G. Karp, Cell and Molecular Biology: Concepts and Experiments, 2009.

L. Borradori and . Sonnenberg, Structure and Function of Hemidesmosomes: More Than Simple Adhesion Complexes, Journal of Investigative Dermatology, vol.112, issue.4, 1999.
DOI : 10.1046/j.1523-1747.1999.00546.x

P. Tabeling, Introduction to Microfluidics, pp.978-978, 2010.

G. Cooper, The Cell: A Molecular Approach, 2000.

N. L. Jeon, S. K. Dertinger, D. T. Chiu, I. S. Choi, A. D. Stroock et al., Generation of Solution and Surface Gradients Using Microfluidic Systems, Langmuir, vol.16, issue.22, p.16, 2000.
DOI : 10.1021/la000600b

S. K. Dertinger, D. T. Chiu, N. L. Jeon, and G. M. Whitesides, Generation of Gradients Having Complex Shapes Using Microfluidic Networks, Analytical Chemistry, vol.73, issue.6, 2001.
DOI : 10.1021/ac001132d

A. E. Kamholz, B. H. Weigl, B. A. Finlayson, and P. Yager, Quantitative Analysis of Molecular Interaction in a Microfluidic Channel:?? The T-Sensor, Analytical Chemistry, vol.71, issue.23, p.71, 1999.
DOI : 10.1021/ac990504j

S. Kim, H. J. Kim, and N. L. Jeon, Biological applications of microfluidic gradient devices Integrative biology:quantitative biosciences from nano to macro, pp.11-12, 2010.

H. Wu, B. Huang, and R. N. Zare, Generation of Complex, Static Solution Gradients in Microfluidic Channels, Journal of the American Chemical Society, vol.128, issue.13, 2006.
DOI : 10.1021/ja058530o

M. Yang, C. Li, and J. Yang, Cell Docking and On-Chip Monitoring of Cellular Reactions with a Controlled Concentration Gradient on a Microfluidic Device, Analytical Chemistry, vol.74, issue.16, p.74, 2002.
DOI : 10.1021/ac025536c

N. Zaari, P. Rajagopalan, S. K. Kim, A. J. Engler, and J. Y. Wong, Photopolymerization in Microfluidic Gradient Generators: Microscale Control of Substrate Compliance to Manipulate Cell Response, Advanced Materials, vol.570, issue.23-24, pp.23-24, 2004.
DOI : 10.1002/adma.200400883

B. G. Chung and J. Choo, Microfluidic gradient platforms for controlling cellular behavior, ELECTROPHORESIS, vol.7, issue.18, p.31, 2010.
DOI : 10.1002/elps.201000137

F. Lin, W. Saadi, S. W. Rhee, S. Wang, S. Mittal et al., Generation of dynamic temporal and spatial concentration gradients using microfluidic devices, Lab on a Chip, vol.4, issue.3, 2004.
DOI : 10.1039/b313600k

D. Irimia, D. A. Geba, and M. Toner, Universal Microfluidic Gradient Generator, Analytical Chemistry, vol.78, issue.10, 2006.
DOI : 10.1021/ac0518710

D. Irimia, S. Liu, W. G. Tharp, A. Samadani, M. Toner et al., Microfluidic system for measuring neutrophil migratory responses to fast switches of chemical gradients, Lab Chip, vol.16, issue.2, 2006.
DOI : 10.1189/jlb.0905516

F. Lin, C. M. Nguyen, S. Wang, W. Saadi, S. P. Gross et al., Neutrophil Migration in Opposing Chemoattractant Gradients Using Microfluidic Chemotaxis Devices, Annals of Biomedical Engineering, vol.150, issue.4, pp.475-482, 2005.
DOI : 10.1007/s10439-005-2503-6

J. Atencia, J. Morrow, and L. E. Locascio, The microfluidic palette: A diffusive gradient generator with spatio-temporal control, Lab on a Chip, vol.137, issue.18, 2009.
DOI : 10.1039/b807585a

W. Saadi, S. Wang, F. Lin, and N. L. Jeon, A parallel-gradient microfluidic chamber for quantitative analysis of breast cancer cell chemotaxis, 109–18. doi, pp.10-1007, 2006.
DOI : 10.1007/s10544-006-7706-6

C. L. Walsh, B. M. Babin, R. W. Kasinskas, J. A. Foster, M. J. Mcgarry et al., A multipurpose microfluidic device designed to mimic microenvironment gradients and develop targeted cancer therapeutics, Lab Chip, vol.119, issue.4, 2009.
DOI : 10.1039/B810571E

W. Siyan, Y. Feng, Z. Lichuan, W. Jiarui, W. Yingyan et al., Application of microfluidic gradient chip in the analysis of lung cancer chemotherapy resistance, Journal of Pharmaceutical and Biomedical Analysis, vol.49, issue.3, p.21, 2008.
DOI : 10.1016/j.jpba.2008.12.021

J. Pihl, J. Sinclair, E. Sahlin, M. Karlsson, F. Petterson et al., Microfluidic Gradient-Generating Device for Pharmacological Profiling, Analytical Chemistry, vol.77, issue.13, p.77, 2005.
DOI : 10.1021/ac050218+

X. Zhu, Y. Chu, L. Chueh, B. Shen, M. Hazarika et al., Arrays of horizontally-oriented mini-reservoirs generate steady microfluidic flows for continuous perfusion cell culture and gradient generation, The Analyst, vol.129, issue.11, p.129, 2004.
DOI : 10.1039/b407623k

Y. Du, J. Shim, M. Vidula, M. J. Hancock, E. Lo et al., Rapid generation of spatially and temporally controllable long-range concentration gradients in a microfluidic device, Lab Chip, vol.20, issue.6, 2009.
DOI : 10.1039/B815990D

B. G. Chung, L. A. Flanagan, S. W. Rhee, P. H. Schwartz, A. P. Lee et al., Human neural stem cell growth and differentiation in a gradientgenerating microfluidic device, Lab on a chip, vol.5, issue.4, 2005.

L. J. Millet, M. E. Stewart, R. G. Nuzzo, and M. U. Gillette, Guiding neuron development with planar surface gradients of substrate cues deposited using microfluidic devices, Lab on a Chip, vol.95, issue.12, 2010.
DOI : 10.1039/c001552k

C. L. Walsh, B. M. Babin, R. W. Kasinskas, J. A. Foster, M. J. Mcgarry et al., A multipurpose microfluidic device designed to mimic microenvironment gradients and develop targeted cancer therapeutics, Lab Chip, vol.119, issue.4, 2009.
DOI : 10.1039/B810571E

C. R. Kothapalli, E. Van-veen, S. De-valence, S. Chung, I. K. Zervantonakis et al., A high-throughput microfluidic assay to study neurite response to growth factor gradients, Lab Chip, vol.22, issue.3, 2011.
DOI : 10.1039/C0LC00240B

N. Bhattacharjee, N. Li, T. M. Keenan, and A. Folch, A neuron-benign microfluidic gradient generator for studying the response of mammalian neurons towards axon guidance factors, Integrative biology: quantitative biosciences from nano to macro, pp.11-12, 2010.
DOI : 10.1039/c0ib00038h

X. Jiang, Q. Xu, S. K. Dertinger, A. D. Stroock, T. Fu et al., A General Method for Patterning Gradients of Biomolecules on Surfaces Using Microfluidic Networks, Analytical Chemistry, vol.77, issue.8, p.77, 2005.
DOI : 10.1021/ac048440m

I. Caelen, A. Bernard, D. Juncker, B. Michel, H. Heinzelmann et al., Formation of Gradients of Proteins on Surfaces with Microfluidic Networks, Langmuir, vol.16, issue.24, p.16, 2000.
DOI : 10.1021/la000851k

K. A. Fosser and R. G. Nuzzo, Fabrication of Patterned Multicomponent Protein Gradients and Gradient Arrays Using Microfluidic Depletion, Analytical Chemistry, vol.75, issue.21, 2003.
DOI : 10.1021/ac034634a

C. Crozatier, M. L. Berre, and Y. Chen, Multi-colour micro-contact printing based on microfluidic network inking, Microelectronic Engineering, vol.83, issue.4-9, 2006.
DOI : 10.1016/j.mee.2006.01.015

URL : https://hal.archives-ouvertes.fr/hal-00145351

D. Qin, Y. Xia, and G. M. Whitesides, Soft lithography for micro- and nanoscale patterning, Nature Protocols, vol.41, issue.3, p.234, 2009.
DOI : 10.1021/cm950587u

A. Kumar, H. A. Biebuyck, and G. M. Whitesides, Patterning Self-Assembled Monolayers: Applications in Materials Science, Langmuir, vol.10, issue.5, 1994.
DOI : 10.1021/la00017a030

P. C. Hidber, W. Helbig, E. Kim, and G. M. Whitesides, Microcontact Printing of Palladium Colloids:?? Micron-Scale Patterning by Electroless Deposition of Copper, Langmuir, vol.12, issue.5, 1996.
DOI : 10.1021/la9507500

A. Kumar and G. M. Whitesides, Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ??????ink?????? followed by chemical etching, Applied Physics Letters, vol.63, issue.14, pp.10-1063110628, 1993.
DOI : 10.1063/1.110628

A. Ruiz, S. Chen, and C. S. , Microcontact printing: A tool to pattern, Soft Matter, vol.3, issue.2, 2007.

A. Bernard, E. Delamarche, H. Schmid, B. Michel, H. R. Bosshard et al., Printing Patterns of Proteins, Langmuir, vol.14, issue.9, 1998.
DOI : 10.1021/la980037l

C. D. James, R. C. Davis, L. Kam, H. G. Craighead, M. Isaacson et al., Patterned Protein Layers on Solid Substrates by Thin Stamp Microcontact Printing, Langmuir, vol.14, issue.4, 1998.
DOI : 10.1021/la9710482

M. Mrksich, L. E. Dike, J. Tien, D. E. Ingber, and G. M. Whitesides, Using microcontact printing to pattern the attachment of mammalian cells to self-assembled monolayers of alkanethiolates on transparent films of gold and silver. Experimental cell research, p.3668, 1997.

