I. G. Richardson, The nature of the hydration products in hardened cement pastes. Cement and Concrete Composites, pp.97-113, 2000.

S. Béjaoui, B. Bary, S. Nitsche, D. Chaudanson, and C. Blanc, Experimental and modeling studies of the link between microstructure and effective diffusivity of cement pastes. Revue Européenne de Génie Civil, pp.1073-1106, 2006.

H. M. Jennings, A model for the microstructure of calcium silicate hydrate in cement paste, Cement and Concrete Research, vol.30, issue.1, p.101, 2000.
DOI : 10.1016/S0008-8846(99)00209-4

P. D. Tennis, H. M. Jennings, T. C. Powers, and T. L. Brownyard, A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes, The structure and stoichiometry of C-S-H. Cement and Concrete Research, pp.855-863, 1947.
DOI : 10.1016/S0008-8846(00)00257-X

H. M. Jennings, Colloid model of C-S-H and implications to the problem of creep and shrinkage, Materials And Structures, vol.378, issue.265, pp.59-70, 2004.

J. P. Ollivier, J. C. Maso, and B. Bourdette, Interfacial transition zone in concrete Advanced Cement Based Materials, p.30, 1995.

K. L. Scrivener, A. K. Crumbie, and P. Laugesen, The Interfacial Transition Zone (ITZ) Between Cement Paste and Aggregate in Concrete, Interface Science, vol.12, issue.4, pp.411-421, 2004.
DOI : 10.1023/B:INTS.0000042339.92990.4c

J. Glucklich and O. Ishai, Creep mechanism in cement mortar, ACI Journal Proceedings, vol.59, issue.7, p.923, 1962.

W. Ruetz, A hypothesis for creep of hardened cement paste and the influence of simultaneous shrinkage, Proceeding of International Conference on the Structure of Concrete, Cement and Concrete Association, pp.365-387, 1968.

B. T. Tamtsia and J. J. Beaudoin, Basic creep of hardened cement paste A re-examination of the role of water, Cement and Concrete Research, vol.30, issue.9, pp.1465-1475, 2000.
DOI : 10.1016/S0008-8846(00)00279-9

R. F. Feldman, Mechanism of creep of hydrated Portland cement paste. Cement and Concrete Research, pp.509-520, 1972.

Z. P. Bazant and J. Chern, Concrete creep at variable humidity: constitutive law and mechanism, Materials and Structures, vol.10, issue.No. 68, pp.1-20, 1985.
DOI : 10.1007/BF02473360

Z. P. Bazant and S. Prasannan, Solidification Theory for Concrete Creep. I: Formulation, Journal of Engineering Mechanics, vol.115, issue.8, pp.1691-1703, 1989.
DOI : 10.1061/(ASCE)0733-9399(1989)115:8(1691)

Z. P. Bazant and S. Prasannan, Solidification Theory for Concrete Creep. II: Verification and Application, Journal of Engineering Mechanics, vol.115, issue.8, pp.1704-1725, 1989.
DOI : 10.1061/(ASCE)0733-9399(1989)115:8(1704)

Z. P. Bazant, A. B. Hauggaard, S. Baweja, and F. J. Ulm, Microprestress-solidification theory for concrete creep. I: aging and drying effects, Journal of Engineering Mechanics, issue.11, pp.123-1188, 1997.

Z. P. Bazant, A. B. Hauggaard, and S. Baweja, Microprestress-solidification theory for concrete creep. II: algorithm and verification, Journal of Engineering Mechanics, issue.11, pp.123-1195, 1997.

M. Vandamme and F. J. Ulm, Nanogranular origin of concrete creep, Proceedings of the National Academy of Sciences, pp.10552-10557, 2009.
DOI : 10.1073/pnas.0901033106

URL : https://hal.archives-ouvertes.fr/hal-00555536

D. Gawin, F. Pesavento, and B. A. Schrefler, Modelling creep and shrinkage of concrete by means of effective stresses, Materials and Structures, vol.123, issue.11, pp.579-591, 2007.
DOI : 10.1617/s11527-006-9165-1

J. F. Shao, Q. Z. Zhu, and K. Su, Modeling of creep in rock materials in terms of material degradation. Computers and Geotechnics, pp.30-549, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00139549

A. Sellier and L. Buffo-lacarriere, Towards a simple and unified modelling of basic creep, shrinckage and drying creep of concrete, European Journal of Environmental and Civil Engineering, issue.10, pp.13-1161, 2009.

