schema of strongly modulated 2DEG in AlGaAs/GaAs structure: (a) with metallic 

grating, and (b) without metallic grating 

 

Here the strongly modulated 2DEG system in AlGaAs/GaAs (N1 = 0, N2 = 1.65 × 1016  m-2) will 

be studied both with and without grating coupler by CWM, as shown in Figure 2-43 (a) and (b), 

respectively. Figure 2-44 plots their original absorption spectra at 300 K with W/L = 0.75 (L = 1 

µm). Compared with the curve with grating, where only one dominant resonant peak at 2.3 THz 

is observed, the small vibrations in the curve (N1 = 0.12 × 1016 m-2 and N2 = 1.65 × 1016  m-2) in 

Figure 2-42 (a) are attributed to the screened plasmon below the metal fingers with nonzero 

electron concentration N1. For the curve without grating in Figure 2-43 (b), one dominant 

resonance also appears at 3.05 THz with a much weaker amplitude. Therefore, the grating is 

helpful to reinforce the absorption of plasmon in this strongly modulated system. The amplitude 

and frequency of this type of resonance will be traced in function of the metal width in next 

paragraph. 
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Figure 2-44: Original absorption spectrum of the strongly modulated AlGaAs/GaAs structure 

with and without metallic grating at 300 K. N1 = 0, N2 = 1.65 × 1016 m-2, L = 1 µm, W = 0.75 µm and 

d = 25 nm 

(a) (b) 
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The references [Matov2002] and [Popov2003] demonstrated that there is a fundamental dipole 

like oscillation (antisymmetric electron density distribution at the opposing boundaries of 

electron strip) under the open surface part (WG = L-W) when N1 is zero. The dipole mode 

frequency in the classical one dimensional (1D) array of isolated electron channel with 

rectangular profile is evaluated by the formula,  

2

1

0

1

2 *( )

S
D

N e
f

m L W  



                                                  (2-51) 

Where  is the effective permittivity of the heterostructure including the dielectric screening 

effects of the layers of materials around 2DEG. The motion of electrons is classically confined 

(not quantum confinement) in the x direction. For the screened and unscreened structure,  has 

explicit approximate expressions [Ager1992-1] according to the expressions (2-41) and (2-40), 

1
( coth( ))          

2

1
( tanh( ))         
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s b

s b
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 



 


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 
 


                             (2-52) 

Where s and b are the corresponded relative permittivity of the substrate GaAs and the barrier 

AlGaAs, d is the barrier thickness, and k = π/WG is the plasmon wavevector in this case. 

In Figure 2-45, the frequency f1D and amplitude A1D of the principle resonance in the modulated 

AlGaAs/GaAs system are recorded versus the metal filling factor in [0.02-0.98]. Frequencies 

calculated by the analytic formula (2-51) are also superimposed for comparisons in Figure 2-45 

(a). As the case of homogeneous 2DEG, the resonant frequency with grating is always below that 

without grating in the strongly modulated 2DEG. At W/L ≈ 0, both of them begin at the same 

f1D ≈ 0. Because in this condition the 2DEG is almost homogeneous with electron density N2 

without grating coupler, no resonance will appear. The analytic formula using screened effective 

permittivity underestimates the observed resonant frequency with grating for W/L < 0.9, while 

the formula employing unscreened effective permittivity overestimates the resonant frequency 

without grating for W/L < 0.6. As W/L approaches 1, both the four curves converge at 

extremely high frequency due to the explosive growth of plasmon wavevector k = π/WG (WG ≈ 

0). In this condition, the screened and unscreened effective permittivity are equal because 

coth( )kd  = tanh( )kd as 1kd  . It should be mentioned that when the 200 nm thick Au 

gratings are replaced by the semitransparent NiCr grating in [Matov2002, Mackens1984], it is 

approximately equivalent to the case of strongly modulated 2DEG without grating (open surface 

in Figure 2-43 (b)) because the semitransparent grating has nearly no screening effect. We can 

conclude that the Au metal grating strongly screens the plasmon in the open surface region even 

though the electron density below metal finger is nearly zero and the dominant peak position can 

be predicted to locate between the screened and unscreened dipole like resonance by expressions 

(2-51) and (2-52). 
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Figure 2-45: (a) Frequency and (b) amplitude of original absorption spectrum of the strongly 

modulated AlGaAs/GaAs structure versus the filling factor (W/L = 0.02-0.98) with and without 

metallic grating at 300 K. N1 = 0, N2 = 1.65 × 1016 m-2, L = 1 µm and d = 25 nm. Simulated by 

CWM 

Finally, we turn to the original absorption amplitude A1D versus filling factor in Figure 2-45 (b). 

At W/L ≈ 0, the grating in Figure 2-43 (a) can be considered to be not existent and it is 

equivalent to the case in Figure 2-43 (b) without grating. So the two curves converge to the same 

absorption at W/L ≈ 0 (the nonzero absorption at 0.1 is due to the Drude background 

absorption of homogeneous 2DEG with concentration N2). Then with the increase of W, the 

two types of amplitude behave in an inverse direction. A1D with grating increases monotonically 

till W/L = 0.93 then decreases abruptly to zero. This is the same phenomena observed in the 

homogeneous 2DEG in AlGaAs/GaAs structure with grating (Figure 2-29 and Figure 2-31). For 

A1D without grating, the absorption is mainly attributed to the Drude background type of 2DEG 

in the open face region. Naturally, it decreases monotonically to zero with reduction of the 

number of electrons in the 2DEG layer, or equivalently with the enlargement of W. We conclude 

that in the strongly modulated 2DEG system in AlGaAs/GaAs without grating, the self 

modulated 2DEG layer cannot replace the functions of metallic grating to scatter the incident 

THz wave and to make strong coupling between the evanescent waves and the plasmons. 

Metallic grating is still indispensable to achieve high absorptions in the strongly modulated case. 

The tunability of f1D and A1D can only be achieved by modifying metal width as the electron 

density N2 is no longer allowed to alter. Furthermore, the technological realization of a 

modulated 2DEG system without grating is difficult. 

2.6.4 Conclusions 

Numerical method based on slightly modified CWM is used to study the spectrum response of 

an inhomogeneous 2DEG system. Two types of modulation are distinguished. The first is the 

natural modulation of electron concentration below and between metal fingers due to the 

difference between the barrier height at metal/semiconductor interface and Fermi level pinning 

at air/semiconductor interface. This is evident for 2DEG in AlGaAs/GaAs structure and is 

negligible in nitride based materials. The second type is the forced modulation by applying bias 
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voltage on metal fingers to alter electron concentration. The tunability of THz detection can be 

realized.  

In the system of strongly modulated 2DEG in AlGaAs/GaAs, metal grating with relatively high 

filling factor helps to reinforce plasmon absorption in the quasi-1D array of electron strips. The 

tuning of absorption frequency and amplitude is not easy to realized once the sample is fabricated. 

2.7 Conclusions of Chapter 2 

To conclude this chapter,  

2D plasmon in the heterostructures has been introduced. The calculation of the electron 

concentration is modelled when considering the polarization induced sheet charge. Different 

electron scattering mechanisms in the two dimensional system are discussed for the 

determination of electron mobility in function of the temperature. Numerical method of 

spectrum calculation for heterostructure with periodic metallic grating to realize the coupling 

between THz radiation and 2D plasmon has been derived in detail assuming TM polarized plane 

wave excitation from the air region on top of the grating. The dispersions of plasmon and 

plasmon polariton (PP) are displayed for three cases: screened plasmon (W/L = 1), unscreened 

plasmon (W/L = 0) and partially screened plasmon (0 < W/L < 1). Both the thicknesses of 

grating and 2DEG layer are considered and compared in the dispersions curves. 

The effectiveness of the coupling between 2D plasmon and THz waves for several hetero 

structures such as AlGaN/GaN, InAlN/GaN, SiGe/Si/SiGe, AlGaAs/ GaAs has been 

calculated using HFSS software and home made model. The overall optimal hetero structure 

which has the maximum absorption due to the excitation of plasmon polariton has been proved 

to be the nitride based material. A large carrier concentration could be formed by the high 

spontaneous and piezoelectric polarizations without any doping layer. The other types of 

structures also have interesting performances at cryogenic temperatures because of the dramatic 

increase of the momentum relaxation time. Experimental and theoretical transmissions spectra 

agree very well in different temperatures and filing factors. Lower temperature and higher ratio 

W/L are appreciated for stronger PP resonances. 

Then the incidence of a non uniform 2DEG concentration in the QW has been investigated. 

Three non uniform 2DEG profile models (piecewise constant, linear and parabolic) have been 

compared by the coupled wave method for the structure AlGaAs/GaAs. They are equivalent in 

this case because of the calculated small width t1 of the transition region. The effect of the 

metallization voltage on the absorption spectrum reveals that the tunability of the resonant 

frequency by the bias voltage is also possible. 

When the amplitude of applied negative voltage is sufficiently large to exclude the electron 

density below metals, the strongly modulated 2DEG will be formed. In this case, a dipole like 

resonance mode appears. Analyze of the frequency and amplitude of the resonance in function of 

the metal filling factor showed that both of them can be altered by the metal width.



 

 



 

 

Chapter 3 3D Electromagnetic Modeling and 

Measurements of  Planar Waveguides in THz 

Frequency 

3.1 Introduction 

Planar waveguides are widely used in the microwave hybrid and monolithic integrated circuits 

(ICs) due to following advantages: (1) The waveguide characteristics (impedance, phase velocity, 

effective dielectric constant, etc.) can be easily controlled by the geometrical dimensions in a 

single plane. (2) The fabrication process can be realized by the standard technologies of 

photolithography, etching or lift-off process. (3) Parallel and serial combination of different 

structures may be conveniently accomplished without bringing great difficulties in the 

manufacture. 

Among these waveguides, the structures exhaustively studied in millimeter wavelength range are 

stripline, microstrip line, coplanar waveguide (CPW), slotline and finline. Each type of line has its 

own advantages [Gupta1996]. Stripline has the unique feature of pure Transverse 

Electromagnetic (TEM) propagation (no dispersion) in the microwave frequency range. Its 

inconvenience comes from its geometry. Specific technological steps are needed notably in 

connection level with active or passive elements in the case of open planar circuits to be 

measured by a standard vector network analyzer. Microstrip line has been intensively studied and 

is well understood. This waveguide dominates in the microwave circuit with flexible adjustments, 

however via/holes are required to ground active devices which need complex technological steps 

and may degrade circuit performances at millimeter wave frequency. In reference to microstrip 

line [Pucel1981], CPW facilitates the connection with field effect transistor (FET), where the RF 

ground needs to be placed close to the device. Via/holes are not necessary. The major 

disadvantage of CPW is the unintentional excitation of parasitic slotline mode. The slotline shares 

some merits of CPW, but exhibits high dispersion behavior which makes it usually not applicable 

for broadband applications [Maloratsky2003]. Another type of transmission line, called Goubau 

line (G-line), was proposed firstly by Goubau in 1950 [Goubau1950] employing a lossy 

conductor with a cylindrical cross section coated by thin dielectric in free space. As the planar 

version of G-line compatible with semiconductor technology, planar Goubau line (PGL) with a 

rectangular cross section is preferred for its easy realization and integration. 

However, as the frequency increases up to THz, both the losses and dispersions of theses planar 

waveguides will differ from their properties in microwave range. So far, their propagation 

properties at THz frequency are not completely known and understood. In order to fill the gap, 

reevaluation of planar waveguides is necessary for short distance propagation as well as for the 

integration with the sources and detectors based on plasmonic semiconductor devices. 

In this chapter, a 3D analysis of planar waveguides using ANSOFT HFSS® 

(http://www.ansys.com/) based on the frequency domain finite element method (FEM) and 

CST MWS® (http://www.cst.com/) based on finite integration technique has been conducted. 

Four kinds of waveguides have been studied: CPW with finite ground plane width (with and 

without backed conductor), microstrip, slotline and stripline on polymer or semiconductor 
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substrate. Many efforts have been put together to make a qualitative assessment of the dispersion 

and the losses in these different waveguides to optimize the THz transmission. 

The CPW study enters in a continuity of the first analysis done in our group applied to the 

transmission of the THz pulse emitted from a InGaAs photoconductor (PC) switch on the InP 

substrate. Through this thesis, the CPW was investigated on a different substrate (a 

benzocyclobutene polymer). Simulations of slotline and stripline were also investigated in part by 

a master student during her internship in the team.  

The influences of waveguide dimensions, metal conductivity and dielectric properties (low 

permittivity polymer and high permittivity semiconductor) on attenuations and dispersions are 

analyzed quantitatively by parametric studies performed numerically. After separated discussions 

for each transmission line, the four types of waveguides were compared to identify the best 

structure.  

Finally, I have fabricated the waveguide CPW and microstrip on BCB in the clean room 

(CTU/MINERVE) at IEF. Preliminary experimental results of CPW with various widths and 

lengths will be presented in [340-500] GHz frequency range and compared with numerical 

simulations. Equation Chapter 3 Section 1 

3.1.1 Electromagnetic modeling methods 

The analysis approach of waveguide can be generally divided into two groups: quasi static and full 

wave methods. Quasi static method assumes the TEM mode propagation in the structure and it 

can be applied mainly at low frequency, where the conductor dimensions and dielectric thickness 

are much smaller than the wavelength in the dielectric substrate. This method can give analytical 

results of attenuations in a simple waveguide structure and provide qualitative reference for the 

designer at high frequency. To overcome the frequency limit of quasi static method, a more 

rigorous approach named full wave method was developed to consider the hybrid nature of 

mode in a waveguide and to calculate the complex propagation constant as a function of the 

frequency. According to the space or time discretization, different numerical methods appear: 

finite element method (FEM), finite integration technique (FIT), finite difference time domain 

(FDTD) method, etc. In this work, HFSS based on FEM and CST MWS based on FIT were 

employed to model all types of planar waveguides. The main analysis procedures for a waveguide 

structure can be briefly described following different steps as: 3D model development 

(conductors, dielectrics and surrounding air), material property attribution, boundary condition 

assignment, excitation signal setup (waveport), and EM analysis (meshing properties, 

convergence criteria and solution frequency).  

3.1.2 Dispersions and losses of a waveguide 

The figure of merit for any type of waveguide is the complex propagation constant 

( ) ( ) ( )j        where 2 f   is the angular frequency and j is the imaginary unit. The 

real part ( )   corresponds to attenuation losses per unit length and imaginary part 

( ) 2 /
g

     (
g

  is the wavelength of guided mode) represents the phase constant in function 

of the frequency. The phase and group velocities can be obtained directly from ( )  . An ideal 
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transmission line has a TEM propagating mode with minimal attenuations. In HFSS, ( )   and 

( )   are calculated in different manners as discussed in the next sections. 

3.1.2.1 Dispersions 

The dispersions relation ( )   represents the phase constant as a function of the frequency for 

all existing modes in a waveguide. It is extracted directly from HFSS from modeling with two 

waveport excitations. 2D waveport is designated to excite 2D or 3D models of waveguides. The 

modes excited in the waveguide are determined by the natural solutions of Maxwell's equations at 

a certain frequency in the 2D waveport area plane x-y (HFSS User's Guide, version 10, 2005),  

2

0

1
( ( , )) ( , ) 0r

r

E x y k E x y


                                     (3-1) 

Where r and r are the relative complex permittivity and permeability of the material, 0k is the 

free space wave number. Each mode has a distinct ( , )E x y  pattern and a phase constant ( )   if 

no degeneracy appears at the frequency . 

Based on the dispersion relation ( )  , other parameters, namely the phase velocity V
p

 and the 

group velocity V
g

can be defined as, 

   
,p g

d
V V

d

 

   
                                              (3-2)           

For TEM wave propagating in an homogeneous dielectric: /p g rV V c   . If there is 

dispersion (non TEM wave), both V
p

 and V
g

 will be dependent on frequency.  

Another parameter frequently used in the planar waveguide is the effective dielectric constant for 

a certain mode. It is related to the phase constant ( )   as,  

 
2

eff

c 




 
  
 

                                                      (3-3) 

For a mode propagating at the interface air/dielectric substrate, 
eff
  is between 1 and

r
 . The 

eff
  value reflects the relative level between field confinement in the dielectric and in the air 

regions. If 
eff
  approaches

r
 , the most of the EM energy is concentrated in the dielectric 

substrate region. Various modes can propagate in the waveguide and thus with different
eff
 . 

In regard to the four types of waveguide and as we know in microwave frequency, only the 

principle mode in a stripline (or tri-plate) surrounded by homogenous dielectric has its phase 

constant equal to the one of the dielectric substrate. The others lines are non TEM, because the 
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propagation takes place in two media simultaneously and components of the EM fields appears 

in the direction collinear to the wave vector. Moreover parasite or high order modes appear at 

certain frequencies (cutoff frequencies). Even in stripline high order modes appear at high 

frequency.   

If parasite modes appear, the dominant mode may lose energy: Its phase velocity can become 

higher than the other modes, making possible the coupling between them and then an energy 

transfer. Among the unwanted modes there are the surface wave and the high order modes in the 

dielectric slab with finite thickness [Collin1960]. The surface waves can be possibly excited above 

the cutoff frequencies in planar waveguides owing the interface air/dielectric or metal/dielectric 

(Appendix A: Surface waves in a planar waveguide). 

From the general point of view, when one mode M1 has a phase velocity equal or higher than the 

other mode M2, a part of energy can be transferred from mode M1 to mode M2. The frequency at 

which the two modes have the same phase velocity is defined as the critical frequency. For 

instance, in CPW structures, the critical frequencies between the CPW mode and the surface 

wave modes (Appendix A: Surface waves in a planar waveguide) are calculated with the 

approximation that the effective dielectric constant for CPW mode is the average value of 1 and 

r
  [Collier1999], 

2
(arctan ), 0,1,2...

1 (2 ) 2
cri

r

c n
f A n

h



 
  


                       (3-4) 

Where A = 
r

  for TM mode and A = 1 for TE mode. h is the thickness of dielectric. The 

formula is also valid for other waveguides if one assumes that the effective permittivity of the 

principle mode is (1+
r

 )/2 and the surface waves exist. This formula can tell us approximately at 

which frequency, the coupling between modes becomes possible. Actual observed frequency may 

differ from the expression (3-4) due to the frequency dependent
r

 . The theoretical cutoff and 

critical frequencies of surface waves in CPW structure will be discussed in section 3.2.3.2 but they 

also apply in the other transmission lines. 

3.1.2.2 Origin of losses 

The total losses in a waveguide can be truncated as a linear combination of three kinds of loss: 

T R D C                                                                     (3-5) 

Where R , D and C  are the radiation, dielectric and conduction loss, respectively. 

The radiation loss is often omitted in microwave circuit design, but they cannot be neglected at 

THz frequency. Different physical mechanism contributes to these attenuations. Following the 

expression (3-5), the three types of losses are independent and they can be investigated separately 

for each transmission line. To evaluate the losses in the 3D structure by HFSS, two waveports are 

used at the entrance and exit planes, and the scattering parameters (S parameters) are extracted 

between waveports. At each frequency, excitation signal is the type of sinusoid continuous wave 
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(CW). The attenuation   (positive, in dB) introduced by the waveguide is defined as the ratio of 

the transmitted power to the total power delivered to the device through S parameters, 

2

21

2

11

10log
1

S

S
  


                                                         (3-6) 

For a homogeneous line without impedance variation and transition, 11S  = 0. This is true with 

waveport excitation of a uniform transmission line in HFSS. The excitation is directly done 

through a source perfectly match to the waveguide at each frequency. The loss can be then 

simplified and written as: 

2120log S                                                              (3-7) 

To separately study the origins of losses, the material properties of the substrate and the 

conductivity of the metal are manipulated according to the values in Table 3-1. For the radiation 

loss
R

 , the metal is assumed to be quasi perfect (PEC) with an extremely large conductivity 

(
Au  = 1010 S/m) and the loss tangent in the dielectric is null. A finite metal conductivity (

Au  = 

4.1.107 S/m or 5.106 S/m for gold) is assigned to the conductor for the evaluation of the 

conduction loss
C

 .   

To estimate dielectric loss 
D

 , the loss tangent of substrate material is included and the metal is 

PEC.  In our study a semiconductor or polymer substrate was used: indium phosphide (InP), or 

benzocyclobutene (BCB). For InP, the loss tangent is frequency dependent and its expression is 

0tan /( )InP InP InP     , where 0  is the permittivity in vacuum and InP = 2.4 S/m is the 

conductivity of InP. We employed also benzocyclobutene (BCB) as polymer dielectric substrate. 

