]. A. Abyzov and J. W. Schmelzer, Nucleation versus spinodal decomposition in confined binary solutions, BIBLIOGRAPHIE The Journal of Chemical Physics, pp.127-114504, 2007.
DOI : 10.1007/978-1-4020-6475-3_56

]. I. Antonova, V. A. Volodin, E. P. Neustroev, S. A. Smagulova, J. Jedrzejewsi et al., Charge spectroscopy of Si nanocrystallites embedded in a SiO 2 matrix, Journal of Applied Physics, pp.106-064306, 2009.

]. G. Assayag, C. Bonafos, M. Carrada, A. Claverie, P. Normand et al., Transmission electron microscopy measurements of the injection distances in nanocrystal-based memories, Applied Physics Letters, vol.82, issue.2, p.82, 0200.
DOI : 10.1063/1.1536026

H. Séméria, B. Moriceau, P. Aspard, N. Gentile, and . Magnea, Nucleation control of CVD growth silicon nanocrystals for quantum devices, Microelectronic Engineering, pp.61-62, 2002.

]. M. Bedjaoui, B. Despax, M. Caumont, and C. Bonafos, Si nanocrystalcontaining SiO x (x < 2) produced by thermal annealing of PECVD realized thin films, Materials Science and Engineering: B, pp.124-125, 2005.

]. R. Benedek, D. Seidman, and C. Woodward, Interface Energies for Carbide Precipitates in TiAl, Interface Science, vol.12, issue.1, p.57, 2004.
DOI : 10.1023/B:INTS.0000012294.78869.e5

]. D. Blavette, B. Deconihout, A. Bostel, J. M. Sarrau, M. Bouet et al., The tomographic atom probe: A quantitative three???dimensional nanoanalytical instrument on an atomic scale, Review of Scientific Instruments, vol.64, issue.10, pp.64-2911, 1993.
DOI : 10.1063/1.1144382

]. D. Blavette, T. A. Kassab, E. Cadel, A. Mackel, F. Vurpillot et al., Laser-assisted atom probe tomography and nanosciences, International Journal of Materials Research, vol.99, issue.5, pp.99-454, 2008.
DOI : 10.3139/146.101672

]. D. Blavette, F. Vurpillot, P. Pareige, and A. Menand, A model accounting for spatial overlaps in 3D atom-probe microscopy, Ultramicroscopy, vol.89, issue.1-3, pp.89-145, 2001.
DOI : 10.1016/S0304-3991(01)00120-6

]. C. Bonafos, B. Colombeau, M. Carrada, A. Altibelli, and A. Claverie, Simulations of the ripening of 3D, 2D and 1D objects, Materials Science and Engineering: B, vol.88, issue.2-3, pp.88-112, 2002.
DOI : 10.1016/S0921-5107(01)00861-3

]. A. Bortz, M. Kalos, and J. Lebowitz, A new algorithm for Monte Carlo simulation of Ising spin systems, Journal of Computational Physics, vol.17, issue.1, pp.17-27, 1975.
DOI : 10.1016/0021-9991(75)90060-1

]. A. Bradley, W. F. Cox, and H. J. Goldschmidt, An X-Ray Study of the Iron-Copper-Nickel Equilibrium Diagram at Various Temperatures, Journal of the Institute of Metals, pp.67-189, 1941.

]. M. Brandt, H. D. Fuchs, M. Stutzmann, J. Weber, and M. Cardona, The origin of visible luminescence from porous siicon ? a new interpretation, Solid State Communications, pp.81-307, 1992.

]. G. Brebec, R. Seguin, C. Sella, J. Bevenot, and J. Martin, Diffusion du silicium dans la silice amorphe, Acta Metallurgica, vol.28, issue.3, pp.28-327, 1980.
DOI : 10.1016/0001-6160(80)90168-6

]. L. Brus, A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites, The Journal of Chemical Physics, vol.79, issue.11, pp.79-5566, 1983.
DOI : 10.1063/1.445676

]. V. Burlakov, G. A. Briggs, A. P. Sutton, A. Bongiorno, and A. Pasquarello, Modeling Phase Separation in Nonstoichiometric Silica, Physical Review Letters, vol.93, issue.13, pp.93-135501, 2004.
DOI : 10.1103/PhysRevLett.93.135501

]. C. Busseret, S. Ferraton, L. Montès, and J. Zimmermann, Granular description of charging kinetics in silicon nanocrystals memories, Solid- State Electronics, pp.50-134, 2006.
DOI : 10.1016/j.sse.2005.10.033

]. J. Cahn, On spinodal decomposition, Acta Metallurgica, vol.9, issue.9, p.795, 1961.
DOI : 10.1016/0001-6160(61)90182-1

]. J. Cahn and J. E. Hilliard, Free energy of a nonuniform system, 1958.