R. Singhvi, A. Kumar, G. Lopez, G. Stephanopoulos, D. Wang et al., Engineering cell shape and function, Science, vol.264, issue.5159, 1994.
DOI : 10.1126/science.8171320

R. Kane, Patterning proteins and cells using soft lithography, 2363–2376. doi:10.1016, pp.23-24, 1999.

M. Théry and M. Piel, Adhesive Micropatterns for Cells: A Microcontact Printing Protocol, Cold Spring Harbor Protocols, vol.2009, issue.7, 2009.
DOI : 10.1101/pdb.prot5255

A. Ammar, C. Damien, F. Jenny, P. Matthieu, and C. Nicolas, Micropatterning on silicon elastomer (PDMS) with deep UVs. Retrieved from http, 2011.

A. Bernard, J. P. Renault, B. Michel, H. R. Bosshard, and E. Delamarche, Microcontact Printing of Proteins, 1067–1070. doi:10.100214<1067::AID-ADMA1067>3.0.CO, pp.1521-4095, 2000.

D. I. Rozkiewicz, Y. Kraan, M. W. Werten, F. A. De-wolf, V. Subramaniam et al., Covalent Microcontact Printing of Proteins for Cell Patterning, Chemistry - A European Journal, vol.19, issue.24, p.12, 2006.
DOI : 10.1002/chem.200501554

C. S. Chen, Geometric Control of Cell Life and Death, Science, vol.276, issue.5317, p.276, 1997.
DOI : 10.1126/science.276.5317.1425

M. Théry, V. Racine, A. Pépin, M. Piel, Y. Chen et al., The extracellular matrix guides the orientation of the cell division axis, Nature Cell Biology, vol.124, issue.10, 2005.
DOI : 10.1007/s00249-003-0282-2

Q. Tseng, E. Duchemin-pelletier, A. Deshiere, M. Balland, H. Guillou et al., Spatial organization of the extracellular matrix regulates cell-cell junction positioning, Proceedings of the National Academy of Sciences, vol.109, issue.5, 2012.
DOI : 10.1073/pnas.1106377109

URL : https://hal.archives-ouvertes.fr/hal-00673247

M. Théry, Micropatterning as a tool to decipher cell morphogenesis and functions, Journal of Cell Science, vol.123, issue.24, 2010.
DOI : 10.1242/jcs.075150

Q. Tseng, I. Wang, E. Duchemin-pelletier, A. Azioune, N. Carpi et al., A new micropatterning method of soft substrates reveals that different tumorigenic signals can promote or reduce cell contraction levels, Lab on a Chip, vol.17, issue.13, p.11, 2011.
DOI : 10.1039/c0lc00641f

URL : https://hal.archives-ouvertes.fr/hal-00611335

A. Offenhausser, S. Meffert, T. Decker, R. Helpenstein, P. Gasteier et al., Microcontact printing of proteins for neuronal cell guidance, Soft Matter, vol.201, issue.3, 2007.
DOI : 10.1039/B607615G

T. Cornish, D. W. Branch, B. C. Wheeler, and J. T. Campanelli, Microcontact Printing: A Versatile Technique for the Study of Synaptogenic Molecules, Molecular and Cellular Neuroscience, vol.20, issue.1, 2002.
DOI : 10.1006/mcne.2002.1101

L. Kam, W. Shain, J. N. Turner, and R. Bizios, Axonal outgrowth of hippocampal neurons on micro-scale networks of polylysine-conjugated laminin, 1049–1054. doi:10.1016, pp.142-961200352, 2001.
DOI : 10.1016/S0142-9612(00)00352-5

C. Wyart, C. Ybert, L. Bourdieu, C. Herr, C. Prinz et al., Constrained synaptic connectivity in functional mammalian neuronal networks grown on patterned surfaces, Journal of Neuroscience Methods, vol.117, issue.2, pp.123-131, 2002.
DOI : 10.1016/S0165-0270(02)00077-8

URL : https://hal.archives-ouvertes.fr/hal-00145442

M. Scholl, C. Sprössler, M. Denyer, M. Krause, K. Nakajima et al., Ordered networks of rat hippocampal neurons attached to silicon oxide surfaces, 65–75. doi, pp.10-1016, 2000.
DOI : 10.1016/S0165-0270(00)00325-3

E. Marconi, T. Nieus, A. Maccione, P. Valente, A. Simi et al., Emergent Functional Properties of Neuronal Networks with Controlled Topology, PLoS ONE, vol.18, issue.4, 2012.
DOI : 10.1371/journal.pone.0034648.s001

A. K. Vogt, L. Lauer, W. Knoll, and A. Offenhäusser, Micropatterned Substrates for the Growth of Functional Neuronal Networks of Defined Geometry, Biotechnology Progress, vol.19, issue.5, 2003.
DOI : 10.1021/bp034016f

J. M. Corey, B. C. Wheeler, and G. J. Brewer, Compliance of hippocampal neurons to patterned substrate networks, Journal of Neuroscience Research, vol.15, issue.2, 1991.
DOI : 10.1002/jnr.490300204

M. D. Boehler, S. S. Leondopulos, B. C. Wheeler, and G. J. Brewer, Hippocampal networks on reliable patterned substrates, Journal of Neuroscience Methods, vol.203, issue.2, 2012.
DOI : 10.1016/j.jneumeth.2011.09.020

R. G. Harrison, ON THE STEREOTROPISM OF EMBRYONIC CELLS, Science, vol.34, issue.870, p.34, 1911.
DOI : 10.1126/science.34.870.279

P. Weiss, Cell contact, International Review of Cytology: A Survey of Cell Biology, vol.7, issue.08, pp.74-769662692, 1958.

P. Weiss, Experiments on cell and axon orientation in vitro: The role of colloidal exudates in tissue organization, Journal of Experimental Zoology, vol.58, issue.3, 1945.
DOI : 10.1002/jez.1401000305

A. Curtis and M. Varde, CONTROL OF CELL BEHAVIOR - TOPOLOGICAL FACTORS, Journal of the National Cancer Institute, vol.33, issue.1, 1964.

G. A. Dunn and J. P. Heath, A new hypothesis of contact guidance in tissue cells, 1–14. doi:10.1016, pp.14-482790405, 1976.
DOI : 10.1016/0014-4827(76)90405-5

P. T. Ohara and R. C. Buck, Contact guidance in vitro, 235–249. doi:10.1016, pp.14-482790002, 1979.
DOI : 10.1016/0014-4827(79)90002-8

A. Curtis and C. Wilkinson, Topographical control of cells, 1573–1583. doi:10.1016, pp.142-961200144, 1997.
DOI : 10.1016/S0142-9612(97)00144-0

H. Craighead, C. James, and A. M. Turner, Chemical and topographical patterning for directed cell attachment, Current Opinion in Solid State and Materials Science, vol.5, issue.2-3, pp.177-184, 2001.
DOI : 10.1016/S1359-0286(01)00005-5

A. I. Teixeira, G. Abrams, P. J. Bertics, C. J. Murphy, and P. F. Nealey, Epithelial contact guidance on well-defined micro- and nanostructured substrates, Journal of Cell Science, vol.116, issue.10, 2003.
DOI : 10.1242/jcs.00383

P. Clark, P. Connolly, A. S. Curtis, J. A. Dow, and C. D. Wilkinson, Cell guidance by ultrafine topography in vitro, 73–7. Retrieved from http, 1991.

S. Jeon, V. Malyarchuk, J. A. Rogers, and G. P. Wiederrecht, Fabricating three-dimensional nanostructures using two photon lithography in a single exposure step, Optics Express, vol.14, issue.6, 2006.
DOI : 10.1364/OE.14.002300

L. , K. Kim, R. H. Prabhakaran, P. , Y. et al., TWO-PHOTON STEREOLITHOGRAPHY, Journal of Nonlinear Optical Physics & Materials, vol.16, issue.01, 2007.

S. Park, D. Yang, and K. Lee, Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices, Laser & Photonics Review, vol.83, issue.454, 2009.
DOI : 10.1002/lpor.200810027

Q. P. Pham, U. Sharma, and A. G. Mikos, Electrospinning of polymeric nanofibers for tissue engineering applications: a review, Tissue engineering, vol.12, issue.5, 2006.

H. S. Yoo, T. G. Kim, and T. G. Park, Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery Advanced drug delivery reviews, p.61, 2009.

H. S. Chavan, Investigation of beta-phase poly (vinylidene fluoride) films using small-angle X-ray scattering, UNIVERSITY OF CINCINNATI, 2006.

D. M. Esterly, Manufacturing of Poly(vinylidene fluoride) and Evaluation of its Mechanical Properties, 2002.

B. J. Hansen, Y. Liu, R. Yang, and Z. L. Wang, Hybrid Nanogenerator for Concurrently Harvesting Biomechanical and Biochemical Energy, ACS Nano, vol.4, issue.7, 2010.
DOI : 10.1021/nn100845b

Y. Liu, D. N. Weiss, and J. Li, Rapid Nanoimprinting and Excellent Piezoresponse of Polymeric Ferroelectric Nanostructures, ACS Nano, vol.4, issue.1, pp.83-90, 2010.
DOI : 10.1021/nn901397r

M. Benz, W. B. Euler, and O. J. Gregory, The Role of Solution Phase Water on the Deposition of Thin Films of Poly(vinylidene fluoride), Macromolecules, vol.35, issue.7, 2002.
DOI : 10.1021/ma011744f

P. Cebe and J. Runt, P(VDF-TrFE)-layered silicate nanocomposites. Part 1. Xray scattering and thermal analysis studies, Polymer, vol.45, issue.6, 2004.

