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Résumé étendu

Cette thèse s’articule autour de la problématique de la sélection de modèle, étudiée en particulier
dans le contexte de la régression linéaire. L’objectif est de déterminer, à partir de données
mesurées, le meilleur modèle de prédiction parmi une collection de modèles. En d’autres termes,
on cherche le modèle réalisant le meilleur compromis entre attache aux données et complexité
du modèle.

Après l’introduction du Chapitre 1, le Chapitre 2 présente de façon formelle le problème
de la sélection de modèle, ainsi que sa résolution avec une procédure générale en trois étapes
: la première étape consiste à construire la collection des modèles à comparer ; la deuxième
étape est définie à partir d’un critère d’attache aux données (souvent le risque empirique) dont
l’optimisation permet de déterminer dans chaque modèle la fonction de prédiction qui semble
représenter le mieux les données ; enfin, la troisième et dernière étape repose sur un deuxième
critère, basé à la fois sur l’ajustement aux données et sur la complexité du modèle, qui compare
les fonctions de prédiction obtenues à l’étape précédante et détermine ainsi le meilleur modèle
de la collection.

La suite de ce chapitre passe en revue un certain nombre de méthodes proposées dans la
littérature pour chacune des étapes, depuis les critères d’information d’Akaike (AIC) et de
Bayes (BIC) jusqu’aux méthodes généralisées telles que la miminimisation du risque structurel
(SRC) ou l’heuristique de la pente pour l’évaluation des modèles, ainsi que les méthodes dites
“stepwise” et les méthodes de régularisation parcimonieuses de type Lasso pour la construction
d’une collection de modèles.

Les Chapitres 3 et 4 exposent notre principale contribution en matière d’évaluation des
modèles. Nous proposons des critères basés sur des techniques de théorie de la décision, plus
précisément l’estimation de coût. Ces critères, appelés estimateurs de coût, reposent sur une
hypothèse distributionnelle plus large que l’hypothèse classique gaussienne avec indépendance
entre les observations : la famille des lois à symétrie sphérique. Cette famille nous permet à
la fois de nous affranchir de l’hypothèse d’indépendance et confère une certaine robustesse. En
effet, nos critères ne dépendent pas de la forme spécifique de la distribution mais uniquement
de la propriété de sphéricité.

Le Chapitre 3 commence par une brève introduction au principe de l’estimation de coût, puis
se concentre sur les estimateurs sans biais du coût, c’est-à-dire tels que leur espérance est égale
à l’espérance du vrai coût (ce qui équivaut au risque de la fonction de prédiction considérée).
Nous rappelons d’abord les techniques utilisées dans le cas gaussien avec le théorème de Stein,
théorème au coeur de l’estimation de coût, et présentons la dérivation de l’estimateur sans biais
du coût dans ce contexte avec variance connue. Puis, nous étendons les résultats, d’abord au
cas gaussien avec variance inconnue, puis au cas sphérique. Il s’avère que l’estimateur sans biais
pour le cas sphérique est égal à celui obtenu dans le cas gaussien avec variance connue. De plus,
il est équivalent au Cp de Mallows et à l’AIC avec bruit gaussien, ce qui permet d’expliquer une
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certaine robustesse du Cp et de l’AIC face à la famille sphérique. Cependant, les limites connues
de ces deux derniers critères, qui sont la sélection de modèles généralement trop complexes,
s’étendent bien évidemment à notre estimateur sans biais du coût. Il est donc intéressant d’en
chercher des améliorations, ce qui est proposé dans le Chapitre suivant.

Dans le Chapitre 4, nous nous intéressons au problème de la comparaison des critères
d’évaluation de modèle et proposons de traiter ce problème au travers du risque de commu-
nication, mesurant la qualité du critère de façon analogue à l’erreur quadratique (MSE). Nous
cherchons ainsi à améliorer l’estimateur sans biais du coût par des estimateurs biaisés mais ayant
une variance plus faible, ce qui permet un meilleur contrôle des résultats. Nous proposons deux
fonctions de correction additives, toutes les deux basées sur l’estimateur des moindres carrés
pour des raisons de commodités mathématiques : la première prend en compte la sélection de
variables en cours, tandis que la seconde se base essentiellement sur les variables non sélection-
nées pour vérifier la qualité de la sélection. Les deux fonctions de correction proposées dépendent
de constantes que l’on cherche à optimiser de façon à obtenir la plus petite différence de risque
de communication entre l’estimateur corrigé et l’estimateur sans biais. Dans d’autres travaux
sur l’estimation de coût, de telles constantes étaient déterminées exactement pour un estima-
teur des paramètres du modèle en particulier (estimateur des moindres carrés et estimateur de
James-Stein). Dans notre contexte, nous n’avons pu fournir une telle expression des constantes
pour tout estimateur. Nous proposons cependant de les estimer à partir des données en min-
imisant l’estimateur sans biais de la différence des risques de communication. Bien que cette
méthode ne garantisse pas l’amélioration théorique de l’estimateur corrigé, l’étude numérique du
Chapitre 6 montre que celui-ci peut conduire en pratique à une meilleure sélection de modèle.
Le chapitre se termine par une comparaison de la théorie de l’estimation de coût avec d’autres
théories générales sur la sélection de modèle, à savoir la théorie de l’apprentissage statistique
(en anglais Statistical Learning Theory, STL) développée par [Vapnik 1998] et l’Heuristique de
la pente, développée par [Birgé & Massart 2007].

Le Chapitre 5 s’intéresse aux aspects algorithmiques nécessaires à la comparaison des critères
proposés en pratique : nous traitons tout d’abord le problème de la construction d’une collection
de modèles, puis celui de la génération aléatoire de vecteurs sphériques pour vérifier la robustesse
de nos critères.

Le problème de la construction de modèles est intimement lié à l’exploration des modèles
possibles. En effet, si l’on dispose de p variables explicatives pour la prédiction de la variable
d’étude, il existe 2p sous-ensembles de variables à partir desquelles on peut construire le modèle
de prédiction. Il est évident qu’on ne peut pas tous les tester dès que p dépasse 10 : tout l’enjeu
consiste donc à déterminer une façon efficace d’explorer le moins de modèles possibles, tout en
en explorant suffisamment pour garantir une bonne solution. Parmi les techniques d’exploration
utilisées en littérature, les algorithmes de chemin de régularisation permettent de déterminer
les points de transition du problème d’optimisation concerné de façon à ajouter une à une les
variables les plus corrélées avec le résidu. En particulier, [Efron et al. 2004] ont développé un tel
algorithme pour le problème du Lasso, qui connait un grand succès. Le Lasso est connu pour être
un bon sélecteur, mais son biais d’estimation empêche l’obtention d’un bon modèle de prédiction
à partir de critères basés sur l’erreur de prédiction. Nous nous sommes donc intéressés à une
méthode utilisant le même principe de sélection que le Lasso, mais donnant des estimateurs moins
biaisés : il s’agit de la pénalité concave minimax (en anglais Minimax Concave Penalty, MCP).
La difficulté de cette méthode provient de la non convexité et non différentiabilité du problème
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d’optimisation associé, rendant impossible l’application des outils usuels (sous-différentielles)
utilisés pour déterminer le chemin de régularisation. La généralisation est possible au cas non
convexe grâce à la notion de différentielle de Clarke. Bien qu’une telle différentielle soit en
général difficile à calculer, les conditions d’optimalité peuvent être facilement dérivées dans le
cas où le problème d’optimisation peut être décomposé en un terme non convexe différentiable
et un terme convexe non différentiable, ce qui est le cas du MCP. Nous avons ainsi pu proposé
un algorithme de chemin de régularisation pour le MCP, et il serait possible d’en faire autant
pour d’autres problèmes non convexes (comme le SCAD, par exemple).

La seconde partie de ce chapitre porte sur la génération de vecteurs aléatoires sphériques.
Celle-ci peut-être réalisée en écrivant la densité de la loi à symétrie sphérique soit comme un
mélange de lois uniformes sur la sphère unité (ce qui est le cas pour toute distribution à symétrie
sphérique), soit comme un mélange de lois gaussiennes centrées, quand cela est possible. La
principale difficulté est de déterminer la loi de mélange dans les deux cas. Une fois cette difficulté
surmontée, il est souvent aisé d’en prendre une transformation simple de loi univariée dont il
existe de bons générateurs aléatoires.

Le Chapitre 6 présente une étude numérique comparant sur données simulées les perfor-
mances de nos critères et des méthodes de la littérature exposées dans le Chapitre 2. L’étude
numérique est divisée en deux temps : dans un premier temps, on sélectionne le meilleur modèle
(oracle) de la collection à partir du vrai coût, et dans un deuxième temps, on remplace le vrai
coût par un critère d’évaluation de modèle (nos estimateurs de coût et critères de la littérature).

L’objectif de la première partie de l’étude numérique est de vérifier la qualité des collections
de modèles construites. En effet, la question posée ici est de savoir si le chemin utilisé pour
explorer les modèles possibles passe par les modèles les plus intéressants, en particulier le vrai
modèle lorsque celui-ci est accessible. Puisque le modèle est sélectionné à partir de la vraie
erreur de prédiction, on a donc le meilleur modèle de prédiction possible dans la collection.
Mais ce meilleur modèle, cet oracle, correspond-il au vrai modèle ? La réponse est positive
pour les collections de modèles présentant les estimateurs les moins biaisés et dès que le nombre
d’observation et/ou le rapport signal/bruit est assez grand. On peut donc en conclure qu’il est
possible de bien sélectionner et bien prédire en même temps.

Dans la deuxième partie de l’étude, on cherche à déterminer s’il existe de bonnes procédures
complètes de sélection de modèles, c’est-à-dire de choix adéquats entre collection de modèles
et critère d’évaluation. Nous avons ainsi appliqué une quinzaine de critères d’évaluation de la
littérature (dont certains dépendent d’un estimateur de la variance que l’on a également fait
varier) à huit collection de modèles différentes. Nous avons ensuite sélectionné, pour chaque
collection, les trois critères d’évaluation de modèles donnant les meilleures performances en
sélection. Les résultats montrent que, dans le cadre de simulation que nous nous sommes fixés,
on est capable de trouver des critères pour chaque collection de façon qu’il ne semble pas y avoir
une méthode nettement plus performante qu’une autre en matière de sélection. En revanche,
il est évident que le modèle ainsi sélectionné pour le Lasso est moins bon en prédiction que les
autres, de par son large biais d’estimation, et il est donc nécessaire d’ajouter une étape post-
sélection de modèle à une procédure basée sur le Lasso. Par ailleurs, notons que nos estimateurs
de coût obtiennent des performances comparables à ceux de la littérature, et que les estimateurs
corrigés obtiennent de meilleures performances en sélection que les estimateurs sans biais du
coût. Enfin, il est intéressant de noter que les critères les plus couramment utilisés en pratique
(validation croisée) ne sont pas toujours parmi les plus performants.
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Le manuscrit se termine sur le Chapitre 7, qui présente les conclusions et persepectives de
ces travaux.

Mots-clés : sélection de modèle, sélection de variable, régression linéaire, estimation de
coût, distributions à symétrie sphérique, dépendance, Lasso, MCP.

La suite de ce manuscrit est en anglais.
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This chapter introduces the reasons that stimulated research on the problem of model selec-
tion as well as the difficulties related to the resolution of this problem.

1.1 Why model selection?

The problem of model selection arises from many real-life situations and in a large range of
domains such as Statistics, Machine learning, Bioinformatics, and so on. When little is known
about the data under study, a common approach is to propose several representations and choose
the best one. This process is known as model selection.

1.1.1 The difficulty of predicting or understanding data

Let us begin with two real-life examples.
The first example is related to Brain-Computer Interfaces (BCI) that aims at controlling a

machine, such as a wheeling chair or a computer, with the mind only. One of the objectives
underlying this problem is a better understanding of the brain, especially the zones that are
activated depending on the mental state or task (see [Dornhege et al. 2007]).

The second example is concerned with the prediction of the level of ozone contamination
in the atmosphere on the following day. This problem is a public health concern since a high
concentration of ozone might result in a (temporary) decrease in physical capacities, especially
for asthmatics, children and elderly people. Hence, on days with high ozone contamination,
outdoor and/or physical activities should not be held, so that its prediction is important in
order to warn the population of the dangers. It is well known that ozone is the product of the
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reaction between nitrogene oxides (other pollutants) and sunlight. However, the prediction of
ozone cannot be based on these last quantities because they themselves are difficult to predict.
An alternative solution is to consider other quantities related to nitrogene oxides and sunlight
and much easier to predict. For instance, the temperature is highly dependent on the amount
of sunlight and can thus be used as a proxy. Other meteorological quantities favor or reduce
the formation of nitrogene oxides and their amount might thus be related to the amount of
ozone. In this example, the objective is not to understand the system underlying the production
of ozone, which is well known, but rather to modelize the dependencies between ozone and
meteorological quantities which are easier to predict. Since these relations are indirect, they are
hard to modelize.

The problems in both examples are hard to solve because of the scarce knowledge we have
on it. Next paragraph describes a way to cope with the difficulty, namely model selection.

1.1.2 From predicting/understanding to model selection: the “divide and conquer”
dogma

The difficulty in the tasks of predicting or understanding the data at hand comes from the
ignorance on the relations between the quantities under study. A common way to overcome this
problem is to propose several representations of the data modelizing these relations differently.
The problem thus becomes one of evaluating the representations, which we call models hereafter,
comparing them and selecting the “best” one.

Hence, model selection arises as a simplification of other problems since the choice is reduced
from an infinite number of possible models to a finite number. However, it is itself a hard
problem to solve. Indeed, it requires the definition of a good model, and of a measure of its
quality. Such definitions should be specified in adequacy with the main objective of the study.
This might seem obvious, but in practice some methods used to construct the models or to
evaluate them are sometimes inapropriate with the main objective. We recall the main possible
objectives [Hocking 1976]:

1. the description of the dataset;

2. the prediction of future instances of the quantity under study;

3. the estimation of statistics linked to that quantity, such as its mean, median, and standard
deviation;

4. the extrapolation on points in between observations;

5. the estimation of the paramaters specifying a model;

6. the control of the quantity under study;

7. and model building, useful to understand the relationship between quantities.

The rest of the manuscript focuses on the objective of good prediction.

1.2 The principle of selecting among several models

1.2.1 Making compromises for the best of both worlds

With the increasing memory of computers, the datasets are becoming larger and larger, with
hundreds, thousands or even millions of observations of the quantity of interest and hundreds,
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thousands or millions of quantities that can help in its prediction, which we call explanatory
variables hereafter. When practicians can afford studies with such large datasets, they try to
capture as much information as they can so that nothing can be missed.

On the other hand, when using classical statistical tools, the models that best fit the data are
the more complex ones, where complex here refers to both the number of explanatory variables
used in the model and the form of their link to the quantity under study (for instance, we could
use a linear or a polynomial link to model the relationship between the level of ozone and, say,
the temperature). Indeed, even though it is always possible to find a model that fits exactly the
data observed, such a model will give poor performances of prediction on future instances of the
quantity under study.

The challenge in model selection thus consists in finding the model that will make the best
tradeoff between model fitting (on the available data) and complexity, so that it can give a good
prediction on future observations.

1.2.2 A long and hazardous journey to the Truth...

Several difficulties arise from the process of model selection. We briefly introduce each of them
in the following paragraphs.

Measuring the complexity of a model. When the different models have a similar form,
for instance they all estimate the link between the explanatory variables and the variable under
study to be linear, the complexity can easily be measured by the number of explanatory vari-
ables kept in the models and considered as relevant for the prediction problem. However, it is
much more difficult to measure the complexity between two models with the same number of
explanatory variables, but where for instance one model fits a linear link and the other estimates
a polynomial link to the output variable, or when both models are of the same form but one
also models possible interactions between explanatory variables. As we can see, a good measure
of complexity should take into account the shape of the model, the number of its components,
and the possible interactions between its components. But how can we assess such a measure
in practice?

Constructing several models that approximate the true underlying system. Another
difficulty arises from the construction of the different models representing the data. How many
models should we construct? And how should they be constructed? Is it better to construct as
many models as the computer can support and be sure that at least one of them is close to the
truth, or is it better to construct only a few good ones?

Evaluating and comparing the models. Once the models have been constructed and a
measure of the complexity has been defined, the problem still remains to evaluate their qualities
by taking into account both their abilities to fit the observed data and their complexity. There
exist many criteria in the literature on model selection that manage to do so, but the question
then becomes: which one to choose? What are their properties?

All these questions have been tackled in the literature and still continue to be treated, but
the solutions are only partly satisfactory and the problem remains open.
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1.3 Contributions

In this section, we briefly introduce our contributions to the different subproblems in model
selection.

Evaluating the quality of a model and measuring its complexity. In Statistics, the
quantities observed in a dataset are often considered to be random variables in order to take into
account the uncertainty or the scarcity of knowledge on the underlying system. The existing
methods for evaluating the quality of a model often rely on strong assumptions modelizing the
randomness of the variables, and therefore they might be sensitive to extreme values. On the
opposite direction, some methods make very little assumption on the randomness, but their
inherent generality might alter their performances.

We derive criteria for model evaluation that are based on a larger distributional assumption
than the former methods, but a tighter one than the latter methods. To be more precise,
we model the randomness by spherically symmetric distributions. This family of distributions
handles some form of dependence between the observations of the quantity under study, an
assumption that is seldom made in the literature. Also, our criteria only rely on the spherical
property, and they have the same form whatever the distribution is, as long as it is spherically
symmetric. This feature gives distributional robustness to our method.

Comparing model evaluation criteria. We provide a new way to evaluate the quality of a
model evaluation criterion, which is based on its distance to the theoretical quantity evaluating
the performance in prediction of a model. This additional level of evaluation allows the compar-
ison between two model evaluation criteria as well as it results in the derivation in new better
criteria.

We also compare our criteria to existing methods in a simulation study.

Constructing models. Finally, we address the problem of constructing models by proposing
algorithms and by investigating their apropriateness to the main objective of the study – in our
case good prediction – through simulation study. We propose to examine which methods for
constructing models and which methods for evaluating them give together the best performances
of prediction.

1.4 Overview of the manuscript

The rest of the manuscript is organized as follows.
Chapter 2 develops more deeply the problem of model selection and reviews existing methods

on both the evaluation and the construction of models.
Chapter 3 is devoted to our first contributions with unbiased criteria in several distributional

settings: the Gaussian assumption with known variance, the Gaussian assumption with unknown
variance, and the spherical assumption. The major advantage of our criteria is that they do
not rely on the special form of the distribution and thus have the same expression whatever the
distribution is, as soon as it is spherically symmetric.

Chapter 4 addresses the problem of comparing two criteria. The comparison is performed on
a theoretical level, looking at the (quadratic) risks of the criteria and choosing the one with the
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lower value of risk. This additional level of evaluation results in the derivation of better criteria
for model selection.

In both Chapter 3 and Chapter 4, we relate our criteria to existing methods.
Chapter 5 is concerned with algorithmic aspects that are useful for the simulation study. The

first algorithmic aspect is the proposition of a regularization path algorithm for the Minimax
Concave Penalty (MCP), a nonconvex optimization method leading to a sparse and nearly
unbiased estimator of the coefficient in linear regression. In the second part of the chapter,
we look at the problem of generating spherically symmetric random vectors, as it is our main
distributional assumption.

Chapter 6 presents two simulation studies: one on the adequacy of methods constructing
models to the objective of prediction, and one where we compare our model evaluation criteria
to those of the literature.

Finally, Chapter 7 closes the manuscript with some conclusions and discussions and develops
the perspectives for future works.
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This chapter reviews a number of existing methods related to the problem of model selection.
Section 2.1 begins with an overview of the problem with its formalization through the notion
of loss and risk, and ends with the assumptions we will keep in the sequel. Then, some of the
methods for evaluating and comparing models are enumerated and explained in Section 2.2.
Section 2.3 reviews methods for constructing models and collections of models. Section 2.4
presents a summary of global procedures of model selection (that is, with a solution for both
the construction of models and the evaluation of these models). Finally, Section 2.5 introduces
our contributions and where they stand in the picture of model selection relatively to existing
methods.

2.1 The general problem of model selection

The problem of model selection is closely related to the problem of prediction or understanding
of a quantity of interest. Because of that relation, we first begin by exposing the problem of
prediction/explication and then we move to the actual problem of model selection.
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2.1.1 Predicting or explaining the data

Context and notations

Let y be a quantity of interest. For instance, y can be the concentration of pollutants such
as ozone or particles in the atmosphere, and we wish to predict its value for the following day
(see [Poggi & Portier 2011]). If this value is high, then the authorities alert the population
and advice that outdoor activities should be canceled. In this example, y takes real positive
values. Another example is the diagnosis of a patient (see [Friedman 1994]). Here, y can be
qualitative with values in {“healthy”, “sick”} or with the type of desease. These values generate
a distinction between patients and lead to a classification. One objective is thus to predict to
which class belongs a new patient. Another objective could be to understand what causes the
desease (environmental, clinical or genetical aspects). We formalize both examples by saying
that y belongs to a space Y, that can be (a subset of) R or {0, 1}. The variable y will be referred
to as the output variable or the study variable.

Now, in both the examples given, there exist some relations to other quantities. It is indeed
well known that the concentration of ozone is higher on sunny and warm days with dense traffic,
as ozone is the result of the reaction between nitrogene oxides (produced by cars, among others)
and sunlight. However, it might be difficult to predict the concentration of nitrogene oxides as
well as the amount of sunlight on the following day. On the other side, the sunlight also causes the
temperature to increase, and thus we might take instead measures of temperature as a surrogate
of sunlight for predicting the concentration of ozone on the following day. Therefore, we might
not look for causal relations, but rather for dependencies [Friedman 1994]. The quantities used
in the process of predicting or explaining the output y are called explanatory variables or input
variables and are written as x = (x1, . . . , xp) ∈ X , p being the number of input variables. Each
variable xj can be either quantitative (xj belongs to a subspace of R) or qualitative (xj belongs
to {0, 1} if it is a binary variable, or to a set of qualitative values if it is a categorical variable,
such as {“small”, “medium”, “large”} for instance [Hastie et al. 2005]), so that X can be very
different from one problem to another.

Figure 2.1 displays the system involving both x and y. It also involves extra information
contained in other variables, denoted here by x0, which are not observable, unlike x. These
unobservable variables can be of different nature, such as measurement error [Hastie et al. 2005],
or the symptoms that a patient failed to notice or to notify as relevant in the medical diagnosis
example [Friedman 1994]. Also, a patient might not explain its symptoms in the same way
depending on its mood. Other examples of unobservable variables can be found in [Cherkassky
& Mulier 1998]. In Statistics and Machine Learning, it is thus common to think of y as a random
variable to account for the unobservable information. As far as x is concerned, the literature is
split between the assumption that x is fixed and the assumption that it is random. The x−fixed
case assumption offers a simplification over the x−random case, and is thus often adopted even
in cases where it is not grounded. In order to be general and include both cases in this state of
the art, we will thus first take the couple (x, y) to be generated by a joint probability distribution
Px,y, and then specify our assumptions in Subsection 2.1.3. The distribution Px,y belongs to a
subspace P of the space of all probability distributions on X ×Y. We will also give specifications
on P in the sequel, due to some necessary restrictions. Note that, when we observe a sample of n
instances (X,Y) = (xi,yi)ni=1 of the couple (x, y), it is generally assumed that each observation
(xi,yi) is identically distributed as Px,y, and it also often assumed that the observations are
independent. However, when the independence assumption does not seem reasonable, one way
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to model possible correlations or dependences between the observations is to consider the data
(X,Y) as one observation of the couple (X,Y ), where X ∈ X n and Y ∈ Yn, an assumption that
we will often use in the sequel.

Figure 2.1: True underlying system generating the output Y . Note however that the relation
between X, X0 and Y might not be causal (see [Friedman 1994]).

As mentioned earlier, the objective is either to predict or to explain the variations of y
based on x. In order to do so, the Statistician generally assumes that there exists a target
function (or a target functional parameter) f : X 7→ Y modelizing the link between x and
y and aims at determining an estimator f̂ of the target f (more details will be given the
following subsections). However, there exists an infinity of functions f̂ mapping from X to Y.
The objective is thus to find the one that seems to be the best in view of the data observed.
Indeed, the stated objective hides the true problem that we can sum up as follows (see for
instance [Friedman 1994] or [Breiman 1996]): does the estimator f̂ give an accurate
approximation to the underlying relationship between x and y?

In practice, one often fixes a form or a structure on f̂ , that is, one often takes f̂ in a class
of functions. The restricted class of functions is called model, or hypothesis space (see [Niyogi
& Girosi 1996]). For instance, in regression problems where y takes real values, one might look
for linear functions f̂(x) = xtβ̂, β̂ being the regression coefficient in Rp. In such a model, we
can also assume that not all the variables in x are relevant, especially when p is quite large, and
thus we will look for linear models of lower sizes. The shape or structure of f̂ as well as the
maximum number of variables it needs as an input are examples of what is called the complexity
of the function, and more generally the complexity of the model. We can thus define a little
more precisely what is a model.

Definition 2.1 (Model). A modelM is a class of functions f̂ : X 7→ Y sharing a similar form
or structure and having a fixed maximum complexity.

The notion of complexity is however only a vague notion and can be measured in several ways,
as we will see in Subsection 2.1.2. As we do not know to which model belongs the true underlying
model for the system (S), it could be thought that taking the largest possible model increases
the probability to include the true one. However, at the same time, it would also increase the
error induced by fitting a complex model on a finite sample. Hence, a common practice is to
consider several modelsM1, . . . ,MM with different complexities, and the objective is to select
the best model among the list. This leads to the following definition for model selection, that
can be found in a similar formulation in [Guyon et al. 2010] for instance.

Definition 2.2 (Model Selection). Model selection is the process of evaluating several models
M1, . . . ,MM and comparing them to determine which one best predicts or best explains the
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data.

From this definition, the challenge is to formalize the notions of “best predicts” and “best
explains” so as to find the model that realizes the best tradeoff between goodness of fit and
complexity. Note that, although the problems of prediction and explication (identification of
the underlying system) can be solved in the same way, the latter one is a much more complicated
task and is hard to formalize [Friedman 1994]. We concentrated our research on the prediction
task only.

The notion of accurate prediction has been well formalized through the notion of loss and
risk that we develop in the following paragraph. The rest of this section provides a deeper
insight into the topic and the notions seen sofar, and is essentially based on the following
references: [Friedman 1994], [Hastie et al. 2008], [Vapnik 1998] and [Cherkassky & Mulier 1998].

Formalization: prediction loss and prediction risks

The formalization of accuracy of a prediction through losses and risks is now generally accepted
by researchers from both the Statistics and Machine Learning fields (see [Massart 2007] and
[Guyon et al. 2010], among others). Note that the point of view we expose in the sequel is
a frequentist point of view. An interesting review and discussion on model selection from the
Bayesian perspective can be found in [George 2000].

Given f̂ : X 7→ Y a function that modelizes the link between x and y, its accuracy can be
expressed through the choice of a function

l : Y × Y 7→ R+
(f̂(x), y) 7→ l(f̂(x), y) (2.1)

such that l(f̂(x), y) is integrable for any f̂(x) ∈ Y and such that f̂(x) = y belongs to the set of
functions minimizing l, that is,

y ∈ arg min
f̂(x)∈Y

l(f̂(x), y).

The function l is called a prediction loss function, and accounts for the cost incurred by an
approximation f̂(x) of y. Often, we choose l so that l(y, y) = 0. Hence a good prediction is one
that has a value of loss l(f̂(x), y) close to 0.

Example 2.1 gives the three losses most commonly used in practice.

Example 2.1. In regression problems, it is common to take l as a function of a distance or a
norm, the most common examples being the squared-error loss defined as the squared Euclidean
distance

l(f̂(x), y) = (y − f̂(x))2, (2.2)

and the absolute error loss defined as

l(f̂(x), y) = |y − f̂(x)|. (2.3)

In binary classification (Y = {0, 1} or {0, 1}n), it is common to take the 0-1 loss defined by the
discrete metric

l(f̂(x), y) = 1{f̂(x)6=y} =
{

0 if f̂(x) = y,

1 if f̂(x) 6= y.
(2.4)
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However, defining the loss l(f̂(x), y) as a metric is not the only choice, and one might want to use
an asymmetric function and give a different cost for a prediction lower than the true value y than
for a higher prediction (see examples of asymetric losses in [Berger 1985]). Asymmetric losses
can be useful in problems such as prediction in wind energy production, where some governments
apply fees that are lower for underpredicting than for overpredicting [Pinson et al. 2004].

Now, the output y we wish to predict is assumed to be random, so the actual loss is not
considered to be a good criterion of the quality of a prediction f̂(x). Indeed, f̂ might give a
good prediction for one instance of y, but a poor prediction for the following instance, so that
f̂ might not be so good overall. Instead, we consider the following risks, namely the prediction
risk or the conditional prediction risk

R(x,y)(f̂) = E(x,y)[l(f̂(x), y)] =
∫
X×Y

l(f̂(x), y) dPx,y(x, y) (2.5)

Ry|x(f̂ ,x) = Ey|x[l(f̂(x), y)|x = x] =
∫
Y
l(f̂(x), y) dPy|x(y). (2.6)

The prediction risk R(x,y) is also called the expected prediction error, and the conditional pre-
diction risk Ry|x is also often referred to as the generalization error. Note that these two risks
are related in the following way

R(x,y)(f̂) = Ex[Ry|x(f̂ , x)],

where Ex is the expectation under the marginal probability of x. We will sometimes refer to
both of them as the prediction risks, applying for either of them. Both criteria express the
average accuracy of a prediction. Again, a good approximation should have low (conditional)
risk.

Note that Equation (2.5) defining the risk implies a restriction on P to the space of all
probability distributions for which the risk R(x,y)(f̂) is finite, and the same occurs with Px
containing Py|x restricted to the space with existing conditional risk Ry|x(f̂ ,x). In particular,
Equations (2.5) and (2.6) require the existence of the density function as well as the existence
of some moments. For instance, with the squared-error loss, we need∫

X×Y
y2 dPx,y(x, y) <∞ and

∫
X×Y

f̂2(x) dPx,y(x, y) <∞

for the corresponding risk to be finite.

The multivariate case. In the case where we consider the random matrix X and the random
vector Y , the prediction loss function is written as

L(f̂(X), Y ) =
n∑
i=1

l(f̂(Xi), Yi), (2.7)

where Xi is the ith line of X, Yi is the ith component of Y , and f̂(X) is an abusive notation for
the vector (f̂(X1), . . . , f̂(Xn))t. Its prediction risk and conditional prediction risk are thus

R(X,Y )(f̂) = E(X,Y )[L(f̂(X), Y )] =
∫
Xn×Yn

L(f̂(X), Y ) dPx,y(X,Y ) (2.8)

RY |X(f̂ ,X) = EY |X [L(f̂(X), Y )|X = X] =
∫
Yn
L(f̂(X), Y ) dPY |X(Y ). (2.9)
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In the following paragraph, we derive from Equations (2.8) and (2.9) the best possible pre-
diction.

The additive noise model

The prediction risk in Equation (2.8) and the conditional prediction risk in Equation (2.9) both
allow to specify the objective. Indeed, the best predictive model, or the target model, that is,
the best approximation function f , is the function minimizing these risks and is given by

f(·) = arg min
c∈Y

R(x,y)(c)

or
f(x) = arg min

c∈Y
Ry|x(c,x).

The objective of good prediction thus reduces to estimating the function f(x). Note that the
space of distributions we consider in P determines the set where f(x) is defined (see [Niyogi &
Girosi 1996]).

Example 2.2 specifies the target f for the losses defined in Example 2.1.

Example 2.2. If l(f̂(x), y) is the squared-error loss function defined in Equation (2.2), then f(x)
is called the regression function and is the conditional mean of y, that is,

f(x) = Ey|x[y|x = x]. (2.10)

If l(f̂(x), y) is the absolute error loss function defined in Equation (2.3), then f(x) is the
conditional median of y, that is,

f(x) = median(y|x = x).

Finally, if l(f̂(x), y) is the 0-1 loss function defined in Equation (2.4), then f(x) is called the
Bayes classifier and is defined by

f(x) =
{

1 if P[Y = 1|x = x] > 1/2,
0 otherwise.

In the sequel, we focus the study only on the regression problem optimized under the
squared-error loss, namely Y = R (or a subset of R) and

l(f̂(x), y) = (y − f̂(x))2. (2.11)

We recall that the true underlying system described in Figure 2.1 also relies on unobservable
variables x0 and can thus be modelized as

y = s(x, x0),

where s denotes the function of the system. Nevertheless, as we cannot observe x0, it is common
to approximate the system by an additive noise model. Such a model is also consistent with
f(x) in Equation (2.10) being the conditional mean of y, and is written as

σe = y − f(x) or equivalently y = f(x) + σe, (2.12)
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where e is a vector or a scalar and accounts for the total variations in x0, and σ represents the
noise level. In this model, the variable e is often called the noise or the innovation. Assumptions
on e will be specified in Subsection 2.1.3.

Although Model (2.12) does not represent exactly the truth, it is argued in [Hastie et al. 2008]
that the additive noise model is a good approximation for the underlying system.

For the multivariate case, the model is written as

Y = f(X) + σε, (2.13)

where f(X) is an abusive notation for the vector (f(X1), . . . , f(Xn))t, and ε = (e1, . . . , en)t is
the noise vector.

2.1.2 The art of compromise

This subsection exposes the difficulties to which we are confronted when minimizing the (condi-
tional) prediction risk in a given modelM. Those difficulties are actually related to the choice
of the model, and especially to its complexity or capacity. This leads to divide the problem
into two levels, one level where we consider a collection of M nested models and find the best
prediction for each model, and the second level where these M best predictions are compared.

Prediction risk, estimation loss and other types of error

Before going into the details of the difficulties in model selection, let us expose the types of error
that result from the process of minimizing the (conditional) prediction risk in a given modelM.

The conditional prediction risk can indeed be decomposed into several elements. First, we
can notice that

Ry|x(f̂ ,x) = Ey|x
[(
y − f(x) + f(x)− f̂(x)

)2
|x = x

]
= Ey|x

[
(y − f(x))2 +

(
f̂(x)− f(x)

)2
+ 2 (y − f(x))

(
f(x)− f̂(x)

) ∣∣x = x
]

= Ry|x(f,x) +
(
f̂(x)− f(x)

)2
, (2.14)

where Ry|x(f,x) is the conditional risk of the target function f(x) and is equal to the variance of
y conditionally to x = x. Hence, this term is constant for any estimator f̂ and is often referred
to as the irreducible error. Since the objective is to minimize either the risk or the conditional
risk over a given modelM, we thus have that

arg min
f̂∈M

Ry|x(f̂ ,x) = arg min
f̂∈M

{
Ry|x(f,x) +

(
f̂(x)− f(x)

)2
}

= arg min
f̂∈M

(
f̂(x)− f(x)

)2
(2.15)

or, similarly,
arg min
f̂∈M

R(x,y)(f̂) = arg min
f̂∈M

Ex[
(
f̂(x)− f(x)

)2
]. (2.16)

Noticing that
l(f̂(x), f(x)) = (f̂(x)− f(x))2, (2.17)

we can deduce from Equations (2.15) and (2.16) that the problem of prediction of y is there-
fore equivalent to the problem of estimation of f(x). This allows us to make the link with
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Statistical Decision Theory, which roughly aims at estimating parameters (such as the mean or
the variance) involved in the distribution of a random variable (see [Wald 1939], [Berger 1985]
and [Candès 2006]). Here, the parameter is the conditional mean f(x) of y and fits exactly in
the context of Decision Theory. More details will be given in Chapter 3. From Equation (2.14),
we can also define the estimation loss as

l(f̂(x), f(x)) = Ry|x(f̂ , x)−Ry|x(f, x), (2.18)

in which we recognized what is called the excess loss [Boucheron et al. 2005]. Under the multi-
variate assumption, the estimation loss is expressed as

L(f̂(X), f(X)) = ‖f̂(X)− f(X)‖2 = RY |X(f̂ , X)−RY |X(f,X). (2.19)

From now on, we will focus more on the estimation loss than on the prediction risk.
In the notation l(f̂(x), f(x)), it appears clearly that the criterion of good prediction depends

on the target function f(x), which is unknown to us. Hence, the estimation loss l(f̂(x), f(x)) and
the prediction risks R(x,y) and Ry|x are also unknown and need to be estimated. The problem
of estimating l(f̂(x), f(x)) is deferred to Section 2.2. For the moment, we only assume that we
have such an estimator, based on data only, and we call it crit (for criterion). Since we do not
know the true estimation loss, we use crit as a surrogate and select the best predictor (according
to crit) by

f̂ crit
M (x) = arg min

f̂∈M
crit(f̂).

Second, the estimation loss itself can be decomposed using Equation (2.18) (see [Bar-
ron 1994]):

l(f̂(x), f(x)) = Ry|x(f̂ , x)−Ry|x(f̂∗M, x) +Ry|x(f̂∗M, x)−Ry|x(f, x)
= Ry|x(f̂ , x)−Ry|x(f̂∗M, x) + l(f̂∗M(x), f(x)),

where f̂∗M is the best prediction in ModelM, that is, f̂∗M is such that

Ry|x(f̂∗M, x) = inf
f̂∈M

Ry|x(f̂ , x).

Note that if f belongs to M, then f̂∗M(x) is equal to f . Otherwise, the function f̂∗M(x) is the
best we can hope for by restricting the search to Model M. This function is not an estimator
of f(x) since it depends on the f(x) itself [Massart 2007]. Therefore it is often called the oracle
(see [Donoho & Johnstone 1994] and [Candès 2006]), and has also been named the crystal ball
model by [Breiman 1996], both vocables denoting its ideal nature. By definition of the oracle,
the estimation loss l(f̂∗M(x), f(x)) represents the distance from the regression function f(x) to
the modelM and is often denominated as the approximation error (see [Barron 1994], [Bartlett
et al. 2002]) or as the model bias [Hastie et al. 2008, Chapter 7]. On the other hand, the term
Ry|x(f̂ , x)−Ry|x(f̂∗M, x) is the error we make by minimizing crit instead of the risk itself and is
referred to as the estimation error or the estimation bias.

We can also add another type of error that is not taken into account either in the prediction
risk or in the estimation loss, the numerical error. This type of error occurs with the choice of
an algorithm A for estimating f based on data as well as with the precision used for computing
the algorithm.

The link between prediction risk, estimation loss and the different types of error involved in
the process of prediction are schematized in Figure 2.2.
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Figure 2.2: Different types of error in modelization and prediction. The functions f , f̂∗M, f̂
and ˆ̂

fA respectively correspond to the target, the oracle, the estimator, and the
computation of the estimator based on algorithm A. The green disk represents the
minimum prediction error possible if we knew the target function f , and the blue
disk represents the class of functions defined by modelM.

The problem of complexity

Now that we stated the decomposition of the prediction risks, we can explain how the complexity
of ModelM influences the different types of error. Let us first begin with a simple example that
will make the problem of complexity clear.

Example 2.3. A common example in wavelet, in the multivariate setting, is to take n = p

and X = In, so that the objective is to estimate the vector mean µ of the Gaussian vector
Y ∼ Nn(µ, σ2In). In that case, we can take for instance the maximum likelihood estimator
µ̂ML = Y , which has the following quadratic risk

RY (µ̂ML) = EY [‖µ̂ML − µ‖2] = EY [‖Y − µ‖2] = nσ2.

Since µ̂ML is an unbiased estimator of µ, its risk is equal to its variance. On the other hand, if
we take the null estimator µ̂0 = 0, the risk is equal to its bias since its variance is null:

RY (µ̂0) = EY [‖0− µ‖2] = ‖µ‖2.

We could also take the thresholding estimator µ̂J such that, for a given subset J ,

µ̂Ji =
{
Yi if i ∈ J
0 if i /∈ J .

This latter estimator has risk

RY (µ̂J) = EY [‖µ̂J − µ‖2] =
n∑
i=1

min(µ2
i , σ

2) = ‖µJc‖2 + nJ σ
2,

where Jc is the complementary set of J and nJ is the size of J . We can easily notice that the
risk RY (µ̂J) is linear with respect to the dimension nJ of the subset J . Hence, the risk seems
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to be lower for subsets of low dimension. However, in such cases, the bias term ‖µJc‖2 might be
large, so that the challenge is to find the subset J yielding the lower risk.

In a similar way as in Example 2.3, the number k of variables in x used in the model can
be taken as a measure of the complexity (or capacity) of the function f̂ and more generally
of the model M. The more variables of x it takes as an input, the more coefficients have to
be estimated, and thus the more complex the function f̂ is. This example illustrates well the
problem of the complexity in risk minimization. Indeed, one might want to take a model M
of high complexity C(M) to include all possible submodels. In such a case, the approximation
error will be low but the estimation error might be high since the minimization process will
result in the selection of a function f̂ with highest complexity C(M), even if the true regression
function is not very complex. On the contrary, taking a modelM of low complexity C(M) can
reduce the estimation error while substantially increasing the approximation error. See [Niyogi
& Girosi 1996], [Arlot & Celisse 2010]. Meanwhile, estimating complex functions or simple
functions with many parameters might lead to non negligible numerical errors at the time of
computing the function f̂ .

For nonlinear functions f̂ , the complexity is a vague notion that is not clearly defined in the
literature. The best definition can be found in [Bozdogan 2000], which we state here.

Definition 2.3 (Complexity). The complexity of a system is a measure of the degree of inter-
dependency between the whole system and a simple enumerative composition of its subsystems
or parts.

This definition covers several existing measures of the complexity (see the discussion and
references in [Bozdogan 2000]), without specifying it clearly. Some authors argue that it should
take the smoothness of f̂ into account, either in terms of the number of continuous derivatives,
or in terms of the highest moment of the Fourier transform of f̂ (see [Barron 1993]). There
have been some attempts to give general measures, such as the Vapnik-Chervonenkis dimension
(VC-dim) [Vapnik & Chervonenkis 1971] or the effective/generalized degrees of freedom [Hastie
& Tibshirani 1990,Ye 1998]. Both measures coincide in the linear case with the dimension k of
the model.

Another interesting argument on the problem of complexity can be found in [Hastie
et al. 2008]: restricting the model space to fewer dimensions decreases the variance of the
estimator f̂(x) and thus ensures a better control of the prediction. This goes in the same direc-
tion as [Guyon 2009], where it is argued that the variance of f̂(x) can also be taken as a measure
of complexity.

As we can see, the problem of defining a model or a class of models makes the problem of
model selection quite complicated, and the challenges are to define a good measure of complexity
and to find a model that will have the right complexity so as to keep the approximation error,
the estimation error, and also the numerical error to a minimum. The corresponding process is
called the complexity control.

The following paragraph explains how we can overcome the problem of complexity and gives
several examples of measures.
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Collection of models based on structure of functions

A solution for a better control of complexity that has been generally applied is to consider a
collection of M nested models {M1, . . . ,MM} with increasing complexity. Example 2.4 gives
examples of collections of models.

Example 2.4. We have already seen in the previous subsection an example of a collection of
models with the linear projections. We can formalize this example as follows:

Mm = {f̂ ∈ Lπ(X ′,Y),X ′ ⊆ X \ dimX ′ ≤ k}.

In this case, the complexity
C(Mm) = k

is the maximum rank of the linear projections, or, to put it in another way, the number of
variables relevant to explain the system.

We can extend this example to polynomials of maximum degree k:

Mm = {f̂(x) = β̂0 + β̂1x+ β̂2x
2 + · · · ∈ K(x) \ deg(f̂) ≤ k},

where K(x) is the polynomial ring. Here, the complexity is measured by the maximum degree
k.

Another example is based on the smoothness of the functions f̂ . This smoothness can be
measured by a norm. For instance, we can take

Mm = {f̂ ∈ F \ ‖f̂‖22 ≤ λm},

where F is the set of all continuous functions from X to Y (see [Arlot & Celisse 2010]). In this
example, the complexity is equal to the maximum norm of functions inMm.

In a general way, we can define any modelM by

Mm = {f̂ ∈ F \ C(f̂) ≤ cm},

where both the function space F and the measure of complexity C(f̂) have to be specified.
Considering the sequence (cm)Mm=1 of constants such that

c1 < c2 < · · · < cM

yields a collection of nested models.
All this is summarized in the following procedure.

General procedure for model selection

1. Define a collection of models {M1, . . . ,MM} of increasing complexity:

C(M1) ≤ · · · ≤ C(MM ).

2. For each modelMm, that is, fixing the complexity C(M), find the “best” estimator f̂m(x)
of f(x):

f̂m(x) = arg min
f̂∈Mm

crit1(f̂(x)).
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3. Find the “best” modelMm̂ among the collection:

m̂ = arg min
m∈{1,...,M}

crit2(f̂m(x)).

Note that crit1 and crit2 need not be the same since crit1 is only used for functions of the same
complexity. Hence, crit1 need not take the complexity into account, while it is compulsory for
crit2 in order to realize a good tradeoff between goodness of fit and complexity.

Figure 2.3: Hierarchy of models with increasing complexity. The functions f̂m, m = 1, . . . , 5
minimize the data-based criterion crit1 for each model Mm. The red circle corre-
sponds to the function that minimizes the data-based criterion crit2 for the collection
{f̂1, . . . , f̂M}.

Figure 2.3 displays a diagram of the procedure. The collection of models is represented by
the blue shapes, the functions f̂m, m = 1, . . . , 5, are those defined in Step 2 of the procedure,
and the red circle indicates the estimator selected by the criterion crit2 in Step 3.
Remark 2.1 (Inference post model selection). Since the main objective is one of good prediction,
one might wish to perform a fourth step to the general procedure of model selection where f
is estimated again after the modelMm̂ has been selected, possibly on a different dataset. This
step is referred to as post-selection estimation or inference post model selection. We will not
treat this step in the sequel but we refer the interested reader to the enlightening discussions
in [Ye 1998] and [Leeb & Pötscher 2005].