]. J. Cahn and J. E. Hilliard, Free energy of a nonuniform system, 1959.

]. J. Cahn and J. E. Hilliard, Free energy of a nonuniform system. III. Nucleation in a Two-Component Incompressible Fluid, The Journal of Chemical Physics, pp.31-688, 1959.

]. L. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers, Applied Physics Letters, vol.57, issue.10, p.1046, 1990.
DOI : 10.1063/1.103561

]. J. Carlisle, M. Dongol, I. Germanenko, and Y. Pithawalla, El-Shall, 'Evidence for changes in the electronic and photoluminescence properties of surface-oxidized silicon nanocrystals induced by shrinking the size of the silicon core, Chemical Physics Letters, pp.326-335, 2000.

]. A. Cerezo, T. J. Godfrey, and G. D. Smith, Application of a positionsensitive detector to atom probe microanalysis, Review of Scientific Instruments, pp.59-862, 1988.

]. D. Chapin, C. S. Fuller, and G. L. Pearson, Junction Photocell for Converting Solar Radiation into Electrical Power, Journal of Applied Physics, vol.25, issue.5, pp.25-676, 1954.
DOI : 10.1063/1.1721711

]. S. Charvet, R. Madelon, F. Gourbilleau, and R. Rizk, Spectroscopic ellipsometry analyses of sputtered Si/SiO 2 nanostructures, Journal of Applied Physics, pp.85-4032, 1999.

]. J. Chelikowsky and M. L. Cohen, Electronic structure of silicon, Physical Review B, vol.10, issue.12, p.5095, 1974.
DOI : 10.1103/PhysRevB.10.5095

]. X. Chen, Y. Lu, Y. Wu, B. Cho, L. Tang et al., Correlation between optical properties and Si nanocrystal formation of Si-rich Si oxide BIBLIOGRAPHIE -172 films prepared by plasma-enhanced chemical vapor deposition, Applied Surface Science, pp.253-2718, 2006.

]. D. Comedi, O. H. Zalloum, E. A. Irving, J. Wojcik, T. Roschuk et al., X-ray-diffraction study of crystalline Si nanocluster formation in annealed silicon-rich silicon oxides, Journal of Applied Physics, vol.99, issue.2, pp.99-023518, 2006.
DOI : 10.1063/1.2162989

]. G. Conibeer, M. Green, E. Cho, D. König, Y. Cho et al., Silicon quantum dot nanostructures for tandem photovoltaic cells, Thin Solid Films, pp.516-6748, 2008.
DOI : 10.1016/j.tsf.2007.12.096

]. G. Conibeer, M. Green, R. Corkish, Y. Cho, E. Cho et al., Silicon nanostructures for third generation photovoltaic solar cells, Thin Solid Films, pp.511-512, 2006.
DOI : 10.1016/j.tsf.2005.12.119

]. D. Cox and H. Miller, The Therory of Stochastic Processes, 1965.

]. T. Creazzo, B. Redding, E. Marchena, J. Murakowski, and D. W. Prather, Tunable photoluminescence and electroluminescence of size-controlled silicon nanocrystals in nanocrystalline-Si/SiO 2 superlattices, Journal of Luminescence, pp.130-631, 2010.

]. A. Cullis, L. T. Canham, and P. D. Calcott, The structural and luminescence properties of porous silicon, Journal of Applied Physics, vol.82, issue.3, pp.82-909, 1997.
DOI : 10.1063/1.366536

N. Daldosso, M. Luppi, S. Ossicini, E. Degoli, R. Magri et al., Role of the interface region on the optoelectronic properties of silicon nanocrystals embedded in SiO2, Physical Review B, pp.68-085327, 2003.