BCB film has attracted much attention in THz range due to its small permittivity (2.65 at 10 GHz) 

and low loss tangent (0.002 at 10 GHz). It is usually used as the dielectric on which the 

conductor lines are deposited to reduce the dielectric and radiation losses by pushing the 

propagation of high order surface wave modes at higher frequencies. The loss tangent for BCB is 

0.007 by default in the simulation. The permittivity of InP and BCB are respectively InP  = 12.5 

and BCB   = 2.42. The imaginary part of the permittivity accounts for the dielectric losses in the 

waveguides are listed in Table 3-1. 

In the total losses T , both the contributions from the metal and the dielectric are included. 

Table 3-1: Dielectric and conductor parameters for the losses calculation 

Losses α σAu(S/m) σInP(S/m) (tan δ)BCB 

αR 1010 0 0 

αR+αC 4.1.107 or 5.106 0 0 

αR+αD 1010 2.4 0.007 

αT=αR+αD+αC 4.1.107 or 5.106 2.4 0.007 
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Based on above strategies, the phase constant   and attenuation constant   will be analyzed 

separately for each waveguide versus frequency up to THz. 

3.2 Harmonic analysis of CPW on BCB at THz frequency with 

HFSS 

The conventional CPW was first proposed by C.P.Wen [Wen1969] in 1969. It consists in a 

central metal strip as signal line and two exterior strips with infinite width as ground planes on a 

semi-infinite substrate. In practical sense, as shown in Figure 3-1, both the side strip width S2 and 

substrate thickness H are finite. S1 is the central line width, W is the gap width  between the 

central and ground plane, t is the metal thickness and L is the waveguide length in the 

propagation direction. 

 

Figure 3-1: Schematic of a coplanar waveguide (CPW) on a dielectric substrate 

Comparing with the other kinds of transmission lines, the most flexibility of CPW is to operate in 

shunt or series configurations. At a few GHz, two fundamental modes propagate in CPW: a 

symmetric CPW mode and an anti-symmetric slotline (SL) mode. For actual waveguides with 

substrate of finite thickness and ground planes with finite width, surface wave modes can occur 

at certain cutoff frequencies modifying the dispersion of the device. The SL mode is also parasitic. 

In Figure 3-2, the electromagnetic fields are presented for the two modes (CPW and SL modes). 

The CPW mode has its electric field distribution symmetric in reference to the middle plane of 

the central metal strip and most EM energy is confined at the two gaps regions between central 

line and outer ground planes. The parasitic SL mode has asymmetric field extensions, so this 

mode can be minimized by using the airbridges [Lee1999] or by maintaining the line symmetry to 

avoid its excitation [Jackson1986]. As air and dielectric substrate are semi-infinite (Appendix A: 

Surface waves in a planar waveguide), no surface waves exist in this conventional CPW. 
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(a) Symmetric CPW mode 

 

(b) Asymmetric Slotline mode 

Figure 3-2: Vector electric field distribution of the two principle modes in a conventional CPW 

structure, (a) Symmetric CPW mode and (b) Asymmetric slotline mode. The highlighted parts 

correspond to metals 

Metallic air-bridges (ABs) connecting the two outer ground planes are usually added to enhance 

the symmetric mode propagation and to attenuate the slotline mode. We will discuss the role of 

the ABs in the section 3.2.2. Such CPW can be characterized by its dispersion, its losses but also 

by its impedance which both depend on its geometrical dimensions. 

In addition to be air-bridged, the CPW can be backed with a metal layer which is deposited below 

the dielectric substrate. This latter allows electromagnetic isolation from components in adjacent 

layers in a multilayer circuit. For CPW with backed conductor, in addition to the two main modes 

(CPW and SL modes in Figure 3-3 (a) - (b)), another mode called ''Microstrip mode'' can be 

produced, as shown in Figure 3-3 (c). Most electric field is directed from the top metal layer to 

the underlying conductor, as in a microstrip line.  
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(a) Symmetric CPW mode in conductor backed CPW 

 

(b) Asymmetric slotline mode in conductor backed CPW 

 

(c) Microstrip mode in conductor backed CPW 

Figure 3-3: Vector electric field distribution of the three propagating modes in a conductor 

backed CPW (CB-CPW) structure: (a) CPW mode, (b) Slotline mode, and (c) Microstrip mode. 

The highlighted parts correspond to metals 

In the next section we present the different CPW configurations studied. 
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3.2.1 Simulated CPW structures  

Four configurations are proposed according to the presence or not of the ABs and backed 

conductor (BC) (Figure 3-4), where the underlined letters denotes the absence of component. 

The substrate thickness is fixed at 30 µm with the backed conductor (Figure 3-4 (c) and (d)) and 

assumed to be semi-infinite for the first two cases (Figure 3-4 (a) and (b)) by employing perfect 

match layer (PML) around the whole structure to simulate open air or infinite extension of 

materials. Figure 3-5 shows the 3D model in HFSS of the structure Figure 3-4 (d). Waveports are 

used for the excitation of the modes in CPW. The width of the waveport is chosen to be at least 

three times of the effective width Weff (= S1 + 2W) to avoid the fringing field coming from the 

central strip trace to waveport edge. 

              

(a) AB/BC (without AB, without BC)                                   (b) AB/BC (with AB, without BC) 

      

(c) AB/BC (without AB, with BC)                                         (d) AB/BC (with AB, with BC) 

Figure 3-4: Four types of CPW configurations in the numerical simulation (BC: Baked Conductor) 

A typical CPW structure contains a central strip and two metallic ground planes on a 

semiconductor dielectric substrate. The geometric parameters are chosen as follows: the central 

strip width (S1 = 10 µm), ground plane width (S2 = 24 µm) and the gap width (W = 1.6, 6.6 and 

12 µm). The characteristic impedance of an ideal CPW at low frequency decreases with substrate 

permittivity r  and is proportional to the ratio W/S1. CPW on InP with W = 6.6 µm 

corresponds to the nominal structure used for PC switch applications studied in our group. Its 

characteristic impedance is 50   at 20 GHz and W = 1.6 (30  ) and 12 (66  ) µm are selected 

around 6.6 µm to study the geometrical influence. We kept the same dimensions for CPW on 

BCB substrate to perform comparisons. Thus the impedances will change and their values at 20 

GHz are: 73 (W = 1.6 µm), 102 (W = 6.6 µm) and 123 (W = 12 µm)  . To achieve a 

characteristic impedance of 50  for CPW on BCB, the gap width W should be 0.4 µm (S1 = 10 

µm), making the technological realization difficult. This can be overcome by increasing S1. For 

instance, at S1 = 36 µm, W will be 3 µm (50   CPW), which is well located within the fabrication 

limit. The 50   CPW on BCB will be characterized in the experiments at the end of this chapter. 

The simulated line length is 1 mm with two ABs equally placed at a distance of 50 µm from the 

two ends. Their thickness, height and depth are 1, 3 and 7 µm, respectively, as shown in Figure 

3-5 (b). The thickness of the strip lines and the backed conductor is 500 nm. The propagation 
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wavelengths 2 /g    of the different modes and the losses are calculated in the frequency 

range [20 – 1000] GHz. 

 

 

Figure 3-5: (a): HFSS 3D model of CPW with airbridges and backed conductor (Figure 3-4 (d)) 

and (b): Dimensions of the 3D airbridges (AB) in the simulation 

In the following sections, we will firstly discuss the role of ABs on the dispersion and losses of 

CPW on semi-infinite substrate BCB. Then the performances of CPW with ABs on semi-infinite 

substrate InP and BCB are compared versus the gap width W. The function of backside 

metallization (BC) is relatively complex. Therefore, the analysis of BC is scheduled at the end of 

this CPW numerical study.   

3.2.2  Role of the air-bridges (ABs) on effective permittivity and total losses 

Airbridges are employed to attenuate the parasitic unwanted slotline mode in the standard CPW 

structure [Lee1999]. In this part, we look at the role of the air-bridges on the effective 

permittivity, the dispersion and the attenuation constant for the CPW on BCB substrate. For this 

study, the metal conductivity is chosen at Au  = 5.106  S/m in order to take into account the non 

perfect character of metallization in the fabrication process. AB (AB) represents the case with 

(without) airbridges in the simulation, while the other dimensions and dielectric properties are the 

same. 

(a) 

(b) 
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3.2.2.1 CPW without backed metallization 

Figure 3-6 shows the effective permittivity of CPW mode for the three dimensions with and 

without ABs. As we can observe, ABs do not have an important impact on the propagation 

constant or the effective dielectric constant of the wanted CPW mode and of the parasitic slotline 

mode. 
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Figure 3-6: Influences of airbridges (AB) on the effective permittivity of the mode CPW and 

slotline for CPW on semi-infinite BCB 

Next, we move to the aspect of total losses. In Figure 3-7 (a) with W = 1.6 µm, the presence of 

ABs drastically increases the attenuation constant of slotline mode at low frequency with a typical 

value of 20 dB at 600 GHz, even at 1.5 THz, an additional 10 dB value is obtained. The 

symmetric CPW mode shows no considerable differences. At the large gap W = 12 µm (Figure 

3-7 (c)), the loss increase of the slotline mode is also comparable with the case W = 1.6 µm. At 

the high frequency side, CPW with ABs shows a little more attenuation because the fringing field 

in the gaps will extend further into the air region and touch the ABs on top with the increase of 

gap width. An additional conduction loss existing in the ABs may contribute to the increase of 

total losses. 

Although the case of CPW on InP is not shown here, it has been observed that ABs are also 

efficient to prevent the propagation of slotline mode, and at the same time have little impact on 

the CPW mode. Their influences on the phase and group velocities of CPW mode will be further 

discussed in section 3.2.3. In spite of all the advantages of ABs, the technical realization of the 

airbridges remains a challenging fabrication process. 
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Figure 3-7: Influences of airbridges (AB) on the total attenuation of CPW mode and Slotline (SL) 

mode for CPW on semi-infinite BCB: (a) W = 1.6 µm, (b) W = 6.6 µm and (c) W = 12 µm 

3.2.2.2 CPW with backed metallization 

In the conductor backed CPW, the effective permittivity of the three modes (CPW, Slotline and 

Microstrip) are plotted in Figure 3-8. Again, ABs have no impact on the dispersions of all the 

modes. 
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Figure 3-8: Influences of airbridges (AB) on the effective permittivity of the mode CPW, slotline 

and microstrip for CPW on 30 µm BCB with backed conductor at different W 

Figure 3-9 shows the total losses for the three modes in conductor backed CPW, where BCB 

thickness is 30 µm. For the mode CPW and microstrip, their attenuations are not modified 

greatly by ABs at W = 1.6 and 6.6 µm. While at W = 12 µm, the conduction losses in ABs result 

in the noticeable increase of attenuation from 0.9 THz. For the mode slotline, ABs have also the 

ability to increase its propagation loss. An additional loss of 10 dB/mm at 1 THz and 5 dB/mm 

at 1.5 THz in reference to the case without ABs at W = 1.6 µm. This advantage becomes weak at 

large gap (W = 12 µm).  

The fluctuations appearing in the losses are attributed to the formation of resonances due to the 

existence of metallic parallel plate in the structure, which will be discussed in section 3.2.4.2. 
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Figure 3-9: Influences of airbridges (AB) on the total attenuation of mode CPW, Slotline (SL) and 

Microstrip (MS) for CPW on 30µm BCB with backed conductor: (a) W = 1.6 µm, (b) W = 6.6 µm 

and (c) W = 12 µm 

We conclude that the ABs do not play an important role on the dispersion and losses of CPW 

mode with and without backed conductor for frequency below 1 THz. But they can reduce the 

effects played by the slotline mode in the signal propagation in CPW. It should be mentioned 

that the number, dimensions and positions of ABs in CPW structure may modify the roles 

presented above. In the following, we choose the CPW configuration with ABs to evaluate the 

influences of backed conductor on its dispersions with the variations of substrate and gap 

dimensions. 

3.2.3  Modal dispersions, coupling effect, phase and group velocities 

The dispersion curves of a waveguide offer the relationship between the propagation constant   

and the excitation signal frequency for all the modes supported by the structure. Moreover, it also 

allows calculating the coupling coefficients between two different modes to numerically quantify 

their interactions. For example, the coupling between CPW mode and the other modes or waves 

(slot line mode, substrate wave and surface waves) may influences the radiation loss of CPW 

mode [Grischkowsky1987] based on the analysis of phase and group velocities. 

3.2.3.1 AB-CPW without backed conductor 

The Figure 3-10 plots the dispersions of both the two modes (CPW and Slotline modes) of CPW 

structure AB/BC (Figure 3-4 (b)) on the two types of dielectric BCB and InP. The loss and 

dispersion properties of CPW on the substrate InP comes from a previous work of our group 

[Grimault2012].  

The straight lines TEM BCB or TEM InP represent the free propagating wave in the bulk substrates 

( 2 /rf c   ) as the reference. The gap width is fixed at W = 6.6 µm. For CPW on BCB, 

the dispersion curve of the mode CPW does not intersect with other modes in all the frequency 

range up to 3 THz, indicating that low power leakage from CPW mode to Slotline mode.  
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Figure 3-10: Comparison of dispersion curves for conventional CPW on semi-infinite substrate 

BCB and InP with airbridges (S1 = 10 µm, S2 = 24 µm, W = 6.6 µm) 

When the frequency of the excitation signal is close to the critical frequency, mode coupling will 

become strong and we can evaluate numerically the coupling efficiency between two propagating 

waves in the structure with the calculation of a field overlap integral. According to the coupled 

mode theory [Haus1991], we can define a coupling coefficient whose expression is [Riaziat1990]: 

   

1 2 2 1

1 1 2 2

0.5 ( )E H E H dS
C

E H dS E H dS

   


   


                                      (3-8) 

Where dS  is the normal surface vector in the propagation direction of transmission line, and 

subscripts 1 and 2 indicate the two interacting waves. A large value of C between 0 and 1 stands 

for great coupling effect. 

Indeed, the calculated coupling coefficient is 0.0033 at 3 THz for CPW on BCB while for CPW 

on InP, the curve of the slot line mode crosses the CPW mode at 0.6 THz, predicting the onset 

of energy exchange between the two modes. The coupling coefficient is 0.2764 at 600 GHz. 

Because the phase velocity of CPW mode is always greater than the TEM wave in the substrate, 

the CPW is unconditionally leaky that leads to the radiation losses. The coupling coefficients 

between CPW mode and Slotline mode are listed in Table B-1 and Table B-2 for CPW without 

and with ABs, respectively in Appendix B: Coupling coefficients in CPW.  Up to 1.5 THz, the 

coupling is still negligible and the functions of ABs on reducing the coupling effect are not 

obvious for CPW on BCB. However, as seen in previous sections, ABs can greatly attenuate the 

slotline mode. 
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Figure 3-11: Phase (solid) and group (broken) velocities of CPW mode in conventional CPW on 

BCB substrate with ABs 

Figure 3-11 presents the phase and group velocities of the CPW mode in conventional CPW 

structure. We conclude that CPW mode is more dispersive as the frequency or the gap width 

increases because the discrepancy between V
p

 and V
g

  becomes larger. 

3.2.3.2 AB -CPW with backed conductor 

In Figure 3-12, the dispersions curves of the three propagating modes in a conductor backed 

CPW (W = 12 µm) on BCB are shown. The cutoff frequency is 0.8 THz for slotline mode and 

0.9 THz for microstrip mode due to the excitation scheme. Because their phase velocity is always 

greater than that of the CPW mode from DC frequency to 1.5 THz, less leakage from CPW 

mode to them is expected to occur. At 1.5 THz, the coupling coefficient is 0.0114 between CPW 

mode and slotline mode and 0.0003 between CPW mode and microstrip mode. Mode coupling is 

weak, so the radiation loss will be mainly due to the leakage into the substrate of the dominant 

CPW mode. The coupling coefficients between CPW mode, Slotline mode and microstrip mode 

are listed in Table B-3 and Table B-4 for CPW without and with ABs, respectively in Appendix B: 

Coupling coefficients in CPW.  At the cutoff frequency of microstrip mode, the coupling 

coefficient with CPW mode is much higher than that between Slotline and CPW modes, showing 

microstrip mode is easier to couple with CPW mode due to their common symmetry of field 

distributions in the two gap regions (Figure 3-3 (a) and (c)). As in conventional CPW, the 

functions of ABs on reducing the coupling effect in conductor backed CPW is not obvious, but 

ABs can also greatly attenuate the slotline mode. 
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Figure 3-12: Dispersion curves of the three supported modes for conductor backed CPW on 30 µm 

BCB substrate with airbridges (S1 = 10 µm, S2 = 24 µm, W = 12 µm) 

One may observe that the cutoff frequency of the slotline mode is not zero as predicted by 

microwave theory. This is due to the specific excitation method for CPW in the software HFSS 

with a waveport. The excitation of surface waves in dielectric waveguide is also prohibited.  

Furthermore, even if the surface waves are excited in the conductor backed CPW, there 

influences on the CPW mode will not be broad in the considered frequency range. Table 3-2 

summarizes the cutoff frequencies and the critical frequencies of the first four surface waves in 

CPW with backed conductor on the low permittivity BCB and high permittivity InP.  Only TM 

odd and TE even modes appear. The first surface wave is TM0 with zero cutoff frequency in 

theory and the critical frequency is located at 2.2 THz for CPW on BCB due to the small 

dielectric constant. The next mode is TE1 with the cutoff frequency of 2.1 THz. For CPW on 

substrate with large permittivity, both the cutoff frequency and the critical frequency of the 

surface waves decrease. Fortunately, the critical frequencies of the first surface wave TM0 are very 

high (2.2 THz for BCB and 1.0 THz for InP). Therefore the coupling effect between CPW mode 

and different surface wave modes are omitted in numerical calculations. 

Table 3-2: The cutoff frequencies of surface waves in the structure air/conductor backed 

dielectric (thickens h = 30 µm, BCB = 2.42, InP = 12.5) 

 
Surface wave 

BCB InP 

Cutoff frequency 
(THz) 

Critical frequency 
(THz) 

Cutoff frequency 
(THz) 

Critical frequency 
(THz) 

TM0 0 2.2 0 1.0 

TE1 2.1 4.5 0.7 1.6 

TM2 4.2 8.2 1.5 3.1 

TE3 6.3 10.4 2.2 3.6 
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Figure 3-13: Phase (solid) and group (broken) velocities of CPW mode in conductor backed CPW 

on BCB substrate with (b) airbridges 

In Figure 3-13 the phase and group velocities of the CPW mode in conductor backed CPW 

structure at the three W values are presented and compared. As in the conventional CPW, CPW 

mode is more dispersive at larger f (>500 GHz) and for larger W.  

3.2.3.3 Comparison of effective permittivity between AB CPW with and 

without backed conductor  
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Figure 3-14: Effective dielectric constant of CPW mode on the substrate BCB with airbridges (S1 

= 10 µm, S2 = 24 µm) 
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To evaluate directly the influences of backed conductor on the dispersion of the mode CPW, 

Figure 3-14 compares the effective permittivity at different gap width for CPW with (BC) and 

without (BC) backed conductor.  The effective permittivity was calculated by equation (3-3). 

Both the waveguide dimensions and the frequencies affect
eff . As seen in Figure 3-14, the 

effective permittivity increases with both the frequency and gap width due to more confinement 

of EM field in the dielectric side. At large W, the increase 
eff  is rapid. Hence CPW at greater W 

suffers from more dispersion. Additionally, the existence of backed conductor helps to enhance 

the penetration of field components in the dielectric for the three gap widths, therefore showing 

a relatively larger effective permittivity 
eff  than conventional CPW. 

After examinations of these propagating modes in conventional and conductor backed CPW, the 

different contributions in the losses will be evaluated quantitatively. 

3.2.4 Influence of the gap width on the losses 

In this section, the effect of gap width on the losses of CPW on different substrate (BCB and InP) 

is investigated in order to find the optimal structure.  

3.2.4.1  Losses of CPW without backed conductor 

The CPW with ABs is firstly evaluated in the case without backed conductor. 

I Radiation loss αR 

Radiation loss is often negligible in comparing with other attenuation components at microwave 

frequencies. This is not the case in THz range, according to Gupta et al., the radiation loss of an 

ideal CPW is proportional to the cube of the frequency [Gupta1996]. Two principal effects 

contribute to the radiation loss. The first is the energy transfer from guided wave into the 

substrate in the manner of a shock wave because the guide wave travels faster than the 

propagating TEM wave in the dielectric [Kasilingam1983]. This condition is always satisfied if the 

effective dielectric constant is below the dielectric permittivity when the guided wave propagates 

at the interface air/dielectric.  

The second effect is due to the coupling between guided wave and other existing waves or modes 

as seen in the dispersion curves. A waveguide can support multi-modes propagation. Each mode 

has its distinct field distribution and the cutoff frequency. The coupled mode theory [Haus1991] 

predicts that when two waves have close phase velocities in a transmission structure, their phase 

constant ( )   will be modified through a coupling coefficient, which is a function of the overlap 

field integral between the two modes in the plan perpendicular to the propagation direction. 