The following subsection specifies the assumptions we will keep for the rest of the manuscript.

2.1.3 The general linear model

From now on, we will focus on the linear model only. The main reason of this choice is that
model selection is already a hard problem even with this simplification. However, some of the
techniques we review and propose can be easily derived in a nonlinear setting.

Linear model and variable selection

We define the univariate linear model with f(x) = xtβ, leading to

y = xtβ + σe, (2.20)
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and its multivariate version
Y = Xβ + σε, (2.21)

where we recall that y and Y takes real values, x = (x1, . . . , xp)t, X = (X1, . . . , Xp) is the design
matrix, e is the noise, ε is the noise vector and σ is the noise level. In both cases, the goal is to
estimate the unknown regression coefficient β with values in Rp. The corresponding estimator
is denoted β̂.

As mentioned by [Massart 2007, Chapter 4] the restriction to linear models might seem quite
sharp. However, it offers many nice aspects, besides its simplicity, many of which are enumerated
in [Hastie et al. 2008, Chapter 3].

First of all, it allows an easy interpretation of the results: the components of β are indeed
indicators of the linear correlation between y and the variables in x. The components with
higher absolute value reflect a strong relation between the corresponding variables in x and y.

On the other hand, the linear model can be useful as a local approximation of more complex
functions. In that case, the model can be written as

y =
p∑
j=1

βjψj(x) + σe,

where (ψ1(x), . . . , ψp(x)) represents a (predefined) basis expansion of f . For instance, we can
take a Fourier basis, wavelets, a trigonometric basis, or any transformation of the original inputs.
The set of basis functions is called a dictionary.

Another type of transformation is on the output variable, which can sometimes be linear in
x [Breiman & Friedman 1985]:

Ψ(y) = xtβ + σe,

where Ψ can be for instance the logarithmic function (see [Rukhin 1986] and references therein
for the description of production processes in Economics).

We will assume that the data y and x have already been transformed and that we only have
to fit Model (2.21).

Finally, [Hastie et al. 2005] argue that the linear model sometimes yields better performances
than a nonlinear model, especially when the data is sparse, when few observations are available,
or when there is a low signal to noise ratio.

One subproblem of model selection in the linear model defined in Equation (2.21) is the
problem of variable selection. Indeed, when the number p of variables in x is moderate to large,
one might want to select only the variables that are relevant to predict y, and thus reduce the
dimensionality of the problem. By doing so, once the best model has been found, the prediction
process can be substantially faster (as well as more accurate if p is large). We will thus focus
our interest in both a good prediction and a selection of the most relevant variables.

Before going to the next section on distributional assumptions, we would also like to point
out that the rest of the study is done in the case where the input matrix X is assumed to
be fixed. In such a case, there is equality between the conditional prediction risk RY |X and
the prediction risk R(X,Y ). One reason of this choice is again to simplify a problem that is
already very hard. Also, [Steinwart 2007] pointed out that the minimization of the risk R(X,Y )
can be performed by pointwise minimization of the conditional risk RY |X . Hence, it might be
considered as a first step in the minimization of R(X,Y ).
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Assumptions on the noise

The identifiability of Model (2.12) (and consequently of Model (2.20)) is only possible if we
assume that the noise e verifies

E[e] = 0. (2.22)

We now specify the other assumptions on the noise. The first assumption is on the de-
pendence between two observations of e. The most common one found in the literature states
that two observations of the noise e are independent. Such an hypothesis conveniently offers
a simplification of calculations. Also, it can be a useful approximation for instance in cases
where the Law of Large Numbers applies. However, the Law of Large Numbers is defined in
an asymptotic setting, so that, in practice on finite datasets, the approximation might be far
from the truth. Hence, the multivariate setting comes as an alternative for modeling possible
dependence between observations of e, which we now consider as components of the vector ε.
Condition (2.22) thus becomes

E[ε] = 0. (2.23)

The noise e and the noise vector ε are respectively distributed according to an unknown
distribution Pe and Pε,

e ∼ Pe and ε ∼ Pε.

The most common assumption is that Pε is the Gaussian distribution Nn(0, σ2In). This assump-
tion offers a substantial simplification since it is completely determined by its first two moments,
the mean and the variance. Note that, in this case, the univariate and multivariate settings are
equivalent since, for the Gaussian distribution, the noncorrelation assumption, described by the
covariance matrix proportional to the identity matrix In, is equivalent to the independence as-
sumption. The distribution Pe can also be specified to be the Student distribution, or other
distributions depending on the context. We will call this assumption as the fully specified−Pε
assumption.

An natural extension of the Gaussian assumption Nn(0, σ2In) is to consider the more general
Gaussian distributionNn(0,Σ), where the covariance matrix Σ is generally unknown and includes
the special case of heteroskedasticity with

Σ =


σ2

1 0
. . .

0 σ2
n

 .
On the opposite direction, works such as [Vapnik 1998] (and related works) generally consider
the univariate independent case where Pe is completely unknown. The theory based on such
assumption is sometimes referred to as worst-case analysis. This assumption has often been
criticized as it might lead to loose results.

Finally, in-between the latter two assumptions, we can find the following one

Pe ∈ E or Pε ∈ D

where E andD are families of distributions in the univariate and multivariate setting respectively.
Examples of such families are the exponential family of distributions, the family of mixtures of
Gaussian distributions, the family of spherically symmetric distributions, and the family of
elliptically symmetric distributions. Note that the exponential family of distributions implies
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independence between the observations of e, while it is not the case for the other three families
(except for the Gaussian distribution Nn(0, σ2In), which is a member of the four families).
We refer to Chapter 3, Section 3.4 for more details on spherically and elliptically symmetric
distributions.

2.2 Estimating the prediction risk

This section is devoted to the problem of estimating either the (conditional) prediction risk
(2.8) (or (2.9)), or the estimation loss (2.17), which are equivalent up to a constant and are
both unknown since they depend on the unknown target function f . We begin with the most
natural estimator of the prediction risk, namely the empirical risk, and explain the drawbacks of
this estimator along with the problem of overfitting. Then we divide the review into analytical
methods, which estimate the prediction risk from the same data used to estimate the regression
parameter; and resampling methods, which use a different dataset. This review is not intended
to be exhaustive, but rather explains the main principles and origins of each criterion.

We recall that we observe the data (x,y) = (xi,yi)ni=1, which are considered either as n
instances of the couple (x, y) ∈ X × Y (univariate assumption), or as one observation (X,Y)
of the couple (X,Y ) ∈ X n × Yn (multivariate assumption). We denote by N the number of
observations (N = n in the first case and N = 1 in the latter case). Note that, in both cases, the
data observed are the same, that is, (x,y) = (X,Y), and the difference between the univariate
and multivariate case is merely conceptual.

In the sequel, the criteria we expose are computed with the n observations. However, since
they are also statistics, we write them under the multivariate case.

2.2.1 The empirical risk

The empirical risk of an estimator β̂ of regression parameter β, sometimes also referred to as
the goodness of fit or the contrast, is defined by

Remp(β̂) = 1
N
L̃(Xβ̂, Y ) = 1

N

n∑
i=1

l̃(Xiβ̂, Yi), (2.24)

where l̃ can be either the loss function l defined in Equation (2.1) (in our case the squared-error
loss), or a surrogate of l.

The choice of the squared-error loss is the most common choice in regression problems,
especially for the ease of computation incurred. However, it is often related to a Gaussian
assumption on the noise, and can be sensitive to outliers [Steinwart 2007]. In order to cope with
such an issue, [Huber 1964] proposed the following surrogate loss function

L̃η(Xβ̂, Y ) =
n∑
i=1

l̃η(Xiβ̂, Yi), l̃η(Xiβ̂, Yi) =
{

(Xiβ̂ − Yi)2/2 if |Xiβ̂ − Yi| ≤ η
η(|Xiβ̂ − Yi| − η/2) otherwise,

where η depends on the fraction of data affected by gross error. Huber loss L̃η(Xβ̂, Y ) leads to
the selection of more robust estimators β̂.

Another possible surrogate is the estimated log-likelihood (LL)

L̃LL(Xβ̂, Y ) = −2 log p̂(Y |Xβ̂).
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The log-likelihood is a common loss function for the problem of estimating the density p(Y ).
In our context, density estimation and estimation of the conditional mean of Y given X are
related. For instance, if we take p̂ to be the Gaussian density N (Xβ̂, σ2), then the log-likelihood
is defined by

L̃LL(Xβ̂, Y ) = n log(σ2) + n log(2π) + ‖Y −Xβ̂‖
2

σ2 ,

where we clearly recognized the standardized (or invariant) squared-error loss on the right-most
part, and the other components can be thought of as constants if we assume the variance σ2 to
be known. See [Cherkassky & Mulier 1998], Chapter 2.

In the general setting where f̂ is not linear, when we consider the empirical risk as a criterion
for selecting among models with finite data, we are faced with the issue that

min
f̂∈M

Remp(f̂) (2.25)

is an ill-posed problem. Indeed, there exist an infinity of solutions such that

f̂(Xi) = Yi

exactly on the n data points observed. However, very few of these solutions can give a good
approximation to new instances Ynew. This phenomenon is known as overfitting, and is due to
the fact that minimizing the empirical risk yields complex solutions. In the more rigid linear
model, a similar phenomenon occurs, where the optimization problem (2.25) gives non null
estimates for all the components in β, even when some variables in X are not relevant to the
problem.

Therefore, Remp is clearly not a good criterion for model selection when it is computed on the
same data as for the estimation of β. However, it can be good in the case where the complexity
of the model is fixed. Hence, it is taken as the golden rule for the second step of the general
model selection procedure from Subsection 2.1.2:

crit1(β̂) = Remp(β̂). (2.26)

When the empirical risk is based on the squared-error loss, Problem (2.25) is equivalent to
least-squares, while for a loss based on log-likelihood it is equivalent to the maximum likelhood
principle. In particular, if we do not make any restrictions on the model space of β̂, the solution
to Problem (2.25) is the least-squares estimator

β̂LS = (XtX)−1XtY. (2.27)

Several solutions have been proposed to overcome the problem of overfitting. In the sequel, we
divide them into two categories: the methods from the first category intend to reduce the bias of
the empirical risk – as an estimator of the prediction risk – by taking into account the complexity
of the model; the methods from the second category estimate the parameter β and the prediction
risk R(X,Y ) on different datasets. All the methods in the rest of this section correspond to the
criterion crit2 (Step 3) in the model selection procedure. Note that the distinction between these
two categories might be fuzzy, as can be seen in [Arlot & Celisse 2010].
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2.2.2 Analytical methods

In this section, we review criteria that are estimated on the same data used to estimate the
regression coefficient β. They all intend to give a more accurate estimation of the estimation
loss L(Xβ̂,Xβ) = ‖Xβ̂−Xβ‖2 than the empirical risk. They all can be expressed in one of the
following forms:

crit2(β̂) = Remp(β̂) + λ pen(β̂) (2.28)

or
crit2(β̂) = λ×Remp(β̂)× pen(β̂), (2.29)

where pen(β̂) is a measure of the complexity of β̂ and λ is an hyperparameter trading off the
goodness of fit by the complexity, that can depend on the number p of variables, the sample size
n, or even the data for what are called the data-driven penalties.

These methods are also often referred to as penalization methods because of their form. Many
of the methods we review in what follows where derived in the case where β̂ is estimated by
restricted least-squares, that is,

β̂LSI = (Xt
IXI)−1Xt

IY, (2.30)

where I is the subset of variables assumed to be relevant, or maximum likelihood. In that case,
the most common form of the penalty function pen is

pen(β̂LSI ) = σ̂2k,

where k = #I is the number of variables in the selection and σ̂ is an estimator of the noise level
σ. However, we will see that there exist other possible forms.

Fixed penalties

Mallows’ Cp. Mallows’ idea in [Mallows 1973] was to propose an unbiased estimator of the
scaled expected prediction error Eβ[‖Xβ̂I−Xβ‖2/σ2], where β̂I is an estimator of β based on the
selected variables set I ⊆ {1, . . . , p}, Eβ denotes the expectation with respect to the distribution
of Y in Model (2.21) and ‖ · ‖ is the Euclidean norm on Rn. Assuming Gaussian i.i.d. residuals,
he came to the following criterion

Cp(β̂I) = ‖Y −Xβ̂I‖
2

σ̂2 + 2d̂f − n, (2.31)

where σ̂2 is an estimator of the variance σ2, for instance the unbiased estimator based on the full
linear model fitted with the least-squares estimator β̂LS , that is σ̂2 = ‖Y −Xβ̂LS‖2/(n−p), and
d̂f , often called the effective or generalized dimension of the model [Hastie & Tibshirani 1990,
Meyer & Woodroofe 2000], is an estimator of df , the degrees of freedom. Note that, for the
least-squares estimator, df = k the number of components of β̂I .

Mallows’ Cp relies on the assumption that, if for some subset I of explanatory variables the
expected prediction error is low, then we can assume those variables to be relevant for predicting
Y. In practice, the rule for selecting the “best” candidate is the minimization of Cp. However,
Mallows warns against a systematic application of the minimization of Cp, and advices to look
instead at the shape of the Cp-plot and select the models for which Cp ≈ d̂f , especially when
some explanatory variables are highly correlated. In addition, the author argues that the rule
is unbiased only in the case where the subset I is independent of Y .
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Akaike Information Criterion (AIC). A few years later, Akaike followed Mallows’ spirit to
propose automatic criteria that would not need a subjective calibration (like for the significance
level in hypothesis testing, for instance). His proposal was more general than Cp with application
to many problems such as variable selection, factor analysis, analysis of variance, or order
selection in auto-regressive models (see [Akaike 1974] and [Akaike 1973]). His motivation was
different: he considered the problem of estimating the density p(·|β) of a study variable Y ,
where p is parametrized by β ∈ Rp, by p(·|β̂). His aim was to generalize the principle of
maximum likelihood enabling a selection between maximum likelihood estimators β̂ML

I based
on several subsets I. The author showed that all the information for discriminating p(·|β̂I) from
p(·|β) could be summed up by the Kullback-Leibler divergence DKL(β̂I , β) = E[log p(Ynew|β)]−
E[log p(Ynew|β̂I)] where the expectation is taken over new observations. This divergence can in
turn be approximated by its second-order variation when β̂I is sufficiently close to β, which
actually corresponds to the distance ‖β̂I − β‖2I/2 where I = −E[(∂2 log p/∂βi∂βj)pi,j=1] is the
Fisher Information matrix and for a vector t, its weighted norm ‖t‖I is defined by (ttIt)1/2. By
means of asymptotical analysis and by considering the expectation of DKL the author came to
the following criterion

AIC(β̂ML
I ) = −2

n∑
i=1

log p(yi|β̂ML
I ) + 2k, (2.32)

where k is the number of parameters of β̂I . In the special case of a Gaussian distribution, AIC
and Cp are equivalent up to a constant for Model (2.21) (see Chapter 3, Section 3.2.2 for more
details). Hence Akaike described his criterion as a generalization of Cp for other distribution
assumptions. Unlike Mallows, Akaike explicitly recommends the rule of minimization of AIC
to identify the best model from data. Note that [Ye 1998] proposed to extend AIC to other
estimators that the maximum likelihood estimator by replacing k by the generalized degrees of
freedom d̂f .

Final Prediction Error criterion (FPE). This criterion was also proposed by Akaike
[Akaike 1970], but in the context of estimation of the parameter in a linear autoregressive
model. The term Final Prediction Error actually refers to the prediction risk R(X,Y ) associated
with the squared-error loss. It derives from the fact that the prediction risk of the least-squares
estimator for β restricted on a subset I is asymptotically equal to

R(X,Y )(β̂LSI ) −→
n→∞

(
1 + k

n

)
σ2,

under the assumption that the noise components are independent and stationnary. Akaike then
shows that the statistic

σ̂2 =
(

1− k

n

)−1
‖Y −Xβ̂LSI ‖2

is a good estimator of the noise level σ2. Hence, he proposed the following criterion

FPE(β̂LSI ) = n+ k

n− k
‖Y −Xβ̂LSI ‖2.

Rewritting it, we have that

FPE(β̂LSI ) = ‖Y −Xβ̂LSI ‖2 + 2kσ̂restr,
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where σ̂restr = ‖Y −Xβ̂LSI ‖2/(n− k) is an unbiased estimator of the variance when we assume
the restricted model

Y = XIβI + ε

to be true. Hence, FPE is similar to Cp, but with another estimator of the variance.
Note that FPE is equivalent to what [Hocking 1976] calls the average prediction variance,

defined as
APV(β̂I) = n+ k

n− k
× 1
n
‖Y −Xβ̂I‖2,

which applies to other estimators than Least-squares.

Corrected AIC (AICc). As mentionned in [Sugiura 1978] and [Hurvich & Tsai 1989], AIC
is an unbiased estimator of the Kullback-Leibler divergence only in the asymptotic setting, and
is thus evidently biased in practical examples since we use finite data. The objective of Cor-
rected AIC (AICc) is thus to correct AIC’s bias in a non asymptotical setting, especially for
small sample. It consists in estimating the Kullback-Leibler divergence DKL(β̂, β) in an autore-
gressive model, assuming the noise ε to be standard Gaussian ε ∼ Nn(0, σ2In) and estimating
the distribution of Y by Nn(Xβ̂, σ̂2In),where σ̂2 = ‖Y − Xβ̂‖2/n is the Maximum likelihood
estimator of the noise level σ2. In such a case, the Kullback-Leibler divergence is equal to

DKL(β̂, β) = EY |X

[
n log σ2 + ‖Y −Xβ̂‖

2

σ̂2 + constant terms
]

= EY |X

[
n log σ2 + ‖Xβ −Xβ̂‖

2

σ̂2 + nσ2

σ̂2 + constant terms
]
,

From the Gaussian assumption of Y , it follows that both nσ̂2/σ2 and ‖Xβ − Xβ̂‖2/σ̂2 are
distributed according to a χ2(n−p) and a χ2(p) respectively. This yields the following estimator
(ignoring the constant terms)

AICc(β̂ML
I ) = n log σ̂2 + n(n+ k)

n− k − 2 .

Generalizing it to other problems, [Hurvich et al. 1990] obtained the criterion

AICc(β̂ML
I ) = −2

n∑
i=1

log p(yi|β̂ML
I ) + n(n+ k)

n− k − 2 . (2.33)

[Burnham & Anderson 2002] recommend the use of AICc instead of AIC as soon as the ratio
between the sample size and the maximum number of variables, n/p, is lower than or equal to
40.

Note however that the bias reduction in AICc relies on the assumption that the true model
belongs to the collection of models (see [Bozdogan 2000]).

Generalized Cross Validation (GCV). The Generalized Cross Validation criterion is de-
signed to approximate analytically the resampling method Leave-One-Out Cross Validation
(LOOCV) [Golub et al. 1979]. We will give more details on LOOCV in the next subsection, but
basically it consists in estimating β based on the data leaving out the ith observation, computing
the empirical risk Remp on the ith observation, iterating the process for all i and averaging the
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n values of the empirical risk. The analytical approximation is derived for the case where β is
estimated by the ridge regression estimator

β̂RR = (XtX + λ In)−1XtY.

See Subsection 2.3.3 for more details on ridge regression. The analytical form of LOOCV can be
obtained exactly for β̂RR thanks to the Woodbury identity (see Appendix A.1) applied to the
matrix (XtX + λIn)−1. The main idea is then to use the Singular Value Decomposition (SVD)

X = UDVt,

where U and V are respectively n×n and p×p orthogonal matrices, and D is an n×p rectangular
diagonal matrix with the square roots of the eigenvalues of XtX as diagonal components. Then,
computing the analytical form of LOOCV on a transformation of the linear model results in the
criterion GCV with rotational invariance.

The expression of GCV is

GCV(β̂) = n

(n− tr H)2 ‖Y −Xβ̂‖
2,

where H is such that Xβ̂ = HY , that is, H is the hat matrix, and tr H is its trace. An interesting
feature of GCV is that, unlike the criterion we have seen sofar, it does not require an estimator
of the noise level σ2.

Bayesian Information Criterion (BIC). This criterion is based on the remark that, for a
model with fixed dimension, the maximum likelihood estimator can be obtained as the asymp-
totic limit of Bayes estimators for arbitrary prior distributions everywhere nonnull. The validity
of the Bayes procedure has been established by [Schwarz 1978] for linear models and in the case
where the noise components are indenpendent and identically distributed. The procedure relies
on the following principle: assuming that Y follows a distribution parametrized by β, which is
also random, [Schwarz 1978] argues that the prior distribution on β need not be known exactly,
as long as it can be expressed as

p(β) =
M∑
j=1

p(Mj)p(β|Mj),

where (Mj)Mj=1 is the set of models, p(Mj) is the a priori probability that the jth model is the
right one, and p(β|Mj) is the a priori probability of the parameter β given model Mj . The
Bayes solution then selects the model with highest a posteriori probability, that is,

Mj∗ = arg max
Mj

{
Π(Mj) = log

∫
Mj∩B

p(Mj)p(y|β)dp(β|Mj)
}
,

where B is the set of definition of β.
Thanks to an asymptotic expansion of Π(Mj), Schwarz proposed the Schwarz Bayes Crite-

rion (SBC) :
SBC(β̂ML

I ) = log p(Y |β̂ML
I )− k logn/2, (2.34)

that can also be written as

BIC(β̂ML
I ) = −2 log p(Y |β̂ML

I ) + k logn, (2.35)
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the latter one being the Bayesian Information Criterion (BIC). Maximizing SBC yields the
same selection as minimizing BIC. The latter expression is very close to that of AIC in Equation
(2.32). In both cases, the goodness of fit criterion is based on the log-likelihood and the penalty
is based on the number k of nonzero coefficients in the maximum likelihood estimator of β. The
difference occurs with the hyperparameter trading off the goodness of fit and the penalty, which
is set to λ = 2 for AIC and to λ = logn for BIC. Noticing that logn is larger than 2 as soon
as n ≥ 8, it is easy to see that BIC penalizes more the complexity than AIC and thus selects
simpler models.

Other criteria. The early works of Mallows, Akaike and Schwarz have inspired a huge number
of other criteria. We do not intend to review them all, but we just briefly name a few along
with little justification.

[Foster & George 1994] derived their Risk Inflation Criterion (RIC), of the form

RIC(β̂LSI ) = ‖Y −Xβ̂LSI ‖2 + 2kσ̂2 log p,

in order to overcome AIC and Cp’s inability to correctly handle the case where the true model
is the null model β = 0. [Bozdogan 1994] tried several remedies to the tendancy of AIC to select
complex models by increasing the penalization. Among them are

AIC3(β̂ML
I ) = −2 log p(Y |β̂ML

I ) + 3k,
CAIC(β̂ML

I ) = −2 log p(Y |β̂ML
I ) + (logn+ 1)k.

Note that AIC3 is derived so as to correct AIC’s bias on the frontiers of the parameter space
(see [Biernacki 1997], Appendix B, for more details). CAIC, standing for Consistent AIC, is a
combination between AIC and BIC in an attempt to find a middle ground between both criteria.
With a similar objective, [Hannan & Quinn 1979] tried to determine a criterion with λ depending
on the sample size n and increasing with n at the slowest possible rate. Hence they came to the
following criterion

HQ(β̂ML
I ) = −2 log p(Y |β̂ML

I ) + c(log logn)k,

where c > 2.
Other authors, like [Takeuchi 1976] with the Takeuchi Information Criteron and [Bozdo-

gan 1987, Bozdogan 1994] with the Consistent AIC with Fisher matrix (CAICF) and the In-
formation Complexity Criterion (ICOMP), defined more general measures of the complexity
involving the trace or the determinant of the Fisher information matrix I.

Principled methods

In this paragraph, we review two theories, namely the Structural Risk Minimization (SRM)
developed by [Vapnik & Chervonenkis 1971], and the Slope Heuristics developed by [Birgé &
Massart 2001]. Both theories are more general than the methods we have seen sofar in the sense
that they consider any empirical risk and any collection of models, and they can be applied in
many problems such as regression, classification and density estimation. Although their rationale
is similar, that is, they both try to control the deviation of the empirical risk to the actual risk,
they differ in that SRM considers the worst case over all the models and hence gives a global
control, while slope heuristics intends to control the deviation only for the selected model, which
results in a local control.



32 Chapter 2. State of the art

Structural Risk Minimization (SRM). Most of the criteria introduced up to now rely
either on a strong distributional hypothesis, where the prior distribution of Y is assumed to
be known, or on asymptotical behaviour, where the statistics of interest are asymptotically
Gaussian from the Central Limit Theorem.

In a non asymptotic framework, [Vapnik & Chervonenkis 1971] developed a theory that does
not rely at all on the form of the distribution, but rather considers any distribution for Y : this
theory is called the Statistical Learning Theory (STL). Its principle is based on the general
procedure for model selection we discussed on Section 2.1. For a given collection of models and
a given empirical risk Remp, STL aims at defining the conditions for which the empirical risk
Remp uniformly and almost surely converges to the true prediction risk R(X,Y ), that is,

∀η, ∃δ P

 sup
β̂∈M

|R(X,Y )(β̂)−Remp(β̂)| > δ

 ≤ η, (2.36)

for any probability Px,y on the couple (X,Y ) in the space D of probabilities. The asymptotic
framework led [Vapnik & Chervonenkis 1971] to define a new measure of complexity, the Vapnik-
Chervonenkis dimension (VC-dim). This measure of complexity is quite complex and often
difficult to evaluate, except in a few cases. However, in the case where β̂ is the (restricted) least-
squares estimator, VC-dim matches the number of estimated components in β̂ (or equivalently
the rank of the projection).

The rest of the theory relies on the nonasymptotic framework. It aims at estimating the
bound δ in Equation (2.36) as a function of the sample size n, of the level of confidence η, and
the Vapnik-Chervonenkis dimension VC-dim,

δ = δ(n, η,VC-dim).

The bound δ is referred to as the generalization bound. Finally, having estimated the general-
ization bound, the uniform convergence equation (2.36) implies that, with probability at least
1− η,

R(X,Y )(β̂) ≤ Remp(β̂) + δ(n, η,VC-dim).

The right-hand side of this inequality is the criterion proposed by [Vapnik & Chervonenkis 1971]
for selecting between models and that they called the Structural Risk Minimization (SRM):

SRM(β̂) = Remp(β̂) + δ(n, η,VC-dim). (2.37)

Figure 2.4 shows a visualization of the principle behind Statistical Learning Theory and
Structural Risk Minimization.

In the regression framework, the bound on the true prediction risk takes the following form,
with probability at least 1− η,

RY,X(Xβ̂) ≤ Remp(Y,Xβ̂)×
(

1− c
√

VC-dim
n

(
log

(
an

VC-dim

)
+ 1

)
− log η

n

)−1

+
, (2.38)

where a and c are constants and x+ = max(x, 0). [Cherkassky et al. 1999] propose to use the
choices a = c = 1, and η = n−1/2. In order to compare SRM to other criteria from the literature,
they also approximated VC-dim by the the effective degrees of freedom.
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Figure 2.4: Principle of the Structural Risk Minimization (SRM). The empirical risk (blue dots)
decreases with the complexity, while SRM (black intervals) gives an upper bound on
its difference to the true risk (red line). The estimator selected by SRM is represented
by the dotted line and has complexity k∗.

Slope Heuristics (SH). Slope heuristics took its grounds in [Birgé & Massart 2001] and
was extended in [Birgé & Massart 2007]. It has been applied in other contexts than regression,
like non supervised classification with the special problem of selecting Gaussian mixture models
for genomic and genotypic data (see [Bontemps & Toussile 2010] and [Maugis & Michel 2011],
among others).

The idea behind slope heuristics comes from the remark that the empirical risk Remp, also
called contrast by [Massart 2007], is a biased estimator of the true prediction risk R(X,Y ) when
it is evaluated on the same data as in the estimation of the parameter. We thus wish to correct
it by a good penalty that will allow us to estimate the true risk R(X,Y ) the more accurately. The
best penalty is the penalty, denoted penid, that gives exactly the true risk, that is,

R(X,Y )(β̂) = Remp(β̂) + penid(β̂). (2.39)

It is referred to as the ideal penalty and is obviously unknown since it depends on the true risk
R(X,Y ). However, by rewriting Equation (2.39), we can notice that it is actually equal to the
difference between the true risk and the empirical risk, that is,

penid(β̂) = R(X,Y )(β̂)−Remp(β̂). (2.40)

The ideal penalty thus represents the bias of the empirical risk (up to a factor of −1). Using
concentration inequalities of the type

P[|Z − EZ| > δ] ≤ η

allows a better control of the bound δ and thus induces a lower variability of the criterion

SH(β̂) = Remp(β̂) + penslope(β̂),

where β̂ is the minimum contrast estimator of β, that is, the estimator β̂ minimizing the empirical
risk Remp, and penslope is defined by

penslope(β̂) = slope× C(β̂), with slope = λσ2,
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C being a measure of the complexity. In particular, the control is better for the minimizer of
SH, namely

β̂(m̂) = arg min
β̂∈Mm

SH(β̂),

which guarantees the oracle inequality

E(X,Y )[L(Xβ̂(m̂), f(X))] ≤ Cn × inf
m∈{1,...,M}

E(X,Y )[L(Xβ̂(m), f(X))] +Rn, (2.41)

where Cn and Rn are constants depending only on the sample size n and the number of variables
p.

Slope heuristics is performed in the following way: several models Mm̂(slope) are selected
by minimizing the criterion SH for increasing values of slope, starting from slope = 0, which
corresponds to the empirical risk minimizer. Increasing only a little the value of slope still yields
complex models. At a certain point, the complexity of the selected model results in a significative
jump compared to the complexity of the previously selected model. The corresponding value of
slope defines the minimal penalty

penmin(β̂) = slopeminC(β̂).

The slope heuristics suggests that the optimal value of the slope is twice that of the minimal
slope

slopeopt = 2 slopemin.

Figure 2.5a displays a typical example where the jump in dimension is clearly visible, and
symbolized by the black cross. Figure 2.5b displays the empirical risk as a function of the
complexity. The red line corresponds to the minimal slope reached for complex models.

(a) Jump in complexity.
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Figure 2.5: Left panel: Evolution of the complexity of models with respect to the slope. The
black dot indicates the maximum jump in complexity, corresponding to the value of
the minimal slope slopemin. Extracted from [Arlot & Massart 2009]. Right panel:
Evolution of the empirical risk (here the sum of squares) as a function of the complex-
ity. The minimal penalty is represented by the red line. Extracted from [Caillerie &
Michel 2009].
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The main advantage of slope heuristics is that it estimates simultaneously both the hyper-
parameter λ and the noise level σ2 based on data through the slope, while most methods plug
in an estimator of σ2 and fix the hyperparameter λ. Hence, slope heuristics is considered to be
a data-driven penalty method. However, it seems difficult to apply in practice, in particular in
situations where there is no clear jump or when the number M of models in the collection is not
very large, since it might result in a poor estimation of the minimal penalty.

[Birgé & Massart 2007] propose several forms of complexity measures in the Gaussian
regression model taking the least-squares criterion for the contrast. Among them, we have:

C1(β̂(m)) = Dm

C2(β̂(m)) = Dm

(
1 +

√
2Lm

)2

C3(β̂(m)) = Dm

(
1 + 2

√
H(Dm) + 2H(Dm)

)
C4(β̂(m)) = Dm

(
κ+ 2(2− θ)

√
Lm + 2θ−1Lm

)
whereDm is the dimension ofMm, (Lm)Mm=1 is a sequence of non negative weights on each model
Mm, such that

∑
m∈{1,...,M} exp(−DmLm) < ∞, H(Dm) = D−1

m log(#{M \ dim(M) = Dm}),
and θ ∈ (0, 1) and κ > 2−θ are constants. More precisely, the authors suggest the choices κ = 2
and θ = 1/2 for the last measure of complexity C3. Note that, here, the collection of models
may include several models with the same dimension D, in which case they are not necessarily
nested. The measure C2 is particularly indicated in cases where the number of models of the
same dimension is large.

2.2.3 Resampling methods

There exist two main families of resampling methods, namely cross-validatory methods and
bootstrap methods. Here, we just review two of the most commonly used cross-validatory meth-
ods, namely the Leave-One-Out Cross Validation (LOOCV) and the V – fold Cross Validation
(CV-V ). For the bootstrap family, we refer to [Efron 2004]. An extensive and illuminating
review on resampling methods has been done in [Arlot & Celisse 2010].

V – fold Cross Validation (CV-V ). The basic procedure of a V – fold Cross Validation,
introduced by [Geisser 1975], follows the following steps:

1. Split the data (Yi, Xi)ni=1 into V subsets {(Yi, Xi)i∈J1 , . . . , (Yi, Xi)i∈JV }.

2. For each v in {1, . . . , V }, estimate β based on the V − 1 subsets excluding the vth one and
compute the empirical risk Remp as in Equation (2.24) on the vth subset:

Remp(β̂(−v)) =
∑
i∈Jv

L̃(Xβ̂(−v), Y ), with β̂(−v) = β̂ ((Yi, Xi), i /∈ Jv) .

3. Finally, compute the average of the empirical risks on the V subsets

CV-V (β̂) = 1
V

V∑
v=1

Remp(β̂(−v)). (2.42)

Common choices for the number of splits are V = 5 and V = 10, leading to CV-5 and CV-10.
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Leave-One-Out Cross Validation (LOOCV). The Leave-One-Out Cross Validation
(LOOCV), proposed by [Stone 1974] and [Allen 1974], can be viewed as a particular case of
CV-V where we perform n splits, that is, V = n. Hence, each time, the estimator of β is com-
puted without the ith observation, and the empirical risk is evaluated on this ith observation. It
thus corresponds to the following criterion:

LOOCV(β̂) = 1
n

n∑
i=1

Remp(β̂(−i)). (2.43)

The Leave-One-Out cross validation is well known for overestimating the true risk R(X,Y ) and
often results in the selection of complex models. It is also more unstable that CV-5 or CV-10.

2.2.4 Which criterion should we choose?

Sofar, we have seen about a dozen of criteria for model selection while there exists a huge
amount of other criteria in the literature on the subject. This fact obviously arises the question
of which criterion to choose, and behind that question lies the following problem: what is a
good criterion of model selection?

This paragraph is largely inspired by [Arlot & Celisse 2010], which give a comprehensive and
enlightening discussion on the subject. They divide the answer between two main objectives. The
first objective is the one we have been focusing on in the previous section, namely the estimation
of the regression function f (which, as we have seen, is closely related to the prediction of new
instances of Y ). The second objective is the identification of the “true” model.

Efficiency. For the objective of good prediction, the optimality of a criterion is defined in
terms of efficiency. [Arlot & Celisse 2010] make another distinction for efficiency depending on
whether the optimality is asymptotic or nonasymptotic.

Let {β̂(1), . . . , β̂(M)} be the collection of estimators associated with the collection of models
{M1, . . . ,MM}. The model selected by a criterion crit is the modelMm̂ where m̂ is such that

m̂ = arg min
m∈{1,...,M}

crit(β̂(m)).

The best model among the list is the modelMm∗ where m∗ is such that

m∗ = arg inf
m∈{1,...,M}

{
L(β̂(m), f) = ‖Xβ̂(m) − f(X)‖2

}
.

Definition 2.4 states the notion of efficiency in the asymptotic framework.

Definition 2.4 (Asymptotic efficiency). A model selection procedure is said to be asymptotically
efficient if it verifies the condition

L(β̂(m̂), f)
L(β̂(m∗), f)

a.s.−→
n→∞

1.

This definition means that we expect the selected model to have a true estimation loss close
to that of the best model in the collection.

In a nonasymptotic framework, the adaptation of this definition corresponds to an oracle
inequality. Note that the term non-asymptotic includes two cases: the finite sample setting,
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where both the sample size n and the number p of variables are assumed to be fixed; and the
framework where p can depend on n (see for instance [Massart 2007]), which is often written as
p = p(n).

Definition 2.5 (Nonasymptotic efficiency). A model selection procedure is said to be efficient
if it verifies the following oracle inequality either in expectation or with large probability:

L(β̂(m̂), f) ≤ Cn L(β̂(m∗), f) +Rn, (2.44)

where Cn ≥ 1 and Rn ≥ 1 are two constants such that

Cn −→
n→∞

1,

Rn � L(β̂(m∗), f).

Consistency in model selection. The consistency in model selection is the ability of a model
selection procedure to recover the “true” model with probability tending to 1 with the sample
size n. Note that the common definition of the “true” model is the smallest modelM containing
the target function f (see for instance [Yang 2005]). In order to obtain the model consistency,
it is generally assumed that the true model belongs to the collection of models. However, when
this assumption is false, it is argued in [Lebarbier & Mary-Huard 2006] that model consistent
procedures actually tend to recover what [Burnham & Anderson 2002] call the quasi-true model,
which is defined as the smallest model from the collection yielding the smallest Kullback-Leibler
divergence. The quasi-true model can thus be seen as an oracle and leads to the following
definition of consistency in model selection.

Definition 2.6 (Consistency in model selection). A model selection procedure is said to be
consistent for model selection if it verifies the condition

P [m̂ = m∗] −→
n→∞

1.

It has been shown in [Yang 2005] that BIC is model consistent, and so is any criterion of the
same form as in Equation (2.28) for which the parameter λ depends on the sample size n.

Note that, as stated by [Lebarbier & Mary-Huard 2006], the consistency in model selection
does not assure a good solution since the quasi-true model could be far from the target function f .

There also exists a different type of oracle inequalities for the consistency in selection, given
in [Bunea & Wegkamp 2004]:

1
n
‖Xβ̂(m̂) −Xβ‖2 + pen(m̂) ≤ min

m
min
β̂∈Mm

(1 + 2a)
{ 1
n
‖Xβ̂ −Xβ‖2 + pen(m)

}
with probability tending to 1.

The best of both worlds? A legitimate question that has been arisen and answered in
[Shao 1997] for deterministic penalties (i.e. when λ pen does not depend on data) and in
[Yang 2005] for data-driven penalties is whether there exist procedures that are both efficient
and model consistent. In such a case, we would have some insurance of selecting the oracle,
at least asymptotically. Unfortunately, the answer is no in both cases, so that the user has to
define a priority in the objectives with regard to the data.
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2.3 Construction of the collection of models

In this section, we review a number of methods that construct a collection of models with
increasing complexity. These methods are divided into stepwise methods, which are probably
the earliest procedures found in the literature, and sparse regularization methods, which are
optimization problem leading to a sparse solution.

2.3.1 Stepwise methods

Stepwise methods are greedy algorithms looking at each step for the next variable to add or
remove from the current selection of variables, and then the restricted least-squares estimator
β̂LSI is computed on the updated selection of variables. The collections of models can be written
as

Mm = {f̂(X) = Xβ \ ‖β‖0 ≤ k},

where ‖t‖0 is the `0 – pseudonorm, that is, the number of nonzero components in t, and 1 ≤
k ≤ p. Figure 2.6 shows the path of solutions, starting either from the null model with β̂ = 0,
or from the complete model with β̂LS . Depending on which way the algorithm is computed,
it corresponds either to Forward Selection, Backward Elimination or Stepwise regression, which
are described into more detail in the following paragraphs.

Figure 2.6: A branch of exploration (in red) in the lattice of all the possible subsets of variables,
represented by the dots. The exploration with stepwise methods begins either with
the null model where I = ∅ (the left-most red point) or with the full model I =
{1, . . . , p} (the right-most red point).

Forward Selection

Forward Selection consists in adding to the selection the variables in X one at a time, starting
from the null model

β̂0 = 0.

At each step, the coefficients corresponding to the relevant variables are estimated by restricted
least-squares

β̂LSI = (Xt
IXI)−1Xt

IY,
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where I is the subset of indices of the relevant variables in X. The next variable to be added is
the one maximizing the difference in the Sum of Squared Error (SSE) [Rawlings et al. 1998]

jnext = arg max
j∈{1,...,p}\I

|∆SSE|

= arg max
j∈{1,...,p}\I

∣∣∣‖Y −XI β̂
LS
I ‖2 − ‖Y −XI∪{j}β̂

LS
I∪{j}‖

2
∣∣∣ .

At the end of each step, the relevance of the resulting subset I ∪ {jnext} is tested and the
result of the test determines whether to continue the algorithm or not. The choice of the stopping
criterion will be discussed at the end of the subsection.

Backward Elimination

Backward Elimination is very similar to Forward Selection, but the procedure is reversed: it
starts from the full model estimated by least-squares with β̂LS , and the irrelevant variables are
deleted one by one according to the following rule:

jdel = arg min
j∈I

∣∣∣‖Y −XI β̂
LS
I ‖2 − ‖Y −XI\{j}β̂

LS
I\{j}‖

2
∣∣∣ .

In the same way as for Forward Selection, a stopping criterion is evaluated at the end of each
step.

Stepwise Regression

Stepwise Regression has been proposed to overcome a major drawback of Forward Selection and
Backward Elimination: the inability of both procedures to take into account the fact that two
variables can be considered as relevant when they both belong to the selection and irrelevant if
taken seperately, or vice versa. Indeed, both procedures do not allow to take a step back and
check for the relevance of each variable or each subset of variables.

Stepwise Regression thus consists in performing Forward Selection in turns with Backward
Elimination each time a variable has been added to the selection. In other words, the relevance
of each selected variable is tested each time the selection set is increased.

Stopping criterion

Initially, the stopping criterion for the stepwise procedures consisted in a Fisher test with null
hypothesis “H0 : βI = 0” versus the alternative hypothesis “H1 : βI 6= 0”. The test statistics
used respectively for Forward Selection (forward) and Backward Elimination (backward) are

F forward =

∣∣∣‖XI β̂
LS
I ‖2 − ‖XI∪{jnext}β̂

LS
I∪{jnext}‖

2
∣∣∣

‖Y −XI∪{jnext}β̂
LS
I∪{jnext}‖

2/(n− k − 1)

F backward =

∣∣∣‖Y −XI β̂
LS
I ‖2 − ‖Y −XI\{jdel}β̂

LS
I\{jdel}‖

2
∣∣∣

‖Y −XI β̂LSI ‖2/(n− k)
,

where k = #I. Under the null hypothesis H0, both statistics are distributed as a Fisher F (1, n−
k). However, this stopping criterion entails the following problem, raised by [Akaike 1974]:
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should the confidence level for accepting H0 be fixed for all the steps or should it depend on the
size of the subset I? And which value should it be given? Although Akaike seems to think that a
fixed level would not report the size of the subset and hereby the possible bias in approximation,
the simulation study in [Bendel & Afifi 1977] shows on the contrary that a fixed level gives
similar performances (in terms of mean squared error) to other classical criteria such as Mallows
Cp, and propose optimal values for the confidence level depending on the difference n− p.

Other stopping criterion have been tested, among them the coefficient of determination R2,
the adjusted coefficient of determination R2

adj , Mallows Cp, AIC and BIC.

2.3.2 Sparse regularization methods

Relaxing a NP-hard problem. Regularization methods or penalized methods are optimiza-
tion problems of the form

min
β∈Rp

{
Jpen
λ (β) = model fitting + λ× penalty

}
, (2.45)

where λ ∈ R+ is a constant, often referred to as hyperparameter, trading off model fitting
(or goodness of fit) by penalization. The analytical methods from Section 2.2.2 for estimating
the estimation loss belong to this type of methods [Fan & Tang 2012], where the penalty is
a function of the number of selected variables or of the degrees of freedom. However, such a
penalty function is discrete, and the optimization problem is NP-hard so that the global solution
cannot be computed in a reasonnable time, which is why we often consider the minimization on
a finite collection of models. Another way of overcoming the heavy computational time of such
problems is to relax it to another optimization problem that can be computed in polynomial
time, such as sparse regularization methods. Figure 2.7 displays a visualization of the relaxation.

Figure 2.7: Representation of the relaxation of a NP-hard discrete problem (left) into a convex
problem (right). The blue points correspond to the empirical risk of each sub-
set I of size k and the red dot is the global solution. On the right panel, the
green cup shape represents the continuous penalty function of the new optimization
problem. Inspired by http://www.iet.ntnu.no/~schellew/convexrelaxation/
ConvexRelaxation.html.

Sparse regularization methods are relaxations of the NP-hard problem for which the solution

β̂ = arg min
β∈Rp

Jpen
λ (β)

http://www.iet.ntnu.no/~schellew/convexrelaxation/ConvexRelaxation.html
http://www.iet.ntnu.no/~schellew/convexrelaxation/ConvexRelaxation.html
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of the relaxed problem is sparse, i.e. it has components set exactly to zero:

β̂j = 0 ∀j /∈ I.

When the penalty function pen(x) is convex, [Bach et al. 2011] state that the conditions for
obtaining a sparse solution are

β̂ is sparse ⇔
{

(1) pen(·) is non differentiable at t = 0,
(2) 0 ∈ ∂pen(0), (2.46)

where ∂pen(0) denotes the subgradient of pen, i.e. a generalization of the notion of gradient (see
Chapter 5, Section 5.1 for more detail on the subgradient). Note that when pen is not convex,
the second condition is changed to one involving the Clarke differential. More details will also
be given in Chapter 5. The null components of β̂ thus correspond to the variables in X that
the regularization method considers as most irrelevant. The interest in sparse regularization
methods comes from the fact that they propose simultaneously a way of selecting variables and
an estimator for the corresponding nonzero coefficients.