]. C. Delerue, G. Allan, and M. Lannoo, Theoretical aspects of the luminescence of porous silicon, Physical Review B, vol.48, issue.15, p.11024, 1993.
DOI : 10.1103/PhysRevB.48.11024

]. B. Delley and E. F. Steigmeier, Quantum confinement in Si nanocrystals, Physical Review B, vol.47, issue.3, pp.47-1397, 1993.
DOI : 10.1103/PhysRevB.47.1397

]. D. Dimaria, J. R. Kirtley, E. J. Pakulis, D. W. Dong, T. S. Kuan et al., Electroluminescence studies in silicon dioxide films containing tiny silicon islands, Journal of Applied Physics, vol.56, issue.2, pp.56-401, 1984.
DOI : 10.1063/1.333979

]. F. Djurabekova and K. Nordlund, Atomistic simulation of the interface structure of Si nanocrystals embedded in amorphous silica, Physical Review B, vol.77, issue.11, p.115325, 2008.
DOI : 10.1103/PhysRevB.77.115325

. Adzhemyan, Numerical analysis of Ostwald ripening in two-dimensional systems, The Journal of Chemical Physics, vol.134, p.94507, 2011.

G. Franzo, M. Miritello, S. Boninelli, R. L. Savio, M. G. Grimaldi et al., Microstructural evolution of SiO x films and its effect on the luminescence of Si nanoclusters, Journal of Applied Physics, pp.104-094306, 2008.

]. M. Fujii, M. Yoshida, Y. Kanzawa, S. Hayashi, and K. Yamamoto, 1.54 mu m photoluminescence of Er 3+ doped into SiO 2 films containing Si nanocrystals: Evidence for energy transfer from Si nanocrystals to Er 3+, Applied Physics Letters, pp.71-1198, 1997.
URL : https://hal.archives-ouvertes.fr/jpa-00228334

C. Morante, M. Bonafos, A. Carrada, and . Claverie, Influence of average size and interface passivation on the spectral emission of Si nanocrystals embedded in SiO 2, Journal of Applied Physics, pp.91-798, 2002.

B. Garrido, M. López, A. Pérez-rodríguez, C. García, P. Pellegrino et al., Optical and electrical properties of Si-nanocrystals ion beam synthesized in SiO 2, Physics Research Section B: Beam Interactions with Materials and Atoms, pp.216-213, 2004.

]. B. Gault, M. P. Moody, J. M. Cairney, and S. P. Ringer, Atom probe microscopy, 2012.
DOI : 10.1007/978-1-4614-3436-8

URL : https://hal.archives-ouvertes.fr/hal-00457536

]. B. Gault, F. Vurpillot, A. Vella, M. Gilbert, A. Menand et al., Design of a femtosecond laser assisted tomographic atom probe, Review of Scientific Instruments, vol.77, issue.4, pp.77-043705, 2006.
DOI : 10.1063/1.2194089

]. F. Gourbilleau, X. Portier, C. Ternon, P. Voivenel, R. Madelon et al., Si-rich/SiO 2 nanostructured multilayers by reactive magnetron sputtering, Applied Physics Letters, pp.78-3058, 2001.
DOI : 10.1063/1.1371794

]. F. Gourbilleau, C. Ternon, D. Maestre, O. Palais, and C. Dufour, Siliconrich SiO 2 /SiO 2 multilayers: A promising material for the third generation of solar cell, Journal of Applied Physics, pp.106-013501, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00460963

]. A. Grenier, R. Larde, E. Cadel, F. Vurpillot, J. Juraszek et al., Atomic-scale study of TbCo 2.5 /Fe multilayers by laserassisted tomographic atom probe, Journal of Applied Physics, pp.102-033912, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00255798

]. S. Guha, M. D. Pace, D. N. Dunn, and I. L. Singer, Visible light emission from Si nanocrystals grown by ion implantation and subsequent annealing, Applied Physics Letters, vol.70, issue.10, pp.70-1207, 1997.
DOI : 10.1063/1.118275

]. A. Howe, Rationalisation of interstitial diffusion, Scripta Materialia, p.663, 2002.
DOI : 10.1016/S1359-6462(02)00265-8

]. S. Hu and L. Chen, Spinodal decomposition in a film with periodically distributed interfacial dislocations, Acta Materialia, vol.52, issue.10, pp.52-3069, 2004.
DOI : 10.1016/j.actamat.2004.03.029

]. P. Hung, L. Vinh, and P. Kien, About the diffusion mechanism in amorphous alloys, Journal of Non-Crystalline Solids, vol.356, issue.25-27, pp.356-1213, 2010.
DOI : 10.1016/j.jnoncrysol.2010.04.029

]. F. Iacona, C. Bongiorno, C. Spinella, S. Boninelli, and F. Priolo, Formation and evolution of luminescent Si nanoclusters produced by thermal annealing of SiO x films, Journal of Applied Physics, pp.95-3723, 2004.