G. T. Davis, J. E. Mckinney, M. G. Broadhurst, and S. C. Roth, Electric-fieldinduced phase changes in poly(vinylidene fluoride)vinylidene fluoride) films prepared at different conditions, Journal of Applied Physics Journal of Applied Polymer Science, vol.49, issue.1004, 1978.

M. Kobayashi, K. Tashiro, and H. Tadokoro, Molecular Vibrations of Three Crystal Forms of Poly(vinylidene fluoride), Macromolecules, vol.8, issue.2, 1975.
DOI : 10.1021/ma60044a013

A. J. Lovinger, Annealing of poly(vinylidene fluoride) and formation of a fifth phase, Macromolecules, vol.15, issue.1, 1982.
DOI : 10.1021/ma00229a008

D. Mandal, S. Yoon, and K. J. Kim, Origin of Piezoelectricity in an Electrospun Poly(vinylidene fluoride-trifluoroethylene) Nanofiber Web-Based Nanogenerator and Nano-Pressure Sensor, Macromolecular Rapid Communications, vol.48, issue.11, 2011.
DOI : 10.1002/marc.201100040

Y. Xia and G. M. Whitesides, Soft Lithography, 550–575. doi:10.1002/(SICI)5<550::AID-ANIE550>3.3.CO, pp.1521-37732, 1998.

D. Qin, Y. Xia, and G. M. Whitesides, Soft lithography for micro- and nanoscale patterning, Nature Protocols, vol.41, issue.3, p.234, 2009.
DOI : 10.1021/cm950587u

A. Goessl, M. D. Garrison, J. Lhoest, and A. S. Hoffman, Plasma lithography ??? thin-film patterning of polymeric biomaterials by RF plasma polymerization I: Surface preparation and analysis, Journal of Biomaterials Science, Polymer Edition, vol.10, issue.7, 2001.
DOI : 10.1163/156856201750411639

L. Wang, H. Li, J. He, X. He, W. Li et al., Structure analysis of teflon-like thin films synthesized by ion beam sputtering deposition, Materials Letters, vol.33, issue.1-2, pp.77-78, 1997.
DOI : 10.1016/S0167-577X(97)00074-8

S. Lee, E. V. Bordatchev, and M. J. Zeman, Femtosecond laser micromachining of polyvinylidene fluoride (PVDF) based piezo films, Journal of Micromechanics and Microengineering, vol.18, issue.4, pp.960-1317045011, 2008.
DOI : 10.1088/0960-1317/18/4/045011

E. Bormashenko, R. Pogreb, Y. Socol, M. H. Itzhaq, V. Streltsov et al., Polyvinylidene fluoride???piezoelectric polymer for integrated infrared optics applications, Optical Materials, vol.27, issue.3, 2004.
DOI : 10.1016/j.optmat.2004.04.015

T. Sharma, S. Je, B. Gill, and J. X. Zhang, Patterning piezoelectric thin film PVDF–TrFE based pressure sensor for catheter application. Sensors and Actuators A: Physical, 2012.

J. Chang, H. J. Jung, H. Jeong, Y. J. Park, J. Sung et al., One-step micropatterning of highly-ordered semi-crystalline poly(vinylidene fluoride-co-trifluoroethylene) films by a selective shear and detachment process, Organic Electronics, vol.12, issue.1, 2011.
DOI : 10.1016/j.orgel.2010.10.007

Y. J. Park, Y. S. Kang, and C. Park, Micropatterning of semicrystalline poly(vinylidene fluoride) (PVDF) solutions, European Polymer Journal, vol.41, issue.5, 2005.
DOI : 10.1016/j.eurpolymj.2004.11.022

L. Zhang, S. Ducharme, and J. Li, Microimprinting and ferroelectric properties of poly(vinylidene fluoride-trifluoroethylene) copolymer films, Applied Physics Letters, vol.91, issue.17, 2007.
DOI : 10.1063/1.2800803

Z. Hu, G. Baralia, V. Bayot, J. Gohy, and A. M. Jonas, Nanoscale Control of Polymer Crystallization by Nanoimprint Lithography, Nano Letters, vol.5, issue.9, 2005.
DOI : 10.1021/nl051097w

Y. Liu, D. N. Weiss, and J. Li, Rapid Nanoimprinting and Excellent Piezoresponse of Polymeric Ferroelectric Nanostructures, ACS Nano, vol.4, issue.1, 2010.
DOI : 10.1021/nn901397r

D. Gallego, N. J. Ferrell, and D. J. Hansford, Fabrication of Piezoelectric Polyvinylidene Fluoride (PVDF) Microstructures by Soft Lithography for Tissue Engineering and Cell Biology Applications, MRS Proceedings, vol.1002, 1002.
DOI : 10.1557/PROC-1002-N04-05

D. Gallego-perez, N. J. Ferrell, N. Higuita-castro, and D. J. Hansford, Versatile methods for the fabrication of polyvinylidene fluoride microstructures, 1009–17. doi:10.1007, pp.10544-10554, 2010.
DOI : 10.1007/s10544-010-9455-9

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Imprint of sub???25 nm vias and trenches in polymers, Applied Physics Letters, vol.67, issue.21, 1995.
DOI : 10.1063/1.114851

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Imprint Lithography with 25-Nanometer Resolution, Science, vol.272, issue.5258, 1996.
DOI : 10.1126/science.272.5258.85

H. Li and W. T. Huck, Ordered Block-Copolymer Assembly Using Nanoimprint Lithography, Nano Letters, vol.4, issue.9, 2004.
DOI : 10.1021/nl049209r

J. N. Lee, C. Park, and G. M. Whitesides, Solvent Compatibility of Poly(dimethylsiloxane)-Based Microfluidic Devices, Analytical Chemistry, vol.75, issue.23, pp.6544-54, 2003.
DOI : 10.1021/ac0346712

H. Kawai, The Piezoelectricity of Poly (vinylidene Fluoride), Japanese Journal of Applied Physics, vol.8, issue.7, 1969.
DOI : 10.1143/JJAP.8.975

E. Fukada and . S. Takashit, Piezoelectric Effect in Polarized Poly (vinylidene Fluoride), Japanese Journal of Applied Physics, vol.8, issue.7, 1969.
DOI : 10.1143/JJAP.8.960

K. Nakamura and Y. Wada, Piezoelectricity, pyroelectricity, and the electrostriction constant of poly(vinylidene fluoride) Journal of Polymer Science Part A-2: Polymer Physics, 1971.

M. Tamura, Piezoelectricity in uniaxially stretched poly(vinylidene fluoride), Journal of Applied Physics, vol.45, issue.9, 1974.

M. Oshiki and E. Fukada, Inverse piezoelectric effect and electrostrictive effect in polarized poly(vinylidene fluoride) films, Journal of Materials Science, vol.6, issue.2, pp.1-6, 1975.
DOI : 10.1007/BF00541025

M. Tamura, K. Ogasawara, and T. Yoshimi, Piezoelectricity in uniaxially stretched poly(vinylidene fluoride) films and its applications, Ferroelectrics, vol.10, issue.1, 1976.
DOI : 10.1080/00150197608241962

S. Tasaka and S. Miyata, The origin of piezoelectricity in poly(vinylidene fluoride), Ferroelectrics, vol.50, issue.1, 1981.
DOI : 10.1080/00150198108238668

G. E. Johnson, L. L. Blyler, G. R. Crane, and C. Gieniewski, Thermal piezoelectric stability of poled uniaxially-and biaxially-oriented poly(vinylidene fluoride, Ferroelectrics, vol.8, issue.1, 1981.
DOI : 10.1080/00150198108238672

K. Tashiro, H. Tadokoro, and M. Kobayashi, Structure and piezoelectricity of poly(vinylidene fluoride), Ferroelectrics, vol.40, issue.1, 1981.
DOI : 10.1080/00150198108238688

E. Fukada, M. Date, H. E. Neumann, and J. H. Wendorff, Nonlinear piezoelectricity in poly(vinylidene fluoride), Journal of Applied Physics, vol.63, issue.5, 1988.
DOI : 10.1063/1.339905

P. Harnischfeger and B. Jungnickel, Features and origin of the dynamic and the nonlinear piezoelectricity in poly (vinylidene fluoride), Ferroelectrics, vol.109, issue.1, 1990.

