]. J. Bibliographie1, S. Yamabe, E. Nishimura, H. M. Guth, H. M. James et al., Elastic and thermoelastic properties of rubberlike materials -A statistical theoryTheory of the elastic properties of rubberStatistical mechanics of cross-linked polymer networks I Rubberlike elasticityStatistical mechanics of cross-linked polymer networks II SwellingA 3-dimensional constitutive model for the large stretch behavior of rubber elastic-materialsOn improved network models for rubber elasticity and their applications to orientation hardening in glassy-polymers, Journal of the Mechanics and Physics of Solids, pp.624-455, 1941.

L. R. Treloar and G. Riding, A Non-Gaussian Theory for Rubber in Biaxial Strain. I. Mechanical Properties, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.369, issue.1737, pp.261-280, 1979.
DOI : 10.1098/rspa.1979.0163

S. F. Edwards and T. Vilgis, The effect of entanglements in rubber elasticity, Polymer, vol.27, issue.4, pp.483-492, 1986.
DOI : 10.1016/0032-3861(86)90231-4

L. R. Treloar, The elasticity of a network of long-chain molecules. I, Transactions of the Faraday Society, vol.39, pp.36-0041, 1943.
DOI : 10.1039/tf9433900036

L. R. Treloar, The elasticity of a network of long-chain molecules???II, Trans. Faraday Soc., vol.39, issue.0, pp.241-0246, 1943.
DOI : 10.1039/TF9433900241

V. Vahapoglu and S. Karadeniz, Constitutive Equations for Isotropic Rubber-Like Materials Using Phenomenological Approach: A Bibliography (1930???2003), Rubber Chemistry and Technology, vol.79, issue.3, pp.489-499, 1930.
DOI : 10.5254/1.3547947

M. Mooney, A Theory of Large Elastic Deformation, Journal of Applied Physics, vol.11, issue.9, pp.582-592, 1940.
DOI : 10.1063/1.1712836

R. S. Rivlin, Large Elastic Deformations of Isotropic Materials. IV. Further Developments of the General Theory, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.241, issue.835, pp.379-397, 1948.
DOI : 10.1098/rsta.1948.0024

R. W. Ogden, Large Deformation Isotropic Elasticity - On the Correlation of Theory and Experiment for Incompressible Rubberlike Solids, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.326, issue.1567, p.565, 1972.
DOI : 10.1098/rspa.1972.0026

G. A. Holzapfel and J. C. Simo, A new viscoelastic constitutive model for continuous media at finite thermomechanical changes, International Journal of Solids and Structures, vol.33, issue.20-22, pp.3019-3034, 1996.
DOI : 10.1016/0020-7683(95)00263-4

J. Diani, M. Brieu, and E. P. Gilormini, Observation and modeling of the anisotropic visco-hyperelastic behavior of a rubberlike material, International Journal of Solids and Structures, vol.43, issue.10, pp.3044-3056, 2006.
DOI : 10.1016/j.ijsolstr.2005.06.045

URL : https://hal.archives-ouvertes.fr/hal-00124139

L. Mullins, Effect of Stretching on the Properties of Rubber, Rubber Chemistry and Technology, vol.21, issue.2, pp.275-289, 1948.
DOI : 10.5254/1.3546914

L. Mullins, Softening of Rubber by Deformation, Rubber Chemistry and Technology, vol.42, issue.1, pp.339-362, 1969.
DOI : 10.5254/1.3539210

J. A. Harwood, L. Mullins, and A. R. Payne, Stress softening in natural rubber vulcanizates. Part II. Stress softening effects in pure gum and filler loaded rubbers, Journal of Applied Polymer Science, vol.9, issue.9, p.3011, 1965.
DOI : 10.1002/app.1965.070090907

A. N. Gent, Cavitation in Rubber: A Cautionary Tale, Rubber Chemistry and Technology, vol.63, issue.3, pp.49-53, 1990.
DOI : 10.5254/1.3538266