When coupling occurs, there will be energy exchange between them. Normally, the surface wave 

TE0 (TM0) with zero cutoff frequency and the high order waves in the structure air/dielectric slab 

[Collin1960] are the main radiation causes when they travel slower than the guide wave. The 

cutoff frequencies of high order surface waves depend on the dielectric thickness and permittivity. 

Besides surface waves, other parasitic modes also have the possibility to couple with the guided 

mode. 
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The surface waves are not excited in the structure and the coupling coefficient between CPW 

mode and the other parasite modes (Slotline mode and Microstrip mode) is quite small for CPW 

on BCB, the main contribution in the attenuation comes from the radiation of CPW mode into 

the substrate. CPW mode is unconditionally leaky. This phenomenon has been explained as the 

shock wave [Rutledge1983, Grischkowsky1987], and the CPW mode losses its energy at an angle 

of  into the substrate. It is determined by the Cerenkov radiation condition [Jelley1958], 

cos
effCPW S

S CPW r

v

v



 
                                               (3-9) 

Where v  is the phase velocity,   is the propagation constant, S represents the dielectric 

substrate, CPW signifies the guided CPW mode. This angle reflects the mismatch between the 

two corresponding phase velocities. When
eff r  ,  = 0, the energy emission into the 

substrate will be prohibited. Hence the radiation loss depends critically on this angle. Normally, 

eff  is a function of frequency and can be obtained by fitting the dispersion relation of 

experiment data.  

The dependency of the radiation losses of an ideal CPW on the gap width and the frequency 

could be estimated based on non static approximation [Frankel1991]: 

2 2 3/2
31

3

(1- / ) ( 2 )
0.1661  ( / )

( ) ( )/

eff r r
R

eff r

S W
f dB mm

c K k K k

  


 


 


                       (3-10) 

Where K and K' are the first and second kinds of the complete elliptic integrals. 1

1 2

S
k

S W



is 

the geometric factor. The length and frequency are in SI units. The term 

2(1- / )

/

eff r

eff r

 

 
 depends 

on the CPW dimensions W, the material permittivity 
r

  and the radiation frequency, and 

2

1

3

( 2 )

( ) ( )

S W

c K k K k




is only a geometric dependent factor.  
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Figure 3-15: Comparison of radiation losses for the CPW configuration AB/BC on BCB and InP 

Figure 3-15 plots the radiation losses versus frequency for CPW configuration with airbridges 

and without backed conductors on the two kinds of substrates. The analytic curve is calculated 

through equation (3-10) under the approximation: (1 ) / 2eff r   . All the simulated discrete 

points are fitted by a polynomial curve with a maximum order of 3. For the frequency below 400 

GHz, the dependency of R  on the frequency is weak, while at high frequencies, a cubic relation 

f3 appears. The theoretical value with W = 6.6 µm follows the increasing trend but 

underestimates the losses especially for CPW on InP, due to the static approximation and other 

losses terms or coupling effects not considered in the formula. The discrepancy probably also 

comes from that the width of the ground plane is S2  = 24 µm in the simulation, which exhibits a 

finite width far from the ideal case S2   = ∞. A large gap width will make the electric line penetrate 

more into both the substrate and the air. This sensitivity could be seen from the relation 
2

1( 2 )R S W   in the expression (3-10) when 
eff  is assumed to be not frequency dependant. 

The radiation loss will increase drastically with W. It should be mentioned that the loss 

incensement is not relevant to the increase of effective permittivity with W as shown in Figure 

3-14. In fact if the waveguide dimensions are fixed, a large effective permittivity will decrease the 

radiation loss, due to the reduction of the radiation angle in equation (3-9). The advantage of 

the BCB substrate over InP is the small permittivity ( /eff r   for CPW on BCB is larger than that 

of CPW on InP), leading to a weak factor 

2(1- / )

/

eff r

eff r

 

 
and low losses in THz frequency range. 

Another reason is that the coupling between CPW and slotline mode in CPW on InP is much 

higher than that for CPW on BCB as demonstrated in section 3.2.3.1. The radiation loss 

dominates at high frequencies when comparing with other types of losses discussed in the 

following. 
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II Conduction loss αC 

Conduction loss or ohmic loss is attributed to the finite conductivity σ (4.1.107 S/m) of the metal 

strip. The complex surface impedance for a meal is expressed as [Keil1992], 

 1 (1 )
coth( )s

j j t
Z

 

 
                                                             (3-11) 

Where 
1

f


 
  is the skin depth,   is the permeability of metals and t is the conductor 

thickness. The resistance Rs is the real part of Zs. Large resistance increases the conduction loss 

when the metal dimensions are fixed. If the metal thickness is much larger than the skin depth, 

the surface resistance is approximately written as 1 / ( )R
s

 . Then a large conductivity σ can 

reduce the resistance and the conduction loss. 

The conduction loss is caused by the ohmic surface resistance when the metal thickness is larger 

than the skin depth. A square root dependency on the frequency is predicted by the analytic 

relation with wide ground planes with quasi-static approximation at microwave frequency 

[Gupta1996]: 

1
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       (3-12) 

Where Rs is the real part of surface impedance of a conductor as in the expression (3-11), 

0

30 ( )

( )
eff

K k
Z

K k






  is the characteristic impedance of the CPW, t is the meal strip thickness and P' 

is a geometry dependent parameter. As we can see, when the CPW dimensions are given, the 

conduction loss is proportional to the frequency dependent surface resistance from expression 

(3-12): 
1

C sR


   . The approximation is valid when the metal thickness is larger than the 

skin depth. Given the metal conductivity σAu = 4.1 × 107 S/m, the skin depth is δ = 178 nm at 

200 GHz and 79 nm at 1000 GHz. So the condition t = 500 nm > δ is satisfied in the above 

formula. 
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Figure 3-16: Comparison of conduction losses for the CPW configuration AB/BC on BCB and 

InP (σAu = 4.1 × 107 S/m) 

In Figure 3-16, conduction losses for CPW on BCB and InP are shown versus the frequency at 

different gap width. This analytic expression underestimates the conduction losses. As the gap 

width decreases, the current density is more confined at the surface of the central strip resulting 

in the increment of the ohm losses Rs. At the same W value, when comparing with CPW on InP, 

CPW on BCB also shows a better performance on reducing conduction losses because of its 

small effective permittivity (
0C eff effZ     as in equation (3-12)). This again validates the 

advantage of low permittivity BCB. The conduction loss is the main loss mechanism in CPW at 

low frequencies. 

III Dielectric loss αD 

Dielectric loss arises from the imaginary part of the dielectric permittivity or equivalently, the loss 

tangent tan . It is defined as the ratio of the imaginary and real part in the permittivity as in the 

expression (3-13), where d  is the dielectric conductivity. Large value of tan  will make the 

dielectric loss increase. 

0

(1 tan )d
r i r r

r

j j j


     
 

                                              (3-13) 

The non zero loss tangent tanδ in the substrate is the source for dielectric losses. The 

approximation expression for substrate loss at low frequencies (f in Hz, c in m/s) is given by 

[Gupta1996]: 

2
-1 tan

2.73 10  ( / )
-1

effr
D

r eff

f dB mm
c

 


 

                               (3-14) 
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Figure 3-17: Comparison of dielectric losses for the CPW configuration AB/BC on BCB and InP 

When the effective permittivity is assumed to be constant with frequency, the dependency of the 

losses on frequency comes only from the factor tanf  . As shown in Figure 3-17, the calculated 

dielectric losses for CPW on InP and BCB have different characteristics on frequency, because 

the loss tangent is modeled in different manners on the two substrates: according to the 

calculation parameters in Table 3-1, for BCB, a constant value of loss tangent 0.007 is used 

bringing a quasi linear relation of dielectric losses on frequency f, however, for InP, the loss 

tangent 
0

tan =
2

InP

r f




  
 is inversely proportional to frequency, yielding the dielectric losses are 

nearly not relative to the excitation frequency f. The observed slight dielectric loss variation on 

frequency and on gap width comes from the frequency dependent effective permittivity due to 

the non TEM nature of CPW mode, and obviously, this influence is more sensitive for CPW on 

higher substrate dielectric (InP). The analytic approach again underestimates the losses at high 

frequencies for CPW on InP, while it predicts well with CPW on BCB. The dielectric losses are 

still smaller for CPW on BCB. It should be noted that 
D

  is much smaller than the two other 

types of losses at high frequencies [Grischkowsky1987]. 

For real dielectric material in the measurement, the loss tangent should depend more or less on 

the frequency. A more precise phenomenological loss tangent model of the polymer BCB 

(CYCLOTENE 4026-46 photosensitive resins from Dow Chemical Company) has been 

obtained by fitting the experimental FTIR transmission and reflection spectra of BCB films with 

theoretical values in THz range in our group [Perret2008]. Here we compare the dielectric losses 

of CPW on BCB with a reported loss tangent model ( tan  = 0.0073 + 0.0017 × f (in THz)) 

and with the constant value ( tan  = 0.007). Figure 3-18 shows the calculated dielectric loss on 

BCB with a gap width W=12 µm. The frequency dependent model produces more losses at high 

frequencies. The maximum increased dielectric loss is about 0.3 dB/mm at 1500 GHz.  When 

comparing with other types of losses in a CPW structure, this additional loss is almost negligible. 
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By default, the model of constant loss tangent is sufficient to produce satisfactory results of 

dielectric loss. 
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Figure 3-18: HFSS calculated dielectric losses for the mode CPW in configuration AB/BC on 

BCB with a constant and a frequency-dependant loss tangent tanδ (W = 12 µm) 

IV Total losses αT 

0

2

4

6

8

10

0 200 400 600 800 1000 1200


T
(d

B
/

m
m

)

Frequency (GHz)

W
BCB

 =12 m

W
BCB

 =6.6 m

W
BCB

 =1.6 m

W
InP

 =12 m

W
InP

 =6.6 m

W
InP

 =1.6 m

 

Figure 3-19: Comparison of total losses for the mode CPW in configuration AB/BC on BCB and 

InP 

The total attenuation of the CPW mode is assumed to be the sum of all the above three types of 

losses ( T R D C      ). Figure 3-19 represents the calculated total losses for the mode 

CPW with different gap width W on the two types of substrates. The metal conductivity is 4.1 × 
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107 S/m and the BCB dielectric loss tangent is 0.007. As indicated in above sections, at high 

frequencies, the total losses are mainly consisted by the radiation losses, which have a cubic 

dependency on the frequency. However, it is governed by the conduction losses at low 

frequencies. With the same gap width and the same frequency, CPW on BCB always has better 

performances in THz transmissions. CPW with the smallest width W = 1.6 µm suffers from the 

largest conduction loss. The overall optimal structure is the CPW with W = 6.6 µm for both the 

two substrates, although the W = 12 µm has the slightly lower losses below certain frequencies 

(800 GHz for BCB and 600 GHz for InP). 

3.2.4.2  Losses of CPW with backed conductor 

CPW with backside metallization is widely used in interconnect and packaging structure. The 

backed ground conductor may deteriorate the waveguide performance for single mode 

propagation. The most important consequence is the occurrence of resonances [Haydl2000, 

Heinrich2000] due to the parallel plate mode or the patch antenna mode consisted by the ground 

plane and the backside metallization. In the following section, CPW without ABs but with 

backed conductor will be studied. 

I Radiation losses αR 

A Influence of W 

Figure 3-20 shows the radiation losses of BC CPW and the CPW without backed conductor 

versus W. Resonant peaks occur in the radiation loss spectrum with backside metallization. At 

smaller W, these peaks are narrower. The resonances could be explained by the patch antenna 

theory, where the patch would be composed by the top ground plane (S2 × L) and the backed 

conductor. The resonance frequencies are predicted by the following expression [Heinrich2000], 

2 2

2

( ) ( )
2

mn

r

c m n
f

S L

 

 
                                                (3-15) 

Where 
r

  is the permittivity of dielectric confined between the plates. m and n are the half wave 

number in the width direction y and length direction x, respectively. They also represent the 

mode of resonances. L = 1 mm is the total length of waveguide. 



Chapter 3: 3D Electromagnetic Modeling and Measurements of Planar Waveguides in THz Frequency 

109 

 

0

2

4

6

8

10

12

14

0 300 600 900 1200 1500

(a) W=1.6 m


R
 (

d
B

/
m

m
)

Frequency (GHz)

BC

BC

0

2

4

6

8

10

12

14

0 300 600 900 1200 1500

(b) W=6.6 m


R
 (

d
B

/
m

m
)

Frequency (GHz)

BC

BC

 

0

2

4

6

8

10

12

14

0 200 400 600 800 1000

(c) W=12 m


R
 (

d
B

/
m

m
)

Frequency (GHz)

BC

BC

 

Figure 3-20: Influences of backed conductor (BC) on the radiation loss of the CPW mode for 

CPW on 30 µm BCB: (a) W = 1.6 µm, (b) W = 6.6 µm and (c) W = 12 µm 

The considered metal strip width are : S1 = 10 µm and S2 = 24 µm. Due to the line length L = 1 

mm >> S2 (or Wtot), the first resonance frequency will be the f01 type. Moreover, f10 is 4.01 THz 

(using S2 in the formula) or 1.17 THz (using Wtot in the formula) at W = 12 µm. The latter case is 

not likely to happen because the slot width is large enough and becomes comparable to the 

ground plane width. In this case, S2 should be used instant of Wtot. 

When the slot width W is much smaller than the ground plane width S2 (W << S2), the patch will 

be approximately composed by the total metal width Wtot = 2W + 2S2  + S1 and the two slots are 

neglected. The resonance frequencies are calculated with the same formula when replacing S2 by 

Wtot. This is approximately true for W = 1.6 and 6.6 µm. 

Table 3-3 compares the simulated and theoretically obtained resonant frequencies of f0n for 

conductor backed CPW. More than thirteen resonances have been observed in the HFSS 

simulation range from 10 GHz to 1500 GHz at a step of 10 GHz (the first several resonances are 
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not visible because of their small amplitudes in Figure 3-20). These simulated frequency positions 

agree well with those predicted by theoretical formula (3-15) which are listed in the rightmost 

row. Furthermore, we see that dependence of the resonance frequency on the width W is not 

obvious, because the relation L = 1 mm >> S2. 

Table 3-3: Resonant frequencies (GHz) in HFSS simulations and f 0n calculated by theoretical 

formula (thickness h = 30 µm, BCB = 2.42) for the conductor backed CPW 

CPW top 
metal strip  

S1 = 10 µm 

S2 = 24 µm 

L = 1 mm 

 

n W = 1.6 µm W = 6.6 µm W = 12 µm Calculated f0n 
(GHz) 1 110 100 100 96 

2 210 210 210 193 

3 320 310 310 289 

4 420 420 410 385 

5 520 520 510 482 

6 620 620 600 578 

7 720 720 700 674 

8 820 810 790 771 

9 920 910 880 867 

10 1020 1000 950 963 

11 1110 1100 - 1060 

12 1210 1190 - 1156 

13 1310 1280 - 1253 

14 1400 1370 - 1349 

 

In order to understand the origin of these resonances, it is necessary to look at the 

electromagnetic field distributions in the dielectric at resonant and non-resonant frequencies. 

Figure 3-21 plots the electric field (E) distribution along the wave propagating direction for 

conductor backed CPW at slot width W = 12 µm. The cross section plane is chosen to be at the 

middle of BCB layer with a thickness of 30 µm. At the non-resonance frequency 550 GHz 

(Figure 3-21 (a)), electric energy is mainly concentrated at the two slot regions and there are little 

electric field under the masse plane or directed to the backside metallization, showing the 

characteristics of the CPW mode.  However, at the resonance frequency f06 (Figure 3-21 (b)) and 

f08 (Figure 3-21 (c)), electric field is no longer primarily confined as the non resonant case. Below 

the two outside ground planes regions, a considerable amount of electric energy is located, 

demonstrating the formation of parallel plate resonators. If we count the number of half waves in 

the whole guiding structure at resonant frequencies, they are n = 6 and 8, corresponding well to 

the theoretically predicted values. The field variation along the width direction is less than a half 
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wavelength (m = 0). The intensive extensions of EM energy into the ground plane region and 

even the substrate region not covered by metals are the cause for the large radiation losses at 

resonant frequencies. It should be also pointed out that outside the resonant frequencies (see 

Figure 3-20), the radiation loss with backed conductor is actually slightly smaller than that 

without backed conductor. This could be clarified qualitatively by the dispersion curves in Figure 

3-14, conductor backed CPW has larger effective permittivity, benefits a smaller radiation angle 

into the substrate. Indeed, the backside metallization has the tendency to attract electric lines 

from the central signal strip on top to form the quasi microstrip EM distributions. As we will see 

in the section about microstrip lines, the radiation loss of a microstrip mode is usually smaller 

than that in the CPW structure, when the strip width in a microstrip is equal to the central strip 

width in a CPW. 

 

 

(a) f = 550 GHz 

 

 

(b) f = 600 GHz (f06) 
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(c) f = 790 GHz (f08) 

Figure 3-21: Electric field distribution along BC CPW propagation direction at the center plane in 

dielectric BCB and at the profile plane (thickness h = 30 µm, gap width W = 12 µm): (a) f = 550 

GHz, (b) f = 600 GHz (f06) and (c) f = 790 GHz (f08) 
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Figure 3-22: Radiation loss (dB) of the CPW mode versus the line length L (0.2 - 1 mm) for 

conductor backed CPW on 30 µm BCB 

The radiation loss αR (dB) in function of the line length L from 0.2 mm to 1 mm is shown in 

Figure 3-22 for W = 12 µm. With the increase of L, a large number of resonant peaks appear and 

the first peak shift to low frequency. Long waveguide deteriorates the transmission performances. 
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Besides L, other parameters (substrate permittivity, substrate thickness, ground plane width, etc.) 

can also modify the positions and amplitudes of these resonances. Special care should be taken 

for the design of long CPW line with backed conductor at THz range. From analytic formula 

(3-15), we can conclude that the resonances have a strong dependency on the simulated line 

length L. 

Variation of loss tangent in the substrate and metal conductivity in metals cannot move the 

resonant peaks. Due to the existence of strong resonances at high frequencies, it is difficult to 

extract the dielectric and conduction losses in this wave propagating structure, especially around 

the resonant frequencies. The total losses will be compared with different gap widths in the 

conductor backed CPW. 

II Conduction αC, dielectric αD and total losses αT 
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Figure 3-23: Influences of backed conductor (BC) on the total losses of the mode CPW for CPW 

on 30 µm BCB. (a) Conduction loss (σAu = 5.106 S/m), (b) Dielectric loss, and (c) Total losses (σAu 

= 5.106 S/m) 
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Figure 3-23 shows the conduction, dielectric and total losses in the three CPW structures, where 

BCB loss tangent is 0.007 and metal conductivity is 5 × 106 S/m for material loss parameters. At 

W = 1.6 µm, the effect of backed conductor on 
C and 

D is negligible. With the increase of W, 

the conductor backed CPW show more conduction and dielectric losses. For example, at 1 THz, 

C for CPW with (without) backed conductor are: 15.8 (14.1) at W = 1.6 µm, 6.7 (4.8) at W = 6.6 

µm and 4.1 (3.4) dB/mm at W = 12 µm. And the corresponding D  are: 0.6 (0.54) at W = 1.6 

µm, 0.62 (0.58) at W = 6.6 µm and 0.63 (0.59) dB/mm at W = 12 µm. This is because the EM 

field penetrate through the dielectric and the consumption of EM energy in the backed 

conductor is improved. Both 
C  and 

D  increase, particularly at wide gap width.  

The peaks of T  for the conductor backed CPW in Figure 3-23 (c) come from the radiation R  

in Figure 3-20. The resonances are considerable from 700 GHz for W = 1.6 µm, 500 GHz for W 

= 6.6 µm and 400 GHz for W = 12 µm. The operation frequency should be avoided from these 

frequencies. The conduction loss accounts for a large percentage in the total attenuation due to 

the high resistivity at W = 1.6 µm (Figure 3-23 (a)). That is why the CPW mode with small slot 

width shows large attenuation constant. 

Several methods have been proposed to eliminate one certain resonance at several GHz 

frequency, such as with via/holes placed at the maximum electric field positions along the outer 

and inner edges of the ground planes [Yu1993-2], or with different shapes of slots in the ground 

planes [Lo1993]. However, these methods are not an efficient way to exclude all the resonances 

at submillimeter wave and even THz frequencies. These via/holes also bring difficulties in the 

manufacturing process.  

