A. Abdulle, P. Lin, and A. Shapeev, Homogenization-based analysis of QuasiContinuum method for complex crystals

G. Allaire, Homogenization and Two-Scale Convergence, SIAM Journal on Mathematical Analysis, vol.23, issue.6, pp.1482-1518, 1992.
DOI : 10.1137/0523084

URL : https://hal.archives-ouvertes.fr/hal-01111805

A. Anantharaman, Analyse mathématique de quelques modèles en calcul de structuresélectroniques structuresélectroniques et homogénéisation, 2010.

M. Anitescu, D. Negrut, P. Zapol, and A. , El-Azab, A note on the regularity of reduced models obtained by nonlocal quasi-continuum-like approach, Mathematical Programming, pp.207-236, 2009.

M. Arndt and M. , Derivation of Higher Order Gradient Continuum Models from Atomistic Models for Crystalline Solids, Multiscale Modeling & Simulation, vol.4, issue.2, pp.531-562, 2005.
DOI : 10.1137/040608738

M. Arndt and M. Luskin, Error Estimation and Atomistic-Continuum Adaptivity for the Quasicontinuum Approximation of a Frenkel???Kontorova Model, Multiscale Modeling & Simulation, vol.7, issue.1, pp.147-170, 2008.
DOI : 10.1137/070688559

V. I. Arnold, Mathematical methods of classical mechanics, Graduate Texts in Mathematics, vol.60, 1978.

L. Baffico, S. Bernard, Y. Maday, G. Turinici, and G. Zérah, Parallel-in-time molecular-dynamics simulations, Physical Review E, vol.66, issue.5, p.57701, 2002.
DOI : 10.1103/PhysRevE.66.057701

URL : https://hal.archives-ouvertes.fr/hal-00536574

G. Bal, J. Garnier, S. Motsch, and V. Perrier, Random integrals and correctors in homogenization, Asymptotic Analysis, vol.59, issue.12, pp.1-26, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00355004

G. Bal and Y. Maday, A ???Parareal??? Time Discretization for Non-Linear PDE???s with Application to the Pricing of an American Put, Lect. Notes Comput. Sci. Eng, vol.23, pp.189-202, 2002.
DOI : 10.1007/978-3-642-56118-4_12

G. Bal and Q. Wu, Symplectic parareal, in Domain Decomposition Methods in Science and Engineering XVII

R. Balian, From microphysics to macrophysics : methods and applications of statistical physics, Theoretical and mathematical physics series, 2007.
DOI : 10.1007/978-3-540-45475-5

J. M. Ball, Some Open Problems in Elasticity, Geometry, Mechanics, and Dynamics, pp.3-59, 2002.
DOI : 10.1007/0-387-21791-6_1

G. Basile, C. Bernardin, and S. Olla, Momentum Conserving Model with Anomalous Thermal Conductivity in Low Dimensional Systems, Physical Review Letters, vol.96, issue.20, p.204303, 2006.
DOI : 10.1103/PhysRevLett.96.204303

G. Benettin and A. Giorgilli, On the Hamiltonian interpolation of near-to-the identity symplectic mappings with application to symplectic integration algorithms, Journal of Statistical Physics, vol.73, issue.5-6, pp.1117-1143, 1994.
DOI : 10.1007/BF02188219

A. Bensoussan, J. Lions, and G. Papanicolaou, Asymptotic analysis for periodic structures Olla, Fourier's law for a microscopic model of heat conduction, Studies in Mathematics and its Applications, pp.271-289, 1978.

X. Blanc and C. L. Bris, D??finition d'??nergies d'interfaces ?? partir de mod??les atomiques, Comptes Rendus Mathematique, vol.340, issue.7, pp.535-540, 2005.
DOI : 10.1016/j.crma.2005.02.022

X. Blanc and C. L. Bris, Improving on computation of homogenized coefficients in the periodic and quasi-periodic settings, Networks and Heterogeneous Media, vol.5, issue.1, pp.1-29, 2010.
DOI : 10.3934/nhm.2010.5.1

URL : https://hal.archives-ouvertes.fr/inria-00387214

X. Blanc, C. Le-bris, and P. Lions, Convergence de mod??les mol??culaires vers des mod??les de m??canique des milieux continus, Comptes Rendus de l'Acad??mie des Sciences - Series I - Mathematics, vol.332, issue.10, pp.949-956, 2001.
DOI : 10.1016/S0764-4442(01)01933-4