F. Benboudjema, F. Meftah, and J. M. Torrenti, Interaction between drying, shrinkage, creep and cracking phenomena in concrete. Engineering Structures, p.239, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00022493

J. Mandel, Cours de mécanique des milieux continus, 1966.

Q. V. Le, F. Meftah, Q. He, L. Pape, and Y. , Creep and relaxation functions of a heterogeneous viscoelastic porous medium using the Mori-Tanaka homogenization scheme and a discrete microscopic retardation spectrum. Mechanics Of Time- Dependent Materials, pp.3-4, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00833860

S. Scheiner and C. Hellmich, Continuum Microviscoelasticity Model for Aging Basic Creep of Early-Age Concrete, Journal of Engineering Mechanics, vol.135, issue.4, pp.307-323, 2009.
DOI : 10.1061/(ASCE)0733-9399(2009)135:4(307)

S. Gu, B. Bary, Q. He, and M. Thai, Multiscale poro-creep model for cementbased materials
URL : https://hal.archives-ouvertes.fr/hal-00833803

L. Guénot-delahaie, Contribution à analyse physique et à la modélisation du fluage propre du béton, 1997.

Z. P. Bazant, Mathematical models for creep and shrinkage in concrete. Creep and Shrinkage in concrete structures, 1982.

L. J. Parrott and J. F. Young, Shrinkage and swelling of two hydrated alite pastes. Fundamental Research on Creep and Shrinkage of Concrete, pp.35-48, 1982.

L. Niyogi, Déformation de fluage propre en fonction de l'âge de chargement, 1973.

F. J. Ulm and P. Acker, Le point sur le fluage et le recouvrance des bétons, Bulletin des Laboratoires des ponts et chaussées, pp.73-82, 1998.

F. Benboudjema, Modélisation des déformations différées du béton sous sollicitations biaxiales Application aux enceintes de confinement de bâtiments réacteurs des centrales nucléaires, Thèse de doctorat, p.258, 2002.

K. S. Gopalakrishnan, A. M. Neville, and A. Ghali, Creep Poisson's Ratio of concrete under multiaxial compression, ACI, pp.1009-1020, 1969.

P. Acker and F. Ulm, Creep and shrinkage of concrete: physical origins and practical measurements, Nuclear Engineering and Design, vol.203, issue.2-3, pp.143-158, 2001.
DOI : 10.1016/S0029-5493(00)00304-6

I. Ali and C. E. Kesler, Mechanism of creep in concrete, Symposium on creep of concrete, pp.35-63, 1964.

B. R. Gamble and L. J. Parrott, Creep of concrete in compression during drying and wetting. Magazine of Concrete Research, pp.129-138, 1978.

I. Vlahinic, J. J. Thomas, H. M. Jennings, and J. Andrade, Transient creep effects and the lubricating power of water in materials ranging from paper to concrete and Kevlar, Journal of the Mechanics and Physics of Solids, vol.60, issue.7, pp.60-1350, 2012.
DOI : 10.1016/j.jmps.2012.03.003

G. Pons and J. M. Torrenti, Chapitre 5: Retrait et Fluage, La Durabilité des Bétons, 2009.

C. Mazzotti and M. Savoia, Nonlinear Creep Damage Model for Concrete under Uniaxial Compression, Journal of Engineering Mechanics, vol.129, issue.9, p.129, 2003.
DOI : 10.1061/(ASCE)0733-9399(2003)129:9(1065)

S. T. Nguyen, L. Dormieux, L. Pape, Y. Sanahuja, and J. , A Burger Model for the Effective Behavior of a Microcracked Viscoelastic Solid, International Journal of Damage Mechanics, vol.316, issue.8, pp.20-1116, 2011.
DOI : 10.1177/1056789510395554

J. F. Shao, K. T. Chau, and X. T. Feng, Modeling of anisotropic damage and creep deformation in brittle rocks, International Journal of Rock Mechanics and Mining Sciences, vol.43, issue.4, pp.582-592, 2006.
DOI : 10.1016/j.ijrmms.2005.10.004

URL : https://hal.archives-ouvertes.fr/hal-00021993

F. Ruiz, M. Muttoni, A. Gambarova, and P. G. , Relationship between Nonlinear Creep and Cracking of Concrete under Uniaxial Compression, Journal of Advanced Concrete Technology, vol.5, issue.3, pp.383-393, 2007.
DOI : 10.3151/jact.5.383

J. Mazars, A description of micro-and macroscale damage of concrete structures, in Engineering Fracture Mechanics, pp.729-737, 1986.