3.2.5 Conclusion 

In this section on CPW, we have studied the parametric influences (three variable gap width W 

(1.6, 6.6 and 12µm) and substrate permittivity (BCB and InP)) on the dispersions and the 

different types of losses in four CPW configurations. The radiation losses of the mode CPW 

dominate in the high frequency range and grow with wider gap. Some principal coupling effects 

account for the radiation loss, including CPW - Slotline, CPW - Microstrip, CPW - TM0 and 

other high order surface wave modes, CPW mode radiation into substrate wave, etc. The 

conduction losses are important at low frequencies and lower at greater gap width due to the 

decreasing ohmic resistance at the metal surfaces. Comparing with the previous two types of 

losses, the dielectric losses are not significant and their dependency on frequency is decided by 

the model of loss tangent or material conductivity ( D  is frequency independent for CPW on 

InP and is proportional to frequency for CPW on BCB according to the parameters in Table 3-1). 

The impact of gap width on the dielectric losses is not obvious for both types of dielectric. 

CPW on BCB benefits many advantages: low attenuation constants for all the types of losses, 

high cutoff and critical frequencies of the surface waves and small coupling coefficients between 

CPW mode and other parasitic modes. 

The air-bridges (ABs) can attenuated the unwanted slotline mode by at least 10 dB at 1 THz for 

CPW on BCB, while the CPW mode is not much affected. The existence of backed conductor 



Chapter 3: 3D Electromagnetic Modeling and Measurements of Planar Waveguides in THz Frequency 

115 

 

(BC) at the backside of substrate will introduce resonance peaks at certain frequencies 

determined by the parallel plate resonance theory. Many parameters can impact on the resonant 

phenomena: waveguide length L, dielectric thickness h and permittivity
r

 . These should be 

carefully considered in the design of low loss conductor backed CPW at THz frequencies. When 

comparing the total losses for the mode CPW with different substrates and dimensions studied 

here, CPW on BCB at W = 6.6 µm is the best coplanar waveguide. 

The CPW on BCB seems to be a good candidate for low loss THz transmission. The other types 

of lines, like microstrip, Slotline and Stripline studies will be studied separately and compared at 

the end.  

3.3 HFSS analysis of microstrip line on 30 µm BCB 

Microstrip line is an open structure with the single conductor ribbon deposited on top of the 

finite dielectric layer and a single ground plane on the opposite side. Its characteristic impedance 

is adjustable by the strip dimensions and dielectric thickness, making the interconnections and 

modifications easy. In microwave frequency, quasi static analysis of the characteristic impedance 

and effective permittivity of microstrip line below X band (8 - 12 GHz) was studied by Wheeler 

[Wheeler1964] and Schneider [Schneider1969]. In the more rigorous full wave analysis, the 

propagating mode in a microstrip line was no longer purely TEM type. The dependency of 

characteristic impedance and effective permittivity on frequency was evaluated by integral 

equation method in the space domain [Denlinger1971] and Galerkin's method in the spectral 

domain [Itoh1973] up to 18 GHz. The coupling frequency between the quasi-TEM mode and 

the lowest surface wave mode was analyzed by Vendelin [Vendelin1970]. For quartz substrate 

with a thickness of 500 µm, this frequency is 100 GHz. By employing thin film and low 

permittivity substrate, the coupling frequency can be possibly improved beyond the maximum 

interested frequency. Concerning the attenuation in microstrip line, the conduction loss was 

calculated in closed form for thick (higher than four times the skin depth) [Pucel1968] and thin 

[Welch1966] metals. The dielectric loss does not depend on the line dimension and can be given 

in analytic expression [Welch1966]. The dispersion and losses properties of microstrip line have 

been applied in the transmission structure in microwave integrated circuit. 

Recently, microstrip lines on BCB film find applications in THz-TDS system using a 

photoconductor (PC) sampling schema for the absorption spectra measurement of polycrystalline 

material [Byrne2008], THz evanescent field microscopy of dielectric materials [Cunningham2008], 

and the biosensors of DNA specimen [Kasai2009]. The common aspect in all the systems is to 

utilize the effect that the evanescent THz field extending above and propagating along the 

microstrip line penetrates and interacts with dielectric samples held in close proximity. 

In this part, the dispersion and losses of microstrip line on BCB in THz frequency will be 

analyzed numerically, including the radiation loss, which is omitted in microwave. The non TEM 

nature of the microstrip propagating mode will be also stressed. Comparisons with analytical 

formula and available measurement results are also made. 
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3.3.1 Microstrip structure 

The microstrip line is represented in Figure 3-24 with its main dimensional parameters (width W, 

conductor thickness t, dielectric thickness H and the line length L).  

 

Figure 3-24: Microstrip line on a dielectric substrate of thickness H 

The principal mode in a microstrip line is considered as quasi-TEM wave (small longitudinal EM 

components exist due to the interface air/dielectric) at low frequencies. The EM vector field 

distribution is shown in Figure 3-25. Electric field is mainly directed between the top strip and 

the bottom ground plane and the magnetic field encircles the top signal line. 

 

  

Figure 3-25: Electromagnetic vector field distribution in a microstrip line. Left: Electric field, 

Right: Magnetic field. The highlighted part represents metals  

For conventional microstrip lines in microwave, a thick semiconductor wafer is employed as the 

substrate. The high thickness of substrate will push the cutoff frequency of surface waves into 

the interested band, around which the microstrip becomes dispersive [Roskos1991]. A better 

choice is to fabricate the buried ground plane microstrip line, where both the ground and signal 

E H 
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line are located on top of the wafer separated by a thin insulator layer. In our case, the ground 

plane is deposited directly on a silicon wafer and a 30 µm thick BCB is served as the dielectric. 

The thick wafer layer is not included in the numerical model due to the isolation of conductor 

ground plane. The characteristic impedance can be adjusted through the ratio W/H. Large 

impedance can be achieved by increasing H or decreasing W [Gupta1996]. Despite of the low 

permittivity of BCB, an impedance of 50 Ohms can be easily realized within current technology 

limitations. In the parametric study using HFSS, the thickness of substrate BCB is H = 30 µm 

and metal thickness t = 500 nm. Characteristic impedance decreases with the growth of W and 

r , but increases with H. At H = 30 µm, W should be 85 µm in order to have an impedance of 

50   for microstrip on BCB. Signal line width is varied at 5 µm (210  ), 10 µm (152  ), 20 

µm (107  ) and 30 µm (93  )  in order to conduct a comparative and parametric study. Total 

length is L = 1 mm. The ground plane is assumed to be infinite in the horizontal plane.  

3.3.2 Dispersions  

As in Table 3-2, the surface waves do not coupler significantly with the quasi-TEM microstrip 

mode in the simulated frequency range due to the small thickness and low permittivity of BCB. 

In the studied frequency range, the microstrip line is monomode and only the results of the main 

mode are reported in the next discussions.  

Figure 3-26 plots the phase constant, effective dielectric constant, phase and group velocities of 

the dominant mode at the four widths of signal line.   is always smaller than the  phase constant 

of TEM wave in BCB at each frequency, showing the dominant mode has a higher phase velocity. 

eff
  increases monotonically with increasing frequency and line width W, because the fraction of 

microstrip mode energy in the dielectric is larger. The dependency of 
eff
  on frequency 

introduces dispersion in the propagation of high speed electrical pulses [Yamashita1979] 

particularly at large strip width. 
eff
  has been demonstrated to increase from 9.4 to 9.9 for 

microstrip on GaAs in [2 - 20] GHz [Finlay1988] and from 7 to 12 for microstrip on SiO2 in [10 - 

1000] GHz [Gondermann1993]. We see that at high frequencies, the static approximation of 

TEM mode in the microstrip line is no longer valid. Both the phase and group velocities decrease 

with the increase of the frequency and of the strip width. At frequency higher than 300 GHz, the 

bending of the curves of pV  and gV  in function of frequency is more pronounced. The 

dispersion properties can be well expressed by 
eff
 , pV  and gV . The discrepancy between pV  

and gV  with wide strip is larger at high frequency, showing the microstrip mode becomes more 

dispersive. For example, at 1 THz, g pV V  = 0.07   108 m/s for W = 5 µm and 0.11   108 

m/s for W = 30 µm. 
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Figure 3-26: (a) Phase constant, (b) effective dielectric constant, and (c) phase and group 

velocities of microstrip line on 30 µm BCB, W is the signal trace width 
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3.3.3 Losses  
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Figure 3-27: HFSS calculated losses of microstrip line on 30 µm BCB, (a) Radiation loss, (b) 

Dielectric loss, (c) Conduction loss and (d) Total losses 

Figure 3-27 shows the losses in the five microstrip lines. They are summarized to follow the rules: 

all types of losses increase with frequency (the small oscillations in the radiation loss in Figure 

3-27 (a) are explained in the text); with increasing W, the radiation loss increases, the conduction 

loss decreases and the dielectric loss is quasi constant. For W < 30 µm, radiation loss is 

comparable to the dielectric loss and the conduction loss is well above the other two types of 

losses assuming the metal conductivity σAu = 5 × 106 S/m: R D C   . Hence the total 

losses mainly follow the behavior of the conduction loss. This is different from CPW, where the 

radiation loss is dominant at high frequency. At W = 30 µm, the conduction loss is greatly 

reduced and it approaches the radiation loss at 1 THz. 

3.3.3.1 Radiation loss 

No parasitic modes and surface waves are excited in the microstrip line in the simulation with 

HFSS. The only possible power exit channel originates from the shock wave radiation from the 
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propagating microstrip mode into the substrate waves when the mismatch of phase velocity 

exists. When W increases, more fraction of EM energy of the principle mode is confined in the 

substrate between the signal strip and ground planes, making the coupling with substrate wave 

stronger. Figure 3-27 (a) concludes that the radiation effect is more intensive for a large metal 

width or large frequency (1.5 dB/mm at f = 1 THz and W = 30 µm). The small vibrations on 

R  are attributed to the formation of possible parallel plate resonance between top and bottom 

conductors as introduced in the conductor backed CPW. The resonant positions are determined 

by the waveguide length due to L >> W. For L = 1 mm, the resonant frequency is approximately 

predicted to be at the multiples of 100 GHz. Because the width of top conductor is not large 

enough (Wtot  > 60 µm in CPW), these resonances are not intensive. 

3.3.3.2 Dielectric loss 

Dielectric loss of CPW in the expression (3-14) applies also for microstrip line, because it is only 

related to the dielectric properties and there is no explicit dependency on metal dimensions. The 

loss tangent of BCB is assumed to be constant ( tan  = 0.007) in the simulation, so the 

dielectric loss is proportional to frequency. Analytic dielectric loss begins to underestimate the 

present calculated one from 500 GHz, while at low frequency they agree well.  At 1 THz, the 

dielectric loss is about 0.8 dB/mm.  

3.3.3.3 Conduction loss 

Ohmic loss depends critically on metal width, excitation frequency and strip conductivity. 

Conduction loss scales roughly with f  [Heiliger1997] at low frequency, but no explicit 

expression for conduction loss exists at high frequency when considering the dispersion of the 

dominant mode. Even at low frequency, C  is not negligible compared with other losses. 

Microstrip line with large metal width has small surface resistance in the signal strip, so the 

conduction loss will be weak (4.3 dB/mm for W = 5 µm and 1.51 dB/mm for W = 30 µm at 1 

THz). Moreover, high conductivity metal always helps to decrease the surface resistance and the 

ohmic attenuation, as in the CPW case.  

If the dispersion of the dominant mode is neglected, the close form conduction loss for 

microstrip was reported in [Pucel1968, Bahl1977] as, 

2
-3

0

2
-3

0

-3

0

8.68 10 4 1
1 1 + (ln + )   if  

2 4 2

8.68 10 2 1
( / ) 1 1 + (ln + )     if 2 

2 4 2

8.68 10

effs

eff eff

effs
C

eff eff

s

eff

WR H H W t W

Z H H W W t W H

WR H H H t W
dB mm

Z H H W W t H H

R

Z H W

H



  


  

    
      

       

    
        

       


2

2
1 + (ln + )    if 2 

2 ( 0.94)ln(5.44 ( 0.94))
22

eff eff

eff eff effeff

W W H H H t W

WH W W t H HW
H

HH


















 
   

     
              

       (3-16) 



Chapter 3: 3D Electromagnetic Modeling and Measurements of Planar Waveguides in THz Frequency 

121 

 

All the dimensions are expressed in meters. The effective metal width 
effW  and microstrip 

characteristic impedance 0Z  are given respectively by, 
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and the effective permittivity eff : 
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As seen in Figure 3-27 (c), the theoretical values given by (3-16) at W = 10 µm predict 60% - 

80% of the conduction losses in [100 -1000] GHz calculated by HFSS. 

3.3.3.4 Total losses 

Concerning the total losses in Figure 3-27 (d), the best microstrip dimension having the 

minimum attenuation is W = 30 µm, where the attenuation is 3.8 dB/mm at 1 THz. The 

reported measured losses of microstrip (8 µm wide and 0.8 µm thick) on thin film BCB (1.7 µm 

and 5.4 µm) at 1 THz were 10 dB/mm and 4 dB/mm [Heiliger1997], respectively. Our results are 

4.6 dB/mm at 1 THz for 10 µm wide strip on 30 µm thick BCB.  

3.3.4 Conclusions 

Microstrip has the advantages of low radiation loss at THz frequency range due to a good EM 

energy confinement in the substrate when compared with CPW structure.  

In microstrip line on BCB substrate, only the dominant mode is included in the calculation. From 

frequency above 300 GHz, the line becomes dispersive. Concerning the attenuation, ohmic loss 

accounts for a major contribution, especially at small strip width. Radiation and dielectric losses 

are comparable. To improve line performance, a relatively larger strip width can be chosen to 

minimize the conduction loss without introducing great additional radiation loss. However, in the 

case of large strip width, it is possible to form parallel plate type resonances with large amplitudes 

and the received signal amplitude will be reduced accordingly.  

3.4 CST MWS analysis of stripline 

The stripline was invented by R. Barrett in 1950. It is well known that an ideal stripline supports 

the pure TEM mode as the fundamental mode, when it is uniformly filled with a homogeneous 
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dielectric material (Left in Figure 3-28). The characteristic impedance and conductor and 

dielectric losses of this symmetric shielded strip transmission line have been analyzed in closed 

form expressions [Cohn1955]. Non dispersion and low losses are the main attractive properties 

of this waveguide. The most application of stripline is found in feeding network of antennas, low 

dispersive delay lines for phased array and radar systems, multilayer circuits, low temperature co-

fired ceramic (LTCC) technology [Jang2006], and feeding lines for stripline slot antennas 

[Marchais2006]. The principle disadvantages lie in the realizations of the buried strip structure 

and characterizations of stripline performances. The requirement of strong symmetry introduces 

difficulties in the design of circuit functions and the tuning becomes difficult. Any vertical 

asymmetry in the stripline structure could couple to waveguide modes bounded by the ground 

planes and the side walls [Rao1979, Burchett1993]. For experimental characterization, transitions 

usually employ the type of microstrip/stripline due to their structural similarity, including vertical 

transitions with via/holes [Kim1998, Leib2010] and planar transition [Machado2011]. 

Few work has been conducted on stripline in THz range. As we will see in this part, the radiation 

loss depend on the central strip width and the dielectric permittivity. Dispersion and attenuation 

of stripline in both homogeneous and inhomogeneous dielectric circumstances are calculated. 

For the former, influences of dielectric permittivity on the attenuation of dominant mode are 

pointed out.  

3.4.1 Stripline structure 

A stripline consists of a strip conductor centered between two parallel ground planes with two 

equal slabs of a dielectric separating the center conductor from the ground planes, as illustrated at 

the left of Figure 3-28. Structural parameters are strip width W, dielectric thickness H, and 

conductor thickness t. Its characteristic impedance decreases with W and dielectric permittivity r , 

but increases with H [Maloratsky2003]. A 50   waveguide (at 20 GHz) can be achieved with W 

= 25 µm and H = 30 µm for stripline in BCB. In the parametric study, H is fixed at 30 µm, and 

W will vary around 25 µm to achieve impedance variation as well as comparisons with other 

types of waveguide. W =5 (30) µm corresponds to 120 (45)  . 

   

Figure 3-28: Schematic of the stripline surrounded by homogenous dielectric (left), and two 

layered dielectric with equal thickness (right) 

In the multilayered circuit, two or more dielectric may exist between the top and bottom ground 

planes. The right plot in Figure 3-28 shows the nonuniform symmetric stripline (H2  = H/2) with 
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two different dielectrics. As the two materials (dielectric 1 and 2) have the same thickness, the 

phase velocity of the stripline mode is always slower than or equal to the parallel plate mode. The 

power leaky from the dominant mode into the parallel plate mode is not allowed. However, when 

they have different thicknesses and the thinner dielectric has a smaller dielectric constant, power 

leakage from stripline mode to the parallel plate mode happens, because the effective permittivity 

of stripline mode is close to that of thin dielectric and the effective permittivity of the parallel 

plate mode is dominated by the thick dielectric [Das1991]. Moreover, when air gaps exist 

between the two dielectric slabs due to finite conductor thickness and fabrication faults, the 

dominant mode in the stripline with air gap will become leaky. This mode radiates into the TM0 

surface wave mode and other higher order modes of the background structure and results in 

undesirable crosstalk and spurious performance [Nghiem1992]. 

          

Figure 3-29: Electric vector field distributions of a stripline in homogeneous BCB. (a) Symmetric 

stripline mode, and (b) Asymmetric parallel plate mode 

In the parametric simulation with CST MWS, the ground planes are considered to be extended 

infinitely in the lateral direction, so the PML boundary conditions are applied. Figure 3-29 

demonstrates the field distributions of the two dominant modes (stripline mode and parallel plate 

mode) in the homogeneous dielectric of a stripline. As the CPW mode in the coplanar waveguide, 

E field of the stripline mode points symmetrically and radially around the central strip and H filed 

circles around it. The parasitic parallel plate mode has its asymmetric electric field distribution 

both around and far away from the central strip. Following paragraph talks about the stripline 

mode in homogeneous dielectric (polymer BCB and semiconductor materials) and also in non 

homogeneous dielectric (superstrate (top) material: air, substrate (bottom) material: BCB). 

3.4.2 Dispersions and losses 

3.4.2.1 Homogeneous stripline 

In the homogeneous stripline, the polymer BCB is used as dielectric material by default as in 

other types of waveguides for the ease of realization. Other kinds of dielectric, such as GaAs and 

Ge in semiconductor group, will be compared with BCB, although it is not possible to fabricate 

stripline with these semiconductors because present epitaxy technology is not applicable over 

metallization. The objective is to study and comprehend the influence of dielectric permittivity on 

the main mode in a homogeneous stripline. 

I Stripline with polymer BCB substrate 

As well known in microwave, the dominant stripline mode in a homogeneous stripline is purely 

TEM type and its effective permittivity is equal to the dielectric permittivity of the substrate, as 

shown in Figure 3-30. Its phase constant is exactly the same as that in the dielectric, so the phase 

(a) (b) 
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and group velocities always match those of BCB, so the radiation channel from the TEM 

dominant mode into the substrate as well as the coupling with the higher order modes is closed.  
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Figure 3-30: Phase constant (a) and effective dielectric constant (b) of stripline in homogeneous 

BCB, W is the central strip width 
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Figure 3-31: CST calculated losses of stripline in homogeneous 30 µm BCB, (a) Radiation loss, (b) 

Dielectric loss, (c) Conduction loss (σAu = 5.106 S/m) and (d) Total losses (σAu = 5.106 S/m) 
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As expected, the radiation loss in the stripline is 0.0001 dB/mm at 1.5 THz for W = 30 µm in 

Figure 3-31 (a), which is well below the dielectric loss (1.49 dB/mm at 1.5 THz). Consequently, 

the total losses are approximately expressed by the sum of dielectric loss and conduction loss, 

T D C                                                                 (3-20) 

Dielectric losses can be obtained through replacing eff  = 
r for the homogeneous stripline in 

the expression (3-14), 

3
tan

27.3 10  ( / )r

D f dB mm
c

 
                                          (3-21) 

Wheeler's formula for conduction losses [Wheeler1978, Maloratsky2003], 
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Where A and B are geometry (t, H, and W) dependent factors, Z0 is the characteristic impedance 

and Rs is the surface resistance for metal conductor. 

The analytic formula underestimates the conductor losses in strips and ground planes in the 

simulated frequency range. For example, at W = 15 µm, the simulated conduction loss is 4.41 

dB/mm instead of 2.67 dB/mm calculated by the analytic formula (3-22) at 1.5 THz. The 

dielectric loss can be perfectly estimated by the theory (3-21), because the stripline mode is TEM 

type and there are no assumptions in the expression (3-21). They both show the linear 

dependency on frequency. As seen in Figure 3-31, the conduction loss is the dominant source of 

attenuation in a stripline on BCB. The conduction loss at large metal width is low due to the 

weak metal resistivity in central strip, W = 30 µm shows the least total losses (4.08 dB/mm at 1 

THz and 5.32 dB/mm at 1.5 THz).  

