J. Génération-de-la-bibliothèque and A. , 200 9.3.4 Génération de jeux de sections ecaces pour, L'importance de l'autoprotection des résonances . . . . . . . . . . . . . 203

T. Correspondance, Télémétrie lors de la montée du bloc de sécurité 98

T. Correspondance, Télémétrie lors de la phase de décollement du bloc de sécurité en phase de descente, p.99

B. De, Divergences observées pour l'étalonnage, p.124

.. Physique-nucléaire, 253 10.2.1 Données nucléaires : mesures, évaluations et besoins, p.254

.. Codes-de-calculs-neutronique, 258 10.9.1 Traitement et format des chiers de sections ecaces, p.258

S. Glasstone and M. C. Edlund, The Elements of Nuclear Reactor Theory, 1952.

J. Lewins, Importance, the Adjoint Function, 1965.

P. Reuss and L. , Epopée de l'Energie Nucléaire, EDP Sciences, 2007.

D. Rozon, Introduction to Nuclear Reactor Kinetics, 1998.

G. Aliberti, G. Palmiotti, and M. Salvatores, Simultaneous Nuclear Data Target Accuracy Study for Innovative Fast Reactors, 4th Workshop on Neutron Measurements, Evaluations and Applications -Nuclear Data Needs for Generation IV and Accelerator-Driven Systems, 2007.

E. Bauge and S. Hilaire, Modélisation et Evaluation de Données, Ecole Joliot-Curie, 2006.

R. D. Busch and K. C. Bledsoe, The Eect of U-234 Content on the Neutronic Behavior of Uranium Systems, Proceedings of ICNC 2011, 2011.

M. B. Chadwick, ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology, Nuclear Data Sheets, vol.107, issue.12, p.2931, 2006.
DOI : 10.1016/j.nds.2006.11.001

E. Chiaveri, Past, Present and Future of the n-TOF Facility at CERN, Journal of the Korean Physical Society, vol.59, p.1620, 2011.
URL : https://hal.archives-ouvertes.fr/in2p3-00623522

R. Jacqmin, D. Verwaerde, and D. Hittner, Les données nucléaires -Contexte, enjeux et objectifs, 2007.

R. Jacqmin, Innovative Reactors and Nuclear Data Needs, 2009.

C. Nordborg and M. Salvatores, Status of the JEF Evaluated Data Library, Proceedings of International Conference on Nuclear Data for Science and Technology, p.680, 1994.

M. Salvatores, G. Aliberti, and G. Palmiotti, The role of dierential and integral experiments to meet requirements for improved nuclear data, International Conference on Nuclear Data for Science and Technology, 2007.

A. Santamarina, D. Bernard, and Y. Rugama, The JEFF-3.1.1 Nuclear Data Library, JEFF Report, p.22, 2009.

B. C. Diven, Multiplicities of Fission Neutrons, Physical Review, vol.101, issue.3, p.1012, 1956.
DOI : 10.1103/PhysRev.101.1012

J. Terrell, Distributions of Fission Neutron Numbers, Physical Review, vol.108, issue.3, p.783, 1957.
DOI : 10.1103/PhysRev.108.783

B. Geslot, C. Jammes, and B. Gall, Influence of the delayed neutron group parameters on reactivity estimation by rod drop analysis, Annals of Nuclear Energy, vol.34, issue.8, p.652, 2007.
DOI : 10.1016/j.anucene.2007.03.005

URL : https://hal.archives-ouvertes.fr/in2p3-00183209

G. R. Keepin, T. F. Wimett, and R. K. Zeigler, Delayed Neutrons from Fissionable Isotopes of Uranium, Plutonium, and Thorium, Physical Review, vol.107, issue.4, p.1044, 1957.
DOI : 10.1103/PhysRev.107.1044

D. J. Loaiza and F. E. Haskin, Dominant Delayed Neutron Precursors to Model Reactivity Predictions for Multiple Fissioning Nuclides, Nucl. Sci. Eng, vol.134, p.22, 2000.

D. J. Loaiza, G. Brunson, R. Sanchez, and K. Butterfield, Measurements of Absolute Delayed Neutron Yield and Group Constants in the Fast Fission of 235 U and 237 Np, Nucl. Sci. Eng, vol.128, p.270, 1998.

