Robust Image Segmentation Applied to Magnetic Resonance and Ultrasound Images of the Prostate

Résumé : [...] L’utilisation d’images ETR pour la biopsie est maintenant une norme suivie par les urologues pour le dépistage du cancer de la prostate. Toutefois, l’imagerie par résonance magnétique (IRM) offre un meilleur contraste des tissus mous par rapport aux images ETR. Ainsi, certaines tumeurs malignes visibles par l’IRM ne le sont pas avec les images ETR comme illustré par l’image de la figure 1. En fusionnant les deux modalités IRM et échographie transrectale, il est possible de développer des outils performants de diagnostic. C’est dans ce contexte que s’inscrit le projet PROSCAN qui est une collaboration entre le centre de recherche VICOROB (Computer Vision and Robotics Group) de l’université de Gérone et le Girona Magnetic Resonance Center du CHU de Gérone. [...] .. L’objectif principal de cette thèse est de développer des méthodes de segmentation précises et rapides de la prostate dans les images IRM ET ETR afin de faciliter la fusion d’images multimodales dans le cadre du projet PROSCAN. [...] Nous avons commencé notre travail par une étude approfondie des méthodes de segmentation dans les deux modalités échographie transrectale et IRM. Les principales similitudes et les différences entre les diverses méthodes, leurs forces et faiblesse sont été analysées. Les méthodes de segmentation de la prostate peuvent être regroupées dans quatre catégories différentes, selon les informations utilisées pour guider la segmentation [...] L’analyse des méthodes de segmentation montre que les approches qui combinent les informations de forme et de contour donnent les meilleurs résultats. Aussi, nous proposons d’utiliser le modèle AAM (Actice Appearance Model) qui a prouvé son efficacité pour la segmentation de la prostate dans les image d’échographietransrectale. Le modèle AAM permet de combiner les informations de forme et d’apparence en une unique fonction de coût à optimiser. De plus, l’étape d’optimisation par descente de gradient faite hors-ligne réduit considérablement les temps de calcul.Les images obtenues par échographie transrectale possèdent généralement une faible qualité ainsi qu’un faible contraste. Pour améliorer la robustesse de notre méthode de segmentation, nous introduisons des caractéristiques de texture extraits avec les ondelettes de Haar et des filtres en quadrature. Les résultats obtenus montrent que cette information de texture accroit la précision de la segmentation. Parailleurs, l’augmentation du temps de calcul due à l’utilisation des filtres est compensé par l’augmentation de la précision.Pour une initialisation automatique, nous avons développé un modèle probabiliste basé sur une classification supervisée. Un classifieur est construit à partird’un ensemble d’images d’apprentissage manuellement segmentées. Ce classifieur est utilisé pour obtenir une pré-segmentation de la prostate dans l’image ETR dans laquelle on attribue à chaque pixel une probabilité d’appartenance à la prostate. Unnouveau modèle AAM est ensuite construit dans lequel les intensités sont remplacéespar les probabilités obtenues à l’etape précédente. Les résultats obtenus montrent que cette approche permet une initialisation automatique tout en améliorant laprécision de la segmentation.Enfin, pour obtenir un modèle plus robuste nous avons utilisé la fonctionnelle de Mumford-Shah qui permet de définir une fonction de coût à optimiser comprenant à la fois les informations d’apparence, de forme et de topologie locale de laprostate. Les nombreux résultats qualitatifs et quantitatifs présentés dans la suite de ce manuscrit montrent que notre méthode donne de meilleurs résultats comparé à diverses autres approches.
Type de document :
Thèse
Human health and pathology. Université de Bourgogne, 2012. English. <NNT : 2012DIJOS039>
Liste complète des métadonnées


https://tel.archives-ouvertes.fr/tel-00837722
Contributeur : Abes Star <>
Soumis le : jeudi 27 novembre 2014 - 17:16:02
Dernière modification le : vendredi 23 juin 2017 - 11:17:07
Document(s) archivé(s) le : lundi 2 mars 2015 - 09:26:06

Fichier

these_A_GHOSE_Soumya_2012.pdf
Version validée par le jury (STAR)

Identifiants

  • HAL Id : tel-00837722, version 1

Collections

Citation

Soumya Ghose. Robust Image Segmentation Applied to Magnetic Resonance and Ultrasound Images of the Prostate. Human health and pathology. Université de Bourgogne, 2012. English. <NNT : 2012DIJOS039>. <tel-00837722>

Partager

Métriques

Consultations de
la notice

628

Téléchargements du document

331