N. A. Hocine, A. Hamdi, M. N. Abdelaziz, P. Heuillet, and E. F. Zairi, Experimental and finite element investigation of void nucleation in rubber-like materials, International Journal of Solids and Structures, vol.48, issue.9, pp.1248-1254, 2011.
DOI : 10.1016/j.ijsolstr.2011.01.009

URL : https://hal.archives-ouvertes.fr/hal-00572513

A. N. Gent and P. B. Lindley, Internal Rupture of Bonded Rubber Cylinders in Tension, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.249, issue.1257, p.195, 1959.
DOI : 10.1098/rspa.1959.0016

G. H. Lindsey, Triaxial Fracture Studies, Journal of Applied Physics, vol.38, issue.12, p.4843, 1967.
DOI : 10.1063/1.1709232

A. Cristiano, A. Marcellan, R. Long, C. Y. Hui, J. Stolk et al., An experimental investigation of fracture by cavitation of model elastomeric networks, Journal of Polymer Science Part B: Polymer Physics, vol.280, issue.13, pp.1409-1422, 2010.
DOI : 10.1002/polb.22026

A. Cristiano, A. Marcellan, B. J. Keestra, P. Steeman, and C. Creton, Fracture of model polyurethane elastomeric networks, Journal of Polymer Science Part B: Polymer Physics, vol.101, issue.5, pp.355-367, 2011.
DOI : 10.1002/polb.22186

A. Cristiano, Fracture by cavitation of model polyurethane elastomers, 2009.
URL : https://hal.archives-ouvertes.fr/pastel-00578499

J. M. Ball, Discontinuous Equilibrium Solutions and Cavitation in Nonlinear Elasticity, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.306, issue.1496, pp.557-611, 1982.
DOI : 10.1098/rsta.1982.0095

J. Dollhofer, A. Chiche, V. Muralidharan, C. Creton, and C. Y. Hui, Surface energy effects for cavity growth and nucleation in an incompressible neo-Hookean material??????modeling and experiment, International Journal of Solids and Structures, vol.41, issue.22-23, pp.6111-6127, 2004.
DOI : 10.1016/j.ijsolstr.2004.04.041

V. Muralidharan, C. Y. Hui, J. Dollhofer, C. Creton, and Y. Y. Lin, Machine compliance and hardening effects on cavity growth in soft adhesives, International Journal of Adhesion and Adhesives, vol.26, issue.3, pp.117-124, 2006.
DOI : 10.1016/j.ijadhadh.2005.03.001

A. N. Gent and D. A. Tompkins, Nucleation and Growth of Gas Bubbles in Elastomers, Journal of Applied Physics, vol.40, issue.6, pp.2520-2525, 1969.
DOI : 10.1063/1.1658026

J. G. Murphy and S. Biwa, Nonmonotonic cavity growth in finite, compressible elasticity, International Journal of Solids and Structures, vol.34, issue.29, pp.3859-3872, 1997.
DOI : 10.1016/S0020-7683(96)00237-5

X. C. Shang and C. J. Cheng, Exact solution for cavitated bifurcation for compressible hyperelastic materials, International Journal of Engineering Science, vol.39, pp.1101-1117, 2001.

B. J. Lee and M. E. Mear, Studies of the Growth and Collapse of Voids in Viscous Solids, Journal of Engineering Materials and Technology, vol.116, issue.3, pp.348-358, 1994.
DOI : 10.1115/1.2904298

J. Diani, Irreversible growth of a spherical cavity in rubber-like material: A fracture mechanics description, International Journal of Fracture, vol.112, issue.2, pp.151-161, 2001.
DOI : 10.1023/A:1013311526076

O. Lopez-pamies, Onset of Cavitation in Compressible, Isotropic, Hyperelastic Solids, Journal of Elasticity, vol.XLIX, issue.2, pp.115-145, 2009.
DOI : 10.1007/s10659-008-9187-8

M. F. Butler, A. M. Donald, and A. J. Ryan, Time resolved simultaneous small- and wide-angle X-ray scattering during polyethylene deformation???II. Cold drawing of linear polyethylene, Polymer, vol.39, issue.1, pp.39-52, 1998.
DOI : 10.1016/S0032-3861(97)00226-7

H. S. Hou and R. Abeyaratne, Cavitation in elastic and elastic plastic solids, Journal of the Mechanics and Physics of Solids, vol.40, pp.571-592, 1992.