Regularization path. The number of zeros and nonzeros components directly depends on the
value of the hyperparameter λ: when the latter one is set to λ = 0, then the functional Jpen

λ (β)
in Equation (2.45) is equal to the least-squares criterion and therefore all the components of β̂
are nonnull; on the contrary, if λ is sufficiently large so that the penalization takes over the least-
squares criterion, then all the components in β̂ are exactly 0 and the selection is empty. Hence,
the choice of the hyperparameter λ plays a key role in the problem of variable selection. For that
reason, sparse regularization methods are often considered to be model selection procedures.
However, since it is not clear which value the hyperparameter λ should take. Therefore, we
believe that they should rather be considered as methods for constructing collections of models
by taking several values of λ.

The simplest way to construct collections of models is by taking λ on a grid. The collections
of models can be written as

Mm = {f̂(X) = Xβ \ pen(β) ≤ cm},

where cm is linked to λ and {c1, . . . , cM} is the grid. However, a poor choice of the parameters
of the grid (regularity, number of points, interval between two points) might cause to miss the
best model from the class. Taking a fine grid with a huge number of points might solve this
problem but also results in a large computational cost. There exists an interesting alternative,
often referred to as the regularization path.

The regularization path (for variable selection) consists in starting with a large value of λ for
which the solution is the null model with β̂ = 0, and finding at each step the value of λ such
that one zero component of β̂ becomes nonnull. To clarify things, let us take the least-squares
criterion ‖Y −Xβ‖2 for the model fitting measure in Equation (2.45), which is the choice for all
the sparse regularization methods we will expose in the sequel. The criterion that determines
the next variable to add to the current selection I is

jnext = arg max
j∈{1,...,p}\I

∣∣∣(Y −XI β̂
(m)
I )tXj

∣∣∣ , (2.47)

where β̂(m) is the solution corresponding to model Mm. Equation (2.47) amounts to finding
which variable is most correlated with the current residual ε̂(m) = Y −XI β̂

(m)
I . Note that this
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criterion derives from the non differentiability of the penalty at 0 function and the (Karush-
Kuhn-Tucker) optimality conditions associated with the corresponding minimization problem.

The value of λ associated with jnext is

λm+1 =
∣∣∣(Y −XI β̂

(m)
I )tXj

∣∣∣ .
This ingenious way of determining the best grid, due to [Efron et al. 2004] with the Least Angle
Regression (LAR) algorithm, allows to construct a collection of nested models with subsets of
selected variables of increasing sizes. The verification of the optimality conditions also allows to
delete a variable if the current step is too long. In that sense, it can be viewed as a modification
of Stepwise regression with a different criterion for selecting variables. Figure 2.8 shows a simple
example of a regularization path with three variables.

Figure 2.8: Regularization path (in red) for a simple example. The variable x2 is the most
correlated with y, and the variable x1 is the most correlated with the residual ê(1) =
y − x2β̂

(1)
2 . The second step is taken in the direction splitting the angle between x2

and x1 in 2 equal angles. The path ends with the least-squares estimator for the full
model.

Choice of the penalty. The literature is quite extensive on such methods, which penalty is
often written in the form

pen(β) =
p∑
j=1

ρ(|βj |) (2.48)

and can express prior knowledge on the structure of the data (for instance ordered or grouped
variables). In the following paragraphs, we only review a few sparse regularization methods
which seem interesting in our context where no structure is assumed on data. However, we will
discuss each time the solution when the design matrix X is orthogonal, that is when XtX is the
identity matrix Ip, a case which can often be encountered when X represents a dictionary, since
it allows an easier visualization of the difference in estimation between the methods. Figure 2.9
shows the form of the function ρ(·) in Equation (2.48) while Figure 2.10 displays their respective
isocontours in 2D. Also shown are the forms of their shrinkage as a function of the Least-squares
when the design matrix X is orthogonal.

Least Absolute Shrinkage and Selection Operator (Lasso)

The Lasso is one of the earliest sparse regularization methods and has been proposed by [Tib-
shirani 1996] and corresponds to Equation (2.48) with

ρ(|βj |) = |βj |.
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Figure 2.9: Form of the penalty in some sparse regularization methods. The dashed line shows
the Lasso penalty, given for comparison purposes.

This actually corresponds to the `1–penalty

penlasso(β) = ‖β‖1, (2.49)

where ‖t‖1 =
∑p
j=1 |tj | is the `1–norm. Figure 2.9a displays the evolution of the penalty function

with respect to the value of the component β̂j . Lasso generalizes the soft thresholding, proposed
by [Donoho & Johnstone 1994], for the orthogonal design case, which is a translation by λ of
the least-squares estimator, truncated at λ:

β̂j =
(
Y tXj − λ sgn(Y tXj)

)
1{|Y tXj |>λ}. (2.50)

Figure 2.11a displays the evolution of soft shrinkage with respect to the least-squares estimator.
Despite its important success, the Lasso estimator possesses a large bias when the hyper-

parameter λ is also large. This can be a serious drawback if we are interested in both a good
selection and a good prediction, and [Zou 2006] has also shown an example for which Lasso is
inconsistent for variable selection, i.e. it cannot recover the “true” subset (when its exists) with
large probability. Decreasing the value of λ certainly decreases Lasso’s bias, but also its sparsity.
According to [Leng et al. 2006], if the hyperparameter λ is tuned so that Lasso is consistent for
variable selection, then its prediction is not optimal, and vice versa. Therefore, [Efron et al. 2004]
proposed to replace the Lasso estimator by the restricted least-squares once the regularization
path has been computed. Other recent works have proposed instead other penalty functions
keeping Lasso’s nice sparsity property while leading to a much less biased solution. Among
these alternatives, we can cite the Minimax Concave Penalty (MCP), the Smoothly Clipped Ab-
solute Deviation (SCAD), and the Adaptive Lasso, which we develop in the next paragraphs.
But before that, we would like to expose another penalty, the Elastic net, which does not correct
Lasso’s bias but might lead to a different regularization path.
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(c) Elastic net
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(d) Adaptive lasso
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(e) SCAD
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(f) Adaptive elastic net
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Figure 2.10: Level sets of the penalty as a function of β1 and β2 in some sparse regularization
methods.

Elastic net

Proposed by [Zou & Hastie 2005], the Elastic net adds an `2–norm to Lasso, leading to the
following optimization problem

min
β∈Rp

{
Jenetλ (β) = ‖Y −Xβ‖2 + λ1‖β‖1 + λ2‖β‖22

}
, (2.51)

where λ1 and λ2 are two fixed positive hyperparameters. Elastic net is a combination between
Lasso and Ridge regression, the latter one corresponding to the `2–penalty penridge(β) = ‖β‖22.
Figure 2.9c shows the form of the Elastic net penalty with λ1 = 2 and λ2 = 0.1.

It can be easily noticed that problem (2.51) is equivalent to the following one

min
β∈Rp


∥∥∥∥∥
(
Y

0

)
−
(

X√
λ2Ip

)
β

∥∥∥∥∥
2

+ λ1‖β‖1

 ,
which is actually a simple Lasso problem applied with the transformation

(X,Y ) 7→
((

X√
λ2Ip

)
,

(
Y

0

))
. (2.52)

Hence, the Elastic net optimization problem can be solved as easily as Lasso once the transfor-
mation has been done.

In the orthogonal design case, the Elastic net estimator takes the form

β̂enetj = 1
1 + λ2

(
Y tXj − λ1 sgn(Y tXj)

)
1{|Y tXj |>λ1}. (2.53)
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Figure 2.11: Level sets of the penalty as a function of β1 and β2 in some sparse regularization
methods.

This form clearly exhibits the Ridge regression applied to the Lasso solution through the term
1/(1 + λ2). Figure 2.11c displays the evolution of the Elastic net estimator with respect to the
least-squares estimator for an orthogonal design matrix X. The comparison with Lasso (dotted
line) shows that Elastic net is even more biased. However, in a general design setting, the `2–
norm is well known for overcoming problems related to a possible ill-conditionned matrix X,
which makes the Elastic net appealing.

Minimax Concave Penalty (MCP) and Smoothly Clipped Absolute Deviation
(SCAD)

Minimax Concave Penalty (MCP) and Smoothly Clipped Absolute Deviation (SCAD) are both
quadratic spline penalty functions, respectively proposed by [Zhang 2010] and [Fan & Li 2001]
to overcome Lasso’s bias. The rationale given in the latter reference is enlightening regarding
the interest in such methods. Indeed, when the objectives are both a good prediction and the
selection of the relevant variables, [Fan & Li 2001] argue that a good penalty function should
result in a sparse, continuous and unbiased solution. Lasso verifies the first two properties,
while the restricted Least-squares or Hard Threshold, that can be obtained for instance by the
penalty function given by (2.48) with

ρHT (|βj |) = λ− 1
λ

(|βj | − λ)21{|βj |<λ},

is both sparse and unbiased but not continuous, which might lead to an instability of the model
prediction. Hence, [Fan & Li 2001], and more recently [Zhang 2010], proposed a penalty function
that is a linear combination between the Lasso and the Hard Threshold penalty, leading to a
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solution verifying all the properties they require. These penalty functions are given by Equation
(2.48) with respectively

ρMCP (|βj |) =
(
|βj | −

β2
j

2γλ

)
1{|βj |≤γλ} + γλ

2 1{|βj |>γλ}, (2.54)

ρSCAD(|βj |) = |βj |1{|βj |≤λ} −
(|βj | − λ)2

2(a− 1)λ 1{λ<|βj |≤aλ} + (a+ 1)λ
2 1{|βj |>aλ}, (2.55)

where λ is the hyperparameter tuning the sparsity as for Lasso, and γ > 1 and a > 2 are both
hyperparameters tuning the bias of the resulting estimator. Figures 2.9b and 2.9e display these
penalties with λ = 2, γ = 2 and a = 3.7. Note that both SCAD and MCP are equivalent to the
Lasso when γ and a tend to infinity. On the other hand, when γ is close to 1, the solution of
MCP tends to the restricted least-squares, which is never the case for SCAD.

The major difficulty arising from both methods comes from nonconvexity of their penalty
functions. Hence, the resulting solution is not unique and the problem might be harder to solve
than Lasso. However, as we will see in Chapter 5, one branch of the regularization path corre-
sponding to MCP can be obtained within a slightly bigger but still polynomial computational
time, a result that could be extended to SCAD. One advantage of MCP over SCAD is that
MCP has a less concave penalty than SCAD and than other quadratic spline penalties, which
presumably leads to an easier solving of the associated optimization problem.

When X is an orthogonal design matrix, MCP corresponds to the Firm Shrinkage estimator,
proposed by [Bruce & Gao 1996] as an alternative to soft thresholding. Firm shrinkage (FS)
and SCAD are expressed by

β̂FSj =


0 si |Y tXj | ≤ λ
γ
γ−1(Y tXj − λ sgn(Y tXj)) if λ < |Y tXj | ≤ γλ
Y tXj if |Y tXj | ≥ γλ,

(2.56)

β̂SCADj =


(Y tXj − λ sgn(Y tXj)) if |Y tXj | ≤ 2λ
a
a−2(Y tXj − λ sgn(Y tXj)) if 2λ < |Y tXj | ≤ aλ
Y tXj if |Y tXj | ≥ aλ,

(2.57)

where λ, γ and a are the same as in (2.54) and (2.55). These forms show more clearly the
linear combination between soft and hard threshold, the latter one being defined by β̂HT =
Y tXj1{|Y tXj |>λ}. Figure 2.11b and 2.11e display the evolution of Firm Shrinkage and SCAD
as a function of the hard threshold estimator (or least-squares estimator). On these figures,
it is clear that, even by taking a value of a close to its limit 2, SCAD is more biased than
MCP. We can also notice that each component can belong to several subsets: the subset I0 of
null components, the subset IP of penalized components, and the subset IN of nonpenalized
(unbiased) components:

I0 = {1 ≤ j ≤ p \ β̂j = 0}, IP = {1 ≤ j ≤ p \ 0 < β̂j < β̂HTj }, IN = {1 ≤ j ≤ p \ β̂j = β̂HTj }.

For SCAD, the subset IP can even be decomposed into two smaller subsets depending on the
amount of penalization or shrinkage.
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Adaptive Lasso and Adaptive Elastic net

Another way of reducing Lasso’s and Elastic net’s bias is to consider their adaptive versions,
proposed by [Zou 2006] and [Zou & Zhang 2009] and given by (2.48) with

ρadalasso(|βj |) = wj |βj | = wjρ
lasso(|βj |), (2.58)

ρadanet(|βj |) = wj |βj |+
λ2
λ1
β2
j (2.59)

where in both cases w = (wj)pj=1 is a vector of weights chosen beforehand. A typical choice of
weights is given by

wj = |β̂initj |−q, (2.60)

where β̂init is an initial solution for β obtained for instance by Least-squares or Ridge regression
(especially if XtX is not invertible), and q is a positive scalar, common choices being q = 1 or
q = 2. Note that the Adaptive Lasso taken with the choice

wj = 1/|β̂LSj |, q = 1,

and with the additional constraint β̂j β̂LSj ≥ 0 corresponds to the Garrote [Breiman 1995].
Whatever the choice for β̂init is, if it estimates one component with a small value, then the
corresponding weight wj will be large and will force β̂j to go faster to 0. On the contrary, a
large value for β̂initj means that the corresponding variable is likely to be relevant. This results in
a small weight wj and little penalization of the component β̂j , which is thereby nearly unbiased.
Figure 2.9d and 2.9f show the shape of the penalties respectively defined through Equation (2.58)
with λ = 2 and Equation (2.59) with λ1 = 2 and λ2 = 0.1. Different choice of wj are displayed
to show their influence on the penalties.

The main advantage of Adaptive Lasso and Adaptive Elastic net over MCP and SCAD lies
in that their respective optimization problem is convex, thereby easier to solve and having a
unique solution. They also both greatly benefit from the efficient LAR algorithm with a simple
change in variables. For the Adaptive Lasso, the change of variables is

X 7→ X̃ with X̃j = Xj/wj , j = 1, . . . , p. (2.61)

For the Adaptive Elastic net, the change in variables in Formula (2.61) is followed by the one
of the Elastic net in (2.52) where the design matrix X is replaced by the new matrix X̃. On
the other side, Adaptive Lasso and Adaptive Elastic net depend on p hyperparameters for the
weights (and possibly even p+ 1 hyperparameters with the choice of Equation (2.60) where we
also need to set the power q) and Adaptive Elastic net also depends on the choice of the second
hyperparameter λ2. Hence, both methods require the optimization of much more parameters
than do MCP and SCAD.

Taking wj as in Equation (2.60) with β̂init being the least-squares estimator and q = 2,
the Adaptive Lasso and the Adaptive Elastic net can easily be derived for the case where X is
orthogonal:

β̂adalassoj =
(
Y tXj − λ̃ sgn(Y tXj)

|Y tXj |q

)
1{|Y tXj |1+q>λ̃}, (2.62)

β̂adanetj = 1
1 + λ2

(
Y tXj − λ̃1

sgn(Y tXj)
|Y tXj |q

)
1{|Y tXj |1+q>λ̃1}

. (2.63)
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Here, the hyperparameter tuning the sparsity is denoted by λ̃ and λ̃1 to emphasize the fact
that it cannot be the same as for soft thresholding or elastic net. Indeed, the condition for the
components of β̂ to be all equal to zero is λ̃ ≥ λ̃(1) = maxj |Y tXj |1+q = (λ(1))1+q, where λ(1) is
Lasso’s hyperparameter for which the first variable is included in the selection.

Figure 2.11d and 2.11f display the estimators given in (2.62) with λ = 2 and in with λ1 = 2
and λ2 = 0.1. Note from Equation (2.62) that the choice q = 0 corresponds to Lasso (soft
shrinkage) while the choice q =∞ corresponds to hard threshold.

2.3.3 Mixed strategies and other approaches

Mixed strategies

As mentioned earlier, [Efron et al. 2004] considered a mixed strategy where the restricted Least-
squares estimator is computed on Lasso’s regularization path in order to overcome the problem
of bias estimation. Following this idea, we can consider mixed strategies with other estimators
than the restricted Least-squares. We propose to review here a few alternatives.

James-Stein estimator. [James & Stein 1961] proved that, for a given model with n ≥ 3, the
best linear unbiased estimator of β (in our context, the least-squares estimator) can be improved
by biased estimators β̂ having lower estimation risk

R(Xβ̂) = Eβ[‖Xβ̂ −Xβ‖2],

which corresponds to the Mean Squared Error (MSE) of Xβ̂. They propose the following
shrinkage estimator1

β̂JSI =
(

1− a

‖XI β̂LSI ‖2

)
β̂LSI , (2.64)

which yields the lower estimation risk when a = k − 2 when Y is Gaussian with covariance
matrix In.

Generalized James-Stein estimator. For the derivation of the James-Stein estimator, the
noise level σ is assumed to be known. [James & Stein 1961] extended their estimator to the case
where the noise level is unknown but we have access to another random variable S ∼ σ2χ2(l),
which is independent of Y . In that case, we get the generalized James-Stein estimator (GJS)

β̂GJSI =
(

1− aS

‖XI β̂LSI ‖2

)
β̂LSI . (2.65)

In particular, we can take S to be

S = ‖Y −Xβ̂LSI ‖2,

which follows a χ2 distribution with l = n− k degrees of freedom. The generalized James-Stein
estimator can also be optimized so as to achieve the minimum estimation risk, which is obtained
for a = (k − 2)/(l + 2).

1We give here the expression of the James-Stein estimator for our special context, but it was designed for the
estimation of the mean vector µ of a multivariate Gaussian random vector Y ∼ Nn(µ, In), without explanatory
variables, in which case it has the form

µ̂JS =
(
1− a/‖Y ‖2)Y.

.
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Ridge Regression. A major drawback of the latter two estimators is that they rely on the
least-squares estimator. Hence, in cases where XtX is ill-conditioned and the least-squares
estimator does not give a satisfactory estimation, they can hardly give a good solution. In order
to overcome the problems linked to the invertibility of the matrix XtX, [Hoerl & Kennard 1970]
developed the Ridge Regression (RR), which consists in the following optimization problem

min
β∈Rp

{
‖Y −Xβ‖2 + λ ‖β‖2

}
, λ > 0. (2.66)

Note that this is a regularization method with an `2 – penalty. The solution of problem (2.66)
can be expressed as

β̂RRI = (Xt
IXI + λ Ik)−1Xt

IY. (2.67)

A wise choice of λ results in the increase of all the eigenvalues of XtX so that none are null,
and the resulting matrix Xt

IXI + λ Ik is thus invertible. However, the choice of λ adds another
unknown to the problem besides the choice of a good subset I of variables, and the issue is to
know whether we can compare the solution for different values of λ in Problem (2.66) on the
same data used to compare the different subsets I.

Other methods for constructing the collection of models

Besides the choice of a good estimator β̂I , we can also question the goodness of the rules for
including or deleting a variable from the selection. Sofar we have seen two options: the difference
in the Sum of Squared Error (SSE)

∆SSE(XI β̂I , XI′ β̂I′) = |SSE(XI β̂I)− SSE(XI′ β̂I′)| =
∣∣∣‖Y −XI β̂I‖2 − ‖Y −XI′ β̂

LS
I′ ‖2

∣∣∣ .
used in Stepwise methods, and the correlation with the current residual

Corr(j, I) =
∣∣∣(Y −XI β̂I)tXj

∣∣∣ , ∀j /∈ I

updating the subset in Sparse regularization methods.
There exist other options worth mentioning. The construction of the collection of models

could be performed by adding some randomness to the exploration of the possible subsets to
evaluate, with methods such as Monte-Carlo Tree Search (see [Chaslot et al. 2008], [Dramiński
et al. 2010] and [Gaudel & Sebag 2010] for instance).

The last approach we would like to point out is that of [Bennett et al. 2006] and [Bennett
et al. 2008], namely Bilevel Optimization. In a nutshell, it consists in writing the whole procedure
of model selection (i.e. from the construction of the collection of models to the evaluation of
the models) as the joint optimization of two objective functions

minimize crit2(β̂) (2.68)
subject to constraints on hyperparameters Λ

β̂ ∈ arg min
β∈B

{
Jpen

Λ (β) = model fitting(X,Y, β) + penalty(β; Λ)
}
. (2.69)

The authors have only applied it to the special case where the models are evaluated by the
V –fold cross validation (crit2 = CV-V ) with an absolute loss L̃(Xβ̂, Y ) = |Y − Xβ̂|, and the
regression coefficient β̂ is estimated by Support-Vector Regression (SVR), which corresponds to
the ε – insensitive loss model fitting(X,Y, β) = max(|Y −Xβ̂| − ε, 0) and the `2 – penalty (or
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by Support-Vector Machine, SVM, in classification). This method allows the optimization of all
the hyperparameters in the inner-level problem (2.69), for instance both the hyperparameter λ
tuning the sparsity in Sparse regularization methods and the extra-hyperparameters tuning the
bias in MCP, SCAD, Adaptive Lasso and Adaptive Elastic-net. However, [Guyon 2009] argues
that not all the methods can be expressed as a bilevel optimization problem.

2.4 Summary of model selection procedures from literature

This section summarizes the propositions from the literature we have reviewed in the last two
sections along with the choices they make for the whole procedure of model selection, includ-
ing both the construction of the collection of models and the evaluation of the models, when
available.

Table 2.1 specifies the different elements of the model selection procedure for each method.
We recall that the modelMm we consider in the context of linear regression is defined by

Mm =
{
f̂(X) = Xβ̂ \ C(β̂) ≤ cm

}
,

where C(β̂) is a measure of the complexity of the model and cm is a threshold value for this
complexity. The sequence {c1, . . . , cM} defines the collection of models {M1, . . . ,MM}. The
specifications for both quantities are given in the columns labeled “Complexity” and “Choice of
cm” of the table. The last two columns of the table specify the choice of the criterion crit1 that
selects the best estimator in each model Mm, and the choice of the criterion crit2 that selects
the best modelMm̂ among the collection {M1, . . . ,MM}.

Table 2.1 is splitted into two categories. The first category corresponds to the methods
whose major concern is on model evaluation. The methods from Subsection 2.2.2 (upper part)
are mainly based on least-squares or maximum likelihood, thereby the specification on the
collection of models is almost straightforward. On the contrary, the methods from Subsection
2.2.2 and 2.2.3 (lower part) are much more general and mainly assume that the collection of
models should be specified by the user.

The second category compares methods focusing on the construction of models. The authors
of each method always give a suggestion on the criterion to choose for selecting between the
models. However, their suggestion might be inapropriate in some cases, the most edifying
example being that of [Efron et al. 2004]. They indeed recommended the use of Cp to select
the hyperparameter λ in their LARS algorithm computing the Lasso’s regularization path. In
contrast, in the discussions on their paper, Hemant Ishwaran and Robert Stine criticized this
choice and showed that it leads to overfitting. Indeed, because of its bias, the Lasso is a good
selector but a poor estimator. Hence, it is more designed as a method for identifying the true
underlying model than for predicting. It has indeed been proven in [Zhao & Yu 2007] that the
Lasso is consistent in selection, while Cp is efficient (see [Shibata 1983]). It would thus be better
to tune the Lasso by a model evaluation criterion having consistency in selection, such as BIC
for instance.

We thus believe that the construction of the collection of models and the evaluation
of the models are both inherent parts of model selection and should be chosen with
care, especially regarding the adequacy between the objectives of both parts.
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Name Complexity Choice of cm crit1 crit2
Fo

cu
s

on
m

od
el

ev
al

ua
ti

on
Cp, FPE, RIC C(β̂I) = #I cm ∈ {1, . . . , p} ‖Y −Xβ̂I‖2 Cp, FPE, RIC

Information criteria or
Bayesian methods

C(β̂I) = #I Not specified −2
n∑
i=1

log p̂(yi|xiβ̂I) AIC, BIC, AICc, AIC3,
CAIC, HQ, CAICF, TIC

GCV C(β̂) = ‖β̂‖2 Grid ‖Y −Xβ̂I‖2 GCV

SRM
To be specified by user To be specified by user Remp(β̂)

SRM
Slope heuristics SH
Resampling methods LOOCV, CV−V , Bootstrap

Fo
cu

s
on

co
ll

ec
ti

on
of

m
od

el
s

Exhaustive exploration
C(β̂I) = #I cm = m− 1 ‖Y −Xβ̂I‖2 Any criterion

Stepwise F-test

Soft/hard thresholding
C(β̂) = pen(β) Grid ‖Y −Xβ̂‖2 Universal threshold

Firm Shrinkage SURE

Lasso
C(β̂) = pen(β) Grid ‖Y −Xβ̂‖2 GCV / CV / SURE

SCAD CV / GCV

LARS

C(β̂) = pen(β) Reg. path ‖Y −Xβ̂‖2

Cp
MCP Cp
Adaptive Lasso CV-5
Elastic Net CV-10
Adaptive Elastic Net BIC

Table 2.1: Model selection procedures in literature. The column labeled “complexity” is the measure used to define modelMm, the column
labeled “choice of cm” is the sequence of thresholds on the complexity used to define the collection of models, the column labeled
“crit1” corresponds to the criterion used for selecting the best estimator in each model Mm, and finally the column labeled
“crit2” is the criterion used to evaluate and compare the M models. The methods are separated into two categories, depending
on the main focus for which it was developed: either the model evaluation or the construction of the collection of models.
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2.5 Contributions

This section closes the state of the art on model selection by introducing our contributions and
by showing where they stand in this picture relatively to existing methods.

2.5.1 A fairly large distributional framework with a dependence property

Most of the methods for model evaluation we have seen sofar usually depends on the strong
assumption that the distribution of the noise ε is known at least in form and is generally taken
to be Gaussian. This is the case for instance of Cp, FPE, AICc and Slope heuristics. The
methods based on information theory such as AIC, AIC3, CAIC, or the Bayesian methods like
BIC and TIC apply to other distributions than the Gaussian law but still rely on the form of
the estimated distribution through the log-likelihood criterion.

On the other side, SRM and Cross-validatory methods assume that the distribution of ε is
completely unknown. It has been argued that such an assumption might result, in some cases,
in loose generalization bounds for SRM and thus limits its performance in selection. Cross-
validation could appear as a better choice in such cases, but its large computational cost is often
prohibitive. Also, both methods generally assume the noise components εi to be independent,
which is often a good approximation to the truth in an asymptotical framework but might be a
poor representation in a finite-sample setting.

We propose to work instead with the assumption that the noise ε is a spherically symmetric
random vector. The family of spherically symmetric distributions is a generalization of the
Gaussian law relaxing the independence assumption. Note however that the components are
assumed to be uncorrelated. Hence, our work is a first step toward the more general assumption
of elliptically symmetric distributions, verifying both dependence and correlation properties.
Another feature of our work is that the criteria we propose in Chapters 3 and 4 do not rely on
the special form of the distribution, but only on the spherical assumption. Thus, they have the
same expression whatever the spherical distribution is. In that sense, they present a robustness
property.

2.5.2 New criteria with lower risk

While Chapter 3 is exclusively devoted to the derivation of unbiased criteria under our distribu-
tional assumption, Chapter 4 addresses the problem of evaluating a model evaluation criterion
through the loss estimation theory. This second level of evaluation in the process is defined by a
loss measuring the discrepancy of the model evaluation criterion L̂(β̂) to the actual estimation
loss, such as the communication loss

L(Xβ,Xβ̂, L̂) = (L̂(β̂)− L(Xβ,Xβ̂))2,

and its corresponding risk
Rβ(Xβ̂, L̂) = Eβ[L(β, β̂, L̂)].

Choosing a model evaluation criteria L̂(β̂) with lower risk Rβ(Xβ̂, L̂) leads to a better control
of the estimation of the estimation loss L(Xβ,Xβ̂). The heuristics behind the loss estimation
theory is that a better estimator of the actual estimation loss should have a minimum closer to
that of the estimation loss.
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2.5.3 Numerical study and algorithms

In the numerical study, we first propose to investigate whether the methods for constructing
collections of models, described in Section 2.3, are apropriate with the objective of good pre-
diction. In order to do so, we will look at the selection of the best model in the collection with
the actual estimation loss, that is, we will select the oracle and see if it belongs to the true
underlying model, when this one belongs to the collection. Indeed, in real-life examples, we
have no certainty on the target model; but if it does belong the collection that we built, we want
to recover it.

Second, we propose a simulation study to compare the performances of our unbiased crite-
ria to corrected criteria, and to compare both types of criteria to existing methods from the
literature.

For these numerical studies, we developed an algorithm for computing the regularization
path of the Minimax Concave Penalty (MCP). Such a regularization path is a little more com-
plicated than the one for Lasso since the corresponding optimization problem is nonconvex.
However, there exist similar conditions of optimality that follow from Clarke differentials, the
generalization of the subgradient to nonconvex problems.

Finally, since our criteria are based on the spherical assumption, we investigate algorithms for
generating spherically symmetric random vectors from the distributions that will be presented
in the following chapter.
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This chapter presents our contributions to model selection with unbiased loss estimators.
We first make a short historical review on the theory of loss estimation, then we divide the
study into three settings: in the first one, we consider the case where the error is drawn from
the Gaussian distribution Nn(0, σ2 In) where we assume the noise level σ to be known or inde-
pendently estimated; the following setting extends the results to the case where the absence of
knowledge on σ is direclty taken into account when deriving the estimator of loss; finally, in the
last setting, we consider the noise to be spherically symmetric.

3.1 Origins of loss estimation theory

Loss estimation traces back to [Sandved 1968] who, in various settings, introduced a notion
of unbiased estimator of loss. It then received more attention after [Stein 1981] developed
the theory of unbiased risk estimation. Also, [Johnstone 1988] dealt with (in)admissibility of
unbiased estimators of loss, a notion that we will clarify in the sequel but basically consists in
the (in)existence of other estimators of loss having lower risk.

We first give an outline of risk estimation before explaining the reasons of the orientation
towards loss estimation. Finally, we present how loss estimation can be used for model selection.
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3.1.1 Stein’s Unbiased Risk Estimator (SURE)

Risk estimation has been initially developed in the following context: let Z be a random vector
in Rd, which we assume to be Gaussian, that is, Z ∼ Nd(θ, σ2 Id), where the variance σ2 is
assumed to be known. The objective is to estimate the mean vector θ of Z, also in Rd.

Given θ̂ = θ̂(Z) a chosen estimator of θ, we wish to evaluate its quality. Such an evaluation
can be performed through a loss function, or cost function. In the context of estimation of the
mean in Rd, it is common to take the quadratic loss

L(θ̂, θ) = ‖θ̂ − θ‖2, (3.1)

because of its adequacy with the problem as well as its simplicity. Note that this loss reaches
its minimum when θ̂ = θ, hence assuring a good solution as soon as the loss is close to 0. We
also define the quadratic risk of θ̂ as the expectation of its loss, namely

Rθ(θ̂) = Eθ[L(θ̂, θ)] = Eθ[‖θ̂ − θ‖2], (3.2)

where Eθ denotes the expectation with respect to the density of Z. Note that the risk (3.2) is a
generalization of the mean squared error to the multivariate case. The use of the quadratic loss
and the quadratic risk is not new since it is the central measure of the Gauss-Markov theorem
on best unbiased estimators, as recalled in the introduction of [James & Stein 1961]. In Decision
Theory, the estimation risk Rθ is often taken as a golden rule to compare different estimators
(also often referred to as decision rules) of θ and to define the notion of admissibility, which we
give hereafter (see [Berger 1985]).

Definition 3.1 (Domination). A decision rule θ̂1 is better than a decision rule θ̂2, or θ̂1 dom-
inates θ̂2, if it verifies

Rθ(θ̂1) ≤ Rθ(θ̂2) ∀θ ∈ Θ

and if there exists at least one value of θ for which the inequality is strict.

Definition 3.2 (Admissibility and inadmissibility). A decision rule θ̂ is admissible if there exists
no better decision rule. A decision rule θ̂ is inadmissible if there does exist a better decision rule.

Let us take θ̂ to be the best unbiased estimator of θ. In the current context, this estimator is
given by θ̂0 = Z since we assume that only one observation of the random vector Z is available.
The risk of θ̂0 is constant and exactly equal to dσ2, where σ2 is the variance of Z. It is obvious
than no other unbiased estimator can be better than θ̂0, since it is the best one (here, the term
“better” is taken in the sense of the quadratic risk (3.2)). From this fact came the now well
known idea to sacrifice the unbiasedness in order to get estimators with lower variance and lower
quadratic risk. If such estimators are available, then we have greater control on the estimation
and more certainty of its closeness to the true parameter θ.

[James & Stein 1961] have proposed better estimators of the form

θ̂JSa =
(

1− a

‖Z‖2
)
θ̂0 =

(
1− a

‖Z‖2
)
Z, (3.3)

where a is a constant that can be optimized so as to minimize the quadratic risk. In order to
perform such an optimization, Theorem 3.1, known as Stein identity, states a result on scalar
products, which was developed in [Stein 1981] many years after James-Stein estimators. This
theorem is central for the derivation of loss estimators.
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Theorem 3.1 (Stein identity). Let Z be a Gaussian vector, Z ∼ Nd(θ, σ2 Id), and g : Rd 7→ Rd.
If g is weakly differentiable, then, provided both expectations exist, we have

Eθ
[
(Z − θ)tg(Z)

]
= σ2Eθ [divZ g(Z)] , (3.4)

where divZ g(Z) =
∑d
i=1 ∂gi(Z)/∂Zi is the weak divergence of g(Z).

Stein identity relies on the notion of weak differentiability 1, which we define hereafter.

Definition 3.4 (Weak differentiability). A function h : Rd 7→ R is said to be weakly dif-
ferentiable if there exist d functions ∇1h, . . .∇dh locally integrable on Rd such that, for any
i = 1, . . . , d, ∫

Rd
h(t)∂φ

∂ti
(t)dt = −

∫
Rd
∇ih(t)φ(t)dt

for any infinitely differentiable function φ on Rd with compact support. The functions ∇ih are
the ith partial weak derivatives of h and the vector ∇h = (∇1h, . . . ,∇dh) is referred to as the
weak gradient of h.

In [Fourdrinier et al. 2012], it is argued that the condition of weak differentiability is verified
for all the functions in the Sobolev space of order 1

W 1,d
loc (Ω) =

{
h ∈ Ldloc(Ω), ∇ih ∈ Ldloc(Ω), 1 ≤ i ≤ d

}
,

where Ω is an open set in Rd and Ldloc(Ω) is the space of locally integrable integrable functions
over Ω. We next give a brief outline of the proof of Theorem 3.1.

Proof of Stein identity. The proof of Stein identity follows 4 steps.
First, let us take d = 1, θ = 0 and σ2 = 1, that is Z ∼ N1(0, 1). Stein derives Equation (3.4)

thanks to a hidden integration by parts combined with the absolute continuity of g implied by
the almost differentiability condition.

Second, Stein extends the result to the case Z ∼ N1(θ, σ2), where σ2 is assumed to be
known.This extension is performed through the change of variable Y = (Z − θ)/σ, so that Y is
standard normal.

1Stein identity originally relied on the notion of almost differentiability of a function, whose following definition
is extracted from [Stein 1981].

Definition 3.3 (Almost differentiability). A function h : Rd 7→ R is said to be almost differentiable if there exists
a function ∇h : Rd 7→ R such that, for all z ∈ Rd,

h(t+ z)− h(t) =
∫ 1

0
zt∇h(t+ %z)d%

for almost all t ∈ Rd. A function g : Rd 7→ Rd is almost differentiable if all its coordinate functions are. Essentially,
∇ is the vector differential operator of first partial derivatives with ith coordinate

∇i = ∂

∂ti
.

The almost differentiability notion used in Stein identity has been noticed to be equivalent to the one of weak
differentiability by [Johnstone 1988]. A formal proof of that result is given in [Fourdrinier et al. 2012] through
the property of absolute continuity.
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Third, Stein considers multivariate random vectors Z ∼ Nd(θ, Id), where θ is also in Rd, and
functions h mapping from Rd to R. Denoting by Z(−j) the vector of Z where the component j
has been removed and fixing the components Z(−j) yield

E[(Zj − θj)h(Z)|Z(−j)] = E[∇jh(Z)|Z(−j)].

Taking the expectation under Z(−j), the independence between Zj and Z(−j) results in

Eθ[(Zj − θj)h(Z)] = Eθ[∇jh(Z)]. (3.5)

Finally, the last step consists in considering a weakly differentiable function g mapping from
Rd to Rd and applying (3.5) with h(Z) = gj(Z), that is, the jth component of g(Z). Remarking
that

(Z − θ)tg(Z) =
d∑
j=1

(Zj − θj)gj(Z),

the desired result is obtained.
Note that another proof can be found in [Fourdrinier et al. 2012] through Stokes’ theorem

(more precisely, its special case the divergence theorem). Indeed, as we will see in Section 3.4,
the Gaussian distribution can be seen as a scale mixture of uniforms on the unit sphere. Hence,
conditioning on the radius R = ‖Z − θ‖2, the expectation becomes an integral on the surface of
the sphere of radius R and Stokes’ theorem can be applied.

An application of Stein’s identity can be illustrated with the derivation of the risk of the
James-Stein estimator in (3.3) for which

θ̂JSa (Z) = Z + a g(Z)

with g(Z) = −Z/‖Z‖2. We note that the function g is not differentiable (since it explodes at 0)
and that its weak differentiability is satisfied for d ≥ 3, but not for d ≤ 2. We have

Eθ[‖(1− a/‖Z‖2)Z − θ‖2] = Eθ[‖Z − θ‖2] + a2 Eθ[‖Z‖−2]− 2Eθ[aZt(Z − θ)/‖Z‖2]
= dσ2 + a(a− 2(d− 2))σ4 Eθ[‖Z‖−2]. (3.6)

since divZ(Z/‖Z‖2) = (d− 2)/‖Z‖2 for d ≥ 3. The risk we obtain in (3.6) reaches its minimum

Rθ(θ̂JSd−2) = dσ2 − 2(d− 2)2σ4 Eθ[‖Z‖−2]

when a = d− 2. It is easy to see that Rθ(θ̂JSd−2) is always lower than dσ2 when d ≥ 3, since the
second term is negative. Hence the James-Stein estimator θ̂JSd−2 improves on the unbiased one
θ̂0 as soon as d ≥ 3. For the case where d < 3, the unbiased estimator θ̂0 can be improved, as
shown by [Stein 1955].

Note that, when σ2 is unknown, we can replace the James-Stein estimator by its generalized
estimator given in Section 2.3.3 of the previous chapter. Another possible extension is given
in [Stein 1981] and takes the form

θ̂JS =
(

Id −
A

ZtBZ

)
Z, (3.7)

where A is a symmetric matrix and B = {(trA)Id − 2A}−1A2. This extension is directly related
to smoothing splines, as shown in [Li 1985].
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However, the risk of an estimator of θ is not always easy to compute in practice because
of its dependence to the true paramater θ. [Stein 1981] thus proposed to estimate it relying on
Theorem 3.1. Indeed, this identity gives an expression of the risk Rθ(θ̂) that do not depend
explicitely on θ, but only indirectly through the law of Z. Thus an unbiased estimator of Rθ(θ̂)
is given by

SURE(θ̂) = ‖θ̂ − Z‖2 + σ2(2 divZ θ̂ − d), (3.8)

where σ2 can be replaced by an unbiased estimator of the variance if it is unknown.
Note also that the quadratic loss in (3.1) is not the only one considered by Stein. He proposes

to look at the more general quadratic form

L(θ, a) = (a− η(θ))tα(θ)(a− η(θ)),

where η is a function mapping from the space Θ of θ to a space A of actions, a is the chosen
action, and α is a function mapping from Θ into the space of symmetric positive definite matrices
of size d× d.

The second loss proposed by Stein is useful for the estimation of the covariance matrix Σ
of a random vector Z in Rd when n observations of Z are available, n ≥ p. This loss is often
referred to as Stein’s loss and is of the form

L(Σ, Σ̂) = tr(Σ−1Σ̂)− log det(Σ−1Σ̂)− d, (3.9)

for a given estimator Σ̂ of the covariance matrix Σ. Note that Stein’s loss is actually equal to
the Itakura-Saito divergence used for instance for Nonnegative matrix factorization (NMF) in
Signal Processing (see the application in denoising and decomposition of sources in a piece of
music [Févotte et al. 2009]).

To conclude the discussion on Stein’s work, we would like to point out the suggestion of the
author in [Stein 1981] to derive an unbiased estimator of the statistic

Var(SURE) = Eθ[(‖θ − θ̂‖2 − SURE)2], (3.10)

that is Var(SURE) is the variance of SURE, the unbiased risk estimator. Stein proposes to use
this estimator of the variance of SURE to determine confidence sets for θ of the form

Iα =
{
θ \ ‖θ − θ̂‖2 ≤ SURE + cα

√
V̂ar(SURE)

}
,

where α is the confidence level, cα the critical value corresponding to α/2, and V̂ar(SURE) is
the unbiased estimator of the variance of SURE.

Confidence sets are not treated in this manuscript, but it is interesting to note that the
statistic (3.10) has influenced the comparison between two estimators of loss, as we will see in
the sequel.

3.1.2 From risk estimation to loss estimation

We first give the definition of an unbiased estimator of loss in a general setting. This definition
of unbiasedness is the one used by [Johnstone 1988]. Special focus will be given on the quadratic
loss, since it is the most commonly used and allows simple calculations. In practice, it is a
reasonable choice if we are interested in both good selection and good prediction at the same
time. Moreover, quadratic loss allows us to link loss estimators to other criteria, such as the
popular Cp and AIC.
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Definition 3.5 (Unbiasedness). Let Z be a random vector in Rd with mean θ ∈ Rd, and let
θ̂ ∈ Rd be any estimator of θ. An estimator L̂0(θ̂) of the loss L(θ̂, θ) is said to be unbiased if
for all θ ∈ Rd it satisfies the condition

Eθ[L̂0(θ̂)] = R(θ̂, θ),

with
R(θ̂, θ) = Eθ[L(θ̂, θ)],

where R(θ̂, θ) is the risk of θ̂ at θ, Eθ denoting the expectation with respect to the distribution of
Z.

This definition of unbiasedness of an estimator of the loss is somehow non standard; for Stein
it corresponds to unbiasedness of an estimator of the risk. However, as mentionned earlier, the
terminology loss estimation and loss estimators are due to [Sandved 1968] and [Li 1985] and
has been kept by other authors [Johnstone 1988, Lele 1993, Fourdrinier & Strawderman 2003,
Fourdrinier & Wells 2012].

A particularly interesting result of [Li 1985] is the consistency of the estimator of µ esti-
mated by the rule “minimize SURE” (which is equivalent to the rule “minimize the unbiased
estimator L̂0”). Although this result has only been proved for the special case of James-Stein
type estimators, this is encouraging for choosing such a rule to select the best model from data.

Differences between loss estimation and risk estimation are enlightened by results from
[Li 1985]. He proves that SURE estimates the loss consistently over the true mean θ as d
goes to infinity. He also constructs a simple example where θ is estimated by a particular form
of James-Stein shrinkage estimators for which SURE tends asymptotically to a random vari-
able, and hence is inconsistent for the estimation of the risk, which is not random. Another
interesting result of [Li 1985] is the consistency of the estimator of θ selected using the rule
“minimize SURE”. Although this result has only been proved for the special case of James-Stein
type estimators, this is encouraging for choosing such a rule to select the best model from data.

As mentioned earlier, risk unbiased estimators and unbiased loss estimators are the same.
However, loss estimation theory goes beyond the Stein’s Unbiased Risk Estimation principle.
Indeed, it aims at finding estimators of the loss that will estimate the true loss more accurately
than the unbiased estimator. The heuristics behind loss estimation is that getting better esti-
mators of loss should lead to a selection of an estimator of the parameter θ that has a true loss
as close as possible to the best estimator in the class (namely the oracle).

The optimization of such estimators requires a new “layer” of evaluation, this one evaluating
the quality of a loss estimator, and can be performed through the minimization of losses and
risks just like we have defined for the estimators of β in the previous chapter.

The search for better estimators of loss is the subject of Chapter 4.

3.1.3 Loss estimation for model selection

We recall that, in this manuscript, we are interested in estimating the unknown parameter β in
either the full linear model

Y = Xβ + σ ε, (3.11)

or the linear model restricted to subset I ∈ {1, . . . , p}

Y = XIβI + σ ε, (3.12)
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where ε will be assumed to be successively: Gaussian Nn(0, σ2 In) with known variance σ2,
Gaussian Nn(0, σ2 In) with unknown variance σ2, and spherical Sn(0). In this section and in
the following ones, we will consider any estimator β̂ of β among those described in the previous
chapter. The only condition for the following results to be valid is that β̂ should be weakly
differentiable with respect to Y (see Definition 3.4). In this context, we consider the estimation
loss

L(β, β̂) = ‖Xβ̂ −Xβ‖2 = (β̂ − β)tXtX(β̂ − β). (3.13)

Using estimation of the loss or estimation of the risk for selecting between different models
is a common approach in the model selection literature since Mallows and Akaike’s works.
Especially, [Akaike 1974] described his criterion as a “mathematical formulation of the principle
of parsimony in model building”. The heuristic of loss estimation is that, the closer an estimator
L̂ is from the true loss, the more we expect their respective minima to be close too.

There still are two major issues in this problem: measuring the complexity of the model
and estimating the variance. Indeed, as we have seen in the previous chapter, the complexity
plays the crucial role of a tradeoff between model fitting and good generalization properties, so
that measuring it seems inevitable. On the other hand, many of the model evaluation criteria
presented sofar rely on an estimator of the variance, and so do the criteria we present in the
sequel. However, it is not always clear which estimator of the variance is better to use. We thus
discuss both issues in the next paragraphs.