X. Blanc, C. Le-bris, and P. , From Molecular Models??to Continuum Mechanics, Archive for Rational Mechanics and Analysis, vol.164, issue.4, pp.341-381, 2002.
DOI : 10.1007/s00205-002-0218-5

URL : https://hal.archives-ouvertes.fr/hal-01487687

X. Blanc, C. Le-bris, and P. Lions, Une variante de la th??orie de l'homog??n??isation stochastique des op??rateurs elliptiques, Comptes Rendus Mathematique, vol.343, issue.11-12, pp.717-724, 2006.
DOI : 10.1016/j.crma.2006.09.034

X. Blanc, C. Le-bris, and P. Lions, Du discret au continu pour des modèles de réseaux aléatoires d'atomes [Discrete to continuum limit for some models of stochastic lattices of atoms], C. R. Acad. Sci. Paris, Série I, issue.8, pp.342627-633, 2006.

X. Blanc, C. Le-bris, and P. Lions, Stochastic homogenization and random lattices, Journal de Math??matiques Pures et Appliqu??es, vol.88, issue.1, pp.34-63, 2007.
DOI : 10.1016/j.matpur.2007.04.006

URL : https://hal.archives-ouvertes.fr/hal-00140076

X. Blanc, C. Le-bris, and P. Lions, Atomistic to Continuum limits for computational materials science, M2AN), pp.391-426, 2007.
DOI : 10.1051/m2an:2007018

URL : https://hal.archives-ouvertes.fr/hal-00667335

X. Blanc, C. Le-bris, and P. Lions, The Energy of Some Microscopic Stochastic Lattices, Archive for Rational Mechanics and Analysis, vol.129, issue.2, pp.303-339, 2007.
DOI : 10.1007/s00205-006-0028-2

URL : https://hal.archives-ouvertes.fr/hal-00667350

S. D. Bond, B. J. Leimkuhler, and B. B. Laird, The Nos?????Poincar?? Method for Constant Temperature Molecular Dynamics, Journal of Computational Physics, vol.151, issue.1, pp.114-134, 1999.
DOI : 10.1006/jcph.1998.6171

F. Bonetto, J. L. Lebowitz, J. Lukkarinen, and S. Olla, Heat Conduction and Entropy Production in??Anharmonic Crystals with Self-Consistent Stochastic Reservoirs, Journal of Statistical Physics, vol.233, issue.4, pp.1097-1119, 2009.
DOI : 10.1007/s10955-008-9657-1

URL : https://hal.archives-ouvertes.fr/hal-00318755

F. Bonetto, J. L. Lebowitz, and L. Rey-bellet, FOURIER'S LAW: A CHALLENGE TO THEORISTS, Mathematical Physics, pp.128-151, 2000.
DOI : 10.1142/9781848160224_0008

F. Bornemann, Homogenization in time of singularly perturbed mechanical systems, Lect. Notes Math, vol.1687, 1998.
DOI : 10.1007/BFb0092091

F. Bornemann, . Ch, and . Schütte, Homogenization of Hamiltonian systems with a strong constraining potential, Physica D: Nonlinear Phenomena, vol.102, issue.1-2, pp.57-77, 1997.
DOI : 10.1016/S0167-2789(96)00245-X

A. Bourgeat and A. Piatnitski, Estimates in probability of the residual between the random and the homogenized solutions of one-dimensional second-order operator, Asymptotic Analysis, pp.3-4303, 1999.

A. Bourgeat and A. Piatnitski, Approximations of effective coefficients in stochastic homogenization, Annales de l?Institut Henri Poincare (B) Probability and Statistics, vol.40, issue.2, pp.153-165, 2004.
DOI : 10.1016/j.anihpb.2003.07.003

A. Braides and A. Defranceschi, Homogenization of multiple integrals, 1998.

P. Carmona, Existence and uniqueness of an invariant measure for a chain of oscillators in contact with two heat baths, Stochastic Processes and their Applications, pp.1076-1092, 2007.
DOI : 10.1016/j.spa.2006.12.003

