]. B. Ahn and J. Kim, http://www.supersonicimagine.com/Aixplorer-R/Presentation Measurement and characterization of soft tissue behavior with surface deformation and force response under large deformations, Medical Image Analysis, vol.14, issue.2 2, pp.138148-2010, 2010.

. Allard, SOFA an Open Source Framework for Medical Simulation, Medicine Meets Virtual Reality (MMVR'15), 2007.
URL : https://hal.archives-ouvertes.fr/inria-00319416

&. Alterovitz, ]. R. Goldberg, K. Alterovitz, and . Goldberg, Comparing algorithms for soft tissue deformation : accuracy metrics and benchmarks. Rapport technique, pp.42-46, 2002.

. Alterovitz, Needle insertion and radioactive seed implantation in human tissues: simulation and sensitivity analysis, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422), pp.1793-1799, 2003.
DOI : 10.1109/ROBOT.2003.1241854

. Anderson, Verication, validation and sensitivity studies in computational biomechanics, Computer Methods in Biomechanics and Biomedical Engineering, vol.10, issue.3, p.171184, 2007.

. Aspert, MESH: measuring errors between surfaces using the Hausdorff distance, Proceedings. IEEE International Conference on Multimedia and Expo, pp.705708-705754, 2002.
DOI : 10.1109/ICME.2002.1035879

&. Auer, ]. E. Luther, W. Auer, and . Luther, Numerical verication assessment in computational biomechanics Numerical Validation in Current Hardware Architectures, From Embedded System to High-End Computational Grids, Proceedings of the Dagstuhl Seminar, p.145160, 2008.

. Boudou, An extended modeling of the micropipette aspiration experiment for the characterization of the Young's modulus and Poisson's ratio of adherent thin biological samples: Numerical and experimental studies, Journal of Biomechanics, vol.39, issue.9, pp.16771685-114, 2006.
DOI : 10.1016/j.jbiomech.2005.04.026

. Brazma, Standards for systems biology, Nature Reviews Genetics, vol.5, issue.8, p.593605, 2006.
DOI : 10.1038/nbt1031

. Brown, Computer-controlled motorized endoscopic grasper for in vivo measurement of soft tissue biomechanical characteristics, Studies in Health Technology and Informatics, pp.7173-111, 2002.

]. J. Brown, J. Rosen, Y. S. Kim, L. Chang, M. N. Sinanan et al., In-vivo and in-situ compressive properties of porcine abdominal soft tissues, Studies in Health Technology and Informatics, vol.112, pp.2632-111, 2003.

. Bucki, Framework for a low-cost intraoperative image-guided neuronavigator including brain shift compensation, EMBS 2007. 29th Annual International Conference of the IEEE, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00170005

]. J. Cafeo and B. H. Thacker, Concepts and Terminology of Validation for Computational Solid Mechanics Models, SAE Technical Paper Series, p.3, 2004.
DOI : 10.4271/2004-01-0454

. Carter, Measurements and Modeling of the Compliance of Human and Porcine Organs, Medical Image Analysis, vol.5, pp.231236-111, 2001.

T. G. Cavusoglu, F. G-"-oktekin, S. Tendick, and . Sastry, GiPSi : An open source/open architecture software development framework for surgical simulation. Medicine meets virtual reality 12 : building a better you : the next tools for medical education, diagnosis, and care, p.46, 2004.

T. G. Çavusoglu, F. Goktekin, and . Tendick, GiPSi: A Framework for Open Source/Open Architecture Software Development for Organ-Level Surgical Simulation, IEEE Transactions on Information Technology in Biomedicine, vol.10, issue.2, p.312322, 2006.
DOI : 10.1109/TITB.2006.864479

]. S. De and . Bathe, The method of nite spheres, Computational Mechanics, vol.25, issue.4, p.329345, 2000.

. Debunne, Dynamic real-time deformations using space & time adaptive sampling, Proceedings of the 28th annual conference on Computer graphics and interactive techniques , SIGGRAPH '01, p.3136, 2001.
DOI : 10.1145/383259.383262

URL : https://hal.archives-ouvertes.fr/inria-00510045

]. G. Desalvo, ANSYS Verication Manual, 1992.

&. Dhoble and . Padole, AS Dhoble et PM Padole Probabilistic Approach In Finite Element Analysis For Orthopedic Application : A Case Study, 2011.