J. I. Scheinbeim, C. H. Yoon, K. D. Pae, and B. A. Newman, Ferroelectric hysteresis effects in poly(vinylidene fluoride) films, Journal of Applied Physics, vol.51, issue.10, p.51, 1980.
DOI : 10.1063/1.327462

P. Herchenröder, Y. Segui, D. Horne, and D. Yoon, Ferroelectricity of Poly(Vinylidene Fluoride): Transition Temperature, Physical Review Letters, vol.45, issue.26, 1980.
DOI : 10.1103/PhysRevLett.45.2135

J. I. Scheinbeim, C. H. Yoon, K. D. Pae, and . Newman, Ferroelectric hysteresis effects in poly(vinylidene fluoride) films, Journal of Applied Physics, vol.51, issue.10, p.51, 1980.
DOI : 10.1063/1.327462

P. Herchenröder, Y. Segui, D. Horne, and D. Y. Yoon, Ferroelectricity of Poly(Vinylidene Fluoride): Transition Temperature, Physical Review Letters, vol.45, issue.26, pp.45-2135, 1980.
DOI : 10.1103/PhysRevLett.45.2135

J. E. Mckinney, G. T. Davis, and M. G. Broadhurst, Plasma poling of poly(vinylidene fluoride): Piezo??? and pyroelectric response, Journal of Applied Physics, vol.51, issue.3, 1980.
DOI : 10.1063/1.327775

Y. Wada and R. Hayakawa, A model theory of piezo- and pyroelectricity of poly(vinylidene fluoride) electret, Ferroelectrics, vol.11, issue.1, 1981.
DOI : 10.1080/00150198108238681

B. A. Newman, K. T. Chung, K. D. Pae, and J. I. Scheinbeim, Piezoelectric and pyroelectric properties of poly(vinylidene fluoride) films at high hydrostatic pressure, Ferroelectrics, vol.15, issue.3, 1981.
DOI : 10.1080/00150198108238684

T. Takemura, Piezo- and pyroelectric properties of poly(vinylidene fluoride) under high pressure, Ferroelectrics, vol.14, issue.1, 1984.
DOI : 10.1080/00150198408012766

R. Al-jishi and P. L. Taylor, Equilibrium polarization and piezoelectric and pyroelectric coefficients in poly(vinylidene fluoride), Journal of Applied Physics, vol.57, issue.3, 1985.
DOI : 10.1063/1.334690

R. Gerhard-multhauptab, Poly(vinylidene fluoride): A piezo-, pyro-and ferroelectric polymer and its poling behaviour, Ferroelectrics, vol.75, issue.1, 1987.

G. M. Stack and R. Y. Ting, Piezoelectric properties and temperature stability of poly(vinylidene fluoride-trifluorethylene) copolymers, 417–23. doi, pp.10-11093177, 1989.
DOI : 10.1109/58.31778

H. Wang, Q. M. Zhang, L. E. Cross, and . O. Sykes, Piezoelectric, dielectric, and elastic properties of poly(vinylidene fluoride/trifluoroethylene), Journal of Applied Physics, vol.74, issue.5, 1993.
DOI : 10.1063/1.354566

V. V. Kochervinski, Piezoelectricity in crystallizing ferroelectric polymers: Poly(vinylidene fluoride) and its copolymers (A review), Crystallography Reports, vol.48, issue.4, pp.649-675, 2003.
DOI : 10.1134/1.1595194

J. C. Hicks, T. E. Jones, and J. C. Logan, Ferroelectric properties of poly(vinylidene fluoride???tetrafluoroethylene), Journal of Applied Physics, vol.49, issue.12, 1978.
DOI : 10.1063/1.324528

A. C. Jayasuriya and J. I. Scheinbeim, Ferroelectric behavior in solvent cast poly(vinylidene fluoride/hexafluoropropylene) copolymer films, Applied Surface Science, vol.175, issue.176, pp.386-390, 2001.
DOI : 10.1016/S0169-4332(01)00130-1

H. Xu, Dielectric properties and ferroelectric behavior of poly(vinylidene fluoride-trifluoroethylene) 50/50 copolymer ultrathin films, Journal of Applied Polymer Science, vol.80, issue.12, 2001.

M. Mai, B. Martin, and H. Kliem, Ferroelectric switching in Langmuir-Blodgett and spin-coated thin films of poly(vinylidene fluoride/trifluoroethylene) copolymers, Journal of Applied Physics, vol.110, issue.6, 2011.
DOI : 10.1063/1.3636397

Y. Takahashi, Y. Nakagawa, H. Miyaji, and K. Asai, Direct evidence for ferroelectric switching in poly(vinylidene fluoride) and poly(vinylidene fluoridetrifluoroethylene ) crystals, Journal of Polymer Science Part C: Polymer Letters, vol.25, issue.4, p.140250402, 1987.

M. C. Christie, J. I. Scheinbeim, and B. A. Newman, Ferroelectric and piezoelectric properties of a quenched poly(vinylidene fluoride-trifluoroethylene) copolymer, 2671–2679. doi:10.1002/(SICI)16<2671::AID-POLB10>3.0.CO, pp.1099-04882, 1997.
DOI : 10.1002/(SICI)1099-0488(19971130)35:16<2671::AID-POLB10>3.0.CO;2-6

E. Bastounis, S. Georgopoulos, C. Maltezos, D. Alexiou, D. Chiotopoulos et al., PTFE???vein Composite Grafts for Critical Limb Ischaemia: a Valuable Alternative to All-autogenous Infrageniculate Reconstructions, European Journal of Vascular and Endovascular Surgery, vol.18, issue.2, p.880, 1999.
DOI : 10.1053/ejvs.1999.0880

Y. P. Panayiotopoulos and P. R. Taylor, A paper for debate: vein versus PTFE for critical limb ischaemia--an unfair comparison? European journal of vascular and endovascular surgery: the official journal of the European Society for Vascular Surgery, 191–4. Retrieved from http, p.9345238, 1997.

R. M. Ottenbrite, . Park, and T. Okano, Biomedical applications of hydrogels handbook, pp.978-979, 2010.
DOI : 10.1007/978-1-4419-5919-5

D. Klee, Z. Ademovic, A. Bosserhoff, H. Hoecker, G. Maziolis et al., Surface modification of poly(vinylidenefluoride) to improve the osteoblast adhesion, 3663–3670. doi:10.1016, pp.142-961200235, 2003.
DOI : 10.1016/S0142-9612(03)00235-7

C. Ribeiro, J. Panadero, V. Sencadas, S. Lanceros-méndez, M. N. Tamaño et al., Fibronectin adsorption and cell response on electroactive poly(vinylidene fluoride) films, Biomedical Materials, vol.7, issue.3, pp.35004-35014, 2012.
DOI : 10.1088/1748-6041/7/3/035004

. Curtis and C. Wilkinson, Topographical control of cells, 1573–83. Retrieved from http, 1997.
DOI : 10.1016/S0142-9612(97)00144-0

M. C. Lensen, V. Schulte, J. Salber, M. Diez, F. Menges et al., Cellular responses to novel, micropatterned biomaterials, Pure and Applied Chemistry, vol.80, issue.11, 2008.
DOI : 10.1351/pac200880112479

A. I. Teixeira, G. Abrams, P. J. Bertics, C. J. Murphy, and P. F. Nealey, Epithelial contact guidance on well-defined micro- and nanostructured substrates, Journal of Cell Science, vol.116, issue.10, 2003.
DOI : 10.1242/jcs.00383

M. J. Dalby, M. O. Riehle, S. J. Yarwood, C. D. Wilkinson, and A. S. Curtis, Nucleus alignment and cell signaling in fibroblasts: response to a micro-grooved topography, Experimental Cell Research, vol.284, issue.2, pp.272-280, 2003.
DOI : 10.1016/S0014-4827(02)00053-8

D. Gallego, N. J. Ferrell, and D. J. Hansford, Fabrication of Piezoelectric Polyvinylidene Fluoride (PVDF) Microstructures by Soft Lithography for Tissue Engineering and Cell Biology Applications, MRS Proceedings, vol.1002, 1002.
DOI : 10.1557/PROC-1002-N04-05

V. N. Vernekar, D. K. Cullen, N. Fogleman, Y. Choi, A. J. García et al., SU-8 2000 rendered cytocompatible for neuronal bioMEMS applications, Journal of Biomedical Materials Research Part A, vol.11, issue.1, 2009.
DOI : 10.1002/jbm.a.31839

Y. Lee, G. Collins, and T. Livingston-arinzeh, Neurite extension of primary neurons on electrospun piezoelectric scaffolds, Acta Biomaterialia, vol.7, issue.11, 2011.
DOI : 10.1016/j.actbio.2011.07.013

J. Xie, S. M. Willerth, X. Li, M. R. Macewan, A. Rader et al., The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages, Biomaterials, vol.30, issue.3, 2009.
DOI : 10.1016/j.biomaterials.2008.09.046

J. Y. Lee, C. A. Bashur, A. S. Goldstein, and C. E. Schmidt, Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications, Biomaterials, vol.30, issue.26, pp.30-4325, 2009.
DOI : 10.1016/j.biomaterials.2009.04.042

J. Xie, M. R. Macewan, S. M. Willerth, X. Li, D. W. Moran et al., Conductive Core-Sheath Nanofibers and Their Potential Application in Neural Tissue Engineering, Advanced Functional Materials, vol.81, issue.14, 2009.
DOI : 10.1002/adfm.200801904

W. Li, Y. Guo, H. Wang, D. Shi, C. Liang et al., Electrospun nanofibers immobilized with collagen for neural stem cells culture, 847–54. doi, pp.10-1007, 2008.
DOI : 10.1007/s10856-007-3087-5

T. Liu, W. K. Teng, B. P. Chan, and S. Y. Chew, Photochemical crosslinked electrospun collagen nanofibers: Synthesis, characterization and neural stem cell interactions, Journal of Biomedical Materials Research Part A, vol.2, issue.1, 2010.
DOI : 10.1002/jbm.a.32831

H. J. Lam, S. Patel, A. Wang, J. Chu, and S. Li, In vitro regulation of neural differentiation and axon growth by growth factors and bioactive nanofibers, Tissue engineering. Part A, vol.16, issue.8, 2010.

Y. Wang, M. Yao, J. Zhou, W. Zheng, C. Zhou et al., The promotion of neural progenitor cells proliferation by aligned and randomly oriented, Biomaterials, vol.32, issue.28, 2011.

