C. Validation, 110 5.7.1 Comparaison aux résultats théoriques, p.112

G. Simon, . Maroti, . Ledeczi, . Nadas, . Kusy et al., Sensor network-based countersniper system, Proceedings of the 2nd international conference on Embedded networked sensor systems , SenSys '04, 2004.
DOI : 10.1145/1031495.1031497

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.324.683

P. Sikka, L. Corke, and . Overs, Wireless sensor devices for animal tracking and control, 29th Annual IEEE International Conference on Local Computer Networks, pp.446-454, 2004.
DOI : 10.1109/LCN.2004.141

J. Mcculloch, S. Mccarthy, . Guru, . Peng, A. Hugo et al., Wireless sensor network deployment for water use efficiency in irrigation, Proceedings of the workshop on Real-world wireless sensor networks, REALWSN '08, pp.46-50, 2008.
DOI : 10.1145/1435473.1435487

T. Wark, . Corke, . Sikka, Y. Klingbeil, C. Guo et al., Transforming Agriculture through Pervasive Wireless Sensor Networks, IEEE Pervasive Computing, vol.6, issue.2, pp.50-57, 2007.
DOI : 10.1109/MPRV.2007.47

S. Kim, S. Fenves, and . Glaser, Health Monitoring of Civil Infrastructures Using Wireless Sensor Networks, 6th International Symposium on Information Processing in Sensor Networks, pp.254-263, 2007.

G. Virone and N. Noury, Télé-Surveillance Automatique de l Activité dans un Habitat Intelligent pour la Santé, JFIM2002, Congrès Francophone d'Informatique Médicale, 2002.

I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, Wireless sensor networks: a survey, Computer Networks, vol.38, issue.4, pp.393-422, 2002.
DOI : 10.1016/S1389-1286(01)00302-4

S. Arms, D. Townsend, J. Churchill, S. Galbreath, H. Mundell et al., Power management for energy harvesting wireless sensors, Smart Structures and Materials 2005: Smart Electronics, MEMS, BioMEMS, and Nanotechnology, pp.1-9, 2005.
DOI : 10.1117/12.600302

S. Roundy, P. Wright, and J. Rabaey, A study of low level vibrations as a power source for wireless sensor nodes, Computer Communications, vol.26, issue.11, pp.1131-1144, 2003.
DOI : 10.1016/S0140-3664(02)00248-7

S. Beeby and N. White, Energy harvesting for autonomous systems, Artech House, 2010.

S. Roundy, Energy Scavenging for Wireless Sensor Nodes with a focus on Vibration to Electricity Conversion, 2000.

D. Spreemann, Y. Folkmer, and . Manoli, Comparative study of electromagnetic coupling architectures for vibration energy harvesting devices, Proceedings of PowerMems 2008 and MicroEMS, pp.257-260, 2008.

S. Roundy, P. Wright, and K. S. Pister, Micro-Electrostatic Vibration-to-Electricity Converters, Microelectromechanical Systems, pp.1-10, 2002.
DOI : 10.1115/IMECE2002-39309

L. Wang and F. Yuan, Structural Vibration Energy Harvesting by Magnetostrictive Materials (MsM), 4th China-Japan-US Symposium on Structural Control and Monitoring, pp.1-8, 2006.

X. Dai, Y. Wen, . Li, G. Yang, and . Hang, Modeling, characterization and fabrication of vibration energy harvester using Terfenol-D/PZT/Terfenol-D composite transducer, Sensors and Actuators A: Physical, vol.156, issue.2, pp.350-358, 2009.
DOI : 10.1016/j.sna.2009.10.002

L. Wang and F. Yuan, Vibration energy harvesting by magnetostrictive material, Smart Materials and Structures, vol.17, issue.4, p.45009, 2008.
DOI : 10.1088/0964-1726/17/4/045009

G. Poulin, Generation of electrical energy for portable devicesComparative study of an electromagnetic and a piezoelectric system. Sensors and Actuators A : Physical, pp.461-471, 2004.