Measuring the complexity

It turns out that the divergence term in SURE (see Equation (3.8)), say divY Xβ̂ for the linear
model, is related to the estimator of the degrees of freedom d̂f used equation (2.31) for Cp
definition, and the number k of parameters proposed in AIC equation (2.32). A convenient
way to establish this connection is to follow [Ye 1998] in defining the (generalized) degrees of
freedom of an estimator as the trace of the scaled covariance between the prediction Xβ̂ and
the observation Y

df = 1
σ2 tr

(
covβ(Xβ̂, Y )

)
. (3.14)

This definition has the advantage of encompassing the effective degrees of freedom proposed for
generalized linear models and the standard degrees of freedom used when dealing with the least
square estimator.

When Stein’s identity applies
df = Eβ[divY Xβ̂].

Setting
d̂f = divY Xβ̂,

the statistic d̂f appears as an unbiased estimator of the (generalized) degrees of freedom. In the
case of linear estimators, there exists a hat matrix, that is, a matrix H such that Xβ̂ = HY and
we have

divY Xβ̂ = divY (HY ) =
n∑
i=1

∂
(∑n

j=1 Hi,jYj
)

∂Yi
=

n∑
i=1

Hi,i = tr(H),

so that
d̂f = tr(H).
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This definition of d̂f is the one used by [Mallows 1973] for the extension of Cp to ridge regression.
Note that, in this case, d̂f is no longer depending on Y and thus meets its expectation (df = d̂f).
When H is a projection matrix (i.e. when H2 = H), as it is for the least-squares estimator,

tr(H) = k,

where k is the rank of the projector which is also the number of linearly independent parameters,
and thus df = k. In this case the definition of degrees of freedom meets its intuition. It is the
number of parameters of the model that are free to vary.

When H is no longer a projector, rank(H) is no longer a valid measure of complexity since
it can be equal to n while tr(H) is the trace norm of H (also known as the nuclear norm), a
measure of the complexity of the associated mapping used as a convex proxy for the rank in some
optimization problem [Recht et al. 2010]. For non linear estimators, the divergence divY Xβ̂ is
the trace of the Jacobian matrix (its trace norm) of the mapping that produced a set of fitted
values form Y . According to [Ye 1998], it can be interpreted as “the cost of the estimation
process” or as “the sum of the sensitivity of each fitted value to perturbations”.

In this work, we will only consider the unbiased estimator of the degrees of freedom provided
by Stein as the measure of complexity.

Estimator of the variance: full model versus restricted model

The second issue, that is the estimation of the variance, has been addressed in several ways.
The most popular way is to assume first σ2 to be known, then to derive the model evaluation
criteria with this assumption, and finally to plug in an estimator of the variance since it is
seldom known in practice. This approach raises however the question of which estimator to use,
as clearly pointed out in [Efron 1986] and in [Cherkassky & Ma 2003]. The authors proposed
two unbiased estimators of the variance, one for the full model estimated by least-squares

σ̂2
full = ‖Y −Xβ̂

LS‖2

n− p
, (3.15)

and the second one for the model restricted to a subset I ∈ {1, . . . , p}

σ̂2
restr = ‖Y −Xβ̂

LS
I ‖2

n− k
, (3.16)

where k is the size of I and β̂LSI is the least-squares estimator for the submodel corresponding
to the subset I. If we are concerned with unbiasedness of the loss, so that the estimator of σ2

should be unbiased and uncorrelated with divY Xβ̂. Hence the choice between σ̂2
full and σ̂2

restr

should be made with respect to what we believe is the true model, either the full model in (3.11)
or the restricted model in (3.12). According to [Cherkassky & Ma 2003], “there seems to be no
consensus on which approach is best for practical model selection”. However, we might find some
piece of information on the difference between the two choices in [Efron 1986]. Indeed, in this
work, the author argues that the estimator of variance for the restricted model is unbiased only
when I is the true subset, otherwise the corresponding Cp overestimates the loss (we will see in
Section 3.2 the links between L̂0 and Cp). If this is also true for the unbiased estimator L̂0 and
if the true subset belongs to the set of subsets being compared, then it might help identifying
the true subset more easily. Numerical comparisons between the choices will be given in the
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Chapter 6. In Section 3.2, we will derive our estimators of loss under the assumption that σ2 is
known and estimate it thanks to an unbiased estimator (either for the full or for the restricted
model). However, if we are not concerned with unbiasedness, then we can also think of other
estimators of the variance, such as the estimator of maximum likelihood

σ̂2
ML = ‖Y −Xβ̂

LS‖2

n
, (3.17)

or a maximum a posteriori estimator of the variance, if we put a prior on β, both either for the
full linear model or its restriction to subset I.

The second approach for treating the variance issue is to consider σ2 to be unknown and
to take this lack of knowledge into account in the expectations. In this case, we consider the
invariant loss

Linv(Xβ̂,Xβ) = ‖Xβ̂ −Xβ‖
2

σ2

and the statistic S defined by
S = ‖Y −Xβ̂LS‖2, (3.18)

following a σ2χ2(r) and independent of our study variable Y . We will treat this approach in
Section 3.3.

Finally, we would like to mention another interesting approach, although not treated here,
called the slope heuristics and proposed by [Birgé & Massart 2007]. This latter approach consists
in estimating the optimal slope of the regression between the empirical risk ‖Y −Xβ̂‖2/n and
the proposed penalty, which may be, for instance, a function of the degrees of freedom. The
estimated slope takes into account simultaneously the level of tradeoff between accuracy and
complexity (represented by λ in Equation (2.28)) and the variance, that is, the optimal slope is
α̂opt = λ̂optσ̂

2.

3.2 The Gaussian case with known variance

In this section, we derive our criterion by first considering the noise level σ2 to be known. If this
assumption is true, we can take it to be equal to 1 without loss of generality, since the model
can always be normalized as

Y ′ = 1
σ
Y = 1

σ
(Xβ + σε) = Xβ′ + ε.

On the contrary, if it is not true, we can replace it a posteriori by an unbiased estimator (such
as σ̂2

full or σ̂2
restricted) once the statistics are developed.

3.2.1 Unbiased estimator of the estimation loss

Applying Definition 3.5 to our context, we obtain the following theorem.

Theorem 3.2 (Unbiased estimator of the quadratic loss under Gaussian assumption). Let
Y ∼ Nn(Xβ, σ2 In). Let β̂ = β̂(Y ) be an estimator of β such that Xβ̂ is weakly differentiable
with respect to Y and let σ̂2 be an unbiased estimator of σ2 independent of divY (Xβ̂). Then

L̂0(β̂) = ‖Y −Xβ̂‖2 + (2 divY (Xβ̂)− n)σ̂2 (3.19)

is an unbiased estimator of ‖Xβ̂ −Xβ‖2.
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Proof of Theorem 3.2. The risk of Xβ̂ at Xβ is

Eβ[‖Xβ̂ −Xβ‖2] = Eβ[‖Xβ̂ − Y ‖2 + ‖Y −Xβ‖2] (3.20)
+Eβ[2(Y −Xβ)t(Xβ̂ − Y )].

Since Y ∼ Nn(Xβ, σ2 In), we have

Eβ[‖Y −Xβ‖2] = nσ2

leading to

Eβ[‖Xβ̂ −Xβ‖2]=Eβ[‖Y −Xβ̂‖2]− nσ2 + 2 tr(covβ(Xβ̂, Y −Xβ)). (3.21)

Moreover, applying Stein’s identity for the right-most part of the expectation in (3.20) with
g(Y ) = Xβ̂ and assuming that Xβ̂ is weakly differentiable with respect to Y , we can rewrite
(3.20) as

Eβ[‖Xβ̂ −Xβ‖2] = Eβ[‖Y −Xβ̂‖2]− nσ2 + 2σ2 Eβ
[
divYXβ̂

]
.

Hence, according to Definition 3.5 and to the development of the risk R(Xβ̂,Xβ), the statis-
tic L̂0(β̂) is an unbiased estimator of ‖Xβ̂ − Xβ‖2 since σ̂2 is an unbiased estimator of σ2

independent from Y .

Note that this result is similar to that obtained by [Stein 1981] in the context of estimating
a multivariate normal mean.

3.2.2 Links with Cp, AIC and FPE

Same estimator of variance for all submodels

Practical criteria. In order to make the following discussion clearer, we recall here the for-
mula of the three criteria of interest for the Gaussian assumption, namely the unbiased estimator
of loss L̂0, Mallows’ Cp and the extended version of AIC proposed by [Ye 1998]:

L̂0(β̂) = ‖Y −Xβ̂‖2 + (2 divY (Xβ̂)− n)σ̂2

Cp(β̂) = ‖Y −Xβ̂‖2

σ̂2 + 2 divY (Xβ̂)− n

AIC(β̂) = ‖Y −Xβ̂‖2

σ̂2 + 2 divY (Xβ̂).

Using the estimator σ̂2
full of the variance in (3.15), we thus obtain the following link between L̂0,

Cp and AIC:
L̂0(β̂) = σ̂2

full × Cp(β̂) = σ̂2
full × (AIC(β̂)− n). (3.22)

For more discussion on equivalence with other model selection criteria see for instance
[Li 1985], [Shao 1997] and [Efron 2004].
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Theoretical criteria. These links between different criteria function for model selection are
due to the fact that, under our working hypothesis (linear model, quadratic loss, normal distri-
bution Y ∼ Nn(Xβ, σ2 In) for a fixed design matrix X), they can be seen as unbiased estimators
of related quantities of interest. We will now recall these quantities. An important quantity for
the practitioner is the prediction error PE(β̂I , β) measuring the expected discrepancy between
the predicted values Xβ̂I and a new observation Ynew for a given estimation β̂I :

PE(β̂I , β) = E
[
‖Ynew −Xβ̂I‖2

]
= E

[
‖Ynew −Xβ‖2

]
+‖Xβ −Xβ̂I‖2

= nσ2 + ‖Xβ −Xβ̂I‖2.

The prediction error is minimal when β̂I = β and its value is PE∗ = PE(β, β) = nσ2. Some
prefer focus on the excess of prediction error, namely, the loss L(β̂I , β) = PE(β̂I , β) − PE∗

(sometimes referred to as the total squared error). It turns out that this is also the quadratic
loss function since

L(β̂I , β) = ‖Xβ̂ −XβI‖2.

and thus prediction and estimation are equivalent goals. This is the reason why the following
quantity is also referred to as the invariant loss, or the scaled predictive error,

Linv(β̂I , β) = L(β̂I , β)
σ2 = ‖Xβ̂ −XβI‖

2

σ2 ,

which is the scale-invariant loss used for instance in minimax analysis.
Under our working hypotheses the Kullback-Leibler divergence DKL(β̂I , β) is also related to

these quantities since

DKL(β̂I , β) = E
[
− log

(
f(Ynew|β̂)
f(Ynew|β)

)]
(3.23)

= E
[
(‖Ynew −Xβ̂‖2 − ‖Ynew −Xβ‖2)/2σ2

]
= PE(β̂I , β)

2σ2 − n

2
= 1

2L
inv(β̂I , β).

On the other hand, the expected log-likelihood is

Q(β̂I , β) = Q(β;β)−DKL(β̂I , β) = −PE(β̂I , β)
2σ2 .

This quantities are linearly related provided that

L(β̂I , β) = PE(β̂I , β)− nσ2 = σ2 × Linv(β̂I , β) = σ2 ×
(
−2Q(β̂I , β)− n

)
.

Thus the unbiased loss estimation principle of minimizing an unbiased estimator of any of these
quantities will provide the same selection.

Mallows’ Cp was originally designed as an unbiased estimator of the expected scaled sum of
squared errors Eβ[Linv(β̂I , β)] = Eβ[(β̂I−β)tXtX(β̂I−β)/σ2], which is in fact the scale-invariant
risk of β̂I , that is, Rinv(β̂) = Eβ[‖Xβ̂ −Xβ‖2/σ2]. Akaike also originally considered AIC as an
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estimator of the expectation of a loss function Eβ[Q(β̂I , β)]. When β̂ is sufficiently close to β it
admits the approximation

2DKL(β̂I , β) ≈ ‖β̂ − β‖2I = (β̂ − β)tI(β̂ − β),

where I is the Fisher-information matrix defined by

I =
(
−E

[
∂2 log p(Ynew|β̂)

∂βi∂βj

])n
i,j=1

and equals XtX/σ2 for linear models.

Model selection. The final objective is to select the “best” model among those at hand.
This can be performed by minimizing either of the three proposed criteria, that is the unbiased
estimator of loss L̂0, Cp and AIC. The idea behind this heuristic is that the best model in terms
of prediction is the one minimizing the loss ‖Xβ̂ −Xβ‖2. All three criteria estimate this loss,
and so the hope is that their minimum will coincide with the minimum of the loss, or at least
will “mimic” it. Now, from (3.22), it can be easily seen that the three criteria differ from each
other only up to a multiplicative and/or additive constant. Hence the models selected by the
three criteria will be the same.

We would like to point out that Theorem 3.2 does not use the hypothesis that the model is
linear and are valid for nonlinear models

Y = f(X) + σ ε.

Therefore L̂0 generalizes Cp to non linear models. Moreover, following its definition (2.32),
AIC implementation requires the specification of the underlying distribution. In this sense it is
considered as a generalization of Cp for non Gaussian distributions. However, in practice, we
might only have a vague intuition of nature of the underlying distribution and we might not be
able to give its specific form. We will see in the following section that L̂0, which is equivalent
to the Gaussian AIC as we have just seen, can be also derived from a more general distribution
context, the one of spherically symmetric distributions, with no need to specify the precise form
of the distribution.

Different estimator of variance for each submodel with the least-squares estimator

Practical criteria In many articles and books, like for instance [McQuarrie & Tsai 1998],
[Burnham & Anderson 2002], or [Claeskens & Hjort 2008], AIC is found in a different form,
namely

AIC(β̂LSI ) = n log
(
‖XI β̂

LS
I − Y ‖2

n

)
+ 2k.

This expression actually corresponds to the case where both β and σ2 are estimated by maximum
likelihood based on a subset I. Indeed, the log-likelihood of the Gaussian distribution is

log p(Y |XI , βI) = −n2 log(σ2)− n

2 log(2π)− ‖Y −XIβI‖2

2σ2 .
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Estimating σ2 by σ̂2
MLE in (3.17) thus yields the following estimator of the log-likelihood

log p(Y |XI , β̂
LS
I ) = −n2 log

(
‖Y −XI β̂

LS
I ‖2

n

)
− n

2 log(2π)− ‖Y −XI β̂
LS
I ‖2

2‖Y −XI β̂LSI ‖2/n

= −n2 log
(
‖Y −XI β̂

LS
I ‖2

n

)
− n

2 log(2π)− n

2 .

Noticing that the two last terms are constant with respect to β̂LSI , we obtain the desired result.
This form is very different from the one given in the previous paragraph, where the estimator
of the variance was the same for all submodels, and thus the comparison with Cp and L̂0 does
not stand anymore.

However, in the case where σ2 is estimated by σ̂2
restr in (3.16), and where the estimator of β

is taken to be the least-squares estimator on subset I, there is a certain similarity with another
criterion developed by Akaike, namely the Final Prediction Error (FPE) criterion [Akaike 1970].
In this particular case, L̂0 and FPE take the following expressions

L̂0(β̂LSI ) = k

n− k
‖XI β̂

LS
I − Y ‖2, FPE(β̂LSI ) = n+ k

n− k
‖XI β̂

LS
I − Y ‖2,

where k is the size of subset I. Note that this expression for L̂0 is the one derived in [Fourdrinier
& Wells 1994].

We can easily see that the link between L̂0 and FPE is

L̂0(β̂LSI ) = k

n+ k
FPE(β̂LSI ).

Theoretical criteria FPE has been derived with another objective: it was built in the context
of estimation of the parameter in a linear autoregressive model. By analogy with the linear
regression model, we can say that it estimates the prediction error defined in the previous
paragraph, namely

PE(β̂I , β) = E
[
‖Ynew −Xβ̂I‖2

]
,

which is equivalent to L(β̂I , β) up to the additive constant nσ2. This explains the similarity
between the two corresponding practical criteria.

Model selection A disturbing fact is that L̂0 and FPE are not equivalent since in this para-
graph we consider the case where we estimate σ2 differently for each submodel, even though
their corresponding theoretical criteria are equivalent. Therefore there is little chance that L̂0
and FPE both select the same model.

3.3 The Gaussian case with unknown variance

In this section, we assume σ2 to be unknown. We consider that the estimator of β can be written
as

β̂ = β̂LS + g(β̂LS , S), (3.24)

where, for any s, g(·, s) is a weakly differentiable function and where S is a nonnegative random
variable such that S ∼ σ2χ2(d). To be more precise, we can take

S = ‖Y −Xβ̂LS‖2, (3.25)
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which is distributed as a χ2 distribution with n − p degrees of freedom (up to the factor σ2).
The expression in (3.24) takes into account three different cases:

• the case where β̂ does not depend on S, that is g(β̂LS , S) = g(β̂LS); examples from this
case are the restricted least-squares estimator (if we consider the full model), the James-
Stein estimator and regularization methods if we do not consider them to depend on the
variance;

• the case where β̂ depends on S through a separable function, that is g(β̂LS , S) = Sg(β̂LS) ;
examples from this case are the generalized James-Stein estimator ;

• and the more general case where β̂ depends on S through a non separable function
g(β̂LS , S); examples from this case are regularization methods if we consider them to
depend on the variance.

Example 3.1 (Lasso). [Tibshirani 1996] showed that the Lasso optimization problem

min
β

{
‖Y −Xβ‖2 + λ‖β‖1

}
is equivalent, from a Bayesian point of view, to the maximization of the log-likelihood of the
hierarchical model

Y |X,β, σ2 ∼ Nn(Xβ, σ2In)
∀1 ≤ j ≤ p, βj |σ2 ∼ L(σ2/λ),

where L is the Laplace distribution with mean 0 and scale paramater 1/b = σ2/λ. Hence, we
have that λ = b σ2, so that we can consider that the hyperparameter λ implicitely takes into
account an estimator of the variance, that is, λ = b′ S. This decomposition is interesting in
particular for the regularization path where λ depends on the data.

Now, it has been shown in [Zou et al. 2007] that, if we knew in advance the subset I of
nonzero components in β̂lasso for a given hyperparameter λ, then it can be expressed as

β̂lassoI = (Xt
IXI)−1(Xt

IY − λ sgn(β̂lassoI )) = β̂LSI − λ (Xt
IXI)−1 sgn(β̂lassoI ).

In view of this expression and of the decomposition of λ into a constant term and an estimator
of the variance, we can thus re-express β̂lasso as in (3.24). Indeed, under the linear model
assumption restricted to the subset I, then we have directly

β̂lassoI = β̂LSI + Sglassor (β̂LSI ),

with glassor (β̂LSI ) = b′ (Xt
IXI)−1 sgn(β̂lassoI ). On the other hand, under the full model assumption,

we have the slightly more complex case

β̂lasso = β̂LS + glassof (β̂LS , S),

with glassof (β̂LS , S) = β̂LS − β̂LSI + Sglassor (β̂LSI ).
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In the case of unknown variance, it is common to consider the invariant loss

Linv(β, β̂) = ‖Xβ̂ −Xβ‖
2

σ2 (3.26)

instead of the loss L(β, β̂) (see for instance [Brandwein & Strawderman 1991], [Maruyama 2003]
and [Fourdrinier & Strawderman 2010]). This way, the influence of the noise level is explicitely
modeled.

We thus need an extension of Stein’s identity for the case of unknown variance, given in
[Fourdrinier & Wells 2012]. In the sequel Eµ,σ2 denotes the expectation of Y where both the
mean µ and the variance σ2 are unknown.

Theorem 3.3 (Stein’s identity for the unknown variance case). Let Y ∼ Nn(µ, σ2 In) where σ2

is unknown and is estimated by a function of S ∼ σ2χ2(d), and let h : Rn ×R+ 7→ Rn. If h(·, s)
is weakly differentiable, then

Eµ,σ2 [(Y − µ)th(Y, S)/σ2] = Eµ,σ2 [ divY h(Y, S)],

provided both expectations exist.

Proof of Theorem 3.3. The proof is given in [Fourdrinier & Wells 2012].

In order to derive the unbiased estimator of loss and to compare it to corrected estimators, we
also need the following result, once again taken from [Fourdrinier & Wells 2012], which consists
in applying twice Theorem 3.3.

Corollary 3.1. Let Y ∼ Nn(µ, σ2 In) where σ2 is unknown and is estimated by a function of
S ∼ σ2χ2(d), and let ϕ : Rn × R+ 7→ R. If ϕ(·, s) is twice weakly differentiable, then

Eµ,σ2 [ϕ(Y, S)/σ2] = Eµ,σ2 [2∂ϕ(Y, S)/∂S] + Eµ,σ2 [(d− 2)S−1ϕ(Y, S)],

provided the expectations exist.

Proof of Corollary 3.1. The proof is given in [Fourdrinier & Wells 2012].

3.3.1 Unbiased estimator of the invariant estimation loss

From Theorem 3.3 and Corollary 3.1, we derive the following theorem.

Theorem 3.4 (Unbiased estimator of the invariant quadratic loss under Gaussian assumption
with unknown variance). Let Y ∼ Nn(Xβ, σ2 In) where both β and σ2 are unknown. Let β̂ =
β̂(Y ) be an estimator of β such that Xβ̂ is weakly differentiable with respect to Y and rewrite it
as

β̂ = β̂LS + g(β̂LS , S)

where S = ‖Y −Xβ̂LS‖2 ∼ σ2χ2(n− p). Then

L̂inv0 (β̂) = (n− p− 2)‖Y −Xβ̂‖
2

S
+ 2 divY (Xβ̂)− n+ 4 (Xβ̂ − Y )tX∂g(β̂LS , S)

∂S
(3.27)

is an unbiased estimator of the invariant loss ‖Xβ̂ −Xβ‖2/σ2 .
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Remark 3.1. Note that, for the estimators we consider in this manuscript, the right-most term
in (3.27) actually becomes

∂g(β̂LS , S)
∂S

= β̂ − β̂LS

S
.

This can be easily seen for Example 3.1, even for the full model, since the term β̂LS − β̂LSI does
not depend on S.

Proof of Theorem 3.4. The invariant quadratic risk of Xβ̂ at Xβ is

Eβ,σ2

[
‖Xβ̂ −Xβ‖2

σ2

]
= Eβ,σ2

[
‖Xβ̂ − Y ‖2

σ2 + ‖Y −Xβ‖
2

σ2 + 2(Y −Xβ)t(Xβ̂ − Y )
σ2

]
,

where Eβ,σ2 denotes the expectation under Y parametrized by (β, σ2. Since Y ∼ Nn(Xβ, σ2 In),
we have that

Eβ,σ2

[
‖Y −Xβ‖2

σ2

]
= n

leading to

Eβ,σ2

[
‖Xβ̂ −Xβ‖2

σ2

]
=Eβ,σ2

[
‖Y −Xβ̂‖2

σ2

]
− n+ 2

tr(covβ,σ2(Xβ̂, Y −Xβ))
σ2 . (3.28)

Moreover, applying Stein’s identity for the unknown variance case (Theorem 3.3) to the right-
most part of the expectation in (3.28) with h(Y ) = Xβ̂, we can rewrite (3.20) as

Eβ,σ2

[
‖Xβ̂ −Xβ‖2

σ2

]
= Eβ,σ2

[
‖Y −Xβ̂‖2

σ2

]
− n+ 2Eβ,σ2

[
divYXβ̂

]
,

where we assumed that Xβ̂ is weakly differentiable with respect to Y . Finally, Corollary 3.1
applied with ϕ(Y ) = ‖Y −Xβ̂‖2 to the left-most part of (3.28) yields

Eβ,σ2

[
‖Y −Xβ̂‖2

σ2

]
= Eβ,σ2

[
2 ∂‖Y −Xβ̂‖

2

∂S
+ (n− p− 2)‖Y −Xβ̂‖

2

S

]

= Eβ,σ2

[
2 ∂‖Y −X(β̂LS + g(β̂LS , S)‖2

∂S
+ (n− p− 2)‖Y −Xβ̂‖

2

S

]

= Eβ,σ2

[
4 (Y −Xβ̂)tX∂g(β̂LS , S)

∂S
+ (n− p− 2)‖Y −Xβ̂‖

2

S

]
,

where S = ‖Y −Xβ̂LS‖2.
Hence, according to Definition 3.5 and to the development of the invariant risk R(Xβ̂,Xβ),

the statistic L̂inv0 (β̂) is an unbiased estimator of ‖Xβ̂ −Xβ‖2/σ2.

Note that, when g(β̂LS , S) = g(β̂LS), that is, when β̂ does not depend on the variance, we
have

L̂inv0 (β̂) = (n− p− 2)
‖Y −Xβ̂LS‖2

(
‖Y −Xβ̂‖2 + (2 div(Xβ̂)− n)‖Y −Xβ̂

LS‖2

n− p− 2

)
.
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Comparing with the unbiased estimator of ‖Xβ̂ − Xβ‖2 (with independent estimator of the
variance)

L̂0(β̂) = ‖Y −Xβ̂‖2 + (2 div(Xβ̂)− n)‖Y −Xβ̂
LS‖2

n− p
,

which we derived in previous section, we can see that the main difference results in the denom-
inator of the estimator of the variance. Indeed, the denominator n− p is transformed into one
of n− p− 2, which can be interpreted as a correction for not knowing the variance.

3.3.2 Link with AICc

AICc is a corrected version of AIC proposed by [Sugiura 1978] and extended by Hurvich and
Tsai in a series of papers [Hurvich & Tsai 1989, Hurvich & Tsai 1991, Hurvich & Tsai 1993].
It is designed to correct AIC’s bias for the finite sample setting, since AIC was derived to be
unbiased only asymptotically. Hence, the theoretical criterion that AICc intends to estimate is
the same as for AIC, namely the expected likelihood (up to the factor −2). We recall that AICc
takes the form

AICc(β̂) = −2 log p(Y |X, β̂) + n(n+ p)
n− p− 2 .

In the particular case where β̂ is not a function of S = ‖Y −Xβ̂LS‖2 and where we take the
full model in S, L̂inv0 and AICc take the following expressions

L̂inv0 (β̂) = (n− p− 2) ‖Y −Xβ̂‖
2

‖Y −Xβ̂LS‖2
+ 2 divY (Xβ̂LSI )− n,

AICc(β̂) = n
‖Y −Xβ̂‖2

‖Y −Xβ̂LS‖2
+ n(n+ p)
n− p− 2 .

We can easily see that the link between L̂inv0 and AICc is

L̂inv0 (β̂) = n− p− 2
n

AICc(β̂) + 2 divY (Xβ̂)− 2n− p.

We can clearly notice a resemblance between the two criteria, although the penalty function
(the right-most part of each criterion) is different and thus might lead to a different selection of
the best model.

3.4 The spherical case

3.4.1 The class of multivariate spherically symmetric distributions

Description and properties of the spherical class

The previous chapter dealt with the Gaussian case with covariance matrix proportional to iden-
tity. In that case, the results for univariate and multivariate random vectors only differ up to a
factor n, because of the independence between observations.

The wide (and sometimes systematic) use of the Gaussian law arises from its numerous
properties, such as easy calculations of probabilities and moments and since it is the limit
distribution of many statistical quantities. However, it is not adapted to all kind of data, in
particular in presence of extreme values or outliers or in the non asymptotic setting. Moreover,
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it is now generally accepted, since Huber’s work [Huber 1975], that it is important to propose
robust methods. Indeed, distributional robustness preserves good properties of the methods
when the true underlying distribution departs from the Gaussian law.

We propose to treat such robustness by enlarging the distributional assumption for the error
component to a family of distributions generalizing the Gaussian law. Before going into more
details on this generalization, we recall the characterization of the Gaussian distribution. Let
Y = (y1, . . . , yn)t be a random vector,

Y is Gaussian ⇔
{

(1) ∀i 6= j yi is independent of yj ,
(2) Y is spherical. (3.29)

This characterization, reported in [Chmielewski 1981] and in [Kariya & Sinha 1989], has been
initially proposed by Maxwell in 1860 [Maxwell 1860]. It allows two natural generalizations, as
pointed out by [Fan & Fang 1985]: the first one considers distributions verifying the indepen-
dence property, such as the exponential family of distributions, while the second one relax the
independence assumption to the benefit of spherical symmetry. Both generalizations go in differ-
ent directions and have led to fruitful works (see [Brown 1986] for the exponential family and []
for the spherical family). Note that their only common member is the Gaussian distribution.

In the sequel, we choose to work with the spherical family. This family preserve some of
the interesting properties of the Gaussian distribution, as shown in [Fang et al. 1989], and
appears to be well suited to our work. These properties are orthogonal invariance, invariance
by translation and exchangeability. We develop each property along with their relevance in the
following paragraphs.

Orthogonal invariance Let us begin with the definition of orthogonal invariance.

Definition 3.6 (Orthogonal invariance). Let O(n) be the set of n×n orthogonal matrices, that
is such that HtH = HHt = In. An n-dimensional random vector Y is said to be orthogonally
invariant if, for any orthogonal matrix H in O(n), the random vector Z = HY is distributed as
Y .

The orthogonal invariance property is actually used to define spherically symmetric distri-
butions.

Definition 3.7 (Spherical symmetry). A random vector Y ∈ Rn (equivalently the distribution
of Y ) is said to be spherically symmetric around µ ∈ Rn if Y − µ is orthogonally invariante.
We denote this by Y ∼ Sn(µ).

Orthogonal invariance incurs as a consequence that several test statistics have unchanged
null distribution for all the family, including the Gaussian law. This result is however not always
true for the nonnull distribution. [Kariya & Sinha 1989] give conditions for which the null or
the nonnull distribution is the same as that under Gaussian assumption. Among those tests, we
are particularly interested in Student and Fisher tests for the nullity of one or several regression
coefficients. Hence, it is still coherent to use them as stopping criterion for Forward Selection
or Backward Elimination mentioned in Chapter 2.

Moreover, this property is also interesting for the extension of our results on loss estimation
presented in Section 3.2. Indeed, orthogonal invariance allows the transformation of the usual
linear model into its canonical form with residual vector, while keeping the distribution of the
model unchanged. The canonical form facilitates the derivation of loss estimators. We will give
more details on the canonical form in Section 3.4.1.
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Invariance by translation

Definition 3.8 (Invariance by translation). A random vector Y is said to be invariant by
translation if, for all arbitrary vector b ∈ Rn, the distribution of the vector Z = Y + b is the
distribution of Y translated by b.

The property of invariance by translation is important for the linear model: if we assume ε
to be spherically symmetric and if we assume X to be determinist, then the distribution of the
vector Y = Xβ + ε is the distribution of ε translated from the origin to Xβ.

Exchangeability

Definition 3.9 (Exchangeability). A random vector Y is said exchangeable if, for all permuta-
tion π = {i1, . . . , in) of {1, . . . , n}, the vector Yπ = (Yi1 , . . . , Yin) is distributed as Y .

Exchangeability is in fact a particular case of orthogonal invariance where the elements of the
orthogonal matrix H takes only the values 0 and 1. Hence, we can define the set of permutation
matrices by

{P ∈ O(n) \ Pi,j ∈ {0, 1} ∀1 ≤ i, j ≤ n}.

The case where the components of the vector Y are independent is in turn a particular case
of exchangeability. Indeed, in that case, the density of Y , when it exists, can be written as the
product of the marginal density of each component. Hence the application of a permutation
does not modify the distribution.

Along with these properties of spherical distributions, we can add a forth one characterizing
the generalization of the spherical family to the elliptical family: the property of linear invariance.

Linear invariance Linear invariance is a more general property than orthogonal invariance
and is defined as follows.

Definition 3.10 (Linear invariance). Let LI(n) be the set of n×n non singular positive definite
matrices. A group P of distributions is said to be linearly invariant if, for any vector Y having
distribution in P, for any non singular matrix M in LI(n) and for any arbitrary vector b ∈ Rn,
the distribution of the vector Z = MY + b is also a member of P.

In the Gaussian case, the linear invariance property extends the spherical Gaussian dis-
tribution to the elliptical Gaussian distribution: if Y ∼ Nn(µ, σ2 In), then Z = MY + b ∼
Nn(Mµ + b, σ2MMt). This property is preserved for spherically symmetric distributions, and
also for elliptically symmetric distributions.

Note that, acccording to [Kariya & Sinha 1989], the relaxation of the characterization in
(3.29) to the property of independence assumption destroys the properties of orthogonal and
linear invariance of the Gaussian distribution. Hence these latter two properties are not verified
for distributions such as the exponential family of distributions.

Up to now, we have characterized the family of spherically symmetric distributions by the
properties shared with the Gaussian law. We can also characterize it by its probability density,
when it exists.
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Definition 3.11 (Probability density of spherically symmetric distributions). Let Y be a spher-
ically symmetric vector around the location vector µ with scale parameter σ. If its distribution
is absolutely continous with respect to the Lebesgue measure in Rn, then it has a density of the
form

p(y) = 1
σn

g
(
‖y − µ‖2

σ2

)
for a given function g from Rn to R+, called the generating function.

Remark 3.2. According to [Kelker 1970], only the distributions with an atom of weight at the
origin do not admit a density. In the sequel, as we use results on expectations, we do not consider
such distributions.

Among this family of laws, we can mention the Gaussian distribution, the Student distribu-
tion, the Kotz distribution, the exponential power distribution (also known as the generalized
normal distribution), the spherical logistic distribution, etc. Tables 3.1 and 3.2 display these
examples along with their density and its visualization in the bivariate case. Both tables summa-
rizes information taken from [Fang et al. 1989], [Gupta & Varga 1993], [Kotz et al. 2001], [Kotz
& Nadarajah 2004]. Figures 3.1 and 3.2 show the differences for a bivariate vector Y = (Y1, Y2)
between the case where its components are jointly drawn from a bivariate spherically symmet-
ric distribution and the case where its components are independently drawn from a univariate
spherically symmetric distribution.
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Table 3.1: Examples of spherically symmetric distributions and their visualization for n = 2 - Part 1.
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(
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Table 3.2: Examples of spherically symmetric distributions and their visualization for n = 2 - Part 2.
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A nice feature of the spherical family is that it brings together a distributions with a large
spectrum of tails, from light to heavy, hence enabling the processing of data with a more or less
important pourcentage of extreme values. In particular, the works of [Kariya & Sinha 1989] on
the robustness of statistical tests shows another approach of distributional robustness than that
proposed by Huber [Huber 1981]. Indeed, Huber deals with extreme values by removing part of
the data (the components with higher and lower amplitude) in order to obtain robust estimators
of the mean, the variance and other statistical quantities.
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Figure 3.1: Difference between the independent case and the dependent case. Top: The com-
ponents Y1 and Y2 are independently drawn from univariate spherically symmetric
distrubtions. Middle: The components Y1 and Y2 are jointly drawn from bivariate
spherically symmetric distrubtions. Bottom: Difference between the dependent and
the independent cases. The parameters for each law are the same than in Table 3.1.

We refer the interested reader to [Kelker 1970] for a historical review on spherically symmetric
distributions and to [Fang et al. 1989] for a more complete presentation (along with other
characterizations of spherical distributions).

We can also characterize spherically symmetric distributions by mixtures of uniform dis-
tributions on spheres of radius R, where R is a positive random variable independent of the
uniform direction U .

Definition 3.12 (Stochastic representation ). If Y ∈ Rn is a spherically symmetric random
vector around µ, then Y can be decomposed as

Y = µ+RU

where R = ‖Y − µ‖ and U = (Y − µ)/‖Y − µ‖ ∼ US1, where US1 is the uniform distribution on
the n-dimensional sphere S1 of unit radius.

Thereby, from the stochastic representation, we can see that the random vector (Y −µ)/‖Y −
µ‖ follows the same (uniform) distribution whatever the distribution of Y is.

To conclude on this brief overview on spherically symmetric distributions, we recall the
following result, taken from [Fang et al. 1989].
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Figure 3.2: Difference between the independent case and the dependent case. Top: The com-
ponents Y1 and Y2 are independently drawn from univariate spherically symmetric
distrubtions. Middle: The components Y1 and Y2 are jointly drawn from bivariate
spherically symmetric distrubtions. Bottom: Difference between the dependent and
the independent cases. The parameters for each law are the same than in Table 3.2.

Theorem 3.5 (Mean and covariance). Let Y be a spherically symmetric vector around µ, and
let R and U be the radius and direction resulting from the stochastic representation of Y . If
E[R2] <∞, then the mean and the covariance of Y are given by

EY [Y ] = µ et EY [Y Y t] = 1
n
E[R2]In.

This theorem shows that, although the components of a spherical vector are not independent,
they are not correlated either. In addition, the variance σ2 = EY [Y tY ]/n only depends on the
variance of R and we can conclude that σ2 = E[R2]/n. This result can be easily checked
for the multivariate Gaussian law Nn(0, σ2 In), whose squared radius is distributed as σ2χ2(n).
Similarly, for the Student distribution with ν degrees of freedom, the squared radius is distributed
as a Fisher distribution nFisher(n/2, ν/2).

Practical applications

The spherical hypothesis, and more generally the elliptical hypothesis, can be very useful in
many real life applications from the following fields: Physics (Wave Mechanics), Communica-
tion Theory, Signal Processing, Pattern Recognition, Finance, Economy, or Pharmacokinetics.
Several practical examples are given in [Chmielewski 1981], [Du & Ma 2011], and references
therein. The use of the elliptical assumption has improved the performances of methods from
the state of the art in the description and the estimation of parameters of stochastic processes
and random fields (temporal, spatial and spatiotemporal). We can cite for instance their use
in random walks and in Ornstein-Uhlenbeck processes (see [Pchelintsev 2011], [Schroeter 1980],
and [Lindsey & Jones 2000]). The latter two references respectively the analysis of weapon effec-
tiveness with respect to the target surface and the study of a drug’s concentration in blood for
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clinical trials. This last quantity is particularly non Gaussian since, for each study, often one or
two subjects have an extreme reaction to the drug being tested. Spherically symmetric distribu-
tions with heavy tails, such as the Student distribution or the generalized Gaussian distribution
(also known as power exponential distribution) are thus interesting in such a situation.

Moreover, [Berk 1997] and, more recently, [Hafner & Rombouts 2007] have shown a case
where the elliptical family is the largest family being most consistent with the Capital Asset
Pricing Model, a model that aims at evaluating the return on investment of an asset. Another
extension of Gaussian results to elliptical distributions, but this time for spatial and spatiotempo-
ral processes, has been done for estimating variograms, used in kriging [Genton 2000], [Gneiting
et al. 2007]. These works are useful for weather forecasting based on measures of temperature,
wind speed and direction, and precipitation transmitted by several weather stations.

Most of the references cited in this paragraph have shown better performances than under
the Gaussian assumption, especially when the true distribution seems to have heavy tails or
when the independence assumption seems too restrictive.

Canonical form of the linear model

In this paragraph, we present the canonical form of the linear model. This form consists in
an orthogonal transformation of the data and is closely related to the QR−factorization of the
design matrix X. Although such a transformation is not compulsory for the extension of our
results on loss estimation to the spherical case, it offers a great simplification. The study of
loss estimation (for the estimation of a mean) without using the canonical form has been done
in [Fourdrinier & Strawderman 2008] and shows the computational burden that it carries. This
is the reason why, in the sequel, we will focus on the canonical form, especially in the proofs of
the theorems. However, it has two limitations: the first one is that it relies on the assumption
that the target function is linear, that is, f(X) = Xβ; the second limitations comes from the fact
that it requires the number p of variables to be striclty lower than the number n of observations.

As mentioned earlier, the canonical form can be obtain by applying an orthogonal transfor-
mation to the linear model. We recall that, in this section, we have

Y = Xβ + σε, with ε ∼ Sn(0), (3.30)

where Sn denotes any spherically symmetric distribution. From this model, we construct the
orthogonal matrix

G =
(
G1
G2

)
such that the p lines of G1 form an orthonormal base of the column space of X, namely C(X),
while the n− p lines of G2 form an orthonormal base of the space orthogonal to C(X). In other
words, we have

G2X = 0, (3.31)

and there exists a p× p non singular matrix A such that

X = Gt1A. (3.32)

Note that, in practice, the matrix G can easily be obtained from the QR−factorization of the
design matrix X by taking G = Qt. We recall that, in this factorization, R is composed of two
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submatrices R1 and R2 where R1 is upper triangular and R2 is the null matrix. The factorization
can the be rewritten as

X = Q1R1, (3.33)

where Q1 is the submatrix contraining the p first columns of Q. Note that Q1 is also con-
structed as an orthonormal base of the column space C(X), hence the analogy with G1 follows
immediately. However, the main difference arises from the fact that the factorization in (3.33)
is unique as soon as X is full rank and the diagonal components of R1 are constrained to be
positive [Golub & Van Loan 1996]. On the other side, the canonical form does not require such
a restriction on the matrix A = G1X (the analog of R1), which could also be lower triangular
or full. Hence, the decomposition X = Gt1A is not unique. The QR−factorization only offers
one convenient way to efficiently compute G and A.

Applying the orthogonal matrix Qt to model (3.30) brings

W = T + σ Gε, (3.34)

where W =
(
Z

U

)
and T =

(
θ

0

)
with Z = G1Y , U = G2Y , and θ = G1Xβ.

The invariance property of spherically symmetric distributions implies that, if Y is spherically
symmetric, then (Zt, U t)t is also spherically symmetric:

Y ∼ Sn(µ) ⇒
(
Z

U

)
∼ Sn

(
θ

0

)
.

From the properties of spherically symmetric distributions, Z and U are independent if and only
if Sn is the Gaussian distribution.

By construction of the canonical form, Z accounts for the information contained in both Y
and X at the same time, while U accounts for the information contained in Y only. This is why
U is often referred to as the residual vector. An interesting aspect of the canonical form is that
it presents the model in a purer and simpler form, where the parameter to be estimated is the
mean of the quantity of interest itself. This way, we can benefit from some of the results of loss
estimation in the context of estimation of the mean.

We recall that in this work we are concerned with good prediction, and that we formalized
this objective as

L(Xβ,Xβ̂) = ‖Xβ̂ −Xβ‖2.

We now express this criterion in the canonical form. Replacing X by its decomposition yields

‖Xβ̂ −Xβ‖2 = (β̂ − β)tXtX(β̂ − β)
= (β̂ − β)tAtG1G

t
1A(β̂ − β)

= (β̂ − β)tAtA(β̂ − β)
= ‖θ̂ − θ‖2, (3.35)

since θ = G1Xβ = Aβ and θ̂ = Aβ̂. From (3.35), we deduce that minimizing L(Xβ,Xβ̂) with
respect to an estimator β̂ is equivalent to minimizing L(θ̂, θ) = ‖θ̂ − θ‖2 with respect to its
canonical estimator θ̂. In addition, we also have inequality between their risks:

Rβ(β̂) = Eβ[‖Xβ̂ −Xβ‖2] = Eθ[‖θ̂ − θ‖2] = Rθ(θ̂),
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where Eθ denotes the expectation under (Z,U), and it is thus equivalent to minimize the risk of
β̂ and to minimize the risk of θ̂, if we are more interested in minimizing the risk than the actual
loss.

Note that the canonical form of the least-squares estimator β̂LS is simply θ̂LS = Z. Indeed,
replacing X by its decomposition Gt1A yields

θ̂LS = G1Xβ̂
LS

= G1X(XtX)−1XtY

= G1G
t
1A(AtG1G

t
1A)−1AtG1Y.

Besides, by construction we have that G1G
t
1 = Ip and G1Y = Z. Thereby we obtain

θ̂LS = A(AtA)−1AtZ.

Now, the matrix A being squared and non singular, decomposing the inverse of the product AtA
results in

θ̂LS = AA−1(At)−1AtZ = Z, (3.36)

which is what we claimed.
In order to close this paragraph, note that if the estimator of β can be written in the form

β̂ = β̂LS + g(β̂LS),

then, its canonical form can also be expressed as

θ̂ = Z + g′(Z),

où g′(Z) = Ag(A−1Z). Indeed, we have that

θ̂ = G1Xβ̂ = G1Xβ̂
LS +G1Xg((G1X)−1Z) = Z +G1Xg((G1X)−1Z),

from the invertibility of G1X = A and since θ̂LS = Z,.
We have now all the elements necessary to extend the loss estimators to the spherical case.

3.4.2 Unbiased estimator of the estimation loss

This section is devoted to the generalization of Theorem 3.2 to the class of spherically symmetric
distributions, given by Theorem 3.6.

In all that follows, we consider the case where the estimator β̂ does not depend on the
estimator σ̂2 of the noise level. Considering β̂ = β̂(σ̂2) would lead to different loss estimators.

Theorem 3.6 (Unbiased estimator of the quadratic loss under spherical assumption). Let
Y ∼ Sn(Xβ, σ2) and σ̂2 = ‖Y −Xβ̂LS‖2/(n−p) be an estimator of the variance σ2Eβ[‖ε‖2/n].
Given β̂ = β̂(Y ) an estimator of β, if Xβ̂ is weakly differentiable with respect to Y , then the
following estimator of ‖Xβ̂ −Xβ‖2 is unbiased:

L̂0(β̂) = ‖Y −Xβ̂‖2 + (2 divY (Xβ̂)− n)σ̂2, (3.37)

where divY x =
∑n
i=1 ∂xi/∂Yi is the weak divergence of x with respect to Y .
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Before proving Theorem 3.6, we need an extension of Stein’s identity to spherically symmetric
distributions. Such an extension has been obtained by [Fourdrinier & Wells 1995a] under the
canonical form of the linear model, reported here for the sake of completeness. However, we do
not report its proof. We refer the interested reader to [Fourdrinier & Wells 1995a].

Theorem 3.7 (Stein-type identity). Given (Z,U) ∈ Rn a random vector following a spherically
symmetric distribution around (θ, 0), and g : Rp 7→ Rp a weakly differentiable function, we have

Eθ[(Z − θ)tg(Z)] = Eθ[‖U‖2 divZ g(Z)/(n− p)], (3.38)

provided both expectations exist.