A. Subramanian, U. M. Krishnan, and S. Sethuraman, Axially aligned electrically conducting biodegradable nanofibers for neural regeneration, Journal of Materials Science: Materials in Medicine, vol.8, issue.7, 2012.
DOI : 10.1007/s10856-012-4654-y

C. C. Gertz, M. K. Leach, L. K. Birrell, D. C. Martin, E. L. Feldman et al., Accelerated neuritogenesis and maturation of primary spinal motor neurons in response to nanofibers, Developmental Neurobiology, vol.26, issue.Pt 23, 2010.
DOI : 10.1002/dneu.20792

E. Schnell, K. Klinkhammer, S. Balzer, G. Brook, D. Klee et al., Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-epsilon-caprolactone and a collagen/poly-epsilon-caprolactone blend, Biomaterials, issue.19, p.28, 2007.

E. Boland, G. Wnek, D. Simpson, K. Pawlowski, and G. Bowlin, TAILORING TISSUE ENGINEERING SCAFFOLDS USING ELECTROSTATIC PROCESSING TECHNIQUES: A STUDY OF POLY(GLYCOLIC ACID) ELECTROSPINNING, Journal of Macromolecular Science, Part A, vol.38, issue.12, 2001.
DOI : 10.1081/MA-100108380

J. A. Matthews, G. E. Wnek, D. G. Simpson, and G. L. Bowlin, Electrospinning of Collagen Nanofibers, Biomacromolecules, vol.3, issue.2, 2002.
DOI : 10.1021/bm015533u

P. Katta, M. Alessandro, R. D. Ramsier, and G. G. Chase, Continuous Electrospinning of Aligned Polymer Nanofibers onto a Wire Drum Collector, Nano Letters, vol.4, issue.11, 2004.
DOI : 10.1021/nl0486158

B. Sundaray, V. Subramanian, T. S. Natarajan, R. Xiang, C. Chang et al., Electrospinning of continuous aligned polymer fibers, Applied Physics Letters, vol.84, issue.7, 2004.
DOI : 10.1063/1.1647685

S. , M. Kim, Y. Kim, S. Lee, H. Spinks et al., Enhanced conductivity of aligned PANi/PEO/MWNT nanofibers by electrospinning, Sensors and Actuators B: Chemical, vol.134, issue.1, 2008.

Z. X. Meng, Y. S. Wang, C. Ma, W. Zheng, L. Li et al., Electrospinning of PLGA/gelatin randomly-oriented and aligned nanofibers as potential scaffold in tissue engineering, Materials Science and Engineering: C, vol.30, issue.8, 2010.
DOI : 10.1016/j.msec.2010.06.018

H. Hou, J. J. Ge, J. Zeng, Q. Li, D. H. Reneker et al., Electrospun Polyacrylonitrile Nanofibers Containing a High Concentration of Well-Aligned Multiwall Carbon Nanotubes, Chemistry of Materials, vol.17, issue.5, 2005.
DOI : 10.1021/cm0484955

F. Tian, H. Hosseinkhani, M. Hosseinkhani, A. Khademhosseini, Y. Yokoyama et al., Quantitative analysis of cell adhesion on aligned micro- and nanofibers, Journal of Biomedical Materials Research Part A, vol.4381, issue.2, 2008.
DOI : 10.1002/jbm.a.31304

C. Wang, K. Zhang, C. Fan, X. Mo, H. Ruan et al., Aligned natural???synthetic polyblend nanofibers for peripheral nerve regeneration, Acta Biomaterialia, vol.7, issue.2, 2011.
DOI : 10.1016/j.actbio.2010.09.011

L. Wan and . Xu, Polymer surfaces structured with random or aligned electrospun nanofibers to promote the adhesion of blood platelets, Journal of Biomedical Materials Research Part A, vol.7, issue.1, 2009.
DOI : 10.1002/jbm.a.31907

Y. Wang, L. Lü, Z. Feng, Z. Xiao, and N. Huang, Cellular compatibility of RGD-modified chitosan nanofibers with aligned or random orientation, Biomedical Materials, vol.5, issue.5, pp.54112-54122, 2010.
DOI : 10.1088/1748-6041/5/5/054112

S. Ramakrishna, K. Fujihara, W. Teo, T. Lim, and . Ma, An Introduction to Electrospinning and Nanofibers, Z, 2005.
DOI : 10.1142/5894

D. Li, Y. Wang, and Y. Xia, Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays, Nano Letters, vol.3, issue.8, 2003.
DOI : 10.1021/nl0344256

D. Li, Y. Wang, and Y. Xia, Electrospinning Nanofibers as Uniaxially Aligned Arrays and Layer-by-Layer Stacked Films, Advanced Materials, vol.16, issue.4, pp.361-366, 2004.
DOI : 10.1002/adma.200306226

R. Dersch, T. Liu, A. K. Schaper, A. Greiner, and J. H. Wendorff, Electrospun nanofibers: Internal structure and intrinsic orientation, Journal of Polymer Science Part A: Polymer Chemistry, vol.23, issue.4, pp.545-553, 2002.
DOI : 10.1002/pola.10609

J. Yu, Y. Qiu, X. Zha, M. Yu, J. Yu et al., Production of aligned helical polymer nanofibers by electrospinning, European Polymer Journal, vol.44, issue.9, 2008.
DOI : 10.1016/j.eurpolymj.2008.05.020

Y. Xin, Z. Huang, J. Chen, C. Wang, Y. Tong et al., Fabrication of well-aligned PPV/PVP nanofibers by electrospinning, Materials Letters, vol.62, issue.6-7, 2008.
DOI : 10.1016/j.matlet.2007.07.031

J. Xie, M. R. Macewan, W. Z. Ray, W. Liu, D. Y. Siewe et al., Radially Aligned, Electrospun Nanofibers as Dural Substitutes for Wound Closure and Tissue Regeneration Applications, ACS Nano, vol.4, issue.9, 2010.
DOI : 10.1021/nn101554u

A. Cooper, S. Jana, N. Bhattarai, and M. Zhang, Aligned chitosan-based nanofibers for enhanced myogenesis, Journal of Materials Chemistry, vol.3, issue.40, 2010.
DOI : 10.1039/c0jm01841d

J. Kameoka, R. Orth, Y. Yang, D. Czaplewski, R. Mathers et al., A scanning tip electrospinning source for deposition of oriented nanofibres, Nanotechnology, vol.14, issue.10, pp.14-1124, 2003.
DOI : 10.1088/0957-4484/14/10/310

D. Sun, C. Chang, S. Li, and L. Lin, Near-Field Electrospinning, Nano Letters, vol.6, issue.4, 2006.
DOI : 10.1021/nl0602701

C. Chang, V. H. Tran, J. Wang, Y. Fuh, and L. Lin, Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency, Nano Letters, vol.10, issue.2, pp.726-3110, 1021.
DOI : 10.1021/nl9040719

J. Chang, M. Dommer, C. Chang, and L. Lin, Piezoelectric nanofibers for energy scavenging applications, Nano Energy, vol.1, issue.3, pp.356-371, 2012.
DOI : 10.1016/j.nanoen.2012.02.003

Z. Zhou, C. Lai, L. Zhang, Y. Qian, H. Hou et al., Development of carbon nanofibers from aligned electrospun polyacrylonitrile nanofiber bundles and characterization of their microstructural, electrical, and mechanical properties, Polymer, vol.50, issue.13, p.50, 2009.
DOI : 10.1016/j.polymer.2009.04.058

Z. Feng, X. Chu, N. Huang, M. K. Leach, G. Wang et al., Rat hepatocyte aggregate formation on discrete aligned nanofibers of type-I collagen-coated poly(l-lactic acid), Biomaterials, vol.31, issue.13, p.31, 2010.
DOI : 10.1016/j.biomaterials.2010.01.080

J. M. Corey, C. C. Gertz, B. Wang, L. K. Birrell, S. L. Johnson et al., The design of electrospun PLLA nanofiber scaffolds compatible with serum-free growth of primary motor and sensory neurons, Acta Biomaterialia, vol.4, issue.4, 2008.
DOI : 10.1016/j.actbio.2008.02.020

H. Lu, Z. Feng, Z. Gu, and C. Liu, Growth of outgrowth endothelial cells on aligned PLLA nanofibrous scaffolds, Journal of Materials Science: Materials in Medicine, vol.26, issue.15, pp.10-1007, 2009.
DOI : 10.1007/s10856-009-3744-y

J. Ma, X. He, and E. Jabbari, Osteogenic Differentiation of Marrow Stromal Cells on Random and Aligned Electrospun Poly(l-lactide) Nanofibers, Annals of Biomedical Engineering, vol.26, issue.Suppl 1, 2011.
DOI : 10.1007/s10439-010-0106-3

Z. Feng, H. Lu, M. K. Leach, N. Huang, Y. Wang et al., The influence of type-I collagen-coated PLLA aligned nanofibers on growth of blood outgrowth endothelial cells, Biomedical Materials, vol.5, issue.6, pp.65011-65021, 2010.
DOI : 10.1088/1748-6041/5/6/065011

A. Theron, E. Zussman, and A. L. Yarin, Electrostatic field-assisted alignment of electrospun nanofibres, 384–390. doi:10.1088, pp.957-4484329, 2001.
DOI : 10.1088/0957-4484/12/3/329

W. E. Teo, M. Kotaki, X. M. Mo, and S. Ramakrishna, Porous tubular structures with controlled fibre orientation using a modified electrospinning method, 918–924. doi:10.1088, pp.957-4484049, 2005.
DOI : 10.1088/0957-4484/16/6/049

H. Wang, H. Tang, J. He, and Q. Wang, Fabrication of aligned ferrite nanofibers by magnetic-field-assisted electrospinning coupled with oxygen plasma treatment, Materials Research Bulletin, vol.44, issue.8, 2009.
DOI : 10.1016/j.materresbull.2009.04.006

H. Kawai, E. Fukada, . S. Takashit, and Y. Wada, The Piezoelectricity of Poly (vinylidene Fluoride) Piezoelectric Effect in Polarized Poly (vinylidene Fluoride) Piezoelectricity, pyroelectricity, and the electrostriction constant of poly(vinylidene fluoride) Journal of Polymer Science Part A-2: Polymer Physics Piezoelectricity in uniaxially stretched poly(vinylidene fluoride), Jpn. J. Appl. Phys. Jpn. J. Appl. Phys. Journal of Applied Physics, vol.8, issue.919, p.45, 1969.