M. Marzencki, Y. Ammar, and S. Basrour, Integrated power harvesting system including a MEMS generator and a power management circuit. Sensors and Actuators A : Physical, pp.145-146363, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01432058

W. Li, T. Ho, G. Chan, P. Leong, and H. Wong, Infrared signal transmission by a laser-micromachined, vibration-induced power generator, Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems (Cat.No.CH37144), pp.236-239, 2000.
DOI : 10.1109/MWSCAS.2000.951628

S. Guo and H. Lee, An Efficiency-Enhanced Integrated CMOS Rectifier with Comparator-Controlled Switches for Transcutaneous Powered Implants, 2007 IEEE Custom Integrated Circuits Conference, pp.385-388, 2007.
DOI : 10.1109/CICC.2007.4405758

R. Amirtharajah and A. Chandrakasan, Self-powered signal processing using vibration-based power generation, IEEE Journal of Solid-State Circuits, vol.33, issue.5, pp.687-695, 1998.
DOI : 10.1109/4.668982

H. Kim, . Priya, K. Stephanou, and . Uchino, Consideration of Impedance Matching Techniques for Efficient Piezoelectric Energy Harvesting, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.54, issue.9, pp.1851-1859, 2007.
DOI : 10.1109/TUFFC.2007.469

G. Ottman, H. Hofmann, A. Bhatt, and G. A. Lesieutre, Adaptive piezoelectric energy harvesting circuit for wireless remote power supply, IEEE Transactions on Power Electronics, vol.17, issue.5, pp.669-676, 2002.
DOI : 10.1109/TPEL.2002.802194

X. Cao, Y. Chiang, Y. King, and . Lee, Electromagnetic Energy Harvesting Circuit With Feedforward and Feedback DC–DC PWM Boost Converter for Vibration Power Generator System, IEEE Transactions on Power Electronics, vol.22, issue.2, pp.679-685, 2007.
DOI : 10.1109/TPEL.2006.890009

C. Richard, . Guyomar, G. Audigier, and . Ching, <title>Semi-passive damping using continuous switching of a piezoelectric device</title>, Smart Structures and Materials 1999: Passive Damping and Isolation, 1999.
DOI : 10.1117/12.349773

E. Lefeuvre, . Badel, . Richard, D. Petit, and . Guyomar, A comparison between several vibration-powered piezoelectric generators for standalone systems, Sensors and Actuators A: Physical, vol.126, issue.2, pp.405-416, 2006.
DOI : 10.1016/j.sna.2005.10.043

D. Guyomar, . Badel, C. Lefeuvre, and . Richard, Toward energy harvesting using active materials and conversion improvement by nonlinear processing, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.52, issue.4, pp.584-595, 2005.
DOI : 10.1109/TUFFC.2005.1428041

D. Guyomar, Y. Jayet, . Petit, . Lefeuvre, . Monnier et al., Synchronized switch harvesting applied to selfpowered smart systems: Piezoactive microgenerators for autonomous wireless transmitters, Sensors and Actuators A: Physical, vol.138, issue.1, pp.151-160, 2007.
DOI : 10.1016/j.sna.2007.04.009

URL : https://hal.archives-ouvertes.fr/hal-00434167

E. Lefeuvre, Piezoelectric Energy Harvesting Device Optimization by Synchronous Electric Charge Extraction, Journal of Intelligent Material Systems and Structures, vol.16, issue.10, pp.865-876, 2005.
DOI : 10.1177/1045389X05056859

URL : https://hal.archives-ouvertes.fr/hal-00404199

Y. Ammar and S. Basrour, Non Linear Techniques for increasing harvesting energy from piezoelectric and electromagnetic Micro-Power-Generators, DTIP of MEMS and MOEMS, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00142379

M. Lallart, C. Magnet, . Richard, . Lefeuvre, . Petit et al., New Synchronized Switch Damping methods using dual transformations. Sensors and Actuators A : Physical, pp.302-314, 2008.

T. Starner, Human-powered wearable computing, IBM Systems Journal, vol.35, issue.3.4, pp.618-629, 1996.
DOI : 10.1147/sj.353.0618

H. A. Sodano, Generation and Storage of Electricity from Power Harvesting Devices, Journal of Intelligent Material Systems and Structures, vol.35, issue.5, pp.67-75, 2005.
DOI : 10.1177/1045389X05047210

C. , W. , and R. Yates, Analysis of a micro-electric generator for microsystems. Sensors and Actuators A : Physical, pp.8-11, 1996.