URL : https://hal.archives-ouvertes.fr/hal-00115627

F. Castella, . Ph, E. Chartier, and . Faou, An Averaging Technique for Highly Oscillatory Hamiltonian Problems, SIAM Journal on Numerical Analysis, vol.47, issue.4, pp.2808-2837, 2009.
DOI : 10.1137/080715974

URL : https://hal.archives-ouvertes.fr/hal-00777047

A. J. Chorin, O. H. Hald, and R. Kupferman, Optimal prediction and the Mori-Zwanzig representation of irreversible processes, Proceedings of the National Academy of Sciences, pp.2968-2973, 2000.
DOI : 10.1073/pnas.97.7.2968

A. J. Chorin, O. H. Hald, and R. Kupferman, Optimal prediction with memory, Physica D: Nonlinear Phenomena, vol.166, issue.3-4, pp.239-257, 2002.
DOI : 10.1016/S0167-2789(02)00446-3

. G. Ph and . Ciarlet, Mathematical elasticity, 1993.

G. Ciccotti, T. Lelì-evre, and E. Vanden-eijnden, Projection of diffusions on submanifolds: Application to mean force computation, Communications on Pure and Applied Mathematics, vol.123, issue.3, pp.371-408, 2008.
DOI : 10.1002/cpa.20210

D. Cioranescu and P. Donato, An introduction to homogenization, Oxford Lecture Series in Mathematics and its Applications, vol.17, 1999.

D. Cohen, T. Jahnke, K. Lorenz, . Ch, and . Lubich, Numerical integrators for highly oscillatory Hamiltonian systems : a review, in Analysis, Modeling and Simulation of Multiscale Problems, Mathematics and Statistics, pp.553-576, 2006.

R. Costaouec, Thèse de l

R. Costaouec, Asymptotic Expansion of the Homogenized Matrix in Two Weakly Stochastic Homogenization Settings, Applied Mathematics Research eXpress, vol.2012, issue.1
DOI : 10.1093/amrx/abr011

S. Curtarolo and G. Ceder, Dynamics of an Inhomogeneously Coarse Grained Multiscale System, Physical Review Letters, vol.88, issue.25, p.255504, 2002.
DOI : 10.1103/PhysRevLett.88.255504

E. Darve, J. Solomon, and A. Kia, Computing generalized Langevin equations and generalized Fokker-Planck equations, Proceedings of the National Academy of Sciences, pp.10884-10889, 2009.
DOI : 10.1073/pnas.0902633106

R. L. Davidchack, Discretization errors in molecular dynamics simulations with deterministic and stochastic thermostats, Journal of Computational Physics, vol.229, issue.24, pp.9323-9346, 2010.
DOI : 10.1016/j.jcp.2010.09.004

P. Deák, . Th, and . Frauenheim, Computer simulation of materials at atomic level, 2000.
DOI : 10.1002/3527603107

A. Dembo and O. Zeitouni, Large deviations techniques and applications, 1993.

J. Deuschel, G. Giacomin, and D. Ioffe, Large deviations and concentration properties for ? ? interface models, Probability Theory and Related Fields, vol.117, issue.1, pp.49-111, 2000.
DOI : 10.1007/s004400050266

D. Dizdar, Towards an optimal rate of convergence in the hydrodynamic limit for Kawasaki dynamics, 2007.

M. Dobson and M. Luskin, Analysis of a force-based quasicontinuum approximation, M2AN), pp.113-139, 2008.
DOI : 10.1051/m2an:2007058

URL : https://hal.archives-ouvertes.fr/hal-00676436

M. Dobson and M. Luskin, An analysis of the effect of ghost force oscillation on quasicontinuum error, M2AN), pp.591-604, 2009.
DOI : 10.1051/m2an/2009007

M. Dobson and M. Luskin, An Optimal Order Error Analysis of the One-Dimensional Quasicontinuum Approximation, SIAM Journal on Numerical Analysis, vol.47, issue.4, pp.2455-2475179, 2009.
DOI : 10.1137/08073723X

M. Dobson, M. Luskin, and C. Ortner, Accuracy of quasicontinuum approximations near instabilities, Journal of the Mechanics and Physics of Solids, vol.58, issue.10, pp.1741-1757, 2010.
DOI : 10.1016/j.jmps.2010.06.011

N. Dunford, J. T. Schwartz, and L. Operators, Spectral theory, Bulletin of the American Mathematical Society, vol.49, issue.9, 1963.
DOI : 10.1090/S0002-9904-1943-07965-7

