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Abstract

This work has been supported by the European FACETS-ITN project. Within the frame-
work of this project, we contribute to the simulation of cortical cell types (employing
experimental electrophysiological data of these cells as references), using a specific VLSI
neural circuit to simulate, at the single cell level, the models studied as references in the
FACETS project. The real-time intrinsic properties of the neuromorphic circuits, which
precisely compute neuron conductance-based models, will allow a systematic and detailed
exploration of the models, while the physical and analog aspect of the simulations, as op-
posed the software simulation aspect, will provide inputs for the development of the neural
hardware at the network level. The second goal of this thesis is to contribute to the design
of a mixed hardware-software platform (PAX), specifically designed to simulate spiking
neural networks. The tasks performed during this thesis project included: 1) the methods
used to obtain the appropriate parameter sets of the cortical neuron models that can be
implemented in our analog neuromimetic chip (the parameter extraction steps was vali-
dated using a bifurcation analysis that shows that the simplified HH model implemented
in our silicon neuron shares the dynamics of the HH model); 2) the fully customizable
fitting method, in voltage-clamp mode, to tune our neuromimetic integrated circuits us-
ing a metaheuristic algorithm; 3) the contribution to the development of the PAX system
in terms of software tools and a VHDL driver interface for neuron configuration in the
platform. Finally, it also addresses the issue of synaptic tuning for future SNN simulation.

Keywords
Computational Neurosciences, Hodgkin and Huxley model, bifurcation analysis, meta-

heuristic algorithms, neuromorphic systems, spiking neural networks.





Résumé

«Réseau de neurones in silico : contribution au développement de la technique hybride
pour les réseaux corticaux»

Ces travaux ont été menés dans le cadre du projet européen FACETS-ITN. Ils appor-
tent une contribution à la simulation de cellules corticales grâce à des données expérimen-
tales d’électrophysiologie prises comme références et d’un circuit intégré neuromorphique
comme simulateur. Les propriétés intrinsèques temps réel de nos circuits neuromorphiques
à base de modèles à conductance, autorisent une exploration détaillée des différents types
de neurones. L’aspect analogique des circuits intégrés permet le développement d’un sim-
ulateur matériel temps réel à l’échelle du réseau.

Objectifs
L’objectif de ce travail de thèse est double. II consiste, dans un premier temps, à

développer les modèles des cellules corticales (les plus usuelles en neurosciences computa-
tionnelles) qui puissent être implémentées dans le circuit intégré neuromorphique conçu
au sein de notre équipe. Ces paramètres implémentés grâce à une technique de réglage
automatique à base de métaheuristique, les susdits circuits pourront alors être configurés
afin de créer un réseau de neurones déterminé. Dans un deuxième temps, une partie de
ce travail de thèse a été consacrée à l’amélioration de la couche logicielle de la plateforme
mixte hardware/software «PAX». Cette amélioration permet la configuration du réseau
de neurone, la gestion des couplages synaptiques et l’acquisition de l’activité des neurones
électroniques. Le manuscrit de thèse s’articule autour de ces deux objectifs et se compose
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de quatre chapitres.

Chapitre 1
Après un rappel des différentes étapes ayant participé au développement de la com-

préhension des phénomènes biologiques s’exprimant dans les fibres nerveuses et plus par-
ticulièrement au niveau de l’axone, le premier chapitre présente les principaux modèles
mathématiques permettant de reproduire les principales activités neuronales au niveau
cellulaire. II met en avant une représentation ponctuelle des neurones, conséquence d’un
besoin de réduction du coût computationnel pour aborder l’étude de réseaux de neu-
rones. Le choix d’un modèle compatible avec la représentation choisie parmi d’autres est
alors discuté selon la plausibilité biologique correspondante. II en ressort que le modèle
d’Hodgkin et Huxley est le meilleur candidat selon le critère de plausibilité biologique
mais engendre un coût computationnel conséquent, ce qui légitime l’utilisation de circuits
analogiques microélectroniques pour réaliser des simulations respectant les contraintes de
temps biologique. Cette problématique technologique est développée dans la deuxième
partie de ce chapitre. Une revue des systèmes électroniques neuromorphiques est menée et
met en avant les avantages et inconvénients propres à chaque système en termes de niveau
de description, de plausibilité biologique, de taille de réseaux de neurones atteignable. Elle
permet de mieux apprécier la plateforme neuromorphique développée au sein de l’équipe.

Chapitre 2
Le chapitre deux s’intéresse aux quatre neurones corticaux les plus courants : Fast

Spiking (FS), Regular Spiking (RS), Intrinsically Bursting (IB) et Low Threshold Spiking
(LTS). L’un des buts principaux de cette thèse, étant de pouvoir les émuler, se pose donc
ici la question d’extraire les paramètres utiles pour une implantation in silico. Pour cela,
ce chapitre revient plus en détail sur le modèle de Hodgkin et Huxley (HH) et explicite
les différents courants ioniques le constituant ainsi que la possibilité de personnaliser un
neurone selon ses canaux ioniques via une modification du modèle des courants ioniques
correspondants. Concernant les aspects électroniques du neurone in silico, il est alors
précisé la méthode déployée pour obtenir l’équivalent de tels ou tels courants ioniques
biologiques. II est établi que le neurone électronique est doté de paramètres variables per-
mettant, par combinaison de modifier son comportement selon le type d’activité désirée.
Ce chapitre présente également l’implantation du modèle HH dans la puce «Galway» qui
sera utilisée ici et dont la simplification principale est relative à la constante de temps des
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termes d’activation et d’inactivation qui est déterminée constante (avec diverses répercus-
sions, comme sur la forme du potentiel d’action). Une analyse des bifurcations permettant
d’analyser les conséquences des simplifications retenues pour les modèles sur la dynamique
neuronale est ensuite présentée. Une comparaison des diagrammes de bifurcation du mod-
èle mathématique complet et de celui simplifié est alors exposée (Figure 1).

Figure 1 – Le modèle HH (A) a la même dynamique que le modèle simplifié pour des
courants de stimulations biologiques (cf. à gauche des pointillés rouges).

Ce résultat principal atteste de la similarité des dynamiques pour un même courant
de stimulation biologiquement réaliste (courant de stimulation < 20 µA/cm2).
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Ce chapitre traite aussi de l’extraction des paramètres des neurones. Il présente les
valeurs des paramètres des courants ioniques à imposer pour retrouver les quatre types
usuels de neurones (FS, RS, IB et LTS) présents dans les régions du néocortex et du thala-
mus. Des exemples d’activités temporelles sont présentés pour ces quatre classes, à partir
desquels une comparaison entre modèles complet et simplifié est exposée. On retrouve des
comportements similaires. Parallèlement, les valeurs des paramètres électriques à fournir
pour obtenir ces comportements sur notre circuit intégré neuromimétique sont fournies
sous forme de tableau pour chacun des types de neurones.

Chapitre 3
Le chapitre trois s’intéresse ensuite à l’aspect temps-réel de ces simulations et souligne

que, en passant à la version hardware, le processus de fabrication génère des erreurs
qu’il faut donc compenser en ajustant à nouveau les paramètres. Ce chapitre présente
l’environnement ainsi que la méthode de paramétrage globale utilisée pour ajuster automa-
tiquement les paramètres afin d’atteindre les dynamiques des quatre classes de neurones.
Le système électronique neuromimétique est ensuite détaillé, ce qui permet de comprendre
comment le modèle mathématique est transposé au sein du système. On apprend égale-
ment comment est structurée la carte et quel est son rôle dans l’interfaçage (hardware et
software) avec le circuit intégré neuromimétique. La méthode d’ajustement automatique
utilise une métaheuristique (Figure 2) qui est l’algorithme à évolution différentielle.

Figure 2 – Diagramme du système de calibrage du neurone sur silicium.
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Les comparaisons entre activités temporelles attendues et celles obtenues expérimen-
talement après ajustement montre que cette méthode est parfaitement adaptée (voir
l’exemple pour un neurone IB Figure 3).

Figure 3 – Neurone IB : Tension de membrane enregistrée sur une cellule biologique (A) et
sur le circuit intégré analogique neuromorphique (B) pour différents courants
de stimulation.

On peut souligner que les activités de référence proviennent d’activités biologiques et
non pas de simulations basées sur un modèle mathématique. Notre implémentation dans
le circuit est donc validée et elle légitime donc la plateforme réalisée.

Chapitre 4
Le chapitre quatre s’intéresse enfin à la description de l’amélioration de la plateforme

PAX. Une description des diverses couches (analogique, numérique et logicielle) est tout
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d’abord exposée. Le travail réalisé consiste principalement à réaliser un driver VHDL
pour la configuration des neurones électroniques (Figure 4).
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Figure 4 – Schéma structurel du système de simulation du réseau neuronal PAX (En rouge
sont représentées les fonctions développées dans ces travaux de thèse).

Des limites d’utilisation ont été identifiées durant cette étude, notamment un do-
maine de variation des conductances synaptiques trop réduit pour atteindre l’équivalent
biologique. De même, un disfonctionnement électronique concernant le bloc synaptique a
pu être décelé.
Le travail réalisé permet, dans les limites imposées par ces problèmes matériels :

• la configuration du réseau de neurone,
• la gestion des couplages synaptiques,
• l’acquisition de l’activité biomimétique des neurones électroniques.

Des exemples sont fournis afin d’illustrer les diverses étapes de simulation électronique.

Conclusion
Nous avons abordé dans cette thèse, la validation d’un modèle simplifié de neurone

biophysiquement réaliste à l’aide d’une analyse de bifurcation. Ce modèle a été im-
plémenter grâce à une métaheuristique dans notre notre circuit intégré neuromorphique.
L’activité électrique de notre circuit a été comparée avec celles enregistrées sur des cellules
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biologiques. Nous affirmons ensuite que ces circuits peuvent être utilisés pour former le
noyau d’une plate-forme de simulation conçue pour simuler les réseaux de neurones dans
des configurations biologiquement pertinentes. Le simulateur de réseaux de neurones
impulsionnels (SNN) développé par notre équipe, appelé PAX (algorithme de plasticité
pour Computing System) a ensuite été détaillé. Nous avons présenté des simulations qui
démontrent que la plate-forme matérielle est pleinement opérationnelle. En conclusion,
nous montrons que les objectifs ont été atteints. Cependant nous avons observé quelques
phénomènes qui nous ont amenés à proposer des voies d’amélioration pour l’avenir.

Mots clés
Neurosciences computationnelles, modèle de Hodgkin Huxley, analyse de bifurcation,

algorithmes métaheuristiques, systèmes neuromorphiques, réseaux de neurones.





Contents

Introduction xvii

1 From Biology to Neuromorphic Systems 1

1.1 Neuroscience Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Neuron anatomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Neuron physiology . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Principles of Neural Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.1 Neuro-computational properties of biological spiking neurons . . . . 11
1.2.2 Hodgkin-Huxley model . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.3 Simplified models derived from the HH model . . . . . . . . . . . . 15
1.2.4 Other widely used models of spiking neurons . . . . . . . . . . . . . 17

1.3 The automated adjustment of neuron models . . . . . . . . . . . . . . . . . 20
1.4 The network level: models used . . . . . . . . . . . . . . . . . . . . . . . . 22

1.4.1 Chemical Synapses . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4.2 Synaptic Plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5 Neuromorphic Engineering: Spiking Neural Network platforms . . . . . . . 24
1.5.1 Hardware-based approach for SNN platforms . . . . . . . . . . . . . 25
1.5.2 A review of hardware-based SNN . . . . . . . . . . . . . . . . . . . 25

1.6 AS2N team: related research projects . . . . . . . . . . . . . . . . . . . . . 28
1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



xiv Contents

2 Cortical neuron models: parameter extraction for a silicon neuron 31
2.1 The Hodgkin-Huxley formalism for the silicon neuron . . . . . . . . . . . . 31

2.1.1 Hodgkin-Huxley equations . . . . . . . . . . . . . . . . . . . . . . . 32
2.1.2 Conductance-based neuron model . . . . . . . . . . . . . . . . . . . 35

2.2 Parameter extraction for the model implemented in the VLSI neuron . . . 39
2.2.1 The model implemented in the VLSI neuron . . . . . . . . . . . . . 39
2.2.2 Parameter extraction technique . . . . . . . . . . . . . . . . . . . . 40

2.3 Bifurcation analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3.1 Codimension-one bifurcations . . . . . . . . . . . . . . . . . . . . . 44
2.3.2 Class 1 and 2 - Neural Excitability . . . . . . . . . . . . . . . . . . 44
2.3.3 Numerical methods for the bifurcation analysis . . . . . . . . . . . 45

2.4 Minimal Hodgkin-Huxley type models for cortical neurons . . . . . . . . . 47
2.4.1 Fast-spiking neurons . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.4.2 Regular-spiking neurons . . . . . . . . . . . . . . . . . . . . . . . . 51
2.4.3 Intrinsically Bursting Neurons . . . . . . . . . . . . . . . . . . . . . 52
2.4.4 Low-Threshold Spiking Neurons . . . . . . . . . . . . . . . . . . . . 54

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3 Real-time cortical neuron model simulation 59
3.1 Neuromimetic chip and dedicated board . . . . . . . . . . . . . . . . . . . 60

3.1.1 Neuromimetic chip . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.1.2 Dedicated board . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.1.3 Hardware and software interfaces to the Galway chip . . . . . . . . 63

3.2 Automated tuning system for the neuromimetic chip using metaheuristic
algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.2.1 Metaheuristic algorithms . . . . . . . . . . . . . . . . . . . . . . . . 66
3.2.2 Automated tuning system platform . . . . . . . . . . . . . . . . . . 69

3.3 Emulation of neocortex neurons in the VLSI hardware . . . . . . . . . . . 70
3.3.1 Fast-Spiking Neurons . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.3.2 Regular-Spiking Neurons . . . . . . . . . . . . . . . . . . . . . . . . 73
3.3.3 Intrinsically Bursting Neurons . . . . . . . . . . . . . . . . . . . . . 76
3.3.4 Low-Threshold Spiking Neurons . . . . . . . . . . . . . . . . . . . . 77

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



Contents xv

4 Plasticity Algorithm Computing System 81
4.1 Abstractions in the PAX simulator and synaptic tuning . . . . . . . . . . . 82

4.1.1 Neuron level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.1.2 Network level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.1.3 Synaptic tuning: proposed method . . . . . . . . . . . . . . . . . . 85

4.2 The PAX simulation system . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.2.1 The methodological approach . . . . . . . . . . . . . . . . . . . . . 87
4.2.2 A multi-board spiking neural network platform . . . . . . . . . . . 89

4.3 Tasks implemented in the PAX platform . . . . . . . . . . . . . . . . . . . 94
4.3.1 Workstation software . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.3.2 VHDL ASIC module for the PAX system . . . . . . . . . . . . . . . 95

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.4.1 Raster plot of neurons in the PAX system . . . . . . . . . . . . . . 97
4.4.2 Synaptic tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Conclusions and implications 105

References 113

Appendix Galway parameters 123
A.1 Digital parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

A.1.1 Neuron-specific parameters . . . . . . . . . . . . . . . . . . . . . . . 124
A.2 Analog parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
A.3 Example of parameter configutation . . . . . . . . . . . . . . . . . . . . . . 127

Appendix Small network in the PAX system: an example of specification 129

Appendix FACETS-ITN 131





Introduction

Neurosciences are one of the main research topics of this century. The human brain is said
to be one of the most complex systems known to science and understanding how it works is
as old a question as mankind. "The expression «computational neuroscience» reflects the
possibility of generating theories of brain function in terms of the information-processing
properties of structures that make up the nervous system. It implies that we ought to
be able to exploit the conceptual and technical resources of computational research to
help find explanations of how neural structures achieve their effects, what functions are
executed by neural structures, and the nature of the states represented by the nervous
system" [Churchland et al., 1993].

Over the past hundred years, biological research has accumulated an enormous amount
of detailed knowledge about the structure and function of the brain. The elementary pro-
cessing units in the central nervous system are neurons that are connected to each other
in an intricate pattern. Neuroscientists provide biological measurements to computational
neuroscientists who then propose a model for simulations, as well as for studies of the single
cell or neural network dynamics. Computational neuroscientists must find compromises
between two seemingly mutually exclusive requirements. The model for a single neuron
must be: 1) computationally simple, yet 2) capable of producing rich firing patterns ex-
hibited by real biological neurons. Many neuron models have been proposed. Which one
to choose? The answer depends on the type of the problem. Using biophysically accurate
Hodgkin-Huxley type models (HH) is computationally prohibitive, since we can only sim-
ulate a handful of neurons in real time. In contrast, using an integrate-and-fire model is
computationally effective, but the model is unrealistically simple and incapable of produc-
ing the rich spiking and bursting dynamics exhibited by cortical neurons [Izhikevich, 2003].
Large scale simulations, running on conventional computing platforms, can take minutes
to simulate even one second of "real" neural activity [Izhikevich and Edelman, 2008]. The
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use of a hardware platform is then mandatory for the biological real-time goal. In recent
years, a new discipline has emerged which challenges the classical approaches to engineer-
ing and computer research: neuromorphic engineering. Neuromorphic engineering can be
divided into neuromorphic modeling, reproducing neuro-physiological phenomena to in-
crease the understanding of the nervous systems, and neuromorphic computation, which
uses the neuronal properties to build neuron-like computing hardware. By combining
neurophysiological principles with silicon engineering, Mahowald and Douglas produced
an analog integrated circuit with the functional characteristics of real nerve cells. The
analog neuromimetic integrated circuit operates in real time and consumes little power,
and many "neurons" can be fabricated on a single silicon chip [Mahowald and Douglas,
1991]. The silicon neuron represents a step towards constructing artificial nervous systems
that use more realistic principles of neural computation than do existing electronic neural
networks.

Neuromorphic engineering proposes to fill the gap between computational neuro-
sciences, on the one hand, and traditional engineering, on the other. Alternatives to
software-based solutions [Brette et al., 2007], neuromorphic systems are often based on
custom integrated circuits (IC) and systems [Misra and Saha, 2010]. A neuromorphic
system can be digital, analog, or mixed.

In parallel with the development in neuroscience, microelectronic technology quickly
evolves into a regime that is almost compatible with biological neural systems in terms of
computational power. A hybrid neural-silicon system becomes possible and such a system
will have profound implications in engineering design, from prosthetics to sensorimotor
control that advance human abilities. Direct interfaces between small networks of nerve
cells and synthetic devices promise to advance our understanding of neuronal function and
may yield a new generation of hybrid devices that exploit the computational capacities
of biological neural networks [Le Masson et al., 2002].

Hence, a hybrid neural-silicon system needs to be strongly inspired (level of detail)
and linked to the actual dynamics of neuronal assemblies and be able to "talk" with their
natural counterpart.

Analog neuromimetic integrated circuits and hybrid neural-silicon systems are the
main research topics of the IMS BioElectronics group (Laboratoire IMS, UMR CNRS
5218, Université de Bordeaux, Talence, France).

In particular, one of the main research topics of the BioElectornics group is the devel-
opment of new instrumentation tools for the exploration of the central nervous system,
making use of dedicated interfaces between microelectronics and live neural networks. The
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technical approach defined for this research topic is to couple live large-scale neural net-
works and artificial neural networks embedded in analog and mixed integrated electronics
and endowed with adaptive capabilities (synaptic plasticity). This hybrid coupling will use
dedicated microelectrode arrays to record and electrically stimulate live neural networks,
with a specific emphasis on stimulation localization. The system, which includes artifi-
cial and living neural networks, will form a closed loop with a regulated feedback. The
artificial neural network will implement conductance-based neuron and synapse models,
controlled by plasticity rules such as STDP (spike-timing dependent plasticity). Dedi-
cated integrated electronics will be designed to implement the communication channels
between the living and artificial networks: signal conditioning for the biological signals
(from living to artificial) and adapted coding of the artificial neuron events (from artificial
to living).

This research topic is expected to generate scientific advances in the field of neuro-
morphic engineering by the design of embedded self-organized artificial neural networks
that are able to communicate in real time with entire biological networks. The cur-
rent challenge is to achieve bidirectional neuro-electronic interfaces, establishing a true
dynamic communication between live neural networks and electronic systems.

Our group is made up of three teams:

• AS2N (Architecture of Silicon Neural Network);
• ELIBIO (ELectronique en Interaction avec la BIOlogie);
• BIO-EM (BIO-ElectroMagnetisme).

The goal of the AS2N group is to design and use integrated circuits (IC) that contain
neuromimetic (i.e. they mimic biological neural systems) components and architecture.
The AS2N team has designed several specific circuits which model the behavior of neurons,
in collaboration with UNIC (Unité de Neuroscience, Information et Complexité, CNRS,
Gif-sur-Yvette, France). This team is currently or was recently involved in European
and national projects: FACETS (FP6-2004-IST-FETPI 15879 (2005-2009)), FACETS-
ITN (FP7-PEOPLE-ITN-2008-237955 (2009-2014)), PIR NeuroInf ECRéN (2009-2011)
project and MHANN (ANR P2N 2011-2015).

The Elibio team works on the development of hardware-software tools for computa-
tional neurosciences and neurophysiology, including hybrid living-artificial systems, analog
ASICs for biological signal conditioning and events detection, active VLSI implants for
neurodegenerative diseases, and closed-loop living-artificial systems.
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The main research topic of the BIO-EM team is the study of the biological effects of
electromagnetic fields in a wide frequency band. The current main theme is the assessment
of possible health effects related to wireless communications such as mobile telephones.
In addition, the team examines some fundamental aspects related to the biological effects
of electromagnetic fields.

Our team (AS2N) focuses on three main research areas:

1. The design of mixed hardware-software platforms that are specifically designed to
simulate spiking neural networks [Belhadj, 2010; Daouzli, 2009];

2. Parameter estimation of neuron models [Buhry, 2010; Daouzli, 2009];
3. The design of bio-inspired hardware platforms based on new technology such as

memresistors (thesis in progress).

The research subject presented in this thesis (Marie-Curie Ph.D. position funded in the
European FACETS-ITN project) is entitled: "Silicon neural networks: implementation of
cortical cells to improve the artificial-biological hybrid technique". This work is part of the
research areas 1 and 2, in continuity with the work carried out in several theses [Belhadj,
2010; Bornat, 2006; Buhry, 2010]. This work addresses two of the fields of research of
our BioElectronics group: (i) to build a hardware simulation system for computational
neuroscience in order to investigate plasticity and learning phenomena in spiking neural
networks; and (ii) to improve the hybrid technique, which connects silicon and biological
neurons in real time to study the function of neuronal circuits.

In a previous work carried out to implement neuron models in analog circuits, our
group designed several neuromimetic chips (ASICs), including the Galway chip [Bornat,
2006] that we will use in this thesis to simulate the membrane equation of neurons.
These silicon neurons are based on the Hodgkin-Huxley formalism and they are optimized
to reproduce a large variety of neuronal behaviors using tunable parameters. However,
due to the fabrication process, there are significant mismatches on the chips. It is also
necessary to adjust their parameters in order to simulate a specific neuronal activity with
the neuromimetic circuits. The automated adjustment of neuron models is a key issue in
computational neuroscience. As hand-tuning is very time-consuming, automated tuning
of the parameters is indispensable. Hence, we propose a fully customizable fitting method,
in voltage-clamp mode, to tune our neuromimetic integrated circuits [Buhry et al., 2011];
this research is part of our thesis results.

The main objectives of this research subject are:
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• the simulation of the four most prominent biological cells present in the neocortex
(Fast-Spiking, Regular-Spiking, Intrinsically Bursting and Low-Threshold Spiking
neurons) in conductance-based analog neuromimetic integrated circuits, using elec-
trophysiological recordings as a reference;

• to contribute to the development of a mixed hardware-software platform to simulate
spiking neural networks (SNN) in real time.

To address the first objective of this thesis, we can observe through the bifurcation
analysis [Grassia et al., 2012] that the simplified HH model (implemented in the Galway
chip) shares the dynamics of the HH model. Therefore, the Galway chip can be used
to simulate the intrinsic electrophysiological properties of four cortical neurons: "fast-
spiking", "regular-spiking", "intrinsically bursting" and "low-threshold spiking" cells. For
each neuron class, we propose our simplified models taking all of the complete HH type
models proposed by Pospischil et al. [2008] into account. By comparing them with exper-
imental electrophysiological data of these cells, we show that the circuits can reproduce
the main firing features of cortical cell types [Grassia et al., 2011].

Regarding the second objective, in recent years, few hardware-based SNN systems
have been developed (we review some of them in the first chapter). These systems are
generally application-dedicated and are based on a fully digital or mixed analog/digital
architecture. Applications can range from purely artificial experiments, in particular the
investigation of adaptation and plasticity phenomena in networks, to experiments on hy-
brid biological/artificial networks.

Our SNN is based on a mixed analog/digital architecture designed to have the ca-
pacity to address biological diversity in terms of neuron types as well as plasticity rules.
Our platform makes use of point-neuron conductance-based models and is controlled by
spike-timing dependent plasticity [Belhadj, 2010]. In particular, our contributions to the
development of this mixed hardware-software platform for the simulation of a spiking
neural network in real time, include:

• the development of software tools to communicate between the host PC and the
SNN;

• the development of a VHDL driver to configure the neuron in the platform.

To address these contributions, this thesis will be presented in four chapters. The
first chapter will recall the basic principles of neuroscience and neuron modeling useful to
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understand the context of this work. Particular attention is given to the neuron models
that are generally used in the neuromorphic engineering, focusing on the choices made
by our team to use the Hodgkin-Huxley formalism to model the electrical activity of
neurons, and then the model used at the network level. The chapter ends with a review
of the hardware simulation platforms for spiking neural networks and research projects
related to this work. The second chapter will address the methods used to obtain the
appropriate parameter sets of the cortical neurons models that can be implemented in
our analog neuromimetic chip. The validation of the parameter extraction steps is done
using a bifurcation analysis [Grassia et al., 2012] that shows that the simplified HH model
implemented in our silicon neuron shares the dynamics of the HH model. Finally, for the
simulation of the cortical neurons models, we will propose a parameter set for the simpli-
fied models that takes the complete HH type models proposed by Pospischil et al. [2008]
into account, which also takes experimental electrophysiological data into account. The
third chapter will deal with the hardware simulation of the cortical neurons. Therefore,
this chapter will present a description of the hardware platform and the proposed fully
customizable fitting method, in voltage-clamp mode, to tune our neuromimetic integrated
circuits [Buhry et al., 2011]. Then, this chapter will show that the circuits can reproduce
the main firing features of the cortical cells types by comparing the hardware simulation
with experimental electrophysiological data [Grassia et al., 2011]. The last chapter will
describe the work done for the silicon neuron integration in the PAX system (Plasticity
Algorithm for Computing System: the spiking neural network (SNN) simulator developed
by our team [Belhadj, 2010]), using the cortical neuron parameter sets proposed for the
analog neuromimetic chip. After a description of the features and basic functions of the
PAX simulator, this chapter will show how this work contributes to the development of
the PAX systems in terms of software tools and a VHDL driver interface for neuron con-
figuration in the platform. Finally, it also addresses the issue of synaptic tuning for future
SNN simulation.

The conclusion of this research subject includes a description of the results and tasks
performed, and discusses the implications of this work.



Chapter 1

From Biology to Neuromorphic Systems

Nowadays, many software solutions are currently available for simulating neuron models.
Less conventional than software-based systems, hardware-based solutions generally com-
bine digital and analog forms of computation. As mentioned in the introduction, the main
objectives of this research are: the emulation of the four most prominent biological cells
(fast spiking, regular spiking, intrinsically bursting, and low-threshold spiking neurons)
into an analog neuromimetic integrated circuit and the development of a mixed hardware-
software platform in order to simulate real-time spiking neural networks. Therefore, the
aim of this chapter is to introduce several elementary notions of neuroscience, neuron
modeling and neuromorphic engineering useful to understand the context of this work.
Firstly, we recall the basic principles of neuron anatomy and physiology. Secondly, we
describe the most successful and widely-used models of neurons classically implemented
in hardware simulators and we explain the choices made by our team to use the Hodgkin-
Huxley formalism to model the electrical activity of neurons. Finally, we describe the
model used at the network level, we review the hardware simulation platforms for spiking
neural networks and then we present the AS2N team’s projects and, in particular, the
European FACETS-ITN project that has supported this research.

1.1 Neuroscience Principles

In biology, there are radically different types of neurons in the human brain. In brain
theory, the complexities of real neurons are abstracted in many ways to help understand
the different aspects of neural network development, function or learning. In neural
computation (technology based on networks of "neuron-like" units), the artificial neurons
are designed as variations on the abstractions of brain theory and are implemented in the
software or hardware [Arbib, 1995]. Individual nerve cells, the basic units of the brain,
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can be considered as simple cells. The complexity of human behavior depends less on the
specialization of individual nerve cells and more on the fact that a great many of these
cells form precise anatomical circuits [Kandel et al., 2000]. This section1 describes neuron
anatomy and physiology and focuses on the mechanisms of action potential generation
and propagation.

1.1.1 Neuron anatomy

A typical neuron has four morphologically defined regions: the cell body, the dendrites, the
axon, and the presynaptic terminals (Figure 1.1). Each of these regions has a distinct role
in the generation of signals and the communication of signals between nerve cells. Neurons
are highly specialized for the processing and transmission of cellular signals. Given the
diversity of functions performed by neurons in different parts of the nervous system, there
is, as expected, a wide variety in the shape, size, and electrochemical properties of neurons
[Cooper, 2011].

Figure 1.1 – Structure of a neuron [Kandel et al., 2000].