Note that the divergence in theorem 3.6 is taken with respect to Y while in the Stein type
identity 3.38 requires the divergence with respect to Z. Their relationship can be seen in the
following lemma.

Lemma 3.1. Under the hypothesis of Theorems 3.6 and 3.7 and using the canonical transfor-
mation of the linear model in (3.34), we have

divY Xβ̂ = divZ θ̂. (3.39)

Proof. Denoting by tr(A) the trace of any matrix A and by Jf (t) the Jacobian matrix of any
function f at t, we have

divY Xβ̂ = tr
(
JXβ̂(Y )

)
= tr

(
Qt JXβ̂(Y ) Q

)
by definition of the divergence and since Q is an orthogonal matrix. Now, applying the chain
rule to the function T̂ (W ) = QtXβ̂ with Y = QW , we have

J
T̂

(W ) = JQtXβ̂(Y ) Q = Qt JXβ̂(Y ) Q, (3.40)

noticing that Q is a linear transformation. Also, as

T̂ =
(
θ̂

0

)
,

we have the following decomposition

J
T̂

(W ) =
(

Jθ̂(Z) 0
Jθ̂(U) 0

)
,

and thus
tr
(
J
T̂

(W )
)

= tr
(
Jθ̂(Z)

)
. (3.41)

Therefore, according to (3.40) and (3.41), we obtain

tr
(
Jθ̂(Z)

)
= tr

(
JXβ̂(Y )

)
,

which is (3.39).

We now have all the elements to prove Theorem 3.6.
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Proof of Theorem 3.6. As we did in the Gaussian case, we wish to find an unbiased estimator of
the quadratic loss which would not depend explicitly on β. The quadratic loss function of Xβ̂
at Xβ can be decomposed

‖Xβ̂ −Xβ‖2 = ‖Y −Xβ̂‖2 − ‖Y −Xβ‖2 + 2(Y −Xβ)t(Xβ̂ −Xβ).

Using the canonical formulation it becomes

‖Xβ̂ −Xβ‖2 = ‖Y −Xβ̂‖2 − ‖Y −Xβ‖2 + 2(Z − θ)t(θ̂ − θ),

such that its expectation, the risk is

R(Xβ̂,Xβ) = Eβ‖Y −Xβ̂‖2 − σ2 Eβ‖ε‖2 + 2Eβ(Z − θ)tθ̂.

Applying Theorem 3.7 with g(Z) = θ̂ leads to

R(Xβ̂,Xβ) = Eβ‖Y −Xβ̂‖2 − σ2 Eβ‖ε‖2 + 2Eβ
[
‖U‖2 divZ θ̂/(n− p)

]
.

Applying Lemma 3.1 we get

R(Xβ̂,Xβ) = Eβ‖Y −Xβ̂‖2 − σ2 Eβ‖ε‖2 + 2Eβ

[
‖U‖2

n− p
divY Xβ̂

]
.

The proof is completed using the fact that Eβ[σ̂2] = σ2 Eβ[‖ε‖2/n] for the middle term and the
equality ‖U‖2 = ‖Y −Xβ̂LS‖2.

The unbiased estimator of the quadratic estimation loss derived under the spherical assump-
tion is actually equal to the one derived under the Gaussian law. Hence, this implies that we do
not have to specify the form of the distribution, the only condition being its spherical symmetry.

We have not proved that it was a good estimator, but if unbiasedness is a property we are
interested in, then L̂0 is robust and its performance are similar for the whole family.
Remark 3.3. Note that the extension of Stein’s lemma in Theorem 3.7 relaxes the assumption
that σ̂2 should be uncorrelated with d̂f = divY Xβ̂, as the equality takes the whole product into
account.

The results from this section actually correspond to the implicite assumption that the noise
level σ is known, which explains its relation to the unbiased estimator of loss derived under
the Gaussian distribution with known variance σ2. There have been attempts to generalize the
unbiased estimator under spherical symmetry to the case where the noise level σ is unknown
[Fourdrinier & Strawderman 2010]. This setting gives rise to the following extension of Stein
identity (given in the canonical form)

Eθ,σ2 [(Z − θ)tg(Z,U)] = cE∗θ,σ2 [divZ g(Z,U)],

where E∗θ,σ2 is the expectation with respect to the distribution

1
c σ2nP

(
‖z − θ‖2 + ‖u‖2

σ2

)
with P (t) = 1

2

∫ ∞
t

p(u)du, (3.42)

and p is the density of (Z,U). Hence, estimators of loss can be found in a similar form than in
Equation (3.27), but they are unbiased for the distribution (3.42) and it is not clear what form
they would have for the distribution of (Z,U).
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3.5 Summary

In this chapter, we derived unbiased estimators of the quadratic loss for the linear model with
Gaussian noise, where we assumed the variance of the noise to be successively known and
unknown. We related them to existing methods from the literature, namely Cp, AIC, FPE
and AICc, which can thus be viewed through a loss estimation approach. We then derived
the unbiased estimator of loss under a wider distributional setting: the family of spherically
symmetric distributions. The unbiased estimator of the quadratic estimation loss derived under
the spherical assumption is actually equal to the one derived under the Gaussian law with known
variance. Hence, this implies that we do not have to specify the form of the distribution, the
only condition being its spherical symmetry. From the equivalence between unbiased estimators
of loss, Cp and AIC, we conclude that their form for the Gaussian case can be used to handle
any spherically symmetric distribution. The spherical family is interesting for many practical
cases since it allows a dependence property between the components of random vectors whenever
the distribution is not Gaussian. Some members of this family also have heavier tails than the
Gaussian law, and thus the unbiased estimator derived here can be robust to outliers.

It is well known that unbiased estimators of loss are not the best estimators and can be
improved (see for instance [Johnstone 1988]). This remark is also shared by AIC and Cp. It
was not our intention in this chapter to show better results of such estimators, but our result
explains why their performances can be similar when departing from the Gaussian assumption.
The study of unbiased estimators is however of great importance in loss estimation theory. It
indeed allows to compare theoretically the risks of two estimators of loss for estimating the true
loss, as we will see in the following chapter. The heuristic of loss estimation is that the closer
an estimator is to the true loss, the more we expect their respective minima to be close.
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This chapter is devoted to the derivation of estimators of loss that are more accurate than
unbiased loss estimators. We first present how we can evaluate and compare estimators of
loss. Then, we propose two bias terms based on data, called correction functions, one for the
restricted linear model and the second for the full linear model. Sections 4.2 and 4.3 specify
the conditions of improvement over the unbiased loss estimator for each correction function,
and we look at optimal corrections yielding the greatest improvement. Note that the study is
done under the spherical assumption, which includes the Gaussian case as we have seen earlier.
Finally, Section 4.4 relates the philosophy behind loss estimation to that of Structural Risk
Minimization [Vapnik 1998] and Slope Heuristics [Birgé & Massart 2007].

4.1 Improving on unbiased estimators of loss

4.1.1 A new layer of evaluation

As suggested by [Sandved 1968], unbiased loss estimators are not the best estimators for loss
estimation, a fact that is well known in risk estimation. Several authors have thus considered
the problem of improvement over the unbiased estimator and proposed a way of evaluating
estimators of loss. In the context of estimating the mean vector θ of a random vector Z, [Lu &
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Berger 1989] proposed to evaluate the quality of a loss estimator L̂ through the “communication
loss”

L(θ, θ̂, L̂) = (L̂(θ̂)− L(θ, θ̂))2, (4.1)

and its risk
Rθ(θ̂, L̂) = Eθ[L(θ, θ̂, L̂)] = Eθ[(L̂(θ̂)− L(θ, θ̂))2]. (4.2)

The risk in Equation (4.2) is actually a generalization of Stein’s proposition to evaluate confi-
dence sets, and corresponds to the Mean Squared Error of the estimator L̂ of loss L(θ, θ̂). In
other words, we look for biased estimators of L(θ, θ̂) whose variance is sufficiently low so as to
allow a better control of the estimation. This definition of a new loss and its risk leads to the
following definition of improvement (or domination) over the unbiased estimator.

Definition 4.1 (Improvement for loss estimation). Let L̂0 and L̂ be two estimators of the loss
L(θ, θ̂). The estimator L̂ is said to be better than, or to dominate, L̂0 if the condition

Rθ(θ̂, L̂) ≤ Rθ(θ̂, L̂0) (4.3)

is verified for all θ ∈ Θ, and if the condition

Rθ(θ̂, L̂) < Rθ(θ̂, L̂0)

is verified at least for one value of θ.

In addition to proving their existence, [Johnstone 1988] propose new estimators of loss of
the form

L̂γ(θ̂) = L̂0(θ̂)− γ(Z), with γ(Z) = c

‖Z‖2
, (4.4)

where c is a constant. The author thus shows that the condition of improvement of L̂γ(θ̂) over
L̂0(θ̂) under the Gaussian assumption, that is the condition for which the inequality (4.1) is
valid when θ̂ is the least-squares estimator of θ, is obtained for

0 < c < 4(d− 4),

where d is the dimension of Z.
This approach is the one we choose for developing better criteria of model selection.

The use of a quadratic risk for Rθ(θ̂, L̂) allows easy computations. Note however that there
are a few interesting alternatives for R. The first one would be to consider Stein’s loss in
Equation (3.9) applied to the estimation of the loss L(θ, θ̂) instead of the estimation of the
covariance matrix:

L(θ, θ̂, L̂) = L(θ, θ̂)
L̂(θ̂)

− log
(
L(θ, θ̂)
L̂(θ̂)

)
− d. (4.5)

The main advantage of this loss is that it penalizes less the large values of L̂ with respect to L(θ, θ̂)
than the quadratic loss, and it is thus a remedy for the leapfrogging effect of the quadratic loss.
Another interesting alternative is the utility function proposed by [Rukhin 1988a,Rukhin 1988b]

L(θ, θ̂, L̂) = L(θ, θ̂)√
L̂(θ̂)

+
√
L̂(θ̂).
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Both solutions generate much more tedious calculation than the quadratic loss. Therefore we
will only consider the latter one in the rest of this manuscript.

In the context of estimating the mean of a multivariate Gaussian vector, [Johnstone 1988]
proved the inadmissibility of the unbiased estimator of loss of the Least-squares estimator and of
the James-Stein estimator, and proposed corrected estimators that improve on it. This work has
been extended in [Fourdrinier & Wells 1995a] to the general linear regression model under the
spherical assumption. Around the same time, the latter authors also considered the problem of
model selection and proposed corrected estimators of the loss when the regression coefficient β is
estimated by restricted least-squares (LS) β̂LSI (see [Fourdrinier & Wells 1994]). In this chapter,
we extend the latter work on model selection to other estimators of β. Table 4.1 summarizes
these historical remarks.

Objective Reference Estimator Distribution

Estimation of a
multivariate mean

[Johnstone 1988] LS, JS Gaussian
[Fourdrinier & Wells 1995a] LS, JS Spherical

Model Selection [Fourdrinier & Wells 1994] Restricted LS Gaussian

In this chapter
Restricted LS,
restricted JS,
Lasso-typea.

Spherical

aWe refer to as Lasso-type methods all the sparse regularization methods described in Chapter 2.

Table 4.1: Works on corrected loss estimators.

The strategy we adopt in the sequel is based on the following steps. First, following what was
done in [Johnstone 1988] and [Fourdrinier & Wells 1995b], we propose to work with corrected
estimators of loss of the form

L̂γ(β̂) = L̂0(β̂)− γ(Xβ̂LS), (4.6)

where L̂0(β̂) is the unbiased loss estimator derived in the previous chapter and used here as
a reference, and the correction function γ(t) is a general twice weakly differentiable function.
Note that the choice of taking a correction based on the least-squares estimator merely comes
from the simplicity of calculation, while taking γ(Xβ̂) for a general estimator β̂ results in much
more tedious algebra. Second, in the following paragraph, we derive conditions on the correction
function γ for L̂γ to improve on L̂0. Then, we propose two forms for the correction function γ,
depending on whether we consider the full or the restricted model. And finally, we sharpen the
conditions of improvement for each correction function in Sections 4.2 and 4.3.

4.1.2 Conditions of improvement over the unbiased estimator

Going back to our context of linear regression model

Y = Xβ + σε,

and its version restricted to a subset I ⊂ {1, . . . , p}

Y = XIβI + σε,
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the communication risk becomes

R(β̂, L̂) = Eβ[(L̂(β̂)− ‖Xβ̂ −Xβ‖2)2]. (4.7)

The definition of improvement given in Definition 4.1 leads to identifying the conditions for
which the following inequality holds:

∆β(L̂γ , L̂0) = Rβ(β̂, L̂γ)− Rβ(β̂, L̂0) ≤ 0, (4.8)

where Rβ(β̂, L̂) is the quadratic risk defined in Equation (4.7) for the prediction loss L(β, β̂) =
‖Xβ̂ −Xβ‖2. The following lemma gives a general result on the difference ∆θ(L̂γ , L̂0) in risks
between L̂γ and L̂0 for any twice weakly differentiable function γ. This result relies on the
assumption that the noise level σ is known. Also, in all that follows, we still consider the case
where the estimator β̂ does not depend on the estimator σ̂2 of the noise level.

Lemma 4.1. Let Y ∼ Sn(Xβ). Given β̂ an estimator of β and γ(·) a correction function, if β̂
is weakly differentiable with respect to Y and γ is twice weakly differentiable, then the condition

γ2(β̂LS) + 2 ‖Y −Xβ̂
LS‖2

n− p

{
‖Y −Xβ̂LS‖2

n− p+ 2 ∆Y γ(Xβ̂LS) + 2 (Xβ̂ − Y )t∇Y γ(Xβ̂LS)
}
≤ 0

(4.9)
is sufficient for L̂γ(β̂) = L̂0(β̂)− γ(Xβ̂LS) to dominate L̂0.

Before proving Lemma 4.1, we need the following extension of Theorem 3.7 and the corollary
of the Stein-type identity for spherically symmetric distributions, derived in a similar fashion as
what is done in [Stein 1981].

Theorem 4.1 (Extended Stein-type identity). Let (Z,U) ∈ Rn be a random vector following a
spherically symmetric distribution around (θ, 0) as in Model (3.34), g : Rp 7→ Rp, and q be an
integer. If g is weakly differentiable, then

Eθ[‖U‖q(Z − θ)tg(Z)] = 1
n− p+ q

Eθ[‖U‖q+2 divZ g(Z)], (4.10)

provided both expectations exist.

Proof of Theorem 4.1. The proof can be found in the Appendix A.2 of [Fourdrinier &
Wells 2012]. It basically consists in the divergence theorem where the expectations are first
conditioned on the radius R = ‖Z − θ‖2 + ‖U‖2 and rely on the property that projections on a
lower subspace such as

π :
(
Z

U

)
7→ Z

are spherically symmetric. The last step of the proof is obtained by taking the expectations
with respect to the distribution of the radius.

Corollary 4.1. Let (Z,U) ∈ Rn be a random vector following a spherically symmetric distribu-
tion around (θ, 0) and h : Rp 7→ R. If h(·) is twice weakly differentiable, then

Eθ[‖Z − θ‖2h(Z)] = p

n− p
Eθ
[
‖U‖2 h(Z)

]
+ 1

(n− p)(n− p+ 2) Eθ
[
‖U‖4 ∆Z h(Z)

]
, (4.11)

provided the expectations exist, where ∆Z h(Z) denotes the weak Laplacian of h(Z) with respect
to Z.
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Proof of Corollary 4.1. Corollary 4.1 is obtained by applying Theorem 3.7 with g(Z) = (Z −
θ)h(Y ) and its extension Theorem 4.1 with g(Z) = ∇Z h(Z). Indeed, we have that

Eθ[‖Z − θ‖2 h(Z)] = Eθ[(Z − θ)t(Z − θ)h(Z)]

= 1
n− p

Eθ
[
‖U‖2

(
h(Z) divZ(Z − θ) + (Z − θ)t∇Z h(Z)

)]
= 1

n− p
Eθ

[
p ‖U‖2h(Z) + ‖U‖4

n− p+ 2 divZ{∇Z h(Y )}
]
,

where the second equality derives from the product rule between a scalar and a vector functions

divZ{(Z − θ)h(Z)} = h(Z) divZ(Z − θ) + (Z − θ)t∇Z h(Z).

The desired result is then obtained by definition of the Laplacian operator:

∆Z h(Z) = divZ{∇Z h(Z)}.

We are now able to prove Lemma 4.1.

Proof of Lemma 4.1. The proof follows four steps: first, a development of the difference in risk
(4.8), second the transformation of the terms depending on the true parameter β into their
canonical form, then the application on these terms of the Stein-type theorem and its corollary
for the spherical case, and finally the inverse transformation from the canonical form back to
the usual linear form in Y and X.

The difference in risk can be easily developed by replacing L̂γ by its expression in (4.6),
resulting in the following expression

∆β(L̂γ , L̂0) = Eβ[(L̂γ − ‖Xβ̂ −Xβ‖2)2]− Eβ[(L̂0 − ‖Xβ̂ −Xβ‖2)2]
= Eβ[γ2(β̂LS)− 2 γ(Xβ̂LS){L̂0 − ‖Xβ̂ −Xβ‖2}].

Now, replacing L̂0 by its expression given in (3.37) from the previous chapter and developing
the loss ‖Xβ̂ −Xβ‖2 yield

∆β(L̂γ , L̂0) = Eβ[γ2(β̂LS)− 2 γ(Xβ̂LS){‖Y −Xβ̂‖2 + (2 div(Xβ̂)− n) σ̂2}
+ 2 γ(Xβ̂LS){‖Xβ̂ − Y ‖2 + ‖Y −Xβ‖2 + 2 (Y −Xβ)t(Xβ̂ − Y )}]

= Eβ[γ2(β̂LS)− 2 γ(Xβ̂LS)(2 div(Xβ̂)− n) σ̂2

+ 2 γ(Xβ̂LS){‖Y −Xβ‖2 + 2 (Y −Xβ)t(Xβ̂ − Y )}]

Applying the canonical form on the right-most terms of the equation and letting

ζ(Z) = γ(Gt1Z) = γ(Xβ̂LS), (4.12)

we obtain that

Eβ[γ(Xβ̂LS)‖Y −Xβ‖2] = Eθ[ζ(Z){‖Z − θ‖2 + ‖U‖2}] (4.13)

Eβ[γ(Xβ̂LS)(Y −Xβ)t(Xβ̂ − Y )] = Eθ

[
ζ(Z)

(
Z − θ
U

)t(
θ̂ − Z
−U

)]

= Eθ
[
ζ(Z){(Z − θ)t (θ̂ − Z)− ‖U‖2}

]
. (4.14)
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Applying Theorem 4.1 with g(Z) = ζ(Z)(θ̂ − Z) and Corollary 4.1 with h(Z) = ζ(Z) gives

Eθ[ζ(Z)‖Z − θ‖2] = 1
n− p

Eθ
[
p ‖U‖2 ζ(Z) + 1

n− p+ 2 ‖U‖
4 ∆Z ζ(Z)

]
(4.15)

and

Eθ
[
ζ(Z)(Z − θ)t(θ̂ − Z)

]
= 1

n− p
Eθ[‖U‖2 divZ{ζ(Z)(θ̂ − Z)}] (4.16)

= 1
n− p

Eθ[‖U‖2{ζ(Z)(divZ θ̂ − p) + (θ̂ − Z)t∇Z ζ(Z)}].

The tedious part is now to give the expressions of ∇Z ζ(Z) and ∆Z ζ(Z) in the linear form as
functions of Y or β̂LS . However, both of them can be derived in a similar fashion as we did in
the proof of Lemma 3.1 on the equality between the weak divergences. Indeed, noticing that we
have in fact

∇Z ζ(Z) = ∇W ζ(T̂LS)

with the notations in (3.34) and T̂LS =
(
Z

0

)
being the canonical form of the least-squares

estimator, the chain rule gives

∇W ζ(T̂LS) = ∇GY γ(Xβ̂LS) = G∇Y γ(Xβ̂LS). (4.17)

In the same way, we can notice that

∆Z ζ(Z) = ∆W ζ(T̂LS).

Applying again the chain rule yields

∆W ζ(T̂LS) = ∆GY γ(Xβ̂LS) = tr
(
GHXβ̂LS (Y )Gt

)
,

where HXβ̂LS (Y ) denotes the Hessian matrix of the function γ at Y . Note that the last equality
derives from the fact that the Laplacian operator is defined as the trace of the Hessian matrix.
Hence, by orthogonality of G, we obtain the equality between both weak Laplacians

∆Z ζ(Z) = ∆Y γ(β̂LS). (4.18)

Combining the elements from Equations (4.15) and (4.18) into (4.13) and going back to the
linear model yields

Eβ[γ(Xβ̂LS)‖Y −Xβ‖2] = Eβ
[

S

n− p

{
p γ(Xβ̂LS) + S

n− p+ 2 ∆Y γ(Xβ̂LS)
}

+ S γ(Xβ̂LS)
]

= Eβ
[

S

n− p

{
nγ(Xβ̂LS) + S

n− p+ 2 ∆Y γ(Xβ̂LS)
}]
.

Similarly, combining Equations (4.16) and (4.17) into (4.14) gives

Eβ[γ(Xβ̂LS)(Y −Xβ)t(Xβ̂ − Y )] = Eβ
[
S γ(Xβ̂LS)

{ 1
n− p

(divY Xβ̂ − p)− 1
}]

+ Eβ
[

S

n− p
γ(Xβ̂LS)(Xβ̂ − Y )tGtG∇Y γ(Xβ̂LS)

]
= Eβ

[
S

n− p
γ(Xβ̂LS)(divY Xβ̂ − n)

]
+ Eβ

[
S

n− p
γ(Xβ̂LS)(Xβ̂ − Y )t∇Y γ(Xβ̂LS)

]
.
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Substituting these last equalities into the difference of risks, we obtain that

∆β(L̂γ , L̂0) = Eβ
[
γ2(β̂LS)− 2S

n− p
γ(Xβ̂LS)(2 div(Xβ̂)− n)

]
+ Eβ

[ 2
n− p

{
nS γ(Xβ̂LS) + 1

n− p+ 2 S2 ∆Y γ(Xβ̂LS)
}]

+ Eβ
[ 4S
n− p

{
(divY Xβ̂ − n) γ(Xβ̂LS) + (Xβ̂ − Y )t∇Y γ(Xβ̂LS)

}]
= Eβ

[
γ2(β̂LS) + 2S

n− p
γ(Xβ̂LS){−(2 div(Xβ̂)− n) + n+ 2 (divY Xβ̂ − n)}

]
+ Eβ

[
2S2

(n− p)(n− p+ 2) ∆Y γ(Xβ̂LS) + 4S
n− p

(Xβ̂ − Y )t∇Y γ(Xβ̂LS)
]

= Eβ
[
γ2(β̂LS) + 2S

n− p

{
S

n− p+ 2 ∆Y γ(Xβ̂LS) + 2 (Xβ̂ − Y )t∇Y γ(Xβ̂LS)
}]
.

Finally, a sufficient condition for ∆β(L̂γ , L̂0) to be negative is that the random variable inside
the parenthesis is always negative. This completes the proof.

Note that, in the Gaussian case where the variance σ2 is assumed to be known, the difference
in risks results in the following condition

γ2(Xβ̂LS) + 2σ4 ∆Y γ(Xβ̂LS) + 4σ2(Xβ̂ − Y )t∇Y γ(Xβ̂LS) ≤ 0.

This result was obtained in [Johnstone 1988] and [Fourdrinier & Wells 2012] under the canonical
form and taking σ2 = 1. Plugging in the unbiased estimator of σ2 yields

γ2(Xβ̂LS) + 2‖Y −Xβ̂
LS‖2

n− p

{
‖Y −Xβ̂LS‖2

n− p
∆Y γ(Xβ̂LS) + 2 (Xβ̂ − Y )t∇Y γ(Xβ̂LS)

}
≤ 0.

Comparing with the inequality in (4.9), we can see that the only difference between the Gaussian
case and the spherical case lies in the denominator in the first term in {} brackets. Indeed, in
the spherical case, the estimator of the variance is weighted by n− p+ 2, while in the Gaussian
case it is weighted by n− p, corresponding to the unbiased estimator.

4.1.3 Choice of the correction function

In this paragraph, we consider the two cases of full linear model and restricted linear model
seperately. We propose one correction function for each case.

[Johnstone 1988] and [Fourdrinier & Wells 1995a] developed improved estimators with cor-
rection of the form

γ(Xβ̂LS) = c

‖Xβ̂LS‖2
,

where c is a constant. Note that, in the full linear model, this correction is constant with respect
to the selection subset I and thus its minimum occurs for the same subset as the unbiased
estimator’s minimum. Hence, for the problem of selecting among several subsets I1, . . . , Im, this
correction function is only interesting for the restricted model and takes the form

γr(XI β̂
LS
I ) = cr

‖XI β̂LSI ‖2
,
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where the subscript r stands for “restricted model”.
For the full linear model, we propose the following correction function instead

γf (Xβ̂LS) = cf

k Z2
(k+1) +

p∑
j=k+1

Z2
(j)

−1

,

where Zj = (Qj)tXβ̂LS , Qj being the jth column of the matrix Q computed by the QR fac-
torization of X, Z(j) is the jth element of the vector Z ordered by decreasing absolute value
|Z(1)| ≥ · · · ≥ |Z(p)|, k is the number of selected variables, and cf is a constant. This form might
appear strange in the Gaussian case, but it will make more sense in the spherical case under
a transformation of the linear model. The correction γf is a function of both the number of
selected variables and the information contained in the non-selected variables, through the size
k of the submodel considered and through the information of the rejected variables contained
in Z(k+1), . . . , Z(p). This reflects our belief that the non-selected variables can help evaluating
how good the selection is.

Remark 4.1. Note that [Fourdrinier & Wells 2012] state that γr is twice weakly differentiable
for k > 4. As far as γf is concerned, its twice weakly differentiability is proven in Appendix
A.2 under the canonical form. Hence, both correction functions satisfy the condition for Lemma
(4.1).

For the corrected estimator L̂γ to improve on the unbiased estimator L̂0, the constants cr
and cf should be calibrated in a way that the sufficient condition (4.9) holds.

4.2 Corrected loss estimators for the restricted model

4.2.1 Condition for improvement with γr
Let us start with the correction function γr

γr(XI β̂
LS
I ) = cr

‖XI β̂LSI ‖2
, (4.19)

for the restricted model. We have the following result.

Theorem 4.2 (Improvement for the restricted model). Let Y be distributed as Sn(XIβI). Let
β̂I be an estimator of β, SI = ‖Y −XI β̂

LS
I ‖2 and σ̂2

restricted = SI/(n− k) be an estimator of the
variance σ2 EβI [‖ε‖2]. A sufficient condition for

L̂rγ(β̂I) = L̂0(β̂I)− γr(Xβ̂LSI ),

where γr(Xβ̂LSI ) is taken as in (4.19), to improve on

L̂0(β̂I) = ‖Y −XI β̂I‖2 + (2 div(XI β̂I)− n)σ̂2
restricted

is that

sgn(cr)
(
cr −

4 ‖Y −XI β̂
LS
I ‖2

n− k

{
(k − 4) ‖Y −XI β̂

LS
I ‖2

n− k + 2 + 2 (XI β̂I − Y )tXI β̂
LS
I

})
≤ 0. (4.20)
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Proof. The weak gradient and weak Laplacian of γr are respectively

∇Y γr(Xβ̂LSI ) = −2cr
XI β̂

LS
I

‖XI β̂LSI ‖4
∆Y γr(Xβ̂LSI ) = −2cr

k − 4
‖XI β̂LSI ‖4

.

Condition (4.9) yields

∆β(L̂γ , L̂0) = Eβ

[
c2
r

‖XI β̂LSI ‖4
− 4 cr SI
n− k

{
(k − 4)SI

(n− k + 2)‖XI β̂LSI ‖4
+ 2(XI β̂I − Y )tXI β̂

LS
I

‖XI β̂LSI ‖4

}]

= Eβ

[
cr

‖XI β̂LSI ‖4

(
cr −

4SI
n− k

{(k − 4)SI
n− k + 2 + 2 (XI β̂I − Y )tXI β̂

LS
I

})]
. (4.21)

A sufficient condition for (4.21) to be negative is that the statistic

cr

(
cr −

4SI
n− k

{(k − 4)SI
n− k + 2 + 2 (XI β̂I − Y )tXI β̂

LS
I

})
is always negative. As (XI β̂I −Y )tXI β̂

LS
I can be negative, we do not know the sign of the term

in {} brackets and thus we do not know the sign of cr either. Hence, we obtain the desired
result.

The value of cr leading to the best improvement is the center of the interval defined by
Equation (4.20), that is,

c∗r = 2SI
n− k

{(k − 4)SI
n− k + 2 + 2 (XI β̂I − Y )tXI β̂

LS
I

}
. (4.22)

As this value still depends on the data and on the estimator, we next investigate possible
simplifications for the restricted Least-squares estimator, the restricted James-Stein estimator,
and for the Lasso.

4.2.2 Application to estimators of the regression coefficient

Restricted least-squares estimator. When β̂I is taken to be the restricted least-squares
estimator β̂LSI , the scalar product betweenXI β̂

LS
I −Y andXI β̂

LS
I is null since β̂I is the projection

of Y on the column space of XI . Hence cr is positive and should range over

0 ≤ cr ≤
4 (k − 4)S2

I

(n− k)(n− k + 2) . (4.23)

In particular, for greater improvement, the optimal value is

c∗r = 2 (k − 4)S2
I

(n− k)(n− k + 2) ,

leading to the following corrected estimator

L̂rγ(β̂LSI ) = ‖Y −XI β̂
LS
I ‖2 + (2 k − n) ‖Y −Xβ̂

LS
I ‖2

n− k
− 2 (k − 4)

(n− k)(n− k + 2)
‖Y −Xβ̂LSI ‖4

‖XI β̂LSI ‖4

= k

n− k
‖Y −XI β̂

LS
I ‖2 −

2(k − 4)
(n− k)(n− k + 2)

‖Y −Xβ̂LSI ‖4

‖XI β̂LSI ‖4
. (4.24)

Note that the improvement over the unbiased estimator is only possible when k ≥ 5. This
result is similar to that obtained for the problem of estimation of the mean of a Gaussian vector
in [Johnstone 1988].
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James-Stein estimator. We now take β̂I to be the James-Stein estimator β̂LSI on subset I.
Taking its expression given in (3.3), the scalar product reduces to

(XI β̂I − Y )tXI β̂
LS
I =

(
XI β̂

LS
I −

k − 2
‖XI β̂LSI ‖2

XI β̂
LS
I − Y

)t
XI β̂

LS
I

= − k − 2
‖XI β̂LSI ‖2

β̂LSI Xt
IXI β̂

LS
I

= − (k − 2).

The sufficient condition (4.20) thus results in

sgn(cr)
(
cr − 4 SI

n− k

{
(k − 4) SI

n− k + 2 − 2 (k − 2)
})
≤ 0.

Note that, in the Gaussian case where the variance σ2 is assumed to be known and taken
to 1, [Johnstone 1988] proved that the condition reduces to

sgn(cr) (cr − 4 {(k − 4)− 2 (k − 2)}) = cr (cr + 4 k) ≤ 0.

which gives a negative constant cr ranging over

− 4 k ≤ cr ≤ 0.

In particular, for greater improvement, the optimal value is

c∗r = − 2 k.

Also, we can compute the divergence of the James-Stein estimator from its expression in (3.3):

divY (Xβ̂JSI ) = k − (k − 2) divY

(
XI β̂

LS
I

‖XI β̂LSI ‖2

)

= k − (k − 2)
(

k

‖XI β̂LSI ‖2
− 2 (β̂LSI )tXIX

t
I β̂

LS
I

‖XI β̂LSI ‖4

)

= k − (k − 2)2

‖XI β̂LSI ‖2
.

These results lead to the following corrected estimator

L̂rγ(β̂JSI ) = ‖Y −XI β̂
JS
I ‖2 +

(
2k − 2(k − 2)2

‖XI β̂LSI ‖2
− n

)
‖Y −Xβ̂LS‖2

n− k
+ 2k
‖XI β̂LSI ‖2

.

Note that a similar result has also been derived in [Johnstone 1988].

Lasso. The Lasso estimator can have an explicit expression for a given λ and assuming we
have the knowledge of its null components. This expression is given by [Zou et al. 2007]

XI β̂
lasso
I = XI(Xt

IXI)−1(Xt
IY − λ sgn(β̂lassoI ))

= XI β̂
LS
I − λXI(Xt

IXI)−1 sgn(β̂lassoI ). (4.25)
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Hence, the scalar product (Xβ̂lassoI − Y )tXI β̂
LS
I is equal to

(XI β̂
lasso
I − Y )tXI β̂

LS
I = −λ sgn(β̂lassoI )t(Xt

IXI)−1Xt
IXI β̂

LS
I

= −λ sgn(β̂lassoI )tβ̂LSI .

This equality hence results in the following condition on cr:

sgn(cr)
(
cr − 4 SI

n− k

{
(k − 4) SI

n− k + 2 − 2λ sgn(β̂lassoI )tβ̂LSI
})
≤ 0.

Recalling that, when λ = 0, the Lasso estimator is equal to the Least-Squares estimator, we
can easily recover the range given in (4.23). Hence, in that case, cr is positive. On the opposite
limit, when λ is sufficiently large, the most-right term can exceed −4(k − 4)SI/(n− k + 2) and
results in a negative constant cr.

From Equation (4.25), it can easily be noticed that

‖β̂lassoI ‖1 = sgn(β̂lassoI )tβ̂lassoI

= sgn(β̂lassoI )t(β̂LSI − λ (Xt
IXI)−1 sgn(β̂lassoI )).

so that
sgn(β̂lassoI )tβ̂LSI = ‖β̂lassoI ‖1 + λ sgn(β̂lassoI )t(Xt

IXI)−1 sgn(β̂lassoI )).

Also, there is a one-to-one correspondance between λ and tλ, where tλ intervenes in the formu-
lation  min

β∈Rp
‖Y −Xβ‖2

subject to ‖β‖1 ≤ tλ
,

and the optimum β∗ verifies ‖β∗‖1 = tλ. Hence, we obtain the following inequality

sgn(cr)
(
cr − 4 SI

n− k

{(k − 4)SI
n− k + 2 − 2λ

(
tλ + λ sgn(β̂lassoI )t(Xt

IXI)−1 sgn(β̂lassoI )
)})

≤ 0.

In particular, a good value for cr would be

c∗r = 2 (k − 4)‖Y −Xβ̂LS‖2

(n− k)(n− k + 2) − 2λSI
n− k

(
tλ + λ sgn(β̂lassoI )t(Xt

IXI)−1 sgn(β̂lassoI )
)
.

However, when λ is not fixed but computed so as to be a transition point, namely, a point
for which a new variable Xj is added or deleted to the subset, things are more complicated.
According to [Zou et al. 2007], we can express the Lasso estimator at a transition point as

XI β̂
lasso
I = XI β̂

LS
I −

XI(Xt
IXI)−1 sgn(β̂LSI )(Xj)t(In −XI(Xt

IXI)−1Xt
I)

sgn(β̂LSj )− (Xj)tXI(Xt
IXI)−1 sgn(β̂LSI )

Y

= XI β̂
LS
I −

XI(Xt
IXI)−1 sgn(β̂LSI )(Xj)t(Y −XI β̂

LS
I )

sgn(β̂LSj )− (Xj)tXI(Xt
IXI)−1 sgn(β̂LSI )

.
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Hence the scalar product between XI β̂I − Y and XI β̂
LS
I yields

(XI β̂
lasso
I − Y )tXI β̂

LS
I = −

(
XI(Xt

IXI)−1 sgn(β̂LSI )(Xj)t(Y −XI β̂
LS
I )

sgn(β̂LSj )− (Xj)tXI(Xt
IXI)−1 sgn(β̂LSI )

)t
XI β̂

LS
I

= −(Y −XI β̂
LS
I )tXj sgn(β̂LSI )t(Xt

IXI)−1Xt
IXI β̂

LS
I

sgn(β̂LSj )− (Xj)tXI(Xt
IXI)−1 sgn(β̂LSI )

= − (Y −XI β̂
LS
I )tXj sgn(β̂LSI )tβ̂LSI

sgn(β̂LSj )− (Xj)tXI(Xt
IXI)−1 sgn(β̂LSI )

= − (Y −XI β̂
LS
I )tXj‖β̂LSI ‖1

sgn(β̂LSj )− (Xj)tXI(Xt
IXI)−1 sgn(β̂LSI )

Here, we cannot use the same technique as earlier since tλ is not fixed anymore either. Hence,
the resulting condition

sgn(cr)
(
cr −

4SI
n− k

{
(k − 4) SI

n− k + 2 −
2 (Y −XI β̂

LS
I )tXj‖β̂LSI ‖1

sgn(β̂LSj )− (Xj)tXI(Xt
IXI)−1 sgn(β̂LSI )

})
≤ 0

still depends on the data.

Other estimators. Since the other estimators of β we exposed in Chapter 2 are mostly based
on the Lasso, there is little hope to obtain a value of cr that will not depend on the data. In
practice, we will use the value c∗r defined in Equation (4.22), as it yields good performances
in the simulation study. However, from a theoretical perspective, this value is not completely
satisfying as we would have to verify whether it actually leads to a lower risk R(β̂, L̂γ) than the
risk of the unbiased estimator of loss, namely R(β̂, L̂0). This verification happens to be quite
challenging because of the dependence with the data, so we defer it for future works.

4.3 Corrected loss estimators for the full model

4.3.1 Condition for improvement with γf
We move now to the correction function γf

γf (Xβ̂LS) = cf

k Z2
(k+1) +

p∑
j=k+1

Z2
(j)

−1

, (4.26)

where Zj = (Qj)tXβ̂LS , Qj . We obtain an analog result.

Theorem 4.3 (Improvement for the full model). Let Y be distributed as Sn(Xβ) where σ2 is
assumed to be known. Let β̂ = β̂(I) be an estimator of β and S = ‖Y −Xβ̂LS‖2. A sufficient
condition for

L̂fγ(β̂) = L̂0(β̂)− γf (Xβ̂LS),

where γf (Xβ̂LS) is taken as in (4.26), to improve on

L̂0(β̂) = ‖Y −Xβ̂‖2 + (2 div(Xβ̂)− n) σ̂2
full
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is that

sgn(cf )
(
cf + 2S

n− p

{
S

n− p+ 2

(
−2 p+

4 k(k + 1)Z2
(k+1)

d(Xβ̂LS)

)
+ 4 d(Xβ̂LS)

})
≤ 0, (4.27)

with d(Xβ̂LS) = k Z2
(k+1) +

∑p
j=k+1 Z

2
(j) is the denominator of γf (Xβ̂LS).

Proof. Note first that d(Y ) can be reformulated as

d(Xβ̂LS) = (β̂LS)tXtGt1MG1Xβ̂
LS (4.28)

with M the diagonal matrix with diagonal components

Mij ,ij =


0 for j = 1, . . . , k
k + 1 for j = k + 1
1 for j = k + 2, . . . , p

,

the index ij corresponding to the jth component of the ordered variable (Z(1), . . . , Z(p)). The
weak gradient and weak Laplacian of γf are respectively

∇Y γf (Xβ̂LS) = −2 cf X(XtX)−1XtGt1MG1Xβ̂
LS/d2(Xβ̂LS)

∆Y γf (Xβ̂LS) = − 2 cf
d2(Xβ̂LS)

tr(Hf ) + 4 cf
d3(Xβ̂LS)

(β̂LS)tXtGt1M2G1Xβ̂
LS ,

where Hf = X(XtX)−1XtGt1MG1X(XtX)−1Xt. Replacing X by its decomposition Gt1A and
noticing that G1G

t
1 = Ip, the trace is easily computed as follows

tr(Hf ) = tr(Gt1A(AtG1G
t
1A)−1AtG1G

t
1MG1G

t
1A(AtGt1Gt1A)−1AtG1)

= tr(Gt1A(AtA)−1AtMA(AtA)−1AtG1)
= tr(Gt1AA−1(At)−1AtMAA−1(At)−1AtG1)
= tr(MG1G

t
1)

= tr(M)
= p.

Noticing that β̂(j) = 0 for j = k + 1, . . . , p while (∇Y γf (Xβ̂LS))(j) = 0 for j = 1, . . . , k, we
obtain the following dot product between (Xβ̂ − Y ) and the weak gradient of γf :

(Xβ̂ − Y )t∇Y γf (Xβ̂LS) = 2cf/d(Xβ̂LS).

Indeed, the dot product is actually equal to

(Xβ̂ − Y )t∇Y γf (Xβ̂LS) = − 2cf
d2(Y )

(
β̂tXtGt1MG1Xβ̂

LS − Y tX(XtX)−1XtGt1MG1Xβ̂
LS
)

= − 2cf
d2(Xβ̂LS)

β̂tXtGt1MG1Xβ̂
LS + 2cf

d(Xβ̂LS)
,

where the last equation derives from (4.28). Now, G1X is a p×pmatrix, which we will callA, and,
reorganizing the vectors and matrices so that the indices of I are adjacent, the product β̂tXtGt1M
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Figure 4.1: Sketch of the product β̂tXtGt1M (reorganized according to the selection I): non null
components in grey, null components in white.

can be sketched as in Figure 4.1, where the grey parts represent the non null components and
the white one the null components, so that we obtain

β̂tXtGt1M = 0.

Hence condition (4.9) yields

cf

d2(Xβ̂LS)

(
cf + 2S

n− p

{
S

n− p+ 2

(
−2 p+

4 k(k + 1)Z2
(k+1)

d(Xβ̂LS)

)
+ 4 d(Xβ̂LS)

})
≤ 0,

which implies the desired result by positivity of d2(Xβ̂LS).

From Equation (4.27), the value of cf leading to the best improvement is thus

c∗f = S

n− p

{
S

n− p+ 2

(
−2 p+

4 k(k + 1)Z2
(k+1)

d(Xβ̂LS)

)
+ 4 d(Xβ̂LS)

}
. (4.29)

Note that, unlike the correction γr for the restricted model, the correction γf for the full model
does not depend on β̂, but only on its number of non-zero components. However, noticing that

(k + 1)Z2
(k+1) ≤ d(Xβ̂LS) ⇒ −

(k + 1)Z2
(k+1)

d(Xβ̂LS)
≥ −1

and that
d(Xβ̂LS) ≤ ‖Xβ̂LS‖2,

we can aproximate c∗f by

ĉf = 2 (p− 2k)S2

(n− p)(n− p+ 2) −
4S

(n− p)‖Xβ̂
LS‖2.

Once again, both values of cf are not completely satisfactory because of their dependence to
the data, the verification that L̂fγ actually dominates L̂0 with such values is again challenging.
However, we will see in Chapter 6 that the simulation results show good performances in selection
with these values.
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4.4 Link with principled methods

In this section, we propose to investigate the possible relations between loss estimation theory
on ones side and the Statistical Learning Theory [Vapnik 1998] and the theory behind Slope
heuristics [Birgé & Massart 2007] on the other side, which we will refer to as data-driven penalties
to include related works such as [Arlot & Massart 2009]. The following discussion concerns the
linear regression model only.

Considering the estimator β̂ = β̂(m) relying on Model Mm, we remind that our corrected
estimators and the criteria respectively developed by [Birgé & Massart 2007], namely slope
heuristics (SH), and [Vapnik 1998], namely Structural Risk Minimization (SRM), for the regres-
sion framework are

L̂γ(β̂(m)) = ‖Y −Xβ̂(m)‖2 + (2d̂f − n)σ̂2 − γ(Xβ̂LS)
SH(β̂(m)) = ‖Y −Xβ̂(m)‖2 + pen(m)

SRM(β̂(m)) = 1
n
‖Y −Xβ̂(m)‖2 × pen(n,VC-dim(m)).

From these expressions, we notice a similar form between L̂γ and SH, while SRM is different in
shape because of the multiplicative penalty.

The key equation that links the theories is related to the notion of ideal penalty defined
by [Birgé & Massart 2007] as

penid(m) , EY [‖Y −Xβ̂(m)‖2]− ‖Y −Xβ̂(m)‖2. (4.30)

In the same spirit, we can define what would be our ideal correction by

γid(m) , L̂0(β̂(m))− ‖Xβ̂(m) −Xβ‖2, (4.31)

while the ideal penalty for SRM would be

penSRM
id (m) ,

Ey[(y − xtβ̂)2]− 1
n‖Y −Xβ̂‖

2

Ey[(y − xtβ̂)2]
. (4.32)

From the ideal cases for each criterion, we notice similarities between Equations (4.30) and
(4.32). The link with Equation (4.31) is also quite straightforward recording that, for a fixed
design matrix X,

EY [‖Y −Xβ̂(m)‖2] = ‖Xβ̂(m) −Xβ‖2 + nσ2.

Indeed, replacing L̂0 by its expression ‖Xβ̂(m) − Y ‖2 + (2d̂f − n)σ̂2 and from the relationship
between EY [‖Y −Xβ̂(m)‖2] and ‖Xβ̂(m)−Xβ‖2, we can express the ideal correction as a function
of the ideal penalty:

γid(m) = −penid(m) + nσ2 + (2d̂f − n)σ̂2.