J. M. Torrenti, V. H. Nguyen, H. Colina, L. Maou, F. et al., Coupling between leaching and creep of concrete, Cement and Concrete Research, vol.38, issue.6, pp.38-816, 2008.
DOI : 10.1016/j.cemconres.2008.01.012

N. Reviron, F. Benboudjema, J. M. Torrenti, G. Nahas, and M. A. , Coupling between creep and cracking in tension, 6th International Conference on Fractuer Mechanics of Concrete and Concrete Structures, 2007.

D. Larrard and T. , Variabilité des propriétés du béton: caractérisation expérimentale et modélisation probabiliste de lixiviation, Thèse de doctorat, 2010.

M. Briffaut, Etude de la fissuration au jeune âge des structures massives: influence de la vitesse de refroidissement, des reprises de bétonnage et des armatures, Thèse de doctorat, 2010.

T. Baxevanis, G. Pijaudier-cabot, and F. Dufour, Bifurcation and creep effects in a viscoelastic non-local damageable continuum. European Journal of Mechanics - A/Solids, pp.548-563, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00333866

E. Papa and A. Taliercio, A visco-damage model for brittle materials under monotonic and sustained stresses, International Journal for Numerical and Analytical Methods in Geomechanics, vol.116, issue.3, pp.287-310, 2005.
DOI : 10.1002/nag.415

N. Challamel, C. Lanos, and C. Casandjian, Creep damage modelling for quasi-brittle materials. European Journal of Mechanics -A/Solids, pp.593-613, 2005.

J. F. Dube, G. Pijaudier-cabot, and C. Laborderie, Rate Dependent Damage Model for Concrete in Dynamics, Journal of Engineering Mechanics, vol.122, issue.10, pp.122-939, 1996.
DOI : 10.1061/(ASCE)0733-9399(1996)122:10(939)

L. Kachanov, Rupture time under creep conditions, International Journal of Fracture, vol.97, issue.1/4, p.11, 1999.
DOI : 10.1023/A:1018671022008

R. Sullivan, Development of a viscoelastic continuum damage model for cyclic loading. Mechanics of Time-Dependent Materials, pp.329-342, 2008.

M. K. Darabi, A. Al-rub, R. K. Masad, E. A. Huang, C. Little et al., A thermo-viscoelastic???viscoplastic???viscodamage constitutive model for asphaltic materials, International Journal of Solids and Structures, vol.48, issue.1, pp.48-191, 2011.
DOI : 10.1016/j.ijsolstr.2010.09.019

S. W. Park, Y. R. Kim, and R. A. Schapery, A viscoelastic continuum damage model and its application to uniaxial behavior of asphalt concrete, Mechanics of Materials, vol.24, issue.4, pp.241-255, 1996.
DOI : 10.1016/S0167-6636(96)00042-7

R. A. Schapery, Correspondence principles and a generalizedJ integral for large deformation and fracture analysis of viscoelastic media, International Journal of Fracture, vol.20, issue.3, pp.195-223, 1984.
DOI : 10.1007/BF01140837

R. A. Schapery, A micromechanical model for non-linear viscoelastic behavior of particle-reinforced rubber with distributed damage, Engineering Fracture Mechanics, vol.25, issue.5-6, pp.5-6, 1986.
DOI : 10.1016/0013-7944(86)90046-9

A. B. Hauggaard, L. Damkilde, and P. F. Hansen, Transitional Thermal Creep of Early Age Concrete, Journal of Engineering Mechanics, vol.125, issue.4, pp.458-465, 1999.
DOI : 10.1061/(ASCE)0733-9399(1999)125:4(458)

Z. P. Bazant, G. Cusatis, and L. Cedolin, Temperature effect on concrete creep modeled by microprestress-solidification theory, Journal of Engineering Mechanics-ASCE, pp.691-699, 2004.

Z. P. Bazant and J. C. Chern, Stress???Induced Thermal and Shrinkage Strains in Concrete, Journal of Engineering Mechanics, vol.113, issue.10, pp.1493-1511, 1987.
DOI : 10.1061/(ASCE)0733-9399(1987)113:10(1493)

Z. P. Bazant and Y. P. Xi, Continuous Retardation Spectrum for Solidification Theory of Concrete Creep, Journal of Engineering Mechanics, vol.121, issue.2, pp.281-288, 1995.
DOI : 10.1061/(ASCE)0733-9399(1995)121:2(281)

M. Briffaut, F. Benboudjema, J. M. Torrenti, and G. Nahas, Numerical analysis of the thermal active restrained shrinkage ring test to study the early age behavior of massive concrete structures. Engineering Structures, p.1390, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00881450

W. Ladaoui, T. Vidal, A. Sellier, and X. Bourbon, Effect of a temperature change from 20 to 50??C on the basic creep of HPC and HPFRC, Materials and Structures, vol.3, issue.4, pp.1629-1639, 2011.
DOI : 10.1617/s11527-011-9723-z

Z. P. Bazant, J. H. Hemann, H. Koller, and L. J. Najjar, Thin-wall cement paste cylinder for creep test at variable humidity or temperature, Materials and Structures, issue.634, pp.227-281, 1973.