Soma
The cell body, or soma, is the central part of the neuron. There are many different

specialized types of neurons, and their sizes vary in diameter. It contains the nucleus of
the cell (the storehouse of genetic information), and therefore is where most protein syn-
thesis occurs. Roughly speaking, the soma is the "central processing unit" that performs

1All of the contents for the section "Neuroscience Principles" are referenced from Kandel et al. [2000],
if not specially mentioned.
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an important nonlinear processing step: if the total input exceeds a certain threshold,
then an output signal is generated.

Dentrites
Dendrites are the branched projections of a neuron that act to conduct the electro-

chemical stimulation received from other neural cells to the cell body, or soma, of the
neuron from which the dendrites project, play the role of the "input device". Metaphori-
cally, this overall shape and structure is referred to as a dendritic tree. This is where the
majority of input to the neuron occurs. Electrical stimulation is transmitted onto den-
drites by upstream neurons via synapses which are located at various points throughout
the dendritic arbor. Dentrites and soma constitute the major part of the input surface of
the neuron.

Axon
The axon, which plays the role of the "output device", is an elongated fiber that ex-

tends from the cell body to the terminal endings and transmits the neural signal. The
transmitting element of neurons can vary greatly in length; most axons in the central
nervous system are very thin (between 0.2 and 20 micrometers in diameter) compared
with the diameter of the cell body (50 micrometers or more). Many axons are insulated
by a fatty sheath of myelin that is interrupted at regular intervals by the nodes of Ranvier.
Nodes of Ranvier are constrictions in the myelin sheath that surround the axons of the
nerve cells, or neurons. They occur at approximately one millimeter intervals along the
length of the axon. The action potential, the cell’s conducting signal, is initiated either
at the axon hillock, the initial segment of the axon, or in some cases slightly farther down
the axon at the first node of Ranvier [Kandel et al., 2000].

Synapses
The junction between two neurons is called a synapse. Branches of the axon of one

neuron (the presynaptic neuron) transmit signals to another neuron (the postsynaptic
neuron) at a site called the synapse. The branches of a single axon may form synapses
with as many as 10.000 other neurons. Whereas the axon is the output element of the
neuron, the dendrites are the input elements of the neuron. Together with the cell body,
they receive synaptic contacts from other neurons. Neurons can be coupled by chemical
and electrical synapses. Neurons communicate by chemical and electrical synapses in a
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process known as synaptic transmission.

Plasma membrane
Like all animal cells, every neuron is surrounded by a plasma membrane, a bilayer of

lipid molecules with many types of protein structures embedded in it. A lipid bilayer is a
powerful electrical insulator, but in neurons, many of the protein structures embedded in
the membrane are electrically active. These include ion channels that permit electrically
charged ions to flow across the membrane, and ion pumps that actively transport ions
from one side of the membrane to the other (Figure 1.2). Inside the cell, the concentration
of ions is different from that in the surrounding liquid.

Figure 1.2 – The neuron’s membrane forms a separation between the extracellular space
around the neuron and its intracellular fluid. The membrane is pierced with
proteins that serve as channels for ions to "flow" though.

The charge separation gives rise to a difference of electrical potential across the mem-
brane called the membrane potential. In a biological membrane, the reversal potential of
an ion is the membrane potential at which there is no net flow of that particular ion from
one side of the membrane to the other. The reversal potential is often called the "Nernst
potential" as it can be calculated from the Nernst equation [Feiner and McEvoy, 1994].
In a single-ion system, the reversal potential is synonymous with equilibrium potential.
Equilibrium refers to the fact that the net ion flux at a particular voltage is zero. In other
words, the outward and inward rates of ion movement are the same; the ion flux is in
equilibrium. Reversal refers to the fact that a change of membrane potential on either
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side of the equilibrium potential reverses the overall direction of ion flux [Purves et al.,
2008]. The relationship between the terms "reversal potential" and "equilibrium potential"
only holds true for single-ion systems. In multi-ion systems, there are areas of the cell
membrane where the summed currents of the multiple ions will equal zero. While this is
a reversal potential in the sense that the membrane current reverses direction, it is not
an equilibrium potential because not all of the ions are in equilibrium and thus have net
fluxes across the membrane.

1.1.2 Neuron physiology

The neuronal signal depends on rapid changes in the electrical potential difference across
the nerve cell membranes. Individual sensory cells can generate changes in membrane
potential in response to very small stimuli. These rapid changes in membrane potential
are mediated by ion channels, a class of integral membrane proteins found in all cells of
the body. Ion channels have three important properties: (1) they conduct ions, (2) they
recognize and select specific ions, and (3) they open and close in response to specific elec-
trical, mechanical, or chemical signals. Voltage-gated channels are regulated by changes in
voltage, ligand-gated channels are regulated by chemical transmitters, and mechanically
gated channels are regulated by pressure or stretch. An individual channel is usually most
sensitive to one type of signal. In addition to the gated channels, there are non-gated
channels that are normally open in the cell at resting state when nothing perturbs the cell.

The resisting membrane potential
Every neuron has a separation of charges across its cell membrane consisting of positive

and negative ions spread over the inner and outer surfaces of the cell membrane. At resting
state, a nerve cell has an excess of positive charges on the outside of the membrane and
an excess of negative charges on the inside. No single ion species is distributed equally on
the two sides of a nerve cell membrane. Ions are subject to two forces driving them across
the membrane: (1) a chemical driving force that depends on the concentration gradient
across the membrane, and (2) an electrical driving force that depends on the electrical
potential difference across the membrane. Of the most abundant ions found on either
side of the cell membrane, Na+ is more concentrated outside the cell and K+ is more
concentrated inside. This separation of charge is maintained because the lipid bilayer of
the membrane blocks the diffusion of ions. The membrane potential (Vm) is defined by
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equation 1.1:
Vm = Vin−Vout , (equation 1.1)

where Vin is the potential on the inside of the cell and Vout the potential on the outside.
There are two important levels of membrane potential: the resting potential, which is the
value that the membrane potential maintains as long as nothing perturbs the cell, and a
higher value called the threshold potential (around -55 mV).

In the nerve cell, at resting-state, the steady Na+ influx is balanced by a steady K+

efflux, so that the membrane potential is constant. Since, by convention, the potential
outside the cell is defined as zero, the resting potential is equal to Vin. Its usual range
in neurons is -60 mV to -70 mV. This balance point (usually -65 mV) is far from the
Na+ equilibrium potential (ENa = +55 mV) and is only slightly more positive than the
equilibrium potential for K+ (EK = -75 mV).

The action potential
All electrical signaling involves brief changes from the resting membrane potential due

to alterations in the flow of electrical current across the cell membrane resulting from the
opening and closing of ion channels. A reduction of charge separation, leading to a less
negative membrane potential, is called depolarization. An increase in charge separation,
leading to a more negative membrane potential, is called hyperpolarization. Synaptic in-
puts to a neuron cause the membrane to depolarize or hyperpolarize [Kandel et al., 2000].
In physiology, an action potential is a short-lasting event (about 1 ms) in which the elec-
trical membrane potential of a cell rapidly rises and falls, following a consistent trajectory.
The absolute refractory period coincides with nearly the entire duration of the action po-
tential. Action potentials are triggered when enough depolarization accumulates to bring
the membrane potential up to the threshold. Action potentials in neurons are also known
as "spikes", and the temporal sequence of action potentials generated by a neuron is called
its "spike train". In neuronal systems, information is coded in the frequency or timing of
action potentials. Figure 1.3 shows the genesis of an action potential. In the nerve cell,
at resting potential, the membrane potential is constant. However, action potentials are
triggered when enough depolarization accumulates to bring the membrane potential up
to the threshold. Once the membrane potential reaches this threshold, the voltage-gated
Na+ channels open rapidly. The resultant increases in membrane permeability to Na+

causes the Na+ influx to exceed the K+ efflux, creating a net influx of positive charge
that causes further depolarization.
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Figure 1.3 – Ionic mechanisms of action potentials.

The increase in depolarization causes even more voltage-gated Na+ channels to open,
resulting in a greater influx of Na+, which accelerates the depolarization even further. This
regenerative, positive feedback cycle develops explosively, driving the membrane poten-
tial toward the Na+ equilibrium potential of +55 mV. However, the membrane potential
never quite reaches that point because K+ efflux continues throughout the depolarization.
Nevertheless, so many voltage-gated Na+ channels open during the rising phase of the
action potential that the cell’s permeability to Na+ is much greater than to K+. Thus at
the peak of the action potential, the membrane potential approaches the Na+ equilibrium
potential, just as at rest (when permeability to K+ is predominant), the membrane po-
tential tends to approach the K+ equilibrium potential. The membrane potential would
remain at this large positive value near the Na+ equilibrium potential indefinitely but for
two processes that repolarize the membrane, thus terminating the action potential. First,
as the depolarization continues, the population of voltage-gated Na+ channels gradually
closes by the process of inactivation. Second, opening of the voltage-gated K+ channels
causes the K+ efflux to gradually increase. The increase in K+ permeability is slower
than the increase in Na+ permeability because the voltage-gated K+ channels open at a
slower rate. The delayed increase in K+ efflux combines with a decrease in Na+ influx
to produce a net efflux of positive charge from the cell, which continues until the cell has
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repolarized to its resting membrane potential.
The action potential is also followed by a brief period of diminished excitability, or re-

fractoriness, which can be divided into two phases. The absolute refractory period comes
immediately after the action potential; during this period it is impossible to excite the
cell no matter how great a stimulating current is applied. This phase is directly followed
by the relative refractory period, during which it is possible to trigger an action potential
but only by applying stimuli that are stronger than those normally required to reach the
threshold. These periods of refractoriness are caused by changes in the state of sodium
and potassium channel molecules. When closing after an action potential, sodium chan-
nels enter an "inactivated" state, in which they cannot be made to open regardless of the
membrane potential; this gives rise to the absolute refractory period. Even after a suffi-
cient number of sodium channels have transitioned back to their resting state, it frequently
happens that a fraction of potassium channels remains open, making it difficult for the
membrane potential to depolarize, and thereby giving rise to the relative refractory period.

Propagation of the action potential
The action potential generated at the axon hillock propagates as a wave along the

axon. Once the membrane at any point along an axon has been depolarized beyond a
threshold, an action potential is generated in that region in response to the opening of
voltage-gated Na+ channels. This local depolarization spreads down the axon, causing
the adjacent region of the membrane to reach the threshold for generating an action po-
tential. If sufficiently strong, this depolarization provokes a similar action potential at
the neighboring membrane patches. When an action potential has occurred at a patch of
membrane, the membrane patch needs time to recover before it can fire again. This abso-
lute refractory period corresponds to the time required for the voltage-activated sodium
channels to recover from inactivation. Although it limits the frequency of firing, the abso-
lute refractory period ensures that the action potential moves in only one direction along
an axon. However, only the unfired part of the axon can respond with an action potential;
the part that has just fired is unresponsive until the action potential is safely out of range
and cannot re-stimulate that part. The speed of action potential propagation is usually
directly related to the size of the axon.

In order to enable the fast and efficient transduction of electrical signals in the nervous
system, certain neuronal axons are covered with myelin sheaths. Myelin is a multilamellar
membrane that enwraps the axon in segments separated by intervals known as nodes of
Ranvier. It is at these uninsulated spots on the axon that the action potential becomes
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regenerated. Although the area of the membrane at each node is quite small, the nodal
membrane is rich in voltage-gated Na+ channels and thus can generate an intense de-
polarizing inward Na+ current in response to the passive spread of depolarization down
the axon. The myelin sheath reduces membrane capacitance and increases membrane
resistance in the inter-node intervals, thus allowing a fast, saltatory movement of action
potentials from node to node. These regularly distributed nodes thus boost the amplitude
of the action potential periodically, preventing it from dying out.

Termination
The axon divides (near its end) into fine branches that form communication sites with

other neurons. The point at which two neurons communicate is known as a synapse. The
nerve cell transmitting a signal is called the presynaptic cell. The cell receiving the signal
is the postsynaptic cell. The presynaptic cell transmits signals from the swollen ends of
the axonal branches, called presynaptic terminals. Most presynaptic terminals end on
the postsynaptic neuron’s dendrites, but the terminals may also end on the cell body or,
less often, at the beginning or end of the axon of the receiving cell. Synapses are either
electrical or chemical and the current flows differently:

• at an electrical synapse, some of the current injected into a presynaptic cell escapes
through resting ion channels in the cell membrane. However, some current also
flows into the postsynaptic cell through specialized ion channels, called gap-junction
channels, that connect the cytoplasm of the pre and postsynaptic cells (see Figure
1.4 A )

• at chemical synapses, the resulting depolarization of the presynaptic cell activates
the release of neurotransmitter molecules packaged in synaptic vesicles into the
synaptic cleft (the intracellular space between the two neurons), which then bind
to receptors on the postsynaptic cell (see Figure 1.4 B ). This binding opens ion
channels, thus initiating a change in membrane potential in the postsynaptic cell.
The binding of the transmitter to the receptors causes the postsynaptic cell to
generate a synaptic potential. Whether the synaptic potential has an excitatory
or inhibitory effect will depend on the type of receptors in the postsynaptic cell,
not on the particular neurotransmitter. The same transmitter can have different
effects on different types of receptors. The major neurotransmitters in the brain are
glutamate and γ-aminobutyric acid (GABA). The former has a excitatory effect, i.e.
it induces a depolarization of the postsynaptic membrane; the latter is an inhibitory



10 Chapter 1. From Biology to Neuromorphic Systems

transmitter which causes an hyperpolarization of the postsynaptic neuron. GABA
receptors (GABAA and GABAB) are associated with a reversal potential around
-75 mV. For glutamate, there are the so-called AMPA and NMDA receptors, both
with a reversal potential around 0 mV. The relevant difference between them is the
timescale on which they react: 5 ms and 50 ms for GABAA and GABAA receptors;
0.1 ms and 10-100 ms for AMPA and NMDA receptors.

Figure 1.4 – (A) Electrical and (B) chemical synapses [KIN450, 2009].

Electrical synapses are used primarily to send simple depolarizing signals; they do
not lend themselves to producing inhibitory actions. In contrast, chemical synapses are
capable of more variable signaling and thus can produce more complex behaviors. They
can mediate either excitatory (with the receptor AMPA and NMDA ) or inhibitory (with
the receptor GABAA and GABAB) actions in postsynaptic cells and produce electrical
changes in the postsynaptic cell that last from milliseconds to many minutes. Chemical
synapses also serve to amplify neuronal signals, so that even a small presynaptic nerve
terminal can alter the response of a large postsynaptic cell. Moreover, the strength of
both forms of synaptic transmission can be enhanced or diminished by cellular activity.

In neuroscience, synaptic plasticity is the ability of the connection, or synapse, be-
tween two neurons to change in strength or efficacy in response to either use or disuse of
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transmission at preexisting synapses. Since memories are postulated to be represented by
vastly interconnected networks of synapses in the brain, synaptic plasticity is one of the
important neurochemical foundations of learning and memory.

1.2 Principles of Neural Modeling

A biological neuron model (also known as a spiking neuron model) is a mathematical
description of the properties of nerve cells, or neurons, that is designed to accurately
describe and predict biological processes. Models that describe the membrane potential of
a neuron by a single variable and ignore its spatial variation are called single-compartment
models. In this sub-class of models, the rich and complex dynamics of real neurons can be
reproduced quite accurately by models that include aspects of ionic conductances, known
as conductance-based models. To study the effects of dendritic or axonal morphologies
on neuronal function, models based on the linear cable theory and multi-compartmental
models have to be considered instead. In this section, we describe the most successful
and widely-used single-compartment neuron models classically implemented in hardware
simulators and we explain the choices made by our team to use the Hodgkin-Huxley
formalism to model the electrical activity of silicon neurons. We start with a summary of
the neuro-computational properties of biological spiking neurons reviewed by Izhikevich
[2004]. This summary includes the kinds of behaviors for fast spiking, regular spiking,
intrinsically bursting, and low-threshold spiking neurons that we want to emulate into an
analog neuromimetic integrated circuit.

1.2.1 Neuro-computational properties of biological spiking neu-
rons

Neurons can respond with rather different spike train patterns to identical step currents.
Figure 1.5 shows the important neurocomputational features of real neurons reviewed by
Izhikevich [2004]. To observe these different spike train patterns, neurophysiologists inject
pulses of DC current via an electrode attached to the neuron and record its membrane
potential. The input current and the neuronal response are plotted one beneath the other,
as in Figure 1.5. The kind of behavior, called tonic spiking (Figure 1.5), can be observed
in the three types of cortical neurons: regular spiking (RS) excitatory neurons, low-
threshold spiking (LTS) and fast spiking (FS) inhibitory neurons [Connors and Gutnick,
1990; Gibson et al., 1999].
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(A) tonic spiking

input dc-current

(B) phasic spiking (C) tonic bursting (D) phasic bursting

(E) mixed mode (F) spike frequency (G) Class 1 excitable (H) Class 2 excitable
adaptation

(I) spike latency (J) subthreshold (K) resonator (L) integrator

(M) rebound spike (N) rebound burst (O) threshold (P) bistability
variability

oscillations

(Q) depolarizing (R) accommodation (S) inhibition-induced (T) inhibition-induced
after-potential spiking bursting

DAP

20 ms

Figure 1.5 – Summary of the neuro-computational properties of biological spiking neu-
rons (electronic version of the figure and reproduction permissions are freely
available at www.izhikevich.com).
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The continuous firing of these neurons indicates that there is a persistent input. In-
trinsically bursting (IB) excitatory neurons in the mammalian neocortex [Connors and
Gutnick, 1990] can exhibit a mixed mode (Figure 1.5) of spiking activity: they fire a pha-
sic burst (such neurons report the beginning of the stimulation by transmitting a burst2

and then switch to the tonic spiking mode. The complete types of behaviors (Figure 1.5)
are reviewed by Izhikevich [2004].

Which model to use for cortical spiking neurons? All models have advantages and
drawbacks [Izhikevich, 2004]. In our case, we wish to reproduce the behavior of bio-
logical neurons in order to extend the hybrid technique, also called a "dynamic-clamp"
[Le Masson et al., 1995], to Micro-Electrode Arrays [Bontorin et al., 2007] by making
use of reconfigurable integrated circuits [Saïghi et al., 2011]. For that, we chose the
most biologically plausible model: the Hodgkin-Huxley-type model. In the next sections
(1.2.2 - 1.2.3 - 1.2.4), starting from the Hodgkin-Huxley formalism, we review the most
used single-compartment neuron models classically implemented in hardware simulators.
Afterwards, we show a comparison of most of them in terms of biological plausibility
[Izhikevich, 2004].

1.2.2 Hodgkin-Huxley model

The first biologically relevant mathematical neuron model was proposed by Hodgkin and
Huxley [1952]3. Hodgkin and Huxley performed experiments on the giant axon of the
squid and found three different types of current: sodium, potassium and leak current. It
was demonstrated that the ionic permeability of the membrane can be highly dependent on
the membrane potential. Hodgkin and Huxley characterized these properties of voltage-
dependence and provided a mathematical model which proved that these properties were
sufficient to account for the genesis of action potentials. They used the voltage-clamp
technique4 to record the ionic currents generated at different voltages. All channels may
be characterized by their resistance or, equivalently, by their conductance. The schematic
diagram of the Hodgkin-Huxley model is shown in Figure 1.6 where VM is the membrane

2Bursting is a dynamic state where a neuron repeatedly fires discrete groups of spikes. Each such
burst is followed by a period of quiescence before the next burst occurs. A burst of two spikes is called a
doublet, of three spikes is called a triplet, four - quadruplet, etc. [Izhikevich, 2000].

3The Nobel Prize in Physiology or Medicine 1963 was awarded jointly to Sir John Carew Eccles,
Alan Lloyd Hodgkin and Andrew Fielding Huxley "for their discoveries concerning the ionic mechanisms
involved in excitation and inhibition in the peripheral and central portions of the nerve cell membrane"

4The voltage clamp is used by electrophysiologists to measure the ion currents across the membrane
of excitable cells, such as neurons, while holding the membrane voltage at a set level.
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potential, CM is the membrane capacitance, the leakage channel is described by a voltage-
independent conductance gL=1/R5 and the conductance of the other ion channels (gNa
and gK) is voltage and time dependent. EL, ENa and EK are the reversal potentials,
which are given by the Nernst equation6.

Figure 1.6 – The schematic diagram of the Hodgkin-Huxley model: analogy between bi-
ology and electrical circuit.

Hence, from the schematic in Figure 1.6 the current flowing across the membrane is
integrated on the membrane capacitance, according to expression:

CM
dVM

dt
= −INa− IK − IL , (equation 1.2)

where INa, IK and IL are sodium, potassium and leakage currents. We will see more
details of the HH model in Chapter 2.

The Hodgkin-Huxley equations are the starting point for detailed neuron models which
account for numerous ion channels, different types of synapses, and the specific spatial
geometry of an individual cell. Thus, other simplified models derived from the HH model
have been developed since then.

5The passive electrical properties of the cell membrane are described by a capacity CM and a resistor
R.

6For example, for K+ ions:
EK = Rg ·T

Z ·F
ln

[K]o
[K]i

,

where Rg is the gas constant, T is the absolute temperature in degrees Kelvin, Z is the valence of the
ion (Z = 1 for K+ ions, Z = -1 for Cl− ions, etc), F is the Faraday constant, [K]o and [K]i are the
concentration of K+ ions outside and inside of the membrane, respectively.
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1.2.3 Simplified models derived from the HH model

The behavior of high-dimensional nonlinear differential equations is difficult to visualize
and even more difficult to analyze. Two-dimensional differential equations, however, can
be studied by means of a phase plane analysis. A reduction of the four-dimensional HH
model to a two variable neuron model is thus highly desirable. Sweeping simplifications
to the Hodgkin-Huxley model were introduced by FitzHugh [1955, 1961], Nagumo et al.
[1962] and Morris and Lecar [1981].

FitzHugh-Nagumo model
In order to reduce the Hodgkin-Huxley model to a two variable model, the general

observation of FitzHugh was that the gating variables n and h have slow kinetics relative
to m. Moreover, for the parameter values specified by Hodgkin and Huxley, n plus h is
approximately 0.8. The FitzHugh-Nagumo model is able to reproduce many qualitative
characteristics of electrical impulses along nerve and cardiac fibers, such as the existence
of an excitation threshold, relative and absolute refractory periods, and the generation of
pulse trains under the action of external currents. The model is described by the following
equations:


dVM

dt
= VM−V 3

M −w+ Iext

τ
dw

dt
= VM−a− b·w ,

(equation 1.3)

where we again have a membrane-like voltage VM , input current Iext, a slower general
gate voltage w, and experimentally determined parameters a = -0.7, b = 0.8 and τ =
1/0.08.

Morris-Lecar model
Morris and Lecar [1981] combined Hodgkin-Huxley’s and FitzHugh-Nagumo’s model

into a voltage-gated calcium channel model with a delayed-rectifier potassium channel.
Qualitatively, the Morris-Lecar model describes the complex relationship between mem-
brane potential and the activation of ion channels within the membrane: the potential
depends on the activity of the ion channels, and the activity of the ion channels depends
on the voltage. The assumptions were: 1) the equations apply to an iso-potential patch
of membrane, 2) Ca2+ carries the depolarizing current, 3) K+ carries the hyperpolarizing
current, 4) the activating conductance quickly relaxes to its steady state value independent
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of voltage, and 5) the recovery dynamics of the neuron are modeled as only a first-order
differential equation [Lecar, 2007]. The model is described by the following equations:


CM

dVM

dt
=−

∑
ion

Iion(VM) + Iext

dw

dt
= w∞(VM)−w

τw(VM) ,

(equation 1.4)

where

∑
ion

Iion = ¯gCa·m∞(VM−VCa) + ḡK ·w·(VM−EK) + ¯gfuite·(VM−Efuite) . (equation 1.5)

The recovery variable w describes the probability that the K+ channel is conducting.

Hindmarsh-Rose model
Building upon the FitzHugh-Nagumo model, Hindmarsh and Rose [1984] proposed a

model of neuronal activity described by three coupled first-order differential equations:



dx

dt
= y+a ·x2−x3− z+ I

dy

dt
= 1− b ·x2−y

dz

dt
= r · [s · (x−xR)− z] .

(equation 1.6)

The relevant variable is the membrane potential, x(t), which is written in dimensionless
units. There are two more variables, y(t) and z(t), which take into account the transport
of ions across the membrane through the ion channels. The transport of sodium and
potassium ions is made through fast ion channels and its rate is measured by y(t), which
is called the spiking variable. The transport of the other ions is made through slow
channels, and is taken into account through z(t), which is called the bursting variable.
The model has six parameters: a, b, r, s, xR and I. It is very common to fix some of them
and let the other be control parameters. Usually parameter I, which means the current
that enters the neuron, is taken as a control parameter. The aim of the Hindmarsh-Rose
model of neuronal activity is to study the spiking-bursting behavior of the membrane
potential observed in experiments made with a single neuron.



Principles of Neural Modeling 17

1.2.4 Other widely used models of spiking neurons

Unlike the models mentioned in the previous section, which are composed of distinct ion
channels with different gating variables, one dimensional model uses a threshold and re-
set mechanism to produce action potentials. A common one-dimensional model is the
integrate-and-fire model.

Integrate-and-Fire (IF) model

The simplest mechanism to model neuronal spiking is the integrate-and-fire (IF) model
investigated in 1907 by Louis Lapicque [Abbott, 1999]. A neuron is represented in time
by:

I(t) = CM
dVM

dt
(equation 1.7)

in which a spike occurs when the membrane potential VM reaches the threshold volt-
age; a spike is produced and then VM is reset back to the resting potential. The firing
frequency of the model increases linearly without bound as the input current increases.
The model can be made more accurate by introducing a refractory period that limits the
firing frequency of a neuron by preventing it from firing during that period. A remaining
shortcoming of this model is that it implements no time-dependent memory. If the neu-
ron receives a below-threshold signal at some time, it will keep that voltage boost forever
until it fires again. In the leaky integrate-and-fire model, the memory problem is solved
by adding a leak term to the membrane potential.

Leaky Integrate-and-Fire (LIF) model

The basic circuit of an integrate-and-fire model consists of a capacitor CM in parallel
with a resistor RM driven by a current I(t) [Gerstner and Kistler, 2002]. The driving
current can be split into two components. The first component is the resistive current
which passes through the linear resistor RM and, the second component is the current
that charges the capacitor CM . Thus, the dynamic of the circuit is given by

I(t)− VM(t)
RM

= CM
dVM

dt
(equation 1.8)

where CM is the membrane capacitance, RM is the membrane resistance, which is not
a perfect insulator as previously assumed. The resistor in this model represents the leak
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currents of the neuron, thus

CM
dVM

dt
= I(t)−gL · (VM(t)−EL) , (equation 1.9)

where gL = 1/RM . This dynamic holds until the threshold is crossed, after which the
membrane potential is reset. For a constant current I, the threshold current for spike
generation is Ith = Vth/RM , and the evolution of the membrane potential through time
is given by

VM(t) =RM · I ·
[
1− exp

(
t− ts
RM ·CM

)]
, (equation 1.10)

where ts is the last spiking time. This simple phenomenological spiking neuron model is
highly popular for studies of large-scale network dynamics where only the overall activity
of the system is important [Casti et al., 2002; Koene and Hasselmo, 2005; Rangan and
Cai, 2007].

Quadratic Integrate-and-Fire model

An alternative to the LIF neuron is the quadratic IF neuron. The quadratic model
describes the behavior of a certain family of neuron models called type-I models. The
name refers to the shape of the firing curve (the curve describing the relation between a
constant input current and the spiking rate): zero below a certain threshold, monotoni-
cally increasing after the threshold is crossed, and non-continuous when the threshold is
crossed [Gerstner and Kistler, 2002]. The evolution of the membrane potential through
time is given by

τm
dVM

dt
= a0 · (VM(t)−Vrest) · (VM(t)−Vth) +RM · I(t) , (equation 1.11)

where τm = RM ·CM , a0 > 0 and Vth > Vrest are parameters. Note that for I = 0, if
VM < Vth the voltage decays to the resting potential (Vrest). If VM > Vth, the voltage
increases until spike generation. Therefore Vth is interpreted as the threshold voltage for
spike generation.

Resonate-and-Fire model

The resonate-and-fire neuron is a two-dimensional analogue of the IF neuron and may
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be characterized as follows [Izhikevich, 2001]:


dVM

dt
= I(t)−gL · (VM(t)−EL)−W (t)

τ
dW

dt
= (VM(t)−V0)

k
−W (t) ,

(equation 1.12)

where W is a second variable that summarizes the effect of subthreshold membrane cur-
rent. The notion that underlies the resonate-and-fire neuron is that biological neuron’s
internal activity level is determined by the interplay of fast and slow membrane currents.

Izhikevich’s model
All of the responses in Figure 1.5 were obtained using a simple model of spiking neurons

proposed by [Izhikevich, 2003]:



dVM

dt
= 0.04 ·VM(t)2 + 5 ·VM(t) + 140−u(t) + I(t)

du

dt
= a · (b ·VM(t)−u(t))

if v ≥+30mV thenv← c, u← u+d

(equation 1.13)

where u represents a membrane recovery variable, which accounts for the activation of
K+ ionic currents and the inactivation of Na+ ionic currents. After the spike reaches its
apex (+30 mV), the membrane voltage and the recovery variable are reset. The model can
exhibit firing patterns of all known types of cortical neurons with the choice of parameters
a, b, c, and d [Izhikevich, 2003].

Which model to use for cortical spiking neurons emulations?
Many single-compartment models of spiking neurons have been proposed. Which one

to choose? The answer depends on the type of the problem, and therefore a comparison of
the spiking neuron models in terms of biological plausibility was done by Izhikevich (Figure
1.7). As shown in Figure 1.7, if the goal is to study how the neuronal behavior depends
on the measurable physiological parameters, then the Hodgkin-Huxley-type model is the
most biologically plausible, but is computationally prohibitive to simulate large networks
in real time. In contrast, if the goal is to simulate thousands of spiking neurons in real
time, then there are plenty of models to choose from. The most efficient is the integrate-
and-fire model.
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Figure 1.7 – Biological plausibility of neuron models [Izhikevich, 2003].

