Géométrie des variétés, des espaces de mesures et des espaces de sous-groupes

Abstract : This memoir presents results in three drections. In Riemannian geometry, we prove a generalized Günther inequality on volume, and in dimension 4 an isoperimetric inequality for manifold whose curvature is bounded from above. In the geometry of Wasserstein space from optimal transport, we prove embedding and non-embedding results, we compute isometry groups, and we study the dynamics of expanding circle maps acting on measures. In Chabauty topology, we prove that the space of closed subgroups of $R^n$ is simply connected.
Complete list of metadatas

Cited literature [51 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-00785679
Contributor : Benoît Kloeckner <>
Submitted on : Wednesday, February 6, 2013 - 4:36:11 PM
Last modification on : Monday, January 29, 2018 - 12:01:40 PM
Long-term archiving on: Monday, June 17, 2013 - 7:50:28 PM

Identifiers

  • HAL Id : tel-00785679, version 1

Collections

Citation

Benoît Kloeckner. Géométrie des variétés, des espaces de mesures et des espaces de sous-groupes. Géométrie différentielle [math.DG]. Université de Grenoble, 2012. ⟨tel-00785679⟩

Share

Metrics

Record views

332

Files downloads

1257