A. M. Gonzalez, M. New, and . Browne, Probabilistic analysis of an uncemented total hip replacement, Medical engineering & physics, vol.31, issue.4, p.470476, 2009.

]. M. Dubuisson and . Jain, A modied Hausdor distance for object matching, Proceedings of the 12th IAPR International Conference on Pattern Recognition, 1994.

. Easley, Finite element-based probabilistic analysis tool for orthopaedic applications. Computer methods and programs in biomedicine, p.3240, 2007.

. Egorov, Soft tissue elastometer, Medical Engineering & Physics, vol.30, issue.2, p.206212, 2008.
DOI : 10.1016/j.medengphy.2007.02.007

. Erdemir, Considerations for reporting nite element analysis studies in biomechanics, Journal of Biomechanics, p.2012

. Faure, SOFA: A Multi-Model Framework for Interactive Physical Simulation, pp.283-321
DOI : 10.1007/8415_2012_125

URL : https://hal.archives-ouvertes.fr/hal-00681539

. Fels, Artisynth : A biomechanical simulation platform for the vocal tract and upper airway, International Seminar on Speech Production, 2006.

. Ferrant, Serial registration of intraoperative MR images of the brain, Medical Image Analysis, vol.6, issue.4, p.337359, 2002.
DOI : 10.1016/S1361-8415(02)00060-9

. Fouard, CamiTK : A Modular Framework Integrating Visualization, Image Processing and Biomechanical Modeling. Soft Tissue Biomechanical Modeling for Computer Assisted Surgery, pp.323354-2012
URL : https://hal.archives-ouvertes.fr/hal-00806781

&. Gefen, ]. A. Margulies, S. S. Gefen, and . Margulies, Are in vivo and in situ brain tissues mechanically similar?, Journal of Biomechanics, vol.37, issue.9, p.13391352, 2004.
DOI : 10.1016/j.jbiomech.2003.12.032

&. Goulette, ]. F. Chendeb, S. Goulette, and . Chendeb, A Framework for Fast Computation of Hyper-Elastic Materials Deformations in Real-Time Simulation of Surgery, Proceedings of Computational Biomechanics for Medecine, p.6674, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01259670

&. Haldar and . Mahadevan, Haldar et S. Mahadevan. Probability, reliability, and statistical methods in engineering design, 2000.
DOI : 10.1016/s0966-842x(97)01170-0

M. Hauth, O. Etzmuÿ, and W. Straÿer, Analysis of numerical methods for the simulation of deformable models, The Visual Computer, vol.4, issue.7-8, p.581600, 2003.
DOI : 10.1007/s00371-003-0206-2

. Hedley, A short introduction to CellML, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.359, issue.1783, p.10731089, 2001.
DOI : 10.1098/rsta.2001.0817

. Henninger, Validation of computational models in biomechanics, Proceedings of the Institution of Mechanical Engineers, p.112, 2010.
DOI : 10.1243/09544119JEIM649

]. K. Hibbitt, Abaqus : Verication manual. Hibbitt, Karlsson & Sorensen, pp.26-27, 1993.

]. R. Hills and T. G. Trucano, Statistical validation of engineering and scientic models : Background. Sandia National Laboratories, pp.99-1256, 1999.

M. Bajka, B. Rohrnbauer, S. Badir, and E. Mazza, Measuring the In Vivo Behavior of Soft Tissue and Organs Using the Aspiration Device. Soft Tissue Biomechanical Modeling for Computer Assisted Surgery, pp.201228-2012

E. Zurich, Marc Hollenstein Mechanical Characterization of Soft Materials : Comparison between Dierent Experiments on Synthetic Specimens, 2005.

&. Hu, ]. T. Desai, J. P. Hu, and . Desai, Characterization of Soft-Tissue Material Properties: Large Deformation Analysis, Medical Simulation, p.2837, 2004.
DOI : 10.1007/978-3-540-25968-8_4

. Huttenlocher, Comparing images using the Hausdor distance. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.15, issue.9, p.850863, 1993.

&. James, ]. D. Pai, D. K. James, and . Pai, ArtDefo, Proceedings of the 26th annual conference on Computer graphics and interactive techniques , SIGGRAPH '99, p.6572, 1999.
DOI : 10.1145/311535.311542

M. P. Ottensmeyer, J. Gross, G. Buess, and S. L. Dawson, Independent testing of soft tissue visco-elasticity using indentation and rotary shear deformations, Medicine meets virtual reality NextMed : health horizon, vol.11, issue.94, p.137, 2003.