]. O. Jambois, H. Rinnert, X. Devaux, and M. Vergnat, Photoluminescence and electroluminescence of size-controlled silicon nanocrystallites embedded in SiO 2 thin films, Journal of Applied Physics, pp.98-046105, 2005.

]. O. Jaoul, F. Béjina, F. Élie, and F. Abel, Silicon Self-Diffusion in Quartz, Physical Review Letters, vol.74, issue.11, pp.74-2038, 1995.
DOI : 10.1103/PhysRevLett.74.2038

]. W. Johnson and C. S. Chiang, Phase equilibrium and stability of elastically stressed heteroepitaxial thin films, Journal of Applied Physics, vol.64, issue.3, pp.64-1155, 1988.
DOI : 10.1063/1.341878

E. Kachurin, N. L. Savir, Z. S. Shwartz, I. Yanovitskaya, Y. Balberg et al., SiO x Layer Formation during Plasma Sputtering of Si and SiO 2 Targets, Physics of Semiconductor Devices, pp.42-731, 2008.

E. Trave, Y. Goldstein, J. Jedrzejewski, and E. Savir, Depth redistribution of components of SiO x layers prepared by magnetron sputtering in the process of their decomposition, Thin Solid Films, pp.515-6749, 2007.

]. T. Komoda, J. Kelly, R. Gwilliam, P. Hemment, and B. Sealy, Effect of the gas ambient on the intensity of the visible photoluminescence from Si microcrystallites in a SiO 2 matrix formed by ion implantation, Physics Research Section B: Beam Interactions with Materials and Atoms, pp.112-219, 1996.

]. N. Koshida and H. Koyama, Visible electroluminescence from porous silicon, Applied Physics Letters, vol.60, issue.3, pp.60-347, 1992.
DOI : 10.1063/1.106652

]. M. Krishna and R. A. Friesner, Prediction of anomalous redshift in semiconductor clusters, The Journal of Chemical Physics, vol.96, issue.2, p.96, 1992.
DOI : 10.1063/1.462158

]. W. Lang, P. Steiner, and F. Kozlowski, Porous silicon electroluminescent devices, Journal of Luminescence, vol.57, issue.1-6, p.341, 1993.
DOI : 10.1016/0022-2313(93)90152-D

]. A. Leier, L. N. Safronov, and G. A. Kachurin, Modeling Si nanoprecipitate formation in SiO 2 layers with excess Si atoms, pp.33-380, 1999.
DOI : 10.1134/1.1187698

]. P. Leo and W. Johnson, Spinodal decomposition and coarsening of stressed thin films on compliant substrates, Acta Materialia, vol.49, issue.10, pp.49-1771, 2001.
DOI : 10.1016/S1359-6454(01)00084-2

]. I. Lifshitz and V. Slyozov, The kinetics of precipitation from supersaturated solid solutions, Journal of Physics and Chemistry of Solids, vol.19, issue.1-2, p.35, 1961.
DOI : 10.1016/0022-3697(61)90054-3

]. J. Liu, X. Wu, W. N. Lennard, and D. Landheer, Surface-directed spinodal decomposition in hafnium silicate thin films, Physical Review B, vol.80, issue.4, pp.80-041403, 2009.
DOI : 10.1103/PhysRevB.80.041403

]. S. Lombardo, S. Coffa, C. Bongiorno, C. Spinella, E. Castagna et al., Correlation of dot size distribution with luminescence and electrical transport of Si quantum dots embedded in SiO 2, Materials Science and Engineering B, pp.69-70, 2000.

]. D. Mathiot, M. Perego, M. Fanciulli, and G. B. Assayag, Evidence for a dose dependence for thermal redistribution of implanted silicon in SiO 2, Physics Research Section B: Beam Interactions with Materials and Atoms, pp.254-139, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00128445

]. D. Mathiot, J. P. Schunck, M. Perego, M. Fanciulli, P. Normand et al., Silicon self-diffusivity measurement in thermal SiO 2 by 30 Si/ 28 Si isotopic exchange, Journal of Applied Physics, pp.94-2136, 2003.