L. M. Dupuy, E. B. Tadmor, R. E. Miller, and R. Phillips, Finite-Temperature Quasicontinuum: Molecular Dynamics without All the Atoms, Physical Review Letters, vol.95, issue.6, p.60202, 2005.
DOI : 10.1103/PhysRevLett.95.060202

W. E. and P. B. Ming, Analysis of multiscale methods, J. Comp. Math, vol.22, issue.2, pp.210-219, 2004.

W. E. and P. B. Ming, Cauchy-Born rule and stability of crystals : static problems, Arch. Rat. Mech. Anal, vol.183, issue.2, pp.241-297, 2007.

R. S. Ellis, Entropy, large deviations, and statistical mechanics, volume 271 of Grundlehren der Mathematischen Wissenschaften, 1985.

R. S. Ellis, Large deviations and statistical mechanics, Contemp. Math, vol.41, pp.101-123, 1984.
DOI : 10.1090/conm/041/814705

R. S. Ellis, An overview of the theory of large deviations and applications to statistical mechanics, Scand. Actuar. J, vol.1, pp.97-142, 1993.

B. Engquist and R. Tsai, Heterogeneous multiscale methods for stiff ordinary differential equations, Mathematics of Computation, vol.74, issue.252, pp.1707-1742, 2005.
DOI : 10.1090/S0025-5718-05-01745-X

L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions, 1992.

E. Faou, E. Hairer, and T. Pham, Energy Conservation with Non-Symplectic Methods: Examples and Counter-Examples, BIT Numerical Mathematics, vol.83, issue.1?4, pp.699-709, 2004.
DOI : 10.1007/s10543-004-5240-6

K. Feng, Difference schemes for Hamiltonian formalism and symplectic geometry, J. Comp. Math, vol.4, pp.279-289, 1986.

M. C. Fivel, C. F. Robertson, G. R. Canova, and L. Boulanger, Three-dimensional modeling of indent-induced plastic zone at a mesoscale1This paper is dedicated to Gilles Canova whose untimely death occurred on 28 July 1997 at the age of 43.1, Acta Materialia, vol.46, issue.17, pp.6183-6194, 1998.
DOI : 10.1016/S1359-6454(98)00278-X

I. Fonseca and S. Krömer, Multiple integrals under differential constraints: two-scale convergence and homogenization, Indiana University Mathematics Journal, vol.59, issue.2, pp.427-457, 2010.
DOI : 10.1512/iumj.2010.59.4249

T. Funaki, Stochastic interface models, in Lectures on Probability Theory and Statistics , Ecole d'´ eté de probabilités de Saint-Flour XXXIII -2003, Lect. Notes Math, vol.1869, pp.103-274, 2005.

T. Funaki and H. Spohn, Motion by Mean Curvature from the Ginzburg-Landau $\nabla\phi$ Interface Model, Communications in Mathematical Physics, vol.185, issue.1, pp.1-36, 1997.
DOI : 10.1007/s002200050080

G. Giacomin, S. Olla, and H. Spohn, Equilibrium fluctuations for ?? interface model, The Annals of Probability, pp.1138-1172, 2001.

D. Givon, R. Kupferman, and A. M. Stuart, Extracting macroscopic dynamics: model problems and algorithms, Nonlinearity, vol.17, issue.6, pp.55-127, 2004.
DOI : 10.1088/0951-7715/17/6/R01

A. Gloria, A direct approach to numerical homogenization in finite elasticity, Netw. Heterog. Media, vol.1, issue.1, pp.109-141, 2006.
URL : https://hal.archives-ouvertes.fr/inria-00070383

A. Gloria, REDUCTION OF THE RESONANCE ERROR ??? PART 1: APPROXIMATION OF HOMOGENIZED COEFFICIENTS, Mathematical Models and Methods in Applied Sciences, vol.21, issue.08, pp.1601-1630, 2011.
DOI : 10.1142/S0218202511005507

URL : https://hal.archives-ouvertes.fr/inria-00457159

A. Gloria and F. Otto, An optimal error estimate in stochastic homogenization of discrete elliptic equations, preprint

V. Grimm and M. Hochbruck, Error analysis of exponential integrators for oscillatory second-order differential equations, Journal of Physics A: Mathematical and General, vol.39, issue.19, pp.5495-5507, 2006.
DOI : 10.1088/0305-4470/39/19/S10