To evaluate the function of dielectric permittivity on stripline properties, an ''imaginary'' 

structure is proposed, where the low permittivity BCB is replaced by the semiconductor materials 

with high permittivity ( GaAs  = 12.9 and Ge  = 16). It is obviously not possible to fabricate such 

waveguides. 

II Stripline with semiconductors GaAs and Ge substrate 

A complementary study is conducted to analyze the radiation losses of stripline based on the 

structure W = 30 µm presenting the most radiation in the case of BCB. 

Figure 3-32 shows the dispersion curves and radiation losses for stripline with a central strip of 

30 µm width in homogeneous BCB, GaAs and Ge. As in the low permittivity BCB, both the two 

dominant modes (stripline mode and parallel plate mode) of stripline in high permittivity 

semiconductors have the same phase constant (or effective permittivity/phase velocity) as that in 
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the substrate. The TEM nature of the stripline mode is not altered with the variation of dielectric 

and no higher order modes appear up to 1.5 THz. That is why the radiation loss in function of 

the frequency is always nearly zero, no matter which type of dielectric (Figure 3-32 (b)). These are 

believed to be the unique properties of stripline. 
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Figure 3-32: Dispersion (a) and radiation loss (b) of stripline (W = 30 µm) in homogeneous 30 µm 

BCB, GaAs and Ge 

3.4.2.2 Inhomogeneous stripline  

The last aspect we have investigated is about the stripline in non homogeneous dielectric. Only 

the radiation loss is calculated to comprehend the leaky nature of the dominant mode. The 

condition for the existence of TEM wave in the structure is destroyed due to the interface 

between adjacent different materials. Figure 3-33 compares the phase constant and radiation loss 

for stripline in non homogeneous 30 µm thick dielectric (15 µm air as superstrate and 15 µm 

BCB as substrate) and for stripline in homogeneous 30 µm BCB. This structure can also be 

considered as a microstrip line with a conductor cover. Apparently, the phase velocity of the 

dominant mode of stripline in air/BCB is improved higher than that in homogeneous BCB. So 

the radiation loss into substrate increases. One also notices resonances at regular positions in 

Figure 3-33 (b) owing to the parallel plate modes formed between central strip and underlying 

metallization. Resonances with small amplitudes have also been observed in the spectrum of 

radiation loss in the studied microstrip lines. 
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Figure 3-33: Dispersion (a) and radiation loss (b) of stripline (W = 30 µm) in non homogeneous 

30 µm dielectric (15 µm air and 15 µm BCB) 

3.4.3 Conclusions 

The stripline with homogenous dielectric has a purely TEM mode in the frequency range [100-

1500] GHz when the substrate is BCB. Thus, the radiation losses are negligible and the 

conduction loss contributes the most in the total losses. A waveguide with the largest strip width 

(W=30 µm) owns the least total attenuation (5.32 dB/mm at 1.5 THz).  

Then the ''imaginary'' structure of stripline in semiconductor GaAs and Ge is proposed to study 

the impact of dielectric permittivity on radiation losses. The dispersion and losses of the stripline 

mode are still calculated to be zero when the dielectric permittivity increases. 

The stripline with non homogeneous dielectric (Air/BCB) is multimode and it has dispersion and 

the radiation loss can be increased up to 2.5 dB/mm due to the presence of parallel plate 

resonances. 

3.5 CST MWS analysis of slotline on substrate BCB 

The slotline was first proposed by Cohn in 1968 [Cohn1968]. As shown in the left graph in 

Figure 3-34, a slotline consists of a narrow gap in a conductive metal coating on one side of a 

dielectric substrate, the other side of the substrate being bare. For the ideal case, the metal width 

is infinite (S = ∞). The characteristic impedance increases with slot width and is less sensitive to 

substrate height. It was given numerically by Cohn for gap width less than the substrate thickness, 

and by Knorr for wide slot [Knorr1975]. By curve fitting the results of Cohn, closed-form 

expressions of the impedance and effective permittivity of slotline on finite thickness substrate 

(dielectric constant is between 7 and 20) were obtained [Garg1976]. Kitazawa [Kitazawa1973] 

calculated the phase constant of the dominant mode and the first higher order mode for slotline 

with gap width 1 mm on a 1 mm thick substrate ( r  = 9.6) up to 40 GHz. The first higher order 

mode appeared at 20 GHz and had the phase constant smaller than that of the dominant mode. 

From the aspect of attenuation, the dielectric loss depends on the properties of substrate and 

follows the same expression as in CPW and microstrip lines. Rozzi [Rozzi1990] compared the 

dielectric and conduction losses for slotline on 635 µm thick alumina substrate until 30 GHz. The 
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conduction loss was always higher than the dielectric loss at different slot widths ([0.1-1] mm), 

where the metal conductivity is 4.1.107 S/m and loss tangent of substrate is 2.10-4 in the 

calculation. For conductor thickness in the range [3-50] µm, the closed form expressions of the 

characteristic impedance, effective permittivity, dielectric and conduction losses of slotline on 

finite thickness substrate (2.22 < 
r  < 20) were presented in [2-60] GHz [Majumdar2010]. 

Slotline has the following advantages: easy to fabricate, shunt mounting of elements without 

holes though the substrate, incorporation with microstrip lines for new types of circuits. 

Moreover, its gap configuration makes slotline quite compatible with THz PC switches 

[Grischkowsky1988]. The main disadvantage arises from its high dispersive behavior when the 

substrate is thick but not infinite, meaning that slotline is not usually applicable for broadband 

applications [Maloratsky2003]. For experimental evaluation of losses of slotline, the transitions 

like CPW-slotline [Ma1999] and microstrip-slotline [Schüppert1988] are the possible solutions. 

In THz frequency, the transmission properties of slotline have not been studied completely. 

Particularly the dispersion and radiation loss of the dominant mode are not known. In next 

section, we will present the complex propagating constant of both conventional and conductor 

backed slotline on BCB substrate. The modeled results will be compared with existing numerical 

and experimental data.  

3.5.1 Slotline structure 

   

Figure 3-34: Schematic of a conventional slotline on a semi-infinite dielectric substrate (left), and 

a conductor backed slotline on a finite substrate (right) 

The conventional slotline in the left of Figure 3-34 has two characteristic parameters: slot width 

W and metal thickness t. The substrate thickness is assumed to be infinite, so PML boundary 

conditions are applied at the bottom surface of substrate in CST MWS. Practical metal width is 

chosen to be much greater than the gap (S >> W) to approximate an ideal slotline structure: S = 

240 µm and W = [5-30] µm. The characteristic impedance at 20 GHz can be varied from 95 (W 

= 5 µm) to 160   (W = 30 µm). Technically, it is difficult to realize a 50   slotline on BCB 

substrate (W << 0.5 µm) by traditional optical lithography. In this parametric study, the width of 

slotline is chosen around tens of micrometers as the reported slotline on high permittivity GaAs 

substrate (W = 10-20 µm) at 1 THz [Pahlevaninezhad2011]. 

However, as the conductor backed CPW, the conductor backed slotline (right in Figure 3-34) is 

also interesting, since the backside metallization ensures improved electrical isolation, good heat 

sinking and easy DC biasing. The potential drawback in the application : the leakage of power 
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into surface waves or into the dielectric region between the plates, unexpected or unwanted 

coupling to neighboring lines [Shigesawa1988].  

The dispersions and attenuations of conventional and conductor backed slotline will be discussed 

separately. Comparisons will be made between them. 

3.5.2 Modal dispersions and losses 

3.5.2.1 Conventional slotline without backed conductor 

For slotline on a semi-infinite substrate, the slotline mode is the propagating mode with nearly 

zero cutoff frequency. 

   

 

Figure 3-35: Electromagnetic vector field distribution of the dominant slotline mode in a 

conventional slotline. (a): Electric field and (b): Magnetic field 

Figure 3-35 shows the EM fields distributions in a conventional slotline. E field vector is mainly 

directed from one plate to the other in the gap region, and H filed concentrates principally 

around the gap. In the following part, the dispersions and losses of conventional slotline at 

different slot width on substrate BCB are presented. 
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Figure 3-36: Phase constant (a), effective permittivity (b), phase and group velocities (c) of a 

slotline on semi-infinite BCB at different slot width W (5-30 µm) 

In Figure 3-36, the phase constant, effective permittivity, phase and group velocities of the 

slotline mode (principle mode) in a slotline on semi-infinite BCB are plotted. In the simulated 

frequency range up to 1 THz, no higher order modes appear. Due to the low permittivity of 

substrate, the discrepancies of the phase constant among the five dimensions are not discernible. 

It is better to demonstrate the effective permittivity or phase velocities, shown in Figure 3-36 (b) 

and (c). As the phase velocity of the slotline mode is always greater than the TEM wave in 

substrate, the radiation of the main mode into the substrate happens unconditionally. And the 

energy transfer from the slotline mode to the high order mode is inhibited, if we assume only the 

dominant mode is propagated in the homogeneous slotline structure up to 1 THz. If multiple 

modes are present in the structure due to bends and discontinuities in the propagation direction, 

the coupling between the higher order mode and slotline mode becomes possible, resulting in 
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large radiation loss in slotline. In the design of slotline, the higher order modes should be avoided 

or pushed far from the interested frequency range. 

The phase velocity decreases with frequency due to the growth of effective permittivity (1 < 
eff  

< 2.42). At a certain frequency, wide slot brings in larger effective permittivity. The increasing 

speed of effective permittivity versus frequency is higher than in other types of lines studied, 

demonstrating the slotline is more dispersive. Comparisons of the different waveguides in section 

3.6 will again address this effect. 

II Losses 
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Figure 3-37: CST calculated losses of slotline on semi-infinite BCB, (a) Radiation loss, (b) 

Dielectric loss, (c) Conduction loss (σAu = 5.106 S/m) and (d) Total losses (σAu = 5.106 S/m) 

We turn to the losses in Figure 3-37. R  increases monotonically with slot width (9.2 dB/mm at 

1 THz for W = 30 µm). As shown by the dispersion curves in Figure 3-36, this is because the 

radiation loss is mainly attributed to the energy loss into the substrate, and increases with the 
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level of phase mismatch between slotline mode and TEM wave in BCB. 
D  always has a quasi 

linear dependency on frequency and the gap width does not have much impact on the losses in 

BCB. This suggests 
D  is again linked to the nature of dielectric and is not sensible on 

dimensions of line deposited on top, as in CPW, microstrip and stripline. The analytic curve 

slightly underestimates the simulated 
D in CST. The conduction loss 

C  is high at a small gap 

width, because the electric fields are more concentrated in the slot region, especially at the 

corners of two metal plates. This will result in great resistivity. The increase speed of 
C  versus 

frequency is slower than that of 
R  from 600 GHz. Even at frequencies below 600 GHz, 

C  is 

always less than 
R . In the conventional slotline, 

R  dominates in the total attenuation. 

Among the five slotline, W = 5 µm is the optimal one owning less total losses ( T  = 9.6 

dB/mm at 1 THz) due to its least radiation loss. From 500 GHz, slotline with W = 10 µm shows 

equivalent total losses as W = 5 µm because of its lower conduction loss. At 1 THz, slotline with 

W = 20 µm has an attenuation of 10.1 dB/mm.  For comparison, the simulated losses of slotline 

(W = 20 µm and t = 100 nm) on high permittivity substrate GaAs was about 20.7 dB/mm at 1 

THz [Pahlevaninezhad2011]. This shows that the low permittivity substrate can reduce slotline 

losses. 

As observed, the radiation loss in slotline is much higher than in other types of waveguides 

studied above. Several methods have been proposed to ameliorate the performances of 

conventional slotline. For slotline without backside metallization, shock wave radiation from the 

slotline mode into the substrate wave always exists. Modifications of the substrate properties, 

such as slotline in homogeneous medium, and slotline on a periodic layered substrate 

[Pahlevaninezhad2011], help to make the phase velocities of the propagating mode and substrate 

wave very close or even equal to each other.  

The simulated results of slotline (W  = 10 µm and t = 100 nm) in homogeneous GaAs substrate 

and periodic Si/SiO2 layered substrate showed the attenuation at 1 THz was 1.7 dB/mm and 2.6 

dB/mm [Pahlevaninezhad2011], respectively. Zero dispersion of group velocity was observed in 

the homogeneous GaAs structure. Therefore, less dispersive performances of slotline can be 

achieved by modifying traditional slotline structure. But the fabrication process becomes 

complicated. The measured slotline (W = 270 µm and t = 200 nm) in air gap has an attenuation 

of 0.05 dB/mm at 1 THz and shows almost zero dispersion of group velocity from 0.1-1 THz 

[Wächter2007]. 

3.5.2.2 Conductor backed slotline 

As in conductor backed CPW, the function of underlying metallization on reducing radiation loss 

will be investigated in this part. Besides the slotline mode Figure 3-35, conductor backed slotline 

has a parasitic microstrip mode. This is similar to the microstrip mode in the conductor backed 

CPW structure. EM field is mainly concentrated between the finite top conductor and bottom 

infinite ground plane, and the narrow slot (compared with the top metal width) is nearly 

neglected. Figure 3-38 demonstrates the vector EM field distributions of the microstrip mode in 

this type of slotline. 
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Figure 3-38: Electromagnetic vector field distribution of the parasitic Microstrip mode in a 

conductor backed slotline. (a): Electric field and (b): Magnetic field.  

 

0 5 10 15 20 25 30 35
0

200

400

600

800

1000

W=5m (SL)

W=10m (SL)

W=15m (SL)

W=20m (SL)

W=30m (SL)

W=5m (MS)

W=10m (MS)

W=15m (MS)

W=20m (MS)

W=30m (MS)
TEM wave in BCB

 (mm
-1

)

F
re

q
u

en
c
y
 (

G
H

z)

TEM
BCB

Slotline mode

Microstrip mode

(a)

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

0 200 400 600 800 1000

E
ff

e
ct

iv
e
 P

e
rm

it
ti

v
it

y
 

e
ff

Frequency (GHz)

Slotline mode (BC)

Microstrip mode (BC)

Slotline mode (BC)

W

W

W

(b)

 

Figure 3-39: Phase constant (a), and effective permittivity (b) of slotline mode and microstrip 

mode in conductor backed (BC) slotline on 30 µm BCB. Cases of conventional slotline (BC) are 

also shown for comparisons in (b). 

In conductor backed slotline, leakage of slotline mode to the parallel plate waveguide mode has 

been characterized [Shigesawa1988] at 10 GHz. If slot width W = 3 mm, the leakage loss is about 

0.5 dB per unit width and the leakage angle  (in reference to the slot axis) is 31° 

( 0cos( ) / ( )r    ,   and 0  are the phase constant of slotline mode and free space wave). 

(a) E 

(b) H 



Chapter 3: 3D Electromagnetic Modeling and Measurements of Planar Waveguides in THz Frequency 

134 

 

This leakage loss can be reduced by increasing the slot width or by increasing the substrate 

thickness. It can be avoided by loading the slotline with a high dielectric constant superstrate on 

the top, allowing the phase velocity of the slotline mode lower than that of the parallel plate 

mode [Das1991]. 
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Figure 3-40: CST calculated losses of conductor backed (BC) slotline on 30µm BCB, (a) 

Radiation loss and (b) Total losses. Cases of conventional slotline (BC) are also shown for 

comparisons 

In Figure 3-39 and Figure 3-40, we compare the dispersion and losses ( R  and T ) of 

conductor backed (BC) slotline with their conventional counterparts (BC). In the BC slotline, 

BCB with a thickness of 30 µm is modeled as in the conductor backed CPW. Figure 3-39 (a) 

shows that both the slotline mode and microstrip mode have no cutoff frequency. The phase 

constant of the microstrip mode is extremely close to the phase of the TEM wave in BCB. This 

can be further shown in Figure 3-39 (b), where the effective permittivity of the microstrip mode 

approaches the BCB permittivity (2.42) and this mode demonstrates no clear dispersion. Because 

most part of EM field is confined in the dielectric side and the EM field in the top air region can 

be neglected. With the increase of slot width, the effective permittivity of the microstrip mode 

decreases. Because the EM field becomes more leaky into the air region. 

Effective permittivity of the dominant slotline mode is enhanced due to backed conductor and 

the corresponding phase velocity will be slow. This is similar to the observed increase of effective 

permittivity conductor backed CPW. As in the conductor backed CPW, parallel plate modes will 

appear at certain frequencies: 

2 2( ) ( )
2

mn

r

c m n
f

S L

 

 
                                                (3-23) 

Because S (0.24 mm) < L (1 mm), the resonance frequency fmn is mainly determined by L and r  

in the simulated frequency range (m = 0). f01 ≈ 100 GHz, so the resonances will appear at integral 
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multiple of f01, as seen in the radiation and total losses in Figure 3-40. At these frequencies, the 

performance of conductor backed slotline mode deteriorates, making it no longer appropriate for 

THz transmission (increase of 
R  is 3-6 dB/mm). However, outside these resonant positions, 

the radiation losses are comparable to those in conventional slotline, or even lower at high 

frequency (> 800 GHz). Concerning total losses in Figure 3-40 (b), the conductor backed slotline 

always has worse performance up to 1 THz (increase of 
T  is 2-6 dB/mm). The backside 

conductor can probably introduce additional conduction and dielectric losses, as in the case of 

conductor backed CPW. It should be noted that the appearance of these resonances in Figure 

3-40 depends on the profile of excitation plane in the simulation. This is different from the on-

wafer measurement, in which the probe is only located at the metal plane (horizontal excitation). 

The appearances of resonances need verification in the prospective work. 

3.5.3 Conclusions 

In summary, the dispersions and losses of conventional and conductor backed slotline on 

substrate BCB have been investigated. For conventional slotline, W=5 µm corresponds to the 

minimum total attenuation among the studied dimensions (W= [5-30] µm). Resonances due to 

the excitation of parallel plate modes in the conductor backed slotline are also observed as in the 

conductor backed CPW. In the high frequency region (> 800 GHz), the backed conductor helps 

to decrease the radiation loss in the non resonant part, which is the advantage of conductor 

backed slotline. Strong dispersion and high attenuation may limit the application of slotline in 

THz range. 

Until now, four types of transmission lines have been studied separately focusing on the various 

parameters of geometric and material properties in THz range. In the following part of this 

chapter, direct numerical comparisons of these lines will be made for the first time in the [20-

1000] GHz frequency range. 

3.6 Optimal THz planar waveguide 

3.6.1 Comparison criteria 

Comparisons of dispersion and total losses between CPW and microstrip line on thin BCB film 

(several micrometers) over silicon substrate were conducted up to 1 THz [Schnieder2005] at the 

same characteristic impedance (70 Ω). This impedance value can be achieved by adjustment of 

two geometrical parameters: S1 and W for CPW, W and H for microstrip. However, for slotline 

on BCB, only the slot width W can be altered. In the section 3.5 about slotline, the characteristic 

impedance can be increased from 95 Ω (W = 5 µm) to 160 Ω (W = 30 µm). Considering the 

technological realization by conventional optical lithography, here we propose to compare the 

four simulated different types of waveguides at the same low frequency (20 GHz) characteristic 

impedance (100 Ω). Their geometrical dimensions are illustrated in Figure 3-41 and they can be 

easily fabricated.  
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Figure 3-41: Dimensions of different 100 waveguides for comparisons 

CPW with (BC) and without (BC) backed conductor gives similar characteristic impedance, while 

conductor backed slotline on 30 µm BCB at W = 6 µm has 74 Ω impedance. It should be noted 

that, for CPW, the dimensions of S1 (10 µm) and W (6.6 µm) in Figure 3-41 are not unique to 

achieve 100 Ω impedance. The BCB thickness (H) is assumed ideally to be infinite for CPW and 

slotline without backside metallization, while H = 30 µm for microstrip and the homogeneous 

stripline. A thickness of 30 µm BCB can be easily deposited by a spin coating device, as seen in 

the section of sample fabrication. 

Metal conductivity σAu = 5.106 S/m and thickness t = 500 nm, and other material parameters are 

kept as the same as in Table 3-1. The dispersions and different types of losses will be compared 

among the four types of waveguides and the optimal structure suitable for THz transmission is 

then proposed based on the chosen comparison criteria (100 Ω characteristic impedance). 