M. El-hami, P. Glynne-jones, N. White, . Hill, . Beeby et al., Design and fabrication of a new vibration-based electromechanical power generator, Sensors and Actuators A: Physical, vol.92, issue.1-3, pp.1-3335, 2001.
DOI : 10.1016/S0924-4247(01)00569-6

P. Glynnejones, M. J. Tudor, S. Beeby, and N. White, An electromagnetic, vibration-powered generator for intelligent sensor systems, Sensors and Actuators A : Physical, vol.110, pp.1-3344, 2004.

S. Beeby, R. Torah, M. J. Tudor, T. O. Glynne-jones, C. Donnell et al., A micro electromagnetic generator for vibration energy harvesting, Journal of Micromechanics and Microengineering, vol.17, issue.7, p.171257, 2007.
DOI : 10.1088/0960-1317/17/7/007

R. Torah, P. Glynne-jones, M. Tudor, T. O. Donnell, S. Roy et al., Self-powered autonomous wireless sensor node using vibration energy harvesting, Measurement Science and Technology, vol.19, issue.12, p.125202, 2008.
DOI : 10.1088/0957-0233/19/12/125202

D. Zhu, S. Beeby, M. J. Tudor, and N. Harris, A planar electromagnetic vibration energy harvester with a Halbach array, The 11th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, pp.347-350, 2011.

I. Sari, H. Balkan, and . Kulah, An electromagnetic micro power generator for wideband environmental vibrations. Sensors and Actuators A : Physical, pp.145-146405, 2008.

D. Zhu, M. J. Roberts, S. Tudor, and . Beeby, Closed loop frequency tuning of a vibration-based micro-generator, Power MEMS, pp.229-232, 2008.

B. Yang, . Lee, . Xiang, . Xie, . Han-he et al., Electromagnetic energy harvesting from vibrations of multiple frequencies, Journal of Micromechanics and Microengineering, vol.19, issue.3, p.35001, 2009.
DOI : 10.1088/0960-1317/19/3/035001

T. , V. Büren, and G. Tröster, Design and optimization of a linear vibrationdriven electromagnetic micro-power generator. Sensors and Actuators A : Physical, pp.765-775, 2007.

T. Sterken, R. Fiorini, and . Puers, Motion-based generators for industrial applications, Design, Test, Integration and Packaging of MEMS/MOEMS, number April, pp.26-28, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00189303

C. Saha, T. Donnell, P. Wang, and . Mccloskey, Electromagnetic generator for harvesting energy from human motion. Sensors and Actuators A : Physical, pp.248-253, 2008.

A. Rahimi, . Zorlu, H. Muhtaroglu, and . Külah, A Compact Electromagnetic Vibration Harvesting System with High Performance Interface Electronics, Eurosensors XXV, pp.215-218, 2011.
DOI : 10.1016/j.proeng.2011.12.053

P. Wang, . Liu, . Dai, . Yang, X. Wang et al., Design, simulation, fabrication and characterization of a micro electromagnetic vibration energy harvester with sandwiched structure and air channel, Microelectronics Journal, vol.43, issue.2, pp.154-159, 2012.
DOI : 10.1016/j.mejo.2011.10.003

R. Waters, . Chisum, . Jazo, . Fralick, . Diego et al., Development of an Electro-Magnetic Transducer for Energy Harvesting of Kinetic Energy and its Applicability to a MEMS-scale Device, Nanopower, 2008.

S. Kulkarni, . Koukharenko, . Torah, . Tudor, T. O. Beeby et al., Design, fabrication and test of integrated micro-scale vibration-based electromagnetic generator. Sensors and Actuators A : Physical, pp.145-146336, 2008.

S. Chang, F. Yaul, F. Sullivan, D. Otten, J. Lang et al., Harvesting Energy from moth vibrations during flight. International Workshop on Micro and Nanotechnologies for Power Generation and Energy Conversion Applications, pp.3-6, 2009.

N. Elvin and A. Elvin, An experimentally validated electromagnetic energy harvester, Journal of Sound and Vibration, vol.330, issue.10, pp.2314-2324, 2011.
DOI : 10.1016/j.jsv.2010.11.024

E. Sardini and M. Serpelloni, An efficient electromagnetic power harvesting device for low-frequency applications. Sensors and Actuators A : Physical, pp.475-482, 2011.