H. Grubmüller, H. Heller, A. Windemuth, and K. Schulten, Generalized Verlet Algorithm for Efficient Molecular Dynamics Simulations with Long-range Interactions, Molecular Simulation, vol.6, issue.1-3, pp.121-142, 1991.
DOI : 10.1016/0021-9991(87)90140-9

N. Grunewald, F. Otto, C. Villani, and M. G. Westdickenberg, A two-scale approach to logarithmic Sobolev inequalities and the hydrodynamic limit, Annales de l'Institut Henri Poincar??, Probabilit??s et Statistiques, vol.45, issue.2, pp.302-351, 2009.
DOI : 10.1214/07-AIHP200

I. Gyöngy, Mimicking the one-dimensional marginal distributions of processes having an Itô differential, Probab. Theory Relat. Fields, pp.501-516, 1986.

E. Hairer, . Ch, and . Lubich, The life-span of backward error analysis for numerical integrators, Numerische Mathematik, vol.76, issue.4, pp.441-462, 1997.
DOI : 10.1007/s002110050271

E. Hairer, . Ch, G. Lubich, and . Wanner, Geometric Numerical Integration, Structure- Preserving Algorithms For Ordinary Differential Equations, 2006.

P. Hänggi, P. Talkner, and M. Borkovec, Reaction-rate theory: fifty years after Kramers, Reviews of Modern Physics, vol.62, issue.2, pp.251-342, 1990.
DOI : 10.1103/RevModPhys.62.251

C. Hartmann, Model reduction in classical molecular dynamics, 2007.

W. K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika, vol.57, issue.1, pp.97-109, 1970.
DOI : 10.1093/biomet/57.1.97

T. Hatano, Heat conduction in the diatomic Toda lattice revisited, Physical Review E, vol.59, issue.1, pp.1-4, 1999.
DOI : 10.1103/PhysRevE.59.R1

F. Hollander, Large deviations, Fields Institute Monographs, 2000.

W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Physical Review A, vol.31, issue.3, pp.311695-1697, 1985.
DOI : 10.1103/PhysRevA.31.1695

I. Horenko, C. Hartmann, C. Schütte, and F. Noe, Data-based parameter estimation of generalized multidimensional Langevin processes, Physical Review E, vol.76, issue.1, p.16706, 2007.
DOI : 10.1103/PhysRevE.76.016706

J. A. Izaguirre, S. Reich, and R. D. Skeel, Longer time steps for molecular dynamics, The Journal of Chemical Physics, vol.110, issue.20, pp.9853-9864, 1999.
DOI : 10.1063/1.478995

T. Jahnke, Long-Time-Step Integrators for Almost-Adiabatic Quantum Dynamics, SIAM Journal on Scientific Computing, vol.25, issue.6, pp.2145-2164, 2004.
DOI : 10.1137/S1064827502411316

T. Jahnke, . Ch, and . Lubich, Numerical integrators for quantum dynamics close to the adiabatic limit, Numerische Mathematik, vol.94, issue.2, pp.289-314, 2003.
DOI : 10.1007/s00211-002-0421-1

Z. Jia and B. Leimkuhler, Geometric integrators for multiple time-scale simulation, Journal of Physics A: Mathematical and General, vol.39, issue.19, pp.5379-5403, 2006.
DOI : 10.1088/0305-4470/39/19/S04

V. V. Jikov, S. M. Kozlov, O. A. Oleinik, T. Kanit, S. Forest et al., Homogenization of differential operators and integral functionals Jeulin, Determination of the size of the representative volume element for random composites : statistical and numerical approach, Int. J. Solids and Structures, vol.40, pp.3647-3679, 1994.

A. Khinchin, Mathematical Foundations of Statistical Mechanics, 1949.

H. A. Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions, Physica, vol.7, issue.4, pp.284-304, 1940.
DOI : 10.1016/S0031-8914(40)90098-2

C. and L. Bris, Some numerical approaches for " weakly " random homogenization, Numerical mathematics and advanced applications, Proceedings of ENUMATH, Lect. Notes Comput. Sci. Eng, pp.29-45, 2009.