V. M. Piksaikin, Measurements of Periods, Relative Abundances, and Absolute Total Yields of Delayed Neutrons from Fast Neutron Induced Fission of U 235 and Np 237

G. D. Spriggs and J. M. Campbell, A summary of measured delayed neutron group parameters, Progress in Nuclear Energy, vol.41, issue.1-4, p.145, 2002.
DOI : 10.1016/S0149-1970(02)00011-2

G. D. Spriggs, J. M. Campbell, and V. M. Piksaikin, An 8-group delayed neutron model based on a consistent set of half-lives, Progress in Nuclear Energy, vol.41, issue.1-4, p.223, 2002.
DOI : 10.1016/S0149-1970(02)00013-6

R. J. Tuttle, Delayed Neutron Data for Reactor-Physics Analysis, Nucl. Sci. Eng, vol.56, p.37, 1975.

A. Billebaud, Réacteurs hybrides : avancées récentes pour un démonstrateur, Ecole Joliot Curie, 2006.

C. Golinelli, Mesures d'ecacité d'absorbants à EOLE, Specialists Meeting on Control Rod Measurement Techniques : Reactivity Worth and Power Distribution, Cadarache, 1976.

S. G. Carpenter and R. W. Goin, Rod Drop Measurements of Subcriticality, Applied Physics Division Annual Report, 1969.

S. G. Carpenter, Measurement of Control Rod Worths Using ZPPR, Specialists Meeting on Control Rod Measurement Techniques : Reactivity Worth and Power Distribution, Cadarache, 1976.

O. A. Elovskii, Correction for time of fall in negative-reactivity determination by roddrop, Atomnaya Energiya, vol.40, p.418, 1976.

B. Geslot, Contribution au développement d'un système de mesure multimode pour des mesures neutroniques dynamiques et traitement des incertitudes associées, Thèse de l, 2006.

B. Geslot and C. Jammes, Interest of the non linear tting method for reactivity assessment using ux transient experiments, ANS Topical Meeting on Reactor Physics, 2006.

T. Gozani, Subcritical Reactivity Determinations -Comparison of Experimental Methods, Trans. Am. Nucl. Soc, vol.9, p.236, 1966.

C. Jammes, Comparison of reactivity estimations obtained from rod-drop and pulsed neutron source experiments, Annals of Nuclear Energy, vol.32, issue.10, p.1131, 2005.
DOI : 10.1016/j.anucene.2005.02.013

G. Kussmaul, Prompt-Jump Correction of Inverse Kinetics Rod-Drop Measurements, Nucl. Sci. Eng, vol.40, p.494, 1970.

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, Convergence Properties of the Nelder--Mead Simplex Method in Low Dimensions, Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions, p.112, 1998.
DOI : 10.1137/S1052623496303470

T. A. Lewis and D. Mcdonald, The Inverse Kinetics Technique for Reactor Shutdown Measurement -An Experimental Assessment, Specialists Meeting on Control Rod Measurement Techniques : Reactivity Worth and Power Distribution, Cadarache, 1976.

G. D. Spriggs, The equivalent fundamental-mode source, Annals of Nuclear Energy, vol.26, issue.3, p.237, 1999.
DOI : 10.1016/S0306-4549(98)00048-6

R. M. Jefferson, Sandia Pulse Reactor II, Fast Burst Reactors, Proceedings of the National Topical Meeting on Fast Burst Reactors, 1969.

T. F. Wimett, Godiva II???An Unmoderated Pulse-Irradiation Reactor, Nuclear Science and Engineering, vol.8, issue.6, p.691, 1960.
DOI : 10.13182/NSE60-2

N. Authier, B. Mechitoua, N. /. Bare-liban, . Nsc, and . Doc, Highly Enriched Uranium Fast Burst Reactor CA, 95)03/II, HEU-MET-FAST-080, 2007.

R. Ratel, Amorçage Neutronique d'un Assemblage Surcritique en Neutrons Immédiats, 1981.

D. A. Reed, MADD 10-005, SCALE Models and Derived Data Report, 2009.

S. G. Carpenter, Measurements of the Effective Delayed-Neutron Fraction in Two Fast Critical Experiments, Nuclear Science and Engineering, vol.49, issue.2, p.236, 1972.
DOI : 10.13182/NSE72-2

T. Hiraoka, Semi-Experimental Measurement of Eective Delayed Neutron Fraction of a Fast Reactor System by Application of Pulsed Neutron Techniques, JAERI Memo 4004, Japan Atomic Energy Research Institute, 1970.

H. Hurwitz, Physical Interpretation of the Adjoint Flux : Iterated Fission Probability, Naval Reactors Physics Handbook, vol.1, pp.864-869, 1964.