E. Bouendeu, P. Greiner, J. Smith, and . Korvink, An efficient low cost electromagnetic vibration harvester, The 9th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, pp.320-323, 2009.

W. Lu, Y. Hwang, C. Pan, and S. Shen, Analyses of electromagnetic vibration-based generators fabricated with LTCC multilayer and silver spring-inducer, Microelectronics Reliability, vol.51, issue.3, pp.610-620, 2011.
DOI : 10.1016/j.microrel.2010.09.004

H. Sodano, D. Park, and . Inman, Estimation of Electric Charge Output for Piezoelectric Energy Harvesting, Strain, vol.28, issue.2, pp.49-58, 2004.
DOI : 10.1111/j.1475-1305.2004.00120.x

J. Ajitsaria, S. Choe, D. Shen, and . Kim, Modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation, Smart Materials and Structures, vol.16, issue.2, pp.447-454, 2007.
DOI : 10.1088/0964-1726/16/2/024

R. Ly, S. Rguiti, . Astorg, C. Hajjaji, A. Courtois et al., Modeling and characterization of piezoelectric cantilever bending sensor for energy harvesting. Sensors and Actuators A : Physical, pp.95-100, 2011.

L. Zhou, . Sun, S. Zheng, J. Deng, S. Zhao et al., A model for the energy harvesting performance of shear mode piezoelectric cantilever. Sensors and Actuators A : Physical, 2012.

K. Mak, S. Popov, and . Mcwilliam, Experimental model validation for a nonlinear energy harvester incorporating a bump stop, Journal of Sound and Vibration, vol.331, issue.11, pp.2602-2623, 2012.
DOI : 10.1016/j.jsv.2012.01.023

A. Kasyap, . Lim, . Johnson, T. Horowitz, and . Nishida, Energy reclamation from a vibrating Piezoceramic composite beam, 9th International Congress on Sound and Vibration, 2002.

R. Elfrink, T. Kamel, . Goedbloed, . Matova, . Hohlfeld et al., Vibration energy harvesting with aluminum nitride-based piezoelectric devices, Proceedings of PowerMems 2008 + MicroEMS, pp.249-252, 2008.
DOI : 10.1088/0960-1317/19/9/094005

S. Roundy and P. Wright, A piezoelectric vibration based generator for wireless electronics, Smart Materials and Structures, vol.13, issue.5, pp.1131-1142, 2004.
DOI : 10.1088/0964-1726/13/5/018

D. Zhu, M. J. Beeby, N. Tudor, and . Harris, A credit card sized self powered smart sensor node. Sensors and Actuators A : Physical, pp.317-325, 2011.

X. Chen, . Yang, X. Wang, and . Yao, Vibration energy harvesting with a clamped piezoelectric circular diaphragm, Ceramics International, vol.38, pp.271-274, 2012.
DOI : 10.1016/j.ceramint.2011.04.099

J. Kymissis, . Kendall, N. Paradiso, and . Gershenfeld, Parasitic power harvesting in shoes, Digest of Papers. Second International Symposium on Wearable Computers (Cat. No.98EX215), pp.132-139, 1998.
DOI : 10.1109/ISWC.1998.729539

B. Yang and K. Yun, Piezoelectric shell structures as wearable energy harvesters for effective power generation at low-frequency movement. Sensors and Actuators A : Physical, 2012.

R. Yang, Y. Qin, . Li, Z. Zhu, and . Wang, Converting Biomechanical Energy into Electricity by a Muscle-Movement-Driven Nanogenerator, Nano Letters, vol.9, issue.3, 2009.
DOI : 10.1021/nl803904b

A. Badel, . Guyomar, C. Lefeuvre, and . Richard, Piezoelectric Energy Harvesting using a Synchronized Switch Technique, Journal of Intelligent Material Systems and Structures, vol.116, issue.2, pp.8-9831, 2006.
DOI : 10.1177/1045389X06057533

URL : https://hal.archives-ouvertes.fr/hal-00404174

P. Mitcheson, T. Green, E. Yeatman, and A. Holmes, Architectures for Vibration-Driven Micropower Generators, Journal of Microelectromechanical Systems, vol.13, issue.3, pp.429-440, 2004.
DOI : 10.1109/JMEMS.2004.830151

Y. Shu and I. Lien, Efficiency of energy conversion for a piezoelectric power harvesting system, Journal of Micromechanics and Microengineering, vol.16, issue.11, pp.2429-2438, 2006.
DOI : 10.1088/0960-1317/16/11/026

Y. Shu and I. Lien, Analysis of power output for piezoelectric energy harvesting systems, Smart Materials and Structures, vol.15, issue.6, p.1499, 2006.
DOI : 10.1088/0964-1726/15/6/001

H. Shen, M. Qiu, and . Balsi, Vibration damping as a result of piezoelectric energy harvesting. Sensors and Actuators A : Physical, pp.178-186, 2011.