In our case, in which it should be possible to use the hybrid technique to better
understand the biological phenomena, the chosen model has to be the most biologically
plausible. Within the family of biologically plausible point neuron models, there is a
group of conductance-based models (implemented into the silicon neuron [Bornat, 2006])
in which ionic and synaptic currents charge and discharge a capacitor representing the
neuron membrane. All of these models are based on the HH model, which will be described
in Chapter 2.

We have no limitations with regards to flops (floating point operations per second)
for our design [Bornat, 2006] thanks to the analog computation. However, due to the
fabrication process, there are significant differences between the expected and actual out-
puts of the analog silicon neuron [Buhry et al., 2011]. It is therefore necessary to further
adjust the parameters in order to reproduce a given neuronal signal. In the next section
we briefly describe this key issue.

1.3 The automated adjustment of neuron models

The HH model is strongly dependent on nonlinear equations involving a large number of
parameters: ranging from 15 parameters for the very simple monocompartmental model of
a fast-spiking neuron to hundreds of parameters for neurons with more complex behaviors.
It is the starting point for detailed neuron models which, in general, include more than the
three types of currents considered by Hodgkin and Huxley [Pospischil et al., 2008]. The
tuning of this model, in order to reproduce a given neuronal signal, is thus complex. The
adjustment of neuron models is a key issue in computational neuroscience. This subject
has already been investigated by several authors, considering different levels of model
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complexity [Geit et al., 2008]. In the literature, generally two main approaches are used
to estimate the parameters of neuron models. The first makes use of membrane voltage
recordings, and the second is based on ionic current recordings used in conductance-based
models. In the first case, the parameters are determined simultaneously by using the
membrane voltage only. Such methods are useful for different types of models, such as
the leaky-integrate-and-fire, Izhikevich’s, and multicompartmental models [Keren et al.,
2005; Vanier and Bower, 1999]. However, one pitfall with this kind of method is that for
complex models, excessive simulation times, as well as the implementation of computer
clusters, are needed. To reduce the estimation time, it is sometimes possible to reduce the
search space by making use of good a priori knowledge of the model’s behavior [Pospischil
et al., 2008]. For single-cell models such as the HH model, techniques based on ionic
current recordings can be used to estimate the parameters. The best-known method is
the voltage clamp introduced by Cole [1949] and later used by Hodgkin and Huxley [1952].
The voltage clamp is used by electrophysiologists to measure the ion currents across the
membrane of excitable cells, such as neurons, while holding the membrane voltage at a
set level. However, this method has many disadvantages due to the approximations it
requires [Saïghi et al., 2008]. In particular, the separate estimation of these parameters is
not really relevant, whereas their simultaneous estimation would be more efficient.

Moreover, due to the fabrication process, there are significant differences between the
expected and actual outputs of the silicon neurons [Saïghi et al., 2008]. It is therefore nec-
essary to further adjust the parameters. As hand tuning is very time consuming, due to
the model’s sensitivity to these parameter values and due to the large number of variables,
an automated tuning of the parameters is mandatory. In Rossant et al. [2010], there is a
software solution for the automatic fitting of spiking neuron models to electrophysiologi-
cal recordings, but this fitting procedure could be very time consuming both in terms of
computer simulations and code-writing. A systematic method for configuring VLSI net-
work of spiking neurons was proposed by Neftci et al. [2011] that describes a parameter
mapping technique that permits an automatic configuration of a VLSI neural network.
For single cell models such as the HH model, techniques based on ionic current record-
ings can be used to estimate the parameters. We developed a new estimation method
for the characterization of the HH formalism [Buhry et al., 2011]. It uses voltage clamp
type recordings, but is based on the differential evolution algorithm. The parameters
of an ionic channel are estimated simultaneously, such that the usual approximations of
classical methods are avoided and all of the parameters of the model, including the time
constant, can be correctly optimized. In a second step, this new estimation technique
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is applied to our neuromimetic analog integrated circuits (we will describe the estima-
tion technique in Chapter 3) in order to simulate a specific neuronal activity with the
neuromimetic circuits.

1.4 The network level: models used

As mentioned, a pre-synaptic neuron can change the membrane potential of the post-
synaptic neuron through a synapse that can be excitatory or inhibitory. A synapse is
excitatory if it causes an increase in the voltage of the postsynaptic neuron and inhibitory
if it causes a decrease. Moreover, synapses can be plastic, which is the ability of the
connection, or synapse, between two neurons to change in strength (or weight) in response
to either use or disuse. In this section we describe the synapse model and general principles
of the spike-timing-dependent plasticity rule used in the design of our spiking neural
network platforms.

1.4.1 Chemical Synapses

To model the effect of the synapse, the equation for the voltage of the postsynaptic cell,
is modified as follows:

CM
dVM-post

dt
= −Iion− Isyn , (equation 1.14)

where Isyn is the current through the ion channel associated with the receptor for the
neurotransmitter and Iion denotes the sum of the individual ionic currents of the model.
Isyn can be modeled as:

Isyn = gsyn · (Vpost−Esyn) , (equation 1.15)

where Esyn is the reversal potential of the channel and gsyn is the conductance of the
channel. Typically Esyn = 0 for an excitatory synapse and Esyn < 0 for an inhibitory
synapse. The kinetics of the opening and closing of the ion channel is incorporated into
the model for gsyn, as for the voltage gated ion channels. Following the arrival of an action
potential at the presynaptic terminal, neurotransmitter molecules, T, are released into the
synaptic cleft. These molecules are taken to bind to postsynaptic receptors. Letting r
represent the fraction of bound receptors, these kinetics are described by the equation:

dr

dt
= α · [T ] · (1− r)−β · r , (equation 1.16)
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where [T] is the concentration of transmitter, α and β are the forward and backward rate
constants for transmitter binding [Destexhe et al., 1994]. Hence, the synaptic current is
given by the equation:

Isyn(t) = ¯gsyn · r(t)(Vpost(t)−Esyn) , (equation 1.17)

where ¯gsyn is the maximal conductance of the synapse. These equations provide a method
for computing single synaptic currents (single synapse). Destexhe et al. [1998a] presents an
algorithm, "Multiple Synapses", that can be used to simulate models with many synapses
within the same compartment. This mechanism was implemented in the hardware by
Bornat [2006].

1.4.2 Synaptic Plasticity

The dynamics of a Spiking Neural Network (SNN) and the formation of its connectivity
are governed by synaptic plasticity. Plasticity rules formulate the modifications which
occur in the synaptic transmission efficacy, driven by correlations in the firing activity of
pre- and postsynaptic neurons. At the network level, spikes are generally processed as
events, and the synaptic weight Wji (connection from neuron j to neuron i) varies over
time, according to the learning rules.

Figure 1.8 – Variation of synaptic weight δWji from neuron j (pre-synaptic) to neuron
i (post-synaptic), as a function of the time interval δt = ti - tj (ti: post-
synaptic spike time, tj : pre-synaptic spike time).

Figure 1.8 illustrates the principle of the Spike Timing Dependent Plasticity (STDP)
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algorithm7: when a post-synaptic spike arises after a pre-synaptic spike (δt > 0), the
connection is reinforced ("long-term potentiation", δWji > 0), whereas in the opposite case
it is weakened ("long-term depression"). The change of the synapse plotted as a function of
the relative timing of pre- and postsynaptic action potentials is called the STDP function
or learning window and varies between synapse types. As with other forms of synaptic
plasticity, it is widely believed that it underlies development and refinement of neuronal
circuits during brain development, as well as the learning and information storage in the
brain [Bi and Poo, 2001; Sjöström et al., 2008].

1.5 Neuromorphic Engineering: Spiking Neural Net-
work platforms

Spiking neural networks (SNNs) fall into the third generation of neural network models,
increasing the level of realism in a neural simulation. The idea is that neurons in the SNN
do not fire at each propagation cycle (as happens with typical multi-layer perceptron net-
works), but rather, only fire when a membrane potential reaches a specific value. When
a neuron fires, it generates a signal that travels to other neurons which, in turn, increase
or decrease their potentials in accordance with this signal. Computational neuroscience
commonly relies on software-based processing tools (NEURON, NEST, PCSIM, Brian,
etc.). As mentioned in the introduction, neuromorphic engineering is a new interdisci-
plinary discipline that takes inspiration from biology, physics, mathematics, computer
science and engineering to design analog, digital, and mixed-mode analog/digital VLSI
and software systems to mimic neuro-biological architectures present in the nervous sys-
tem. Some of these platforms are dedicated to the simulation of SNNs, and take into
account the timing of input signals by precisely computing the neurons’ asynchronous
spikes. While software tools can be configured for different types of models [Brette et al.,
2007; Hines and Carnevale, 1997], hardware-based SNNs are dedicated to a given type of
model. In this section, we introduce the design approaches adopted for SNNs (we will
focus on our SNN in Chapter 4) and then we review some hardware-based SNNs in terms
of model complexity versus network size (the selection of the SNN is not exhaustive, but
representative of the different design approaches). Finally, we describe the advantages
and drawbacks for the different SNN hardware approaches while focusing on our choice.

7Details of the model used are present in the work of Belhadj [2010]
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1.5.1 Hardware-based approach for SNN platforms

Hardware approaches have interesting properties in terms of computation time but a
higher development cost and constraints on the computed models. Thus these systems
are generally dedicated to an application. Applications can range from the investigation
of adaptation and plasticity phenomena in networks to experiments on hybrid biologi-
cal/artificial networks. For such systems, designers generally consider simplified neuron
models and balance imprecision by a higher number of neurons in the network [Fieres
et al., 2006; Indiveri et al., 2006]. Another approach is to reduce the number of the
parameters in the system [Farquhar and Hasler, 2005], or to model neurons populations
[Fieres et al., 2006; Indiveri et al., 2006; Renaud et al., 2004]. There are other approaches
that limit synaptic connectivity, while others guarantee an "all-to-all" connection but with
less neurons. Finally, systems differ by their properties in terms of computation time, as
the aim of some systems is to simulate SNNs "as fast as possible" [Indiveri et al., 2006],
and others guarantee a fixed simulation timescale [Bornat et al., 2005; Fieres et al., 2006].
In the next section8, we describe several types of hardware-based SNNs; this review high-
lights the diversity of possible solutions.

1.5.2 A review of hardware-based SNN

In recent years, a few hardware-based SNN systems [Binczak et al., 2006; Glackin et al.,
2005; Graas et al., 2004; Hasler et al., 2007; Indiveri and Fusi, 2007; Liu and Douglas,
2004; Renaud et al., 2007; Schemmel et al., 2008; Sorensen et al., 2004; Vogelstein et al.,
2004], as well as pioneer platforms have been developed [Jung et al., 2001; Le Masson
et al., 2002; Mahowald and Douglas, 1991]. The systems make use of multi-compartmental
models [Hasler et al., 2007], point neuron conductance-based models [Binczak et al., 2006;
Le Masson et al., 2002; Mahowald and Douglas, 1991; Renaud et al., 2010; Sorensen et al.,
2004], or threshold type models [Glackin et al., 2005; Indiveri and Fusi, 2007; Jung et al.,
2001; Liu and Douglas, 2004; Schemmel et al., 2008; Vogelstein et al., 2004], as shown in
Figure 1.9.

Figure 1.9 also shows the diversity of SNN platforms in terms of design. Some plat-
forms can be used for hybrid network experiments [Jung et al., 2001; Le Masson et al.,
2002; Renaud et al., 2010; Sorensen et al., 2004]. Only three platforms are fully digital

8The contents are referenced by the work of [Renaud et al., 2010].
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hardware systems [Glackin et al., 2005; Graas et al., 2004], using FPGAs (Field Pro-
grammable Gate Array) circuits (for large-scale LIF SNNs or small-scale HH SNNs) or
ARM core [Lester and Furber, 2011].

Figure 1.9 – Analog/digital and hardware/software distribution in state-of-the-art SNN
systems; Horizontally: simulation features. Figure inspired by Renaud et al.
[2010].

All of the other solutions rely on analog computation using specifically designed in-
tegrated circuits at the neuron level, even for plasticity. The neurons are organized into
networks of various sizes. A comparison of the SNN hardware platforms, expressed in
terms of model complexity versus network size, is shown in Figure 1.10.

In the end, the architecture of a given SNN platform is the result of a compromise
between computational cost and model complexity (biological plausibility), the latter of
which also constrains the achievable network size (as shown in Figure 1.10). For large-
scale SNNs, LIF neuron models are generally implemented (or the Adaptive-Exponential
Integrate-and-Fire Neuron Model [Millner et al., 2012] in the case of the BrainScales
project), using simple analog cells to simulate a point neuron.

In our case, real-time (electrical time = biological time) and biologically relevant
neuron models make it possible to construct mixed living artificial networks, in which
the silicon neurons are interconnected with the biological cells to form "hybrid networks"
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[Le Masson et al., 2002]. Our SNN is based on the above hardware solution (see Figure
1.9, more details are provided in Chapter 4): it is a mixed hardware/software platform
specifically designed to simulate spiking neural networks using conductance-based analog
silicon neurons (120 neurons) and synaptic connections with STDP rules computed on
FPGA [Belhadj, 2010].

Figure 1.10 – Comparison of SNN hardware platforms, expressed in terms of model com-
plexity versus network size. Figure inspired by Renaud et al. [2010].

In the case of an analog mode implementation, the signals are available as continuous
variables, both in time and value. As a consequence, the simulation timescale can be
precisely determined, for example, in real time or accelerated time. An analog SNN
has two distinct advantages: a higher integration density, since a single wire encodes
one signal (instead of N wires needed to represent a digital signal with N-bits), and a
higher computational power, which is obtained by exploiting the intrinsic computational
features of electronic elements such as transistors. Analog approaches have interesting
properties in terms of computation time but a higher development cost and constraints
on the computed models.

Digital design is characterized by much lower manufacturing costs, and has the advan-
tages of an improved time-to-market performance and straightforward re-configurability.
However, when the system reaches the network level or integrates plasticity rules, digital
hardware is used for connectivity computation and/or control. Event-based protocols
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are used to interface the neurons’ activity (spike events) to the connectivity calculation
element. An increasing number of neuromimetic systems present this type of mixed
Analog/Digital architecture. In the end, the architecture of a given SNN platform is the
result of a compromise between computational cost and model complexity.

1.6 AS2N team: related research projects

The goal of our research team "Architecture of Silicon Neural Networks" is to design and
use integrated circuits (IC) in which the components and architecture are neuromimetic
(i.e. they mimic biological neural systems). This research activity has an interdisci-
plinary orientation. There are both national and international collaborations within the
team which includes neuroscientists as well as computer scientists and physicists. This
section describes the research project related to this research.

FACETS 2005-2009 (European project)
The aim of the FACETS project (Fast Analog Computing with Emergent Transient

States (FP6, 2004-IST-FETPI 15879)) was to address the unsolved question of how the
brain computes based on the concerted work of neuroscientists, computer scientists, engi-
neers and physicists. It combined a substantial fraction of the European groups working in
the field into a consortium of 13 groups from Austria, France, Germany, Hungary, Sweden,
Switzerland and the UK. About 80 scientists joined their efforts over a four year period,
starting in September 2005. The goal of the FACETS project was to create a theoretical
and experimental foundation for the practical realization of novel computing hardware,
which exploits the concepts experimentally observed in biological nervous systems. In
summary, the goals of the project can be formulated as follows:

• To provide biological input data from in-vivo and in-vitro measurements at the
cell and network level, to set-up a large-scale computer data base for neural cell
characterization;

• To use large-scale computer based models to test the concepts and benchmarks
developed in the project, to develop a common data model for neural simulations;

• To build and use very large-scale hardware models based on the above results;

• To evaluate new computing paradigms using the FACETS benchmark for problems
in vision.
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It is rare for a project of this size to be carried out within the context of brain-science
related work in Europe, in particular with such a strong interdisciplinary component.

ECRéN 2009-2011 (National project)
The aim of this project was to investigate the transfer functions of neural networks

with combinatorial methods and Integrated Circuits (IC). The models and synaptic in-
put patterns for neurons included data from in vivo and in vitro biological experiments
provided by Destexhe’s group (UNIC Lab). These models will be implemented in ICs
that are able to generate arbitrary network patterns for a combinatorial exploration in
real time. Then, the transfer function for each network will be computed. This project
will produce a large quantity of data for further sorting and analysis. The analysis, in
collaboration with Destexhe’s group, will try establish general rules for the relationship
between structure and functionality. This first part of the project should result in the
foundation of a database that will be made available to the scientific community. Then,
using the same protocol, this project will be extended to networks with plasticity rules
such as STDP (Spike Timing Dependent Plasticity).

FACETS-ITN 2009-2014 (European project)
FACETS-ITN (FP7-PEOPLE-ITN-2008-237955) is a research and training network

involving partners from 11 universities and research centers, three industrial companies
and one semi-industrial research center from 6 European countries. It combines com-
petencies in neurobiology, computational neuroscience, information science, physics and
electrical engineering. The scientific goal is to experimentally and theoretically explore
the structure and the computational principles of biological neural circuits using in-vitro
and in-vivo neurobiological experiments as well as analytical approaches, model build-
ing and simulation techniques. The concepts of learning and plasticity are of particular
importance. Based on the input from biology and modeling, it is expected that these
principles will be used to prepare the grounds for novel hardware based computing de-
vices. These devices are going to be built in the form of large-scale demonstrators as
part of the research plan. Within the training network, 22 selected Ph.D. students (one
position for this Ph.D. thesis) were integrated into an existing international research envi-
ronment and receive a high level of interdisciplinary training. The training comprises an
intense exchange and visiting program, specific training workshops for all of the scientific
areas covered as well as in non-scientific key competencies (see training experiences in the
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Appendix A.3). Community building among Ph.D. students from different disciplines in-
cludes students from other projects, in particular the current FACETS integrated project
and its planned successor.

As mentioned in the introduction, the main focus of my Ph.D. thesis in the FACETS
project is the emulation of cortical cell types (employing experimental electrophysiological
data of these cells as references), using a specific VLSI neural circuit to simulate the
models studied as references in the FACETS project at the single cell level. The real-time
intrinsic properties of the neural circuits, that precisely compute neuron conductance-
based models, will allow a systematic and detailed exploration of the models, whereas
the physical and analog aspect of the simulations, opposed to a software simulation, will
provide inputs for the development of the neural hardware at the network level. The
second focus is to contribution to the design of a mixed hardware-software platform,
specifically designed for the simulation of spiking neural networks, using conductance-
based models that can be used for hybrid artificial neural networks.

1.7 Conclusion

In this first chapter, we introduced several elementary notions of neuroscience; in partic-
ular, we have seen how "real" neurons are extremely complex biophysical and biochemical
entities. The Hodgkin-Huxley model describes channels and ion current flow. It is the
starting point for detailed neuron models which, in general, include more than three types
of currents. Thus, we described the most successful and widely-used neuron models clas-
sically implemented in hardware simulators and then we explained the choices made by
our team to use the Hodgkin-Huxley formalism to model the electrical activity of neurons.
Finally, after the presentation of the models used for the network level, we reviewed the
hardware simulation platforms for spiking neural networks in terms of model complexity
versus network size, focusing on our SNN hardware approaches, and then we presented
the research activities of our team (AS2N) included the European FACETS-ITN project
that has supported this research. As mentioned, our SNN platform relies on analog hard-
ware to compute neuronal activity. Therefore in the next chapter, we propose a simplified
version of the HH model and the appropriate parameter sets for the FS, RS, IB, and LTS
neurons that can be implemented in our analog neuromimetic chip.



Chapter 2

Cortical neuron models: parameter
extraction for a silicon neuron

As mentioned in the introduction, one of the objectives of this research is the emulation of
the four most prominent biological cells (the FS, RS, IB, and LTS neurons) into an analog
neuromimetic integrated circuit dedicated to cortical neuron simulations. Therefore, the
aim of this chapter is to introduce the methods used to obtain the appropriate param-
eter sets for the neurons that can be implemented into our analog neuromimetic chip.
In section 2.1, we introduce the HH formalism and then the simplified model that was
implemented into the silicon neuron [Bornat, 2006]. Thus, we describe the steps used to
extract the parameters from the HH model to the one implemented in the VLSI neurons.
We use the HH model presented by Hansel et al. [1993] as a reference and we validate the
parameter extraction steps through a bifurcation analysis that shows that the simplified
HH model shares the dynamics of the HH model. Finally, in section 2.4, we describe
the intrinsic electrophysiological properties of the four cortical neurons: the FS, RS, IB,
and LTS neurons. We propose our simplified models for each neuron class, which are
based on the complete HH type models proposed by Pospischil et al. [2008]. The models
contain the minimal set of voltage-dependent currents to account for the experimental
electrophysiological data.

2.1 The Hodgkin-Huxley formalism for the silicon
neuron

The model introduced by Hodgkin and Huxley [1952] incorporated the results of their
voltage-clamp experiments. They used the voltage-clamp technique to record the ionic
currents generated at different voltages and thus infer how these ionic currents can be
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dynamically modulated by voltage. Many different types of voltage-dependent ion chan-
nels have been identified and are responsible for a rich repertoire of electrical behavior
that is essential for neuronal function [Llinás, 1988]. The sensitivity of some ion channels
to voltage is a fundamental property that constitutes the core mechanism underlying the
electrical excitability of membranes, and is still today an important matter of investiga-
tion. This section1 first describes the HH model equations and then the conductance-based
models which can incorporate as many different ion channel types as are known for the
particular cell being modeled. We focus on the types of ionic channels, responsible for
the generation of spikes, for the four cortical neurons: the FS, RS, IB, and LTS neurons.

2.1.1 Hodgkin-Huxley equations

As stated in section 1.2.2, in the equivalent electrical circuit (Figure 2.1) for the Hodgkin-
Huxley model of the squid giant axon, the capacitance2 is used to model the charge storage
capacity in the cell membrane, resistors are used to model the various types of ion chan-
nels embedded in the membrane, and batteries are used to represent the electrochemical
potentials established by differing intra and extracellular ion concentrations.

Figure 2.1 – Equivalent circuit representation of a cell membrane.

The current flowing across the membrane is integrated in the membrane capacitance,
1All of the contents for the section "The Hodgkin-Huxley formalism for the silicon neuron" are refer-

enced from Destexhe and Huguenard [2000], if not specially mentioned.
2The plasma membrane is made up of a molecular lipid bilayer. Inserted in this bilayer, there are

membrane proteins that have the important function of transporting materials across the membrane. The
lipid bilayer acts like an insulator separating two conducting media: the external medium of the axon
and the internal medium or axoplasm. This geometry constitutes an electric capacitor where the two
conducting plates are the ionic media and the membrane is the dielectric (ε). The capacitance (C) of a
capacitor increases with the area (A) of the plates and decreases with the separation between the plates
(d) according to the equation: C=ε·A/d. In the case of the membrane, it is more convenient to define the
capacitance as being independent of the amount of area involved and call it the specific capacitance CM

which is defined as the capacitance per unit area. As the thickness is only 25 A, the specific capacitance
of the membrane is very high, close to 1µF/cm2.



The Hodgkin-Huxley formalism for the silicon neuron 33

according to the expression:

CM
dVM

dt
= −INa− IK − IL , (equation 2.1)

where INa, IK and IL are the sodium, potassium and leakage currents, respectively:
INa = gNa(VM) · (VM−ENa)

IK = gK(VM) · (VM−EK)

IL = gL · (VM−EL) .

(equation 2.2)

The next step is to specify how the conductances gNa(VM ) and gK(VM ) depend on
the membrane potential. Hodgkin and Huxley [1952] hypothesized that ionic currents
result from the assembly of several independent gating particles that must occupy a given
position in the membrane to allow the flow of Na+ or K+ ions. Each gating particle
can be in either side of the membrane and bears a net electronic charge such that the
membrane potential can switch its position from the inside to the outside or vice-versa.
The transition from these two states is therefore voltage-dependent, according to the
diagram:

(outside)
α(VM )
�

β(VM )
(inside) , (equation 2.3)

where α and β are respectively the forward and backward rate constants for the transitions
from the outside to the inside position in the membrane. If x is defined as the fraction of
particles in the inside position, and (1-x) as the fraction outside, one obtains the first-order
kinetic equation:

dx

dt
= (1−x) ·α(VM)−x ·β(VM) . (equation 2.4)

If one assumes that particles must occupy the inside position to conduct ions, then the
conductance must be proportional to some function of x. In the case of the squid giant
axon, Hodgkin and Huxley found that the nonlinear behavior of the Na+ and K+ currents
was best fit by assuming that:

gNa(VM) = ¯gNa ·m3(VM) ·h(VM)

gK(VM) = ḡK ·n4(VM) ,
(equation 2.5)
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where ¯gNa and ḡK are the maximal values of the conductances and m, h, and n represent
the fraction of three different types of gating particles in the inside of the membrane.
The three variables m, h, and n evolve according to the differential equation 2.4. The
assembly of three m-type and one h-type gating particle(s) is required for Na+ ions to flow
through the membrane, while the assembly of four n-type gating particles is necessary for
the flow of K+ ions.

When it was later established that ionic currents are mediated by the opening and
closing of ion channels, the gating particles were reinterpreted as gates inside the pore of
the channel. Thus, the reinterpretation of Hodgkin and Huxley’s hypothesis was that the
pore of the channel is controlled by four gates, that these gates operate independently
of each other, and that all four gates must be open in order for the channel to conduct
ions. The variables m and n are called gating variables for activation, h is called a gating
variable for inactivation.

Taking all of the above steps together, the following set of equations can be written:


CM
dVM

dt
= −gL · (VM−EL)− ¯gNa ·m3(VM) ·h(VM) · (VM−ENa)− ḡK ·n4(VM) · (VM−EK)

dm

dt
= (1−m) ·αm(VM)−m ·βm(VM)

dh

dt
= (1−h) ·αh(VM)−h ·βh(VM)

dn

dt
= (1−n) ·αn(VM)−n ·βn(VM) .

(equation 2.6)
The various functions α and β are empirical functions of VM that have been adjusted by
Hodgkin and Huxley to fit the experimental data.

The Hodgkin-Huxley model is often written in a form that is more convenient to fit
the experimental data by rewriting equation 2.4 in the equivalent form:

dx

dt
= 1
τx(VM) (x∞(VM)−x) , (equation 2.7)

where

x∞(VM) = α(VM)

α(VM) +β(VM)

τx(VM) = 1
α(VM) +β(VM) .

(equation 2.8)
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For a fixed voltage VM, the variable x approaches the value x∞(VM) with a time constant
τx(VM). The Hodgkin-Huxley equations then become:


CM
dVM

dt
= −gL · (VM−EL)− ¯gNa ·m3(VM) ·h(VM) · (VM−ENa)− ḡK ·n4(VM) · (VM−EK)

dm

dt
= 1
τm(VM) (m∞(VM)−m)

dh

dt
= 1
τh(VM) (h∞(VM)−h)

dn

dt
= 1
τn(VM) (n∞(VM)−n) ,

(equation 2.9)
wherem∞(VM) is the steady-state activation and τm(VM) is the activation time constant of
the sodium current, and n∞(VM) and τn(VM) represent the same terms for the potassium
current. In the case of h, h∞(VM) and τh(VM) are the steady-state inactivation and the
inactivation time constant of the sodium current, respectively.

2.1.2 Conductance-based neuron model

Conductance-based models (also called the Hodgkin-Huxley formalism) are based on an
equivalent circuit representation of a cell membrane as first put forth by Hodgkin and
Huxley [1952]. Conductance-based models are the simplest possible biophysical represen-
tation of an excitable cell, such as a neuron, in which its protein molecule ion channels
are represented by conductances and its lipid bilayer by a capacitor.

We already know that many different types of voltage-dependent ion channels have
been identified, thus the standard formulation for a conductance-based model is given as:

CM
dVM

dt
= −

∑
Iion+ IS , (equation 2.10)

where VM is the membrane potential, CM is the membrane capacitance, and IS is a stimu-
lation or synaptic current. Iion is the current for a given channel type and its associated
equation is:

Iion = gion ·ap(VM) · bq(VM) · (VM−Eion) , (equation 2.11)

where gion is the maximum conductance, Eion is the ion-specific reverse potential, p and
q are integers, and a and b represent the activation and inactivation terms, respectively.
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They are dynamic functions which describe the permeability of membrane channels to its
specific ion that are described by the equations:


da

dt
= 1
τa(VM) (a∞(VM)−a)

db

dt
= 1
τb(VM) (b∞(VM)− b) ,

(equation 2.12)

where τa and τb are the convergence time constants which are dependent on the membrane
voltage VM. According to the first-order differential equation 2.12, a and b relax back
towards their associated steady-state values a∞ and b∞ which are sigmoidal functions of
VM: 

a∞(VM) = 1

1 + exp

(
−VM−Voffset,a

Vslope,a

)

b∞(VM) = 1

1 + exp

(
VM−Voffset,b

Vslope,b

) .
(equation 2.13)

In equation 2.13, Vslope and Voffset are respectively the slope and a translational offset
of the sigmoid function. The values of these terms are directly observable using voltage-
clamp experiments and, as it is common for HH variables [Hille, 1991], the steady-state
curve is given by a sigmoidal function and the time constant curve is given by a bell-shaped
function as shown in Figure 2.2.

Figure 2.2 – Steady-state and time constant curves for the three variables m, n, h in the
HH model.