]. Kauer, Inverse Finite Element Characterization of Soft Tissues with Aspiration Experiments, 2001.

]. A. Kerdok, S. M. Cotin, M. P. Ottensmeyer, A. M. Galea, R. D. Howe et al., Truth cube: Establishing physical standards for soft tissue simulation, Medical Image Analysis, vol.7, issue.3, pp.283291-283322, 2003.
DOI : 10.1016/S1361-8415(03)00008-2

URL : https://hal.archives-ouvertes.fr/hal-01386230

. Kerdok, Eects of perfusion on the viscoelastic characteristics of liver, Journal of biomechanics, vol.39, issue.12, p.22212231, 2006.

. Koch, A framework for facial surgery simulation, Proceedings of the 18th spring conference on Computer graphics , SCCG '02, p.3342, 2002.
DOI : 10.1145/584458.584464

]. P. Kohnke, ANSYS theory manual, ANSYS Inc, 2001.

]. P. Laplace, Mémoire sur les approximations des formules qui sont fonctions de très-grands nombres, et sur leur application aux probabilités, Baudouin, pp.1810-1848, 1810.

]. R. Launois, L'évaluation socio-économique une discipline entre recherche clinique et études observationnelles, Bulletin du cancer, vol.90, issue.1, p.97104, 2003.

&. Laz, . Browne, M. Laz, and . Browne, A review of probabilistic analysis in orthopaedic biomechanics, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol.127, issue.5, pp.927943-927979, 2010.
DOI : 10.1243/09544119JEIM739

. Laz, Incorporating uncertainty in mechanical properties for nite elementbased evaluation of bone mechanics, Journal of biomechanics, vol.40, issue.13, p.28312836, 2007.

. Lloyd, ArtiSynth : A Fast Interactive Biomechanical Modeling Toolkit Combining Multibody and Finite Element Simulation. Soft Tissue Biomechanical Modeling for Computer Assisted Surgery, pp.355394-2012

&. Lorensen, ]. W. Cline, H. E. Lorensen, and . Cline, Marching cubes : A high resolution 3D surface construction algorithm, In ACM Siggraph Computer Graphics, vol.21, pp.163169-163175, 1987.

. Luboz, Validation of a Light Aspiration Device for In Vivo Soft Tissue Characterization (LASTIC) Soft Tissue Biomechanical Modeling for Computer Assisted Surgery, pp.114-114, 2012.

. Ma, Accuracy of Non-linear FE Modelling for Surgical Simulation: Study Using Soft Tissue Phantom, Computational Biomechanics for Medicine, pp.2941-2010
DOI : 10.1007/978-1-4419-5874-7_4

. Maas, A Comparison of FEBio, ABAQUS, and NIKE3D Results for a Suite of Verication Problems. Rapport technique, SCI Institute, pp.23-27, 2009.

. Maas, FEBio: Finite Elements for Biomechanics, Journal of Biomechanical Engineering, vol.134, issue.1, pp.11005-2012
DOI : 10.1115/1.4005694

]. G. Malandain, Filtrage, topologie et mise en correspondance d'images médicales multidimensionnelles, Thèse de sciences, 1992.

. Marchal, Towards a Framework for Assessing Deformable Models in Medical Simulation, Lecture Notes in Computer Science, vol.5104, issue.44, pp.176184-176217, 2008.
DOI : 10.1007/978-3-540-70521-5_19

URL : https://hal.archives-ouvertes.fr/hal-00841569

. Marchesseau, Fast porous visco-hyperelastic soft tissue model for surgery simulation: Application to liver surgery, Progress in biophysics and molecular biology, pp.185196-2010
DOI : 10.1016/j.pbiomolbio.2010.09.005

URL : https://hal.archives-ouvertes.fr/hal-00593223

. Mazza, Mechanical properties of the human uterine cervix: An in vivo study, Medical Image Analysis, vol.10, issue.2, p.125136, 2006.
DOI : 10.1016/j.media.2005.06.001

. Mazza, The mechanical response of human liver and its relation to histology: An in vivo study, Medical Image Analysis, vol.11, issue.6, p.663672, 2007.
DOI : 10.1016/j.media.2007.06.010

. Meier, Realtime deformable models for surgery simulation : a survey. Computer methods and programs in biomedicine, p.183197, 2005.