B. Sixou, Molecular dynamics simulation of the first stages of the cavitation process in amorphous polymers, Molecular Simulation, vol.735, issue.12, pp.965-973, 2007.
DOI : 10.1063/1.1699711

K. Kremer and G. S. Grest, Dynamics of entangled linear polymer melts:??? A molecular???dynamics simulation, The Journal of Chemical Physics, vol.92, issue.8, pp.5057-5086, 1990.
DOI : 10.1063/1.458541

A. Morozinis, C. Tzoumanekas, and D. N. Theodorou, Molecular modeling of cavitation in polymer melts and rubbers, 15th International conference on Deformation, Yield and Fracture of Polymers, 2012.

M. L. Williams and R. A. Schapery, Spherical flaw instability in hydrostatic tension, International Journal of Fracture Mechanics, vol.249, issue.1, pp.64-71, 1965.
DOI : 10.1007/BF00184154

H. S. Griffith, The Phenomena of Rupture and Flow in Solids, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.221, issue.582-593, p.63, 1921.
DOI : 10.1098/rsta.1921.0006

D. Dompas and G. Groeninckx, Toughening behaviour of rubber-modified thermoplastic polymers involving very small rubber particles: 1. A criterion for internal rubber cavitation, Polymer, vol.35, issue.22, pp.4743-4749, 1994.
DOI : 10.1016/0032-3861(94)90727-7

C. Fond, A. Lobbrecht, and E. R. Schirrer, Polymers toughened with rubber microspheres: an analytical solution for stresses and strains in the rubber particles at equilibrium and rupture, International Journal of Fracture, vol.249, issue.2, pp.141-159, 1996.
DOI : 10.1007/BF00037234

A. N. Gent and C. Wang, Fracture mechanics and cavitation in rubber-like solids, Journal of Materials Science, vol.58, issue.12, pp.3392-3395, 1991.
DOI : 10.1007/BF01124691

J. Li, D. Mayau, and E. F. Song, A constitutive model for cavitation and cavity growth in rubber-like materials under arbitrary tri-axial loading, International Journal of Solids and Structures, vol.44, issue.18-19, pp.6080-6100, 2007.
DOI : 10.1016/j.ijsolstr.2007.02.016

K. Y. Volokh, Softening hyperelasticity for modeling material failure: Analysis of cavitation in hydrostatic tension, International Journal of Solids and Structures, vol.44, issue.14-15, pp.5043-5055, 2007.
DOI : 10.1016/j.ijsolstr.2006.12.022

K. Y. Volokh, Multiscale Modeling of Material Failure: From Atomic Bonds to Elasticity with Energy Limiters, International Journal for Multiscale Computational Engineering, vol.6, issue.5, pp.393-410, 2008.
DOI : 10.1615/IntJMultCompEng.v6.i5.20

K. Y. Volokh, On modeling failure of rubber-like materials, Mechanics Research Communications, vol.37, issue.8, pp.684-689, 2010.
DOI : 10.1016/j.mechrescom.2010.10.006

K. Y. Volokh, CAVITATION INSTABILITY IN RUBBER, International Journal of Applied Mechanics, vol.03, issue.02, pp.299-311, 2011.
DOI : 10.1142/S1758825111001007

K. Urayama, T. Kawamura, and E. S. Kohjiya, Structure???mechanical property correlations of model siloxane elastomers with controlled network topology, Polymer, vol.50, issue.2, pp.347-356, 2009.
DOI : 10.1016/j.polymer.2008.10.027

G. J. Van-amerongen, Diffusion in Elastomers, Rubber Chemistry and Technology, vol.37, issue.5, pp.1065-1152, 1964.
DOI : 10.5254/1.3540396