The data presented in Figure 2.2 are extracted from the HH model presented by
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Hansel et al. [1993]. Note that the steady-state variable for an activation variable is a
monotonically increasing function of voltage, while steady-state inactivation variables are
a monotonically decreasing function of voltage.

Thus, conductance-based models consist of a set of ordinary differential equations
(ODEs), as derived from current flow in a circuit representation following Kirchoff’s laws.
The number of differential equations in the set of model equations depends on the num-
ber of different ion channel types being represented with their particular activation and
inactivation gating variables. This is illustrated in Figure 2.3. The voltage dependence
or non-constant nature of the conductance of ion channels is captured using "activation"
and "inactivation" gating variables which are described using first-order kinetics. This is
represented with an arrow across the resistor in the schematic representation provided in
Figure 2.3.

Figure 2.3 – Conductance based model: equivalent circuit representation of a cell mem-
brane.

The HH model describes the sodium, potassium and leakage currents, with p = 3 and
q = 1; p = 4 and q = 0; p = 0 and q = 0 respectively, in equation 2.11. These channels are
responsible for action potential generation. A model based on these three conductances
reproduces well the intrinsic firing characteristics of FS cells of the ferret visual cortex in
vitro [Pospischil et al., 2008]. Although the voltage-gated Na+ and K+ channels in the
squid axon described by Hodgkin and Huxley have been found in almost every type of
neuron examined, several other kinds of channels have also been identified. For example,
most neurons contain voltage-gated Ca2+ channels that open in response to membrane
depolarization. A strong electrochemical gradient drives Ca2+ into the cell and thus these
channels give rise to an inward ICa [Kandel et al., 2000].

Therefore, for more complex activity patterns, additional channels such as slow potas-
sium currents (IM ) for spike-frequency adaptation (RS cells: INa, IK , IL and IM ), L-Type
calcium currents for bursting (IB cells: INa, IK , IL, IM and ICa(L)) and T-type calcium
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currents (LTS cells: INa, IK , IL, IM and ICa(T )) have to be taken into account [Pospis-
chil et al., 2008]. Although these HH type models sometimes exhibit much more complex
dynamics than the original HH model, they share common nonlinear characteristics and
dynamics with the HH in many aspects.

Slow potassium current for spike-frequency adaptation
Spike-frequency adaptation is a widespread neurobiological phenomenon that is exhib-

ited by almost any type of neuron that generates action potentials and which may play an
important role in neural information processing. Within the large variety of mechanisms
responsible for spike-frequency adaptation, ionic currents that influence spike generation
are of particular importance. A slow non-inactivating K+ current was described by Ya-
mada et al. [1989]:

IM = ¯gM ·p(VM) · (VM−EK), (equation 2.14)

where ¯gM denotes the maximum conductance and EK is the reversal potential. M-type
currents are mainly activated during a spike. Between spikes, they deactivate slowly
as determined by their time constant. The activation of M-type currents causes spike-
frequency adaptation, since as potassium currents they decrease the sensitivity of the
spike generator to input currents.

L-type calcium current
The L-type calcium channel is a type of voltage-dependent calcium channel ("L" stands

for long-lasting, referring to the length of activation). A type of bursting was modeled by
the high-threshold Ca2+ current, which was described by Reuveni et al. [1993]:

ICa(L) = ¯gCa(L) · q2(VM) · r(VM) · (VM−ECa), (equation 2.15)

where ¯gCa(L) is the maximum conductance of the L-type Ca2+ calcium current, and ECa

is the reversal potential.

T-type calcium current
The T-type Ca2+ calcium current (also called a low-threshold Ca2+ current) is respon-

sible for the generation of bursts of action potentials in many cell types, such as thalamic
neurons (Jahnsen, 1984). The T-type Ca2+ current has activation (s) and inactivation
(u) characteristics similar to the fast Na+ current but is slower, and its voltage range for
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activation and inactivation typically occurs around resting potential. The low-threshold
Ca2+ current is given by:

ICa(T ) = ¯gCa(T ) · s2
∞(VM) ·u(VM) · (VM−ECa), (equation 2.16)

where ¯gCa(T ) is the maximal conductance of the T-type Ca2+ calcium current, and ECa

is the reversal potential. Note that the activation variable s is considered here at steady-
state because activation is fast compared to inactivation. This T-type Ca2+ current model
was also used with an independent activation variable, but produced very similar results
to the model with activation at steady-state [Destexhe et al., 1998b].

2.2 Parameter extraction for the model implemented
in the VLSI neuron

In a previous work, our team designed several neuromimetic chips, including the Galway
chip [Bornat, 2006] that we used for this thesis. The Galway chip includes analog operators
to compute the Hodgkin-Huxley formalism and multi-synapses to build a neural network.
This section first describes the model implemented in the Galway chip and then the steps
used to extract the parameter for the chip. We use the HH model presented by Hansel
et al. [1993] as a reference.

2.2.1 The model implemented in the VLSI neuron

Our analog IC was optimized to reproduce a large variety of neuron behaviors using
tunable parameters. The Galway chip includes five channel types: leakage, sodium,
potassium, slow potassium, and calcium. By combining these channels, we can model
a large variety of neurons.

Figure 2.4 shows the block diagram of the ionic current generator (which implements
equation 2.11 except for the dynamic of the time constant that is fixed), where each
block corresponds to a subcircuit performing the indicated operation and parameterized
by tunable parameters representing the conductance model parameters. The choice of the
fixed time constant in the VLSI implementation has been made to reduce the silicon area
required by the neuron implementation in the chip. Consequently, the only difference
between the VLSI model and the conductance-based model is the approximation used for
the dynamic of the gating variable.
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Figure 2.4 – Block diagram of the ionic current generator [Saïghi et al., 2011].

2.2.2 Parameter extraction technique

As our goal is to reproduce the behavior of biological neurons, we need the parameters for
the simplified model implemented in the VLSI neuron. These parameters values, which
are adapted to be implemented in the VLSI neuron, are obtained through the following
three steps:

1. calculating αx(VM) and βx(VM) over the range VM = [-100, 100] mV. The x subscript
represents the activation or inactivation term,

2. identifying the Voffset,x and Vslope,x terms in the sigmoid function, which is equal
to x∞(VM) = αx(VM)/(αx(VM) + βx(VM)),

3. in addition, τx is calculated from τx(VM) = 1/(αx(VM) + βx(VM)) at VM about -70 mV
(resting potential). Empirically, the choice to calculate τx at the resting potential
is due to the fact that we focus on action potential generation. However, we see
in the next section (2.3) how this approximation changes the complete dynamics of
the systems through the bifurcation analysis.

The parameter values and the empirical functions α and β extracted from the HH model
[Hansel et al., 1993] are summarized below. The HH model contained INa, IK and IL with
the kinetics described in equation 2.17 and equation 2.18 for the sodium and potassium
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current, respectively:

αm(VM) = 0.1 · (VM + 40)
1− exp[−(VM + 40)/10]

βm(VM) = 4 · exp[−(VM + 65)/18]

αh(VM) = 0.07 · exp[−(VM + 65)/20]

βh(VM) = 1
exp[−(VM + 35)/10] ,

(equation 2.17)


αn(VM) = 0.01 · (VM + 55)

1− exp[−(VM + 55)/10]
βn(VM) = 0.125 · exp[−(VM + 65)/80] .

(equation 2.18)

The model parameters are: ḡK = 36 mS/cm2, ¯gNa = 120 mS/cm2, ḡL = 0.3 mS/cm2,
EK = -77 mV, ENa = 50 mV, EL = -54.4 mV and CM = 1µF/cm2.

On the other end, the parameter values adapted (using the former approximation) to
be implemented in the VLSI are summarized in Table 2.1. The specific capacitance of the
membrane is CM = 1µF/cm2.

Table 2.1 – Parameters of the simplified HH biological neuron model.

Sodium Potassium Leak
Eion (mV ) 50 -77 -54.4

gion (mS/cm2) 120 36 0.3
Vslope,act (mV ) -39.6 -52.4
Voffset,act (mV ) 9 16.2

τact (ms) 0.065 1
Vslope,inact (mV ) -62.2
Voffset,inact (mV ) 6.9

τinact (ms) 1.3

To validate our approximation, we first compare the voltage membrane simulations
between the Hodgkin and Huxley model presented by Hansel et al. [1993] and the sim-
plified HH model using the former approximation (Figure 2.5). We chose a simulation
time of 200 ms and a stimulation current of 0.4 nA. In Figure 2.5, we can observe that
the model implemented in the VLSI neuron has a good dynamic compared to the HH
model in terms of frequency, voltage range and behavior of the neuron spike. The main
difference between both lies in the waveform of the membrane voltage. Even though its
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dynamic is similar, apart from the action potential, the width of the spike is larger for
the simplified HH model.

Figure 2.5 – Membrane voltage software simulations: comparison between the HH model
and the simplified HH model implemented in the VLSI neuron.

Thus, how does this approximation changes the complete dynamics of the original
HH model? We can use the bifurcation analysis to provide an answer to this question.
Bifurcation analysis is useful because it is believed that the computational properties of
neurons are based on the bifurcations exhibited by these dynamical systems in response
to some changing stimulus as shown by Izhikevich [2000] and by Rinzel and Ermentrout
[1989].

These artificial systems would be useful to neuroscientists for exploring neural com-
putation. Hence, by showing that the silicon neuron model has similar bifurcations to a
certain class of biological neurons, we can claim that the silicon neuron can also perform
similar computations.

2.3 Bifurcation analysis

All of the contents for the bifurcation analysis are referenced from Izhikevich [2000], where
the bifurcation mechanisms involved in the generation of action potentials by neurons are
reviewed. Hodgkin [1948] primarily classified biological neurons into two classes according
to their response properties to a sustained current stimulus: the cells show either class-
1 or class-2 excitability. We only consider codimension-one bifurcations: Saddle-node
bifurcations and Hopf bifurcations, the bifurcations involved in the cells of class-1 and
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class-2 excitability (described below). The aim of this section is to introduce the notions
of bifurcation analysis and then, through this analysis, to compare the complete dynamics
of the original HH model and our simplified model.

We know that a neuron is quiescent if its membrane potential is at rest or it exhibits
small-amplitude ("subthreshold") oscillations. In dynamical system terminology, this cor-
responds to the system residing at an equilibrium state3 or a small amplitude limit cycle
attractor4, respectively.

Consider an autonomous system of ordinary differential equations (ODEs):

ẋ= f(x,λ), x ∈ <n, λ ∈ <p (equation 2.19)

where f is smooth. A bifurcation occurs at parameter λ = λ0 if there are parameter λ1

values arbitrarily close to λ0 with dynamics that are topologically inequivalent from those
at λ0. Thus, a bifurcation of a dynamical system is a qualitative change in its dynamics
produced by varying parameters. For example, the number or stability of equilibria or
periodic orbits of f may change with perturbations of λ from λ0. Each bifurcation type or
singularity is given by a name; for example, an Andronov-Hopf bifurcation. No distinction
has been made in the literature between "bifurcation" and "bifurcation type"; both are

3An equilibrium (or equilibrium point) of a dynamical system generated by an autonomous system of
ordinary differential equations (ODEs) is a solution that does not change with time. More precisely, the
ODE:

ẋ = f(x),

has an equilibrium solution x(t)= xe , if f(xe)= 0. Equilibrum points are sometimes called fixed points
or steady states. The stability of typical equilibria of smooth ODEs is determined by the sign of the
real part of the eigenvalues (any number such that a given square matrix minus that number times the
identity matrix has a zero determinant) of the Jacobian matrix. These eigenvalues are often referred to
as the "eigenvalues of the equilibrium". The Jacobian matrix of a system of smooth ODEs is the matrix
of the partial derivatives of the right-hand side with respect to state variables where all derivatives are
evaluated at the equilibrium point x= xe . Its eigenvalues determine linear stability properties of the
equilibrium. An equilibrium is asymptotically stable if all of the eigenvalues have negative real parts; it
is unstable if at least one eigenvalue has a positive real part.

4Consider a two-dimensional (planar) system with smooth right-hand side:{
ẋ1 = f1(x1,x2)
ẋ2 = f2(x1,x2) .

A differential equation system has a limit cycle, if for a set of initial conditions, x1(t0)= x10 and
x2(t0)= x20, the solution functions, x1(t) and x2(t), describe an isolated, closed trajectory ("isolated"
means that neighboring trajectories are not closed). Like fixed points, limit cycles are attracting or re-
pelling. A stable limit cycle is one which attracts all neighboring trajectories. A system with a stable
limit cycle can exhibit self-sustained oscillations; most of the biological processes of interest are of this
kind. Neighboring trajectories are repelled from unstable limit cycles.
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called "bifurcations". The codimension of a bifurcation is the number of parameters which
must be varied for the bifurcation to occur.

2.3.1 Codimension-one bifurcations

Saddle-node bifurcations
In the mathematical area of bifurcation theory, a saddle-node bifurcation or fold bi-

furcation is a local bifurcation in which two fixed points (or equilibria) of a dynamical
system collide and annihilate each other. In systems generated by autonomous ODEs,
this occurs when the critical equilibrium has one zero eigenvalue5. The term "saddle-node
bifurcation" is most often used in reference to continuous dynamical systems. In discrete
dynamical systems, the same bifurcation is often instead called a fold bifurcation.

Hopf bifurcations
The Hopf bifurcation theory, as shown by Hassard et al. [1981], asserts that if a

parameterized system possesses an equilibrium point and two of the eigenvalues of the
Jacobian matrix of the system linearized6 around the equilibrium point are conjugate
pure imaginary numbers and the others have negative real parts, one of the following
bifurcations takes place as the parameter changes:

• A bifurcation from a stable equilibrium point to an unstable equilibrium point with
a stable limit cycle around it; or a bifurcation with the opposite direction. We refer
to this bifurcation as supercritical;

• A bifurcation from an unstable equilibrium point to a stable equilibrium point with
an unstable limit cycle around it; or a bifurcation with the opposite direction. We
refer to this bifurcation as subcritical.

2.3.2 Class 1 and 2 - Neural Excitability

A neuron is said to be excitable if a small perturbation away from a quiescent state can
result in a large excursion of its potential before returning to quiescence.

5In the n-dimensional case with n ≥ 2 , the Jacobian matrix at the saddle-node bifurcation has: (1)
a simple zero eigenvalue λ1 = 0, (2) ns eigenvalues with Re λj < 0, and (3) nu eigenvalues with Re
λj > 0, with ns + nu + 1 = n.

6In mathematics and its applications, linearization refers to finding the linear approximation to a
function at a given point. In the study of dynamical systems, linearization is a method for assessing the
local stability of an equilibrium point of a system of nonlinear differential equations or discrete dynamical
systems.
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Hodgkin [1948] primarily classified biological neurons into two classes according to
their response properties to a sustained current stimulus. The cells that show Class
1 neural excitability can fire with an arbitrarily low frequency by applying a current
sufficiently close-to-threshold. The frequency increases monotonically as the current in-
creases. The cells that show Class 2 neural excitability transition from silence to firing at
an arbitrary nonzero frequency. The qualitative distinction between Class 1 and Class 2
excitable neurons is that the emerging oscillations have zero frequency in the former and
nonzero frequency in the latter. This reflects different underlying bifurcation mechanisms.
Furthermore, when the current increases, the rest potential increases until a bifurcation
occurs, resulting in a loss of stability or the disappearance of the rest potential, and
the neuron activity becomes oscillatory. The bifurcation resulting in transition from a
quiescent to an oscillatory state determines the class of neural excitability:

• The characteristic of Class 1 can be associated with a saddle-node bifurcation at
the transition from silence to spiking;

• Class 2 excitability is observed when the resting state loses its stability via a Hopf
bifurcation.

The HH model belongs to Class 2. Its dynamical properties with a constant stimulus have
been studied extensively by Hassard [1978] and Hassard et al. [1981], who have shown
that the Class 2 neural excitability of the HH model is generated by Hopf bifurcations.

2.3.3 Numerical methods for the bifurcation analysis

One of the principal uses of the bifurcation theory is to analyze the bifurcations that occur
in specific families of dynamical systems. Through the use of numerical methods, many
problems can be solved that would otherwise be thought to be insolvable. Several soft-
ware packages (AUTO, CONTENT, MATCONT, XPPAUT, PyDSTool) can implement
algorithms that perform bifurcation analyses.

To validate our approximation, we used continuation of solutions in AUTO, an open
source mathematical package that can produce bifurcation curves for equilibria as well as
for periodic orbits, to get the complete bifurcation diagram of the system. We compare
the simulations between the HH-based model (data presented by Hansel et al. [1993]) and
our simplified HH model (see Table 2.1).
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Figure 2.6 shows the resulting bifurcation diagram of our simplified HH model where
solid thick and solid thin curves represent stable and unstable equilibria, respectively,
while solid and dashed circles denote stable and unstable limit cycles.

Figure 2.6 – Bifurcation diagram for our simplified model.

It can be seen in Figure 2.6 that the limit cycles are born initially through a fold
bifurcation of limit cycles. Both of the Hopf bifurcations are subcritical as they involve
an unstable limit cycle. The system state jumps to the stable limit cycle when the
stimulus current exceeds the Hopf bifurcation point. The amplitude of the stable limit
cycle continues to reduce until it coalesces with the unstable limit cycle in another fold
bifurcation. The resting state loses stability via the subcritical Hopf bifurcation at the
first HB point in Figure 2.6. At the second HB point in Figure 2.6, a stable and an
unstable limit cycle arise via the fold bifurcation. The bifurcation diagram in Figure 2.6
illustrates how the repetitive firing emerges when we apply a sustained stimulus current.
The stable limit cycle corresponds to repetitive firing.

In order to compare this with the HH model, its bifurcation is also shown in Figure
2.7. The Hopf bifurcation for a smaller current is subcritical. The limit cycle appears by
a fold bifurcation and disappears by a supercritical Hopf bifurcation. The reduction in
amplitude before the subcritical Hopf bifurcation is similar to the one shown in Figure
2.6. It can be seen in Figure 2.7 that the limit cycle arises from a fold bifurcation but
terminates in a supercritical Hopf bifurcation.
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The qualitative nature of the plots (Figures 2.6 and 2.7) is similar as the reduction in
amplitude of the limit cycle before its disappearance is present in both figures.

Figure 2.7 – Bifurcation diagram for the HH model.

We see through the bifurcation analysis [Grassia et al., 2012] that the simplified HH
model (implemented in the Galway chip) shares the dynamics of the HH model in a
biologically meaningful range of stimulus current7 extracted from the work presented by
Pospischil et al. [2008]. Hence, we can use this approximation while keeping the nonlinear
dynamical characteristics of the original model. In the next section, we use minimal
Hodgkin-Huxley type models for the different classes of cortical and thalamic neurons
presented by Pospischil et al. [2008] to extract the parameters for our VLSI neuron directly
from biological data.

2.4 Minimal Hodgkin-Huxley type models for corti-
cal neurons

In this section, we describe the intrinsic electrophysiological properties of the four cor-
tical neurons ("fast-spiking", "regular-spiking", "intrinsically bursting" and "low-threshold
spike" cells) that we want to emulate in the silicon neuron. For each class, we propose our

7The maximum stimulation current for cells that we want to emulate is 20 µA/cm2.
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simplified models taking into account the complete HH type models proposed by Pospis-
chil et al. [2008] who reviewed8 the development of Hodgkin-Huxley (HH) type models
of cerebral cortex and thalamic neurons for network simulations. The models contain
the minimal set of voltage-dependent currents to account for the experimental electro-
physiological data. The intrinsic electrophysiological properties of cortical neurons were
analyzed from several preparations, and these authors selected the four most prominent
electrophysiological classes of neurons present in the neocortex and thalamus, inspired
from Connors and Gutnick’s classification (1990):

1. Fast-spiking (FS),
2. Regular-spiking (RS),
3. Intrinsically bursting (IB),
4. Low-threshold spike (LTS).

The latter class of neurons can also be used to model thalamic neurons, and the RS
class is also used to model inhibitory cells with adaptation. This subdivision classifies
cells based on three qualitative criteria:

1. the presence or absence of spike-frequency adaptation;
2. the presence or absence of burst discharges from depolarizing stimuli;
3. the presence or absence of burst (or any other type of) discharge following hyper-

polarizing inputs (rebound response).

For each cell class, they proposed HH type models that capture the diversity of the
intrinsic properties found across different cells and across different preparations. The
models contain the minimal set of voltage-dependent currents to account for the data. To
obtain models that are as generic as possible, they used data from different preparations
in vivo and in vitro9.

All of the models used here for the cortical neuron models are single-compartment
neurons (cylinder of diameter d and length L) described by the following membrane
equation:

CM
dVM

dt
= −INa− IK − IL− IM − ICa(T )− ICa(L) , (equation 2.20)

8All of the contents for minimal Hodgkin-Huxley type models for cortical neurons are referenced from
Pospischil’s work, if not specially mentioned.

9In biology, in vivo is often used to refer to experimentation done in live isolated cells rather than in
a whole organism; for example, cultured cells derived from biopsies. In this situation, the more specific
term is ex vivo. Once cells are disrupted and individual parts are tested or analyzed, this is known as in
vitro.
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where VM is the membrane potential, CM = 1 µ F/cm2 is the specific capacitance of the
membrane, INa and IK are the sodium and potassium currents responsible for action
potentials, IL is the leak current10, IM is a slow voltage-dependent potassium current
responsible for spike-frequency adaptation, ICa(L) is a high-threshold calcium current and
ICa(T ) is a low-threshold calcium current.

2.4.1 Fast-spiking neurons

One of the major cell classes in the cerebral cortex is the "fast-spiking" (FS) neuron,
which corresponds to inhibitory neurons. FS cells respond to depolarizing pulses by
producing high frequency trains of action potentials without adaptation. FS cells are also
the simplest kind of model as only the conductances for generating spikes are needed.
This model contained only INa, IK and IL with the kinetics described in equation 2.21
and equation 2.22 for the sodium and potassium current, respectively (α and β functions
with VT = -55 mV):



αm(VM) = −0.32 · (VM−VT−13)
exp[−(VM−VT−13)/4]−1

βm(VM) = 0.28 · (VM−VT−40)
exp[(VM−VT−40)/5]−1

αh(VM) = 0.128 · exp[−(VM−VT−17)/18]

βh(VM) = 1
1 + exp[−(VM−VT−40)/5] ,

(equation 2.21)


αn(VM) = −0.032 · (VM−VT−15)

exp[−(VM−VT−15)/5]−1
βn(VM) = 0.5 · exp[−(VM−VT−10)/40] .

(equation 2.22)

The model parameters are: ḡK = 10 mS/cm2, ¯gNa = 50 mS/cm2, ḡL = 0.15 mS/cm2,
EK = -90 mV, ENa = 50 mV, EL = -70 mV, Area = 1.4 · 10−4cm2, and CM = 1µF/cm2.

Our goal is to reproduce the behavior of biological neurons; therefore, as described in
section 2.2, we need the parameters for the simplified model implemented in the VLSI
neuron (the VLSI model has similar dynamics to those in the HH model, as shown by
the bifurcation analysis). Thus, following the steps explained in section 2.2.2, the only

10IL=gL·(VM-EL), where gL is the resting (leak) membrane conductance, and EL is its reversal poten-
tial. These parameters are related to the input resistance RL, which is normally measured experimentally.
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difference between the VLSI FS model and the biological FS model is the approximation
used for the gating variable. The parameter values that were adapted in order to be
implemented in the VLSI neuron are summarized in Table 2.2.

Table 2.2 – Parameters of the simplified biological FS neuron model.

Sodium Potassium Leak
Eion (mV ) 50 -90 -70

gion (mS/cm2) 50 10 0.15
Vslope,act (mV ) 6.54 8.05
Voffset,act (mV ) -29.08 -29.08

τact (ms) 0.065 1.066
Vslope,inact (mV ) 3.98
Voffset,inact (mV ) -33-31

τinact (ms) 1.315

The software simulations of the FS model and the simplified FS model implemented
in the VLSI neuron are shown in Figure 2.8.

Figure 2.8 – Membrane voltage software simulations: comparison between the HH model
and the simplified HH model implemented in the VLSI neuron; response to
a depolarizing current in a fast-spiking neuron model.

In Figure 2.8, we observe that the dynamics of the simplified FS model are comparable
to the FS (HH) model in terms of frequency and voltage range. The main difference
between the two models lies in the waveform of the membrane voltage. Even though its
dynamic is similar, apart from the action potential, the width of the spike is larger for the
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simplified HH model. This difference appears (see the next sections) for all four cases (FS,
RS, IB and LTS) because we use similar values for the sodium and potassium channels,
which generate the action potential and its shape.

2.4.2 Regular-spiking neurons

Another common cell class in the neocortex is called the Regular-Spiking (RS) neuron,
which is, in general, excitatory. The typical responses of the RS cells to the depolarizing
current pulses are spike trains with adaptation. The simplest model for RS cells consists
of conductances for generating spikes (INa, IK , IL; [Traub and Miles, 1991]) as well as a
slow potassium current IM , activated by depolarization [Yamada et al., 1989].

This model contained INa, IK , IL, and IM simulated by the Hodgkin-Huxley kinetics
described in equation 2.21, equation 2.22 and equation 2.23 (α and β functions with
VT=-55 mV):


p∞(VM) = 1

1 + exp[−(VM + 35)/10]
τp(VM) = τmax

3.3 · exp[(VM + 35)/20] + exp[−(VM + 35)/20] .
(equation 2.23)

The model parameters are: ḡK = 5 mS/cm2, ¯gNa = 50 mS/cm2, ḡL = 0.1 mS/cm2, ¯gM
= 0.07 mS/cm2, EK = -90 mV, ENa = 50 mV, EL = -70 mV, Area = 2.9 · 10−4 cm2,
τmax = 1000 ms and CM = 1µF/cm2.

The parameter values that were adapted (using the former approximation as explained
in section 2.2.2) in order to be implemented in the VLSI neuron are summarized in Table
2.3.

Table 2.3 – Parameters of the simplified biological RS neuron model.

Sodium Potassium Leak Slow K
Eion (mV ) 50 -90 -70 -90

gion (mS/cm2) 50 5 0.1 0.07
Vslope,act (mV ) 6.54 8.05 10
Voffset,act (mV ) -29.08 -29.08 -35

τact (ms) 0.065 1.066 100
Vslope,inact (mV ) 3.98
Voffset,inact (mV ) -33.31

τinact (ms) 1.315
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Figure 2.9 shows the software simulations of the RS model and the simplified RS model
implemented in the VLSI neuron. The instantaneous frequencies at the beginning are not
the same even though the frequencies are identical after the adaptation.

Figure 2.9 – Membrane voltage software simulations: comparison between the HH model
and the simplified HH model implemented in the VLSI neuron; response to
a depolarizing current in a model of a regular-spiking neuron.

Moreover, we observe a difference for the adaptation time constant even though there
is the same number of spikes. This phenomenon is clearly due to the approximation of the
adaptation time constant. We have chosen to work in steady-state conditions, which is
justified mainly because cortical neurons in vivo operate in states of intense and sustained
firing activity [Destexhe et al., 2003], in which case, the adaptation mechanisms are ex-
pected to be at steady-state most of the time. Considering that the most important aspect
is to obtain the same frequency after the adaptation period, then this approximation is
relevant.

2.4.3 Intrinsically Bursting Neurons

Another very common cell class is the Intrinsically Bursting (IB) neuron. The IB cells
represent only a few percent of the recorded cells in the primary sensory cortex, both
in vivo and in vitro. This kind of neuron generates bursts of action potentials following
depolarizing stimuli and then the firing rate suddenly decreases. To generate the bursting
behavior, is necessary to extend the previous RS cell model by adding the L-type calcium
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current. This model contained INa, IK , IL, IM , and ICa(L) simulated by the Hodgkin-
Huxley kinetics described in equation 2.21, equation 2.22, equation 2.23 and equation
2.24 (α and β functions with VT = -55 mV):



αq(VM) = 0.055 · (−27−VM)
exp[(−27−VM)/3.8]−1

βq(VM) = 0.94 · exp[(−75−VM)/17]

αr(VM) = 0.000457 · exp[(−13−VM)/50]

βr(VM) = 0.0065
exp[(−15−VM)/28] + 1 .

(equation 2.24)

The model parameters are: ḡK = 5 mS/cm2, ¯gNa = 50 mS/cm2, ḡL = 0.01 mS/cm2, ¯gM
= 0.03 mS/cm2, ¯gCa(L) = 0.32 mS/cm2, EK = -90 mV, ENa = 50 mV, EL = -85 mV,
ECa = 120 mV, Area = 2.9 · 10−4 cm2, τmax = 1000 ms and CM = 1µF/cm2.

The parameter values that were adapted (using the former approximation as explained
in section 2.2.2) in order to be implemented in the VLSI neuron are summarized in Table
2.4.

Table 2.4 – Parameters of the simplified biological IB neuron model.

Sodium Potassium Leak Slow K Calcium L
Eion (mV ) 50 -90 -85 -90 120

gion (mS/cm2) 50 5 0.01 0.05 0.32
Vslope,act (mV ) 6.54 8.05 10 4.20
Voffset,act (mV ) -29.08 -29.08 -35 -33

τact (ms) 0.065 1.066 100 1.422
Vslope,inact (mV ) 3.98 22.07
Voffset,inact (mV ) -33.31 -57.51

τinact (ms) 1.315 448.7

The software simulations of the IB model and simplified IB model implemented in the
VLSI neuron are shown in Figure 2.10. The IB model (solid line in Figure 2.10) reproduces
the typical firing characteristics of IB cells as recorded in somatosensory cortex in vitro
[Pospischil et al., 2008]. This model generated an initial burst followed by an adapting
train of action potentials. In Figure 2.10, the simplified IB model is also shown (dotted
line). The same observations as for the RS neuron can be made for the comparison
between the IB model and the simplified IB model (Figure 2.10).
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Figure 2.10 – Membrane voltage software simulations: comparison between the HH model
and simplified HH model implemented in the VLSI neuron; response to a
depolarizing current (0.15 nA) in a model of an intrinsically bursting neuron.