A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equation of State Calculations by Fast Computing Machines, The Journal of Chemical Physics, vol.21, p.1087, 1953.

]. J. Mikkelsen, Self-diffusivity of network oxygen in vitreous SiO 2, Applied Physics Letters, pp.45-1187, 1984.

]. M. Miller, A. Cerezo, M. G. Hetherington, and G. D. Smith, Atom probe Field Ion Microscopy, 1996.
URL : https://hal.archives-ouvertes.fr/jpa-00254420

A. Brongersma and . Polman, Defect-related versus excitonic visible light emission from ion beam synthesized Si nanocrystals in SiO 2, Applied Physics Letters, pp.69-2033, 1996.

]. E. Müller, Field Desorption, Physical Review, vol.102, issue.3, p.618, 1956.
DOI : 10.1103/PhysRev.102.618

]. E. Müller, J. A. Panitz, and S. B. Mclane, The Atom-Probe Field Ion Microscope, Review of Scientific Instruments, pp.39-83, 1968.

]. T. Müller, K. H. Heinig, and W. Möller, Nanocrystal formation in Si implanted thin SiO2 layers under the influence of an absorbing interface, Materials Science and Engineering: B, vol.101, issue.1-3, p.49, 2003.
DOI : 10.1016/S0921-5107(02)00711-0

]. I. Movtchan, R. Dreyfus, W. Marine, M. Sentis, M. Autric et al., Luminescence from a Si-SiO 2 nanocluster-like structure prepared by laser ablation, Thin Solid Films, pp.255-286, 1995.

]. L. Nesbit, Annealing characteristics of Si-rich SiO[sub 2] films, Applied Physics Letters, pp.46-84, 1985.

]. L. Nikolova, R. Saint-jacques, C. Dahmoune, and G. Ross, Si nanoparticle formation in SiO 2 by Si ion implantation: Effect of energy and fluence on size distribution and on SiO 2 composition, Surface and Coatings Technology, pp.203-2501, 2009.

]. P. Normand, E. Kapetanakis, P. Dimitrakis, D. Tsoukalas, K. Beltsios et al., Effect of annealing environment on the memory properties of thin oxides with embedded Si nanocrystals obtained by low-energy ion-beam synthesis, Applied Physics Letters, vol.83, issue.1, pp.83-168, 2003.
DOI : 10.1063/1.1588378

]. S. Orlandini, S. Meloni, M. Ippolito, and L. Colombo, Mechanisms of selfdiffusion in stoichiometric and substoichiometric amorphous silicon dioxide, Physical Review B, pp.81-014203, 2010.

]. D. Pacifici, G. Franzò, F. Priolo, F. Iacona, and L. Dal-negro, Modeling and perspectives of the Si nanocrystals???Er interaction for optical amplification, Physical Review B, vol.67, issue.24, pp.67-245301, 2003.
DOI : 10.1103/PhysRevB.67.245301

]. C. Pareige, M. Roussel, S. Novy, V. Kuksenko, P. Olsson et al., Kinetic study of phase transformation in a highly concentrated FeCr alloy: Monte Carlo simulation versus experiments, Acta Materialia, pp.59-2404, 2011.

]. L. Pavesi, L. Dal-negro, C. Mazzoleni, G. Franzo, and F. Priolo, Optical gain in silicon nanocrystals, Silicon-based and Hybrid Optoelectronics III, pp.408-440, 2000.
DOI : 10.1117/12.426932

M. Perego, S. Ferrari, M. Fanciulli, G. B. Assayag, C. Bonafos et al., Characterization of silicon nanocrystals embedded in thin oxide layers by TOF-SIMS, Applied Surface Science, vol.231, issue.232, pp.231-232, 2004.
DOI : 10.1016/j.apsusc.2004.03.124

J. Piller and H. Wendt, Autocorrelation analysis of atom probe concentration profiles, Proceedings of the 29th IFES

]. S. Prokes, Study of the luminescence mechanism in porous silicon structures, Journal of Applied Physics, vol.73, issue.1, pp.73-407, 1993.
DOI : 10.1063/1.353863