A. Fick, Ueber Diffusion, Poggendorff's Annalen der Physik und Chemie, pp.59-86, 1855.
DOI : 10.1002/andp.18551700105

J. Fourier, Théorie analytique de la chaleur, Didot père et fils, p.1822
DOI : 10.1017/CBO9780511693229

W. Henry, Experiments on the Quantity of Gases Absorbed by Water, at Different Temperatures, and under Different Pressures, Philosophical Transactions of the Royal Society of London, vol.93, issue.0, pp.29-276, 1803.
DOI : 10.1098/rstl.1803.0004

J. Yamabe and S. Nishimura, Influence of fillers on hydrogen penetration properties and blister fracture of rubber composites for O-ring exposed to high-pressure hydrogen gas, International Journal of Hydrogen Energy, vol.34, issue.4, pp.1977-1989, 2009.
DOI : 10.1016/j.ijhydene.2008.11.105

R. M. Barrer, M. G. Rogers, and J. A. Barrie, Heterogeneous membranes: Diffusion in filled rubber, Journal of Polymer Science Part A: General Papers, vol.1, issue.8, p.2565, 1963.
DOI : 10.1002/pol.1963.100010806

Y. Kamiya, K. Mizoguchi, and Y. Naito, Sorption and partial molar volumes of inert gases in rubbery polymers, Journal of Membrane Science, vol.93, issue.1, pp.45-52, 1994.
DOI : 10.1016/0376-7388(94)85014-3

D. W. Krevelen and P. J. Hoftyzer, Properties of polymers, their estimation and correlation with chemical structure, 1976.

S. A. Chester and L. Anand, A coupled theory of fluid permeation and large deformations for elastomeric materials, Journal of the Mechanics and Physics of Solids, vol.58, issue.11, pp.1879-1906, 2010.
DOI : 10.1016/j.jmps.2010.07.020

S. Castagnet, J. C. Grandidier, M. Comyn, and E. G. Benoit, Mechanical Testing of Polymers in Pressurized Hydrogen: Tension, Creep and Ductile Fracture, Experimental Mechanics, vol.76, issue.18, pp.229-239, 2012.
DOI : 10.1007/s11340-011-9484-1

O. M. Davies, J. C. Arnold, and E. S. Sulley, The mechanical properties of elastomers in high-pressure CO2, Journal of Materials Science, vol.34, issue.2, pp.417-422, 1999.
DOI : 10.1023/A:1004442614090

J. Yamabe and S. Nishimura, Crack Growth Behavior of Sealing Rubber under Static Strain in High-Pressure Hydrogen Gas, Journal of Solid Mechanics and Materials Engineering, vol.5, issue.12, pp.690-701, 2011.
DOI : 10.1299/jmmp.5.690

B. J. Briscoe, T. Savvas, and C. T. Kelly, ???Explosive Decompression Failure??? of Rubbers: A Review of the Origins of Pneumatic Stress Induced Rupture in Elastomers, Rubber Chemistry and Technology, vol.67, issue.3, pp.384-416, 1994.
DOI : 10.5254/1.3538683

R. P. Campion and G. J. Morgan, High-pressure permeation and diffusion of gases in polymers of different structures, Plastics Rubber and Composites Processing and Applications, vol.17, pp.51-58, 1992.

W. C. Wang, E. J. Kramer, and W. H. Sachse, Effects of high-pressure CO2 on the glass transition temperature and mechanical properties of polystyrene, Journal of Polymer Science: Polymer Physics Edition, vol.20, issue.8, pp.1371-1384, 1982.
DOI : 10.1002/pol.1982.180200804

S. M. Jordan, W. J. Koros, and G. K. Fleming, The effects of CO2 exposure on pure and mixed gas permeation behavior: comparison of glassy polycarbonate and silicone rubber, Journal of Membrane Science, vol.30, issue.2, pp.191-212, 1987.
DOI : 10.1016/S0376-7388(00)81351-4

S. W. Rutherford, R. E. Kurtz, M. G. Smith, K. G. Honnell, and J. E. Coons, Measurement and correlation of sorption and transport properties of ethylenepropylene-diene monomer (EPDM) elastomers, pp.57-65, 2005.