The initial frequencies are similar, while the final frequencies are identical. For both
traces, there is the same number of spikes. As with the RS neuron, our approximation is
validated.

2.4.4 Low-Threshold Spiking Neurons

In Destexhe [2001], the activities of Low-Threshold Spiking (LTS) neurons are described in
a significant fraction (about 10%) of intracellularly recorded cells in cat association cortex
in vivo. These LTS neurons generate adapting trains of action potentials in response
to a depolarizing current injection, similar to the classic "regular-spiking" response of
cortical neurons. In addition, they generate a burst of action potentials in response to
an injection of hyperpolarizing current pulses. This property was also identified in deep
layers of guinea-pig cerebral cortex in vitro [De la Peña and Geijo-Barrientos, 1996] and
was shown to be due to the presence of the T-type (low-threshold) calcium current. In this
case, we extended the previous model of the RS cell by adding the T-type calcium current.
Like for IB neurons, biological recordings obtained from the LTS neuron are rare. This
model contained INa, IK , IL, IM , and ICa(T ) simulated by the Hodgkin-Huxley kinetics
described in equation 2.21, equation 2.22, equation 2.23 and equation 2.25 (α and β
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functions with VT = -55 mV):


s∞(VM) = 1
1 + exp[−VM +Vx+ 57)/6.2]

u∞(VM) = 1
1 + exp[(VM +Vx+ 81)/4]

τu(VM) = 30.8 + (211.4 + exp[(VM +Vx+ 113.2)/5])
3.7 · (1 + exp[(VM +Vx+ 84)/3.2]) .

(equation 2.25)

The model parameters are: ḡK = 5 mS/cm2, ¯gNa = 50 mS/cm2, ḡL = 0.01 mS/cm2, ¯gM
= 0.03 mS/cm2, ¯gCa(T ) = 1.4 mS/cm2, EK = -90 mV, ENa = 50 mV, EL = -85 mV, ECa
= 120 mV, Area = 2.9 · 10−4 cm2, τmax = 1000 ms and CM = 1µF/cm2.

The parameter values that were adapted (using the former approximation as explained
in section 2.2.2) in order to be implemented in the VLSI neuron are summarized in Table
2.5.

Table 2.5 – Parameters of the simplified biological LTS neuron model.

Sodium Potassium Leak Slow K Calcium L
Eion (mV ) 50 -90 -85 -90 120

gion (mS/cm2) 50 5 0.01 0.03 1.13
Vslope,act (mV ) 6.54 8.05 10 6.20
Voffset,act (mV ) -29.08 -29.08 -35 -59

τact (ms) 0.065 1.066 100
Vslope,inact (mV ) 3.98 4
Voffset,inact (mV ) -33.31 -83

τinact (ms) 1.315 21

The software simulations of the LTS model and the simplified LTS model implemented
in the VLSI neuron are shown in Figure 2.11. The LTS model (solid line) reproduces the
typical firing characteristics of LTS cells as recorded in somatosensory cortex in vitro
[Pospischil et al., 2008]. In Figure 2.11, we observe a comparison between the LTS model
and the simplified LTS model of neuron response to a hyperpolarizing current. Even
though the overall behaviors are similar, we note that the time when the spike occurs
is different. We manually tried different values for the calcium current time constant
(Table 2.5) and we chose the most acceptable. In the case of the comparison between the
membrane voltage dynamics, the approximations of the time constants have an effect on
the spike shape and/or on the spike frequency.
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Figure 2.11 – Membrane voltage software simulations: comparison between the HH model
and the simplified HH model implemented in the VLSI neuron; response to
a hyperpolarizing current (-0.04 nA) in a model of a low-threshold spiking
neuron.

We expected these differences; however, as explained above, we compare the HH model
and the simplified model with the software simulations to check if these approximations
are suitable. On the other hand, the validation of the neuromimetic IC tuning will be done
through the comparison of the IC measurements with the electrophysiological recordings
because we want to emulate biological neurons with our neuromimetic chip in order to
build a bio-artificial network that operates in real time.

With regards to the validation of the neuromimetic IC tuning, the tuning of conductance-
based analog neuromimetic chips has already been investigated by several researchers
[Rasche and Douglas, 2000; Shin and Koch, 1999; Simoni et al., 2004; Yu and Cauwen-
berghs, 2010]. However, none of these authors compared their results with biological
data. Simoni et al. [2004] and Yu and Cauwenberghs [2010] validated the tuning primar-
ily using the internal variables of the model, which are not usually recorded in biological
cells. Rasche and Douglas [2000] and Shin and Koch [1999] focused on the control of
the firing rate versus stimulation. This dependency between the frequency and the input
currents is used to study the network dynamic. However, these neuromimetic designs
were never compared to biological data. Moreover, the variety of the implemented cell
types is limited to the fast-spiking (FS) neuron [Yu and Cauwenberghs, 2010] as well as
the regular-spiking (RS) neuron [Rasche and Douglas, 2000; Shin and Koch, 1999]. Only
Simoni et al. [2004] presented more complex behaviors.



Conclusion 57

2.5 Conclusion

The main advantage of the analog computation of neural models, compared to their nu-
merical simulation, arises from the intrinsic local analog and parallel nature of computa-
tion. As mentioned in the introduction, we want to insert silicon neurons among biological
neurons. To reach our goal, we proposed a simplified version of the HH formalism and
the appropriate parameter sets for the FS, RS, IB, and LTS neurons that can be imple-
mented in our analog neuromimetic chip. The models considered here are the simplest
types of biophysical models where the intrinsic properties arise from voltage-dependent
conductances which are described by differential equations (HH type models). The main
motivation for this model type is the strong correspondence of their parameters with those
in biology. In this chapter, we described the steps used to extract the parameters from the
HH model, using biological data, to the one implemented in the VLSI neurons, validating
the simplified model through a bifurcation analysis. Hence, we described the intrinsic
electrophysiological properties of the four cortical neurons (FS, RS, IB, and LTS neurons)
and, for each class of neuron, we proposed our simplified models taking as reference the
complete HH type models proposed by Pospischil et al. [2008]. By comparing the software
simulations of our simplified neuron model with the HH models for the cortical neuron
cells, we show that the simplified models can reproduce the main firing features of cortical
cell types. In the next chapter, after the introduction of the hardware platform, we show
that the circuits can reproduce the main firing features of cortical cell types by comparing
them with experimental electrophysiological data for these cells.





Chapter 3

Real-time cortical neuron model simulation

In a previous work focusing on the implementation of Hodgkin-Huxley type models in
analog circuits, our group designed several neuromimetic chips (ASICs), including the
Galway chip [Bornat, 2006], which exploit the intrinsic voltage-current of individual tran-
sistors (bipolar and MOSFET) to simulate the membrane equation of neurons. These
silicon neurons are based on the Hodgkin-Huxley formalism and they are optimized to
reproduce a large variety of neuron behaviors using tunable parameters. In Chapter 2, we
described the steps used to extract the parameters from the HH model, using biological
data, to the model implemented in the VLSI neurons. As already mentioned, we want to
insert silicon neurons among biological neurons. These ASICs could be used to form the
core of various simulation platforms to emulate neural networks in biologically relevant
configurations. In particular, the aim is to simulate cortical networks using data and
electrophysiological recordings provided by neuroscientists. Hence, we decided to quali-
tatively compare the dynamics of our silicon circuit to biological cells with a high level
of detail (time scale, voltage range, resting potential, etc.). To fulfill our requirement, we
selected the four most prominent cortical neurons (the FS, RS, IB, and LTS neurons) and
then we propose a simplified version of the HH formalism and the appropriate parameter
sets for the FS, RS, IB, and LTS neurons that can be implemented in our analog neu-
romimetic chip. Due to the fabrication process, there are significant differences between
the expected and actual outputs of the chips [Saïghi et al., 2008]. It is therefore necessary
to further adjust the parameters in order for the outputs of the neuromimetic circuits
to be approximate with the neuronal activity. Therefore, in this chapter, we present the
hardware platform and the proposed full-custom fitting method in voltage-clamp mode
to tune our neuromimetic integrated circuits [Buhry et al., 2011]. Finally, we show the
experimental measurements of our system which mimic the four most prominent biolog-
ical cells: fast-spiking, regular-spiking, intrinsically bursting, and low-threshold spiking
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neurons into an analog neuromimetic integrated circuit dedicated to cortical neuron sim-
ulations. By comparing them with experimental electrophysiological data for these cells,
we show that the circuits can reproduce the main firing features of cortical cell types.

3.1 Neuromimetic chip and dedicated board

Our goal is to build a neural simulator based on a hardware implementation that is able
to reproduce the dynamics of cortical neurons. Our system is composed of our most
recent chip, the Galway chip, and the dedicated board Ekerö. This chip includes analog
operators to compute the HH formalism and to construct neural networks [Saïghi et al.,
2011].

3.1.1 Neuromimetic chip

In a previous work, our library of tunable mathematical operators was validated with a
preliminary prototype, the Violetta IC, followed by a second IC prototype referred to as
Pamina [Saïghi, 2004], which was used to build a real-time simulator for computational
neuroscience applications. From the HH formalism, it was decided to integrate a set
of generic blocks, each able to compute a conductance-based model of ionic or synaptic
current. The last ASIC prototype was designed in full-custom mode with a BiCMOS SiGe
0.35 µm technology process from austriamicrosystems (AMS) in the Cadence environment.

The analog computational core, built with various analog operators, represents a set
of ionic current generators. Digital functions are added to manage the core topology, and
analog memory cells are included in order to store the model parameters. The "Galway"
chip presented here comprises:

• five neurons;
• an analog memory cell array, to store the conductance parameters;
• a matrix of switches, to control the topology of the neurons (i.e. the arrangement

of the conductance and synaptic modules that form the artificial neuron);
• digital functions, to control data transfer to and from external devices;
• a multi-synapse block that gathers all of the synaptic inputs into one electronic

input.

A microphotograph of the Galway chip is shown in Figure 3.1.



Neuromimetic chip and dedicated board 61

Figure 3.1 – Microphotograph of the Galway chip (containing five neurons), where P is
the analog memory cell array, C is the conductance, and N1 is neuron 1 plus
a multi-synapse block.

Each neural element includes (Figure 3.2):

• a set of conductance modules, each able to generate ionic or synaptic currents fol-
lowing the previously presented conductance-based model;

• a spike detection module, to convert the neuron membrane voltage to a 1-bit code;
• a set of synaptic input modules: one for inhibitory input, one for excitatory input,

and a third and final one for the background noise activity. These modules activate
synaptic conductance modules with a digitally-controlled weight.

Figure 3.2 – Block diagram of a neuron included in the Galway IC.

Due to the biological ratio of the FS, RS, IB, and LTS neurons, the five neural elements
consist of:

• one FS cell including three conductances INa, IK , and IL;
• three RS cells with four conductances INa, IK , IM , and IL;
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• one IB or LTS cell with a fifth conductance ICa.

The model parameters (205 parameters must be set in order to tune all of the neurons)
are stored in analog memory cells (except for the time constants which require external
capacitors due to their value that ranges from 3.3 nF to 470 nF), the values of which are
programmed during the configuration phase of the simulation. The analog memory cells
are refreshed every 2 ms (the clock frequency is 100 kHz). During that same phase, the
user will also set the topology of the neuron, i.e. define the block connectivity. A set of
connected blocks will form an artificial neuron, with their respective currents summed on
an external capacitance.

Taking into account the integration constraints of the microelectronic design, and in
order to increase its dynamic range and noise immunity, we applied a x5 gain factor to
the biological voltages:

VVLSI = 5 ·VBio . (equation 3.1)

Let CVLSI and CBio represent the membrane capacitances of artificial and biological neu-
rons, respectively. The conductance mapping is proportional to the capacitance ratio,
where:

gVLSI

gBio
= CVLSI

CBio
. (equation 3.2)

The current mapping then equals the product of the voltage and conductance mappings:

IVLSI = IBio ·5
CVLSI

CBio
. (equation 3.3)

With the Galway chip, CVLSI = 3.3 nF and the biological neurons have:

CBio = CM ·Area , (equation 3.4)

where CM is the specific membrane capacitance and Area represents the area of the cell
membrane.

3.1.2 Dedicated board

The neuromimetic chip is embedded in a six-layer full-custom board called Ekerö (Figure
3.3).



Neuromimetic chip and dedicated board 63

Figure 3.3 – Photograph of the Ekerö board.

This board hosts four Galway ASICs. Each ASIC incorporates five neurons which
compute in analog mode conductance-based models following the Hodgkin-Huxley for-
malism. Individual neurons produce, in continuous time, action potentials that express
their intrinsic dynamic properties as well as their response to stimulations. The neuron
type, firing rate and stimulus response magnitude can be configured in each neuron.

Synaptic digital inputs, topology digital inputs, model parameters inputs and spike
detection outputs of the Galway chip are individually connected to a Xilinx Spartan3
FPGA. The FPGA is connected to a host computer with the RS232 serial protocol which
allows the user to send and receive data to/from the chips. Some of the coaxial connectors
are used to provide analog outputs for the observation of ionic currents and membrane
voltages on an oscilloscope. The others are used for analog inputs to stimulate the sili-
con neuron or to impose a membrane voltage. Several Ekerö boards have already been
designed for the next neural network experiments [Belhadj, 2010].

3.1.3 Hardware and software interfaces to the Galway chip

We describe here the interfaces (hardware and software) that allow the use of the Galway
chip. We implemented the VHDL driver in the FPGA (Xilinx Spartan3 FPGA in the
Ekerö board) to send the parameters to the chip. The ASIC configuration parameters
consist of Hodgkin-Huxley parameter values (analog parameters) and the specifications
for the neuron type and synapse behavior (digital parameters).

Only the method used to introduce the digital/analog parameters is presented. The
correspondence between the parameters and the model is described in Appendix 4.5. We
implemented the software graphical interface in the host PC, allowing the user to com-
pletely configure the circuit.
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Digital parameters
In order to set the topology of the silicon neuron (FS, RS, IB, and LTS), the input

interface of the digital parameters is made by 14-bit words1. Transmission occurs via a
series of three parallel signal interfaces: clock, data and validation. Validation occurs as
the last bit of the word is being transmitted. A diagram of the signals is given in Figure
3.4.

Figure 3.4 – Timing diagram of the digital parameter input interface (the clock frequency
is 100 kHz).

Signal sending is only performed during the configuration step. We designed the
driver in VHDL with an operating frequency of 100 kHz. The format of the digital word
implemented in VHDL is "d:n:xxxx", in which "d" indicates a digital word, "n" is the num-
ber of ASICs (from 1 to 4) and "xxxx" is the word in hexadecimal form (see Appendix 4.5).

Analog parameters
To send the values of the Hodgkin-Huxley equation, the input interface of the analog

parameters requires four signals: clock, refresh initialization (start), validation and data.
The various signals are shown in the timing diagram in Figure 3.5.

Figure 3.5 – Timing diagram of the analog parameter input interface (the clock frequency
is 100 kHz).

We designed the driver in VHDL taking into account that a transmission up to 205 pa-
rameters can be made with an operating frequency of 100 kHz. The format of the analog

1The specifications of the word in order to build the driver for the ASICs are taken from Bornat’s
thesis (2006), the designer of the Galway chip.
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word implemented in VHDL is "a:n:xx:x.xxx", in which "a" indicates an analog word, "n"
is the number of ASICs (from 1 to 4), "xx" is the type of the parameter in hexadecimal
form and "x.xxx" is the value (for example 2.345 volts2) of the voltage parameter (see
Appendix 4.5).

Software interface
Figure 3.6 shows a picture of the software graphical interface dedicated to the Galway

chip.

Figure 3.6 – Software graphical interface of the Galway chip.

The FPGA in the Ekerö board is connected to a host computer with a serial protocol
(RS232) that allows the user to send and receive data to/from the chips. The user
chooses the model set for the ionic current and then the program successively transmits
the population of parameters to the VHDL driver to emulate cortical neurons in real-
time on the Galway chip. The software interface was designed in a CVI3 integrated
development environment.

2Note that all of the biological values of the model are converted into hardware values following the
hardware conversion rules explained in section 3.1.1.

3LabWindows/CVI is a proven ANSI C integrated development environment that provides engineers
and scientists with a comprehensive set of programming tools for creating test and control applications.
LabWindows/CVI combines the longevity and reusability of ANSI C with engineering-specific function-
ality designed for instrument control, data acquisition, analysis, and user interface development.
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3.2 Automated tuning system for the neuromimetic
chip using metaheuristic algorithms

Our analog IC was optimized to reproduce a large variety of neuron behaviors using
tunable parameters. However, due to the noise and the analog dispersion in the fabrication
process, the IC does not guarantee that the parameters inside the chip are the same as
those extracted from a biological cell (see Tables 2.2, 2.3, 2.4, 2.5). Because of the
remaining uncertainty with regards to the stored analog parameters (fabrication and
process mismatch), we need to estimate the true parameters computed by the circuit.

Considering, for example, the real-time simulation of the FS cell, 15 parameters have
to be estimated (see Table 2.2). Therefore, we define three vectors containing the unknown
parameters:

1. XNa = [ gNa ENa τm Vslope,m Voffset,m τh Vslope,h Voffset,h ];
2. XK = [ gK EK τn Vslope,n Voffset,n ];
3. XL = [ gL EL ],

where XK , XNa or XL denote the X vector used in the next section, in the case of the
FS cell. Similarly, for the other neurons:

• RS cell - XK , XNa, XL and Xslow−K ;
• IB cell - XK , XNa, XL, Xslow−K and XCa(L);
• LTS cell - XK , XNa, XL, Xslow−K and XCa(T ),

where the number of parameters to be estimated increases.
The tuning of this model, in order to reproduce a given neuronal signal (FS, RS, IB and

LTS neurons), is thus difficult. As we mentioned in section 1.3, it is therefore necessary
to further adjust the parameters in order for the outputs of the neuromimetic circuits to
be approximate with the neuronal activity. As hand tuning is very time-consuming, an
automated tuning of the parameters is mandatory. Therefore, in this section, we introduce
the metaheuristic algorithms followed by the steps taken to tune the silicon neuron.

3.2.1 Metaheuristic algorithms

In computer science, the term metaheuristic designates a computational method that
optimizes a problem by iteratively trying to improve a candidate solution with regards
to a given measure of quality. Metaheuristics are inspired by natural systems, such as



Automated tuning system for the neuromimetic chip using metaheuristic algorithms 67

metallurgy when dealing with simulated annealing (SA), evolutionary biology for genetic
algorithms (GA), or ethology with ant colony algorithms or particle swarm optimization,
which are not presented here.

Two metaheuristics, genetic algorithms and simulated annealing, have already been
proposed to adjust the parameters of neuron models [Geit et al., 2008], but it was shown
in a comparison [Buhry et al., 2008] that the differential evolution algorithm (DE) was
more efficient for parameter estimation in Hodgkin-Huxley type models.

Like the genetic algorithm, the DE belongs to the class of evolutionary algorithms4.
It uses mechanisms inspired by biological evolution: reproduction, mutation, recombi-
nation, and selection [Storn and Price, 1997]. Candidate solutions to the optimization
problem play the role of individuals in a population. The DE generates a population of
vectors which represents whole populations. The parameters contained in a vector X are
also called genes that are, in our case: gion, Eion, τ , Vslope, and Voffset. This popula-
tion is randomly initialized with a uniform law within the boundary constraints of the
model. Then, a new trial individual is built by means of three operations: Differentiation,
Recombination, and Selection [Feoktistov and Janaqi, 2004].

We published a new estimation method for the characterization of the Hodgkin-Huxley
formalism based on the DE algorithm [Buhry et al., 2011]. This method is an alternative
technique to the estimation methods associated with voltage clamp measurements. It
uses voltage clamp type recordings, but is based on the differential evolution algorithm.

As our circuits allow us to make voltage clamp-like measurements, we can use our
estimation method, using current recordings, to estimate the model parameters. The pa-
rameters of one ionic channel are simultaneously estimated, and the technique is succes-
sively applied to each ionic channel to estimate the true parameters computed by the
neuromimetic analog integrated circuits.

Differential evolution algorithm
The DE is a population algorithm, similar to genetic algorithms, but differs from

the latter in the recombination/mutation operation (described below), and the selection
step. With regards to the mutation process in genetic algorithms, this results from small
genetic alterations, whereas in the DE algorithm, it consists of a geometrical combination
of vectors. With regards to the selection process in the DE algorithm, at every iteration,

4In evolutionary algorithms, the term population means a set of parameter vectors, the term individual
denotes a parameter vector, and the term gene denotes one parameter.
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each individual is compared with only one other individual; on the contrary, in genetic
algorithms, one individual is often compared with the rest of the population.

In the following, we use the same notation as that proposed by Storn and Price [1997].
The DE generates a population of NP individuals X=Xion containing D parameters, also
called "genes". The population is initialized by randomly choosing individuals within the
boundary constraints of the model. Then, at each time step, new trial individuals are
constructed by means of two operations: so–called "Differentiation" and "Recombination".
We define Xr

k(i) as the gene i of the rth individual of the kth generation (or iteration).

Differentiation: the new parameter vector Xtrial is generated by adding the weighted
difference between two other population members, Xr2

k and Xr3
k , to a uniformly randomly-

chosen population member, Xr1
k , with r1 6= r2 6= r3:

∀j = 1, ..,NP, Xj
trial =Xr1

k +F · (Xr2
k −X

r3
k ), (equation 3.5)

where F (factor of differentiation) is usually set to 0.55.

Recombination: the mutant individual, Xmut, inherits genes from Xtrial with a proba-
bility CR (recombination constant), where CR ∈ [0,1] is usually empirically set to 0.8 or
0.9 [Karaboga and S.Okdem, 2004]. By generating u according to a uniform distribution
U (0,1), one has:

∀j = 1, ..,NP, ∀i= 1, ...,D, Xj
mut(i) =

 Xj
trial(i) if u < CR

Xj
k(i) otherwise

. (equation 3.6)

Finally, a selection is carried out by comparing the fitness function values of Xmut and
Xj
k respectively, as follows:

Xj
k+1 =

 Xj
mut if Ffit(Xmut)≤ Ffit(Xj

k)
Xj
k otherwise

(equation 3.7)

where Ffit is the fitness function6 (not to be confused with the factor of differentiation,
F ). As for the terminal conditions, either the number of iterations, Niter, or an upper

5It is recommended to choose F from the interval [0, 2] [Karaboga and S.Okdem, 2004].
6A fitness function is a particular type of objective function that is used to summarize, how close a

given solution is to achieving the set aims.
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bound for the fitness function can be set.

3.2.2 Automated tuning system platform

The DE algorithm requires data recorded in the voltage-clamp mode, which involves the
observation of one ionic current, when the membrane voltage levels are successively applied
with different steps. We use the host computer to control an oscilloscope and an arbitrary
waveform generator. We add the "tuning" option to the software interface described in
section 3.1.3 (Figure 3.6). The complete program has to drive the instruments and the
neuromorphic system, and also computes the DE algorithm (3.7).

Figure 3.7 – Schematic diagram of the automated tuning system.

Figure 3.7 shows a schematic diagram of the experimental implementation described
in the following steps:

• The user chooses the model set for the ionic current;
• The program successively transmits the population of parameters and generates the

different steps of the imposed voltage. Each ionic channel is optimized separately;
• The computer stores the imposed voltages and the current responses measured on

the Ekerö board;
• The program calculates the theoretical current response, using the model parameters

and the measured imposed voltages. Then it calculates the fitness or cost function
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to be minimized, which is defined by the quadratic error between the theoretical
current response of an ionic channel and the current response of the same ionic
channel measured from the IC while the membrane voltage is clamped.

• The program uses the DE algorithm (Differentiation, Recombination, and Selection)
to choose the new population of parameters, before sending it back to the chip.

However the chip tuning technique is not applied to the stimulation current generator
(Istim(hw)). Due to the process and component mismatch, there is an error current between
the expected and actual current.
Therefore, a conversion rule on the Istim(hw) hardware stimulation current is applied to
compensate for that error current. Istim(hw) obeys the rule:

Istim(hw) = acomp · IV LSI + bcomp = 5 ·acomp · Ibio ·
CV LSI
Cbio

+ bcomp. (equation 3.8)

We empirically defined the acomp and bcomp parameters to match the biological data in
the real-time simulation for each neuron. Finally, the hardware neuron model is composed
of the optimized parameters from the theoretical values, CV LSI and the pair acomp and
bcomp from equation 3.8.

Therefore, we applied this technique to our integrated circuit in order to reproduce a
biologically realistic behavior for the ionic current7 followed by the voltage membrane in
a silicon neuron. With this purpose in mind, we compare the membrane voltage of the
artificial neuron with the biological neuron presented in [Pospischil et al., 2008].

3.3 Emulation of neocortex neurons in the VLSI hard-
ware

Pursuant to our goal of implementing the "prototypical" types of neurons present in the
neo-cortex in the VLSI hardware, we successively consider the four different cell classes
(FS, RS, IB, and LTS) and show the results of our VLSI chip behavior after tuning
[Grassia et al., 2011].

To compare the behaviors between the biological and the hardware neurons, we tuned
the parameters shown in Tables 2.2, 2.3, 2.4 and 2.5 (see Chapter 2), in which all electronic
values are converted to a biological scale as explained in section 3.1.1, and all of the
biological data are reproduced from Pospischil et al. [2008].

7More details are given in [Buhry et al., 2011]; here, we only focus on the voltage membrane.
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3.3.1 Fast-Spiking Neurons

Fast-spiking neurons respond to the injection of a depolarizing current pulse by producing
high frequency trains of action potentials without adaptation as shown in Figure 3.8A.

Figure 3.8 – Membrane voltage of FS neurons. (A) Response of a FS neuron based on
ferret visual cortex in vitro (Pospischil et al. [2008]; experimental data from
Thierry Bal, CNRS) to the injection of a depolarizing current pulse (0.7 nA).
(B) Measurements of the FS hardware neuron at a depolarizing current pulse
(0.7 nA). The VLSI voltage measurements are divided by 5 in the figure in
accordance with equation 3.1.

The FS neurons correspond to inhibitory neurons [Connors and Gutnick, 1990; Gibson
et al., 1999]. Figure 3.8B shows the hardware FS neuron response with the application
of a stimulation current. In both cases, the stimulation current of 0.7 nA is applied for
125 ms. We observe an identical resting potential of approximately -66 mV and a similar
voltage range for the membrane voltage.
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However, the comparison of the electrical behavior of the artificial FS neuron with the
biological target must go further. We also apply different current pulses for plotting the
frequency-current relations (firing rates) of the FS as shown in Figure 3.9. The FS neuron
shows no sign of adaptation, and thus its frequency is constant during the stimulation. In
Figure 3.9A, we plot the average of the firing rates for the 40 FS neurons after the tuning
step as well as the variability of the data using error bars. So far, the stimulation current
follows the rule presented in equation 3.3. We can observe the effect of the electronic
leakage current on the dispersion curves. In Figure 3.9B, we apply equation 3.8. The
plotted hardware data are the average and the standard deviation (SD) for the 40 neurons.

Figure 3.9 – Frequency versus stimulation current curves of FS neurons. (A) 40 VLSI FS
neurons tuned with the model parameters from Table 1 and the automated
tuning technique. The stimulation current follows the equation 3.3. (B)
Biological measurements of the FS neuron from Pospischil et al. [2008] and
the 40 VLSI neurons using equation 3.8 for the stimulation current.

For biological reference, we take the mean frequency for each stimulation current from
Figure 3B from Pospischil et al. [2008]. The biological data are only composed of four
points. For each of these points, the artificial neuron frequency matches that of the
biological neuron.

Table 3.1 provides the parameter values for the 40 FS neurons. We do not present the
results for the time constants because the implemented values depend on external capaci-
tors for which we did not measure the exact value. The theoretical values are provided by
the model. The implemented values are computed by the optimization algorithm. In any
event, we observed a large discrepancy for all of the parameters, confirming the necessity
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of the tuning step. The results for the RS are similar because the sodium, potassium, and
leakage currents are the same, except for three parameters, and the four new parameters
for the slow potassium channel present the same characteristics. Due to the scarcity of
data for the LTS and IB neurons, the statistical results are not meaningful. That is why,
in the next section, we will not present the same table for the RS, IB, and LTS neurons.

Table 3.1 – Theoretical and implemented parameter values for the 40 FS neurons.

Theor. values Impl. values (average) Impl. values (SD)
ENa (mV ) 50 65.07 16.50

gNa (mS/cm2) 50 34.32 5.17
Vslope,m (mV ) 6.54 7.56 2.26
Voffset,m (mV ) -29.08 -33.88 8.59
Vslope,h (mV ) 3.98 2.99 1.54
Voffset,h (mV ) -33.31 -38.59 10.92
EK (mV ) -90 -108.47 22.46

gK (mS/cm2) 10 6.61 3.51
Vslope,n (mV ) 8.05 6.75 2.28
Voffset,n (mV ) -29.08 -38.08 16.03

acomp 0.203 0.050
bcomp 0.5 2.7·10−11

Based on the comparison of the membrane voltage and the frequency versus the stimu-
lation current between the biological neuron and the analog hardware neuron, we conclude
that the simplification of the model and its implementation in silicon are well-suited to
reproduce the behavior of the FS neuron.

3.3.2 Regular-Spiking Neurons

Regular-spiking neurons respond to the injection of a depolarizing current pulse by pro-
ducing trains of spikes with adaptation, as shown in Figure 3.10A, for a typical RS cell
from ferret visual cortex in vitro. RS neurons correspond to excitatory neurons.