Frequency domain simulation of slotline is conducted by CST MWS, and by HFSS for other 

three types of waveguide in the range [10-1000] GHz. 
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3.6.2 Dispersion and losses 

3.6.2.1 Dispersion 
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Figure 3-42: Phase constant (a), effective permittivity (b), phase (c) and group (d) velocities of the 

fundamental mode in the four types of waveguides. Phase constant of TEM wave in BCB is also 

plotted for reference 

Figure 3-42 plots the phase constant, effective permittivity, phase and group velocities of the 

dominant mode in the four types of transmission lines on BCB substrate. The results of CPW 

(BC and BC) are reproduced here from the section 3.2. The slotline mode in CPW structure is 

not shown here. Stripline has its phase constant equal to the phase of TEM wave in 

homogeneous BCB, so it is the only waveguide owning TEM nature of propagation. The 

effective permittivity of CPW and stripline is quasi-constant with the frequency. From 10 GHz to 

1 THz, the incremental value of effective permittivity is 0.0138 (CPW BC), 0.02 (CPW BC), 

0.1327 (Microstrip), 0 (Stripline) and 0.203 (Slotline). As seen in section 3.2, backed conductor in 

CPW can increase the effective permittivity. The phase velocity ( /  ) is in the following order: 

CPW (BC) > CPW (BC) > Slotline > Microstrip > Stripline = TEM wave in BCB. Both the 

phase and group velocities of slotline demonstrate its most strong frequency dependent behavior. 

Among these waveguides, slotline appears as the most dispersive line and the stripline as the least 
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dispersive one. Microstrip is less dispersive than slotline. The four types of waveguides can be 

sorted by descending order of dispersion as follows: Slotline > Microstrip > CPW > Stripline. 

3.6.2.2 Losses 
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Figure 3-43: Losses of the four types of waveguides: (a) Radiation loss, (b) Dielectric loss, (c) 

Conduction loss (σAu = 5.106 S/m), and (d) Total losses (σAu = 5.106 S/m) 

I Radiation loss 

Losses in each line can be found in Figure 3-43. For radiation loss, the slotline has the largest 

attenuation (7.63 dB/mm at 1 THz) well above other three lines. The high loss can be reduced by 

using narrow slot, but the fabrication difficulty will increase accordingly. Unsurprisingly, stripline 

has quasi zero radiation until 1 THz (0.006 dB/mm). Microstrip and CPW (BC) also present 

satisfactory performances, with 1.48 dB/mm and 0.43 dB/mm respectively at 1 THz. CPW (BC) 

has radiation loss between those of stripline and CPW (BC) in the non resonant region. At 

resonances, its value is comparable to, but lower than that of slotline. 
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II Dielectric loss 

Dielectric loss is related to the loss tangent in BCB and they are shown to be equivalent between 

different lines (note the different ordinate values). The dielectric loss is almost proportional to 

frequency. This result is consistent with the theory in microwave [Gupta1996]. For the four types 

of waveguides, the maximum loss observed is inferior to 1 dB/mm at 1 THz. We can conclude 

that dielectric losses are weak and comparable to the radiation losses in CPW and microstrip. 

Reduction of the dielectric loss is possible by employing a substrate material with lower loss 

tangent, such as the cyclic-olefin copolymer (COC, r = 2.35 at 10 GHz and tan= 0.0007 at 1 

THz) [Peytavit2011]. 

III Conduction loss 

Conduction losses in metals influence the EM field distribution outside metals via the variations 

of geometric dimensions of metals and the distance between them. Slotline and microstrip have 

the least ohmic losses (1.6 dB/mm at 1 THz) whereas CPW (BC) suffers from the highest loss 

(6.7 dB/mm at 1 THz). CPW (BC) and stripline have relatively high value (4.7 dB/mm at 1 THz) 

due to their narrow metal width or gap width. The reduction of conduction loss is possible by 

properly choosing the values of (S1, W) for CPW (BC), and (W, H) for stripline, while the 

characteristic impedance is maintained at 100  . 

IV Total losses 

The total losses are compared in Figure 3-43 (d). Based on the assigned material parameters of 

BCB and metal, microstrip line is the optimal THz transmission line showing an attenuation of 

4.0 dB/mm at 1 THz. Stripline and CPW (BC) suffer from their large conduction loss in the 

metals. Due to its large radiation loss, slotline is proved to be the most lossy transmission line 

(9.6 dB/mm at 1 THz). The attenuation in CPW (BC) presents resonances and its value is 

equivalent to, or even higher than that of slotline because of its great conduction loss.  

At 1 THz, the phase velocity and different losses of the dominant mode in each line is 

summarized in Table 3-4. 

Table 3-4: Phase velocities and attenuation properties of the four types of waveguides at 1 THz. 

Phase velocity in BCB is 1.93 × 108 m/s. 

 
Vp (108 m/s) αR (dB/mm) αD (dB/mm) αC (dB/mm) αT (dB/mm) 

CPW (BC) 2.31 0.43 0.59 4.77 5.84 

CPW (BC) 2.29 3.82 0.63 6.74 11.71 

Microstrip 2.16 1.48 0.82 1.63 4.00 

Stripline 1.93 0.006 1.00 4.68 5.64 

Slotline 2.17 7.63 0.94 1.71 9.60 

 

The microstrip seems to be the best transmission according to the total losses in Table 3-4. 

However, the performances of the other three types of waveguide as well as the microstrip at 100 

 still leave room to be improved, if the geometric dimensions are varied. In CPW (BC) and 

stripline, the conduction loss dominates in the total attenuation. By increasing the gap width in 
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CPW and the central strip width in stripline, the conduction loss can be reduced. For slotline, the 

radiation loss is high due to its strong dispersion. If the dispersion becomes weak, the radiation 

loss will decrease accordingly.  The following section aims to optimize the attenuation in each 

waveguide, while the characteristic impedance is always at 100 

3.6.3 Optimization of the performances of waveguides on BCB at 100  

In CPW without BC, the radiation loss increases with the gap width W and the central metal 

width S1, while the conduction value decreases with W.  By varying S1 and W at the same time, 

the characteristic impedance can be maintained at 100 at 20 GHz. The evolution of the total 

losses with the combination (S1/W) is shown in Figure 3-44 (a). The optimal choice exists: S1 = 

20 µm and W = 12 µm. At 1 THz, the total losses are reduced from 5.84 dB/mm to 4.83 dB/mm. 

For S1 and W higher than the optimal values, the radiation loss becomes important at high 

frequency (> 400 GHz). If they are below the optimal values, the conduction loss dominates.  
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Figure 3-44: (a) Total losses of CPW (BC) at 100 with different combinations of S1 and W, (b) 

Conduction loss of stripline at 100 with different combinations of W and H 

In stripline at 100 , both the central metal width (W) and the dielectric thickness (H) should be 

changed. Because the radiation loss and dielectric loss do not depend on W and H, the practical 

method is to use wide central strip to reduce the conduction loss (or the total losses). Figure 3-44 

(b) shows the conduction loss in the stripline with the variation of (W/H). Large values of W and 

H are optimal. In practice, they are limited by the maximum thickness of BCB deposited over the 

metallic ground plane. H = 60 µm can be easily realized in the fabrication process. The 

corresponded strip width is W = 16 µm. At these values, the conduction (total) losses are reduced 

from 4.68 (5.64) dB/mm to 2.14 (3.23) dB/mm at 1 THz. The attenuation is lower than the total 

losses (4 dB/mm at 1 THz) in the microstrip (H = 30 µm). 
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Figure 3-45: (a) Deposition of BCB (thickness h) on top of the slotline. (b) and (c) are the phase 

velocity and radiation loss of slotline at 100 with different combinations of W and h. (d) is the 

total losses of microstrip at 100 with different combinations of W and H 

In slotline at 100 , only one parameter (W) can be changed. To add an adjustable parameter, a 

layer of BCB with a thickness of h is deposited on top of the structure (Figure 3-45 (a)). This step 

is feasible in the fabrication for the polymer BCB, while it is difficult for semiconductor material. 

Thick BCB (large value of h) helps to confine the EM field at the side of dielectric, particularly at 

high frequency (> 200 GHz). Thus, the dispersion of the phase velocity and the radiation loss 

become weak, shown in Figure 3-45 (b) and (c). At H = 60 µm, the radiation (total) losses are 

reduced from 7.63 (9.6) dB/mm to 0.7 (3.49) dB/mm at 1 THz. The radiation loss is comparable 

to the dielectric loss and the total losses are lower than those in microstrip at 1 THz. Results 

presented in Figure 3-45 (c) have to be taken with care. Such a reduction of radiation losses at 

high frequency requires at least further investigation. 

However, the losses in microstrip at 100  can also be optimized via the different combination 

of the metal width (W) and BCB thickness (H), shown in Figure 3-45 (d). At W = 35 µm and H 

= 50 µm, the total losses are lowered from 4 dB/mm to the optimal value of 2.52 dB/mm at 1 

(a) 

(c) 
(d) 

(b) 
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THz. This result is considered as the compromise among all the three types of loss (radiation, 

conduction and dielectric loss) because they are close and comparable (Table 3-4). 

3.6.4 Conclusions 

Assuming the same characteristic impedance (100  ), dispersions and losses properties have 

been compared among the four types of waveguides on BCB.  

Microstrip with BCB substrate seems as the best transmission line in the frequency range [10-

1000] GHz. Stripline are not too far in term of attenuation and it possesses the unique advantage: 

non dispersive nature (TEM) and zero radiation loss. If the conduction loss can be decreased, 

CPW (BC) will also be attractive. Slotline and CPW (BC) is not suitable for THz transmission for 

a distance above 1 mm according to Figure 3-43. However, their performances can be improved 

further by choosing properly the geometrical dimensions of the metal, the gap or the dielectric 

thickness.  

It should be noted that these quantitative results and conclusions are only based on the selected 

criteria. Waveguides on other substrates and dimensions may show different results. 

3.7 Transition design, sample fabrication and measurements 

In order to validate the simulation results of planar waveguides with HFSS, experiments have 

been completed in the submillimeter frequency range [325-500] GHz with a vector network 

analyzer at the Fraunhoffer Institute for Applied Solid State Physics (IAF at Freiburg, Germany) . 

Propagation constants of four lines (conventional and conductor backed CPW, and Microstrip) 

on BCB film deposited on Si substrate have been measured. Both the sample fabrication 

technologies in the clean room and the de-embedding methods for extracting the line 

performances will be explained in the next sections. The stripline and slotline have not been 

measured. 

3.7.1 Design of coupling transitions 

Standard 50 Ω CPW structure adapted to the 50 Ω network analyzer is used to excite the 

corresponding waveguides under test. For efficient power coupling, specific via-less transitions 

should be carefully designed to smooth the impedance mismatch between the external CPW and 

internal lines. Table 3-5 lists the line dimensions prepared for experiments. For CPW, the first 

three dimensions ((S1, W) = (36 µm, 3 µm), (70 µm, 4.28 µm) and (100 µm, 6 µm)) have a 

characteristic impedance around 50 Ω at 20 GHz, according to HFSS results of CPW on BCB. 

The last two CPW structures are employed to evaluate the influence of gap width (W) on the 

attenuation at a constant central metal width (S1). The ground plane width is fixed at S2  = 150 µm. 

For microstrip, the width of signal line is the only parameter to be varied: W  = 10, 20 and 36 µm. 

The line length L for all the three kinds of waveguides has four options: 0.2, 0.5, 1 and 2 mm. To 

achieve high coupling efficiency, we adopt different forms of transitions depending on the line 

type and geometry. Their transitions are illustrated in Figure 3-46. 
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Table 3-5: Dimensions of CPW and Microstrip 

Width (µm) CPW (S2  = 150 µm) 

σInP(S/m) 

Microstrip 

Microstrip 

S1 36 70 100 36 36 W=10, 20 and 36µm 
W 3 4.28 6 6 10 

 

           

Figure 3-46: Design transitions for (a) CPW-CPW, and (b) CPW-Microstrip. Line dimensions are 

indicated 

3.7.1.1 Transition CPW-CPW 

Due to the same arrangement of metals between the contact region and CPW region, the 

transition CPW-CPW can be realized easily. Figure 3-46 (a) shows the plan view of CPW with 

two symmetric transitions at each side of the waveguide. The dimensions of the contact part, on 

which the G-S-G probe is located, are the same for all lines in Table 3-5 to facilitate the 

measurement and comparison. A tapered region is used to alleviate the impedance mismatch 

between the two segments. Its length is chosen to be Ltap = 100 µm. The electric field distribution, 

reflection and transmission properties of a 1 mm CPW line with back-to-back transitions at the 

ends are shown in Figure 3-47 and Figure 3-48, respectively. Both the losses in BCB 

( tan 0.007  ) and metals ( 65.10  /Au S m  ) are included in the calculation. The majority of 

EM energy propagates through the two gaps regions and a small part extends to the outer open 

substrate region. 

The power reflection coefficient S11 is maintained at least 15 dB (- 1120log S ) in the anticipated 

experimental frequency range (325-500 GHz). Transmission coefficient S21 with the two 

transitions is below 6 dB (- 2120log S ). The insertion losses of the contact region and contact 

region plus the tapered regions depending on CPW dimensions are shown in Figure 3-48 (b). 

(a) (b) 
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Each contact has losses less than 0.2 dB and the contact plus tapered parts contribute to 

additional attenuation below 2.7 dB. 

 

Figure 3-47: Electric field distribution along the propagation direction (white arrow) for 1 mm 

length of CPW (S1 = 70 µm) with transitions at two ends 
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Figure 3-48: (a) Reflection (S11) and transmission (S21) of a 1 mm CPW with two transitions at 

both ends, and (b) Insertion losses in different sections of a transition (Figure 3-46 (a)) 

3.7.1.2 Transition CPW-Microstrip 

From the side of experimental investigation of microstrip, coaxial transmission line and the CPW 

structure are the common methods to excite the microstrip mode. Coaxial line excitation does 

not apply easily in this planar structure. This excitation often requires via/holes through 

microstrip substrate to connect the ground planes, which introduces the fabrication difficulties. 

Some methods without via/holes have been proved experimentally to work at frequencies below 

100 GHz [Wang2006]. In these approaches, carefully designed transition region and CPW ground 

plane shapes [Gauthier1998] are prerequisite conditions for efficient coupling. The via-less 

transition CPW to microstrip is presented in Figure 3-46 (b), as use in [Gauthier1998] for W-

band measurements (70-120 GHz). The length of transition is set at Ltra = 145 µm, corresponding 
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approximately to one quarter of the guided wavelength at 400 GHz. Figure 3-49 shows the mode 

coupling from CPW mode to dominant mode in microstrip. Simulation results in Figure 3-50 (a) 

show a minimum reflection of 10 dB and a maximum transmission attenuation of 5 dB. The 

insertion losses of the different parts in one transition are shown in Figure 3-50 (b). Each contact 

has losses less than 0.2 dB and the contact plus tapered parts contribute to additional attenuation 

below 0.5 dB. The whole transition can introduce a loss less than 2.3 dB. The resonances at 410 

GHz are due to the formation of parallel plate mode in the simulation. 

 

Figure 3-49: Electric field distribution along the propagation direction (white arrow) for 1 mm 

length of Microstrip line (W = 20 µm) with transitions at two ends 
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Figure 3-50: (a) Reflection (S11) and transmission (S21) of a 1 mm Microstrip line with two 

transitions at both edges, and (b) Insertion losses in different sections of a transition (Figure 3-46 

(b)) 

The mask contains different lengths of waveguides and their corresponded open and (or) short 

circuits (Figure 3-51) for the follow-up de-embedding task. Region A contains the short and open 

circuits of the contact region for probes. Region C and B are the CPW lines and the short circuits 

of CPW, respectively. Region E and D correspond to Microstrip lines and their open circuits. 



Chapter 3: 3D Electromagnetic Modeling and Measurements of Planar Waveguides in THz Frequency 

146 

 

 

Figure 3-51: Arrangement of waveguide motif centered on a 2 inch silicon wafer 

Different technological procedures have been developed to realize the waveguides on thin or 

thick BCB. 

3.7.2 Technologies of sample fabrication 

The fabrication process with conductors below the dielectric BCB (conductor backed CPW and 

microstrip lines) is complicated when compared with conventional CPW. Moreover, the 

manufacture process begins on a 2 inch silicon wafer (resistivity is [1-20] ohm-cm). To reduce the 

dielectric losses, BCB layer should be as thick as possible to avoid the EM field penetrating into 

the lossy silicon wafer. According to the product data of CYCLOTENE 3022-63 dry etch resin 

(BCB) provided by Dow Company (http://www.dow.com/cyclotene/prod/302263.htm), 

multiple times of deposition are needed to achieve a thickness of BCB higher than 30 µm. Finally, 

BCB does not have a good connection quality with most conducting metals, such as gold and 

aluminum. Special technique will be employed to accomplish this requirement. 

Here we describe in detail the mains procedures (see Figure 3-52) for realizing the planar 

waveguides on thick BCB (> 60 µm), where a layer of gold conductor is present between BCB 

and the silicon wafer. 
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Figure 3-52: Flow chart for realization of waveguide on thick BCB with an underlying conductor 

layer on silicon wafer. Procedure details are described in the text 

 (a)-(b) Formation of holes in Si wafer 

In order to improve the adhesion of BCB with the underlying metal layer, periodic holes are 

etched at the periphery of wafer. The step (b) can increase the contact area and make the 

deposition of thick BCB possible. As the waveguides locate at the center of wafer, the influences 

of holes on their performances are negligible. 

1.3 µm photoresist Shipley S1813 from Microposit is spin coated onto the wafer. The center 

region of wafer is isolated from the UV beam in the optical lithography process (double-sided 

mask alignment system from EV group, http://www.evgroup.com/en). The pattern of periodic 

circles (10 µm diameter and 20 µm center-to-center distance) is formed at the outer 1/4 radial 

region. Silicon is etched at the temperature 10°C by Inductively Charged Plasma (ICP) from STS 

system. To achieve high etching anisotropy and high aspect ratio structure, alternating etching 

(SF6) and passivation (C4F8) processes are used for deep silicon etching, as listed in Table 3-6. 

The total time is 4 minutes and the hole depth is about 10 µm.  

Table 3-6: Etching and passivation processes for deep holes in silicon by ICP 

 
C4F8 

(sccm) 
SF6 

(sccm) 
O2 

(sccm) 
Pressure 
(mTorr) 

Power 
(W) 

Time 
(s) 

Passivation 200 0 0 5 1500 2 

Etching 20 450 45 5 2200 4 

  

(c) Evaporation of Ti/Au on Si as the underlying conductor 

Electron beam evaporation of metal layer is conducted by PLASSYS system. An adhesion layer 

of titanium (thickness is 10 nm, and speed is 0.1 nm/s) is used before the deposition of gold 

(thickness is 500 nm, and speed is 0.2 nm/s), the same thickness as in the simulations. 

(d) Deposition and soft cure of thick BCB  
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The polymer BCB used is non photosensible, and is a part of the series CYCLOTENE 3022-63 

provided by Dow Chemical Company. From the tutorial available on the Dow chemical website, 

a 30 µm thick BCB can be achieved at a spin speed of 700 rpm after soft cure. Two successive 

depositions are needed to reach the wanted thickness (>60 µm). 

The adhesion promoter AP3000 from the same company is employed as the adhesion layer 

between Au and BCB. Then the first layer of BCB is deposited followed by a bake on a hotplate 

to remove solvents and avoid material flow during subsequent handling. The sample is baked for 

5 minutes at 90°C. Finally, the soft or partial cure of BCB is designed to reach a 75-82% 

polymerization useful for multilayer structures. Table 3-7 gives the soft cure process of BCB in 

the oven filled with nitrogen (N2) flux. 

Table 3-7: Soft cure of BCB 

Step No. Temperature /Ramp Time Time (min) 

1 50°C/5min 5 

2 100°C/15min 15 

3 150°C/15min 15 

4 210°C/60min 40 

5 Natural cooling to environment temperature 

 

The second layer of BCB is deposited after the soft cure. The processes of bake and cure are 

reproduced for the second layer. A verification of the sample profile with electron beam 

microscopy shows that there is no evident boundary existing at the two adjacent BCB layers, as 

shown in Figure 3-53. 

 

Figure 3-53: Scanning electron microscopy (SEM) image of thick BCB (60-70 µm) deposited on Si 

substrate 

 (e) Evaporation of Ti/Au on BCB as the signal lines and hard cure of BCB 

As in (c), Ti(10 nm)/Au(500 nm) is evaporated on cured BCB to realize the planar waveguides 

from the designed mask. The hard cure is carried out as final cure to achieve 95-100% conversion 
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of BCB after all the polymer layers and conductor layers have been completed. Table 3-8 resents 

the hard cure process of BCB in the N2 gas filled oven. 