Birgé and Massart’s theory relies in the proposition of good estimators of penid(m) and
Vapnik’s theory aims at bounding penSRM

id (m), while our theory is to propose good estimators
of γid. Hence, the reasons for improvement over classical criteria such as Cp or the unbiased
loss estimator are the same in theory, but the means used to perform such an improvement are
different. Indeed, Birgé and Massart use oracle inequalities for assessing the quality of SH, and
Vapnik uses uniform deviations in order to get better generalization bounds. On the other hand,
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we try to minimize the Mean Squared Error of the model selection criterion L̂γ = L̂0− γ for the
estimating the loss ‖Xβ̂(m)−Xβ‖2, that is we try to minimize simultaneously the variance and
the bias of the model selection criterion:

∀β min
γ

{
MSE(L̂γ) = EY

[(
L̂0 − γ−‖Xβ̂m −Xβ‖2

)2
]}

. (4.33)

In the three cases, the aim is to have a better control of the criterion.
Now, it is impossible to perform the minimization (4.33) over any function γ. This is why

we proposed two shapes for the correction function. Similarly, [Birgé & Massart 2007] proposed
several form for the penalty pen, given in Chapter 2 and recorded in Table 4.2. Note that the
main difference between our corrected estimators and slope heuristics is that we consider an
additive term to the penalty of the unbiased estimator, namely pen(m) = (2σ̂2 − n)d̂f , while
SH modifies Cp’s penalty by a multiplicative term. For both criteria however, the modification
is based on data, hence the name data-dependent penalty often encountered, while it is not the
case for SRM.

The main elements of this discussion are presented in Table 4.2.

4.5 Summary

In this chapter, we discussed the problem of comparing model evaluation criteria. We proposed
to perform such a comparison through an additional layer of evaluation, relying on the assess-
ment of the quality of a loss estimator through its risk. This principle is the same as the one
used to evaluate the estimators β̂ of the regression parameter β, namely the Mean Squared
Error principle. We used this mode of evaluation in order to derive corrected estimators of
the loss under the spherical assumption, and proposed two different shape of the correction
depending on whether we assume the full model or the restricted model to be the true one. We
obtained sufficient conditions of improvement (or domination) of the corrected estimators over
the unbiased estimators. Then, we tried to optimize the corrections according to these sufficient
conditions. However, there is no theoretical guaranty that the corrections we obtained in this
way actually yields lower Mean Squared Error. Hence, there is still a lot of work to do to verify
the domination. On the other hand, this problem might come from the choice of the corrections
and it might be overcome by considering other corrections.



4.5.
Sum

m
ary

101

Loss estimation theory Data-driven penalties Statistical Learning Theory

Assumptions
on the noise

Any multivariate spherical distributions
(including non i.i.d case)

Univariate Gaussian distribution, univari-
ate heteroscedastic distribution

Any univariate distribution, i.i.d case

Criterion crit = ‖Y −Xβ̂‖2 + (2div(Xβ̂)− n)σ̂2 crit = ‖Y −Xβ̂‖2 + pen(m) crit = 1
n‖Y −Xβ̂‖

2 × pen(n,VC-dim)
− γ(Xβ̂LS)

Ideal case γid = ‖Xβ̂ −Xβ‖2 − ‖Y −Xβ̂‖2 penid = EY [(Y −Xβ̂)2]− 1
n‖Y −Xβ̂‖

2 penid =
(
EY [(Y −Xβ̂)2]− 1

n‖Y −Xβ̂‖
2
)

−(2 div(Xβ̂)− n)σ̂2 ×
(
EY [(Y −Xβ̂)2]

)−1

Improvement Eβ [(L̂0 − γ(Xβ̂LS)− ‖Xβ̂ −Xβ‖2)2] Oracle inequalities, localised uniform de-
viation

Uniform deviations

≤ Eβ [(L̂0 − ‖Xβ̂ −Xβ‖2)2]

Proposed
shape

γr(XI β̂
LS
I ) = cr‖XI β̂

LS
I ‖−2 pen1(m) = c1k pen(n, υ) =

√
n ×

with k = dim(Mm)
(
√
n−

√
υ
(
log
(
n
υ

)
+ 1
)

+ logn
2

)−1

+
,

with υ = VC-dim

γf (Xβ̂LS) = cf

(
kZ2

(k+1) +
p∑

i=k+1
Z2

(i)

)−1

pen2(m) = c2k(1 +
√

2Lm)2

with |Z(1)| > . . . , |Z(p)| with Lm \
∑
m≥1 exp(−k Lm) <∞

and Zj = (Qj)tXβ̂LS
pen3(m) = c3k(1 + 2

√
H(k) + 2H(k))

with H(k) = 1
k log(#{M\dimM = k})

pen4(m) = c4k
(
κ+2(2− ς)

√
Lm+ 2Lm

ς

)
with ς ∈ (0, 1), κ > 2− ς

Table 4.2: Overview of the differences between Data-drivent penalties, Statistical Learning Theory and our theory of loss estimation, for
the linear regression with fixed design matrix.
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Algorithmic aspects
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In this chapter, we will see the algorithmic aspects of regularization paths as well as of
simulation. We begin by presenting the Least Angle Regression algorithm with its modification
for Lasso (LARS), developed by [Efron et al. 2004]. This algorithm finds Lasso’s regularization
path, that is, it computes the transition points of the hyperparameter tuning the penalty. Then
we extend the LARS algorithm to Minimax Concave Penalty (MCP), a method developed by
[Zhang 2010] overcoming Lasso’s bias. The difficulty in computing MCP’s path is that its
optimization problem is both nonconvex and non differentiable. However, there exist similar
optimality conditions that we derive from Clarke differentials. In the second part, we discuss
the generation of spherically symmetric random vectors, that we use in the simulation study
(see Chapter 6).

5.1 Regularization path algorithms

In this section, we recall the idea behind the Least Angle Regression algorithm for Lasso (LARS)
proposed by [Efron et al. 2004] (although in a slightly different form than in the original paper).
This algorithm is obviously not new, but helps understand the one we propose for finding MCP’
regularization path, that we will expose later in the section.

5.1.1 Least Angle Regression algorithm for Lasso (LARS)

Overview of the problem

We first recall the minimization problem solved by Lasso. Given λ a positive scalar, the Lasso
estimator is solution of

min
β∈Rp

{
J lassoλ (β) = 1

2 ‖ Y−Xβ ‖2 +λ ‖ β ‖1
}
, (5.1)



104 Chapter 5. Algorithmic aspects

where Y and X are respectively an observation of Y and X. Since J lassoλ (β) is convex for a fixed
λ, the solution

β̂lassoλ = arg min
β∈Rp

J lassoλ (β)

is unique. If we take λ equal to 0, Problem (5.1) results in the least squares and the solution is
not sparse. On the other hand, if we set λ to a sufficiently high value, the `1 penalty overrides the
squared loss ‖ Y−Xβ ‖2 and the solution is β̂ = 0, resulting in the null model with no variable
selected. From there came the idea of making λ vary in order to include or delete variables
from the current selection. In the sequel, we will consider starting from the null model, where
β̂lassoλ = 0 and λ = +∞, and decreasing λ so that the variables are added one at a time until the
least-squares solution is reached, where λ = 0. Hence, we compute the sequence (λ(0), . . . , λ(K))
of hyperparameters leading to the sequence (β̂lasso

λ(0) , . . . , β̂
lasso
λ(K) ) of solutions, which is called the

regularization path. Figure 5.1 shows a simple example of such a path. The problem thus
consists in finding the sequence of hyperparameters based on data, which we now discuss.

Figure 5.1: Path of solutions (in red) from β̂lassoλ = 0 to β̂lassoλ = β̂LS .

Optimality conditions for convex non differentiable problems

For a convex and differentiable functional J , the minimization problem

min
β∈Rp

J(β)

is easy to solve by finding the root of the gradient of J , ∂J/∂β. For instance, if we take the
least-squares, we have

J(β) = ‖Y−Xβ‖2,

which is convex and differentiable. Cancelling its gradient

∇βJ(β) = −2Xt(Y−Xβ),

we easily obtain the least-squares solution

β̂LS = (XtX)−1XtY.

However, as mentioned earlier, the functional J lassoλ (β) in (5.1) is convex but non differentiable
at β = 0, for λ fixed. In such a case, we can use the extension of the gradient, the subgradient,
which we define hereafter.
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Definition 5.1 (Subgradients and subdifferential). Let f : Rp 7→ R be a convex function. A
subgradient of f at a point x0 ∈ Rp is a vector g ∈ Rp satisfying the inequality

f(x) ≥ f(x0) + gt(x− x0) ∀x ∈ Rp. (5.2)

The set of all the subgradients of f at x0 is called the subdifferential and is written ∂f(x0).

This definition can be found in books on convex optimization, such as [Boyd & Vanden-
berghe 2004] or [Bertsekas et al. 2003]. Note that the subgradient is unique and equal to the
gradient when the function f is differentiable (see [Bertsekas et al. 2003]). Figure (5.2) displays
a visualization of subgradients for a non differentiable function. Like for a differentiable convex
functional, we look for the roots of ∂J(β). If the null vector is a subgradient of J(β),

0 ∈ ∂J(β), (5.3)

then the minimum of J a global minimum (see [Bach et al. 2011]).
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(a) Examples of subgradients of f(x) for x0 = 0
and x1 = 1
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(b) Subdifferential for x1 = 1

Figure 5.2: Examples of subgradients of a convex and non differentiable function f for p = 1.
(a) The function f is differentiable in x0 = 0 and thus has a unique subgradient (red
line). It is non differentiable in x1 = 1 and has infinitely many subgradients such
as g1 (green line) and g2 (magenta line). (b) The subdifferential of f at x1 = 1 is
depicted by the blue zone. The point x∗ = 1 is the minimum of the function f(x)
since 0 is a subgradient of f(x). (Extracted from [Flamary 2011])

The subgradient of the `1-norm in (5.1) is

∀1 ≤ j ≤ p ∂‖β‖1
∂βj

=


1 if βj > 0
−1 if βj < 0
αj if βj = 0, with − 1 < αj < 1.

(5.4)

From now on, we assume that we know the selection I obtained for a value of λ, and we reorder
and partition the data into the set I of nonzero coefficients, or equivalently the set of variables
in the selection, and the set I0 of zero coefficients. Thus, we obtain the following subgradient of
J lassoλ :

∂J lassoλ (β) =
(

Xt
IXI Xt

IX0
Xt

0XI Xt
0X0

) (
βI
0

)
−
(

Xt
I

Xt
0

)
Y + λ

(
sgn(βI)
α0

)
, (5.5)
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where α0 is the part of one subgradient (5.4) corresponding to the null components of β, that
is β0 = (βj)j∈I0 , and X0 is the submatrix of X composed of columns with index in I0. This in
turn leads to a system of two equations

Xt
IXIβI −Xt

IY+ λ sgn(βI) = 0 (5.6)
Xt

0XIβI −Xt
0Y+ λα0 = 0. (5.7)

This system is true for any λ ∈ (λ(m), λ(m+1)), since the sets I and I0 are unchanged. The idea
is thus to find the next value of λ such that the sets I and I0 change, which occurs when one
of these equations reaches its limit. Equation (5.7) has limit when one component of α0 reaches
the value ±1, meaning that the corresponding βj is departing from 0 and its index should enter
I. On the other side, Equation (5.6), however, has limit when one component of βI reaches the
value 0 and hence its corresponding index goes back to I0. The algorithm thus allows to add
and delete variables, depending on which of these equations reaches its limit first. Note also
that Equation (5.6) recovers the result from Lemma 1 in [Zou et al. 2007] about the estimate of
βI for a given λ and assuming we know subset I:

β̂lassoλ = (Xt
IXI)−1(Xt

IY− λ sgn(βI)), (5.8)

while Equation (5.7) computes one subgradient of ‖β0‖1:

α0 = λ−1Xt
0(Y−XIβI). (5.9)

Finding the path (to wisdom)

The first step is to find the value of λ such that the first variable is to be added to I. At that
point, the estimator is β̂lasso

λ(0) = 0. Hence, Equation (5.6) does not have a meaning yet and
Equation (5.7) yields1

−XtY + λα0 = 0, (5.10)

so that the first variable j1 to enter I corresponds to the first component αj1 to reach ±1. From
(5.10), this can be expressed as

λ(0) = max
j
|(Xj)tY| = |(Xj1)tY|. (5.11)

For λ ≥ λ(0), the jth1 component of β̂lasso
λ(0) is still equal to 0 and gets non null at λ = λ(0) − η,

where η is a strictly positive scalar. The notations λ(k), β̂lasso
λ(k) and α(k)

0 correspond respectively
to the values of λ, β̂lassoλ and α0 at step k.

The next step is to find the value λ(1) such that the second variable is to be added to I
and compute the corresponding estimate β̂lasso

λ(1) . In order to do so, recall that I = {j1} and
I0 = {1, . . . , j1 − 1, j1 + 1, . . . , p} are unchanged for λ ∈ (λ(0), λ(1)). Hence, Equation (5.7) gives
the following equations:

0−Xt
0Y+ λ(0) α0 = 0

Xt
0Xj1 β̂′j1 −Xt

0Y+ λ′ α′0 = 0,
1Note that, if Y and X have been standardized to have mean 0 and unit length, Equation (5.10) corresponds

to the correlation between Y and each variable Xj .
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where λ′ ∈ (λ(0), λ(1)), β̂′ is its corresponding estimate and α′0 is a subgradient of ‖β′0‖1. Sub-
stracting these equations yields

Xt
0Xj1 β̂′j1 + λ′ α′0 − λ(0) α0 = 0.

Now, we can replace β̂′j1 by its expression in (5.8) and reorder the equation so that

λ′
(
α′0 −

1
(Xj1)tXj1

Xt
0Xj1 sgn(β̂′j1)

)
= λ(0) α0 −

1
(Xj1)tXj1

Xt
0Xj1(Xj1)tY.

The next value of λ is thus the largest one (but smaller than λ(0)) such that one component αj
of α′0 reaches ±1. Hence, we obtain

λ(1) = max
j∈I0

λ(0) αj − 1
(Xj1 )tXj1 (Xj)tXj1(Xj1)tY

±1− 1
(Xj1 )tXj1 (Xj)tXj1 sgn(β̂′j1)

.

Note that β̂′j1 has the same sign as (β̂lasso
λ(0) )j1 , except when j1 goes back to I0.

Performing the same step for a given subset I, we have that, from (5.7),

Xt
0XI(β̂lassoλ(k) )I −Xt

0Y + λ(k) αk0 = 0 (5.12)

and, for λ′ ∈ (λ(k), λ(k+1)),
Xt

0XI β̂
′
I −Xt

0Y + λ′ α′0 = 0. (5.13)

Substracting (5.12) to (5.13) yields

Xt
0XI

{
β̂′I − (β̂lassoλ(k) )I

}
+ λ′ α′0 − λ(k) αk0 = 0. (5.14)

Again, we replace β̂′I and (β̂lasso
λ(k) )I by the expression in (5.8) and reorder the equation so that

λ′
(
α′0 −Xt

0XI(Xt
IXI)−1 sgn(β̂′I)

)
= λ(k)

(
α

(k)
0 −Xt

0XI(Xt
IXI)−1 sgn(β̂lassoλ(k) )I

)
.

Since sgn(β̂′I) = sgn((β̂lasso
λ(k) )I) and the next value of λ adding a variable to I is obtained for the

first component of α′ reaching ±1, we obtain

λadd(j) =
λ(k)

(
α

(k)
j − (Xj)tXI(Xt

IXI)−1 sgn(β̂lasso
λ(k) )I

)
±1− (Xj)tXI(Xt

IXI)−1 sgn(β̂lasso
λ(k) )I

= λ(k) +
λ(k)

(
α

(k)
j −±1

)
±1− (Xj)tXI(Xt

IXI)−1 sgn(β̂lasso
λ(k) )I

. (5.15)

The best value of λadd is the greatest positive one immediately lower than λ(k),

λ∗add = max
j∈I0

{
λadd(j) \ λadd(j) > 0 and λadd(j) < λ(k)

}
= λadd(j∗).

However, we might take a step too long by adding a variable, and we have to check at each
step if we need to remove first a variable from the current set I. If so, one component of β̂lasso

λ(k)

is going to take the value 0. Doing as in (5.14) with Equation (5.6), we have that

Xt
IXI(β̂lassoλ(k) )I −Xt

IY + λ(k) sgn(β̂lassoλ(k) )I = 0 (5.16)
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while, for λ′ ∈ (λ(k), λ(k+1)),

Xt
IXI β̂

′
I −Xt

IY + λ′ sgn(β′I) = 0. (5.17)

Again, substracting (5.16) to (5.17) yields

(β̂′I − (β̂lassoλ(k) )I) + (λ′ − λ(k))(Xt
IXI)−1 sgn(β̂lassoλ(k) )I = 0, (5.18)

since sgn(β̂′I) = sgn((β̂lasso
λ(k) )I). Now, as we said earlier, if we need to remove a variable j then

(β̂lasso
λ(k+1))j takes the value 0. Hence, this results in

(β̂lassoλ(k) )j − (λ′ − λ(k))
{

(Xt
IXI)−1 sgn(β̂lassoλ(k) )I

}
j

= 0.

This last equation implies the following update for λ

λ∗rem = max
j∈I

{
λrem(j) \ λrem(j) > 0 and λrem(j) < λ(k)

}
= λrem(j∗),

where

λrem(j) = λ(k) +
(β̂lasso
λ(k) )j{

(Xt
IXI)−1 sgn(β̂lasso

λ(k) )I
}
j

. (5.19)

The superscript rem stands for remove.
Finally, we update λ by taking the greatest value between λ∗add and λ∗rem, that is,

λ(k+1) = max{λ∗add;λ∗rem}, (5.20)

and we either add or remove variable j∗ to I depending on whether λ∗add or λ∗rem is the greatest.
Once λ has been updated, we can update β̂lassoλ and α0, too, from (5.18) and (5.14):

(β̂lassoλ(k+1))I = (β̂lassoλ(k) )I + (λ(k) − λ(k+1))(Xt
IXI)−1 sgn(β̂lassoλ(k) )I (5.21)

α
(k+1)
0 = λ(k)

λ(k+1)α
(k)
0 −

1
λ(k+1) Xt

0XI

{
(β̂lassoλ(k+1))I − (β̂lassoλ(k) )I

}
= λ(k)

λ(k+1)α
(k)
0 + (λ(k) − λ(k+1))

λ(k+1) Xt
0XI(Xt

IXI)−1 sgn(β̂lassoλ(k) )I . (5.22)

The last step occurs when λ(K) = 0 and the last variable is added to I. The corresponding
update for β̂lassoλ is

β̂lassoλ(K) = β̂lassoλ(K−1) + λ(K−1)(XtX)−1 sgn(β̂lassoλ(K−1)) (5.23)

and equals the least-squares estimator.

The algorithm

All these steps are gathered in Algorithm 5.1. In line 26 of the algorithm, the sign in ±1 depends
on the one in (5.19) giving the best value of λ.
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Algorithm 5.1 LARS
Require: X,Y
Ensure:

(
β̂(k)

)K
k=1

,
(
λ(k)

)K
k=1

1: β̂(0) = zeros(p, 1)
2: I(0)

1 = ∅
3: I(0)

0 = {1, . . . , p}
4: λ(0) ← maxj abs((Xj)tY)
5: j_next← arg maxj abs((Xj)tY)
6: α(0) ← XtY/λ(0)

7: k ← 0
8: while λ(k) > 0 do
9: ω = (Xt

I(k)XI(k))−1 sgn(β̂(k)
I(k))

10: z = Xt
0XIω

11: Compute λadd and λrem as in (5.15) and (5.19), and find the corresponding index j_next
to add or remove.

12: if λadd > λrem then
13: λ(k+1) ← λadd

14: I(k+1) ← I(k) ∪ {j_next}
15: I

(k+1)
0 ← I

(k)
0 \ {j_next}

16: β̂
(k+1)
I(k) = β̂

(k)
I(k) + (λ(k) − λ(k+1))w

17: β̂
(k+1)
j_next = 0

18: α
(k+1)
I

(k+1)
0

= 1
λ(k+1)

(
λ(k)α

(k)
I

(k+1)
0

+ (λ(k) − λ(k+1))z
I

(k+1)
0

)
19: else
20: λ(k+1) ← λrem

21: I(k+1) ← I(k) \ {j_next}
22: I

(k+1)
0 ← I

(k)
0 ∪ {j_next}

23: β̂
(k+1)
I(k+1) = β̂

(k)
I(k+1) + (λ(k) − λ(k+1))ωI(k+1)

24: β̂
(k+1)
j_next = 0

25: α
(k+1)
I

(k)
0

= 1
λ(k+1)

(
λ(k)α

(k)
I

(k)
0

+ (λ(k) − λ(k+1))z
)

26: α
(k+1)
j_next = ±1

27: end if
28: k ← k + 1
29: end while
30: Compute β̂(k+1) as in (5.23).
31: λ(k+1) ← 0
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Convergence and optimization of the algorithm

In the worst possible case, since the algorithm allows to add and remove variables, the regulariza-
tion path can explore the 2p + 1 possible subsets, exactly as an exhaustive exploration. [Mairal
& Yu 2012] even showed that the number of linear segments of the path could reach up to
(3p + 1)/2, so that it can be even more computationally expensive than an exhaustive explo-
ration. Nevertheless, this is only a worst-case result and in most cases where there are more
observations than variables (p < n), the path is often of size p + 1 (the first solution being the
null model). In practice, it is more frequent that a variable is deleted in the setting p ≥ n, and
this often occurs when the size of the selection exceeds the number of observations.

Turning to the issue of optimizing the algorithm, we notice that the most expensive oper-
ation is the inversion of matrix (Xt

IXI)−1 at each step. This issue is overcome by updating
(Xt

I(k+1)XI(k+1))−1 at step k+ 1 from (Xt
I(k)XI(k))−1, which has already been computed at step

k. This can be performed thanks to the Woodbury matrix identity. See the details in Appendix
A.1.

5.1.2 Algorithm for Minimax Concave Penalty

Overview of the problem

In this subsection, we are interested in computing the regularization path of the Minimax Con-
cave Penalty (MCP) estimator developed by [Zhang 2010]. [Zhang 2010] proposed an algorithm,
called MC+, that appears to be a subgradient descent computing the regularization path but is
not really clear to us, while [Breheny & Huang 2011] solve MCP through a coordinate descent
algorithm. This latter one does not compute the path but instead requires the user to set the
value(s) for the hyperparameter. Hence, we propose here our own LARS-type algorithm that
computes MCP’s regularization path. We first recall the corresponding optimization problem.
Let λ be a fixed positive scalar and let γ be another scalar such that γ > 1. The MCP estimator
is solution of the problem

min
β∈Rp

Jmcpλ (β) = 1
2 ‖ Y−Xβ ‖22 +λ

p∑
j=1

ρ(|βj |)

 , (5.24)

with

ρ(u) =
∫ u

0

(
1− v

γλ

)
+
dv =

{
λu− u2

2γ if u < γλ
γλ2

2 otherwise
, (5.25)

where u+ = max(u, 0). Note that the penalty term ρ(·) in Equation (5.25) is a linear combination
between the Lasso penalty and the hard thresholding penalty as defined by [Fan & Li 2001]:

ρ(u) = λ− 1
λ

(u− λ)21{u<λ}.

Therefore, only the components of β such that |βj | < γλ are subject to the penalization, while
the others are unbiased (hence the term nearly unbiased used by [Zhang 2010] to qualify the
MCP estimator).
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Optimality conditions for nonconvex and non differentiable problems

The functional can be decomposed as follows

Jmcpλ (β) = φ(β) + ϕ(β) (5.26)

with

φ(β) = 1
2 ‖ Y−Xβ ‖22 −h(β) (5.27)

h(β) = λ
p∑
j=1

{
β2
j

2γλ1{|βj |≤γλ} +
(
|βj | −

γλ

2

)
1{|βj |>γλ}

}
(5.28)

ϕ(β) = λ‖β‖1. (5.29)

Note that φ is differentiable but, for some values of λ and γ, not convex while ϕ is not dif-
ferentiable but convex. Figure 5.3 displays the shape of the function h(βj). The difficulty in

0
0

5

10

15

Figure 5.3: Evolution of function h(βj) with respect to the component βj .

solving Problem (5.24) thus comes from its non differentiability and nonconvexity, and the sub-
differential notion defined in 5.1 no longer applies. However, there exists a generalization of
the subdifferential to non convex functions, known as the Clarke differential, and defined as
follows [Clarke 1990].

Definition 5.2 (Clarke differential). The Clarke differential is defined, for locally Lipschitz
functions f , as the convex hull of some generalized gradient and more precisely

∂cf(β∗) =
{
g ∈ Rp

∣∣ gtd ≤ Dcf(β∗,d) for all d ∈ Rp
}

where Dcf(β,d) denotes the Clarke directional derivative of the function f at point β in the
direction d, defined by

Dcf(β,d) = lim sup
ε→0+,δ→β

f(δ + εd)− f(δ)
ε

.

Note that, for Jmcpλ , Clarke directional derivative coincides with the usual directional deriva-
tive.

For the minimization of a non smooth and non convex functional, if β∗ is a local minima of
the proper loss function Jmcpλ (β) then it verifies the inclusion

0 ∈ ∂cJmcpλ (β∗) (5.30)
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where ∂cJ
mcp
λ (β∗) denotes the Clarke subdifferential of the functional Jmcpλ at point β∗

[Clarke 1990]. Note that Condition (5.30) is the generalization of Condition (5.3) to nonconvex
functions.

As noticed in 5.26, our functional Jmcpλ can be split into the strictly differentiable term φ

and the convex term ϕ. In such a case, [Clarke 1990, Proposition 2.3.3, Corollary 1] shows that
Condition (5.30) becomes

β∗ is a local minima ⇒ −∇βφ(β∗) ∈ ∂ϕ(β∗), (5.31)

where ∇β φ(β∗) denotes the gradient of function φ at point β∗ and ∂ϕ(β∗) is the subdifferential
of the convex function ϕ at point β∗ (coinciding with its Clarke subdifferential).
Remark 5.1. Condition (5.31) suggest the use of a proximal algorithm to retrieve a stationary
point (see [Hare & Sagastizábal 2009] for details).
Remark 5.2. The question for Condition (5.31) to be a sufficient condition for a feasible point
to be a global minimizer remains.

From Condition (5.31), there exists one subgradient v of ϕ such that we have the equality

−∇βφ(β∗) = v ∈ ∂ϕ(β∗).

Computing the gradient of φ and from the subdifferential of the `1 – norm (5.4), the optimality
conditions for MCP are thus{

(Xj)t(Y−Xβ) = λ sgn(βj)ρ̇(|βj |) if βj 6= 0
|(Xj)t(Y−Xβ)| ≤ λ if βj = 0, (5.32)

where
ρ̇(t) =

(
1− t

γλ

)
+
.

These conditions are the same as that given in [Zhang 2010]2, and can also be recovered thanks
to Difference of Convex (DC) programming [An & Tao 2005]. Indeed, Problem (5.24) can be
expressed in a third way as

min
β∈Rp

{
Jmcpλ (β) = J lassoλ (β)− h(β)

}
,

where h(β) is defined by (5.28), and both J lassoλ (β) and h(β) are convex. Indeed, [An & Tao 2005]
give the following optimality condition for DC programs

β∗ is a local minima ⇒ ∇βh(β∗) ∈ ∂J lassoλ (β∗), (5.33)

which gives exactly (5.32). However, the condition for (5.33) to be valid is that Jmcpλ is a
polyhedral convex, which does not seem to be the case here. Nevertheless, Equation (5.33)
can be obtained again thanks to Clarke differential, noticing that h is differentiable and J lassoλ is
nondifferentiable but convex. Note that DC algorithms have been developed in [Gasso et al. 2009]
for several nonconvex optimization problems, but not for MCP.

The conditions in (5.32) are pretty close to the system of equations (5.6) and (5.7), where we
had ρ̇(t) = 1. Hence, regularization path algorithms can be computed for nonconvex problems.

2Note that [Zhang 2010] gives Condition (5.32) without justifying their origin.
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Also, it allows us to use the same trick as for Lasso and partition the system into the selection set
I and the rejection set I0. However, this time, the system is a little more complicated as the set I
itself contains two subsets: the subset IP = {j ∈ I \λ ≤ |βj | < γλ} corresponding to the indices
of the penalized nonzero components βj , and the subset IN = {j ∈ I \ |βj | ≥ γλ} corresponding
to the indices of the unpenalized nonzero components βj . There are thus 4 possible moves of a
given index j, as shown on Figure 5.4.

Figure 5.4: Possible moves between the subsets of indices of β.

From conditions (5.32), we derive the following system of equations:

Xt
IXIβI −Xt

IY+
(

0
λ sgn(βP )− γ−1βP

)
= 0 (5.34)

Xt
0XIβI −Xt

0Y+ λα0 = 0, (5.35)

where α0 is defined as in (5.5), that is, a vector of size p−k with components in [−1; 1]. Note that
Equation (5.35) is exactly the same as (5.7) for Lasso. This follows from the fact that the penalty
functions of Lasso and MCP are identical for |βj | < λ, so that the respective subdifferentials of
J lassoλ and Jmcpλ are the same at β = 0. Equation (5.34) can be reformulated as(

Xt
IXI − γ−1ΥI

)
βI −Xt

IY + λ sI = 0, (5.36)

where sI =
(

0
sgn(βP )

)
and ΥI = diag(sI). We thus obtain the following expression of the

MCP estimator:
β̂mcpλ,γ = (Xt

IXI − γ−1ΥI)−1(Xt
IY− λ sI). (5.37)

Here however, special care should be taken on the eigenvalues of the matrix (Xt
IXI − γ−1ΥI).

Indeed, as they can be both positive or negative, one of them could also be null or close to null,
so that the matrix would be ill-conditioned. In that case, [Zhang 2010] recommands using the
following value for γ:

γ = 2
1−maxj 6=k |(X

j)tXk|
n

.

Note also that there is a certain similarity with the Elastic Net estimator proposed by [Zou &
Hastie 2005] when IN = ∅ and IP = I. But the difference stands in that the identity matrix
(up to the factor γ−1) is substracted to the matrix XtX in MCP, whereas it is added to XtX in
Elastic Net. The consequence of that fact is that the Elastic Net estimator is even more biased
than the Lasso estimator, while MCP corrects Lasso’s bias.
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Computing the regularization path of MCP

The algorithm we propose for solving MCP is inspired by the LARS algorithm we presented in
the previous subsection. Indeed, we start with the null model β̂mcp

λ(0),γ
= 0 and add the variables

one at a time until we reach the least-squares solution for λ(K) = 0. The difference here is that
we need to check at each step whether there is a variable in IP that should be “depenalized” and
should enter IN , or on the contrary a variable should be “repenalized”, meaning that it should
move from IN to IP . The very first step of the algorithm is exactly the same as for Lasso, that
is,

λ(0) = max
j
|(Xj)tY| = |(Xj1)tY|. (5.38)

The following ones are similar, too, except for the presence of the second hyperparameter γ:

λ(1) = max
j∈I0

λ(0) αj − 1
(Xj1 )tXj1−γ−1 (Xj)tXj1(Xj1)tY

±1− 1
(Xj1 )tXj1−γ−1 (Xj)tXj1 sgn(β̂′j1)

.

This goes on until one variable enters the set IN . Assume that we have run the algorithm up
to step k, and we thus have at hand λ(k), I(k)

P , I(k)
N , I(k)

0 , β̂mcp
λ(k),γ

and α(k)
0 . We look for the next

value of λ that will make a new variable enter the set IP . From Equation (5.35), we have that

Xt
0XI(β̂

mcp

λ(k),γ
)I −Xt

0Y + λ(k) α
(k)
0 = 0 (5.39)

and, for λ′ ∈ (λ(k), λ(k+1)), the subsets stay unchanged so that

Xt
0XIβ

′
I −Xt

0Y + λ′ α′0 = 0. (5.40)

Substracting (5.39) to (5.40) yields

Xt
0XI(β′I − (β̂mcp

λ(k),γ
)I) + λ′ α′0 − λ(k) α

(k)
0 = 0.

Replacing β′I and (β̂mcp
λ(k),γ

)I by the expression in (5.37) and reordering the equation, we obtain

λ′
(
α′0 −Xt

0XI(Xt
IXI − γ−1ΥI)−1sI

)
= λ(k)

(
α

(k)
0 −Xt

0XI(Xt
IXI − γ−1ΥI)−1sI

)
. (5.41)

A variable from I0 enters IP when its corresponding αj reaches ±1, so that

λadd(j) = λ(k) +
λ(k)(α(k)

j −±1)
±1− (Xj)tXI(Xt

IXI − γ−1ΥI)−1sI
. (5.42)

A variable thus enters the subset I when

λ∗add = max
j∈I0

{
λadd(j) \ λadd(j) > 0 and λadd < λ(k)

}
= λadd(j∗)

does exist.
Doing the same with Equation (5.36), we obtain the following equation

(β′I − (β̂mcp
λ(k),γ

)I) = (λ(k) − λ′)(Xt
IXI − γ−1ΥI)−1sI .
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A variable from IP re-enters I0 when its coefficient βj takes the value 0, so that

λrem(j) = λ(k) +
(β̂mcp
λ(k),γ

)j
{(Xt

IXI − γ−1ΥI)−1sI}j
, (5.43)

and the first one to do so is the one for which we have

λ∗rem = max
j∈IP

{
λrem(j) \ λrem(j) > 0 and λrem(j) < λ(k)

}
= λrem(j∗).

The computations of λ∗add and λ∗rem are basically the same than for Lasso, except for the
part with γ. Now we need to compute the value λ∗dep such that one variable moves from IP
to IN (the “depenalization” step), and λ∗rep such that one variable moves from IN to IP (the
“repenalization” step). For the first one, we go back to Equation (5.41). The limit is reached
when one coefficient βj takes the value γλ sgn(βj), since it is the limit of the penalized set
{|βj | ≤ γλ}. This leads to the equation

(γλ sgn(β̂mcp
λ(k),γ

)j − (β̂mcp
λ(k),γ

)j) = (λ(k) − λ′)
{

(Xt
IXI − γ−1ΥI)−1sI

}
j
,

which in turn yields

λdep(j) =
(β̂mcp
λ(k),γ

)j + λ(k) {(Xt
IXI − γ−1ΥI)−1sI

}
j

γ sgn(β̂mcp
λ(k),γ

)j + {(Xt
IXI − γ−1ΥI)−1sI}j

= λ(k) +
(β̂mcp
λ(k),γ

)j − γλ(k) sgn(β̂mcp
λ(k),γ

)j
γ sgn(β̂mcp

λ(k),γ
)j + {(Xt

IXI − γ−1ΥI)−1sI}j
. (5.44)

The best value of λdep(j) is thus

λ∗dep = max
j∈IP

{
λdep(j) \ λdep(j) > 0 and λdep(j) < λ(k)

}
= λdep(j∗).

Finally, it is easy to see that the same limit is reached on the other side for a variable to
move from IN to IP , involving the same equation, so that we obtain

λrep = λ(k) +
(β̂mcp
λ(k),γ

)j − γλ(k) sgn(β̂mcp
λ(k),γ

)j
γ sgn(β̂mcp

λ(k),γ
)j + {(Xt

IXI − γ−1ΥI)−1sI}j
, (5.45)

and the first variable to do so is the one for which we have

λ∗rep = max
j∈IN

{
λrep(j) \ λrep(j) > 0 and λrep(j) < λ(k)

}
= λrep(j∗).

The only difference occurrs on the maximization under the set IN instead of IP . Now that we
can compute the value of λ for any move, the end of step k + 1 goes as for the Lasso, that is,
we set

λ(k+1) = max{λ∗add;λ∗rem;λ∗dep;λ∗rep}, (5.46)
and we perform the corresponding changes for the sets I0, IP and IP . The step ends with the
update of β̂mcpλ,γ and α0 through

(β̂mcp
λ(k+1),γ

)I = (β̂mcp
λ(k),γ

)I + (λ(k) − λ(k+1))(Xt
IXI − γ−1ΥI)−1sI (5.47)

α
(k+1)
0 = λ(k)

λ(k+1)α
(k)
0 −

1
λ(k+1) Xt

0XI

{
(β̂mcp
λ(k+1),γ

)I − (β̂mcp
λ(k),γ

)I
}
. (5.48)

Just like for Lasso, the final step is computed through (5.47) with λ(K) = 0:

β̂mcp
λ(K),γ

= β̂mcp
λ(K−1),γ

+ λ(K−1)(XtX− γ−1S)−1s.
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The algorithm

Algorithm 5.2 merges all these steps and uses a subfunction for the possible moves between I0,
IP and IP , called update_subset and given in the Appendix A.3.

Convergence and optimization of the algorithm

The mere fact that the algorithm allows 4 possible moves for a given index (add or removed
from selection, and depenalization of repenalization) implies a larger computational time than
for Lasso. In practice, we observe that it is around 2 to 3 times longer in most cases where
Lasso’s regularization paths contains p + 1 subsets. Figure 5.5 compares both regularization
paths in the case where there are more variables than observations (n < p). In this case, MCP’s
path presents a zone of instability, shown by the grey zone, before converging to one of the
Least-squares solutions.

Just like in the LARS algorithm, the most expensive operation is the inverse of matrix
(Xt

IXI − γ−1ΥI). We can again use the Woodbury matrix equality in order to update the
inverse at step k + 1 thanks to the one computed at step k (see Appendix A.1).

log λ

β
L

A
R

log λ 

β
M

C
P

Figure 5.5: Regularization paths for Lasso and MCP, with p = 50 variables and n = 20 obser-
vations. The grey zone shows the instability of MCP before it converges to Least-
squares, while Lasso is stable all along the path.

5.2 Random variable generation for spherically symmetric distribu-
tions

In this section, we are concerned with the generation of spherically symmetric random vectors.
Indeed, we propose to compare on a simulation study the performances of our criteria for several
spherical laws, since they are supposed to be independent of the particular form of the distribu-
tion. The simulation study is done in Chapter 6, but we study here the generation of random
vectors from spherical laws. We expose in the sequel a way to perform such a pseudo-random
number generator through their representation as scale mixture of spherical distributions that
are easier to generate. We divide the presentation into two parts: representation as a mixture
of uniforms on spheres, which exists for any spherical distribution since it corresponds to the
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Algorithm 5.2 LARS-MCP: Main program
Require: X,Y, γ
Ensure:

(
β̂(k)

)K
k=1

,
(
λ(k)

)K
k=1

β̂(0) ← 0
I

(0)
P ← ∅ I

(0)
N ← ∅ I

(0)
0 ← {1, . . . , p}

λ(0) ← maxj |(Xj)tY|
j_next← arg maxj |(Xj)tY|
α(0) ← XtY/λ(0)

k ← 0
while λ(k) > 0 do

[I(k+1)
N , I

(k+1)
P , I

(k+1)
0 ]← update_subset (I(k)

N , I(k)
P , I(k)

0 , j_next, move)
I ← I

(k)
N ∪ I

(k)
P

s =
(

0(nN ,1)

sign(β̂(k)
P )

)
ω =

{
Xt
IXI − γ−1diag(s)

}−1
s

z = Xt
0XIω

jadd = arg maxj∈I0

{
λadd(j) = λ(k) + αj −±1

±1− zj

∣∣∣∣∣ 0 < λadd(j) < λ(k)
}

λ∗add = λadd(jadd)

jrem = arg maxj∈IP

λrem(j) = λ(k) +
β̂

(k)
j

ωj

∣∣∣∣∣ 0 < λrem(j) < λ(k)


λ∗rem = λrem(jrem)

jdep = arg maxj∈IP

λdep(j) = λ(k) +
β̂

(k)
j − γλ(k)sign(β̂(k)

j )
γsign(βj)− ωj

∣∣∣∣∣ 0 < λdep(j) < λ(k)


λ∗dep = λdep(jdep)

jrep = arg maxj∈IN

λrep(j) = λ(k) +
β̂

(k)
j − γλ(k)sign(β̂(k)

j )
γsign(βj)− ωj

∣∣∣∣∣ 0 < λrep(j) < λ(k)


λ∗rep = λrep(jrep)
jcandidates = {jadd} ∪ {jrem} ∪ {jdep} ∪ {jrep}
λcandidates = {λ∗add} ∪ {λ∗rem} ∪ {λ∗dep} ∪ {λ∗rep}
tmp = arg max λcandidates
λ(k+1) = λcandidates(tmp)
j_next = jcandidates(tmp)
β̂

(k+1)
I = β̂

(k)
I + (λ(k) − λk+1)ω

α
(k+1)
0 = (λ(k+1))−1

(
λ(k)α

(k)
0 + (λ(k) − λk+1)z

)
k ← k + 1

end while
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stochastic representation of spherical vectors, and representation as scale mixtures of centered
Gaussians, which are also easy to generate. Other possibilities can be found in [Devroye 1986].

5.2.1 Through the stochastic represention

The first and more general way to generate a spherically symmetric random vector is to consider
its stochastic representation. Indeed, we recall that, whatever the density of a spherical vector
Y is, this vector can be written as

Y = RU R = ‖Y ‖ > 0, U = Y/‖Y ‖ ∼ US1 , R, U are independent (5.49)

where R is the radius of Y , U is its direction, and US1 is the uniform distribution on the sphere
S1 of unit radius. Hence, if we can generate U , then any distribution with support (0,∞) can
be used to generate the radius R and thus to generate a spherical random vector Y . Therefore
our interest turns now towards the generation of uniform random vectors on spheres.

To do so, we propose to look at the expression of U ∈ Rn through its spherical coordinates:



U1
U2
U3
· · ·
Un−1
Un


=



sin θ1 sin θ2 . . . sin θn−2 sin θn−1
sin θ1 sin θ2 . . . sin θn−2 cos θn−1
sin θ1 sin θ2 . . . cos θn−2
· · ·
sin θ1 cos θ2
cos θ1


, (5.50)

where (θ1, . . . , θn−1) ∈ (0, π)n−2×(0, 2π). According to [Fourdrinier et al. 2012] , if U is uniformly
distributed on the sphere S1, then the density of θi is proportional to sinn−i−1 θi on (0, π) for
1 ≤ i ≤ n− 2, and θn−1 is uniformly distributed on the interval (0, 2π). We propose to generate
the angles θi, 1 ≤ i ≤ n − 2, thanks to an accept-reject method, described in Algorithm 5.3.
Our generator for uniforms on the unit sphere can be easily derived from Algorithm 5.3 and is
described in Algorithm 5.4.

Algorithm 5.3 randsin
Require: Power p ∈ N∗
Ensure: Angle θ ∈ (0, π)
test = false
while test 6= true do
Generate u and v as U([0, 1])
Compute t = sinp(πv).
if u ≤ t then
θ ← t

test ← true
end if

end while
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Algorithm 5.4 randSphere
Require: Length n ∈ N∗
Ensure: Vector U ∈ Rn
for i = 1, . . . , n− 2 do
θi = randsin(n− i− 1).

end for
Generate θn−1 as U([0, 2π]).
Compute U as in (5.50).

However, due to the accept-reject method in Algorithm 5.3 and to the large number of op-
erations, the Algorithm 5.4 can be quite slow. If an efficient generator of Gaussian random
variables is available, a faster way to generate U can be derived through the Gaussian distri-
bution, as proposed by [Devroye 1986]. Indeed, the stochastic representation (5.49) is valid for
any spherically symmetric distribution, in particular for the Gaussian distribution. Hence, if
Z ∼ Nn(0, σ2In), then U = Z/‖Z‖ is uniform on the sphere S1. Thus, the alternative algorithm
for randSphere (5.4) can be easily derived as in Algorithm 5.5.

Algorithm 5.5 randSphereGauss
Require: Length n ∈ N∗
Ensure: Vector U ∈ Rn
Generate n standard random variables Ni ∼ N (0, 1).
Compute S =

∑n
i=1N

2
i .

Compute U = (N1, . . . , Nn)/S.

Figure 5.6 compares the repartition of vectors generated by both Algorithm 5.4 and Algo-
rithm 5.5 for n = 2 and n = 3.

We now present a few examples of spherically symmetric random vectors Y that can be
generated thanks to their stochastic representation, and we specify each time the distribution
of their radius R. Before doing so, we state a result on the link between the density of Y and
the density of its radius, given in [Kelker 1970].

Lemma 5.1 (Radial distribution). Let Y ∼ Sn(0) have a density of the form

p(y) = g(‖y‖2/σ2).

Then, its radius R = ‖Y ‖ has density

h(r) = 2πn/2

Γ(n/2)r
n−1g(r2).

The function g is called the generating function.

Example 5.1. If Y is a spherical standard Gaussian random vector, Y ∼ Nn(0, In), then it is
well known that the square of its radius follows a Chi-squared distribution with n degrees of
freedom: R2 ∼ χ2(n) (see for instance [Fang et al. 1989]). If Y is a spherical Gaussian random
vector with variance σ2, then its radius is R = ‖Y ‖/σ and its square still follows a Chi-squared
distribution.
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Figure 5.6: Histogram of a uniform vector on the sphere generated by Algorithm 5.4 (top) and
Algorithm 5.5 (bottom) for n = 2 (left) and repartition for n = 3 (right).

Example 5.2. If Y is a Student random vector, Y ∼ Tn(ν), where ν is the degrees of freedom,
then the square of its radius follows a Fisher distribution: R2 ∼ nFisher(n, ν). Indeed, we recall
that the density of Y is

p(y) =
Γ
(
n+ν

2
)

(πσ2ν)
n
2 Γ
(
ν
2
) (1 + ‖y‖

2

νσ2

)− (ν+n)
2

.

Hence, from Lemma 5.1, we can compute the density of its radius

h(r) = 2πn/2

Γ(n/2)r
n−1 ×

Γ
(
n+ν

2
)

(πσ2ν)
n
2 Γ
(
ν
2
) (1 + r2

νσ2

)− (ν+n)
2

= 2rn−1

(σ2ν)
n
2B

(
ν
2 ,

n
2
) (1 + r2

νσ2

)− (ν+n)
2

.