After tuning our chip, we then apply a stimulation current of 0.7 nA for 200 ms, as
in the biological experiment, to compare the electronic and biological behaviors (Figure
3.10B).

Like for the FS neuron, we observe that the resting potential is about -75 mV and the
membrane voltage range is similar. Moreover, in both cases we observe a high frequency
discharge on the first part of the response and then the frequency decreases slowly due to
the adaptation phenomenon. The main difference between the two traces in Figure 3.10
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is the behavior during the period between two spikes. We can also observe the same kind
of difference in Figure 1 from Pospischil et al. [2008]. Thus we consider that the hardware
membrane voltage reproduces the biological behavior to the utmost of its abilities.

Figure 3.10 – Membrane voltage of RS neurons. (A) Intracellular recordings of RS neu-
rons in ferret visual cortex in vitro (Pospischil et al. [2008]; experimental
data from Thierry Bal, CNRS). Responses to the injection of a depolarizing
current pulse (0.7 nA). (B) Measurements of the RS hardware neuron at a
depolarizing current pulse (0.7 nA) showing the typical response of a RS
neuron, with spike-frequency adaptation. The VLSI voltage measurements
are divided by 5 in the figure in accordance with equation 3.1.

The behavior of the RS neurons has been investigated further. We apply different
current pulses for plotting the frequency-current relations of the RS as shown in Figure
3.11. The RS neuron has an adaptation channel, and thus we plot the instantaneous
frequency (inverse of the interspike time interval) for the first and tenth spikes. Figure
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3.11 shows the hardware firing rates for the first and the tenth spikes from 20 RS neurons
after applying the conversion rule presented in equation 3.8. We plot the average and the
standard deviation for the 20 hardware RS neurons.

Figure 3.11 – Frequency versus stimulation current curves of RS neurons. Biological
measurements of the RS neuron from Pospischil et al. [2008] and the 20
VLSI neurons using equation 3.8 for the stimulation current.

For the biological data, we plot the biological recordings presented in Figure 1 from
Pospischil et al. [2008]. The first spikes are similar for the hardware and the biological
cells. The behavior for the tenth spike is different, especially for the high frequency. How-
ever, it is possible to observe the same difference as that in the original model in Figure
1 from Pospischil et al. [2008]. The other intermediate instantaneous frequencies do not
match as well (not plotted here in order to simplify the figure as much as possible). We
can observe this phenomenon in Figure 3.10 where the firing frequencies at the beginning
of the activity are not identical. As explained in Chapter 2, in the section concerning the
model implementation in the chip, that behavior is the result of the tradeoff between the
firing rate after adaptation and the adaptation time constant to reach that adaptation.
We decided to focus more on the first feature. Despite the fixed adaptation time constant,
we reproduce the behavior of the RS neuron in terms of the membrane voltage, and the
spike frequencies before and after adaptation.
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3.3.3 Intrinsically Bursting Neurons

This kind of neuron responds to the injection of a depolarizing current pulse by producing
bursts of action potentials and then the firing rate decreases suddenly as shown in Figure
3.12. Neuronal bursting can play important roles in communication between neurons.
In particular, IB neurons (excitatory neurons in the mammalian neocortex [Connors and
Gutnick, 1990]) are important for motor pattern generation and synchronization.

Figure 3.12 – Membrane voltage of IB neurons. (A) Intrinsically bursting (IB) cell from
guinea-pig somatosensory cortex in vitro modified from Pospischil et al.
[2008]; experimental data from Cyril Monier and Yves Frégnac, CNRS).
Response to different depolarizing current pulses. (B) Measurements of the
IB hardware neuron at the same depolarizing current pulses. The VLSI
voltage measurements are divided by 5 in the figure.

Because we have few experimental recordings for this type of cell, the frequency versus
stimulation current may not be significant. For comparison, we apply the same stimulation
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currents to biological and hardware neurons in Figures 3.12A and 3.12B, respectively.
For the weakest stimulation currents (from 0 to 0.5 nA), we observe similar membrane
depolarization. For the 0.6 nA stimulation, we observe two spikes in both cases even
though the frequency in the biological cell is higher. For the biggest stimulation currents
(= 0.7 nA), we notice an initial fast activity (the neuron repeatedly fires discrete groups
or bursts of spikes) followed by a train of action potentials. The hardware neuron is in
accordance with a biological time scale.

However, we can observe two differences. The first one is the behavior of the membrane
voltage between two spikes during the train of action potentials. The VLSI membrane
voltage has a hyperpolarization behavior before a spike occurs. The second difference
is the duration of the initial fast activity. The high frequency lasts longer for the VLSI
neurons. Even though the membrane voltages are comparable for the switching frequency
behavior, the effect of the L-type calcium current is to suddenly bring the neuron from
one spiking frequency to another.

As in Pospischil et al. [2008], we reproduce the IB cell behavior to the detriment of
the duration of the first oscillatory phase and the membrane voltage behavior during the
second phase. These two differences were also observed in the original model shown in
Figure 6 from Pospischil et al. [2008]. Consequently, we consider in this case that we
adequately reproduce the targeted biological behavior.

3.3.4 Low-Threshold Spiking Neurons

Low-threshold spiking neurons respond to the injection of a depolarizing current pulse
by producing adapting trains of action potentials similar to the classic "regular spiking"
response of cortical neurons (Figure 3.13A). In addition, they generate a burst of action
potentials in response to the injection of hyperpolarizing current pulses (Figure 3.13C).
The LTS neurons correspond to inhibitory neurons [Connors and Gutnick, 1990; Gibson
et al., 1999].

Like for the IB neuron, the recordings obtained from the LTS neuron are rare. The
main comparison is also the behavior of the membrane voltage. The positive stimulation
currents in Figures 3.13A and B show the "regular spiking" behavior of the LTS cell. The
firing rate decreases while the stimulation current is applied. In both cases, the initial
value of the membrane voltage is equal to -70 mV for a DC current equal to -0.11 nA.
Like for the RS cell, the frequency of the hardware neuron is higher than the biological
cell. This behavior is consistent due to the very similar parameters of the RS and LTS
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cells. The negative stimulation currents produce the rebound burst activity in Figures
3.13C and D. The initial values of the biological cell are different in Figures 3.13A and C
due to a different DC stimulation current, which are equal to -0.056 and -0.11 nA for the
biological neuron and the VLSI neuron, respectively.

Figure 3.13 – Measurements of LTS-Bursting behavior. Response of biological LTS cells
from rat somatosensory cortex in vitro (Pospischil et al. [2008]; experimen-
tal data from Maria Toledo-Rodriguez and Henry Markram, EPFL) to (A)
depolarizing and (C) hyperpolarizing stimulation pulses. Measurements of
the LTS hardware neuron with the same (B) depolarizing and (D) hyperpo-
larizing stimulation currents applied. The VLSI voltage measurements are
divided by 5 in the figure.

When the stimulation current is applied, the hardware LTS is less depolarized than
the biological neuron. However, when the stimulation ends, our hardware LTS neuron
reproduces the same behavior as the biological cell. We also observe a slightly higher
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depolarization for the hardware neuron with -0.09 and -0.24 nA current stimulation. For
-0.36 nA, one spike occurs in both cases. We consider that we adequately reproduce the
targeted biological behavior of the LTS cell.

3.4 Conclusion

As already mentioned, we want to insert silicon neurons among biological neurons. Thus,
we decided to qualitatively compare the dynamics of our silicon circuit to biological cells
with a level of detail that has never been seen before in a silicon neuron. To reach our goal,
we propose a simplified version of the HH formalism and the appropriate parameter sets
of the FS, RS, IB, and LTS neurons that can be implemented in our analog neuromimetic
chip. Therefore, in this chapter, we presented the hardware platform and the proposed
full-custom fitting method in voltage-clamp mode to tune our neuromimetic integrated
circuits. This optimization method, based on the DE algorithm that we proposed [Buhry
et al., 2011], is an alternative to the estimation methods associated with voltage-clamp
measurements. In any event, we observed a large discrepancy for all of the parameters,
confirming the necessity of the tuning step. As with any circular problem, we chose an
arbitrary starting point to solve it. Even though the optimization phase of our tunable
chip is time-consuming, we will save time in the emulation phase due to three features.
First, our chip requires only one tuning of its parameters. The parameter sets are then
stored in a database and the required parameters are loaded into the chip as needed to
emulate any given cell type. Second, the model parameters can be modified on-line at any
time. Third, the neuron type can also be modified on-line by connecting/disconnecting
an ionic channel and/or modifying a few parameters. For example, the burst in the IB
cell can be modulated by the value of the conductance or time constants of the calcium
current. All of these on-line changes take only a few microseconds. This will enable the
user to alter parameters in order to study their effect on the dynamic of the biological
network. Finally, we tested the parameters obtained by comparing the behavior of the
membrane voltage in the recordings of biological cells with membrane voltages simulated
with our chip. This comparison is possible because of the translation rules between
biological and hardware neurons based on the chip characteristics. We directly compare
the behavior of our chip with biological recordings. Our results show that our system
is able to reproduce the main features of four common classes of cortical cells. These
ASICs can be used to form the core of various simulation platforms, designed to emulate
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neural networks in biologically relevant configurations. In the next chapter we will see the
spiking neural network (SNN) simulator developed by our team, called PAX (Plasticity
Algorithm for Computing System), that hosts the chip. We will focus on our contribution
to the development of this mixed hardware-software platform for a real-time spiking neural
network simulation, in terms of software tools and a VHDL driver for neuron configuration
in the platform.



Chapter 4

Plasticity Algorithm Computing System

As already mentioned, we want to insert silicon neurons among biological neurons. There-
fore, we decided to qualitatively compare the dynamics of our silicon circuit to biological
cells. These ASICs can been used to form the core of a simulation platform designed
to emulate neural networks in biologically relevant configurations. The spiking neural
network (SNN) simulator developed by our team, called PAX (Plasticity Algorithm for
Computing System), is based on a mixed analog/digital architecture designed to have
the capacity to address biological diversity in terms of neuron types as well as plasticity
rules. PAX makes use of point-neuron conductance-based models and is controlled by
spike-timing dependent plasticity. In the previous chapters, we saw how to extract the
parameter sets for our analog neuromimetic chip, and how to reproduce the main firing
features of cortical cell types. Now, one important issue remains: how can we calibrate the
spiking neural networks? - There are two main types of parameters that we have to tune:
the plasticity configuration parameters and the ASIC configuration parameters. The first
type of parameters involves sending the user-defined network topology, the STDP param-
eters and the initial synaptic weights (B. Belhadj addressed this as well as the design
of the STDP processor in the PAX in his thesis [Belhadj, 2010] and tested it using a
virtual spike generated in the VHDL driver instead of an "analog neuron"). The second
type of parameters involves sending the Hodgkin-Huxley parameter values for the ASIC
configuration, which can be used to specify the neuron type (see Chapter 3) and synapse
behavior. Therefore, we need to tune the synapse in a biological range, as done for the
neurons. Thus in this chapter, we describe the work done to integrate the silicon neuron in
the PAX system, using the same parameter sets for the FS, RS, IB, and LTS neurons that
we proposed for our analog neuromimetic chip. We describe the methodology adopted to
tune the synapses followed by the improvements made to the PAX simulator.
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Section 4.1 briefly describes the main abstractions present in the PAX at the neuron
and network level while focusing on the method proposed for the synaptic tuning. In
section 4.2 we describe the features and basic functions of the PAX simulator and then
in section 4.3, we present our contribution to the development of the PAX in terms of
software tools and the VHDL driver for the neuron configuration in the platform. Finally,
we show the results of this work.

4.1 Abstractions in the PAX simulator and synaptic
tuning

The relevance of a neuromorphic simulator is measured by its ability to reproduce the
observed phenomena in biology. However, given the complexity of biological systems, we
are forced to neglect certain details. As a result, we lose accuracy compared to the original
structure. Abstraction is a natural approach to eliminate details deemed not useful in
the reproduction of a given phenomenon. However, any abstraction must be justified by
the relevance of the final results. This section briefly summarizes all of the abstractions
used in the PAX simulator while focusing on the synapses. It will be useful to understand
how the PAX simulator works. Therefore, we propose a methodology to calibrate the
synapses.

4.1.1 Neuron level

As previously explained (Chapters 1 and 2), at the cellular level, the soma follow the
Hodgkin-Huxley formalism. Therefore, an initial abstraction treats the membrane as a
single compartment. This abstraction implicitly assumes that ion channels of the same
type are grouped in the same conductance. A second abstraction (see Chapter 3) consists
of an amplification of the biological electrical parameter values to manipulate the current
values using integrated circuit technology and to improve the dynamics of the system.
However, there is no temporal abstraction at the neuron level. Therefore, the evolution
of the silicon neuron1 is continuous and on a biological time scale similar to its biological
counterparts. This choice allows interfacing with living cells [Le Masson et al., 2002].

1Different silicon neuron have been developed in our group, including the Galway chip, which is the
ASIC used in this work.
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4.1.2 Network level

Several abstractions are used at the network level. A first abstraction was done for the
synapses.

Synapse abstractions
It was chosen to implement the synaptic interactions using "exponential" synapses

(Figure 4.1 ) in the Galway ASIC [Bornat, 2006], where the synaptic conductance increases
for a given "quantal conductance" when a presynaptic spike occurs, and then relaxes
exponentially to zero.

Figure 4.1 – Exponential-decay synapse principle.

The dynamics of the synaptic conductances are captured using a two-state (open/closed)
scheme, in which opening is driven by a pulse. This model can handle phenomena such
as summation or saturation, and accurately describes the time course of the synaptic
interactions. The associated postsynaptic current is given in equation 1.16 and equation
1.17 (see Chapter 1). Figure 4.1 illustrates the time-variation of the synaptic conductance
when a transmitter concentration pulse [T] occurs, assuming that the transmitter is re-
leased when a presynaptic action potential appears. As the quantum ∆g is proportional
to the ∆t pulse width, this latter parameter will be exploited to modulate ∆g for the
synaptic plasticity.

A second abstraction was implemented in the Galway ASIC for the synapse. It is a
structural abstraction that avoids a high density of synaptic connections. Synaptic inputs
to a neuron are grouped in only one collective synapse called a multisynapse [Destexhe
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et al., 1998a]. The multisynapse adds all of the stimulations caused by presynaptic neu-
rons of the same type (inhibitory or excitatory) to stimulate the cell membrane of the
postsynaptic neuron. This means that the presynaptic events are collected at a single
input to generate the presynaptic pulse (Figure 4.2).

Figure 4.2 – Multisynapses block.

The width of this pulse (60 µs is the maximum value before saturation, as measured
in the Galway2 ASIC) triggers the transition to the opening state. Together with g
(maximum conductance), it encodes the strength of the multisynapse, and is dynamically
updated.

Network abstractions
Synaptic connections that link neurons are allocated in a virtual way: there are no

physical connections between the cells. Each neuron is connected to a comparator. It
retrieves the events of the outputs of the presynaptic neurons and then it transmits a
stimuli to the inputs of the postsynaptic neurons, based on the network connectivity. The
network connectivity, chosen by the user through the connectivity matrix (see Appendix
A.3), determines which neuron is connected to which other neuron. This technique is
known as a virtual synapse technique.

Another abstraction concerns the action potentials. We assign boolean values to in-
dicate the presence or absence of an action potential. This assumption facilitates the
processing and transmission of the events of neurons. Finally, for reasons of compatibility
with the cellular level, there is no temporal abstraction made at the network level. We
always maintain biological real-time operability.

2As a consequence, there will be a limit to the maximum number of presynaptic neurons that can be
fired at the same moment with the maximum strength.
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4.1.3 Synaptic tuning: proposed method

The Galway chip is fully reconfigurable. Therefore, it is possible to tune the synapse
conductance value and the kinetics (time constant) of the exponential function (Figure 4.1)
using the synaptic output current available in the Galway chip. As indicated in Bornat’s
thesis (2006), it is necessary to tune the conductance parameter and the time constant of
the exponential decay for the synapse block. An efficient method for computing synaptic
conductance was proposed by Destexhe et al. [1994] which describes the time course
and the summation dynamics of the two principal types of synaptic interactions in the
central nervous system: the AMPA and GABAA postsynaptic receptors for excitation and
inhibition, respectively. As shown in Figure 4.3, we simulate the behavior of the AMPA
and GABAA synapses.

Figure 4.3 – Simulation of postsynaptic potentials (top), a synaptic current (middle) and
a presynaptic spike (middle) in simplified kinetic models for the AMPA (left)
and GABAA (right) receptors.
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We extracted the parameter values for equation 1.16 and equation 1.17 from the work
of Destexhe et al. [1998a], which can be used to generate references for our synaptic tuning,
using a conductance value of 0.1 nS and Esyn = 0 mV, Esyn = -80 mV for both AMPA
and GABAA, respectively. The membrane potentials were simulated using the NEURON
software [Hines and Carnevale, 1997]. To tune the kinetics, we can consider that the time
constants are roughly respectively 3 ms and 10 ms for AMPA and GABAA. As shown in
Figure 4.3, the biological values of the synaptic current are very low (pA). Therefore, it is
not possible to tune the synapses on the Galway chip using the synaptic current output
of the chip. Even if we increase the conductance value to 40 nS, we cannot measure the
corresponding hardware synaptic current. This aspect, which was not considered in the
design phase for the Galway chip, will affect the final results as we will see in the last
section of this chapter. We are obliged to consider the contribution of the postsynaptic
potential to tune the synapse.

As shown in the simulation in Figure 4.3, if we have a presynaptic spike, the contribu-
tion in terms of the postsynaptic membrane voltage is roughly +3 mV for AMPA and -1
mV for GABAA, which will be converted to the hardware value as explained in Chapter 3.
For every silicon neuron, it is necessary to calibrate both the excitatory and the inhibitory
synapse. As suggested by the simulations (Figure 4.3), we will set the postsynaptic neu-
ron to resting potential and then we will connect a presynaptic spike in a "virtual way",
as explained in the abstractions. Thus, we need to tune the synapse directly in the PAX
system3. We will show the results of the tuning in the last section of this chapter.

4.2 The PAX simulation system

Here, we describe the PAX platform which is dedicated to the simulation of cortical neural
networks. It was developed by Belhadj [2010] within the framework of a collaborative
project (EU project FACETS, FP6-IST-FETPI-2004- 15879), the aim of which is to lay
the theoretical and experimental foundations for the design of novel computing hardware
that exploits the concepts experimentally observed in the brain. Within the FACETS
project, two hardware platforms have been developed to emulate SNNs. This section is
dedicated to the first platform, called PAX. The second FACETS platform was developed
at the University of Heidelberg [Schemmel et al., 2007] and integrates, at the wafer scale,

3Please note that we can also tune the synapse, not in the PAX, by sending a pulse with the FPGA
directly on the synaptic block. It is equivalent to having a presynaptic spike connected to the silicon
neuron.
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large networks of LIF-modeled neurons in accelerated time. We start by describing the
general approach used for the design and then we focus on the parts that have already
been developed. In the next section (4.3), we will see the contribution that this thesis
makes to the development of the platform.

4.2.1 The methodological approach

The PAX simulation system is organized into three layers as shown in Figure 4.4.

Figure 4.4 – PAX platform processing layers and data flow.

The analog hardware layer runs continuous computations of the neuronal activity on
analog ASICs. The digital hardware layer is in charge of collecting spike event informa-
tion from the analog neurons and controls the synaptic connectivity, which feeds back to
the analog hardware. The next layer includes the software driver and interface, which
are in charge of controlling the transfer of bi-directional data to the software via a USB
connection. The details for each layer are provided below.

Analog computing core
The core of neural computation must address the compatibility constraints with bio-

physical models. As already explained in Chapter 3, the main features of this analog
computing core are:

• that computational models of spiking neurons are based on experimental data re-
lated to the electrophysiological behavior of neurons in different cortical areas and
the electrical quantities are proportional to the biological quantities;

• time-dependent phenomena must be done in biological real-time;
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• the parameterization of computational components must be flexible and easily mod-
ified to allow the configuration of several classes of neurons.

Finally, the computational cores of the ASICs are neural elements, each of which is
able to process the membrane voltage. It also includes a threshold comparator used for
spike detection and two synaptic conductances, respectively following the AMPA-type
(excitatory) and GABAA-type (inhibitory) kinetic models. Considering that each spike
detector converts the membrane potential to a 1-bit code, each neural element has two
output representations of the membrane potential: the continuous analog value and the
asynchronous digitized spikes.

The digital hardware layer
This layer must be able to reconfigure neural connections depending on the network

topology chosen. This means that all of the possibilities of inter-neuron connection must
be covered, ranging from a non-connected network to a completely connected network.
It is also possible to add information about each connection: plastic or not, excitatory
or inhibitory, synaptic initials weight, etc. The connections are governed by a plasticity
algorithm (STDP). A reprogrammable architecture allows the rapid implementation of
any changes in the plasticity model.

The analog custom ICs are controlled by the digital hardware layer. This layer is in
charge of collecting spike event information from analog neurons as well as computing
STDP algorithms and controlling the synaptic connectivity back to the analog hardware.
In more detail, the digitized outputs of each "neural element" are directly connected to
FPGA inputs. Once captured by the FPGA, these signals represent spike events, which
are computed by the STDP processor. The digital hardware layer is also in charge of
generating the synaptic weight-triggering signal (Figure 4.5).

Figure 4.5 – Structure and I/O for a neural element hardware.

This depends on the efficiency of each synaptic connection. This efficiency is calcu-
lated numerically by the plasticity algorithm and is then converted into a digital pulse
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(with 8-bit resolution), whose width encodes the synaptic weight value. The inhibitory or
excitatory nature of the synaptic current is determined by its sign, which is either posi-
tive or negative. Using the multi-synapse scheme, the neural network can handle all-to-all
connections, regardless of the number of neurons in the network.

The software layer
Within the software layer, a computer running a real-time operating system hosts ded-

icated software. It provides user interface functions to control the simulation configuration
both offline and online and to collect network state information. All of the simulations
are preceded by a configuration phase (see Appendix A.3) involving the definition and
transmission of a set of parameters (neural network topology), and the preparation of
external stimulation patterns (if needed).

4.2.2 A multi-board spiking neural network platform

Figure 4.6 shows the block diagram of the global system. The PAX simulation system
comprises a PC, running under LINUX, and a multi-board system called a "rack".
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Figure 4.6 – Structure of the neural network simulation system.

This rack comprises several (up to 20) daughter boards (Ekerö board, see Chapter 3)
and one mother board, all connected via a digital communication bus. The current ver-
sion of our system can host up to 120 neurons spread across six similar circuit-boards and
can be extended up to 20 boards all connected to a backplane with daisy-chain facilities.
Each Ekerö board hosts four analog ASICs and one Xilinx Spartan3 FPGA (denoted as
FPGA−DB in Figure 4.6). Each ASIC incorporates five neurons which compute in analog
mode conductance-based models following the Hodgkin-Huxley formalism. The neuron
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type, firing rate and response to stimulus can be configured in each neuron. When the
neuron output comparator detects an action potential, a digital 1-bit event is transmitted
to the FPGA−DB. In turn, the FPGA−DB transmits the address of the firing neuron
across the communication channel according to a token-ring access policy defined below.
In the meantime, the other FPGA−DB of the other boards scans the incoming events
and selects addresses that have a connection with one or many local neurons. The in-
put events are selected according to "virtual" connections (see Appendix A.3) stored in
each FPGA−DB. Finally, the FPGA−DB computes synaptic changes following the STDP
rules4, and generates a digital pulse whose width encodes the synaptic weight. This pulse
triggers the transition to the opening state of the synaptic channels in each postsynaptic
neuron [Belhadj, 2010].

The network topology consists of boards connected by point-to-point links forming
a circle, i.e. the token ring. A 1-bit pattern (called the token) circulates around the
ring (from board i to boards i+1, i+2, etc. up until board 6, and then to boards 1,
2, etc.), granting permission to send messages (if any). Message transmission is done
asynchronously over the parallel bus. Inter-board communication operates via a one-to-
many broadcast. The motherboard kicks off the circulation of the token and controls the
evolution of the simulation by scanning the activity over the parallel bus. Messages are
then asynchronously transmitted over the bus, which signifies that there is no clock used
to synchronize transmission between the boards. A photograph of the global system is
shown in Figure 4.7.

Figure 4.7 – Photograph of the rack.

4This part was implemented in a previous thesis [Belhadj, 2010] using a "digital" spike instead of an
analog neuron.
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A commercial power supply is used; it can deliver 60 A under 5 V. The mother board
is connected to the PC via a USB serial interface.

Structure of the mother board
The mother board, called Thalamos (Figure 4.8), is a 6-layer full-custom board.

Figure 4.8 – Photograph of the mother board Thalamos.

It hosts one FPGA (Xilinx Virtex 4 XC4VFX20, denoted as FPGA−MB in Figure 4.6).
The FPGA−MB has an external clock at 100 Mhz; it is associated with two SDRAM (256
Mbits each) clocked at 50 MHz and can be programmed by JTAG and a microcontroller
Cypress FX2 used for USB connection5. This board also comprises VME and USB con-
nectors.

VME backplane with daisy-chain capability
All of the boards are connected to a VME backplane via a specific connector (Figure

4.9).

Figure 4.9 – Synoptic of the backplane: with a daisy-chain, an empty slot (board 3)
results in a short in the input/output of the daisy-chain.

5The maximum number of neurons that we can connect is limited by the USB connection. The amount
of data was analyzed in B. Belhadj’s thesis (2010); it was established that we can connect a maximum of
112 neurons.
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Each connector has 96 contacts:

• six contacts for power supply (0 V, 5 V), corresponding to six backplane wires;
• 10 contacts dedicated to 5 daisy chain lines. The wire continuity is performed if the

slot is empty, otherwise the FPGA−DB located on the plugged board manages the
connectivity of these two contacts (Figure 4.9);

• 80 contacts for high rate data exchange (corresponding to 80 backplane wires).

Each wire supports a throughput of 25 Mbits/s. Since the FPGA (FPGA−MB and
FPGA−DB) is in charge of transmitting messages over the bus, it must respect the band-
width capacity of the metal wires. Each FPGA FPGA−MB and FPGA−DB) can transmit
messages with a throughput of 100 Mbit/s which must be divided by four to match the
wire backplane capacity. Thus, the amount of time required to transmit one message is
40 ns.

Tasks of the PAX platform
We can consider three different operations that must be performed in the layers that

make up the PAX platform: operations that must be performed before, during and at the
end of simulation. Before running a simulation on the PAX platform, the following tasks
must be carried out:

• Task 1: the digital hardware layer has to receive the configuration parameters of
the neurons (according to the chosen model) via the software layer, and send them
to the corresponding ASICs;

• Task 2: the digital hardware layer has to receive the plasticity configuration param-
eters: this consists of a user-defined network topology, the STDP parameters and
the initial synaptic weights (developed by Belhadj [2010]).

During a simulation using the PAX platform, the following tasks must be carried out:

• Task 1: the digital hardware layer has to receive spike events from the analog layer;
• Task 2: the digital hardware layer has to compute the STDP algorithms in real

time and update the synaptic weights and then send the synaptic input signal to
the postsynaptic neurons (developed by Belhadj [2010] and tested with the digital
spike generated by the FPGA);

• Task 3: the digital hardware layer has to send information about the state of the
network to the software layer.
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After a simulation in the PAX system, the following tasks must be carried out:

• Task 1: the software layer has to manage the results of the simulations;
• Task 2: the software layer has to provide a final user-friendly interface to plot the

data.

Table 4.1 summarizes these operations by specifying what we have to implement in
the PAX platform.

Table 4.1 – Tasks of the PAX platform performed before, during and at the end of the
simulation that we must implement in this work.

Task 1 Task 2 Task 3
before simulation not done done not present
during simulation not done done done
after simulation done not done not present

Figure 4.10 illustrates the different tasks of each of these layers. The digital hardware
layer is a set of FPGAs.

Token-ring

Board 1

Ionic channel

Board 6

Ionic channelMotherboard

na
l l

in
k

PC

Ionic channel

Multisynapses
Analog 

. . .
Digital

Ionic channel

Multisynapses
Analog 

. . .

Ex
te

rn

Digital

Stimulation

Distributed STDP

Detection
Communication

block

Configuration

Digital

Stimulation

Distributed STDP

Detection

Net. interface

Digital Communication Bus (VME)

Net. interface Net. interface

Digital Communication Bus (VME)

Figure 4.10 – Structures and functions in the neural network simulation system PAX.

The digital communication between the system and the workstation is assured by the
FPGA−MB of the mother board through a USB connection. The latter is in charge of
conveying information to (simulation results) and from (configuration data) the work-
station. On the other hand, the FPGA−DB of the daughter boards are in charge of
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assuring inter-board communication and the computation of the plasticity as well as the
management of the analog/digital interface.

The communication between the digital and analog hardware layers in each daughter
board forms a local simulation loop. Whenever a neuron generates an action potential,
this will later be detected by the local FPGA−DB, in which it will be routed towards the
target board according to the connectivity of the network, and then to the target ASIC.
In the opposite sense, whenever an external action potential arrives to the FPGA−DB, it
will set off the computation of the synaptic weights for the plastic connections and then
stimulate the target neurons by sending a width-modulated pulse to the corresponding
multisynapse(s). A synaptic current is then added to the silicon neuron and either helps
generate a new action potential (excitatory synapse) or inhibits its generation (inhibitory
synapse).

4.3 Tasks implemented in the PAX platform

In this section, we present the contribution of this work: the software layer provides a user
interface that helps generate configuration parameters for the computational processes of
the system and then the digital interface designed in VHDL interfaces the analog ASIC
in the PAX platform.