Table 3-8: Hard cure of BCB 

Step No. Temperature /Ramp Time Time (min) 

1 50°C/5min 5 

2 100°C/15min 15 

3 150°C/15min 15 

4 250°C/60min 60 

5 Natural cooling to environment temperature 

 

(f)-(h) Spin coating of resist and Au etching 

The Au layer is covered by the resin S1813 and patterned by optical lithography. Then it is etched 

by the system IonSys 500 from Roth & Rau Group. Inert gas Ion Beam Etching (IBE) is 

conducted in 2 minutes at -10°C and followed by 1 minute of cooling to avoid the overheat of 

metal and to maintain the good adhesion between BCB/Au. The alternating processes are 

repeated 6 times to finish the etching of 500 nm Au. Table 3-9 gives the IBE parameters. 

Table 3-9: Au etching by IBE 

Power (W) Beam Voltage (V) Ar (sccm) Pressure (mbar) Temperature (°C) 

350 300 1.5 2.2×10-4 -10 

 

(i) Removing the resist 

The photoresin left on the waveguide lines after the Au etching process is removed by dry 

etching in plasma O2 for 5 minutes (power is 160 W and pressure is between 0.6 and 0.8 mbar). It 

should be noted that the resin can also be removed by acetone combined with ultrasonic cleaning, 

however, long time ultrasonic wave perhaps makes the adhesion between BCB and underlying 

Au layer weak. So the dry etching method is recommended. 

The procedure for realizing waveguides on thin BCB (for example, 30 µm) and/or without 

underlying conductor layer can be slightly modified according to the above general descriptions 

in Figure 3-52. 

Figure 3-54 shows the images of waveguide on 30 µm BCB without underlying Au layer and on 

60 µm BCB with the existence of underlying Au layer. The right images represent the enlarged 

part of the ensemble of waveguides centered on the wafer (within solid white circle). The region 

where there are no holes in silicon wafer is indicated in Figure 3-54 (b) as be within the dashed 

white circle. The yellow color seen in Figure 3-55 (b) is attributed to the underlying Au layer 

because the BCB is over 90% transparent to visible light. 
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Figure 3-54: Optical microscopy images of wafer after the removal of photo resist: (a) Waveguides 

on thin BCB without underlying Au layer, (b) waveguides on thick BCB with underlying Au layer. 

The enlarged part corresponds to the designed waveguides 

3.7.3 Measurements results in the frequency range [340-500] GHz 

The on-wafer measurement was carried out by means of a vector network analyzer (VNA) 

Agilent PNA-X in [325-500] GHz at Fraunhofer Institute for Applied Solid State Physics 

(Fraunhofer IAF) in Freiburg (Germany). G-S-G pitch (tip spacing) is 60 µm, which matches the 

contact region designed on the mask. To remove repeatable errors from the VNA, probe losses 

and reflections, calibration was conducted by the Thru-Reflect-Line (TRL) technique [Engen1979] 

on an alumina substrate (ISS 138-356) from Cascade Microtech Company. A recent review of 

calibration methods for planar electromagnetic structures can be found in [Wu2005]. 

The method for extracting the complex phase constant of CPW lines are introduced in the 

following part. 

3.7.3.1 De-embedding technique by using ADS 

I Choice of de-embedding 

In order to exclude contributions of unwanted portions (contact/tapered/transition parts) of the 

structure from the measured data, a de-embedding step is required. The common de-embedding 

methods in microwave frequency are based on mathematically cascade matrix manipulation, such 

as short-open [Zhu2002-1], short-open-load-thru (SOLT) [Zhu2002-2] and TRL techniques. The 

(a) 

(b) 

with holes 

without holes 
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accuracy of these methods depends critically on the sensitivity of structure fluctuations and 

measurement errors. For all the waveguides under test in this section, the de-embedding has been 

done in ADS, where the standard electrical models (lumped impedance/admittance, CPW and 

conductor backed CPW) are used to mimic the electrical behavior of transitions and the 

waveguides. Direct comparisons between measurements and simulations can be done with ADS 

to facilitate the optimization. The main drawback of this method is the difficulty to find an 

appropriate electrical circuit model. 

II De-embedding procedures with ADS 

In this part, we describe the different steps of de-embedding by ADS. The reference structure of 

50   CPW (S1 = 36 µm, W = 3 µm) is used to illustrate the de-embedding method, knowing that 

CPW with other dimensions can be treated with the same approach. 

A Electrical model of the transition  

Figure 3-55 shows the ''offset'' short circuited CPW with different lengths at left and right sides: 

B31 (left/right length = 50 µm/250 µm), B32 (250 µm/150 µm) and B33 (150 µm/50 µm). The 

length of all the short circuited part is 35 µm. ADS circuit model of different parts (I, II, III, IV, 

and V) is described in the following. The interactions of different parts (from I to V) are 

neglected in the ADS model. 

 
 

 

     

(a) B31 

I II III IV V 

I II III IV V 
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Figure 3-55: Short circuited CPW (S1 = 36 µm, W = 3 µm) for de-embedding (length of the short 

circuited part = 35 µm) and the equivalent electrical circuit model of B31 (left length = 50 µm, 

right length = 250 µm) 

(1) Part I and V: contact/access regions 

They are modeled via a  network connected in series with a CPW model, as shown in Figure 

3-56. This network is composed by a frequency dependent (3nd order) complex serial impedance 

(Z) and two parallel admittance (Y) as in [Heuermann1999, Ito2008] normalized by the standard 

50 Ω resistance:  

          2 2 3

0 1 0 2 0 0 1 0 2 0 3 050Z zr zr f f zr f f j zi zi f f zi f f zi f f            
 

(3-24) 

          2 2 3

0 1 0 2 0 0 1 0 2 0 3 00.02Y yr yr f f yr f f j yi yi f f yi f f yi f f            
 

(3-25) 

Where f is the frequency, f0 = 400 GHz (center frequency in measured data) and j is the imaginary 

unit. To account for the asymmetrical probe position in the measurement, the coefficients of the 

real (zr0, zr1 and zr2) and imaginary part (zi0, zi1, zi2 and zi3) of Z can be varied independently 

between part I and V. This is also true for the coefficients of real and imaginary part of Y. 

In ADS, the substrate properties (thickness H, permittivity Er, loss tangent Tand), metal 

conductivity (Cd) and structural dimensions (Central metal width W, gap width G, and length L) 

of CPW have to be fitted on measured data (optimization). The model used for Part I is also 

applied for the part V.  

  

Figure 3-56: Electrical model and symbol of the access region for CPW structure 

(b) B32 
(c) B33 
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(2) Part II and III: short circuited CPW line at one end (50 µm length) 

A corresponding short circuited CPW model is used. The substrate properties (H, Er and Tand) 

and line dimensions (W, G and L) are varied independently from the part I. The right part of B33 

follows the same model as the left part of B31. 

The short circuited part at the right of B31 owns a longer length (250 µm) and it is considered as 

the independent combination of a 50 µm short circuited CPW (III is the same as II) and a 200 

µm homogeneous CPW line (IV). For the latter, the line dimensions (W, G and L) are optimized 

independently. The same treatment applies in the left part of B32. 

The measured reflection data S11 and S22 of B31-B33 are used in the fitting process, while the 

small transmission S12 and S21 (< -25 dB) is omitted. 

B Electrical model of CPW line with transitions 

The electric model of 1 mm CPW line is illustrated in Figure 3-57. Its left and right transitions 

(contact region and tapered region) are as the same as in Figure 3-56. The central homogeneous 

CPW line is represented in the same way as the part IV in Figure 3-55, because they have the 

same dimensions (S1 and W). Its length L is optimized between 0.9 and 1.1 mm around 1 mm to 

take account of the fabrication errors. Other CPW lines (500 µm and 2 mm) use the same model 

as in Figure 3-57. The only difference is the line length L. Ideally, the losses in the line are 

proportional to the line length. CPW with L = 200 µm is not included in the fitting, because the 

interactions of two transitions may become important. 

 

 

 

  

Figure 3-57: 1 mm CPW line (S1 = 36 µm, W = 3 µm, L = 1000 µm) with two transitions and its 

equivalent circuit model 

C Extraction of the S parameters of the transition 

A parametric optimization is conducted simultaneously to fit the measurements S parameters 

(reflection coefficients for B31, B32 and B33, transmission and reflection coefficients for CPW 

transmission lines). One should verify that the optimized parameters (H, Er, Tand, Cd, W, G and 
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L) are in the reasonable range, particularly the line lengths. The measurement frequency below 

340 GHz is not taken into account due to large noise levels in the experiments.  

   

  

Figure 3-58: Fitting results of the reflection coefficients for the short circuited CPW (B31, B32, 

and B33). (a) Reflection coefficient in smith chart, phase of 50 µm (b), 150 µm (c) and 250 µm (d) 

short circuited CPW. The thick smooth curves represent the modeling (modeling and experiment 

are displayed in the same color). B31-L250 stands for the 250 µm short circuited part in B31. The 

rest may be deduced by analogy 

Figure 3-58 and Figure 3-59 present the fitting results of the three short circuited CPW and three 

CPW lines in Smith charts. The phase of reflection coefficients for short circuited CPW is also 

displayed in Figure 3-58. Generally, the employed circuit models well represent the behavior of 

short circuited CPW. The average value of the absolute difference between the simulated and 

measured S11 (amplitude/phase) is 0.2 dB/3°, 0.5 dB/5° and 0.5 dB/2° for short circuited CPW 

with length of 50, 150 and 250 µm, respectively. The phase differences between short circuited 

parts with the same length (for example, B31-L50 and B33-L50) suggest that the probes are not 

laid symmetrically on the two contacts. For CPW transmission lines at different lengths (Figure 

3-59), the transmission (T) behaviors are well simulated, while the reflection (R) coefficients are 

more difficult to follow. The averaged difference between the simulated and measured S21 and S11 

is 0.3 dB/4° and 2 dB/10° respectively for each line. This is because the reflection coefficient is 

more sensitive to the probe position in each measurement. To increase the fitting accuracy, more 

Phase in degree 

Phase in degree 

Phase in degree 

(a) (b) 

(c) (d) 
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frequency dependent terms (4nd and high orders) may be included in the impedance (Z) and 

admittance model (Y) for the contact region. 

          

Figure 3-59: Fitting results of the transmission and reflection coefficients of CPW line (S1 = 36 µm, 

W = 3 µm) at different lengths. (a) L = 500 µm, (b) L = 1 mm and (c) L = 2 mm. The thick 

smooth curves represent the modeling (modeling and experiment are displayed in the same color) 

D Extraction of the S parameters of CPW line 

In order to get the S parameters of the homogeneous CPW, the functions of fitted circuit models 

I and V in Figure 3-55 are reversed to subtract their contributions in the measured S parameters. 

Figure 3-60 shows the de-embedding scheme in ADS. -I (-V) represents the reverse circuit of I 

(V) by replacing the line length to its negative value and by replacing both the impedance and 

admittance to their negative values.  

 

Figure 3-60: Circuit model for extracting the S parameters of CPW line (S1 = 36 µm, W = 3 µm) 

based on measurement results and fitted transition models 

The de-embedded S parameters (T and R) of the CPW lines are represented in Smith charts in 

Figure 3-61. The number of trip for T around the Smith chart is observed to be proportional to 

the line length: 150° (L = 0.5 mm), 290° (L = 1 mm) and 560° (L = 2 mm). 

-I -V 

Measured S 

(c) (b) (a) 
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   Figure 3-61: De-embedded S parameters of CPW (S1 = 36 µm, W = 3 µm) at different lengths. (a) 

L = 500 µm, (b) L = 1 mm and (c) L = 2 mm 

E Calculation of the propagation constant of CPW line 

Once the S matrix is extracted, the propagation constant j     of the waveguide is given 

by Nicolson-Ross-Weir (NRW) method [Nicolson1970, Weir1974], 

 
11 21

11 21

1
ln( )

1

S S

L S S


 
 

  
                                             (3-26) 

Where the reflection coefficient 20

0

1c

c

Z Z
K K

Z Z


    


 and

2 2

11 21

11

1

2

S S
K

S

 
 . The choice of 

+ and – at each frequency is to ensure: 1  . L is the CPW length. 

In the above expression, the characteristic impedance cZ of CPW can be evaluated directly 

through S parameters according to [Pozar2004],  
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Where Z0 is the impedance of the measurement system (50  ).                                     

The same de-embedding procedures was applied on the others kinds of coplanar waveguides. For 

the conductor backed CPW, we used the associated electrical model given in ADS library. In next 

section, the extracted attenuation constant of the five CPW (listed in Table 3-5 with and without 

backed conductor) will be presented and compared with the simulations performed by HFSS. We 

will also point out the best CPW transmission line in the millimeter wave range.   

3.7.3.2 Measurement results of the BCB THz coplanar waveguide 

Up to now, as an initial test for the planar waveguides in millimeter wave frequency, only the de-

embedding work of CPW has been finished. For extracting the losses in microstrip, more 

structures (short and open circuits, longer microstrip lines, etc.) are needed to improve the results 

(a) (b) (c) 
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of de-embedding in a follow-up improvement. In this part, we only present the measurement 

results of CPW. 
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Figure 3-62: (a) Measured and (b) modeled attenuation constant (dB/mm) of CPW without 

backed conductor at different dimensions (S1/W) : 36/6, 36/10, 36/3, 70/4.28 and 100/6 µm. 

Sample: Metal (500 nm)/BCB (~30 µm)/Si substrate (300 µm), Model: σAu = 4.1.107 S/m, tanδ 

(BCB) = 0.007, BCB = 2.42, 30 µm BCB on semi-infinite Si (Si = 11.9, σSi = 10 S/m). (c) is the 

calculated radiation loss. (d) is the simulated attenuation with σAu = 5.106 S/m 

Both conventional and conductor backed CPW have been measured. Figure 3-62 shows the 

measured and simulated attenuation constant  (dB/mm) of CPW on 30 µm thick BCB. In the 

simulation results, no fitting parameters are used. For metals: thickness t = 500 nm, conductivity 

σAu = 4.1.107 S/m and 5.106 S/m. Metal width S1 (S2 = 150 µm) and gap width W are taken as 

theoretical values as indicated on the legend of each figure. For dielectric, BCB (permittivity 

BCB  = 2.42 and loss tangent tanδ = 0.007) is assumed to be 30 µm on semi-infinite lossy silicon 
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substrate (permittivity 
Si  = 11.9 and conductivity σSi = 10 S/m). The actual conductivity of Si 

wafer is in the range [5-100] S/m. 

As one can observe on Figure 3-62, the losses increase within the frequency range [340-500] GHz. 

The modeling results in Figure 3-62 (b) agree well with the measured curves of CPW with the 

five dimensions in Figure 3-62 (a), particularly at the narrow central metal (S1 = 36 µm). At S1 = 

36 µm, when the gap width increases from 3 to 10 µm, the attenuation increases. As we can 

observe, losses follow a quasi cubic frequency law. Because radiation loss plays a major role in 

total attenuation compared to conduction loss with the high metal conductivity σAu = 4.1.107 S/m. 

This is true for the radiation loss in Figure 3-62 (c). If the conductivity decreases to 5.106 S/m, 

the conduction loss in narrow gap CPW (W = 3 µm) becomes more important, as shown by the 

calculated total attenuation in Figure 3-62 (d). Comparing with Figure 3-62 (b), the losses are 

increased by 2 dB/mm at 340 GHz for all the dimensions. The metal conductivity of the 

measured conventional CPW can be approximated by a value around σAu = 4.1.107 S/m. 

Wide central metal (S1 > 36 µm) suffers from large attenuation (16 dB/mm at 500 GHz for S1 = 

100 µm) and this is coherent with the fact that radiation losses increases as S1 and W increase. 

The fluctuations in the measured data are attributed to the experimental uncertainty at the high 

frequency side. Concerning the modeling in Figure 3-62 (b), we can remark that for wide metal 

(S1 = 70 and 100 µm), the simulation overestimates the attenuation from 400 GHz in comparison 

with the one measured for the same structure. Firstly, this is probably due to that the 

conductivity for gold chosen in the modeling is not the optimal value. Secondly, from the 

fabrication process, the structural dimensions and material properties may deviate from the 

values chosen for modeling:  (1) the gap width cannot be defined exactly due to the resolution 

limitation (0.2-0.4 µm) in the photolithography. The radiation loss in CPW depends critically on 

the value of gap width, particularly at wide central width. (2) Metal profile in the propagation 

direction is inhomogeneous and irregular in the etching process as shown by the optical 

microscopy images in Figure 3-63. Some gaps (openings) appear both on metals in the access 

region (maximum depth 0.8 µm) and the CPW part (maximum depth 0.2 µm). Surface roughness 

also exists. (3) Metal thickness and conductivity may differ from assumed values. This will mainly 

influence the conduction loss. (4) BCB thickness may be inhomogeneous below the waveguides. 

The best structure is (S1 = 36 µm, W = 3 µm), showing an attenuation of 2.7 dB/mm at 400 GHz 

and 3.5 dB/mm at 500 GHz. 

 

Figure 3-63: Optical microscopy images of a fabricated CPW (S1 = 70 µm, W = 4.28 µm, L = 500 

µm) 
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Figure 3-64: Measured (a/c) and modeled (b/d) attenuation constant (dB) of 1/2 mm CPW 

with backed conductor at different dimensions (S1/W) : 36/6, 36/10, 36/3, 70/4.28 and 100/6 µm. 

Sample: Metal (500 nm)/BCB (~60µm)/Metal (500 nm)/Si substrate (300µm), Model: σAu = 

4.1.107 S/m, tanδ (BCB) = 0.007, BCB = 2.42, BCB thickness is assumed to be 60 µm. (e) and (f) 

are the simulated attenuation for a 1 mm and 2 mm conductor backed CPW at σAu = 5.106 S/m, 

respectively 

Figure 3-64 compares the attenuation of the 1 mm and 2 mm conductor backed CPW (> 60 µm 

thick BCB). For L = 1 mm in Figure 3-64 (b), two resonances appear at 395 GHz and 490 GHz 

in the simulated data. As explained before in the parametric numerical study, the resonances are 

linked to the excitation of parallel plate mode which occurs in this kind of backed structure. In 

the measurement, the first resonance at low frequency is not pronounced whereas the second one 

is present at 445 GHz. The latter one is wider (80 GHz in average as width at half height 

(FWHM)) than the modeled one, whose FWHM is 15 GHz in average. The resonant frequencies 

in the measured data are lower, because the additional length (150 µm) of the two transitions 

(absent in the simulation) can cause the decrease of resonant frequency. At L = 2 mm in Figure 

3-64 (c) and (d), four resonances appear in both the measured and simulated total losses.  

In the region without resonances, if we compare the measured attenuation of conventional CPW 

in Figure 3-62 (a) and conductor backed CPW in Figure 3-64 (a), the losses are reduced 

apparently with the existence of backed conductor. According to the simulations in the section 

CPW, the reduction is mainly due to the decrease of radiation loss. In the conductor backed 

CPW, the total attenuation is dominated by the conduction loss. Indeed, for example, CPW with 

W = 3 µm shows the largest loss among the three dimensions at S1 = 36 µm. This is further 

validated in the long CPW. In the region without resonances, the simulated values underestimate 

the losses. It is probably due to our chosen optimistic value of the metal conductivity used in the 

modeling which should be slightly higher than the real case. Indeed, the simulations in Figure 

3-64 (e) and (f) with low conductivity σAu = 5.106 S/m can remarkably raise the attenuation by 

increasing the conduction loss. For example, the attenuation in the 1 mm CPW increases from 1 

dB to 5 dB. Due to the decrease of radiation loss with backed conductor, the attenuation 

performances of the wide central metal CPW (S1 = 70 and 100 µm) are also greatly improved 

(below 5 dB for a length of 2 mm), as shown in Figure 3-64 (c).  

At the resonances, the numerical data present more attenuation than the measured loss. For 

example, with S1 = 36 µm, W = 10 µm, and L = 1 mm, the resonance is more intense and reaches 

6 dB rather than 2 dB obtained experimentally. Thus, the amplitudes of resonances are 

overestimated in the modeling. However, to summarize, a trade off should be made between the 

different structures to find the best one. The conductor backed waveguides with (S1, W) = (36 

µm, 10 µm) and (100 µm, 6 µm) occur as good candidates. The typical attenuations obtained for 

these structures are below or close to 2 dB/mm up to 500 GHz. But, additional measurements 

and simulations should be needed to analyze these conductor backed CPW structures. 

3.7.4 Conclusions concerning measurement 

The transitions CPW-CPW, and CPW-Microstrip have been designed by HFSS in the frequency 

range [300-500] GHz.  
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Technologies for realization of thick BCB (> 60 µm) on gold layer were demonstrated and 

samples with CPW and Microstrip have been fabricated in the clean room (CTU/MINERVE) at 

IEF. 