Z. P. Bazant, A. Asghari, and J. Schmidt, Experimental study of creep of hardened Portland cement paste at variable water content, Materials and Structures, issue.952, pp.279-290, 1976.

L. J. Parrott, Lateral strains in hardened cement paste under short and long-terme loading. Marazine of Concrete Research, pp.198-202, 1974.

L. Granger, Comportement différé du béton dans les enceintes de centrales nucléaires: analyse et modélisation, 1995.

A. Hanhijärvi, Perpendicular to grain creep of finish softwoods in high temperature drying conditions: Experiments and modelling in tempeerature range 95-125°c, p.94, 1997.

Q. He and A. Curnier, A more fundamental approach to damaged elastic stressstrain relations, International Journal of Solids and Structures, issue.10, pp.32-1433, 1995.

J. D. Eshelby, The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, pp.241-376, 1226.

J. Salençon, Viscoélasticité pour le calcul des structures Les éditions de l'Ecole Polytechnique, p.151, 2009.

Z. Hashin, Viscoelastic Behavior of Heterogeneous Media, Journal of Applied Mechanics, vol.32, issue.3, pp.630-636, 1965.
DOI : 10.1115/1.3627270

Z. Hashin, The Elastic Moduli of Heterogeneous Materials, Journal of Applied Mechanics, vol.29, issue.1, pp.143-150, 1962.
DOI : 10.1115/1.3636446

Z. Hashin and S. Shtrikman, A variational approach to the theory of the elastic behaviour of multiphase materials, Journal of the Mechanics and Physics of Solids, vol.11, issue.2, pp.127-140, 1963.
DOI : 10.1016/0022-5096(63)90060-7

T. Mori and K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metallurgica, vol.21, issue.5, pp.571-574, 1973.
DOI : 10.1016/0001-6160(73)90064-3

R. M. Christensen, Viscoelastic properties of heterogeneous media, Journal of the Mechanics and Physics of Solids, vol.17, issue.1, pp.23-41, 1969.
DOI : 10.1016/0022-5096(69)90011-8

W. Ladaoui, Etude expérimentale du comportement Thermo-Hydro-Mécanique à long terme des BHP destinés aux ouvrages de stockage des déchets radioactifs, Thèse de doctorat, p.290, 2010.

Y. Benveniste, A new approach to the application of Mori-Tanaka's theory in composite materials, Mechanics of Materials, vol.6, issue.2, pp.147-157, 1987.
DOI : 10.1016/0167-6636(87)90005-6

F. R. Miguel, M. Aurelio, and G. G. Pietro, Relationship between nonlinear creep and cracking of concrete under uniaxial compression, Journal of Advanced Concrete Technology, vol.5, issue.3, pp.383-393, 2007.

M. Omar, Déformation différée du béton: étude expérimentale et modélisation numérique de l'intéraction fluage-chargement, 2004.

Z. Li, Effective creep Poisson's ratio for damaged concrete, International Journal of Fracture, vol.66, pp.189-196, 1994.

H. H. Hilton, Implications and Constraints of Time-Independent Poisson Ratios in Linear Isotropic and Anisotropic Viscoelasticity, Journal of Elasticity, vol.63, issue.3, pp.221-251, 2001.
DOI : 10.1023/A:1014457613863

C. Galle, H. Peycelon, L. Bescop, and P. , Effect of an accelerated chemical degradation on water permeability and pore structure of cement-based materials, Advances in Cement Research, vol.16, issue.3, 2004.
DOI : 10.1680/adcr.16.31.105.41515

T. S. Arthanari and C. W. Yu, Creep of concrete under uniaxial and biaxial stresses at elevated temperatures, Mag. of Concrete Res, issue.60, pp.19-149, 1967.

Z. P. Bazant and S. T. Wu, Creep and shrinkage law for concrete at variable humidity, Journal of the Engineering Mechanics Division-Asce, vol.100, issue.6, pp.1183-1209, 1974.

P. E. Roelfstra, A numerical approach to investigate the properties of concretenumerical concrete, p.212, 1989.