. Miller, Mechanical properties of brain tissue in-vivo: experiment and computer simulation, Journal of Biomechanics, vol.33, issue.11, 2000.
DOI : 10.1016/S0021-9290(00)00120-2

. Miller, Total Lagrangian explicit dynamics nite element algorithm for computing soft tissue deformation, Communications in Numerical Methods in Engineering, vol.23, issue.2, pp.121134-121161, 2007.

]. K. Miller, How to test very soft biological tissues in extension?, Journal of Biomechanics, vol.34, issue.5, p.651657, 2001.
DOI : 10.1016/S0021-9290(00)00236-0

. Mollemans, Predicting soft tissue deformations for a maxillofacial surgery planning system: From computational strategies to a complete clinical validation, Medical Image Analysis, vol.11, issue.3, pp.282301-282332, 2007.
DOI : 10.1016/j.media.2007.02.003

&. Montgomery, . C. Runger-2010-]-d, G. C. Montgomery, and . Runger, Applied statistics and probability for engineers, pp.38-39, 2010.

]. M. Mooney-1940 and . Mooney, A Theory of Large Elastic Deformation, Journal of Applied Physics, vol.11, issue.9, p.582592, 1940.
DOI : 10.1063/1.1712836

M. Müller, J. Dorsey, L. Mcmillan, R. Jagnow, and B. Cutler, Stable real-time deformations, Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer animation , SCA '02, p.4954, 2002.
DOI : 10.1145/545261.545269

. Nasseri, Viscoelastic properties of pig kidney in shear, experimental results and modelling, Rheologica Acta, vol.41, issue.1-2, p.180192, 2002.
DOI : 10.1007/s003970200017

. Nava, Experimental Observation and Modelling of Preconditioning in Soft Biological Tissues, Medical Simulation, p.18, 2004.
DOI : 10.1007/978-3-540-25968-8_1

. Nava, Evaluation of the mechanical properties of human liver and kidney through aspiration experiments. Technology and Health Care- European Society for Engineering and Medicine, pp.269-280, 2004.

. Nava, In vivo mechanical characterization of human liver, Medical Image Analysis, vol.12, issue.2, pp.203216-114, 2008.
DOI : 10.1016/j.media.2007.10.001

. Nealen, Physically Based Deformable Models in Computer Graphics, Computer Graphics Forum, vol.25, issue.1, p.809836, 2006.
DOI : 10.1145/1015706.1015733

]. W. Oberkampf and M. F. Barone, Measures of agreement between computation and experiment : validation metrics, Journal of Computational Physics, vol.217, issue.1, pp.536-574, 2006.

]. W. Oberkampf and T. G. Trucano, Verication and validation in computational uid dynamics, Progress in Aerospace Sciences, p.209272, 2002.

. Oberkampf, Error and uncertainty in modeling and simulation, Reliability Engineering & System Safety, vol.75, issue.3, p.333357, 2002.
DOI : 10.1016/S0951-8320(01)00120-X

. Oberkampf, Verication , validation, and predictive capability in computational engineering and Bibliographie Verication and validation of simulation models, p.143, 2004.

T. Boudou, E. Promayon, P. Perrier, and Y. Payan, A light sterilizable pipette device for the in vivo estimation of human soft tissues constitutive laws, 30th Annual International Conference of the IEEE, p.42984301, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00340413

T. Boudou, E. Promayon, F. Valdivia, and Y. Payan, In vivo measurement of human brain elasticity using a light aspiration device, Medical Image Analysis, vol.13, issue.120, pp.673678-673719, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00374101

P. Schiavone, E. Promayon, and Y. Payan, LASTIC: A Light Aspiration Device for in vivo Soft TIssue Characterization, Biomedical Simulation, pp.110-114, 2010.
DOI : 10.1007/978-3-642-11615-5_1

URL : https://hal.archives-ouvertes.fr/hal-00613183

T. Alber, R. Wehner, H. J. Blakytny, and . Wilke, Discretization error when using nite element models : Analysis and evaluation of an underestimated problem, Journal of biomechanics, vol.42, issue.12, 2009.