A. Erturk, Electromechanical Modeling of Piezoelectric Energy Harvesters, 2009.

B. Owens and B. Mann, Linear and nonlinear electromagnetic coupling models in vibration-based energy harvesting, Journal of Sound and Vibration, vol.331, issue.4, pp.922-937, 2012.
DOI : 10.1016/j.jsv.2011.10.026

H. Wheeler, Simple Inductance Formulas for Radio Coils, Proceedings of the Institue of Radio Engineers, pp.1398-1400, 1928.
DOI : 10.1109/JRPROC.1928.221309

A. Badel, Récupération d énergie et contrôle vibratoire par éléments piézoélectriques suivant une approche non linéaire, 2005.

D. Spreemann, Y. Folkmer, A. Manoli, and . Willmann, Optimization and comparison of back iron based coupling architectures for electromagnetic vibration transducers using evolution strategy, PowerMEMS, pp.1-4, 2009.

H. Liu, C. Lee, C. Kobayashi, C. Tay, and . Quan, Investigation of a MEMS piezoelectric energy harvester system with a frequency-widened-bandwidth mechanism introduced by mechanical stoppers, Smart Materials and Structures, vol.21, issue.3, p.35005, 2012.
DOI : 10.1088/0964-1726/21/3/035005

E. Arroyo, A. Badel, F. Formosa, E. Arroyo, A. Badel et al., Energy harvesting from ambient vibrations : electromagnetic generator and synchronous extraction circuit Comparison of electromagnetic and piezoelectric vibration energy harvesters : model and experiments, Sensors and Actuators A : physical Electromagnetic vibration energy harvesting device optimization by synchronous energy extraction, soumis en novembre 2012. [2] Sensors and Actuators A : Physical, pp.188-156, 2011.

A. Arroyo, F. Badel, A. Formosa, F. Badel, E. Formosa et al., Modeling and Design of an Electromagnetic Vibration Energy Harvester and its Dedicated Energy Extraction Circuit Wide band vibration energy harvesting for wireless sensor nodes, 2nd Symposium Japanese-French Frontiers of Engineering Synchronized switch harvesting technique applied to electromagnetic vibration harvesters Electromagnetic generator design for membrane micro Stirling engine, Conférences internationales avec actes Février 2012 Proc.10th International Workshop on Micro and Nanotechnology for power generation and Energy Conversion Applications Proc. 10th International Workshop on Micro and Nanotechnology for power generation and Energy Conversion Applications Arroyo, F. Formosa, A new nonlinear energy harvesting approach for inertial electromagnetic micro-generator, 2010.

E. Arroyo, A. Badel, and F. Formosa, Conception et optimisation d'un microgénérateur de type électromagnétique pour récupérer les vibrations ambiantes, Journées nationales sur la récupération et le stockage d'énergie, mars 2012, Conférences nationales [9]

N. Maximale-récupérée-(-p-)-et-densité-de-puissance-normalisée, V ) de générateurs électromagnétiques de la littérature , pour une vibration d'accélération ? et de fréquence f 0 . ( * indique que le volume prend en compte l'électronique), puissance, p.16

N. Maximale-récupérée-(-p-)-et-densité-de-puissance-normalisée, V ) de générateurs piézoélectriques de la littérature , pour une vibration d'accélération ? et de fréquence f 0 . ( * indique que le volume prend en compte l'électronique), puissance

S. Ou, Evolution du point de fonctionnement en fonction du volume pour l'optimisation adaptée à la technique classique, p.86

.. Puissance-récupérée-avec-la-technique-classique2g, en fonction de la résistance de charge et de la fréquence d'excitation, pour des accélérations de 1g, 0.5g et 0