De-embedding technique based on electrical models in ADS was shown to extract the S 

parameters of CPW at different lengths. Complex phase constant and characteristic impedances 

were calculated based on S parameters. Preliminary measured results show that the conductor 

backed CPW can reduce greatly the line attenuation in the frequency range [340-500] GHz. The 

conventional CPW (S1 = 36 µm, W = 3 µm) has losses below 3.5 dB/mm at 500 GHz. The 

conductor backed CPW is also attractive due to the drop of radiation loss. Numerical model 

based on lots of assumptions can predict well the losses of conventional CPW as a function of 

frequency and dimensions.  

3.8 Conclusions of Chapter 3 

In this chapter, quantitative evaluations of the propagation constant of four types of waveguide 

(CPW, Microstrip, Slotline and Stripline) and optimizations among them based on the same 

characteristic impedance (100  ) have been conducted up to 1 THz by HFSS and CST.  

Four types of CPW configuration have been investigated at three gap width (W = 1.6, 6.6 and 12 

µm). Airbridges used in this work are proved to attenuate slotline mode and hardly affect the 

other modes for W = 1.6 and 6.6 µm. While at W = 12 µm, this advantage is weakened and 

additional losses contribute to the CPW mode at f > 1 THz. The backed conductor makes the 

phase velocity of the dominant CPW mode slower and introduces parallel plate resonances in the 

losses, which may deteriorate the waveguide performance. The observed resonant frequencies are 

well predicted by theoretical formula. Then different losses (radiation, conduction and dielectric 

loss) are studied separately with the variation of gap width (W) on low permittivity BCB and high 

permittivity InP substrate. CPW on BCB has lower losses, and notably less radiation loss, in 

comparison with a waveguide on InP substrate. With the increase of W, conduction loss 

decreases and radiation loss increases. The attenuation in the dielectric does not depend strongly 

on W. 

Microstrip lines with metal width of 5-30 µm on 30 µm thick BCB substrate are compared. Wide 

metal width contributes to large radiation and low conductivity loss. The dielectric loss is 

comparable to the radiation loss and the conduction loss dominates in the total losses. 

Conventional slotline with slot width of 5-30 µm on semi-infinite BCB shows large dispersion 

and high attenuation loss. Conduction loss can be reduced by increasing gap width or the metal 

conductivity. As in the conductor backed CPW, conductor backed slotline has also resonances 

which mainly depend on the line length.  

Stripline (central metal width = 5-30 µm) in 30 µm low permittivity BCB shows nearly zero 

radiation and zero dispersion, as well as in high permittivity semiconductor substrate. When the 

material is inhomogeneous, radiation loss is no longer quasi zero due to the non TEM nature of 

the dominant mode. Resonances have also been observed. 
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Then a comparative study of the four types of waveguides at the same characteristic impedance 

(100  ) was done. Microstrip line in THz frequency has minimum attenuation, although suffers 

from weak dispersion. Stripline has comparable total losses but shows no dispersion. The 

attenuation in CPW without backed conductor can be comparable to microstrip line if the metal 

conductivity is improved. Slotline and conductor backed CPW suffer from the extremely large 

radiation loss and Slotline shows the most dispersive behavior. Methods have been proposed and 

demonstrated to ameliorate the losses in each type of waveguide at 100 . 

Technologies for sample fabrication on thick BCB dielectric in the clean room and transition 

design for coupling with the measurement system were introduced. De-embedding technique for 

extracting the S matrix, propagating constant and characteristic impedances of CPW waveguide 

was presented in detail. 

Finally, measurement results of CPW with and without backed conductor were shown in the 

frequency range [340-500] GHz. Parallel plate resonances were observed in the conductor backed 

CPW, which has lower attenuation (below 2 dB/mm for S1 = 36 µm and W = 10 µm) compared 

to a CPW without backed conductor (4.5 dB/mm for S1 = 36 µm and W = 10 µm). Numerical 

results agree with the experimental attenuations of conventional CPW, while they underestimate 

the losses in conductor backed CPW in the region without resonances. The large resonances in 

the numerical modeling for conductor backed CPW need further investigation. 

One perspective of the part of THz waveguide is to take into account other planar transmission 

lines, like planar Goubau line (PGL). It has simple structure and owns surface plasmon mode as 

the dominant mode. In addition, the dispersion of slotline, CPW and microstrip at high 

frequency can be improved by covering the top metal layer with a finite thickness of BCB to 

reach monomode propagation in the considered frequency range.  
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Figure 3-65: (a) Effective permittivity, (b) phase and group velocities of microstrip (W = 30 µm) 

with signal line buried in different thickness of BCB ([10-30] µm) by HFSS. 0 corresponds to 

conventional microstrip with signal line in air 

Figure 3-65 shows the effective permittivity (a), phase and group velocities (b) of the dominant 

mode in an encapsulated 30 µm wide microstrip line on 30 µm thick BCB substrate. With the 
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increase of upper BCB thickness from 10 to 30 µm, the effective permittivity is improved and its 

curve becomes flat in function of the frequency. The velocity difference 
g pV V  at 1 THz is 

reduced from 0.11   108 m/s in conventional microstrip (red curve) to 0.02   108 m/s for 

covered microstrip in 30 µm BCB (black curve). The line becomes less dispersive. The same 

treatment can be applied to other types of waveguide, like CPW and slotline.





 

 

Chapter 4 Conclusions and Perspectives 

4.1  Conclusions 

This PhD work allows to, quantitatively analyze and optimize the detection and propagation of 

THz signal in the frequency range [10-1000] GHz. Numerical modeling, sample fabrication and 

characterization were lead together. 

4.1.1  THz detection 

In chapter 2, plasmonic heterostructures were studied for THz detection. Both commercial 

software HFSS and indigenously developed CWM code were compared.  They solved the 

problem of metallic grating assisted Plasmon-Polariton (PP) absorption of THz radiation in four 

materials (AlGaN/GaN, InAlN/GaN, SiGe/Si/SiGe and AlGaAs/GaAs) and they have shown 

a good agreement. For homogeneous 2DEG system, the parametric study (incident angle, 

electron density, barrier thickness, metal width, grating period and temperatures) showed that 

nitride based materials demonstrate the maximum absorption at room temperature without 

doping. The absorption in other two structures can be improved at cryogenic temperature, but 

the modulation doping is required to reach high electron concentration (1016 m-2). The resonant 

frequency can be tuned in [0.3-3] THz via grating period (L) in [0.5-5] µm and metal width (W). 

From the side of dispersion, the grating screened PP has asymptotic behaviors: beyond W/L = 

0.6, the PP dispersion approaches that of PP with continuous metal layer (totally screened), while 

below W/L = 0.5, it is near that of open surface PP (unscreened). Experimental FTIR 

transmission results of the sample AlGaN/GaN/Sapphire with various W (W/L = 0.25, 0.5, 0.6 

and 0.75) and temperatures (300 K, 78 K and 10 K) have validated the simulated one: the 

resonant amplitude and frequency depend on W/L, and the absorption at W/L = 0.75 and 10 K 

is maximum. 

For the case of inhomogeneous 2DEG, both natural and forced modulated electron density in 

AlGaAs/GaAs were studied numerically. Natural modulation without biasing on the 

metallization is due to the differences between the barrier height at metal/semiconductor 

interface and the Fermi level pinning at air/semiconductor interface. Step distribution function of 

electron density of 2DEG below and between metal fingers was as accurate as more complex 

distribution models, like linear and parabolic functions. This type of modulation causes the slight 

decrease of both absorption amplitude and frequency of PP, compared with the homogeneous 

2DEG case in AlGaAs/GaAs. The other type is the modulation by biasing. It can greatly tune 

the PP absorption by altering the electron concentration below metal fingers. When reaching the 

regime of strong modulation, the plasma oscillation is located under the gap part (WG = L-W). 

The PP absorption amplitude is comparable to the case of homogeneous 2DEG and can be 

reinforced at narrow WG. Its resonant position is higher than that of the totally screened, but 

lower than that of the unscreened strongly modulated 2DEG system. Metallic grating is 

indispensable for efficient coupling between incident THz radiation and 2D plasmons with both 

homogeneous and inhomogeneous electron concentration. 

In the view of application, the comparative results among the four heterostructures can provide 

both theoretical and technical references for tunable resonant THz detection, because the 

parameters used in the simulation are based on reported practical values. The grating can be 

integrated in a transistor structure to serve as the gate electrode and to realize efficient coupling 
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when 2D plasmons are used as the active layer. Frequency tunability is feasible by voltage bias. 

Moreover, THz emission and amplification are also possible application areas. 

4.1.2  THz transmission 

The chapter 3 contributed to the optimization of THz transmission in planar waveguide 

structures through numerical code HFSS and CST MWS. Four types of waveguide on BCB were 

investigated separately from the aspects of dispersions and attenuations. (1) CPW on BCB 

benefits smaller radiation and conduction losses in reference to InP substrate. Airbridges are 

useful to attenuate parasitic slotline mode. Backed conductor is helpful in reducing the radiation 

loss, but introduces resonances at frequencies of parallel plate mode and results in additional 

conduction and dielectric losses. Wide gap contributes to high radiation loss and low conduction 

loss. Among the three values of W (1.6, 6.6 and 12 µm), CPW on BCB at W = 6.6 µm is the 

optimal one. (2) Microstrip on BCB has the radiation loss comparable to the dielectric loss. 

Conduction loss dominates in the total losses. For strip width in the range [5-30] µm, W = 30 µm 

shows the minimum attenuation. (3) Stripline has the unique nature of TEM wave propagation 

and zero radiation loss in low permittivity BCB, and also in high dielectric permittivity medium. 

For stripline in inhomogeneous dielectric, the propagation mode is no longer TEM and the 

radiation grows. Stripline in homogeneous BCB with a 30 µm wide central strip has the least 

losses (W = [5-30] µm), mainly coming from the lowest conduction loss. (4) In Slotline, the 

radiation occupies a major part in the total attenuation and increases with slot width (W = [5-30] 

µm). It has high dispersion even at narrow slot (W = 5 µm). The conductor backed slotline 

demonstrated resonant behaviors in the frequency dependent losses and had worse transmission 

performance than the conventional one. (5) Comparisons of the four types of waveguide on BCB 

at a characteristic impedance of 100   showed the microstrip at strip width W = 25 µm is the 

best transmission line (4 dB/mm at 1 THz) from the aspect of attenuation. Stripline at central 

strip width W = 7.3 µm is the optimal line from the aspect of dispersion, but it suffers from large 

conduction loss. CPW has the overall moderate performances of both attenuation and dispersion. 

Slotline is the most dispersive line and has the largest attenuation (9.6 dB/mm at 1 THz). 

Dielectric loss is proportional to the product of frequency and loss tangent (  tanf  ). The value 

of dielectric loss in BCB at 1 THz is below 1 dB/mm. The total losses for each waveguide at 100 

can be reduced below 5 dB/mm at 1 THz by the optimization of geometric dimensions. 

Monomode propagation is possible for BCB waveguide up to 1 THz. These numerical values can 

provide references for characterizing planar waveguide in THz range in both time and frequency 

domain.  

Experimental characterization of CPW (W = [3-10] µm and S1 = [36-100] µm) and microstrip (W 

= [10-36] µm) have been finished by a Vector Network Analyzer (VNA) in the frequency range 

[340-500] GHz. Preliminary results of conventional CPW agree with the simulation performed by 

HFSS. Among the five dimensions of CPW, S1 = 36 µm/ W = 3 µm is the optimal structure for 

conventional CPW with an attenuation of 2.7 dB/mm at 400 GHz. For conductor backed CPW, 

the two structures with large gap width (S1 = 36 µm/ W = 10 µm and S1 = 100 µm/ W = 6 µm) 

are better. Resonances were observed in the conductor backed CPW. 
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4.2  Future Work 

The follow-up works are expected for the purpose of performance improvement and possible 

applications.  

(1) Transmission spectrum using the Drude type permittivity of 2DEG in the numerical 

simulation agrees well with the FTIR measured results for the sample AlGaN/GaN. To further 

improve the accuracy of the modeled results, the local permittivity model of 2D plasmon can be 

replaced by a more rigorous and complex non-local permittivity ( , )k   which depends on both 

the frequency   and the wave vector k . Moreover, for practical device application in THz 

detection and emission, the number of metallic grating should be finite in size and area. It is 

preferred to know the minimum number of metal strips to coupler effectively THz radiation.  

(2) The dispersion of non TEM propagation mode in THz waveguide can be possibly reduced by 

deposing a finite thickness of substrate material to embody upper conductor layer. This 

improvement needs further investigation in waveguides, like microstrip, slotline, CPW and planar 

Goubau line. 

 





 

 

Appendix A: Surface waves in a planar waveguide 

Surface waves exist at the dielectric waveguide slab. For CPW with large substrate thickness and 

high permittivity, the cutoff frequencies maybe locate at the interested frequency range and 

deteriorate the line performance [Shigesawa1990]. It is necessary to study this type of wave for all 

types of planar waveguide on finite substrate, especially for high frequency applications. Here the 

existence or not of the surface waves in the three configurations (semi-infinite air/semi-infinite 

dielectric, semi-infinite air/finite dielectric/semi-infinite air, and semi-infinite air/finite dielectric 

with backed conductor) will be investigated theoretically. Analytic expressions of the cutoff 

frequency in each configuration are presented. 

A.1 Air/dielectric       

 

 

 

 

Figure A-1: Interface between semi infinite air and semi infinite dielectric 

Supposing the plane wave propagates along x direction, the semi infinite air and dielectric is 

separated by the z = 0 plane, in the y direction, the dielectric is homogeneous (no variations of all 

the EM components, hence the propagation constant ky = 0). If there are surface waves, the field 

components should attenuate to zero along the increasing direction of the absolute z value in 

both the two materials. Equation Chapter 1 Section 1 

For TM polarization, only Ex, Ez and Hy exist, and their expressions are written as, 
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in air(z > 0), and 
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in the dielectric (z < 0). 

Where 2 2 2

1 / 0xk c     and 2 2 2

2 / 0x rk c      are the attenuation constants in the 

air and dielectric, r is the relative dielectric permittivity, kx is the propagation constant in x 

direction, H1 and H2 are constant values decided by the initial conditions or excitation source 

values. The time dependent factor e j t is omitted in the derivation. 

2: Dielectric 

1: Air z 

x 
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The continuity of the magnetic tangential component Hy and electric tangential component Ex at 

the interface z = 0 gives the dispersion relation: 

2 1r                                                                          (A-3) 

Because the appearance of surface wave requires 2 0  , 1 0   and r >0, the above relation 

does not hold. We conclude that there is no TM wave in this configuration. 

Similarly, for TE polarization, we have only Hx, Hz and Ey components, 
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 in air, and 
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in the dielectric. 

According to the continuity of Hx and Ey at the two interfaces, the dispersion relation reads, 

2 1                                                                    (A-6) 

 This equation also has no solution, so the TE wave does not exist. Both TM and TE 

polarizations surface waves are not supported in semi infinite air/semi infinite substrate. In real 

cases, the substrate thickness is definitely finite, which is discussed in the following two types of 

structures. 

A.2 Air/ dielectric slab/Air     

 

 

 

 

 

 

Figure A-2: A dielectric slab with thickness 2h sandwiched between semi infinite air. 

For TM polarization, the field components in the three materials, 

2: Dielectric 

1: Air 

z 

x 

3: Air 

2h 
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in upper air (z > 2h),  
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 in the dielectric (0 < z < 2h) and, 
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in lower air (z < 0) 

The attenuation constants in the three dielectrics are defined as: 2 2 2

1 3 / 0xk c       and 

2 2 2

2 / 0r xc k     . 

From this point, two cases could be distinguished: TM even and TM odd, according to the 

symmetry of Hy at the middle plane z=h in the dielectric layer. 

TM even mode (symmetric type, 0
y

z h

H

z






 or the equivalent perfect electric wall at z = h): 

The boundary condition at the interfaces z = 0 and z = 2h arrives 

   1 2 2( ) tanr h h h                                                     (A-10) 

Another natural relation between the attenuation constant by the definitions of the attenuation 

constants, 

    
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1 2 0( ) 1rh h k h                                                (A-11) 

Where 0 /k c is the wave number in air. 

By letting 2h n  and 1 0h  , the cutoff frequency of the surface wave is determined as 

0
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TM odd mode (asymmetric type, 0y z h
H


  or the equivalent perfect magnetic wall at z=h): 
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Using the above derivation procedures, the cutoff frequency is calculated by 
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In combination of the two cases, the cutoff frequency for TM mode can be combined into one 

uniform formula, 
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Where n = 0,2,4... corresponds to TM even modes and n = 1,3,5... corresponds to TM odd mode. 

For TE polarization, we also have two cases: TE even and TE odd modes (in reference to the 

symmetry of Ey at the middle plane z = h). Their cutoff frequencies are as the same as the TM 

cases. 
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Where n = 0,2,4... corresponds to TE even modes and n = 1,3,5... corresponds to TE odd mode. 

A.3 Air/ dielectric slab back conducted 

 

 

 

 

 

 

Figure A-3: Interface between semi infinite air and a dielectric slab with thickness h backed 

conducted with a metal layer. 

If the metal is considered as PEC, which requires the tangential component of E being vanishing 

at the surface of metal layer, 
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When comparing with the Figure A-2, we see that in the backed conductor condition, only TM 

even (0, 2, 4...) and TE odd (1, 3, 5...) modes are supported in this type of waveguide. The cutoff 

frequencies can be calculated by the above expressions (A-14) and (A-15).
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Appendix B: Coupling coefficients in CPW 

 

Table B-1: Coupling coefficient between mode CPW and mode Slotline in conventional CPW 

without air bridges (AB/BC). 

f (THz) W = 1.6 µm W = 6.6 µm W = 12 µm 

C(CPW/Slot) C(CPW/Slot) C(CPW/Slot) 
0.6 0.0006 0.0066 0.0049 

0.7 0.0004 0.0036 0.0045 

0.8 0.0002 0.0032 0.0065 

0.9 0.0004 0.0029 0.0036 

1.0 0.0003 0.0028 0.0047 

1.1 0.0005 0.0025 0.0040 

1.2 0.0012 0.0011 0.0044 

1.3 0.0005 0.0024 0.0043 

1.4 0.0006 0.0010 0.0039 

1.5 0.0003 0.0008 0.0033 

 

Table B-2: Coupling coefficient between mode CPW and mode Slotline in conventional CPW 

with air bridges (AB/BC). 

f (THz) W = 1.6 µm W = 6.6 µm W = 12 µm 

C(CPW/Slot) C(CPW/Slot) C(CPW/Slot) 
0.6 0.01449 0.0042 0.0041 

0.7 0.01477 0.0045 0.0070 

0.8 0.0090 0.0020 0.0059 

0.9 0.0066 0.0022 0.0032 

1.0 0.0030 0.0014 0.0054 

1.1 0.0029 0.0021 0.0026 

1.2 0.0008 0.0004 0.00002 

1.3 0.0007 0.0031 0.0080 

1.4 0.0019 0.0041 0.0060 

1.5 0.0106 0.0005 0.0039 

 

Table B-3: Coupling coefficient between mode CPW and mode Slotline or Microstrip in 

conductor backed CPW without air bridges (AB/BC). 

f (THz) W = 1.6 µm W = 6.6 µm W = 12 µm 

C(CPW/Slot) C(CPW/Slot) C(CPW/Mstrp) C(CPW/Slot) C(CPW/Mstrp) 
0.8    0.0156  

0.9 0.0119 0.0084  0.0170 0.7156 

1.0 0.0066 0.0026  0.0052 0.1925 

1.1 0.0090 0.0053  0.0055 0.0616 

1.2 0.0116 0.0007  0.0058 0.0179 

1.3 0.0130 0.0003  0.0023 0.0004 

1.4 0.0117 0.0009 0.0155 0.0067 0.0007 

1.5 0.0109 0.0002 0.0533 0.0114 0.0003 
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Table B-4: Coupling coefficient between mode CPW and mode Slotline or Microstrip in 

conductor backed CPW with air bridges (AB/BC). 

f (THz) W=1.6µm W=6.6µm W=12µm 

C(CPW/Slot) C(CPW/Slot) C(CPW/Mstrp) C(CPW/Slot) C(CPW/Mstrp) 
0.8    0.0010  

0.9 0.0745 0.0138  0.0024 0.8781 

1.0 0.0449 0.0099  0.0045 0.1199 

1.1 0.0284 0.0073  0.0042 0.0155 

1.2 0.01991 0.0058  0.0024 0.0226 

1.3 0.01381 0.0002  0.0040 0.0344 

1.4 0.01396 0.0043 0.1078 0.1569 0.0018 

1.5 0.01596 0.0026 0.0410 0.2377 0.0007 
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