4.3.1 Workstation software

The host computer runs on a real-time patched GNU/Linux operating system based on
the Ubuntu distribution. The user defines, in the developed C code, the simulation to be
performed (neuron types, network connectivity, initial synaptic weights, and communica-
tion parameters, as shown in Figure 4.11).

The developed C code converts the data that we have to send to the platform into a
frame format for the digital bus (see the next section for the details of the frame format).
Therefore, the workstation will send this configuration to the mother board, which in
turn will distribute it to the daughter boards. This procedure defines the configuration
phase of the system. The Thalamos board uses a USB serial interface to communicate
with the PC. The interface relies on the dedicated Cypress FX2 micro-controller, which is
connected to the FPGA−MB (Figure 4.6). In order to send the correct amount of data,
we modified this driver. The VHDL code has been developed to read and send data to
and from the FX2.
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Figure 4.11 – Software interface in the host computer for the configuration phase. As an
example, three unconnected neurons (FS - RS - IB) are presented, where G
indicates the neuron number.

This serial link is only used to configure the network, to send the parameters and to
transfer offline data in order to process post-simulation data. The results are presented in
the next section, where we validate the driver by sending parameters in the PAX platform.

4.3.2 VHDL ASIC module for the PAX system

The analog hardware layer comprises the ASICs of each daughter board. With four
ASICs per board, each ASIC incorporates five neurons and 15 multisynapses (three mul-
tisynapses per neuron). ASICs compute, in continuous time, the electrical activity of
neurons following the Hodgkin-Huxley formalism.

There are three types of parameters that the software layer has to transmit to the
mother board and that the mother board then has to transmit to the ASICs:

• ASICs topology parameters for the specification of neuron type and synapse behav-
ior (digital parameters);

• ASICs data parameters for the neurons and synapses (analog parameters);
• ASICs stimulation parameters for an external stimulation current (analog).

The serial communication (USB) between the PC and the mother board allows the
FPGA to receive the digital and analog parameter values given by the user and then to
write the data on the VME bus.
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Protocol for the configuration phase
To convey the data from the mother board to the daughter boards, a one-directional

communication protocol for the system was designed. The frame format is given in Table
4.2.

Table 4.2 – Configuration of the frame format.

Board number Module identifier Configuration data
(8 bits) (8 bits) (32 bits)

The frame format contains the board number to address a specific board in the PAX
system, the module identifier, which selects the VHDL driver for the specific types of
parameters, and then the configuration data.

The configuration data frame format that we used for the analog and digital ASIC
parameters is given in Tables 4.3 and 4.4, respectively.

Table 4.3 – Frame format of the ASIC analog parameters.

0 Data Address ASIC Type (A/D)
(6 bits) (14 bits) (8bits) (3bits) (1 bit)

Table 4.4 – Frame format of the ASIC digital parameters.

0 Data ASIC Type (A/D)
(14 bits) (14 bits) (3 bits) (1 bits)

The driver for the ASIC parameters follows the protocol for analog and digital pa-
rameters, as already explained in Chapter 3.

ASIC module task development
The configuration frames are sent by the mother board, by broadcasting, over the

communication bus (Figure 4.12). The daughter boards identify whether or not these
frames concern them. They test the board number field in the header of the frame to
check if it matches their own number. If this is the case, the board takes the frame into
account and continues on to a decapsulation procedure to identify the target internal
module. The designed VHDL module (Figure 4.12) drives the refreshment procedure of
the analog memory cell array that stores the parameter values of each individual neuron.
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Figure 4.12 – Structures and functions in the PAX neural network simulation system.
The red parts indicate the added block, in this thesis, with respect to Figure
4.10.

The driver works on the data extracted from the digital bus making a decapsulation
procedure. It decides what neuron is addressed and then it will decapsulate the data into
14 bits for the DAC (analog parameters) and for the switch inside the ASICs (topology
setting). Furthermore, it generates the clock (100 kHz) for the DAC and for the digital
block (as previously explained in Chapter 3).

4.4 Results

In this section, we present the results of the tasks implemented in the PAX system. We
start with the measurements that are useful for validating the implementation of the
VHDL module for the configuration of the ASICs as well as the software layer developed
on the workstation. Finally, we present the synaptic tuning results.

4.4.1 Raster plot of neurons in the PAX system

To validate the software layer in the workstation and the VHDL module that receives the
parameters, we can directly test on the ASICs if the parameters are received (an example
of the parameter data for the neuron configuration is presented in Appendix 4.5). We
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start with the selection of five FS neurons in the software interface (Figure 4.13) with a
frequency in the 13-27 Hz range, without sending the parameters.

Figure 4.13 – Software interface in the host computer for the configuration phase of five
unconnected FS neurons.

For each Galway chip, a matrix of switches has to be configured to control the topology
of each neuron with a digital word, as already explained in Chapter 3. To test the module,
we send one 14-bit word (for the topology) to the dedicated serial input of one Galway
chip and we measure the chronograms of the ASIC inputs as shown by Figure 4.14.

Figure 4.14 – Chronograms of the ASIC inputs for the topology configuration.

The data shown in Figure 4.14 are related to only one parameter value for the topology
that is received by the ASICs in the correct way. In any case, in order to simulate neuronal
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activity, each neuron needs a set of parameters, encoded as voltage values, that are stored
in the analog memory cells inside the Galway chip. The values of the original parameters
are encoded as 14 bits, and are stored in a RAM synthesized into the FPGA−DB and
sent via a serial DAC to the ASIC. For the five neurons, i.e. for one chip, we have to
refresh 205 analog parameters every 2 ms. Thus, to test the VHDL ASIC module (and
the software tools), we need to send all of the parameters for some neurons and detect the
neuronal activity on the rack (see Appendix A.3 for details on the PAX configurations).

Therefore, we send the parameters for one FS neuron and then we measure the firing
rate (Figure 4.15). The membrane voltage measurements are not presented because they
are the same signals as those shown in Chapter 3. The difference lies in the fact that they
are now measured in the PAX system, even though they were previously measured in a
single board system.

Figure 4.15 – Firing rate of one FS neuron measured in the PAX system.

As shown in Figure 4.15, the measured firing rate provides another confirmation that
the system works properly. The firing rate is within the same range as the firing rate that
was already investigated in Chapter 3 for the FS cells.

Furthermore, we sent the parameters for five FS neurons (with a frequency in the
13-27 Hz range) split onto two ASICs on two different boards and then we measured the
raster plot, as shown in Figure 4.16.
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Figure 4.16 – Raster plot of a 5-FS neuron network spread across two boards with a
frequency in the 13-27 Hz range.

The system detects the neuronal activity, as we can see on the raster plot (Figure 4.16)
generated offline by the software layer developed for a simulation time of four seconds.

4.4.2 Synaptic tuning

As previously explained, we are obliged to carry out the synaptic tuning while consid-
ering the postsynaptic membrane potential in a network of only two neurons, in which
the postsynaptic neuron is at resting potential. Due to the "virtual connection", we can
directly send a pulse to the postsynaptic neuron (which signifies the presence of a presy-
naptic spike) generated by the FPGA−DB. As indicated by the designer of the Galway
chip [Bornat, 2006], we can transmit a maximum pulse of 60 µs to drive the synaptic
block. This pulse and the conductance value control the strength of the synaptic connec-
tion. There are three parameters that we have to tune: the conductance value, the time
constant and the reversal potential for the synapses. This procedure is done manually,
while taking the potential contribution of the postsynaptic membrane into account.

Considering that the clock frequency of the FPGA−DB is 100 MHz, and the pulse of
10 ns is modulated with 8-bit resolution by the STDP processor (designed in a previous
thesis [Belhadj, 2010]), we need to tune the synaptic block with a pulse from 0 up to
2.56 µs. We chose a pulse of 1.28 µs (the middle value) to tune the AMPA and GABAA
synapses using biological data, as explained in section 4.1. This means that if we calibrate
the synaptic conductance value sending a pulse of 1.28 µs, the modulation of this pulse
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(through the STDP) must change the strength of the synaptic connection. In particular,
for pulse values greater than 1.28 µs, the conductance value has to increase; conversely,
this value must decrease when the pulse values are less than 1.28 µs.

Due to the hardware scaling factor between the biological data and the hardware data
(as explained in Chapter 3), we need to see a contribution of 15 mV for AMPA and -5
mv for GABAA in the postsynaptic neuron membrane potential. Using this value as a
reference, we manually tuned the AMPA and GABAA synapses (the reversal potential
values and the time constant parameter values are presented in section 4.1).

During this phase, we noticed that is not possible, as previously mentioned (section
4.1), to work with the biological constraints. This means that in the design phase for
the Galway chip, a good factor scale between the biological and the hardware synaptic
conductance value, which has to be in the order of one thousand, was not considered.
Furthermore, it is not possible to do a simulation with plasticity (STDP) because the
synaptic block does not respond to the width-modulated pulse (8-bit) generated by the
STDP processor (ranging from 0 up to 2.56 µs.).

Thus, we decided to increase the pulse value and the conductance value for the AMPA
and GABAA synapses. The results for the AMPA synapse are shown in Figure 4.17.

Figure 4.17 – Raster plot of a 6-FS neuron network spread across two boards with a
frequency in the 13-54 Hz range. Neuron number 6 is connected to one
AMPA synapse that receives a pulse of 60 µs (presynaptic spike) after about
1 second of simulation.
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We sent the parameters for the six FS neurons (with a frequency in the 13-54 Hz
range) split onto two ASICs on two different boards, while taking the synapse param-
eters without biological meaning into account. The simulation was carried out for 2
seconds. During the simulation, after about 1 second, a pulse of 60 µs6 was transferred
to the AMPA synaptic block of FS neuron number 6 through the FPGA−DB. As shown
in Figure 4.17, the system detects all of the neuron activity and the AMPA excitation
is also detected on neuron 6, where we noticed an increase in the frequency (due to the
excitatory synapse) after the transmission of the presynaptic spike pulse.

As for the GABAA synapse, we performed the same type of simulation as shown in
Figure 4.18. As in the previous case, the system detects the activity.

Figure 4.18 – Raster plot of a 6-FS neuron network spread across two boards with a
frequency in the 13-54 Hz range. Neuron number 6 is connected to one
GABAA synapse that receives a pulse of 60 µs (presynaptic spike) before 1
second of simulation.

In the case of neuron 6, we noticed an inhibition of the activity (due to the inhibitory
synapse) after the transmission of the presynaptic spike pulse. The simulations suggest
that it is necessary to work with a strong synapse (increasing the conductance value) to
produce some results. In this case where the synaptic current is stronger (µA) than the
biological case (ρA), it is possible to record the synaptic current from the ASIC; however,
this is not useful for our purposes. In any case, it is not possible to conduct the plasticity

6This value is not the desired value for the 8-bit modulation.
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(STDP) simulation, as previously explained, due to the problem on the synaptic block.
As the digital platform is fully operating, it is therefore necessary to design new ASICs
to complete this work. This aspect will be discussed in the final conclusions.

4.5 Conclusion

In this chapter, we presented our mixed hardware and software platform that is specifically
designed to simulate spiking neural networks using conductance-based models of neurons.
The rationale for this development is to provide a tool for computational neuroscience that
ensures real-time processing and a bi-directional connection with the biological element.
Thus, the main goal is to have a hardware platform that can communicate with the
biological neural network. The platform, which was previously designed by Belhadj [2010],
was able to perform simulations with digital spikes directly generated in the platform.
The platform was missing an interface between the platform and the analog neuron, the
synapses were not tuned with the biological values, and we needed a software to manage
the configuration phase in the host computer.

To solve these problems, we started by introducing the main abstractions used at
the neuron and network level, and then we described the features and basic functions of
the PAX simulator. We focused on our contribution to the development of this mixed
hardware-software platform for the real-time simulations of spiking neural networks us-
ing software tools and a VHDL driver for the neuron configuration in the platform. In
particular, the system detects the neuronal activity, as can be seen on the raster plot
generated by the software layer that was developed. Therefore, to address our main goal,
we propose a method to calibrate the synapses in our system. However, during this phase,
we noticed that is not possible to work with the biological constraints (due to a bad factor
scale between the biological value and the hardware synaptic conductance value in the
Galway chip). Furthermore, it is not possible to perform a pertinent simulation using the
plasticity rule, because the synaptic block does not respond to the width-modulated pulse
(8-bit) generated by the STDP processor (ranging from 0 up to 2.56 µs.). As a result, we
also showed two raster plots of six FS neurons spread across two boards, in which neuron
number 6 has been connected with an AMPA synapse (and in a second case, with only
a GABAA synapse) that receives a pulse of 60 µs (presynaptic spike). The performed
hardware simulations demonstrate that the hardware platform is fully operational in the
digital layer. We will discuss the implications of this work in the conclusion of this thesis.
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The understanding of neuronal circuits is a great challenge which involves a large num-
ber of researchers from different disciplinary fields. All fields, including neuromorphic
engineering, contribute to this understanding. The goal of this thesis is to improve the
artificial-biological hybrid technique. We simulate the four most prominent biological cells
present in the neocortex in conductance-based analog neuromimetic integrated circuits us-
ing electrophysiological recordings as a reference. Our results show that our system is able
to reproduce the main features of the four common classes of cortical cells. Furthermore,
we contribute to the development of a mixed hardware-software platform for simulating
spiking neural networks in real time. At the end of this manuscript, we will summarize
the work that we carried out. In this general conclusion, we will discuss the context in
which this work it is placed and then we will present the work and the results obtained
in detail. We will conclude by discussing the implications of this work.

Work context
This work was carried out within the framework of the European project FACETS-

ITN (FP7-PEOPLEITN-2008-237955; 2009-2014). This project was undertaken in a mul-
tidisciplinary environment in which neuroscientists provide biological measurements to
computational neuroscientists who then propose a simulation model to study the single
cell or neural network dynamics. Finally, experts in neuromorphic engineering use the
neuronal properties to build neurally inspired computing hardware.

In parallel with Prof. K. Meier’s group at the University of Heidelberg in Germany, our
group is involved in the design, simulation and implementation of neuromorphic systems.
Two design approaches are used. The Heidelberg team designs VLSI circuits to simulate
large accelerated neural networks. They plan to integrate 1 million integrate-and-fire
neurons. This large network is simulated at the expense of the accuracy of the models



106 Conclusions and implications

used. The simulation time scale is about 104 times the biological time scale [Schemmel
et al., 2007].

On the other hand, our team designs analog circuits to simulate neurons according to
the Hodgkin and Huxley formalism in order to model several types of neuron complexes
operating on a biological time scale. The goal is to build an artificial spiking neural
network (in the order of hundreds of neurons) to achieve a high degree of realism to extend
the hybrid technique, also called the "dynamic-clamp" technique [Le Masson et al., 1995],
to micro-electrode arrays [Bontorin et al., 2007]. This technique consists of connecting
artificial and biological neurons to create a real-time loop [Sorensen et al., 2004].

The work presented in this thesis is the continuation of work done by the group.
The analog VLSI circuits that represent the artificial neurons are the result of the work
of Alvado [2003], Saïghi [2004] and Bornat [2006]. Several ASICs have been designed
and manufactured for this purpose. The Galway circuit is the latest version of ASICs
designed by our group that integrates five configurable neurons. Neuromorphic systems
were designed from these circuits [Belhadj, 2010]. The main objectives of this thesis are:

• to simulate the four most prominent biological cells present in the neocortex (Fast-
Spiking, Regular-Spiking, Intrinsically Bursting and Low-Threshold Spiking neu-
rons) in conductance-based analog neuromimetic integrated circuits using electro-
physiological recordings as a reference;

• to contribute toward the development of a mixed hardware-software platform in
order to simulate a spiking neural network (SNN) in real time.

Results of this work
To address the first objective of this thesis, we performed the following work:

• we proposed the appropriate parameter sets of the FS, RS, IB, and LTS neurons
for a simplified version of the HH formalism that can be implemented in our analog
neuromimetic chip. By comparing the software simulations of our simplified neuron
model with the HH models for cortical neuron cells, we show that the simplified
models can reproduce the main firing features of cortical cell types (see Chapter 2);

• we described the steps used to extract the parameters from the HH model, using bi-
ological data, to the one implemented in the VLSI neurons, validating the simplified
model through a bifurcation analysis (see Chapter 2).
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In particular, using a bifurcation analysis, we showed numerical simulations of the
Hopf bifurcation which is characteristic of Class 2 excitability in the HH model. We
compared these results with the HH model, showing that our model shares the dynamics
with the full HH model. We published this methodology to validate our simplified model
by showing that our silicon neuron has nonlinear dynamical phenomenon similar to a
certain class of biological neurons [Grassia et al., 2012].

Therefore, we show (see Chapter 3) that the circuits can reproduce the main firing
features of cortical cell types by comparing them with experimental electrophysiological
data of these cells. We performed the following work:

• we designed the interface in VHDL to send the parameters to the silicon neurons;
• due to process variations and device mismatch in the analog chips, we proposed a

fully customizable fitting method, in voltage-clamp mode, to tune our neuromimetic
integrated circuits. This optimization method, based on the DE algorithm that
we pubblished [Buhry et al., 2011], is an alternative to the estimation methods
associated with voltage-clamp measurements. In any event, we observed a large
discrepancy for all of the parameters, which confirms the necessity of the tuning
step;

• we designed the software interface to manage the fully customizable fitting method,
in voltage-clamp mode, to tune our neuromimetic integrated circuits;

• finally, we tested the parameters obtained by comparing the behavior of the mem-
brane voltage in the recordings of biological cells with the membrane voltages simu-
lated with our chip. This comparison is possible due to the translation rules between
biological and hardware neurons based on the chip characteristics. We directly com-
pared the behavior of our chip with biological recordings. Our results [Grassia et al.,
2011] show that our system is able to reproduce the main features of the four com-
mon classes of cortical cells.

Thus, we addressed the first objective of this thesis, which was to propose an optimiza-
tion method to tune the ASIC parameters, to use a bifurcation analysis to validate the
parameter extraction steps for our approximated model and then to compare the results
with biological recordings. We can assert that these ASICs can be used to form the core
of a simulation platform, designed to simulate neural networks in biologically relevant
configurations.

Therefore, regarding the second objective of this thesis, we presented (see Chapter 4)
the spiking neural networks (SNN) simulator developed by our team that is called PAX
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(Plasticity Algorithm for Computing System) that hosts the chip. Hence, we described
the work done for the silicon neuron integration on PAX and the synaptic tuning. We
performed the following work:

• we designed the interface in VHDL for the neuron configuration in the platform
that manages: 1) the ASICs topology parameters for the specification of neuron
type and synapse behavior (digital parameters), 2) the ASIC data parameters for
the neurons and synapses (analog parameters), 3) the ASIC stimulation parameters
for an external stimulation current (analog);

• we designed the software interface to convert the data that we have to send to
the platform in a frame format for the digital bus. This procedure defines the
configuration phase of the system;

• we proposed a method for the synaptic tuning of the AMPA and GABAA synapses
in the PAX system.

As for the results and validation of the work performed in the PAX system, we pre-
sented hardware simulations that demonstrate that the hardware platform is fully oper-
ational in the digital layer. Therefore, we have achieved the objectives assigned. Fur-
thermore, as main goal of the work of our group, we observed a problem in the hardware
multisynapse block, on the ASICs, that does not allow a pertinent simulation of biologi-
cally relevant SNNs to be performed using STDP.

Implications
Biological neural systems are very complex compared to models simulated with cir-

cuits. As we have seen, the abstraction of details is necessary. Our group chose to make
biologically inspired neuromorphic systems. To this end, we chose silicon neuron and
plasticity models to satisfy the desired degree of realism. Thus, a mixed hardware and
software platform for the emulation of cortical neuron models and then SNN (composed
of hundreds of silicon neurons) was proposed. As in many other fields of microelec-
tronics, a mixed implementation offers both the advantages and disadvantages of both
solutions: analog circuits have a higher integration density, and digital platforms have
better programmability. In our case, taking into account the problems observed for the
synaptic tuning, a newly designed analog ASIC is thus necessary to replace the one used
in the PAX system. Moreover, we have to take advantage of this design to think about
a standard unified communication protocol for bio-inspired and bio-mimetic information
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processing systems and neurophysiological devices. Many research groups have developed
their own bio-inspired systems which cannot be connected to each other. These systems
include communication buses to manage the neural events, i.e. action potentials, also
called spikes. These solutions are not compatible with each other. We launched this work
with Matthieu Ambroise, who started his thesis in October 2012.

We cannot finish this thesis without talking about the circuit calibration and com-
menting on the architecture chosen for the real-time simulations of small biologically
inspired neural networks. Due to a mismatch and process variations in the manufactur-
ing of the silicon neuron, it was necessary to use an automated tuning to calibrate the
neurons one by one. We proposed a method based on heuristic algorithms [Buhry et al.,
2011]. Optimizations are still needed to reduce the amount of time needed to use these
algorithms to extract the appropriate set of parameters. Therefore, the synaptic tuning
should be addressed in the same way. This means that if a new analog ASIC is designed,
it will be necessary to calibrate all of the neurons and then the synapses again. This
platform was designed to simulate SNNs in biological real time using conductance-based
models of neurons and synaptic connections in order to develop a hybrid technique that
connects silicon and biological neurons in real time. Currently, it offers the possibility of
dynamically tuning the neuron model parameters (with a biological significance).

Given the complex nature of this work, the question is raised of whether or not to
insist on this type of architecture or to change to a completely digital replacement of
the "analog neuron" with a "digital neuron". Therefore, it becomes necessary to study
the feasibility of using digital neurons in a biological time scale (with a high degree of
"realism"), at the same time that a new analog silicon neuron is designed, while taking
the same methodologies introduced in this thesis to validate the neuronal activity into
account. In particular, the firing rate and a bifurcation analysis can be of help in the
methodology used to validate the results.

What are the possible applications of a system of this type? Multiple applications
from different research areas can exploit these systems: 1) a neural network simulator
that operates with a high degree of realism is the right tool to perform experiments
that are not feasible in biology; 2) a neuromorphic system operating in real time may
be biologically interfaced with live neural networks in an open or closed loop [Bontorin
et al., 2007]. The system can play the role of both stimulator synapses live and a device
for acquiring cell responses in culture in-vivo . Our team is an expert in both applications.
We will be able to take this work further thanks to the following projects: BRAIN-BOW,
GIHON and HySNET. The BRAIN-BOW project will provide the knowledge to create a
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new class of neuroprosthetics that can be used to treat diseases in which a portion of the
brain tissue is damaged (e.g. lesion). The ultimate goal of the project is to connect in
vitro neuronal assemblies to an artificial system (a neuromorphic chip) that will attempt
to restore the lost neuronal functionality, with the long-term perspective to be implanted
in humans affected by invalidating brain diseases. The goal of the GIHON project is to
design a universal, bio-inspired bus communication protocol. The goal of the HySNET
project is to investigate the suggestion that the effects of noise on neural computation
can be simulated and studied efficiently by using stochastic neuronal models in Very
Large Scale Integration (VLSI) systems and by connecting the VLSI neurons to biological
neurons to form hybrid networks.



Publications

Journal articles
Grassia, F., Lévi, T., Saïghi, S., and Kohno, T. (2012). Bifurcation analysis in a silicon

neuron. Artificial Life and Robotics, 17:53-58.

Grassia, F., Buhry, L., Lévi, T., Tomas, J., Destexhe, A., and Saïghi, S. (2011). Tunable
neuromimetic integrated system for emulating cortical neuron models. Frontiers in
Neuroscience, 5(134).

Buhry, L., Grassia, F., Giremus, A., Grivel, E., Renaud, S., and Saïghi, S. (2011).
Automated parameter estimation of the hodgkin-huxley model using the differential
evolution algorithm: Application to neuromimetic analog integrated circuits. Neural
Computation, 23(10):2599-2625.

Conferences
Grassia, F., Lévi, T., Saïghi, S., and Kohno, T. (2012). Bifurcation analysis in a silicon

neuron. 16th International Symposium on Artificial Life and Robotics, Beppu, Japan,
19-21 January 2012.

Grassia, F., Lévi, T., Tomas, J., Renaud, S., and Saïghi, S (2011). A Neuromimetic
Spiking Neural Network for Simulating Cortical Circuits. 45st Annual Conference
on Information Sciences and Systems, CISS 2011, The John Hopkins University,
Baltimore, MD, USA, 23-25 March 2011.





References

Abbott, L. F. (1999). Lapicque’s introduction of the integrate-and-fire model neuron
(1907). Brain Res Bull, 50(5-6):303–304. 17

Alvado, L. (2003). Neurones artificiels sur Silicium: une évolution vers le réseau. PhD
thesis, University Bordeaux 1 – n. 2674. 106

Arbib, M. A. (1995). The Handbook of Brain Theory and Neural Networks. MIT Press,
Cambridge, MA, USA, 1st edition. 1

Belhadj, B. (2010). Systèmes neuromorphiques temps réel : contribution à l’intégration de
réseaux de neurones biologiquement réalistes avec fonctions de plasticité. PhD thesis,
University Bordeaux 1 – n. 6357. xx, xxi, xxii, 24, 27, 63, 81, 86, 90, 92, 100, 103, 106,
130

Bi, G. and Poo, M. (2001). Synaptic modification by correlated activity: Hebb’s postulate
revisited. Annual review of neuroscience, 24(1):139–166. 24

Binczak, S., Jacquir, S., Bilbault, J.-M., Kazantsev, V. B., and Nekorkin, V. I. (2006).
Experimental study of electrical fitzhugh-nagumo neurons with modified excitability.
Neural Networks, 19(5):684–693. 25

Bontorin, G., Renaud, S., Garenne, A., Alvado, L., Le Masson, G., and Tomas, J. (2007).
A real-time closed-loop setup for hybrid neural networks. Annual International Con-
ference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in
Medicine and Biology Society Conference, 2007:3004–7. 13, 106, 109

Bornat, Y. (2006). Réseaux de neurones sur silicium : une approche mixte, analogique /
numérique, pour l’étude des phénomènes d’adaptation, d’apprentissage et de plasticité.
PhD thesis, University Bordeaux 1 – n. 3261. xx, 20, 23, 31, 39, 59, 64, 83, 85, 100,
106, 123



114 Conclusions and implications

Bornat, Y., Tomas, J., Saighi, S., and Renaud, S. (2005). BiCMOS Analog Integrated
Circuits for Embedded Spiking Neural Networks. In Proeeding of XX Conference on
Design of Circuits and Integrated Systems, DCIS 2005, page 1, Lisbon, Portugal. NC.
25

Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J., Diesmann,
M., Morrison, A., Goodman, P., Harris, F., Zirpe, M., NatschlÃ¤ger, T., Pecevski,
D., Ermentrout, B., Djurfeldt, M., Lansner, A., Rochel, O., Vieville, T., Muller, E.,
Davison, A., El Boustani, S., and Destexhe, A. (2007). Simulation of networks of spiking
neurons: A review of tools and strategies. Journal of Computational Neuroscience,
23:349–398. xviii, 24

Buhry, L. (2010). Estimation de paramètres de modèles de neurones biologiques sur une
plate-forme de SNN (Spiking Neural Network) implantés "in silico". PhD thesis, Uni-
versity Bordeaux 1 – n. 4057. xx

Buhry, L., Grassia, F., Giremus, A., Grivel, E., Renaud, S., and Saïghi, S. (2011). Auto-
mated parameter estimation of the hodgkin-huxley model using the differential evolu-
tion algorithm: Application to neuromimetic analog integrated circuits. Neural Com-
putation, 23(10):2599–2625. xx, xxii, 20, 21, 59, 67, 70, 79, 107, 109

Buhry, L., Saïghi, S., Giremus, A., Grivel, E., and Renaud, S. (2008). Parameter estima-
tion of the Hodgkin–Huxley model using metaheuristics: application to neuromimetic
analog integrated circuits. In Proceedings of IEEE International Conference on Biomed-
ical circuits and Systems, pages 173–176, Baltimore USA. 67

Casti, A., Omurtag, A., Sornborger, A., Kaplan., E., Knight, B., Victor, J., and Sirovich,
L. (2002). A population study of integrate-and-fire-or-burst neurons. Neural Compu-
tation, 14(5):957–986. 18

Churchland, P. S., Koch, C., and Sejnowski, T. J. (1993). What is computational neu-
roscience? In Schwartz, E. L., editor, Computational neuroscience, pages 46–55. MIT
Press, Cambridge, MA, USA. xvii

Cole, K. S. (1949). Dynamic electrical characteristics of the squid axon membrane. Arch.
Sci. Physiol., 3:253–258. 21

Connors, B. W. and Gutnick, M. J. (1990). Intrinsic firing patterns of diverse neocortical
neurons. Trends in neurosciences, 13(3):99–104. 11, 13, 48, 71, 76, 77

Cooper, D. C. (2011). Introduction to neuroscience I. Donald C. Cooper Ph.D. 2

Daouzli, A. (2009). Systémes neuromorphiques: Etude et implantation de fonctions
d’apprentissage et de plasticité. PhD thesis, University Bordeaux 1 – n. 3806. xx



Conclusions and implications 115

De la Peña, E. and Geijo-Barrientos, E. (1996). Laminar localization, morphology, and
physiological properties of pyramidal neurons that have the low-threshold calcium cur-
rent in the guinea-pig medial frontal cortex. The Journal of Neuroscience, 16(17):5301–
5311. 54

Destexhe, A. (2001). Simplified models of neocortical pyramidal cells preserving somato-
dendritic voltage attenuation. Neurocomputing, 38:167–173. 54

Destexhe, A. and Huguenard, J. (2000). Which formalism to use for modeling voltage-
dependent conductances? In DeSchutter, E., editor, Computational Neuroscience:
Realistic Modeling for Experimentalists, pages 129–157. CRC Press, Boca Raton FL.
32