C. , L. Bris, and F. , Integrators for highly oscillatory Hamiltonian systems : an homogenization approach [Schémas numériques pour systèmes hamiltoniens hautement oscillants : une approche par l'homogénéisation], Rapport de recherche INRIA RR-6252, 2007.

B. J. Leimkuhler and S. Reich, A Reversible Averaging Integrator for Multiple Time-Scale Dynamics, Journal of Computational Physics, vol.171, issue.1, pp.95-114, 2001.
DOI : 10.1006/jcph.2001.6774

T. Lelì-evre, A general two-scale criteria for logarithmic Sobolev inequalities, Journal of Functional Analysis, vol.256, issue.7, pp.2211-2221, 2009.
DOI : 10.1016/j.jfa.2008.09.019

T. Lelì-evre, M. Rousset, and G. Stoltz, Free energy computations : A mathematical perspective, 2010.

S. Lepri, R. Livi, and A. Politi, Thermal conduction in classical low-dimensional lattices, Physics Reports, vol.377, issue.1, pp.1-80, 2003.
DOI : 10.1016/S0370-1573(02)00558-6

R. Lesar, R. Najafabadi, and D. J. Srolovitz, Finite-temperature defect properties from free-energy minimization, Physical Review Letters, vol.63, issue.6, pp.624-627, 1989.
DOI : 10.1103/PhysRevLett.63.624

P. Lin, Theoretical and numerical analysis for the quasi-continuum approximation of a material particle model, Mathematics of Computation, vol.72, issue.242, pp.657-675, 2003.
DOI : 10.1090/S0025-5718-02-01456-4

P. Lin, Convergence Analysis of a Quasi???Continuum Approximation for a Two???Dimensional Material Without Defects, SIAM Journal on Numerical Analysis, vol.45, issue.1, pp.313-332, 2007.
DOI : 10.1137/050636772

J. Lions, Y. Maday, and G. Turinici, R??solution d'EDP par un sch??ma en temps ??parar??el ??, Comptes Rendus de l'Acad??mie des Sciences - Series I - Mathematics, vol.332, issue.7, pp.661-668, 2001.
DOI : 10.1016/S0764-4442(00)01793-6

P. Lions and G. Toscani, A Strengthened Central Limit Theorem for Smooth Densities, Journal of Functional Analysis, vol.129, issue.1, pp.148-176, 1995.
DOI : 10.1006/jfan.1995.1046

J. S. Liu, Monte-Carlo strategies in scientific computing, 2001.
DOI : 10.1007/978-0-387-76371-2

G. J. Martyna, M. L. Klein, and M. E. Tuckerman, Nos?????Hoover chains: The canonical ensemble via continuous dynamics, The Journal of Chemical Physics, vol.97, issue.4, pp.2635-2643, 1992.
DOI : 10.1063/1.463940

J. C. Mattingly, A. M. Stuart, and D. J. Higham, Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise, Stochastic Processes and their Applications, pp.185-232, 2002.
DOI : 10.1016/S0304-4149(02)00150-3

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equation of State Calculations by Fast Computing Machines, The Journal of Chemical Physics, vol.21, issue.6, pp.1087-1091, 1953.
DOI : 10.1063/1.1699114

F. Murat, Compacité par compensation, Ann. Scuola Norm, Sup. Pisa. Cl. Sci, vol.5, issue.4, pp.485-507, 1978.

A. Naddaf and T. Spencer, On homogenization and scaling limit of some gradient perturbations of a massless free field, Communications in Mathematical Physics, vol.74, issue.1/2, pp.55-84, 1997.
DOI : 10.1007/BF02509796

A. Naddaf and T. Spencer, Estimates on the variance of some homogenization problems, preprint, 1978.

O. Narayan and S. Ramaswamy, Anomalous Heat Conduction in One-Dimensional Momentum-Conserving Systems, Physical Review Letters, vol.89, issue.20, 2002.
DOI : 10.1103/PhysRevLett.89.200601

G. Nguetseng, A General Convergence Result for a Functional Related to the Theory of Homogenization, SIAM Journal on Mathematical Analysis, vol.20, issue.3, pp.608-623, 1989.
DOI : 10.1137/0520043

S. Nosé, A molecular dynamics method for simulations in the canonical ensemble, Molecular Physics, vol.79, issue.2, pp.255-268, 1984.
DOI : 10.1080/00268978400101201