R. K. Meulekamp, S. C. Van, and . Marck, Calculating the Effective Delayed Neutron Fraction with Monte Carlo, Nuclear Science and Engineering, vol.152, issue.2, p.142, 2006.
DOI : 10.13182/NSE03-107

J. T. Mihalczo, New Method for Measurement of the Eective Fraction of Delayed Neutrons from Fission, Nucl. Sci. Eng, vol.46, p.147, 1971.

Y. Nauchi and T. Kameyama, and Based on Continuous Energy Monte Carlo Method, Journal of Nuclear Science and Technology, vol.35, issue.1, p.503, 2005.
DOI : 10.1080/18811248.2004.9726417

R. Perez-belles, A Measurement of the Eective Delayed Neutron Fraction for the Bulk Shielding Reactor-I, Nucl. Sci. Eng, vol.12, p.505, 1962.

G. A. Price, Migration Areas and Eective Delayed Neutron Fractions by Critical Experiments, J. Nucl. Energy, part A, vol.10, p.111, 1959.
DOI : 10.1016/0368-3265(59)90061-1

B. Richard, Neutron Noise Measurements on Fast Burst Reactor CALIBAN -Determination of the Core Kinetic Parameters, Nucl. Sci. Eng, 2013.

G. D. Spriggs, Two Rossi-?? Techniques for Measuring the Effective Delayed Neutron Fraction, Nuclear Science and Engineering, vol.113, issue.2, pp.161-172, 1993.
DOI : 10.13182/NSE93-2

G. D. Spriggs, Rossi-? and ? ef f Measurements in the Japanese Atomic Energy Research Institute's FCA XIX-1 Assembly, 1997.

G. I. Bell, On the Stochastic Theory of Neutron Transport, Nuclear Science and Engineering, vol.21, issue.3, p.390, 1965.
DOI : 10.13182/NSE65-1

R. P. Feynman, Statistical Behavior of Neutron Chains, 1946.

D. R. Harris, Neutron Fluctuations in a Reactor of Finite Size, Nucl. Sci. Eng, vol.21, p.369, 1965.

P. Humbert, Stochastic Neutronics with PANDA Deterministic Code, 2003.

J. L. Munõz-cobo, R. B. Perez, and G. Verdu, Stochastic Neutron Transport Theory: Neutron Counting Statistics in Nuclear Assemblies, Nuclear Science and Engineering, vol.95, issue.2, p.83, 1987.
DOI : 10.13182/NSE95-83

J. D. Orndoff, Prompt Neutron Periods of Metal Critical Assemblies, Nucl. Sci. Eng, vol.2, p.450, 1957.

M. Otsuka and T. Iijima, Space-Dependent Formula for Rossi-? Measurements, p.488, 1965.

L. Pál, On the theory of Stochastic Processes in Nuclear Reactors, Il Nuovo Cimento, vol.37, p.25, 1958.

I. Pázsit and L. Pál, Neutron Fluctuations -A Treatise on the Physics of Branching Processes, 2008.

B. Richard, Modal Expansion of the Space-Energetic Dependent Formula for Rossi-? Measurements, Nucl. Sci. Eng, 2013.

M. M. Williams, Random Processes in Nuclear Reactors, IEEE Transactions on Nuclear Science, vol.22, issue.5, 1974.
DOI : 10.1109/TNS.1975.4328076

R. Brillaud, Modélisation d'expériences de perturbation sur les réacteurs Caliban et Silène, 2007.

W. K. Foell, Small-Sample Reactivity Measurements in Nuclear Reactors, 1972.

R. G. Sanchez, Neptunium-237 and Highly Enriched Uranium Replacement Measurements Performed Using Flattop, 95)03/VII, SPEC-MET-FAST-003, 1997.

J. Taylor, An Introduction to Error Analysis, University Science Books, 1997.

S. M. Bowman and M. E. Dunn, Scale Cross Sections Libraries, 2005.

N. M. Greene, AMPX-77 A Modular Code System for Generating Coupled Multigroup Neutron Gamma Cross Section Libraries from ENDF/B-IV and, p.283, 1992.
DOI : 10.2172/6831636

N. M. Greene, BONAMI : Resonance Self-Shielding by the Bondarenko Method, II Sect. F1, Oak Ridge National Laboratory, 2005.

N. M. Greene, L. M. Petrie, and S. K. Fraley, ICE : Module to Mix Multigroup Cross Sections, 2009.

N. M. Greene, NITAWL : Scale System Module for Performing Resonance Shielding and working Library Production, II Sect. F2, Oak Ridge National Laboratory, 2009.