5.2. Random variable generation for spherically symmetric distributions 121

Now, by the change of variable t = r2/n, this leads to

h(t) = 2(nt)
n−1

2

(σ2ν)
n
2B

(
ν
2 ,

n
2
) (1 + nt

νσ2

)− (ν+n)
2
× 1

2
√
nt

= 1
tB
(
ν
2 ,

n
2
)(nt)

n
2 (νσ2)−

n
2 (νσ2)

ν+n
2
(
νσ2 + nt

)− (ν+n)
2

= 1
tB
(
ν
2 ,

n
2
)(nt)

n
2 (νσ2)

ν
2
(
νσ2 + nt

)− (ν+n)
2 ,

which is exactly a Fisher distribution with parameters n and ν.

Example 5.3. If Y is a Kotz random vector, Y ∼ Kn(N, r, σ2), then [Fang et al. 1989] showed
that the square of its radius follows a Gamma distribution: R2 ∼ Gamma(N + n/2− 1, σ2/r).
Indeed, the density of Y is

p(y) =
Γ
(
n
2
)
r

2N−2+n
2

π
n
2 (σ2)

n+2N−2
2 Γ

(
2N−2+n

2

)‖y‖2(N−1)e−r
‖y‖2

σ2 .

Thanks to Lemma 5.1, the density of its radius is thus

h(R) = 2πn/2

Γ(n/2)R
n−1 ×

Γ
(
n
2
)
r

2N−2+n
2

π
n
2 (σ2)

n+2N−2
2 Γ

(
2N−2+n

2

)R2(N−1)e−r
R2
σ2

= 2r
2N−2+n

2

(σ2)
n+2N−2

2 Γ
(

2N−2+n
2

)Rn+2N−3e−r
R2
σ2 .

With the change of variable t = R2, we obtain

h(t) = 2r
2N−2+n

2

(σ2)
n+2N−2

2 Γ
(

2N−2+n
2

) tn+2N−3
2 e−r

t
σ2

1
2
√
t

= 1
Γ
(

2N−2+n
2

) ( r

σ2

) 2N−2+n
2

t
n+2N−4

2 e−
r
σ2 t,

which is the Gamma distribution with parameters n+2N−2
2 and σ2

r .

Example 5.4. We now take the example of an exponential power random vector Y , with power
b. Its density is

p(y) =
nΓ
(
n
2
)

(πσ2)
n
2 21+ n

2bΓ
(
1 + n

2b
) exp

−1
2

(
‖y‖2

σ2

)b,
whose radial density can be computed as follows

h(r) = 2πn/2

Γ(n/2)r
n−1 ×

nΓ
(
n
2
)

(πσ2)
n
2 21+ n

2bΓ
(
1 + n

2b
) exp

−1
2

(
r2

σ2

)b
= n

(σ2)
n
2 2

n
2bΓ

(
1 + n

2b
)rn−1 exp

−1
2

(
r2

σ2

)b .
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Again, by the change of variable t = r2b, this leads to

h(t) = n

(σ2)
n
2 2

n
2bΓ

(
1 + n

2b
) tn−1

2b exp
{
− t

2σ2b

}
× t

1
2b−1

2b

= n

b(σ2)
n
2 21+ n

2bΓ
(
1 + n

2b
) t n2b−1 exp

{
− t

2σ2b

}
= n

b(σ2)
n
2 21+ n

2b n2bΓ
(
n
2b
) t n2b−1 exp

{
− t

2σ2b

}
= 1

(σ2)
n
2 2

n
2bΓ

(
n
2b
) t n2b−1 exp

{
− t

2σ2b

}
,

where the last two equations derive from the property of the the gamma function, Γ(z + 1) =
zΓ(z). We obtain once again a Gamma distribution, but this time for the squared radius to the
power b: R2b ∼ Gamma

(
n
2b , 2σ

2b
)
.

Name Density of Y Density of radius R = ‖Y ‖

Gaussian Y ∼ Nn(0, σ2In) R2 ∼ χ2(n)

Student Y ∼ Tn(ν) R2

n
∼ Fisher(n, ν)

Kotz Y ∼ Kn(N, r, σ2) R2 ∼ Gamma
(
N + n

2 + 1, r
σ2

)
Exponential Power Y ∼ EPn(b, σ2) R2b ∼ Gamma

(
n
2b , 2σ

2b
)

Table 5.1: Distribution of the radius for several spherical laws.

Remark 5.3. The examples cited here are only the most known distributions. But we can easily
derive other spherically symmetric distributions by taking other densities for the radius. There
exist indeed other continuous densities with support (0,∞) which have already been studied for
random generation. For instance, we can think of the Weibull density or the Lévy distribution.

5.2.2 Through mixtures of other spherical distributions

Another way to generate spherically symmetric distributions is through the property that any
scale mixture of spherically symmetric distributions is also a spherically symmetric distribution.
This property was already used in the previous section since the stochastic representation is
a scale mixture of uniforms on the unit sphere, which are spherically symmetric. Here we
extend the principle to other scale mixtures, like for instance Gaussian mixtures. Indeed, several
distributions can be seen as scale Gaussian mixtures, such as the Student distribution and the
Bessel distribution, as we will see next. The general principle is the same as in the previous
subsection:

1. Generate a vector X ∈ Rn from the chosen spherical density.

2. Generate the scale random variable V according to the density corresponding to the desired
mixture.
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3. Compute the resulting random vector Y =
√
V X.

We recall that a scale Gaussian mixture is written as

p(y) = 1
(2π)

n
2

∫ ∞
0

1
v
n
2
e−
‖y‖2

2v g(v)dv (5.51)

Example 5.5. The Student distribution with ν degrees of freedom is a mixture of Gaussian
with mixing density an inverse Gamma distribution with parameters ν/2 and ν/2. Indeed, the
density of an inverse Gamma distribution with parameters α and β is

g(v) = βα

Γ(α)v
−α−1e−

β
v .

Hence, the mixture density (5.51) becomes

p(y) = 1
(2π)

n
2

∫ ∞
0

1
v
n
2
e−
‖y‖2

2v ×
(
ν

2

) ν
2

Γ−1
(
ν

2

)
v−

ν
2−1e−

ν
2v dv

= ν
ν
2

2
n+ν

2 π
n
2 Γ
(
ν
2
) ∫ ∞

0

1
v
n
2 + ν

2 +1 e
−
(
‖y‖2+ν

2v

)
dv.

We recognize in the integral an inverse Gamma distribution with parameters α = (n+ ν)/2 and
β = (‖y‖2 + ν)/2, so that we have

∫ ∞
0

1
v
n
2 + ν

2 +1 e
−
(
‖y‖2+ν

2v

)
=
(
‖y‖2 + ν

2

)−n+ν
2

Γ
(
n+ ν

2

)
.

Hence, we obtain

p(y) = ν
ν
2

2
n+ν

2 π
n
2 Γ
(
ν
2
)
(
‖y‖2 + ν

2

)−n+ν
2

Γ
(
n+ ν

2

)

=
Γ
(
n+ν

2
)

(πν)
n
2 Γ
(
ν
2
) (‖y‖2

ν
+ 1

)−n+ν
2

,

which is the Student distribution with paramater ν.

Example 5.6. The last example we are going to treat in this section is the one of the multivariate
Bessel distribution. We recall that, if Y ∼ Bn(q, r, σ2), its density is of the form

p(y) = 1
2q+n−1π

n
2 rn+qΓ

(
q + n

2
)‖y‖qKq

(√
‖y‖2
r

)
,

where Kq(z) is the modified Bessel function of the third kind defined, for | arg z| < π, by

Kq(z) = π

2 sin(qπ)(I−q(z)− Iq(z))

with
Iq(z) =

∞∑
k=0

1
k! Γ(k + q + 1)

(
z

2

)q+2k
.
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This distribution is a scale mixture of Gaussian laws with mixing density a Gamma distribution
with parameters q + n/2 and 1/(2r2). Indeed, such a mixing distribution has density

g(v) =
(

(2r2)q+
n
2 Γ
(
q + n

2

))−1
vq+

n
2−1e−

v
2r2 .

The normal mixture thus becomes

p(y) = 1
(2π)

n
2

∫ ∞
0

1
v
n
2
e−
‖y‖2

2v ×
(

(2r2)q+
n
2 Γ
(
q + n

2

))−1
vq+

n
2−1e−

v
2r2 dv

= 1
2q+nπ

n
2 (r2)q+

n
2 Γ
(
q + n

2
) ∫ ∞

0
vq−1e−

v
2r2−

‖y‖2
2v dv.

We recognized in the integral a generalized inverse Gaussian distribution with parameters 1/r2,
‖y‖2 and q, which has density

g(v) = 1
2 (r‖y‖)qKq

(
‖y‖
r

)vq−1e−
v

2r2−
‖y‖2

2v .

Hence, the integral can be easily computed since∫ ∞
0

g(v) = 1,

so that ∫ ∞
0

vq−1e−
v

2r2−
‖y‖2

2v dv = 2 (r‖y‖)qKq

(‖y‖
r

)
.

Finally, we obtain

p(y) = 1
2q+nπ

n
2 (r2)q+

n
2 Γ
(
q + n

2
) × 2 (r‖y‖)qKq

(‖y‖
r

)
= 1

2q+n−1π
n
2 rq+nΓ

(
q + n

2
)‖y‖qKq

(‖y‖
r

)
,

which we recognize as the multivariate Bessel distribution.
Note that the Laplace distribution is a special case of multivariate Bessel distributions with

parameters q = 0 and r = σ/
√

2. Hence the Laplace distribution is a scale mixture of Gaussian
laws with mixing density V ∼ Gamma

(
n
2 ,

1
σ2

)
.

Table 5.2 summarizes these examples, which are based on [Andrews & Mallows 1974], [Fang
et al. 1989], [Feller 1966], [West 1987].
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Name Density of Y Density of scale V

Student Y ∼ Tn(ν) 1
V
∼ Gamma

(
ν

2 ,
2
ν

)
Laplace Y ∼ Ln(b) V ∼ Gamma

(
n
2 ,

1
σ2

)
Bessel Y ∼ Bn(q, r) V ∼ Gamma

(
q + n

2 ,
1

2r2

)
Exponential Power Y ∼ EPn(b, σ2) V ∼ Stable law

(
α
2 , 1, γ, 0

)
Logistic Y ∼ Logn(σ2)

√
V

2 ∼ Kolmogorov

Table 5.2: Distribution of the scale for Gaussian mixtures.
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This chapter presents numerical results on model selection problems. There exist many em-
pirical studies in the literature. But, due to the complexity of the model selection issues, they
generally focus on some specific aspects. For instance, algorithmic studies aim at demonstrating
the superiority of a given algorithm for a chosen selection procedure (see for instance [El An-
bari 2011]). From the model selection point of view, the empirical studies generally aim at
demonstrating the superiority of a given criterion for a chosen algorithm (see for instance [Ba-
raud et al. 2009]). In this work, we try to discuss both aspects under different noise distributions.

This chapter is divided into two main studies. The first study intends to determine the
adequacy of methods used in the construction of collections of model with the objective of
good prediction through the estimation loss (or prediction risk), before considering the actual
problem of estimating the estimation loss based on data in the second study, where we compare
the criteria we developed based on the theory of loss estimation to the existing methods from
literature presented in Chapter 2.

6.1 How good is the oracle?

6.1.1 Purpose of the study

This first study compares the different methods presented in Chapter 2, Section 2.3 used for
the construction of collections of models and their associated estimator, namely sparse regular-
ization methods and stagewise methods. Before considering the problem of the estimation of
the estimation loss or the prediction risk in the following study, we consider the problem of the
adequacy of the resulting collections of estimations with an objective of good prediction based
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on the true estimation loss (or prediction risk). In order to do so, we will use our knowledge of
the true underlying system in simulated data to compute the true estimation loss on the col-
lection of estimations {β̂1, . . . , β̂M} and select the estimation having lower estimation loss. The
question this simulation study tries to answer is thus: if we knew the true loss, how good
would be the best estimation from the collection {β̂1, . . . , β̂M}, meaning how shall we
explore the submodels and, for each submodel, how shall we estimate the regression coefficient?

This question will be answered in various settings: first, when the design matrix X is or-
thogonal, in which case the paths are the same for all the methods and the difference lies only
in the estimation; next, when the design matrix X is general so that both the paths and the
estimations can be different; and finally, when we ultimately replace their respective estimations
by the restricted least-squares solution, hereby comparing the paths.

6.1.2 Sparse regularization paths versus stepwise methods

Protocol

We propose the following example, based on [Fourdrinier & Wells 1994]. The regression co-
efficient β is set to (2; 0; 0; 4; 0)t. The design matrix X is either orthogonal, or general with
correlation matrix Σ. The non diagonal elements of Σ are uniformly drawn between 0 and
ρ, where ρ is taken in the set {0; 0.2; 0.4; 0.5; 0.6; 0.8}. Since the theoretical study of previous
chapters was under the fixed design assumption, we thus generate X once and fix it for the rest
of the experiment. We then draw R = 5000 replicates of the noise vector ε from a Gaussian
distribution with covariance matrix σ2In, where σ2 is taken in {0.2; 0.4; . . . ; 3.8; 4}. We also
make the number n of obervations vary in {20; 40; . . . ; 80; 100}. Finally, we run the experiment
10 times, leading to 10 different examples for X.

For each example and each replicate, we run the algorithms corresponding to the methods
described in Chapter 2, Section 2.3, recalled in Table 6.1. No stopping criterion is used, so that
the entire regularization path is built, starting with the null model with no variable and ending
with the full model (except for Backward Selection which produces the reverse path). Also,
we fix the hyperparameters that do not tune the sparsity. Indeed, these extra hyperparameters
generally tune the bias. Hence, it could be interesting to set them to a value leading to the lower
bias, often leading to an estimator close to the restricted Least-squares estimator. However, it
is not always a good choice in view of a selection based on the generalized degrees of freedom
d̂f as a measure of complexity, since in some cases low bias also leads to high value of d̂f (see
Figure 6.1). Therefore, we considered the values suggested by the authors of each method.

Then, we select the the model minimizing the true loss in the collection {β̂1, . . . , β̂M}, that
is,

β̂m∗ = arg min
β̂∈{β̂1,...,β̂M}

‖Xβ̂ −Xβ‖2.

Note that β̂m∗ corresponds to the oracle.
Finally, we compute the following measures of quality of the selection: the frequency of

selection of the true subset (freq), the average number of nonzero coefficients (k̄), and the average
F-score (F-score), the F-score being defined for each replicate as a combination of the numbers of
true positive (TP), true negative (TN), false positive (FP) and false negative (FN). The terms
positive/negative relate to the nonzero/zero components in the estimated coefficient β̂, while
true/false relate to the correctly/incorrectly classified when compared to the true regression
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Name Method Extra hyperparame-
ters

lasso Lasso −
firm MCP / Firm Shrinkage γ = 2
adalasso Adaptive Lasso w = (β̂LSj )−2

garrote Garrote w = (β̂LSj )−1

enet Elastic-Net λ2 = 0.3
adanet Adaptive Elastic-Net w = (β̂LSj )−2, λ2 = 0.3
scad SCADa a = 3.7
forward Forward Selection −
backward Backward Elimination −

aonly for the orthogonal design case

Table 6.1: Methods for constructing collections of models.
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f

Figure 6.1: The necessity of trading off bias and generalized degrees of freedom. This graph
results from the Firm Shrinkage (orthogonal design), where the hyperparameter γ
has been taken between 1 and 2.

coefficient β). The corresponding formulas are

freq(β̂) = 1
R

R∑
r=1

1{sgn(β̂(r))=sgn(β)} (6.1)

k̄(β̂) = 1
R

R∑
r=1

p∑
j=1

1{
sgn
(
β̂

(r)
j

)
6=0
} (6.2)

F-score(β̂) = 1
R

R∑
r=1

2TP
(
β̂(r)

)
2TP

(
β̂(r)

)
+ FP

(
β̂(r)

)
+ FN

(
β̂(r)

) (6.3)

= 1
R

R∑
r=1

2TP
(
β̂(r)

)
p+ TP

(
β̂(r)

)
− TN

(
β̂(r)

) ,
where

TP(β̂) = #
{
β̂j 6= 0 \ βj 6= 0

}
, TN(β̂) = #

{
β̂j = 0 \ βj = 0

}
,

FP(β̂) = #
{
β̂j 6= 0 \ βj = 0

}
, FN(β̂) = #

{
β̂j = 0 \ βj 6= 0

}
.



130 Chapter 6. Numerical study

Note that the F-score is equal to 0 if all the true nonzero coefficients of β have been incorrectly
estimated to be zero (TP = 0), while it is equal to 1 when they have been correctly classified as
nonzero (TP = # {βj 6= 0}) and the true zero coefficients in β have been also correctly classified
as null, in which case we have FP = FN = 0. Hence, a good selection is represented by a
frequency of good selection/recovery and an average F-score both close to 1, while the average
number of estimated nonzero coefficients in β̂ should be close to the true number of nonzero
coefficients in β, which we denote k∗ (in our small example, k∗ = 2).

Orthogonal design case

In this paragraph, we compare the methods from Table 6.1 when X is an orthogonal design
matrix, i.e. when we have XtX = Ip.

Same path, different estimations. A special feature of the orthogonal design case is that
the regularization paths provided by all the methods are exactly the same. Indeed, it can
be easily verified for the sparse regularization methods since, in that case, they correspond to
thresholding methods of the form

β̂j = s((Xj)tY ;λ)1{|(Xj)tY |>λ},

where s(· ;λ) is a shrinkage function depending on the method. For instance, the shrinkage
function for Lasso is s(t;λ) = t − λ sgn(t). In order to perform the paths so that the variables
are added to the selection one at a time, a convenient choice for the sequence of hyperparameters
(λm)Mm=1 is

λm =
{
|(Xjm)tY |, if 1 ≤ m ≤M − 1,
0, if m = M,

(6.4)

where the index sequence (j1, . . . , jM−1) is a reordering of (1, . . . , p) such that

|(Xj1)tY | ≥ · · · ≥ |(XjM−1)tY |.

Since this sequence of hyperparameters does not depend at all on the shrinkage function s(· ;λ),
we can easily notice that the only difference results in the amount of shrinkage on each coefficient
β̂j and that the corresponding path of selected variables is (I1, . . . , IM ) with

I1 = ∅ and Im = {j1, . . . , jm−1}, 2 ≤ m ≤M. (6.5)

It is also straightforward but a little more tricky to demonstrate that stagewise methods gives
the same paths as sparse regularization methods. If we take for instance Forward Selection, we
recall that the criterion to maximize for adding the next variable into the selection is, for all
j ∈ {1, . . . , p} \ Im−1,

∆MSE(j) =
∣∣∣‖Y −XI β̂

LS
I ‖2 − ‖Y −XI∪{j}β̂

LS
I∪{j}‖

2
∣∣∣

=
∣∣∣‖Y −XIX

t
IY ‖2 − ‖Y −XI∪{j}X

t
I∪{j}Y ‖

2
∣∣∣ ,

since β̂LSI = Xt
IY when X is orthogonal. Re-expressing both terms yields

∆MSE(j) =
∣∣∣‖(In −XIX

t
I)Y ‖2 − ‖(In −XI∪{j}X

t
I∪{j})Y ‖

2
∣∣∣

=
∣∣∣Y t

{
(In −XIX

t
I)t(In −XIX

t
I)− (In −XI∪{j}X

t
I∪{j})

t(In −XI∪{j}X
t
I∪{j})

}
Y
∣∣∣

=
∣∣∣Y t

{
In −XIX

t
I − In +XI∪{j}X

t
I∪{j}

}
Y
∣∣∣ ,
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the latter equality resulting from the orthogonality of X, and thus of XI and XI∪{j}. Finally,
noticing that

XI∪{j}X
t
I∪{j} =

(
XI Xj

)( Xt
I

(Xj)t

)
= XIX

t
I +Xj(Xj)t,

we obtain
∆MSE(j) =

∣∣∣Y txj(Xj)tY
∣∣∣ =

(
(Xj)tY

)2
.

This last equality amounts to reorder the variables in X so that

((Xj1)tY )2 ≥ · · · ≥ ((XjM−1)tY )2.

Since the square function is monotonically increasing on [0;∞), the corresponding path of se-
lected variables is the same as in (6.5). Hence, Forward Selection is equivalent to the Hard
Thresholding rule

β̂HTj = (Xj)tY 1{|(Xj)tY |>λ},

with λ taken in (6.4). The same demonstration can be easily applied to Backward Elimination,
where the only difference is that the selection is performed on the other side, from the full model
to the null model.

Comparison of the estimations. The interest in having the same path for all the methods
being tested is that it leads to a better understanding of the adequacy between the estimation
itself (without caring for the order of the selection) and the estimation loss, since it is the
theoretical criterion we chose here for selecting the best predictive model.

Figures 6.2 displays the empirical probability of selecting the true subset, the average F-score
and the average number of non-zero coefficients, computed for all nine methods and for all values
of n. The evolution of the measures of quality is shown with respect to the Signal-to-Noise Ratio
(SNR) defined by

SNR =
minj∈{1,...,p} |βj |

σ
= |βmin|

σ
.
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Figure 6.2: Frequency of selection (left panel), average F-score (center panel) and average num-
ber of non-zero coefficients (right panel) with respect to signal-to-noise ratio for the
orthogonal design case. The curves for different sample sizes n (varying from 20 to
100) are almost perfectly superimposed.

The first striking feature of Figure 6.2 is that the number n of observations does not influence
any of the measures of quality since all the curves for the different values of n are almost perfectly
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superimposed. This fact was proved for the Lasso by [Leng et al. 2006] in the Theorem 4.1
therein, which we recall here:

Theorem 6.1. When the true coefficient vector is β = (β1, ..., βk∗ , 0, ..., 0)t with p−k∗ > 0 zero
coefficients and XtX = Ip, if the Lasso is tuned according to prediction accuracy, then it selects
the right model with a probability less than a constant C < 1, where C depends only on σ2 and
k∗, and not on the sample size n.

According to our results, Theorem 6.1 seems to be extendable to all 9 methods, not just the
Lasso.

Now, turning to the comparison between the estimators, the best methods for estimating β
are those for which the probability of selecting the true subset goes faster to 1 as σ decreases and
the SNR increases, and the same for the average F-score. From Figure 6.2, it can be seen that
the best estimators are the Least-Squares Estimator (corresponding to forward and backward
on the graphs), the Firm shrinkage, the Adaptive Lasso and the Adaptive Elastic Net, which are
nearly unbiased estimators. The Least-Squares Estimator gives even better performances than
the other three. On the contrary, using estimators with larger bias, such as Lasso, Elastic-net,
Garrote and SCAD, with minimum true estimation loss, results in the selection of too many
variables, as displayed in the right panel of Figure 6.2. Indeed, the true number of coefficient is
k∗ = 2 in our example, while the Lasso selects an average of 3.5 coefficients (out of 5!) as soon
as the signal-to-noise ratio is greater than 4 (corresponding to a standard deviation lower than
0.5). This average number of nonzero coefficients seems to reach a plateau as the SNR increases.
On the other hand, the curves for Garrote, Elastic Net and SCAD eventually tend to that of
the Least-squares for high SNR, hence those estimators yields a better selection than Lasso. In
view of a first conclusion that a large bias seems to be incompatible with a good selection, it
is surprising that Elastic-Net performs better than Lasso since it has an even greater bias, but
according to its developers [Zou & Hastie 2005] the `2– regularization yields a better selection,
a feature our results seem to agree with.

Another important remark about all three graphs is that the best performances are obtained
for a signal-to-noise ratio greater than 2, which in our case correspond to a value of 1 for the
standard deviation. Even then, the true subset recovery is only possible with probability of
around 75%. The probability is (almost) 1 only when σ ≤ 0.5 for the least-squares, and when
σ ≤ 0.2 for the Firm Shrinkage, the Adaptive Lasso, and the Adaptive Elastic Net.

General design with low correlation

In this paragraph, we perform the same study for the case where X is a general matrix with
maximum correlation ρ = 0.4 between each pair of variables (Xi, Xj). Figures 6.3 and 6.4
display the average frequency of selecting the true subset and the average F-score respectively,
with respect to the signal-to-noise ratio and to the sample size n for the 8 methods. Since the
general shape of the graph displaying the number of nonzero component is pretty similar to that
in Figure 6.2, we leave this measure of quality and concentrate on the other two. Also, we did
not run SCAD here because we did not implement it for the nonorthogonal design case.

First, note that unlike the previous case the sample size n plays an important role in the
quality of the selection, although maybe not as important as the signal-to-noise ratio. Second,
when X is general, the 8 methods might not share the same regularization path, unlike in the
orthogonal design case, so that we compare both the paths and the estimators.
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Figure 6.3: Average frequency of selection (freq) with respect to sample size (n) and signal-to-
noise ratio (|βmin|/σ) for the general design case with maximum correlation ρ = 0.4
between the variables.

The general shape of the curves is actually a bit different from the orthogonal case. Indeed,
it can be seen on Figures 6.3 and 6.4 that most methods have their frequency of recovery and
F-score going much faster to 1, even the biased Elastic-Net and Garrote. On the contrary, the
Lasso still have the poorest performances with a average frequency of recovery ranging from
10% to 20%, and increasing the sample size n does not seem to improve such a bad score.

The most surprising result, compared to the previous ones, is that of MCP (firm). Indeed,
this method had a behaviour similar to that of Adaptive Lasso and Adaptive Elastic-Net in the
orthogonal design case. For the general case however, its performances have been deteriorated
quite a lot. Looking more closely to the results, it appears that, for 2 examples of the matrix
X out of the 10 we generated, MCP fails to select one of the two relevant variables at the first
step, and is then never able to recover exactly the true subset in the rest of the path. Since the
first step for MCP is exactly the same as the first step for Lasso and SCAD, it is clear that the
same phenomenon occurs also for the other two methods.

General design with high correlation

In this paragraph, we increased the maximum correlation between two variables in X to ρ = 0.8.
Figure 6.5 displays the average frequency of selecting the true subset with respect to the signal-
to-noise ratio and to the sample size n for all 8 methods. We do not show the average F-score
here since the shape of the graphs is pretty similar to that of the average frequency of recovery,
but on a different scale.

Here, the discrepancies between the curves for varying sample size n and varying signal-
to-noise ratio are much more important than in the previous case. In particular, the worst
performances correspond to the case where there are n = 20 observations, which is still large
compared to the number p = 5 of variables in X. Nevertheless, we can easily notice that
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Figure 6.4: Average F-score of selection (F-score) with respect to sample size (n) and signal-to-
noise ratio (|βmin|/σ) for the general design case with maximum correlation ρ = 0.4
between the variables.

stepwise methods, Adaptive Lasso and Adaptive Elastic-Net still perform quite well, with an
average frequency of recovery pretty close to 1 as soon as the signal-to-noise ratio is large
enough. A caveat to this remark is that Forward Selection seems to be more unstable here
than Backward Elimination and Adaptive Lasso. Finally, the performances of Elastic-Net are
also quite unstable and have been deteriorated when compared to the case where the maximum
correlation between variables is low. This could only be an artifact of the fact that we fixed the
second hyperparameter, while it might be much better if we optimized it somehow.

Conclusions on the first part of the study

From this first part of the study, we can conclude that the less biased the estimation is, the
better the selection is obtained based on minimizing the actual estimation loss. It thus makes
sense to use this theoretical criterion as a baseline for the selection when using methods such
as Forward Selection, Backward Elimination, Adaptive Lasso and Adaptive Elastic-Net. On the
contrary, it is not a good theoretical criterion for selecting models when using the Lasso, as the
results have shown in all the setups we have tried. This conclusion was also drawn from [Leng
et al. 2006]. We would like to make it clear however that this does not mean that Lasso is a
poor method, but rather that special care should be taken in general to the adequacy between
methods for constructing collections of models and estimators with theoretical criteria such as
the estimation loss. Since the results are already bad if we knew the actual estimation loss, we
cannot expect them to be good when we replace it by an estimator of the estimation loss.

6.1.3 Replacing by other estimators
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Figure 6.5: Average frequency of selection (freq) with respect to sample size (n) and signal-to-
noise ratio (|βmin|/σ) for the general design case with maximum correlation ρ = 0.8
between the variables.

The least-squares estimator. In view of the conclusions from the previous part, we decided
to run the experiment as in the previous subsection with the following additional step: after each
method has been computed with its entire regularization path, the estimation for each step of the
path is replaced by the less biased estimator of all: the restricted least-squares estimator. The
selection of the best estimation among the collection is still performed by minimizing the true
estimation loss. This experiment aims at comparing the regularization paths proposed by each
method. Figure 6.6 displays the average frequency of selecting the true subset with respect to the
signal-to-noise ratio and to the sample size n for the 8 methods with the least-squares estimator.
This figure clearly shows better performances than when we take the estimator corresponding
to each method (except Forward Selection and Backward Elimination which already estimates
the parameter β by least-squares), with an average recovery of the true subset close to 100% in
most cases. This is especially the case for Lasso showing good performances of selection for the
first time of the study.

We can also note that the graphs are exactly the same for Lasso and Elastic Net (enet). Since
the estimation is the same here, this could mean that both regularization paths share similarities,
although they might not be exactly equal. The same remark can be done for Adaptive Lasso,
Adaptive Elastic Net and Garrote. There is also a big similarity between the latter ones and
Backward Elimination. However, the regularization path of Lasso is clearly not the same than
that of Adaptive Lasso and to that of MCP (firm), for instance, since the graphs significatively
differ.

Finally, it appears clearly that the best results are obtained for Adaptive Lasso, Adaptive
Elastic Net, Garrote, and Backward Elimination.



136 Chapter 6. Numerical study

0
5

10

0

50

100
0.4

0.6

0.8

1

|β
min

|/σ

lasso

n

fr
e
q

0
5

10

0

50

100
0.4

0.6

0.8

1

|β
min

|/σ

firm

n

fr
e
q

0
5

10

0

50

100

0.7

0.8

0.9

1

|β
min

|/σ

adalasso

n

fr
e
q

0
5

10

0

50

100

0.7

0.8

0.9

1

|β
min

|/σ

garrote

n

fr
e
q

0
5

10

0

50

100
0.4

0.6

0.8

1

|β
min

|/σ

enet

n

fr
e
q

0
5

10

0

50

100

0.7

0.8

0.9

1

|β
min

|/σ

adanet

n

fr
e
q

0
5

10

0

50

100

0.7

0.8

0.9

1

|β
min

|/σ

forward

n

fr
e
q

0
5

10

0

50

100

0.7

0.8

0.9

1

|β
min

|/σ

backward

n

fr
e
q

Figure 6.6: Average frequency of selection (freq) with respect to sample size (n) and signal-to-
noise ratio (|βmin|/σ) when the estimation is replaced by least-squares after com-
puting the path (general design with maximum correlation ρ = 0.4 between the
variables).

Other estimators of the regression coefficient. It is well known that the Least-squares
estimator can be improved by other estimators such as the James-Stein (type) estimators or
the Ridge Regression. In this paragraph, we propose to investigate if such a fact is also true
when we are concerned with selecting the most relevant variables. Therefore, we run the same
experiment as previously but we replace the estimation for each step of the path by the James-
Stein estimator, the generalized James-Stein estimator or the Ridge Regression estimator. Figure
6.7 displays the average frequency of selecting the true subset with respect to the signal-to-noise
ratio and to the sample size n for the 8 methods with the James-Stein, generalized James-Stein
and Ridge Regression estimators. We do not display here all the 8 methods since we have seen in
the previous paragraph that the graphs are exactly the same for some of the methods. In Figure
6.7, it is very striking to see that the results are not so good for the James-Stein (type) estimators
than they were with the Least-Squares estimator. For the Ridge Regression estimator, there is
little difference with Least-Squares, but the latter one still gives slightly better results.

6.1.4 Discussion on the first study

In view of the results on the study we performed, it appears that the methods for constructing
collections of models that are the most appropriate with the actual estimation loss are Backward
Elimation, Adaptive Lasso and Adaptive Elastic-Net. The performances of the two latter ones
are improved when replacing their estimation by Least-Squares.

In a general way, the actual estimation loss seems to be a good theoretical criterion for
variable selection when the corresponding estimator of β has very little bias, the best results
being obtained with restricted Least-Squares and Ridge Regression. This result is interesting
for Ridge Regression since it can always be computed, whereas Least-Squares has no unique
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solution in the case where there is more variables than observations (p ≥ n). Note that the
(generalized) James-Stein estimators could however be used as post-model-selection operators,
if needed.

Note also that the results on Lasso agree with its consistency in selection property proved
by [Zhao & Yu 2007]. Indeed, replacing its estimator by the restricted least-squares β̂LSI once
the path has been computed yields very good performances of selection. This means that the
true subset actually belongs to Lasso’s path most of the time.

(a) James-Stein estimator.
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(b) Generalized James-Stein estimator.
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(c) Ridge Regression estimator.
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Figure 6.7: Average frequency of selection (freq) with respect to sample size (n) and signal-to-
noise ratio (|βmin|/σ) when the estimation is replaced by the James-Stein estima-
tor (top), the generalized James-Stein estimator (center) and the Ridge Regression
estimator (bottom) with λ = 0.3 after computing the path (general design with
maximum correlation ρ = 0.4 between the variables).
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6.2 Comparison of model evaluation criteria

In this section, we propose to turn to the comparison of methods evaluating the collection of
model and estimating the prediction risk R(X,Y ) or the estimation loss ‖Xβ̂ −Xβ‖2.

6.2.1 Purpose of the study

In the previous study, we tried to determine whether there is a collection of models yielding
better performances when selected by the actual estimation loss. The results when replacing
their respective estimator by the least-squares were very good for all of them, meaning that the
true subset actually belongs to their paths. Hence, it is hard to tell whether one outperforms
the others.

The objective of this new study is to compare, for each collection of models, the performances
in selection of the different model selection criteria, our loss estimators on the one side and the
methods presented in Chapter 2, Section 2.2 on the other side.

Protocol

We use the same protocol as in previous section, that is, the true regression coefficient is set
to (2, 0, 0, 4, 0), the matrix X is generated according to a Gaussian distribution where the xj ’s
have variance 1 and correlation ρ = 0.4 (since the performances are more erratic for higher
correlation). The sample size n is taken in the set {20, 40, 100}, and the noise level σ in the set
{0.5, 1, 2}, since this corresponds to the most interesting cases from the previous study.

As exposed in Chapter 3, Section 3.1.3, the main problems in model selection are to measure
the complexity and to estimate the variance. For the first problem, we chose to use the general-
ized degrees of freedom because of the important part they play in Stein’s identity. In practice
however, the generalized degrees of freedom d̂f are not always easy to compute. In Appendix
A.4, we give the expression of d̂f for the collections of model we study, when an analytical form
is available. Otherwise, we present how they can be computed through directional derivatives,
although this might substantially increase the computational costs.

As far as estimating the variance is concerned, we follow the discussion we had in Chapter 3
and divide the analysis into two cases: the case where the estimator of the variance σ̂2

full is the
same for all models, corresponding to the full model

Y = Xβ + σε,

and the case where we estimate the variance differently for each subset I, corresponding to the
restricted linear model

Y = XIβI + σε.

We next present the performances in selection of our loss estimators for each case, and add a
third case where the estimator of the variance is estimated differently on each model and is
defined by

σ̂2
r (β̂) = ‖Y −Xβ̂‖

2

n− d̂f
.
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6.2.2 Unbiased loss estimator vs corrected loss estimator

In this subsection, we compare the corrected loss estimators developed in Chapter 4 to the
unbiased estimators developed in Chapter 3.

Same estimator of the variance for all models

In this paragraph, we compare the unbiased estimator,

L̂0(β̂) = ‖Y −Xβ̂‖2 + (2 div(Xβ̂)− n)σ̂2
full,

the invariant unbiased estimator

L̂inv0 (β̂) = (n− p− 2)‖Y −Xβ̂‖
2

S
+ 2 divY (Xβ̂)− n+ 4 (Xβ̂ − Y )tX∂g(β̂LS , S)

∂S
,

where S = ‖Y −Xβ̂LS‖2 and the corrected estimator

L̂fγ(β̂) = L̂0(β̂)− cf

k Z2
(k+1) +

p∑
j=k+1

Z2
(j)

−1

,

with the choices

c∗f = − 2S
n− p

{
S

n− p+ 2

(
−2 p+

4 k(k + 1)Z2
(k+1)

d(Xβ̂LS)

)
+ 4 d(Xβ̂LS)

}
(6.6)

ĉf = 2S2

(n− p)(n− p+ 4)(n− p+ 6)

(
p− 2− 2(d̂f + 1) d̂f

p

)
. (6.7)

Figure 6.8 displays the evolution of the average frequency of recovery (freq) of the true
subset as a function of the noise level σ, for each value of the sample size n and for each
methods constructing the models. The black line corresponds to the unbiased estimator L̂0, the
blue line to the invariant unbiased estimator L̂inv0 , the magenta line to the corrected estimator
with c∗f , the green line to the corrected estimator with ĉf , and the red line to the true estimation
loss. The dashed lines correspond to the standard deviations from the average frequency.

The first thing we notice at first glance is that, in a general way and for most collections
of models, the performances obtained result in the following order of preference between the
criteria:

L̂0 < L̂inv0 < L̂fγ(ĉf ) < L̂fγ(c∗f ).

This order is not verified for Backward Elimination, however. Also, the standard deviations
are quite low and very similar between the two estimators. In view of such results, it seems
worthwhile to consider correcting the unbiased estimator.

Second, the four criteria result in very good performances of selection (close to 1) with the
Elastic net and the Adaptive Elastic Net, while their performances are average to low for the
other collections of models. Indeed, interestingly enough, the results are not so good for the
Adaptive Lasso and Forward selection, while the actual estimation loss is able to recover the
true subset quite often for these methods. In particular, the performances are low for Lasso and
MPC, a result that was expected because of their lack of adequacy with the actual estimation
loss.
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Different estimators of the variance based on subset size

In this paragraph, we compare the unbiased estimator,

L̂0(β̂) = ‖Y −Xβ̂‖2 + (2 div(Xβ̂)− n)σ̂2
restricted,

the invariant unbiased estimator

L̂inv0 (β̂) = (n− k − 2)‖Y −Xβ̂‖
2

SI
+ 2 divY (Xβ̂)− n+ 4 (Xβ̂ − Y )tX∂g(β̂LSI , SI)

∂SI
,

where SI = ‖Y −XI β̂
LS
I ‖2, and the corrected estimators

L̂rγ(β̂) = L̂0(β̂)− cr
(
‖XI β̂

LS
I ‖2

)−1
,

with the choice
c∗r = 2SI

n− k

{(k − 4)SI
n− k + 2 + 4 (Xβ̂ − Y )tXI β̂

LS
I

}
.

We also compare our results to the loss estimator developed by [Fourdrinier & Wells 1994],
which is defined by

L̂∗(β̂) = k

n− k + 2‖Y −Xβ̂‖
2 − 2(d̂f − 4)

(n− k + 4)(n− k + 6)
‖Y −Xβ̂LSI ‖4

‖XI β̂LSI ‖2
.
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Figure 6.8: Average frequency of recovery of the true subset under the full model assumption with independent estimator σ̂2
full

of the variance for the unbiased loss estimator L̂0 (black line), for the invariant unbiased loss estimator L̂inv0 (blue line) and
for the corrected estimator L̂fγ with correction function γf with constant c∗f (magenta line) and ĉf (green line). The dashed
lines display the standard deviation. The true loss has been added in red for reference. The top row corresponds to the case
where the sample size n is set to 20, the middle row to n = 40 and the bottom row to n = 100. Each column corresponds to
a method for constructing the collection of models.



142 Chapter 6. Numerical study

Figure 6.9 displays the evolution of the average frequency of recovery (freq) of the true
subset as a function of the noise level σ, for each value of the sample size n and for each
methods constructing the models. The black line corresponds to the unbiased estimator L̂0, the
blue line to the invariant unbiased estimator L̂inv0 , the magenta line to the corrected estimator
L̂rγ , the green line to the corrected estimator L̂∗ and the red line to the true estimation loss.
The dashed lines correspond to the standard deviations from the average frequency.

In this case, the results are more erratic than in the previous one. Indeed, there is no clear
ordering of the performances of the criteria, so we analyze them case by case.

For the Lasso, the four criteria obtained poor performances of selection. For the MCP,
the performances are slightly better, especially when the variance is low, with a preference for
the invariant unbiased estimator L̂inv0 . The performances of the four criteria are much better
when the regression parameter β is estimated by Adaptive Lasso or Garrote. In this case,
there does not seem to be much difference between the unbiased estimator L̂0 and the corrected
estimator L̂rγ , while the invariant unbiased estimator L̂inv0 and the corrected estimator L̂∗ clearly
outperforms them for the Garrote, but not so clearly for the Adaptive Lasso.

As fas as the Elastic net is concerned, the performances are again very close for the unbiased
estimator L̂0 and the corrected estimator L̂rγ , but they are strongly affected by the decrease in
sample size. Indeed, their results are very good when n = 100, average when n = 40, and low
when n = 20. Considering the fact that p = 5 is still small compared to n = 20, this might
indicate their inability to handle the case where the number p of variables is close to the sample
size n when using the Elastic net estimator.

Turning now to the Adaptive Elastic net, the performances of the four criteria are all very
low. Looking more closely at the results, it turns out that, in most cases, they selected the
model with the 4th variable only, while the true model is {1, 4}.

Finally, the performances for Forward Selection and Backward Elimination are pretty good
with the three criteria L̂0, L̂rγ and L̂∗, with a slight advantage of the corrected estimator L̂∗.
These good results are however mitigated for the high variance case (σ = 2). Note that, here,
since β is estimated by Least-squares, the invariant unbiased estimator is actually equal to k−2.
It is thus worthless as a selector in this particular case.
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Figure 6.9: Average frequency of recovery of the true subset under the restricted model assumption with independent estimator
σ̂2

restricted of the variance for the unbiased loss estimator L̂0 (black line), for the invariant unbiased loss estimator L̂inv0 (blue
line), for the corrected estimator L̂rγ with correction function γr (magenta line) and for the corrected estimator L̂∗ (green line).
The dashed lines display the standard deviation. The true loss has been added in red for reference. The top row corresponds
to the case where the sample size n is set to 20, the middle row to n = 40 and the bottom row to n = 100. Each column
corresponds to a method for constructing the collection of models.



144 Chapter 6. Numerical study

Different estimators of the variance based on model complexity

In this paragraph, we tested a third estimator of the variance based on the collection of models.
This estimator is defined by

σ̂2
r (β̂) = ‖Y −Xβ̂‖

2

n− d̂f
,

and leads to the following estimator

L̂0(β̂; σ̂2
r (β̂)) = ‖Y −Xβ̂‖2 + (2 div(Xβ̂)− n)σ̂2

r (β̂) = d̂f

n− d̂f
‖Y −Xβ̂‖2.

Note that this estimator L̂0(β̂) is not unbiased anymore, because of the bias of σ̂2
r (β̂) as well as

its possible correlation to the generalized degrees of freedom d̂f . However, such an estimator of
the loss is interesting since its expression is close to that of the Final Prediction Error (FPE)
and the Average Prediction Variance (APV) presented in Chapter 2. We also computed the
corrected estimator

L̂rγ(β̂; σ̂2
r (β̂)) = L̂0(β̂; σ̂2

r (β̂))− cr
(
‖XI β̂

LS
I ‖2

)−1
,

with the choice
c∗r = 2SI

n− k

{(k − 4)SI
n− k + 2 + 4 (Xβ̂ − Y )tXI β̂

LS
I

}
,

and

L̂∗(β̂; σ̂2
r (β̂)) = d̂f

n− d̂f + 2
‖Y −Xβ̂‖2 − 2(d̂f − 4)

(n− d̂f + 4)(n− d̂f + 6)
‖Y −Xβ̂‖4

‖Xβ̂‖2
.

Figure 6.10 displays the evolution of the average frequency of recovery (freq) of the true
subset as a function of the noise level σ, for each value of the sample size n and for each
methods constructing the models. The black line corresponds to the unbiased estimator L̂0, the
magenta line to the corrected estimator L̂rγ , the green line to the corrected estimator L̂∗ and
the red line to the true estimation loss. The dashed lines correspond to the standard deviations
from the average frequency. Here again, the invariant unbiased estimator is a linear function of
the generalized degrees of freedom and thus we do not display it.

For all the collections of models but the Elastic net and the Adaptive Elastic net, the perfor-
mances in selection of the three criteria are very good and very close one to another when the
variance is set to σ ∈ {0.5, 1}. The performances tend to decrease quite a lot in the case where
σ = 2 and as n decreases as well.

As far as the Elastic net and the Adaptive Elastic net are concerned, the eperformances are
good only for high sample size n and low variance σ.

Note also that, for all collections of models, the estimator L̂0 is always outperformed by one
of the corrected estimators, especially when σ = 2 (since in the other cases the difference is not
noticeable).
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Figure 6.10: Average frequency of recovery of the true subset under the restricted model assumption with dependent estimator
σ̂2

r (β̂) of the variance for the loss estimator L̂0 (black line), for the corrected estimator L̂rγ with correction function γr
(magenta line), and for the corrected estimator L̂∗ (green line). The dashed lines display the standard deviation. The true
loss has been added in red for reference. The top row corresponds to the case where the sample size n is set to 20, the middle
row to n = 40 and the bottom row to n = 100. Each column corresponds to a method for constructing the collection of
models.
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Comparison of the three cases

In the three cases we presented, we noticed an improvement in terms of selection of the corrected
estimators L̂rγ and L̂fγ over the reference estimator L̂0, especially when considering the full model
assumption. This is a very encouraging result which suggests to go on in this direction. Also, the
performances for the invariant loss estimator L̂inv0 were often better than that of L̂0. Hence, we
can expect that correcting the invariant estimator L̂inv0 would result in even better performances
than correcting L̂0.