M. Oshiki, E. Fukada, M. Tamura, K. Ogasawara, T. S. Yoshimi et al., Inverse piezoelectric effect and electrostrictive effect in polarized poly(vinylidene fluoride) films Piezoelectricity in uniaxially stretched poly(vinylidene fluoride) films and its applications The origin of piezoelectricity in poly(vinylidene fluoride), 1–6. doi:10.1007/BF00541025 17–23. doi, p.10, 1080.

G. E. Johnson, L. L. Blyler, G. R. Crane, C. K. Gieniewski, H. Tadokoro et al., Thermal piezoelectric stability of poled uniaxially-and biaxially-oriented poly(vinylidene fluoride Structure and piezoelectricity of poly, Ferroelectrics, vol.32, issue.1, 1981.

E. Fukada, M. Date, H. E. Neumann, and J. H. Wendorff, Nonlinear piezoelectricity in poly(vinylidene fluoride), Journal of Applied Physics, vol.63, issue.5, 1988.
DOI : 10.1063/1.339905

P. Harnischfeger and B. Jungnickel, Features and origin of the dynamic and the nonlinear piezoelectricity in poly (vinylidene fluoride), Ferroelectrics, vol.109, issue.1, 1990.

G. M. Stack and R. Y. Ting, Piezoelectric properties and temperature stability of poly(vinylidene fluoride-trifluorethylene) copolymers, 417–23. doi, pp.10-11093177, 1989.
DOI : 10.1109/58.31778

H. Wang, Q. M. Zhang, L. E. Cross, and . O. Sykes, Piezoelectric, dielectric, and elastic properties of poly(vinylidene fluoride/trifluoroethylene), Journal of Applied Physics, vol.74, issue.5, 1993.
DOI : 10.1063/1.354566

J. I. Scheinbeim, C. H. Yoon, K. D. Pae, and B. A. Newman, Ferroelectric hysteresis effects in poly(vinylidene fluoride) films, Journal of Applied Physics, vol.51, issue.10, p.51, 1980.
DOI : 10.1063/1.327462

P. Herchenröder, Y. Segui, D. Horne, and D. Yoon, Ferroelectricity of Poly(Vinylidene Fluoride): Transition Temperature, Physical Review Letters, vol.45, issue.26, 1980.
DOI : 10.1103/PhysRevLett.45.2135

J. I. Scheinbeim, C. H. Yoon, K. D. Pae, and . Newman, Ferroelectric hysteresis effects in poly(vinylidene fluoride) films, Journal of Applied Physics, vol.51, issue.10, p.51, 1980.
DOI : 10.1063/1.327462

P. Herchenröder, Y. Segui, D. Horne, and D. Y. Yoon, Ferroelectricity of Poly(Vinylidene Fluoride): Transition Temperature, Physical Review Letters, vol.45, issue.26, pp.45-2135, 1980.
DOI : 10.1103/PhysRevLett.45.2135

V. V. Kochervinski, Piezoelectricity in crystallizing ferroelectric polymers: Poly(vinylidene fluoride) and its copolymers (A review), Crystallography Reports, vol.48, issue.4, pp.649-675, 2003.
DOI : 10.1134/1.1595194

J. C. Hicks, T. E. Jones, and J. C. Logan, Ferroelectric properties of poly(vinylidene fluoride???tetrafluoroethylene), Journal of Applied Physics, vol.49, issue.12, 1978.
DOI : 10.1063/1.324528

A. C. Jayasuriya and J. I. Scheinbeim, Ferroelectric behavior in solvent cast poly(vinylidene fluoride/hexafluoropropylene) copolymer films, Applied Surface Science, vol.175, issue.176, pp.386-390, 2001.
DOI : 10.1016/S0169-4332(01)00130-1

H. Xu, Dielectric properties and ferroelectric behavior of poly(vinylidene fluoride-trifluoroethylene) 50/50 copolymer ultrathin films, Journal of Applied Polymer Science, vol.80, issue.12, 2001.

M. Mai, B. Martin, and H. Kliem, Ferroelectric switching in Langmuir-Blodgett and spin-coated thin films of poly(vinylidene fluoride/trifluoroethylene) copolymers, Journal of Applied Physics, vol.110, issue.6, 2011.
DOI : 10.1063/1.3636397

Y. Takahashi, Y. Nakagawa, H. Miyaji, and K. Asai, Direct evidence for ferroelectric switching in poly(vinylidene fluoride) and poly(vinylidene fluoridetrifluoroethylene ) crystals, Journal of Polymer Science Part C: Polymer Letters, vol.25, issue.4, p.140250402, 1987.

B. A. Newman, K. T. Chung, K. D. Pae, and J. I. Scheinbeim, Piezoelectric and pyroelectric properties of poly(vinylidene fluoride) films at high hydrostatic pressure, Ferroelectrics, vol.15, issue.3, 1981.
DOI : 10.1080/00150198108238684

T. Takemura, Piezo- and pyroelectric properties of poly(vinylidene fluoride) under high pressure, Ferroelectrics, vol.14, issue.1, 1984.
DOI : 10.1080/00150198408012766

R. Al-jishi and P. L. Taylor, Equilibrium polarization and piezoelectric and pyroelectric coefficients in poly(vinylidene fluoride), Journal of Applied Physics, vol.57, issue.3, 1985.
DOI : 10.1063/1.334690

R. Gerhard-multhauptab, Poly(vinylidene fluoride): A piezo-, pyro-and ferroelectric polymer and its poling behaviour, Ferroelectrics, vol.75, issue.1, 1987.

M. C. Christie, J. I. Scheinbeim, and B. A. Newman, Ferroelectric and piezoelectric properties of a quenched poly(vinylidene fluoride-trifluoroethylene) copolymer, 2671–2679. doi:10.1002/(SICI)16<2671::AID-POLB10>3.0.CO, pp.1099-04882, 1997.
DOI : 10.1002/(SICI)1099-0488(19971130)35:16<2671::AID-POLB10>3.0.CO;2-6

S. P. Nunes and K. V. Peinemann, Ultrafiltration membranes from PVDF/PMMA blends, 25–35. doi, pp.10-1016, 1992.
DOI : 10.1016/0376-7388(92)80183-K

N. Ochoa, Effect of hydrophilicity on fouling of an emulsified oil wastewater with PVDF/PMMA membranes, Journal of Membrane Science, vol.226, issue.1-2, 2003.
DOI : 10.1016/j.memsci.2003.09.004

S. J. Kang, Y. J. Park, I. Bae, K. J. Kim, H. Kim et al., Printable Ferroelectric PVDF/PMMA Blend Films with Ultralow Roughness for Low Voltage Non-Volatile Polymer Memory, Advanced Functional Materials, vol.127, issue.17, 2009.
DOI : 10.1002/adfm.200900589

H. Frensch and J. H. Wendorff, Open-circuit thermally stimulated current of PVDF/PMMA blends, 1332–1336. doi, pp.10-1016, 1986.
DOI : 10.1016/0032-3861(86)90030-3

M. Nasir, H. Matsumoto, M. Minagawa, A. Tanioka, T. Danno et al., Preparation of PVDF/PMMA Blend Nanofibers by Electrospray Deposition: Effects of Blending Ratio and Humidity, Polymer Journal, vol.62, issue.5, 2009.
DOI : 10.1295/polymj.19.405

B. S. Morra and R. S. Stein, Morphological studies of poly(vinylidene fluoride) and its blends with poly(methyl methacrylate), Journal of Polymer Science: Polymer Physics Edition, vol.20, issue.12, p.180201208, 1982.
DOI : 10.1002/pol.1982.180201208

C. Domenici, D. De-rossi, A. Nannini, and R. Verni, Piezoelectric properties and dielectric losses in PVDF???PMMA blends, 61–70. doi, p.10, 1080.
DOI : 10.1080/00150198408017510

B. R. Hahn and J. H. Wendorff, Piezo- and pyroelectricity in polymer blends of poly(vinylidene fluoride)/poly(methyl methacrylate), 1611–1618. doi:10.1016, pp.32-386190272, 1985.
DOI : 10.1016/0032-3861(85)90272-1

P. Raghavan, X. Zhao, J. Kim, J. Manuel, G. S. Chauhan et al., Ionic conductivity and electrochemical properties of nanocomposite polymer electrolytes based on electrospun poly(vinylidene fluoride-co-hexafluoropropylene) with nano-sized ceramic fillers, Electrochimica Acta, vol.54, issue.2, 2008.
DOI : 10.1016/j.electacta.2008.08.007

S. Manna and A. K. Nandi, Piezoelectric beta polymorph in poly(vinylidene fluoride)-functionalized multiwalled carbon nanotube nanocomposite films, JOURNAL OF PHYSICAL CHEMISTRY C, vol.111, issue.40, 2007.