N. M. Greene and M. E. Dunn, User's Guide for AMPX Utility Modules, 2009.

R. E. Macfarlane and D. W. Muir, The NJOY Nuclear Data Processing System Version 91, p.12740, 1994.
DOI : 10.2172/10115999

M. Pescarini, V. Sinitsa, R. Orsi, and V. , BOLIB -A JEFF-3.1 Multi-Group Coupled (199 n + 42 gamma) Cross Section Library in AMPX Format for Nuclear Fission Applications, ENEA Internal Report, 2008.

M. L. Williams, CENTRM : A One-Dimensional Neutron Transport Code for Computing Pointwise Energy Spectra, II Sect. F18, Oak Ridge National Laboratory, 2009.

M. L. Williams, Scale Nuclear Data Covariance Library, III Sect. M19, Oak Ridge National Laboratory, 2005.

R. E. Alcouffe, R. S. Baker, J. A. Dahl, S. A. Turner, and R. Ward, PARTISN : A Time-Dependent, Parallel Neutral Particle Transport Code System, 10.9.2 Codes et méthodes déterministes, 2005.

R. J. Brissenden, Controlled Bueting Perturbations to k e using Correlated Tracking

R. J. Brissenden and A. R. Garlick, Biases in the estimation of Keff and its error by Monte Carlo methods, Annals of Nuclear Energy, vol.13, issue.2, p.63, 1986.
DOI : 10.1016/0306-4549(86)90095-2

R. J. Brissenden and N. R. Smith, Calculating Perturbations to k e by Monte Carlo Methods, International Seminar on Nuclear Criticality Safety, 1987.

F. Brown, B. Kiedrowski, W. Martin, and G. Yesilyurt, Advances in Monte Carlo Criticality Methods, LA-UR-09-02442, 2009.

U. Feldman, E. Gelbard, and R. Blomquist, Monte Carlo Small-Sample Perturbation Calculations, Proc. Topl. Mtg. Advances in Reactor Computations, p.124, 1983.

T. J. Hoffman, L. M. Petrie, and N. F. Landers, A Monte Carlo Perturbation Source Method for Reactivity Calculations, Nucl. Sci. Eng, vol.66, p.60, 1978.

B. C. Kiedrowski, F. B. Brown, and P. P. Wilson, Adjoint-Weighted Tallies for k-Eigenvalue Calculations with Continuous-Energy Monte Carlo, Nuclear Science and Engineering, vol.168, issue.3, p.226, 2011.
DOI : 10.13182/NSE10-22

B. C. Kiedrowski and F. B. Brown, Estimating Reactivity Changes from Material Substitutions with Continuous Energy Monte Carlo, Trans. Am. Nucl. Soc, vol.101, p.427, 2009.

A. Le and . Cocq, Contributions au développement des méthodes Monte Carlo pour les études de criticité, 1998.

W. Matthes, Calculation of Reactivity Perturbations with the Monte Carlo Method, Nucl. Sci. Eng, vol.47, p.234, 1972.

N. Metropolis, S. Ulam, T. M. , C. Method, and J. , The Monte Carlo Method, Journal of the American Statistical Association, vol.44, issue.247, p.335, 1949.
DOI : 10.1080/01621459.1949.10483310

B. Morillon, Méthode de Monte Carlo non analogue, application à la simulation des neutrons, 1996.

K. F. Raskach, An Improvement of the Monte Carlo Generalized Differential Operator Method by Taking into Account First- and Second-Order Perturbations of Fission Source, Nuclear Science and Engineering, vol.162, issue.2, p.158, 2009.
DOI : 10.13182/NSE162-158

B. T. Rearden and . Tsunami-3d, Control Module for Three-Dimensional Cross-Section Sensitivity and Uncertainty Analysis for Criticality, 2009.

H. Rief, E. M. Gelbard, R. W. Schaefer, and K. S. Smith, Review of Monte Carlo Techniques for Analyzing Reactor Perturbations, Nucl. Sci. Eng, vol.92, p.289, 1986.

H. Rief, Stochastic Perturbation Analysis Applied to Neutral Particle Transport Advances in Nuclear Science and Technology, p.69, 1996.

H. Rief, Generalized Monte Carlo perturbation algorithms for correlated sampling and a second-order Taylor series approach, Annals of Nuclear Energy, vol.11, issue.9, p.455, 1984.
DOI : 10.1016/0306-4549(84)90064-1

E. Seifert and M. Carlo, Monte Carlo calculation of the small sample reactivity effect, Progress in Nuclear Energy, vol.24, issue.1-3, p.251, 1990.
DOI : 10.1016/0149-1970(90)90043-5

M. C. Team, MCNP -A General Monte Carlo N-Particle Transport Code, Version 5, Volume I : Overview and Theory, LA-UR-03-1987, 2003.