Destexhe, A., Mainen, Z. F., and Sejnowski, T. J. (1994). An efficient method for com-
puting synaptic conductances based on a kinetic model of receptor binding. Neural
Computation, 6(1):14–18. 23, 85

Destexhe, A., Mainen, Z. F., and Sejnowski, T. J. (1998a). Kinetic models of synaptic
transmission. Methods in Neuronal Modeling, pages 1–25. 23, 83, 86

Destexhe, A., Neubig, M., Ulrich, D., and Huguenard, J. (1998b). Dendritic Low-
Threshold Calcium Currents in Thalamic Relay Cells. The Journal of Neuroscience,
18(10):3574–3588. 39

Destexhe, A., Rudolph, M., and Pare, D. (2003). The high-conductance state of neocor-
tical neurons in vivo. Nature Reviews Neuroscience, 4(9):739–751. 52

Farquhar, E. and Hasler, P. (2005). A bio-physically inspired silicon neuron. IEEE
Transactions on circuits and systems, 52(3):477–488. 25

Feiner, A.-S. and McEvoy, A. J. (1994). The nernst equation. Journal of Chemical
Education, 71(6):493. 4

Feoktistov, V. and Janaqi, S. (2004). Generalization of the strategies in differential evolu-
tion. In 18th International Parallel and Distributed Processing Symposium, 26-30 April
2004, Santa Fe, New Mexico, USA. IEEE Computer Society. 67

Fieres, J., Schemmel, J., and Meier, K. (2006). Training convolutional networks of thresh-
old neurons suited for low-power hardware implementation. In Proceedings of the In-
ternational Joint Conference on Neural Networks, part of the IEEE World Congress
on Computational Intelligence, WCCI 2006, Vancouver, BC, Canada, 16-21 July 2006,
pages 21–28. IEEE. 25

FitzHugh, R. (1955). Mathematical models of threshold phenomena in the nerve mem-
brane. The Bulletin of Mathematical Biophysics, 17:257–278. 15



116 Conclusions and implications

FitzHugh, R. (1961). Impulses and physiological states in theoretical models of nerve
membrane. Biophysical Journal, 1:445–466. 15

Geit, W. V., Schutter, E. D., and Achard, P. (2008). Automated neuron model optimiza-
tion techniques: a review. Biological Cybernetics, 99:241–251. 21, 67

Gerstner, W. and Kistler, W. M. (2002). Spiking Neuron Models: Single Neurons, Popu-
lations, Plasticity. Cambridge University Press. 17, 18

Gibson, J. R., Beierlein, M., and Connors, B. W. (1999). Two networks of electrically
coupled inhibitory neurons in neocortex. Nature, 402(6757):75–79. 11, 71, 77

Glackin, B. P., McGinnity, T. M., Maguire, L. P., Wu, Q., and Belatreche, A. (2005). A
novel approach for the implementation of large scale spiking neural networks on fpga
hardware. In Cabestany, J., Prieto, A., and Hernàndez, F. S., editors, Computational
Intelligence and Bioinspired Systems, 8th International Work-Conference on Artificial
Neural Networks, volume 3512 of Lecture Notes in Computer Science, pages 552–563.
Springer. 25, 26

Graas, E. L., Brown, E. A., and Lee, R. H. (2004). An fpga-based approach to high-speed
simulation of conductance-based neuron models. Neuroinformatics, 2(4):417–435. 25,
26

Grassia, F., Buhry, L., Lévi, T., Tomas, J., Destexhe, A., and Saïghi, S. (2011). Tunable
neuromimetic integrated system for emulating cortical neuron models. Frontiers in
Neuroscience, 5(134). xxi, xxii, 70, 107

Grassia, F., Lévi, T., Saïghi, S., and Kohno, T. (2012). Bifurcation analysis in a silicon
neuron. Artificial Life and Robotics, 17:53–58. xxi, xxii, 47, 107

Hansel, D., Mato, G., and Meunier, C. (1993). Phase dynamics for weakly coupled
Hodgkin-Huxley neurons. Europhysics Letters, 23:367–372. 31, 37, 39, 40, 41, 45

Hasler, P. E., Koziol, S., Farquhar, E., and Basu, A. (2007). Transistor channel dendrites
implementing hmm classifiers. In International Symposium on Circuits and Systems,
pages 3359–3362. 25

Hassard, B. B. (1978). Bifurcation of periodic solutions of hodgkin-huxley model for the
squid giant axon. Journal of Theoretical Biology, 71(3):401–420. 45

Hassard, B. D., Kazarinoff, N. D., and Wan, Y.-H. (1981). Theory and applications of Hopf
bifurcation / B.D. Hassard, N.D. Kazarinoff and Y.-H. Wan. Cambridge University
Press, Cambridge ; New York :. 44, 45

Hille, B. (1991). Ionic Channels of Excitable Membranes. Sinauer Associates, 2 sub
edition. 36



Conclusions and implications 117

Hindmarsh, J. L. and Rose, R. M. (1984). A model of neuronal bursting using three
coupled first order differential equations. In Proceedings of the Royal Society, B, volume
221, pages 87–102. 16

Hines, M. L. and Carnevale, N. T. (1997). The neuron simulation environment. Neural
Computation, 9(6):1179–1209. 24, 86

Hodgkin, A. L. (1948). The local electric changes associated with repetitive action in a
non-medullated axon. The Journal of physiology, 107(2):165–181. 42, 44

Hodgkin, A. L. and Huxley, A. F. (1952). A quantitative description of membrane current
and its application to conduction and excitation in nerve. The Journal of Physiology,
117(4):500–544. 13, 21, 31, 33, 35

Indiveri, G., Chicca, E., and Douglas, R. (2006). A VLSI array of low-power spiking neu-
rons and bistable synapses with spike–timing dependent plasticity. IEEE Transactions
on Neural Networks, 17(1):211–221. 25

Indiveri, G. and Fusi, S. (2007). Spike-based learning in VLSI networks of integrate-and-
fire neurons. In International Symposium on Circuits and Systems, pages 3371–3374.
IEEE. 25

Izhikevich, E. M. (2000). Neural Excitability, Spiking and Bursting. International Journal
of Bifurcation and Chaos, 10(6):1171–1266. 13, 42

Izhikevich, E. M. (2001). Resonate-and-fire neurons. Neural Networks, 14(6-7):883–894.
19

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions on Neural
Networks, 14(6):1569–1572. xvii, 19, 20

Izhikevich, E. M. (2004). Which model to use for cortical spiking neurons? IEEE
Transactions on Neural Networks, 15(5):1063–1070. 11, 13

Izhikevich, E. M. and Edelman, G. M. (2008). Large-scale model of mammalian thalam-
ocortical systems. Proceedings of the National Academy of Sciences, 105(9):3593–3598.
xvii

Jung, R., Brauer, E. J., and Abbas, J. J. (2001). Real-time interaction between a neuro-
morphic electronic circuit and the spinal cord. IEEE Transactions on Neural Systems
and Rehabilitation Engineering, 9(3):319–326. 25

Kandel, E. R., Schwartz, J. H., and Jessell, T. M. (2000). Principles of Neural Science.
McGraw-Hill Medical, 4th edition. 2, 3, 6, 37

Karaboga, D. and S.Okdem (2004). A simple and global optimization algorithm for
engineering problems: Differential evolution algorithm. Computer Journal of Turk
Electronic Engineering, 12(1). 68



118 Conclusions and implications

Keren, N., Peled, N., and Korngreen, A. (2005). Constraining compartmental models
using multiple voltage-recordings and genetic algorithms. J. Neurophysiol, 94:3730–
3742. 21

KIN450 (2009). Synaptic transmission. http://kin450-neurophysiology.wikispaces.
com/Synaptic+Transmission. 10

Koene, R. and Hasselmo, M. (2005). An Integrate-and-fire Model of Prefrontal Cortex
Neuronal Activity during Performance of Goal-directed Decision Making. Cerebral
Cortex, 15(12):1964–1981. 18

Le Masson, G., Le Masson, S., and Moulins, M. (1995). From conductances to neural net-
work properties: analysis of simple circuits using the hybrid network method. Progress
in Biophysics and Molecular Biology, 64(2-3):201–220. 13, 106

Le Masson, G., Renaud-Le Masson, S., Debay, D., and Bal, T. (2002). Feedback inhibition
controls spike transfer in hybrid thalamic circuits. Nature, 417(6891):854–858. xviii,
25, 27, 82

Lecar, H. (2007). Morris-lecar model. Scholarpedia, 2(8):1333. 16

Lester, D. R. and Furber, S. (2011). Spinnaker: Distributed computer engineering for
neuromorphics. In Apolloni, B., Bassis, S., Esposito, A., and Morabito, F. C., editors,
WIRN, volume 234 of Frontiers in Artificial Intelligence and Applications, pages 324–
331. IOS Press. 26

Liu, S.-C. and Douglas, R. (2004). Temporal coding in a silicon network of integrate-and-
fire neurons. Transactions on Neural Networks, 15(5):1305–1314. 25

Llinás, R. R. (1988). The intrinsic electrophysiological properties of mammalian neurons:
insights into central nervous system function. Science, 242(4886):1654–1664. 32

Mahowald, M. and Douglas, R. (1991). A silicon neuron. Nature, 354:515 – 518. xviii, 25

Millner, S., Hartel, A., Schemmel, J., and Meier, K. (2012). Towards biologically realistic
multi-compartment neuron model emulation in analog vlsi. In European Symposium on
Artificial Neural Networks, Computational Intelligence and Machine Learnin (ESANN),
Bruges, BELGIUM. 26

Misra, J. and Saha, I. (2010). Artificial neural networks in hardware: A survey of two
decades of progress. Neurocomputing, 74(1-3):239–255. xviii

Morris, C. and Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber.
Biophysical Journal, 35:193–213. 15

Nagumo, J., Arimoto, S., and Yoshizawa, S. (1962). An active pulse transmission line
simulating nerve axon. In Proceedings of Institute of Radio Engineers, volume 50, pages
2061–2070. IEEE. 15

http://kin450-neurophysiology.wikispaces.com/Synaptic+Transmission
http://kin450-neurophysiology.wikispaces.com/Synaptic+Transmission


Conclusions and implications 119

Neftci, E., Chicca, E., Indiveri, G., and Douglas, R. J. (2011). A systematic method for
configuring vlsi networks of spiking neurons. Neural Computation, 23(10):2457–2497.
21

Pospischil, M., Toledo-Rodriguez, M., Monier, C., Piwkowska, Z., Bal, T., Frégnac, Y.,
Markram, H., and Destexhe, A. (2008). Minimal hodgkin–huxley type models for
different classes of cortical and thalamic neurons. Biological Cybernetics, 99:427–441.
xxi, xxii, 20, 21, 31, 37, 38, 47, 48, 53, 55, 57, 70, 71, 72, 74, 75, 76, 77, 78

Purves, D., Augustine, G., Fitzpatrick, D., Hall, W., and Lamantia, A. (2008). Neuro-
science, + Neurons in Action. Sinauer Associates Incorporated. 5

Rangan, A. and Cai, D. (2007). Fast numerical methods for simulating large-scale
integrate-and-fire neuronal networks. Journal of Computational Neuroscience, 22(1):81–
100. 18

Rasche, C. and Douglas, R. (2000). An improved silicon neuron. Analog Integrated Circuits
and Signal Processing, 23(3):227–236. 56

Renaud, S., Masson, G. L., Alvado, L., Saïghi, S., and Tomas, J. (2004). A neural simu-
lation system based on biologically realistic electronic neurons. Information Sciences,
161(1-2):57–69. 25

Renaud, S., Tomas, J., Bornat, Y., Daouzli, A., and Saïghi, S. (2007). Neuromimetic
ICs with analog cores: an alternative for simulating spiking neural networks. In In-
ternational Symposium on Circuits and Systems, pages 3355–3358, New-Orleans, USA.
IEEE. 25

Renaud, S., Tomas, J., Lewis, N., Bornat, Y., Daouzli, A., Rudolph, M., Destexhe, A.,
and Saïghi, S. (2010). Pax: A mixed hardware/software simulation platform for spiking
neural networks. Neural Networks, 23(7):905–916. 25, 26, 27

Reuveni, I., Friedman, A., Amitai, Y., and Gutnick, M. (1993). Stepwise repolarization
from ca2+ plateaus in neocortical pyramidal cells: evidence for nonhomogeneous distri-
bution of hva ca2+ channels in dendrites. The Journal of Neuroscience, 13(11):4609–21.
38

Rinzel, J. and Ermentrout, G. B. (1989). Analysis of neural excitability and oscillations. In
Koch, C. and Segev, I., editors, Methods in neuronal modeling. MIT Press, Cambridge,
MA. 42

Rossant, C., Goodman, D. F. M., Platkiewicz, J., and Brette, R. (2010). Automatic
fitting of spiking neuron models to electrophysiological recordings. Frontiers in Neu-
roinformatics, 4(2). 21



120 Conclusions and implications

Saïghi, S. (2004). Circuits et systèmes de modélisation analogique de réseaux de neurones
biologiques: application au développement d’outils pour les neurosciences computation-
nelles. PhD thesis, University Bordeaux 1 – n. 2891. 60, 106

Saïghi, S., Bornat, Y., Tomas, J., Masson, G. L., and Renaud, S. (2011). A library of
analog operators based on the hodgkin-huxley formalism for the design of tunable, real-
time, silicon neurons. IEEE Transaction on Biomedical Circuits and Systems, 5(1):3–19.
13, 40, 60

Saïghi, S., Buhry, L., Bornat, Y., Kaoua, G. N., Tomas, J., and Renaud, S. (2008). Ad-
justing the neurons models in neuromimetic ics using the voltage-clamp technique. In
International Symposium on Circuits and Systems, 18-21 May 2008, Seattle, Washing-
ton, USA, pages 1564–1567. IEEE. 21, 59

Schemmel, J., Bruderle, D., Meier, K., and Ostendorf, B. (2007). Modeling synaptic plas-
ticity within networks of highly accelerated I&F neurons. In International Symposium
on Circuits and Systems, pages 3367–3370. IEEE. 86, 106

Schemmel, J., Fieres, J., and Meier, K. (2008). Wafer-scale integration of analog neu-
ral networks. In Proceedings of IEEE International Conference on Neural Networks (
IJCNN), pages 431–438, Hong Kong, CHINA. 25

Shin, J. and Koch, C. (1999). Dynamic range and sensitivity adaptation in a silicon
spiking neuron. IEEE Transactions on Neural Networks, 10(5):1232–1238. 56

Simoni, M. F., Cymbalyuk, G. S., Sorensen, M. E., Calabrese, R. L., and DeWeerth, S. P.
(2004). A multiconductance silicon neuron with biologically matched dynamics. IEEE
Transactions on Biomedical Engineering, 51(2):342–354. 56

Sjöström, P., Rancz, E., Roth, A., and Häusser, M. (2008). Dendritic excitability and
synaptic plasticity. Physiological Reviews, 88:769–840. 24

Sorensen, M., DeWeerth, S., Cymbalyuk, G., and Calabrese, R. L. (2004). Using a hybrid
neural system to reveal regulation of neuronal network activity by an intrinsic current.
The Journal of Neuroscience, 24(23):5427–5438. 25, 106

Storn, R. and Price, K. (1997). Differential evolution – a simple and efficient heuristic for
global optimization over continuous spaces. Journal of Global Optimization, 11:341–359.
67, 68

Traub, R. D. and Miles, R. (1991). Neuronal Networks of the Hippocampus. Cambridge
University Press, New York, NY, USA. 51

Vanier, M. and Bower, J. (10 September 1999). A comparative survey of automated
parameter-search methods for compartmental neural models. Journal of Computational
Neuroscience, 7:149–171(23). 21



Conclusions and implications 121

Vogelstein, R. J., Mallik, U., and Cauwenberghs, G. (2004). Silicon spike-based synap-
tic array and address-event transceiver. In International Symposium on Circuits and
Systems, pages 385–388. 25

Yamada, W. M., Koch, C., and Adams, P. R. (1989). Methods in neuronal modeling.
chapter Multiple channels and calcium dynamics, pages 97–133. MIT Press, Cambridge,
MA, USA. 38, 51

Yu, T. and Cauwenberghs, G. (2010). Analog vlsi biophysical neurons and synapses with
programmable membrane channel kinetics. IEEE Transaction on Biomedical Circuits
and Systems, 4(3):139–148. 56





Appendix A

Configuration parameters of the Galway
circuit

Part of this appendix is based on the work of Bornat [2006]; however, we reproduce it
in this thesis in order to better understand the VHDL driver that we have developed
to send the parameters to the ASIC. The following different tables show the parameters
necessary for the configuration of the circuit [Bornat, 2006]. We start with the digital
parameters, which are primarily used to select which conductances are connected to the
neuron’s membrane. There are five silicon neurons in the Galway chip.

A.1 Digital parameters

The digital parameters are made up of 14-bit words that are transmitted in series. The
interface was shown in section 3.1.3. The first decoding is performed on the three least
significant bits. These bits determine which silicon neuron will be considered for the
hardware simulation, as shown in Table A.1.

0 1 2 Activated unit
0 0 0 Neuron 0 (fs)
0 0 1 Neuron 1 (rs)
0 1 0 Neuron 2 (rs)
0 1 1 Neuron 3 (rs)
1 0 0 Neuron 4 (5 cond.)
1 0 1 Additional conductance

Table A.1 – Description of the destination bit.
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For the additional conductance, the bits necessary for the configuration of the register
are presented in Table A.2.

Bit Mode if 0 if 1
5 Neuron 3 not connected connected
6 Neuron 4 not connected connected (priority)
7 Monitoring
8 Power rising m ·h m2 ·h

Table A.2 – Register of the additional conductance.

Bit 8 selects the temporal behavior of the additional conductance that can be con-
nected only to neuron 3 or 4.

A.1.1 Neuron-specific parameters

The next two bits (3 and 4) for the configuration of the neuron determine which register
will be changed (except for the register for the extra conductance, as explained above).
The bits necessary for the configuration of the neuron are presented in Table A.3.

3 4 Register
0 0 Conductances connected to the membrane
0 1 Conductances connected to the visualization output
1 0 Simulation mode
1 1 not used

Table A.3 – Description of the neuron register bit.

Two registers are used to select the conductances connected to the membrane and
connected to the monitoring output. One register is used to select the simulation mode
of the neuron. One register is used to select an extra conductance. The table A.4 shows
the channel associated with each configuration bit.

Neuron 4 is the only neuron to have all of its conductances presented in Table A.4.
Otherwise, the bit is not considered. Finally, the last register to be documented is the
one concerning the simulation mode for a specific neuron. Table A.5 also shows how to
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Bit conductance
5 Sodium
6 Potassium
7 Leak
8 Stimulation
9 Modulation
A Calcium
B Synapse A
C Synapse B
D Synapse C

Table A.4 – Conductances register.

settle the slow conductances.

Bit Mode if 0 if 1
5 Voltage clamp active simulation
6 Modulation form m ·h m2 ·h
7 Calcium form m ·h m2 ·h

Table A.5 – Simulation register.

The voltage-clamp function is used to extract the parameters of the neuron; this means
that the voltage membrane VM is fixed by an external input.

A.2 Analog parameters

The interface to send the analog parameters was shown in section 3.1.3. Table A.6 presents
the 205 analog parameters of the circuit, which enables a direct link be-tween the param-
eters and their corresponding memory address. They are numbered in hexadecimal form.

Signification Neuron Extra
of the parameter 0 1 2 3 4 cond.
Na+ -act- Vslope 00 1E 45 6C 93
Na+ -act- Voffset 01 1F 46 6D 94

Table A.6 – Correspondence between the parameter number and its order number (con-
tinued on the next page)
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Signification Neuron Extra
of the parameter 0 1 2 3 4 cond.
Na+ -act- τ 02 20 47 6E 95
Na+ -inact- Vslope 03 21 48 6F 96
Na+ -inact- Voffset 04 22 49 70 97
Na+ -inact- τ 05 23 4A 71 98
Na+ - gmax 06 24 4B 72 99
Na+ - Vequi 07 25 4C 73 9A

K+ - Vslope 08 26 4D 74 9B
K+ - Voffset 09 27 4E 75 9C
K+ - τ 0A 28 4F 76 9D
K+ - gmax 0B 29 50 77 9E
K+ - Vequi 0C 2A 51 78 9F

Leak - gmax (1/2) 0D 2B 52 79 A0
Leak - gmax (2/2) 0E 2C 53 7A A1
Leak - Vequi 0F 2D 54 7B A2

Ca2+ -act- Vslope 2E 55 7C A3
Ca2+ -act- Voffset 2F 56 7D A4
Ca2+ -act- τ 30 57 7E A5
Ca2+ -inact- Vslope 31 58 7F A6
Ca2+ -inact- Voffset 32 59 80 A7
Ca2+ -inact- τ 33 5A 81 A8
Ca2+ - gmax (1/2) 34 5B 82 A9
Ca2+ - gmax (2/2) 35 5C 83 AA
Ca2+ - Vequi 36 5D 84 AB

mod. -act- Vslope AC C3
mod. -act- Voffset AD C4
mod. -act- τ AE C5
mod. -inact- Vslope AF C6
mod. -inact- Voffset B0 C7
mod. -inact- τ B1 C8
mod. - gmax (1/2) B2 C9
mod. - gmax (2/2) B3 CA
mod. - Vequi B4 CB

Table A.6 – Correspondence between the parameter number and its order number (con-
tinued on the next page)
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Signification Neuron Extra
of the parameter 0 1 2 3 4 cond.

Syn. A - τ 10 37 5E 85 B5
Syn. A - gmax (1/2) 11 38 5F 86 B6
Syn. A - gmax (2/2) 12 39 60 87 B7
Syn. A - Vequi 13 3A 61 88 B8

Syn. B - τ 14 3B 62 89 B9
Syn. B - gmax (1/2) 15 3C 63 8A BA
Syn. B - gmax (2/2) 16 3D 64 8B BB
Syn. B - Vequi 17 3E 65 8C BC

Syn. C - τ 18 3F 66 8D BD
Syn. C - gmax (1/2) 19 40 67 8E BE
Syn. C - gmax (2/2) 1A 41 68 8F BF
Syn. C - Vequi 1B 42 69 90 C0

Stimulation (1/2) 1C 43 6A 91 C1
Stimulation (2/2) 1D 44 6B 92 C2

Characterization CC
Table A.6 – Correspondence between the parameter number and its order number.

A.3 Example of parameter configutation
An example of how the digital parameters are sent is provided below. Only the ASIC 1 sodium
channel is connected to the membrane for the voltage clamp technique. Thus, the 14-bit register
(for the membrane connection) has to be set to "00000100000000". The word in hexadecimal
becomes "0100". We have to send the word d:1:0100 (where d:1 indicates the digital word for
ASIC 1) through the PC, where it will be routed by the driver in VHDL to the ASIC. The same
is also done for all of the other words.

Furthermore, we reported below an example of the parameters sending data to set the FS
neuron activity on the first neuron of ASIC2 located in the Ekerö board. Thus, it is necessary to
set the topology (which conductances are connected) and then the analog parameters in terms
of voltage.
digital parameters
d:2:01C2
d:2:03C0
d:2:0500
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d:2:2800
d:2:01E0
analog parameters
sodium
a:2:00:4.107
a:2:01:2.327
a:2:02:3.932
a:2:03:4.542
a:2:04:2.346
a:2:05:3.935
a:2:06:2.678
a:2:07:2.691
potassium
a:2:08:3.836
a:2:09:2.430
a:2:0A:4.137
a:2:0B:4.468
a:2:0C:2.059
leak
a:2:0D:2.567
a:2:0E:4.990
a:2:0F:2.264
external stimulation
a:2:1C:4.800
a:2:1D:4.900



Appendix B

Small network in the PAX system: an
example of specification

Figure B.1 illustrates an example of a 5-neuron neural network specification.
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Figure B.1 – Example of specification and operation of a 5-neuron network spread across
two boards.

The mapping tool uses two boards to physically map the network. The neural network specifica-
tion starts in the software layer, where neurons are created as well as their connections following
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the frame format as designed in Belhadj’s thesis (2010). The configuration parameters are at-
tributed to the network during the specification (neuron type, initial synaptic weights, synapse
polarity, etc.). In addition to this specification, a database associates the board numbers with
the neuron addresses. A compiling tool is in charge of mapping the neurons at their physical
locations on the different boards.

There are two types of neuron addresses: local and global addresses. Local addresses are
used to distinguish neurons located on the same board. They are used for local computation.
Since the number of neurons does not exceed 20 neurons, the local addresses are coded on 5
bits. Global addresses are attributed for each neuron in the system, independently of their
physical locations. This address represents the neurons at the network level and is highly used
for communication issues. Since the global network can contain up to 400 neurons, the global
addresses are coded on 9 bits.

Figure B.1 shows the implementation of the address conversion table just before the com-
munication channel. This table is used to translate the neuron addresses from local to global
addresses before initiating a communication procedure. The neuron address is then recognized
by the other boards.

The general operation of the system is as follows: as already mentioned, the commu-nication
between the digital and analog hardware layers in each daughter board forms a local simulation
loop. Whenever a neuron generates an action potential, it will be detected by the local FPGA
in which it will be routed towards the target board, based on the connectivity of the network,
and then to the target ASIC. Whenever an external action potential arrives to the FPGA, it will
set off the computation of the synaptic weights for the plastic connections and then stimulate
the target neurons by sending a width-modulated pulse to the corresponding multisynapse(s).
Hence, a synaptic voltage is then added to the membrane potential and either helps generate a
new action potential (excitatory synapse) or inhibits its generation (inhibitory synapse).



Appendix C

Networking activity

This research subject has been funded by the European FACETS-ITN project (Marie-Curie
Ph.D. position). As we have already seen in Chapter 1, FACETS-ITN (www.facets-itn.eu) is
an initial training network for graduate students in the emerging field of neural computation.
It offers a research opportunity to 22 graduate students working in 14 partner institutions in
six European countries. Scientifically, the network spans from neurobiology and modeling to
theory and novel computing architectures in hardware. As such, it covers many individual
subjects that are usually well established at European universities. The joint work includes
scientific research but also training in scientific subjects and in additional skills as well as ex-
tended secondments to partner laboratories. In terms of research, the network is closely linked
to existing EU-funded interdisciplinary projects such as Brain-i-Nets (www.brain-i-nets.eu) and
BrainScaleS (www.BrainScaleS.eu). This network emerged from the highly successful FACETS
project (www.facets-project.org), which was the largest integrated project supported by the FET
(Future Emerging Technologies) program of the European Commission between 2005 and 2010.
Within the FACETS-ITN network, it is planned to support a visiting and exchange program
for researchers. Secondments take place within the consortium and strengthen the internal sci-
entific network beyond the project meetings. The visits include all industrial partners. Every
FACETS-ITN researcher is expected to attend the training workshops offered. In addition, sec-
ondments are planned for every student, with a total duration of 3 to 5 months. This appendix
briefly describes the training activities carried out within the project.

My role in the project
As mentionned in the introduction, the main goal of this Ph.D thesis within the FACETS

project is the simulation of cortical cell types (employing the experimental electrophysiological
data of these cells as references), using specific VLSI neural circuits to simulate, at the single cell
level, the models studied as references in the FACETS project. The second goal is to contribute
to the design of a mixed hardware-software platform, specifically designed for the simulation
of spiking neural networks using conductance-based models (VLSI neural circuits) that can be
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used for hybrid artificial neural networks. I attended several training workshops that helped me
to carry out this research project. Below are the courses that I have attended (for the detailed
program, please visit the website for the FACETS project).

FACETS-ITN secondments
From February 2011 to April 2011:
I started my secondments on February 7th, 2011 in Dresden, Germany: 1 month at the "ZMDI

company" (http://www.zmdi.com/) and 1.5 months at the "Technische Universität Dresden"
(TUD). I attended a training period on highly-parallel VLSI-systems and neuromorphic circuits
at the university of Dresden, Germany (Director: Prof. René Schüffny) and vector interchange
format in ZMDI. During this period, I was involved in the design of a driver (VHDL) to control
the temperature of a neuron chip using a Peltier element.

The driver was designed on Virtex-5 FPGA Xilinx. I developed a driver (VHDL) that reads
the temperature value from the sensor, located underneath the silicon neuron, and then controls
the Peltier element (placed above the chip)1 to regulate the temperature on the chip (see Figure
C.1).

Silicon neuron

P lti l tPeltier element

Temperature   sensor

Figure C.1 – System to control the temperature on the silicon neuron

In particular, the temperature sensor transmits the temperature value to the PC via a serial
port. Therefore, according to the desired temperature value, it is possible to control the peltier
element in order to cool or heat the chip through an interface (that I designed in C language).

1The Peltier device is a heat pump: when direct current runs through it, heat is moved from one
side to the other. Therefore, it can be used either for heating or for cooling (refrigeration), although in
practice the main application is cooling.
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FACETS-ITN training activity
From March 26th to March 30th 2012: FACETS-ITN training on Course Neuro-Electronic

Interfaces and additional Scientific Writing skills in Bordeaux, France.
From March 19th to March 23rd 2012: FACETS-ITN training on Experiments with Large Scale
Hardware Systems and additional skills course: Oral presentation techniques in Jülich, Germany.
From March 6th to March 9th 2012: FACETS-ITN training on Theoretical Approaches to New
Computing Concepts in Leysin, Switzerland.
From September 12th to September 16th 2011: FACETS-ITN training on Neuromorphic Elec-
tronic Circuits and Additional Skills Course in Heidelberg, Germany at the Kirchhoff Institut
für Physik.
From June 6th to June 10th 2011: FACETS-ITN training on Theoretical Neuroscience in Lau-
sanne, Switzerland (EPFL).
From June 3rd to June 9th 2010: FACETS-ITN training on Biology in Gif-sur-Yvette (CNRS),
France.
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