Z. Dang, H. Xu, and H. Wang, Significantly enhanced low-frequency dielectric permittivity in the BaTiO[sub 3]/poly(vinylidene fluoride) nanocomposite, Applied Physics Letters, vol.90, issue.1, 2007.

M. Wang, F. Zhao, Z. Guo, and S. Dong, Poly(vinylidene fluoridehexafluoropropylene )/organo-montmorillonite clays nanocomposite lithium polymer electrolytes, Electrochimica Acta, vol.49, issue.21, 2004.

H. J. Liu, J. J. Hwang, and Y. W. Chen-yang, Effects of organophilic clay on the solvent-maintaining capability, dimensional stability, and electrochemical properties of gel poly(vinylidene fluoride) nanocomposite electrolytes, Journal of Polymer Science Part A: Polymer Chemistry, vol.21, issue.22, p.40, 2002.
DOI : 10.1002/pola.10484

P. Raghavan, X. Zhao, J. Manuel, G. S. Chauhan, J. Ahn et al., Electrochemical performance of electrospun poly(vinylidene fluoride-cohexafluoropropylene )-based nanocomposite polymer electrolytes incorporating ceramic fillers and room temperature ionic liquid, Electrochimica Acta, vol.55, issue.4, 2010.

J. Wang, Y. Wang, F. Wang, S. Li, J. Xiao et al., A large enhancement in dielectric properties of poly(vinylidene fluoride) based all-organic nanocomposite, Polymer, vol.50, issue.2, 2009.
DOI : 10.1016/j.polymer.2008.11.040

H. Xu, S. Ni, and C. Yang, High polarization levels in poly(vinylidene fluoride-trifluoroethylene) ferroelectric thin films doped with diethyl phthalate, Journal of Applied Polymer Science, vol.81, issue.6, 2002.
DOI : 10.1002/app.11690

I. Scheinbeim and B. A. Newman, Effect of Tricrecyl Phosphate Doping on the Remanent Polarization in Uniaxially Oriented Poly ( viny1idene fluoride ) Conductive poly(vinylidene fluoride) reticulate doped with the CT complex TTF-TCNQ, Proceedings of the 21st Europhysics Conference on Macromolecular Physics ’Electrical and Optical Active Polymers" Structure, Morphology and Properties, pp.181-188, 1990.

V. Privalko, S. Ponomarenko, E. Privalko, S. Lobkov, N. Rekhteta et al., Structure/Property Relationships for Poly(Vinylidene Fluoride)/Doped Polyaniline Blends, Journal of Macromolecular Science, Part B, vol.29, issue.5, 2005.
DOI : 10.1080/00222340500251394

S. Wang, Y. Li, X. Fei, M. Sun, C. Zhang et al., Preparation of a durable superhydrophobic membrane by electrospinning poly (vinylidene fluoride) (PVDF) mixed with epoxy???siloxane modified SiO2 nanoparticles: A possible route to superhydrophobic surfaces with low water sliding angle and high water contact angle, Journal of Colloid and Interface Science, vol.359, issue.2, 2011.
DOI : 10.1016/j.jcis.2011.04.004

J. Yuan, J. Geng, Z. Xing, J. Shen, I. Kang et al., Electrospinning of antibacterial poly(vinylidene fluoride) nanofibers containing silver nanoparticles, Fabrication of Poly(vinylidene fluoride) (PVDF) Nanofibers Containing Nickel Nanoparticles as Future Energy Server Materials, 2009.
DOI : 10.1002/app.31632

D. Miranda, V. Sencadas, A. Sánchez-iglesias, I. Pastoriza-santos, L. M. Liz-marzán et al., Influence of Silver --Phase Transformation and the Physical Properties of Silver Nanoparticles Doped Poly(vinylidene fluoride) Nanocompositesphase formation in Poly(vinylidene fluoride) by gold nanoparticles doping, Journal of Nanoscience and Nanotechnology Materials Letters, vol.9, issue.73, pp.123-125, 2009.

D. Mandal, K. J. Kim, and J. S. Lee, Simple Synthesis of Palladium Nanoparticles, ??-Phase Formation, and the Control of Chain and Dipole Orientations in Palladium-Doped Poly(vinylidene fluoride) Thin Films, Langmuir, vol.28, issue.28, pp.28-10310, 2012.
DOI : 10.1021/la300983x

P. Martins, C. M. Costa, M. Benelmekki, G. Botelho, and S. Lanceros-mendez, -phase nucleation by ferrite nanoparticles via surface electrostatic interactions, CrystEngComm, issue.8, p.14
URL : https://hal.archives-ouvertes.fr/hal-01158018

B. Jaleh, P. Fakhri, M. Noroozi, and N. Muensit, Influence of Copper Nanoparticles Concentration on the Properties of Poly(vinylidene fluoride)/Cu Nanoparticles Nanocomposite Films, 878–885. doi, pp.10-1007, 2012.
DOI : 10.1007/s10904-012-9660-5

S. Reich and E. P. Goldberg, Poly(vinylidene fluoride)composites, Journal of Polymer Science: Polymer Physics Edition, vol.21, issue.6, 1983.

A. Gupta and R. Chatterjee, Magnetic, dielectric, magnetoelectric, and microstructural studies demonstrating improved magnetoelectric sensitivity in threephase BaTiO[sub 3]–CoFe[sub 2]O[sub 4]–poly(vinylidene-fluoride) composite, Journal of Applied Physics, vol.1061, issue.2, pp.24110-24120, 2009.

X. Jing, X. Shen, H. Song, and F. Song, Magnetic and dielectric properties of barium ferrite fibers/poly(vinylidene fluoride) composite films, Journal of Polymer Research, vol.44, issue.3, 2011.
DOI : 10.1007/s10965-011-9610-x

P. Martins, C. M. Costa, G. Botelho, S. Lanceros-mendez, J. M. Barandiaran et al., Dielectric and magnetic properties of ferrite/poly(vinylidene fluoride) nanocomposites, Materials Chemistry and Physics, vol.131, issue.3, 2012.
DOI : 10.1016/j.matchemphys.2011.10.037

J. X. Zhang, J. Y. Dai, L. C. So, C. L. Sun, C. Y. Lo et al., The effect of magnetic nanoparticles on the morphology, ferroelectric, and magnetoelectric behaviors of CFO/P(VDF-TrFE) 0???3 nanocomposites, Journal of Applied Physics, vol.105, issue.5, 2009.
DOI : 10.1063/1.3078111

L. Josephson, Magnetic Nanoparticles for MR Imaging, BioMEMS and Biomedical Nanotechnology, pp.227-237, 2006.
DOI : 10.1007/978-0-387-25842-3_8

M. Ohgushi, K. Nagayama, and A. Wada, Dextran-magnetite: A new relaxation reagent and its application to T2 measurements in gel systems, Journal of Magnetic Resonance (1969), vol.29, issue.3, pp.29599-601, 1978.
DOI : 10.1016/0022-2364(78)90018-5

M. Mahmoudi, S. Laurent, M. Shokrgozar, and M. Hosseinkhani, Physicochemical Properties of Nanoparticles, ACS Nano, vol.5, issue.9, 2011.
DOI : 10.1021/nn2021088

A. García, R. Espinosa, L. Delgado, E. Casals, E. González et al., Acute toxicity of cerium oxide, titanium oxide and iron oxide nanoparticles using standardized tests, Desalination, vol.269, issue.1-3, 2011.
DOI : 10.1016/j.desal.2010.10.052

N. Singh, G. J. Jenkins, R. Asadi, and S. H. Doak, Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION), Nano Reviews, vol.66, issue.1, 2010.
DOI : 10.3402/nano.v1i0.5358

Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson, Applications of magnetic nanoparticles in biomedicine, Journal of Physics D: Applied Physics, vol.36, issue.13, pp.167-181, 0201.
DOI : 10.1088/0022-3727/36/13/201

C. C. Berry and A. S. Curtis, Functionalisation of magnetic nanoparticles for applications in biomedicine, Journal of Physics D: Applied Physics, vol.36, issue.13, pp.198-206, 2003.
DOI : 10.1088/0022-3727/36/13/203

A. Ito, M. Shinkai, H. Honda, and T. Kobayashi, Medical application of functionalized magnetic nanoparticles, Journal of Bioscience and Bioengineering, vol.100, issue.1, 2005.
DOI : 10.1263/jbb.100.1

J. Gao, H. Gu, and B. Xu, Multifunctional Magnetic Nanoparticles: Design, Synthesis, and Biomedical Applications, Accounts of Chemical Research, vol.42, issue.8, 2009.
DOI : 10.1021/ar9000026

R. Hao, R. Xing, Z. Xu, Y. Hou, S. Gao et al., Synthesis, Functionalization, and Biomedical Applications of Multifunctional Magnetic Nanoparticles, Advanced Materials, vol.19, issue.25, p.22, 2010.
DOI : 10.1002/adma.201000260

S. Laurent, D. Forge, M. Port, A. Roch, C. Robic et al., Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chemical reviews, vol.108, issue.6, 2008.

S. Giri, B. G. Trewyn, M. P. Stellmaker, V. S. Lin, and -. , Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles, Angewandte Chemie, issue.32, p.44, 2005.

C. Sun, J. S. Lee, and M. Zhang, Magnetic nanoparticles in MR imaging and drug delivery Advanced drug delivery reviews, 2008.

J. R. Mccarthy and R. Weissleder, Multifunctional magnetic nanoparticles for targeted imaging and therapy. Advanced drug delivery reviews, 2008.