. Sette, Algorithms for ultrasound elastography: a survey, Computer Methods in Biomechanics and Biomedical Engineering, vol.22, issue.3, pp.283292-114, 2011.
DOI : 10.1080/10255841003766837

. Shi, Validation framework of the nite element modeling of liver tissue. Medical Image Computing and Computer- Assisted InterventionMICCAI, pp.531538-531569, 2005.

. Silva, PolyMeCo???An integrated environment for polygonal mesh analysis and comparison, Computers & Graphics, vol.33, issue.2, p.181191, 2009.
DOI : 10.1016/j.cag.2008.09.014

. Silva, Polymeco : A polygonal mesh analysis and comparison tool, 2007.

. Snedeker, Strain-rate dependent material properties of the porcine and human kidney capsule, Journal of Biomechanics, vol.38, issue.5, p.10111021, 2005.
DOI : 10.1016/j.jbiomech.2004.05.036

. Stavness, Coupled hard soft tissue simulation with contact and constraints applied to jawtongue Bibliographie 173, 2011.

. Stromback, A review of standards for data exchange within systems biology, PROTEOMICS, vol.6, issue.6, p.857867, 2007.
DOI : 10.1002/pmic.200600438

. Talwalkar, Magnetic resonance imaging of hepatic brosis : emerging clinical applications, Hepatology, vol.47, issue.1, p.332342, 2008.

. Tay, In Vivo Mechanical Behavior of Intra-abdominal Organs, IEEE Transactions on Biomedical Engineering, vol.53, issue.11, pp.21292138-111, 2006.
DOI : 10.1109/TBME.2006.879474

&. Taylor, K. Taylor, and . Miller, Reassessment of brain elasticity for analysis of biomechanisms of hydrocephalus, Journal of Biomechanics, vol.37, issue.8, p.12631269, 2004.
DOI : 10.1016/j.jbiomech.2003.11.027

M. Teschner, B. Heidelberger, M. Muller, and M. Gross, A versatile and robust model for geometrically complex deformable solids, Proceedings Computer Graphics International, 2004., p.312319, 2004.
DOI : 10.1109/CGI.2004.1309227

. Thacker, Concepts of Model Verication and Validation. Rapport technique, NM (US), vol.30, p.25, 2004.

]. B. Thacker, The Role of Nondeterminism in Verication and Validation of Computational Solid Mechanics Models, pp.10-36, 2003.

]. D. Valtorta and E. Mazza, Dynamic measurement of soft tissue viscoelastic properties with a torsional resonator device, Medical Image Analysis, vol.9, issue.5, p.481490, 2005.

]. D. Valtorta, Dynamic torsion test for the mechanical characterization of soft biological tissues, 2007.

P. Vandewalle, F. Schutyser, J. Van-cleynenbreugel, and P. Suetens, Modelling of facial soft tissue growth for maxillofacial surgery planning environments. Surgery Simulation and Soft Tissue Modeling, pp.10001000-10001031, 2003.

. Bibliographie and . Viceconti, Extracting clinically relevant data from nite element simulations, Clin. Biomechanics, vol.20, p.451454, 2005.

]. R. Vito, The mechanical properties of soft tissuesI : A mechanical system for bi-axial testing, Journal of biomechanics, vol.13, issue.11, p.947950, 1980.

]. V. Vuskovic, Device for in-vivo measurement of mechanical properties of internal human soft tissues, Diss., ETH, pp.114-115, 2001.

]. B. Welch, The generalization ofstudent's' problem when several different population variances are involved, Biometrika, vol.34, issue.12, p.2835, 1947.

. Wittek, Patient-specific model of brain deformation: Application to medical image registration, Journal of Biomechanics, vol.40, issue.4, p.919, 2007.
DOI : 10.1016/j.jbiomech.2006.02.021

&. Yang, . H. King-2011-]-k, A. I. Yang, and . King, Modeling of the Brain for Injury Simulation and Prevention, Biomechanics of the Brain, pp.91110-2011
DOI : 10.1007/978-1-4419-9997-9_5

S. Zachow, T. Hierl, and B. Erdmann, A quantitative evaluation of 3D soft tissue prediction in maxillofacial surgery planning, Proc

&. Zhou, ]. L. Pang, A. Zhou, and . Pang, Metrics and visualization tools for surface mesh comparison, Proceedings of the SPIE 2001, pp.99110-99156, 2001.