S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, The Journal of Chemical Physics, vol.81, issue.1, pp.511-519, 1985.
DOI : 10.1063/1.447334

C. Ortner and E. Süli, Analysis of a quasicontinuum method in one dimension, M2AN), pp.57-91, 2008.
DOI : 10.1051/m2an:2007057

F. Otto and M. G. Reznikoff, A new criterion for the logarithmic Sobolev inequality and two applications, Journal of Functional Analysis, vol.243, issue.1, pp.121-157, 2007.
DOI : 10.1016/j.jfa.2006.10.002

G. Papanicolaou and S. R. Varadhan, Boundary value problems with rapidly oscillating random coefficients on Random Fields : Rigorous Results in Statistical Mechanics and Quantum Field Theory, Proc. Colloq, pp.835-873, 1979.

E. Presutti, Scaling limits in statistical mechanics and microstructures in continuum mechanics, 2008.

S. Reich, Backward Error Analysis for Numerical Integrators, SIAM Journal on Numerical Analysis, vol.36, issue.5, pp.1549-1570, 1999.
DOI : 10.1137/S0036142997329797

L. Rey-bellet, Open Classical Systems, Lect. Notes Math, vol.1881, pp.41-78, 2006.
DOI : 10.1007/3-540-33966-3_2

Z. Rieder, J. L. Lebowitz, and E. Lieb, Properties of a Harmonic Crystal in a Stationary Nonequilibrium State, Journal of Mathematical Physics, vol.8, issue.5, pp.1073-1078, 1967.
DOI : 10.1063/1.1705319

G. O. Roberts and R. L. Tweedie, Exponential Convergence of Langevin Distributions and Their Discrete Approximations, Bernoulli, vol.2, issue.4, pp.341-364, 1996.
DOI : 10.2307/3318418

J. M. Sanz-serna and M. P. Calvo, Numerical Hamiltonian problems, 1994.
DOI : 10.1007/978-1-4899-3093-4

R. Sharp, R. Tsai, and B. Engquist, Multiple Time Scale Numerical Methods for the Inverted Pendulum Problem, Lect. Notes Comput. Sci. Eng, vol.44, pp.241-261, 2005.
DOI : 10.1007/3-540-26444-2_13

V. B. Shenoy, R. Miller, E. B. Tadmor, D. Rodney, R. Phillips et al., An adaptive finite element approach to atomic-scale mechanics???the quasicontinuum method, Journal of the Mechanics and Physics of Solids, vol.47, issue.3, pp.611-642, 1999.
DOI : 10.1016/S0022-5096(98)00051-9

E. B. Tadmor, M. Ortiz, and R. Phillips, Quasicontinuum analysis of defects in solids, R. Phillips, Mixed atomistic and continuum models of deformation in solids, Langmuir, vol.73, issue.12, pp.1529-15634529, 1996.

D. Talay and L. Tubaro, Expansion of the global error for numerical schemes solving stochastic differential equations, Stochastic Analysis and Applications, pp.94-120, 1990.

L. Tartar, Compensated compactness and applications to partial differential equations , Nonlinear analysis and mechanics : Heriot-Watt Symposium, Res. Notes in Math, vol.39, pp.136-212, 1979.

F. Thomines, Thèse de l

M. Toda, Solitons and Heat Conduction, Physica Scripta, vol.20, issue.3-4, pp.424-430, 1979.
DOI : 10.1088/0031-8949/20/3-4/017

M. E. Tuckermann, B. J. Berne, and G. J. Martyna, Reversible multiple time scale molecular dynamics, The Journal of Chemical Physics, vol.97, issue.3, 1990.
DOI : 10.1063/1.463137

M. E. Tuckerman and G. Martyna, Understanding Modern Molecular Dynamics:?? Techniques and Applications, The Journal of Physical Chemistry B, vol.104, issue.2, pp.159-178, 2000.
DOI : 10.1021/jp992433y

V. V. Yurinskii, Averaging of symmetric diffusion in random medium, Siberian Mathematical Journal, vol.34, issue.No. 4, pp.167-180, 1986.
DOI : 10.1007/BF00969174

X. Zotos, Ballistic transport in classical and quantum integrable systems, Journal of Low Temperature Physics, vol.126, issue.3/4, pp.1185-1194, 2002.
DOI : 10.1023/A:1013827615835