H. Park, M. J. Schadt, L. Wang, I. S. Lim, P. N. Njoki et al., Fabrication of Magnetic Core@Shell Fe Oxide@Au Nanoparticles for Interfacial Bioactivity and Bio-separation, Langmuir, vol.23, issue.17, p.23, 2007.
DOI : 10.1021/la701305f

H. Gu, P. Ho, K. W. Tsang, L. Wang, and B. Xu, Using biofunctional magnetic nanoparticles to capture vancomycin-resistant enterococci and other grampositive bacteria at ultralow concentration, Journal of the American Chemical Society, vol.125, issue.51, 2003.

M. Arruebo, R. Fernández-pacheco, M. R. Ibarra, and J. Santamaría, Magnetic nanoparticles for drug delivery, 22–32. doi:10.1016, pp.1748-013270084, 2007.
DOI : 10.1016/S1748-0132(07)70084-1

J. Dobson, Magnetic nanoparticles for drug delivery, Drug Development Research, vol.293, issue.1, 2006.
DOI : 10.1002/ddr.20067

S. C. Mcbain, H. H. Yiu, and J. Dobson, Magnetic nanoparticles for gene and drug delivery, INTERNATIONAL JOURNAL OF NANOMEDICINE, vol.3, pp.169-180, 2008.

C. Alexiou, R. Jurgons, R. Schmid, A. Hilpert, C. Bergemann et al., In vitro and in vivo investigations of targeted chemotherapy with magnetic nanoparticles, Journal of Magnetism and Magnetic Materials, vol.293, issue.1, 2005.
DOI : 10.1016/j.jmmm.2005.02.036

R. Jurgons, C. Seliger, A. Hilpert, L. Trahms, S. Odenbach et al., Drug loaded magnetic nanoparticles for cancer therapy, S2893–S2902. doi:10.1088, pp.953-8984, 2006.
DOI : 10.1088/0953-8984/18/38/S24

C. Alexiou, R. J. Schmid, R. Jurgons, M. Kremer, G. Wanner et al., Targeting cancer cells: magnetic nanoparticles as drug carriers, 446–50. doi:10.1007, pp.249-255, 2006.
DOI : 10.1007/s00249-006-0042-1

V. I. Shubayev, T. R. Pisanic, and S. Jin, Magnetic nanoparticles for theragnostics. Advanced drug delivery reviews, 2009.

S. Kumari and R. P. Singh, Glycolic acid-g-chitosan???Pt???Fe3O4 nanoparticles nanohybrid scaffold for tissue engineering and drug delivery, International Journal of Biological Macromolecules, vol.51, issue.1-2, 2012.
DOI : 10.1016/j.ijbiomac.2012.01.040

C. Huang, Y. Zhou, Z. Tang, X. Guo, Z. Qian et al., Synthesis of multifunctional Fe3O4 core/hydroxyapatite shell nanocomposites by biomineralization, Dalton Transactions, vol.8, issue.4, p.40, 2003.
DOI : 10.1039/c0dt01824d

T. Lin, F. Lin, and J. Lin, In vitro feasibility study of the use of a magnetic electrospun chitosan nanofiber composite for hyperthermia treatment of tumor cells, Acta Biomaterialia, vol.8, issue.7, 2012.
DOI : 10.1016/j.actbio.2012.03.045

A. Jordan, R. Scholz, P. Wust, and H. Fähling, Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles, Journal of Magnetism and Magnetic Materials, vol.201, issue.1-3, pp.413-419, 1999.
DOI : 10.1016/S0304-8853(99)00088-8

M. Johannsen, U. Gneveckow, L. Eckelt, A. Feussner, N. Waldöfner et al., Clinical hyperthermia of prostate cancer using magnetic nanoparticles: Presentation of a new interstitial technique, International Journal of Hyperthermia, vol.59, issue.7, 2005.
DOI : 10.3109/02656739309061478

A. Jordan, R. Scholz, K. Maier-hauff, F. K. Van-landeghem, N. Waldoefner et al., The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma, Journal of Neuro-Oncology, vol.89, issue.1, 2006.
DOI : 10.1007/s11060-005-9059-z

B. Thiesen and A. Jordan, Clinical applications of magnetic nanoparticles for hyperthermia. International journal of hyperthermia: the official journal of European Society for Hyperthermic Oncology, 2008.

J. Fortin, F. Gazeau, and C. Wilhelm, Intracellular heating of living cells through N??el relaxation of magnetic nanoparticles, European Biophysics Journal, vol.23, issue.2, pp.223-231, 2008.
DOI : 10.1007/s00249-007-0197-4

O. Kriha, M. Becker, M. Lehmann, D. Kriha, J. Krieglstein et al., Connection of Hippocampal Neurons by Magnetically Controlled Movement of Short Electrospun Polymer Fibers???A Route to Magnetic Micromanipulators, Advanced Materials, vol.35, issue.18, 2007.
DOI : 10.1002/adma.200601937

H. Huang, S. Delikanli, H. Zeng, D. M. Ferkey, and A. Pralle, Remote control of ion channels and neurons through magnetic-field heating of nanoparticles, Nature Nanotechnology, vol.47, issue.8, 2010.
DOI : 10.1038/nnano.2010.125

S. Panseri, C. Cunha, T. D’alessandro, M. Sandri, A. Russo et al., Magnetic Hydroxyapatite Bone Substitutes to Enhance Tissue Regeneration: Evaluation In Vitro Using Osteoblast-Like Cells and In Vivo in a Bone Defect, PLoS ONE, vol.38, issue.6, 2012.
DOI : 10.1371/journal.pone.0038710.g006

S. Panseri, A. Russo, C. Cunha, A. Bondi, D. Martino et al., Osteochondral tissue engineering approaches for articular cartilage and subchondral bone regeneration. Knee surgery, sports traumatology, arthroscopy, 1182–91. doi:10.1007, pp.167-178, 2012.

S. Panseri, . Russo, G. Giavaresi, M. Sartori, F. Veronesi et al., Innovative magnetic scaffolds for orthopedic tissue engineering, Journal of Biomedical Materials Research Part A, vol.39, issue.9 Suppl, 2012.
DOI : 10.1002/jbm.a.34167

Y. Wei, X. Zhang, Y. Song, B. Han, X. Hu et al., /CS/PVA nanofibrous membranes for bone regeneration, Biomedical Materials, vol.6, issue.5, pp.55008-55018, 2011.
DOI : 10.1088/1748-6041/6/5/055008

O. Ziv-polat, H. Skaat, A. Shahar, and S. Margel, Novel magnetic fibrin hydrogel scaffolds containing thrombin and growth factors conjugated iron oxide nanoparticles for tissue engineering, International Journal of Nanomedicine, vol.7, pp.1259-74, 2012.
DOI : 10.2147/IJN.S26533

J. Liu, J. Shi, L. Jiang, F. Zhang, L. Wang et al., Segmented magnetic nanofibers for single cell manipulation, Applied Surface Science, vol.258, issue.19, 2012.
DOI : 10.1016/j.apsusc.2012.04.077

B. Dworakowska, K. Dolowy, J. Seo, C. Ionescu-zanetti, J. Diamond et al., Ion channels-related diseases [5] E. Neher, and B. Sakmann: Single-Channel Currents Recorded from Membrane of Denervated Frog Muscle-Fibers Integrated multiple patchclamp array chip via lateral cell trapping junctions Whole cell patch clamp recording performed on a planar glass chip, Microfluidic Patch clamp 3. References Microfluidic Chip for Automated Patch-Clamping. In VDE Mikrosystemtechnik-Kongress. Technik VVdEEIeVaVVI, pp.799-8021973, 1976.

X. Li, Microfluidic System for Planar Patch Clamp Electrode Arrays, Nano Letters, vol.6, issue.4, 2006.
DOI : 10.1021/nl060165r

A. Hirano-iwata, M. Niwano, and M. Sugawara, The design of molecular sensing interfaces with lipid-bilayer assemblies, TrAC Trends in Analytical Chemistry, vol.27, issue.6, 2008.
DOI : 10.1016/j.trac.2008.04.006

A. Oukhaled, Transport de macromolécules à travers un pore nanométrique unique, 2006.

K. Funakoshi, H. Suzuki, and S. Takeuchi, Lipid Bilayer Formation by Contacting Monolayers in a Microfluidic Device for Membrane Protein Analysis, Analytical Chemistry, vol.78, issue.24, pp.8169-8174, 2006.
DOI : 10.1021/ac0613479

N. Malmstadt, M. A. Nash, R. F. Purnell, and J. J. Schmidt, Automated Formation of Lipid-Bilayer Membranes in a Microfluidic Device, Nano Letters, vol.6, issue.9, pp.1961-1965, 2006.
DOI : 10.1021/nl0611034

M. A. Unger, H. Chou, T. Thorsen, A. Scherer, and S. Quake, Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography, Science, vol.288, issue.5463, pp.113-116, 2000.
DOI : 10.1126/science.288.5463.113

V. Studer, V. , G. Hang, A. Pandolfi, M. Ortiz et al., Scaling properties of a low-actuation pressure microfluidic valve, Journal of Applied Physics, vol.95, issue.1, pp.393-398, 2004.
DOI : 10.1063/1.1629781

M. Lounaci, Systèmes microfluidiques pour la cristallisation des proteins : Apports technologiques à la comprehension du processus et influence de la hauteur des canaux, 2009.

P. Allain, PVDF-based piezoelectric sensor for interfacial force study in microfluidics, 2009.

A. Asgar, S. Bhagat, P. Jothimuthu, and I. Papautsky, Photodefinable polydimethylsiloxane (PDMS) for rapid lab-on-a-chip prototyping, 2007.