Nevertheless, the major change in performances have been obtained with the different esti-
mators of the variance that we tested. Indeed, the performances of selection are much better
for the Lasso and the MCP are very good when estimating the variance by σ̂2

r (β̂), even though
the actual estimation loss is barely able to recover the true subset. The Adaptive Lasso and
the Garrote are also better selected under the restricted model and estimating the variance by
either σ̂2

restricted or σ̂2
r (β̂). On the contrary, for the Elastic net and the Adaptive Elastic net,

the performances are much better under the full model assumption, especially when the noise
level is high (σ = 2), since the selected model is generally to small under the restricted model
assumption. For Forward selection and Backward elimination, it is not so clear whether there
is a better choice for estimating the variance. Indeed, when the noise level is small (σ ≤ 1),
the performances are clearly better under the restricted model assumption. However, for a high
noise level (σ = 2), the performances under that same assumption heavily decrease, becoming
lower than the performances under the full model assumption. These results clearly indicate
that improving on the unbiased estimator is not sufficient, and that the choice of the estimator
of the variance is as crucial in practice as it is in theory.

Table 6.2 summarizes these comments.

Method σ̂2
full σ̂2

restricted σ̂2
r (β̂)

Lasso – – ++
MCP – – ++
Adaptive Lasso – ++ ++
Garrote – ++ ++
Elastic net ++ – –
Adaptive Elastic net – ++ –
Forward Selection + + +
Backward Elimination + + +

Table 6.2: Estimator of the variance yielding the best performances of selection. The double
+ sign indicates the best choice of estimator, while the – sign indicates poor perfor-
mances of selection. The + sign alone indicates that there is no clear consensus.

Other distributions

We run the same example with a multivariate Student noise with ν = 5 degrees of freedom
and a multivariate Kotz noise with parameters r = 0.5 and N = 2. The results are given in
Appendix A.5.1 and A.5.2. Basically, the general comments are the same as those given in the
Gaussian case. The main differences are in the ability to handle a larger noise level σ. Indeed,
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the performances in selection with a Student noise are slightly lower than with a Gaussian noise
for the case σ = 1, while with a Kotz noise they are even better when σ = 2.

6.2.3 Comparison to existing methods from literature

We now turn to the comparison of the performances of our loss estimators to the model evaluation
criteria presented in Chapter 2. For the discussion to be clear, we recall the different criteria we
compare in Tables 6.3 and 6.4. Table 6.3 presents the criteria that depend on an estimator of
the variance, so that we specify the exact form of the criteria in each case and we use a different
notation depending on the estimator of the variance used to compute the criteria. Note that we
replaced the subset size k by the generalized degrees of freedom d̂f when necessary for the sake of
comparison with our loss estimators. Note also that, for SRM, we used the expression proposed
in [Cherkassky & Ma 2003], where the Vapnik-Chervonenkis dimension is approximated by d̂f .
On the other hand, we used the size k of the subset for the slope heuristics (SH) since we only
have one model of each size in the collections of models we compared.

Figures 6.11 and 6.12 displays the evolution of the average frequency of recovery (freq) of
the true subset as a function of the noise level σ, for the three model evaluation criteria yielding
the best performances on each collection models. The blue line corresponds to the sample size
n = 20, the green line to n = 40, and the red line to n = 100, while the dashed lines represent
the standard deviation from the average in each case. The graphs for the other criteria are given
in Appendix A.5.

Fist, note that the criteria giving the best performances are the same for the Lasso, the MCP,
the Adaptive Lasso and the Garrote, namely our loss estimators L̂0(σ̂2

r (β̂)) and L̂∗(σ̂2
r (β̂)), and

the corrected AIC criterion (AICc), when the variance is estimated by σ̂2
r (β̂) for the three criteria.

The story is a little different for the Elastic net and the Adaptive Elastic net, which are best
selected respectively with the corrected estimator L̂fγ , AIC3 and BIC, and with L̂fγ , GCV and
BIC, all of them computed with σ̂2

full.
Also, note that, in a general way, the results are better for MCP than for Lasso, and they

are also better for the corrected estimators L̂γ and L̂∗ than for the unbiased estimator L̂0.

6.2.4 Discussion on the second study

This second simulation study clearly confirms the general principle that there is no criterion
outperforming the others in all situations. Instead, there seems to be a few good model selec-
tion criteria for a given collection of models. Going a little further, more than good couples
(collection of models, criterion), we highlighted the fact that there are good triples (collection
of models, estimator of the variance, criterion), and we tried to give the triples yielding the best
performances. If we had to choose only one of them in view of our results, we would suggest the
Adaptive Elastic net selected by Generalized Cross-Validation (GCV)1.

1Note that here it is not a triple since GCV does not depend directly on an estimator of the variance.
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Notation Expression

L̂0(σ̂2
full) ‖Y −Xβ̂‖2 + (2d̂f − n)‖Y −Xβ̂

LS‖2

n− p

L̂0(σ̂2
restricted) ‖Y −Xβ̂‖2 + (2d̂f − n)‖Y −Xβ̂

LS
I ‖2

n− k

L̂0(σ̂2
r(β̂)) d̂f

n− d̂f
‖Y −Xβ̂‖2

L̂fγ(σ̂2
full) L̂0(σ̂2

full)− γf (Xβ̂LS)

L̂rγ(σ̂2
restricted) L̂0(σ̂2

restricted)− γr(XI β̂
LS
I )

L̂γ(σ̂2
r(β̂)) L̂0(σ̂2

r(β̂))− γr(XI β̂
LS
I )

AIC(σ̂2
full) (n− p) ‖Y −Xβ̂‖

2

‖Y −Xβ̂LS‖2
+ 2 d̂f

AIC(σ̂2
r(β̂)) n log

(
‖Y −Xβ̂‖2

n

)
+ 2 d̂f

AICc(σ̂2
full) (n− p) ‖Y −Xβ̂‖

2

‖Y −Xβ̂LS‖2
+ 2 d̂f(d̂f + 1)

n− d̂f − 1

AICc(σ̂2
r(β̂)) n log

(
‖Y −Xβ̂‖2

n

)
+ 2 d̂f(d̂f + 1)

n− d̂f − 1

AIC3(σ̂2
full) (n− p) ‖Y −Xβ̂‖

2

‖Y −Xβ̂LS‖2
+ 3 d̂f

AIC3(σ̂2
r(β̂)) n log

(
‖Y −Xβ̂‖2

n

)
+ 3 d̂f

BIC(σ̂2
full) (n− p) ‖Y −Xβ̂‖

2

‖Y −Xβ̂LS‖2
+ log(n) d̂f

BIC(σ̂2
r(β̂)) n log

(
‖Y −Xβ̂‖2

n

)
+ log(n) d̂f

Table 6.3: Model evaluation criteria (and their notations) that depend explicitely on an estima-
tor of the variance.
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Notation Expression

GCV n

(n− d̂f)2
‖Y −Xβ̂‖2

LOOCV 1
n

n∑
i=1
‖Y −Xβ̂(−i)‖2

CV-5 1
5

5∑
v=1
‖Y −Xβ̂(−v)‖2

CV-10 1
10

10∑
v=1
‖Y −Xβ̂(−v)‖2

SRM ‖Y −Xβ̂‖2 ×

1−

√
d̂f

n

(
log
(
n

d̂f

)
+ 1
)
−

log
√

(n/2)
n

−1

+

slope ‖Y −Xβ̂‖2 + slope× k

Table 6.4: Model evaluation criteria (and their notations) that do not depend explicitely on an
estimator of the variance.
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Figure 6.11: Average frequency of recovery of the true subset as a function of the noise level
σ for the sample sizes n = 20 (blue), n = 40 (green) and n = 100 (red), with
Gaussian noise. The dashed lines display the standard deviation. Only the three
model evaluation criteria giving the best results for each collection of models are
displayed. The others results are given in Appendix A.5.
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Figure 6.12: Average frequency of recovery of the true subset as a function of the noise level
σ for the sample sizes n = 20 (blue), n = 40 (green) and n = 100 (red), with
Gaussian noise. The dashed lines display the standard deviation. Only the three
model evaluation criteria giving the best results for each collection of models are
displayed. The others results are given in Appendix A.5.
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7.1 Discussion on contributions and results

In this manuscript, we studied several aspects of the problem of model selection and proposed
to bring our little brick to this mighty bastion. In this section, we summarize our work, both
theoretical and practical, before discussing future works and perspectives in the next section.

7.1.1 Summary on model evaluation

A large (but not too large) distributional framework. One of the main innovative
feature of our work on model selection is the spherical assumption for the noise. Indeed, we
showed that the form of our model evaluation criteria only relies on the spherical symmetry
property, and not on the particular form of the distribution of the noise. This way, our criteria
can handle a large spectrum of distributions, from light-tailed to heavy-tailed, bringing them
distributional robustness to possible outliers. Also, this assumption allows us to consider the non-
i.i.d. case since non-Gaussian spherical vectors have dependent components. This assumption is
seldom made in the literature, even in the worst-case analysis where the distribution is assumed
to be completely unknown (for instance in Vapnik’s work). Finally, we believe that such a
generality is not always an interesting feature and that the restriction to a family of distributions
is necessary to construct tools with good performances.

Note that, in some cases, we have shown the equivalence between our unbiased criteria and
several existing criteria such as Mallows’ Cp and AIC. Hence, the robustness property might
be shared with other existing criteria by equivalence, which, to the best of our knowledge, was
never formally proved.
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Estimating the variance and measuring the complexity. The question of which esti-
mator of the variance to use is a tricky one and is often eluded in the literature, an interesting
exception being [Arlot & Bach 2009]. However, as we have seen in the simulation study, it
actually plays a crucial role. For instance, if it is estimated differently for each subset, then BIC
almost always selects the null model β = 0. Even though this issue was raised in [Cherkassky &
Ma 2003], where the authors considered estimating the variance both for the full model and the
restricted model, they computed AIC and BIC with the true value of the noise level σ in their
simulation study.

In this work, we have studied two ways to deal with the variance. In the first way, we first
assume it to be known for the derivation of the criteria, and then replace it a posteriori by
an estimator. We considered several estimators of the variance, namely the unbiased estimator
based on the full least-squares solution, the unbiased estimators based on the least-squares
solution restricted to a subset of variables, and, in the simulation study only, the estimator
based on each model of the collection. In contrast, the second way of dealing with the variance
we studied relies on the lack of knowledge on the variance from the very beginning and models
explicitely its connexion to the problem through the invariant loss.

As far as the complexity is concerned, Stein identity provides an explicit measure through
the notion of divergence, which is related to the generalized degrees of freedom d̂f . This measure
is reasonable since it corresponds to the rank of the application mapping Y to the prediction
Ŷ , so that for linear mapping it is actually equal to the dimension of the application. Hence,
it takes into account both the number of variables assumed to be relevant and the smoothness
of their link to the target Y . In practice, when the analytical form of d̂f is hard to determine,
it can always be numerically computed through directional derivatives. Although this might
increase significantly the computational time, it seems easier to estimate in regression and for
nonlinear estimators than the VC-dimension or than other measures based on the covariance
matrix of the estimator, the main alternatives to d̂f .

New criteria for model evaluation with lower risk. We proposed a new way to compare
model evaluation criteria, which is different than what is generally used in the literature, namely
consistency and efficiency. Our method of comparison basically consists in minimizing the Mean-
Squared Error (MSE) and the aim is to find which criterion has both low bias and low variance
at the same time, guaranteeing a better control and more stability. Although this method is
fairly common for comparing two estimators of the model parameters (see for instance [Hastie
et al. 2008]), it has surprisingly not yet encountered the same success for comparing two model
evaluation criteria.

From this second level of evaluation, we derived new loss estimators under two assumptions:
the assumption that the true model is the one with all the p variables being relevant, and the
assumption that subset I is the true subset of relevant variables.

Note that this work has been done under the nonasymptotic framework, as it is for oracle
inequalities. However, the relation between the two measures of quality of a model evaluation
criterion is not straightforward. It would thus be interesting to investigate whether the corrected
loss estimators we developed Chapter 4 have better oracle inequalities than the unbiased loss
estimators. The simulation study we ran seems to answer positively to that question, but it
needs to be verified theoretically.
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7.1.2 Summary on algorithmic and numerical aspects

For the comparison of the performances of our loss estimators in practice, we were confronted to
several algorithmic problems: the construction of collections of models through regularization
path algorithm for nonconvex problems, and the random generation of spherically symmetric
vectors.

Regularization path algorithms for nonconvex and nondifferentiable problems. Reg-
ularization path algorithms are an efficient way to find the transition values of the hyperparam-
eter λ adding a variable to the current subset. Hence, it is very well suited for constructing
collection of models. It has been successfully developed for the Lasso in [Efron et al. 2004], and
the LARS algorithm also benefits to other estimators such as Adaptive Lasso, Elastic net and
Adaptive Elastic net with just a change in variable. However, its application to nonconvex and
nondifferentiable problems is not straightforward since the optimality conditions it relies on are
only valid for convex functionals.

We used a generalization to nonconvex functionals through the notion of Clarke differential.
This way, we were able to prove that similar optimality conditions apply, which enables us to
provide a regularization path algorithm for the Minimax Concave Penalty (MCP) [Zhang 2010].
Similar algorithms can be derived for other nonconvex problems, such as the Smoothly Clipped
Absolute Deviation (SCAD) [Fan & Li 2001].

Random variable generation for spherically symmetric vectors. We developed all our
codes in Matlab, which only provides pseudo-random generators for univariate random variables
(e.g. Gaussian and Student) or for multivariate copulas. Our distributional assumption of spher-
ically symmetric vectors does not fit in either case, so we studied how to generate non-Gaussian
spherically symmetric random vectors. We developed a code for generating the spherical distri-
butions most frequently encountered in the literature, and used it for the simulation study.

Numerical comparison of performances in selection for different collections of mod-
els. When we first tested our loss estimators on the Lasso, we were surprised at the poor
performances in selection we obtained. It seemed to be contradictory with the works on its ora-
cle inequalities and consistency. The paper of [Leng et al. 2006] clearly showed that tuning the
Lasso with the estimation loss ‖Xβ̂−Xβ‖2 does lead to good prediction performances but with
a poor selection. This is due to the fact that, on small models, the Lasso estimator presents a
large bias, and this bias decreases as more variables are added to the selection. Inspired by [Leng
et al. 2006], we decided to verify whether the oracle of each collection of models is actually close
to the true underlying model when the latter one belongs to the collection.

It turns out that MCP shares a similar behaviour than the Lasso, although it is a little
better. This might come from the fact that the first variables to be selected are the same for
both methods. In cases where one fails to select a relevant variable first, so does the other. Their
performances in selection can however be much improved by replacing their estimator with the
least-squares solution on the selection. On the contrary, the Adaptive Lasso, the Elastic net, the
Adaptive Elastic net, and Stepwise methods showed a very good behaviour in our simulation
study. This seems to confer them good oracle properties and to guarantee that they can both
well predict and well select at the same time.
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Numerical comparison of model evaluation criteria. After having verified the oracle
properties of the collection of models, we went to the next level by testing whether our loss
estimators and other criteria estimating the actual estimation loss ‖Xβ̂ −Xβ‖2 were also able
to recover the true underlying model. For each collection of models, we selected the three model
evaluation criteria yielding the best performances in selection. Our loss estimators were always
present among the three best criteria. It is quite compelling to see how different these criteria
are from what was proposed by the respective authors of the collection of models, which is
summarized in Table 2.1.

Also, we clearly pointed out that the estimator of the variance plays a crucial part in the
performances of the model evaluation criteria that rely on it (see Table 6.3). We compared the
results with several variance estimators and selected the one yielding the best performances in
each case (see Table 6.2).

7.1.3 Limitations of the present work

The linear model and the p < n assumption. The derivation of unbiased loss estimators
under the spherical assumption relies on the assumption that the true underlying model is
linear, essentially because of the use of the canonical form. Although it is possible to derive them
without the canonical form, it involves much more tedious calculations and is harder to perform.
Under the Gaussian assumption, however, the underlying model need not be linear, nor does
the estimator of the mean of Y , so that the extension to the nonlinear case is straightforward.

Also, the same canonical form as well as the estimator of the variance we used constrain the
study to the case where the sample size n is larger than the number p of possible explanatory
variables. The invariant unbiased loss estimator even requires p < n − 2. The use of other
estimators of the variance, such as the maximum likelihood estimator, could overcome this
problem, but a deeper study is needed to see if it gives similar performances.

The X–fixed design case versus the X–random design case. In this work, we assumed
the design matrix X to be fixed since it offers a great simplification. However, this assumption is
seldom realistic in practice. Although there exists a relation between the conditional prediction
risk RY |X (corresponding to the X–fixed assumption) and the prediction risk R(X,Y ) (corre-
sponding to the X–random assumption), there is no guaranty that their minimum coincides.

Scalability and application to real datasets. We only run our simulation study on one
small example with varying noise level σ and varying sample size n. A larger simulation study
on other examples is needed to analyze and compare the performances of our loss estimators and
methods from the literature when the true subset size is changed and when the true underlying
model is not linear.

Also, our methods should be tested on real datasets in order to see whether their perfor-
mances are still good in practice.
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7.2 Perspectives and future works

7.2.1 Extension to elliptical symmetry

The next interesting step would be to consider the more general family of elliptically symmetric
distributions. These distributions are a generalization of the spherical family where the covari-
ance matrix is not proportional to the identity matrix. This way, we can actually model both
dependence and correlation between the components of the output variable Y . A particularly
interesting case of this family is the heteroskedasticity, where the covariance matrix is diagonal
but not proportional to the identity matrix.

7.2.2 The Bayesian point of view

Even though we exposed and studied several Bayesian criteria (such as BIC), the discussion on
model selection was more from a frequentist point of view. However, loss estimation can also be
treated from a Bayesian perspective. Indeed, assuming that the regression coefficient β is also a
random variable with prior distribution π(β), [Fourdrinier & Strawderman 2003] and [Fourdrinier
& Wells 2012] considered correction functions taking into account the corresponding marginal
density. In both papers, the authors only applied it to the case where m(Y ) = ‖Y ‖−(n−2). Since
estimators of β such as the Lasso or the Ridge regression can be seen as Bayes estimators with
respectively a Laplace or a Gaussian prior distribution, there is a wide range of new correction
functions to investigate. It would thus be interesting to run a similar experiment as we did in
the simulation study in order to compare Bayesian methods, and also to compare both Bayesian
and frequentist methods. Among the Bayesian literature, we can cite for instance the interesting
works on Bayes factors with Zellner’s g–prior (see [George & Foster 2000] and [Maruyama &
George 2011] for instance).

7.2.3 Other losses for comparing two model evaluation criteria

The comparison of two model evaluation criteria through the quadratic communication risk
may not be the most apropriate loss. Indeed, the quadratic estimation loss L(θ, θ̂) = ‖θ̂− θ‖2 is
comparable to an estimator of a variance term. Hence, we could use another loss such as Stein
risk which penalizes less the large values of L(θ, θ̂), or Rukhin’s risk [Rukhin 1988a,Rukhin 1988b]
(see Chapter 4).

7.2.4 Application to classification and clustering

Loss estimation is a fairly general theory and the use of a loss function different from the
quadratic estimation loss ‖Xβ̂ − Xβ‖2 could enable its adaptation to other problems than
regression. For instance, classification problems deal with the estimation of the 0− 1 excess loss
(see [Boucheron et al. 2005]).

Another example is that of clustering with mixture models, where one of the objectives is
to estimate the parameters of the mixture density modelling the data (see for instance [Nadif
& Govaert 1998] or [Govaert & Nadif 2010]). In such a case, the baseline loss can be defined as
the log-likelihood.
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A.1 Woodbury matrix update

In this appendix, we recall how we can update an inverse matrix through the Woodbury matrix
identity. We first recall the identity in the general case, then we apply it when we want to add
or delete a column and a line to a symmetric matrix. This appendix is based on [Hager 1989].

A.1.1 Woodbury matrix identity

The Sherman-Morrison-Woodbury formula helps computing the inverse matrix the matrix

(A− UV )−1

when we know the inverse matrix A−1. In this formula, A is a square symmetric matrix in Rn×n,
and U and V t are both in Rn×d. We expose it in the following

Lemma A.1 (Woodbury matrix identity.). Let A be a square matrix in Rn×n, and U and V t

be two matrices in Rn×d. If A and A− UV are invertible, then

(A− UV )−1 = A−1 +A−1U(Id − V A−1U)−1V A−1.

The special case where U and V are vectors (d = 1) corresponds to the Sherman-Morrison
identity. An extension of this formula is to replace V by D−1V , which results in the following
modification the identity

(A− UD−1V )−1 = A−1 +A−1U(D − V A−1U)−1V A−1. (A.1)

In this appendix, we are also interested in another form of the identity, where we wish to
compute the inverse of the matrix

M =
(
A U

V D

)
,

where D is a square matrix in Rd×d. The identity becomes

M−1 =
(
A−1 +A−1U(D − V A−1U)−1V A−1 −A−1U(D − V A−1U)−1

−(D − V A−1U)−1V A−1 (D − V A−1U)−1

)
. (A.2)

A.1.2 Update for adding a column and a line

In the algorithms from Chapter 5, Section 5.1, at a given step we compute the inverse of the
matrix

ΣI = (Xt
IXI)−1,

where I is a sequence of indices such that #I = d < n and X is the design matrix from the
linear model

Y = Xβ + ε.

On the following step(s), we wish to compute the inverse matrix

Σ = (XtX)−1,

when we add d columns to X (denoted here by X0):

X =
(
XI X0

)
.
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The relation between ΣI and Σ is thus

Σ−1 =
(

Σ−1
I Xt

IX0
Xt

0XI Xt
0X0

)
,

which allows us to use directly the formula (A.2) with A = Σ−1
I , U = V t = Xt

IX0 andD = Xt
0X0.

A.1.3 Update for deleting a column and a line

This time, we consider the reverse situation where we know the inverse matrix

Σ = (XtX)−1

and we wish to compute the inverse matrix

ΣI = (Xt
IXI)−1,

where I is a sequence of indices such that #I = d < n. Without loss of generality, we can
consider the case where I = {1, . . . , n− d}, that is, we wish to update the inverse of Σ when we
delete its last d rows and its last d columns. If the d rows and columns we wish to delete are
not the last ones of Σ, it suffices to reorder the matrix so that

Σ−1 =
(
Xt
IXI Xt

IX0
Xt

0XI Xt
0X0

)
.

Now, remarking that(
Σ−1
I 0
0 In−d

)
= Σ−1 −

(
0 Xt

IX0
Xt

0XI Xt
0X0 − In−d

)
,

where the identity matrix In−d has been added to allow the invertibility of the left-hand side
matrix, we can apply the original Woodbury formula (A.1) with A = Σ−1, and where U , D and
V should verify the equality

UD−1V =
(

0 Xt
IX0

Xt
0XI Xt

0X0 − In−d

)
(A.3)

The equality (A.3) is verified for instance when

U =
(

0 Xt
IX0

In−d,n−d
1
2(Xt

0X0 − In−d)

)
, V = U t, D =

(
0 In−d,n−d

In−d,n−d 0

)
. (A.4)
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A.2 Twice weak differentiability of the correction function γf
In this appendix, we study the weak differentiability of the corrective function defined in Equa-
tion (4.26). We recall this function hereafter:

γf (Z) = a[
(k + 1)Z2

(k+1) +
∑p
i=k+2 Z

2
(i)

] , a ∈ R (A.5)

Here, in an aim of simplifying the notations, we denote by Z(i), i = k+ 1, . . . , p, the elements
which have absolute value lower than λ. They are organized as if we had sorted them: |Z(1)| >
· · · > |Z(p)|. Hence Z(k+1) corresponds to the element with highest absolute value among those
with absolute value lower than λ.

But we can state this function in terms of λ:

γf (Z) = a

kZ2
j 1{j=arg maxl{|Zl|≤λ}} +

∑p
i=1 Z

2
i 1{i∈{l\|Zl|≤λ}}

Next, we give the definition for the k times weak differentiability.

Definition A.1. A function u ∈ L1
loc(Rp) is said to be k times weakly differentiable if, for every

multiindex α such that |α| ≤ k, there is a function uα ∈ L1
loc(Rp) with the following property:∫

Rp
u ∂αϕdx = (−1)|α|

∫
Rp
uα ϕdx ∀ϕ ∈ C∞0 (Rn) (A.6)

Here, we need k = 2 in order to apply Corollary 4.1 with γf , so we have to verify (A.6) for
(γf )i, (γf )i,j and (γf )i,i. Without loss of generality, we will assume here that a = 1.

If these functions exist, they should be equal to:

(γf )i(x) = −2xi
d2(x)

(
k1{i=arg maxl{|xl|≤λ}} + 1{i∈{l\|xl|≤λ}}

)
(γf )i,j(x) = 4xixj

d3(x)
(
k1{i∨j=arg maxl{|xl|≤λ}} + 1{i∧j∈{l\|xl|≤λ}}

)
(γf )i,i(x) = 2

d2(x)
(
(2(k + 2)x2

i − 1)k1{i=arg maxl{|xl|≤λ}} + (2x2
i − 1)1{i∈{l\|xl|≤λ}}

)
where d(x) = kx2

i1{i=arg maxl{|xl|≤λ}} +
∑p
i=1 x

2
i1{i∈{l\|xl|≤λ}}, i ∧ j means “i and j”, and i ∨ j

means “i or j”.
In the first case, we have by Fubini:∫

Rp
(γf )i ϕdx =

∫
R
. . .

∫
R

(γf )i ϕdxidx1 . . . dxi−1dxi+1 . . . dxp

Now, replacing ui by its value and using integration by part, we have:∫
R

(γf )i ϕdxi =
∫
R

−2xi
d2(x)

(
k1{i=arg maxl{|xl|≤λ}} + 1{i∈{l\|xl|≤λ}}

)
ϕdxi

= −2
(
k1{i=arg maxl{|xl|≤λ}} + 1{i∈{l\|xl|≤λ}}

) ∫
R

xi
d2(x) ϕdxi

=
[ 1

d(x)ϕ
]+∞

−∞
−
∫
R

1
d(x) ∂

iϕdxi
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The first term is zero since ϕ has a compact support. Hence, we obtain:∫
Rp

(γf )i ϕdx = −
∫
R
. . .

∫
R

1
d(x) ∂

iϕdxidx1 . . . dxi−1dxi+1 . . . dxp

= −
∫
R
. . .

∫
R
γf ∂

iϕdxidx1 . . . dxi−1dxi+1 . . . dxp

= −
∫
Rp
γf ∂

iϕdx

Using the same approach, we find that:∫
R2

(γf )i,j ϕdxjdxi =
∫
R2

4xixj
d3(x)

(
k1{i∨j=arg maxl{|xl|≤λ}} + 1{i∧j∈{l\|xl|≤λ}}

)
ϕdxjdxi

= −
∫
R

[(
k1{i=arg maxl{|xl|≤λ}} + 1{i∈{l\|xl|≤λ}}

) 2xi
d2(x)ϕ

]+∞

−∞
dxi

+
∫
R2

(
k1{i∨j=arg maxl{|xl|≤λ}} + 1{i∧j∈{l\|xl|≤λ}}

) 2xi
d2(x) ∂

jϕdxjdxi

= 0−
∫
R2

(γf )i ∂jϕdxidxj

=
∫
R2
γf ∂

j,iϕdxidxj

using again Fubini’s theorem, integration by part, the compact supports of ϕ and ∂jϕ, and the
previous result with ∂jϕ instead of ϕ.

Hence we have:∫
Rp

(γf )i,j ϕdx =
∫
R
. . .

∫
R
γf ∂

i,jϕdxidxjdx1 . . . dxi−1dxi+1 . . . dxj−1dxj−1 . . . dxp

=
∫
Rp
γf ∂

i,jϕdx

Finally, we verify (A.6) for α = (i, i):∫
R

(γf )i,i ϕdxi =
∫
R

2
d2(x)

(
(2(k + 2)x2

i − 1)k1{i=arg maxl{|xl|≤λ}} + (2x2
i − 1)1{i∈{l\|xl|≤λ}}

)
ϕdxi

= −
[(
k1{i=arg maxl{|xl|≤λ}} + 1{i∈{l\|xl|≤λ}}

) 2xi
d2(x)ϕ

]+∞

−∞

+
∫
R

(
k1{i∨j=arg maxl{|xl|≤λ}} + 1{i∧j∈{l\|xl|≤λ}}

) 2xi
d2(x) ∂

iϕdxi

= 0−
∫
R

(γf )i ∂iϕdxi

=
∫
R
γf ∂

i,iϕdxi

for the same reasons stated before.
Hence we have:∫

Rp
(γf )i,i ϕdx =

∫
R
. . .

∫
R
γf ∂

i,iϕdxidx1 . . . dxi−1dxi+1 . . . dxp

=
∫
Rp
γf ∂

i,iϕdx

which completes the verification that γf is twice weakly differentiable.
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A.3 Subfunctions for LARS-MCP algorithm

In this appendix, we give the subfunctions useful for the completeness of Algorithm 5.2.
The function called update_subsets makes the necessary changes on the subsets depending

on which move needs to be performed.

Algorithm A.1 update_subsets: Update the subsets IN , IP and I0

Require: Icurrent
N , Icurrent

P , Icurrent
0 , j,move

Ensure: Inext
N , Inext

P , Inext
0

if move == 0 then
Inext
N ← Icurrent

N , Inext
P ← Icurrent

P , Inext
0 ← Icurrent

0
else
if move == 1 then
Inext
N ← Icurrent

N

Inext
P ← [Icurrent

P ; Icurrent
0 (j)]

Inext
0 ← Icurrent

0 , Inext
0 (j)← []

end if
if move == 2 then
Inext
N ← [Icurrent

N ; Icurrent
P (j)]

Inext
P ← Icurrent

P , Inext
P (j)← []

Inext
0 ← Icurrent

0
end if
if move == −1 then
Inext
N ← Icurrent

N

Inext
P ← Icurrent

P , Inext
P (j)← []

Inext
0 ← [Icurrent

P (j); Icurrent
0 ]

end if
if move == −2 then
Inext
N ← Icurrent

N , Inext
N (j)← []

Inext
P ← [Icurrent

N (j); Icurrent
P ]

Inext
0 ← Icurrent

0
end if

end if
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A.4 Computing the degrees of freedom

In this appendix, we treat the problem of computing in practice the generalized degrees of
freedom of a given estimator Xβ̂, which is equal to its divergence with respect to Y :

d̂f(Xβ̂) = divY (Xβ̂),

as it is a central quantity intervening in our model evaluation criteria as a measure of complexity.
The generalized degrees of freedom can be computed analytically for most of the estimators

of the parameter β we considered in this manuscript. Section A.4.1 presents the expressions
for such estimators. However, for the Adaptive Lasso and the Adaptive Elastic Net, computing
the analytical form of d̂f is more delicate because of the dependence to an initial estimate of β
(like the least-squares or the ridge estimator). Hence, in Section A.4.2 we also expose how to
compute d̂f thanks to the directional derivative.

A.4.1 Analytical form

The easiest case is that of the (restricted or full) least-squares estimator, where, as we have
repeatedly indicated, the generalized degrees of freedom are exactly equal to the true degrees
of freedom and correspond to the number of nonzero components in β̂. We give, in a series of
lemmas, the form of the estimators whose generalized degrees of freedom are known analytically.

Lemma A.2 (Degrees of freedom of the Least-squares estimator). The degrees of freedom of
the Least-squares estimator and the restricted Least-squares estimator are respectively equal to

d̂f(Xβ̂LS) = p

d̂f(XI β̂
LS
I ) = k.

Proof. By definition of the least-squares estimator and of the restricted least-squares estimator,
we have that

d̂f(Xβ̂LS) = divY (X(XtX)−1XtY ) = tr(X(XtX)−1Xt) = tr((XtX)−1XtX) = tr(Ip) = p,

d̂f(XI β̂
LS
I ) = tr(XI(Xt

IXI)−1Xt
I) = tr((Xt

IXI)−1Xt
IXI) = tr(Ik) = k.

Lemma A.3 (Generalized degrees of freedom of the James-Stein estimator). The generalized
degrees of freedom of the James-Stein estimator are equal to

d̂f(XI β̂
JS
I ) = k − (k − 2)2

‖XI β̂LSI ‖2
.
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Proof. By definition of the James-Stein estimator, we have that

d̂f(XI β̂
JS
I ) = divY

((
1− (k − 2)
‖XI β̂LSI ‖2

)
XI β̂

LS
I

)

= k − (k − 2) divY

(
XI β̂

LS
I

‖XI β̂LSI ‖2

)

= k − (k − 2)

divY (XI β̂
LS
I )

‖XI β̂LSI ‖2
+
(
∇Y

1
‖XI β̂LSI ‖2

)t
XI β̂

LS
I


= k − (k − 2)

 k

‖XI β̂LSI ‖2
− 2

(
XI β̂

LS
I

‖XI β̂LSI ‖4

)t
XI β̂

LS
I


= k − (k − 2)2

‖XI β̂LSI ‖2
.

Lemma A.4 (Generalized degrees of freedom of the Ridge regression estimator). The general-
ized degrees of freedom of the Ridge regression estimator are equal to

d̂f(XI β̂
RR
I ) =

k∑
j=1

d2
j

d2
j + λ

,

where dj , j = 1, . . . , k are the eigenvalues of the matrix Xt
IXI .

Lemma A.5 (Generalized degrees of freedom of the Lasso). The generalized degrees of freedom
of the Lasso estimator are equal to

d̂f(Xβ̂lasso) = k.

Proof. The proof is given in [Zou et al. 2007]. From the expression they give of the nonzero
components of Lasso, for a given subset I, we easily obtain

β̂lassoI = (Xt
IXI)−1(Xt

IY − λ sgn(β̂lassoI )) = β̂LSI − λ(Xt
IXI)−1 sgn(β̂lassoI ),

we can easily see that the right part in parenthesis will have a null derivative, and the divergence
of β̂lassoI is equal to that of β̂LSI .

Lemma A.6 (Generalized degrees of freedom of the MCP). The generalized degrees of freedom
of the MCP estimator are equal to

d̂f(Xβ̂mcp) = tr(XI(Xt
IXI + γ−1ΥI)−1Xt

I),

where ΥI = diag(sgn(β̂mcpI )).

Proof. The proof is given in [Zhang 2010].
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A.4.2 Numerical computation

For other estimators of β, the generalized degrees of freedom can be computed numerically thanks
to the directional derivative. We recall the definition of the directional derivative, extracted
from [Nocedal & Wright 1999].

Definition A.2 (Directional derivative). The directional derivative of a function f̂ : Rn 7→ R
in the direction u is given by

D(f(t);u) = lim
η→0

f(t+ ηu)− f(t)
η

. (A.7)

The components of the gradient of a function f , namely (∇f)i = ∂f/∂ti, 1 ≤ i ≤ n, are
defined as the directional derivative of f in the direction p = ei where ei is the ith vector of the
canonical basis, that is,

(ei)j =
{

1 if j = i,

0 if j 6= i.

Now, going back to the definition of the divergence, we have that

divY (Xβ̂) =
n∑
i=1

∂(Xβ̂)i
∂Yi

.

Hence, we can compute the generalized degrees of freedom of Xβ̂ by

d̂f(Xβ̂) =
n∑
i=1

D((Xβ̂(Y ))i; ei). (A.8)
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A.5 More results on the simulation study

This appendix gives all the results we obtained for the simulation study in Section 6.2.



A
.5.

M
ore

results
on

the
sim

ulation
study

169
A.5.1 Loss estimators with Student distribution
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Figure A.1: Average frequency of recovery of the true subset under the full model assumption for the unbiased loss estimator L̂0 with
independent estimator σ̂2

full of the variance (black line), for the invariant unbiased loss estimator L̂inv0 (blue line) and for the
corrected estimator L̂fγ with correction function γf with constant c∗f (magenta line) and ĉf (green line). The dashed lines
display the standard deviation. The true loss has been added in red for reference. The top row corresponds to the case where
the sample size n is set to 20, and the bottom row to n = 100. Each column corresponds to a method for constructing the
collection of models.
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Figure A.2: Average frequency of recovery of the true subset under the restricted model assumption for the unbiased loss estimator L̂0
with independent estimator σ̂2

restricted of the variance (black line), for the invariant unbiased loss estimator L̂inv0 (blue line), for
the corrected estimator L̂rγ with correction function γr (magenta line) and for the corrected estimator L̂∗ (green line). The
dashed lines display the standard deviation. The true loss has been added in red for reference. The top row corresponds to
the case where the sample size n is set to 20, and the bottom row to n = 100. Each column corresponds to a method for
constructing the collection of models.
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Figure A.3: Average frequency of recovery of the true subset under the restricted model assumption for the loss estimator L̂0 with
dependent estimator σ̂2

r (β̂) of the variance (black line), for the corrected estimator L̂rγ with correction function γr (magenta
line), and for the corrected estimator L̂∗ (green line). The dashed lines display the standard deviation. The true loss has been
added in red for reference. The top row corresponds to the case where the sample size n is set to 20, and the bottom row to
n = 100. Each column corresponds to a method for constructing the collection of models.



172
A
ppendix

A
.
A
ppendix

A.5.2 Loss estimators with Kotz distribution

Noise level σ estimated on the full model by σ̂2
full

n
=

20

(a) Lasso

0.5 1 2

0.2

0.3

0.4

0.5

σ

fr
e
q

(b) MCP

0.5 1 2
0.4

0.5

0.6

σ

fr
e
q

(c) adalasso

0.5 1 2

0.7

0.8

0.9

1

σ

fr
e
q

(d) garrote

0.5 1 2

0.7

0.8

0.9

1

σ

fr
e
q

(e) enet

0.5 1 2

1

σ

fr
e
q

(f) adanet

0.5 1 2

1

σ

fr
e
q

(g) forward

0.5 1 2

0.6

0.7

0.8

0.9

1

σ

fr
e
q

(h) backward

0.5 1 2
0.4

0.5

0.6

0.7

0.8

0.9

1

σ

fr
e
q

n
=

10
0

0.5 1 2
0.1

0.2

0.3

0.4

0.5

σ

fr
e
q

0.5 1 2
0.2

0.3

0.4

0.5

σ

fr
e
q

0.5 1 2

0.7

0.8

0.9

1

σ

fr
e
q

0.5 1 2

0.7

0.8

0.9

1

σ
fr

e
q

0.5 1 2
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

σ

fr
e
q

0.5 1 2
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

σ

fr
e
q

0.5 1 2

0.6

0.7

0.8

0.9

1

σ

fr
e
q

0.5 1 2
0.4

0.5

0.6

0.7

0.8

0.9

1

σ

fr
e
q

Figure A.4: Average frequency of recovery of the true subset under the full model assumption for the unbiased loss estimator L̂0 with
independent estimator σ̂2

full of the variance (black line), for the invariant unbiased loss estimator L̂inv0 (blue line) and for the
corrected estimator L̂fγ with correction function γf with constant c∗f (magenta line) and ĉf (green line). The dashed lines
display the standard deviation. The true loss has been added in red for reference. The top row corresponds to the case where
the sample size n is set to 20, and the bottom row to n = 100. Each column corresponds to a method for constructing the
collection of models.
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Figure A.5: Average frequency of recovery of the true subset under the restricted model assumption for the unbiased loss estimator L̂0
with independent estimator σ̂2

restricted of the variance (black line), for the invariant unbiased loss estimator L̂inv0 (blue line), for
the corrected estimator L̂rγ with correction function γr (magenta line) and for the corrected estimator L̂∗ (green line). The
dashed lines display the standard deviation. The true loss has been added in red for reference. The top row corresponds to
the case where the sample size n is set to 20, and the bottom row to n = 100. Each column corresponds to a method for
constructing the collection of models.
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Figure A.6: Average frequency of recovery of the true subset under the restricted model assumption for the loss estimator L̂0 with
dependent estimator σ̂2

r (β̂) of the variance (black line), for the corrected estimator L̂rγ with correction function γr (magenta
line), and for the corrected estimator L̂∗ (green line). The dashed lines display the standard deviation. The true loss has been
added in red for reference. The top row corresponds to the case where the sample size n is set to 20, and the bottom row to
n = 100. Each column corresponds to a method for constructing the collection of models.
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Figure A.7: Average frequency of recovery of the true subset with the Lasso as a function of the
noise level σ for the sample sizes n = 20 (blue), n = 40 (green) and n = 100 (red).
The dashed lines display the standard deviation.
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Figure A.8: Average frequency of recovery of the true subset with the MCP as a function of the
noise level σ for the sample sizes n = 20 (blue), n = 40 (green) and n = 100 (red).
The dashed lines display the standard deviation.
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A.5.5 Adaptive lasso
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Figure A.9: Average frequency of recovery of the true subset with the Adaptive lasso as a func-
tion of the noise level σ for the sample sizes n = 20 (blue), n = 40 (green) and
n = 100 (red). The dashed lines display the standard deviation.
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A.5.6 Garrote
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Figure A.10: Average frequency of recovery of the true subset with the Garrote as a function of
the noise level σ for the sample sizes n = 20 (blue), n = 40 (green) and n = 100
(red). The dashed lines display the standard deviation.
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A.5.7 Elastic net
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Figure A.11: Average frequency of recovery of the true subset with the Elastic net as a function
of the noise level σ for the sample sizes n = 20 (blue), n = 40 (green) and n = 100
(red). The dashed lines display the standard deviation.
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A.5.8 Adaptive Elastic net
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Figure A.12: Average frequency of recovery of the true subset with the Adaptive elastic net as
a function of the noise level σ for the sample sizes n = 20 (blue), n = 40 (green)
and n = 100 (red). The dashed lines display the standard deviation.
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A.5.9 Forward Selection
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Figure A.13: Average frequency of recovery of the true subset with the Forward selection as a
function of the noise level σ for the sample sizes n = 20 (blue), n = 40 (green) and
n = 100 (red). The dashed lines display the standard deviation.
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A.5.10 Backward elimination
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Figure A.14: Average frequency of recovery of the true subset with the Backward elimination as
a function of the noise level σ for the sample sizes n = 20 (blue), n = 40 (green)
and n = 100 (red). The dashed lines display the standard deviation.
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Sélection de modèle : une approche décisionnelle
Résumé : Cette thèse s’articule autour de la problématique de la sélection de modèle, étudiée dans le
contexte de la régression linéaire. L’objectif est de déterminer le meilleur modèle de prédiction à partir
de données mesurées, c’est-à-dire le modèle réalisant le meilleur compromis entre attache aux données et
complexité du modèle.

La contribution principale consiste en la dérivation de critères d’évaluation de modèles basés sur des
techniques de théorie de la décision, plus précisément l’estimation de coût. Ces critères reposent sur
une hypothèse distributionnelle plus large que l’hypothèse classique gaussienne avec indépendance entre
les observations : la famille des lois à symétrie sphérique. Cette famille nous permet à la fois de nous
affranchir de l’hypothèse d’indépendance et d’ajouter une plus grande robustesse puisque nos critères
ne dépendent pas de la forme spécifique de la distribution. Nous proposons également une méthode de
comparaison des critères dérivés au travers d’une mesure de type Erreur quadratique (MSE), qui permet
de déterminer si un critère d’évaluation de modèle est meilleur qu’un autre.

La seconde contribution attaque le problème de la construction des différents modèles comparés. Les
collections de modèles considérées sont celles issues des méthodes de régularisation parcimonieuses, de
type Lasso. En particulier, nous nous sommes intéressés à la Pénalité Concave Minimax (MCP), qui garde
la sélection du Lasso tout en corrigeant son biais d’estimation. Cette pénalité correspond cependant à un
problème non différentiable et non convexe. La généralisation des outils habituels de sous-différentielles
grâce aux différentielles de Clarke a permis de déterminer les conditions d’optimalité et de développer un
algorithme de chemin de régularisation pour le MCP.

Enfin, nous comparons nos propositions avec celles de la littérature au travers d’une étude numérique,
dans laquelle nous vérifions la qualité de la sélection. Les résultats montrent notamment que nos critères
obtiennent des performances comparables à ceux de la littérature, et que les critères les plus couramment
utilisés en pratique (validation croisée) ne sont pas toujours parmi les plus performants.

Mots clés : sélection de modèle, sélection de variable, régression linéaire, estimation de coût, distri-
butions à symétrie sphérique, dépendance, Lasso, MCP.

Model Selection: a decision-theoretic approach
Abstract: This manuscript addresses the problem of model selection, studied in the linear regression
framework. The objective is to determine the best predictive model based on observed data, that is, the
model realizing the best tradeoff between goodness of fit and complexity.

Our main contribution consists in deriving model evaluation criteria based on tools from Decision
Theory, in particular loss estimation. Such criteria rely on a distributional assumption larger than
the classical Gaussian hypothesis with independent observations: the family of spherically symmetric
distributions. This family of laws allows us to relax the independence assumption and thus brings
robustness, since our criteria do not depend on the specific form of the distribution. We also propose a
method for comparing model evaluation criteria through a Mean-Squared Error type measure.

Our second contribution tackles the problem of constructing the models we compare. The conditions
of models considered are obtained from sparse regularization methods, namely the Lasso and related
methods. In particular, we studied the Minimax Concave Penalty (MCP), which keeps Lasso’s selection
while correcting its estimation bias. However, this penalty corresponds to a non differentiable and non-
convex optimization problem. The generalization of subdifferentials with Clarke differentials allowed us
to derive the optimality conditions d’optimalité and to propose a regularization path algorithm for MCP.

Finally, we compare our propositions to the literature through a numerical study, in which we verify
the quality of the selection. The results especially show that our criteria yield performances similar to
the literature, and that frequently used criteria such as Cross Validation do not always result in good
performances.

Keywords: model selection, variable selection, linear regression, loss estimation, spherically symmet-
ric distributions, dependence, Lasso, MCP.
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