C. W. Stewart, Nucleation and growth of bubbles in elastomers Journal of Polymer Science Part a-2-Polymer Physics, p.937, 1970.

R. L. Denecour and A. N. Gent, Bubble formation in vulcanized rubbers Journal of Polymer Science Part a-2-Polymer Physics, p.1853, 1968.

J. C. Vicic, L. A. Peters, and D. E. Cain, Silica reinforcement of oil field elastomers for improved decompression resistance, 1990.

Z. Major, K. Lederer, T. Schwarz, and R. W. Lang, Development of a test and failure analysis methodology for elastomeric seals exposed to rapid gas decompresion in oilfield applications, Engineering Structural Integrity: Research, Development and Application, Vols 1 and 2, pp.754-757, 2007.

B. J. Briscoe and D. Liatsis, Internal Crack Symmetry Phenomena during Gas-Induced Rupture of Elastomers, Rubber Chemistry and Technology, vol.65, issue.2, pp.350-373, 1992.
DOI : 10.5254/1.3538617

P. Embury, High-pressure gas testing of elastomer seals and a practical approach to designing for explosive decompression service, Sealing Technology, vol.2004, issue.6, pp.6-11, 2004.
DOI : 10.1016/S1350-4789(04)00231-4

A. Stevenson and G. Morgan, Fracture of Elastomers by Gas Decompression, Rubber Chemistry and Technology, vol.68, issue.2, pp.197-211, 1995.
DOI : 10.5254/1.3538735

S. Zakaria and B. J. Briscoe, Why rubber explodes, Chemtech, vol.20, pp.492-495, 1990.

A. Koga, T. Yamabe, H. Sato, U. Kenichi, J. Nakayama et al., Visualizing O-ring behavior with high-pressure gas decompression, 2012.

R. N. Haward, Occupied Volume of Liquids and Polymers, Journal of Macromolecular Science, Part C: Polymer Reviews, vol.7, issue.2, p.191, 1970.
DOI : 10.1002/pol.1962.1205716534

R. P. Campion, The Influence of Structure on Autohesion (Self-Tack) and other forms of Diffusion into Polymers, The Journal of Adhesion, vol.33, issue.2, pp.1-23, 1975.
DOI : 10.1080/00218467508078895

E. H. Andrews and A. Stevenson, Fracture energy of epoxy resin under plane strain conditions, Journal of Materials Science, vol.13, issue.8, pp.1680-1688, 1978.
DOI : 10.1007/BF00548731

J. D. Ferry, Viscoelastic properties of elastomers, 1980.

P. Martinon, Caractéristiques des élastomères, 1998.

B. and L. Neindre, Constantes mécaniques -Coefficients d'élasticité, 1991.

A. Demarez, A. G. Hock, and F. A. Meunier, Diffusion of hydrogen in mild steel, Acta Metallurgica, vol.2, issue.2, pp.214-223, 1954.
DOI : 10.1016/0001-6160(54)90162-5

G. Renner and A. Ekart, Genetic algorithms in computer aided design, Computer-Aided Design, vol.35, issue.8, pp.709-726, 2003.
DOI : 10.1016/S0010-4485(03)00003-4

C. J. Ed, The mathematics of diffusion, p.p.^pp. Pages, 1956.

Y. Kamiya, Y. Naito, T. Hirose, and E. K. Mizoguchi, Sorption and partial molar volume of gases in poly (dimethyl siloxane), Journal of Polymer Science Part B: Polymer Physics, vol.28, issue.8, pp.1297-1308, 1990.
DOI : 10.1002/polb.1990.090280808

M. B. Hagg, Membrane purification of Cl2 gas, Journal of Membrane Science, vol.170, issue.2, pp.173-190, 2000.
DOI : 10.1016/S0376-7388(99)00371-3

. Ensuite, on suppose que la cavité contient une quantité N de gaz constante et qu'il n'y a pas d

. Enfin, on suppose que ce gaz se trouve à l'état gazeux et suit la loi des gaz parfait (Equation 4.18) Sa pression est donc inversement proportionnelle à son volume