]. A. Puzder, A. J. Williamson, J. C. Grossman, and G. Galli, Passivation effects of silicon nanoclusters, Materials Science and Engineering: B, vol.96, issue.2, pp.96-80, 2002.
DOI : 10.1016/S0921-5107(02)00295-7

R. Rao, R. Steimle, M. Sadd, C. Swift, B. Hradsky et al., Silicon nanocrystal based memory devices for NVM and DRAM applications, Solid-State Electronics, pp.48-1463, 2004.
DOI : 10.1016/j.sse.2004.03.021

]. L. Röntzsch, K. Heinig, and B. Schmidt, Experimental evidence of Si nanocluster ?-layer formation in buried and thin SiO 2 films induced by ion irradiation, Materials Science in Semiconductor Processing, vol.7, 2004.

M. Feneberg, K. Thonke, and P. Oelhafen, Light emission from nanocrystalline silicon clusters embedded in silicon dioxide: Role of the suboxide states, Journal of Luminescence, vol.87, p.130, 2010.

]. P. Ronsheim, P. Flaitz, M. Hatzistergos, C. Molella, K. Thompson et al., Impurity measurements in silicon with D-SIMS and atom probe tomography, Applied Surface Science, vol.255, issue.4, pp.255-1547, 2008.
DOI : 10.1016/j.apsusc.2008.05.247

]. A. Saitta, F. Buda, G. Fiumara, and P. V. Giaquinta, Ab initio moleculardynamics study of electronic and optical properties of silicon quantum wires: Orientational effects, Physical Review B, pp.53-1446, 1996.

]. J. Schmidt and B. Schmidt, Investigation of Si nanocluster formation in sputter-deposited silicon sub-oxides for nanocluster memory structures, Materials Science and Engineering: B, vol.101, issue.1-3, p.28, 2003.
DOI : 10.1016/S0921-5107(02)00698-0

]. S. Schnurre, J. Gröbner, and R. Schmid-fetzer, Thermodynamics and phase stability in the Si-O system, Journal of Non-Crystalline Solids, vol.1, p.336, 2004.

]. D. Seol, S. Hu, Y. Li, J. Shen, K. Oh et al., Computer simulation of spinodal decomposition in constrained films, Acta Materialia, vol.51, issue.17, pp.51-5173, 2003.
DOI : 10.1016/S1359-6454(03)00378-1

]. U. Serincan, M. Kulakci, R. Turan, S. Foss, and T. Finstad, Variation of photoluminescence from Si nanostructures in SiO 2 matrix with Si + post implantation, Physics Research Section B: Beam Interactions with Materials and Atoms, p.254, 2007.

]. T. Shimizu-iwayama, D. E. Hole, and P. D. Townsend, Light emission from ion beam induced silicon nanoclusters in silicon dioxide: role of cluster???cluster interactions via a thin oxide, Physics Research Section B: Beam Interactions with Materials and Atoms, pp.148-980, 1999.
DOI : 10.1016/S0168-583X(98)00775-7

]. C. Spinella, C. Bongiorno, G. Nicotra, E. Rimini, A. Muscara et al., Quantitative determination of the clustered silicon concentration in substoichiometric silicon oxide layer, Applied Physics Letters, vol.87, issue.4, p.44102, 2005.
DOI : 10.1063/1.1999839

]. C. Strümpel, M. Mccann, G. Beaucarne, V. Arkhipov, A. Slaoui et al., Modifying the solar spectrum to enhance silicon solar cell efficiency???An overview of available materials, Solar Energy Materials and Solar Cells, pp.91-238, 2007.
DOI : 10.1016/j.solmat.2006.09.003

]. V. Svrcek, J. Rehspringer, E. Gaffet, A. Slaoui, and J. Muller, Unaggregated silicon nanocrystals obtained by ball milling, Journal of Crystal Growth, pp.275-589, 2005.

]. V. Svrcek, A. Slaoui, and J. Muller, Ex situ prepared Si nanocrystals embedded in silica glass: Formation and characterization, Journal of Applied Physics, pp.95-3158, 2004.

]. T. Takahashi, S. Fukatsu, K. M. Itoh, M. Uematsu, A. Fujiwara et al., Self-diffusion of Si in thermally grown SiO 2 under equilibrium conditions, Journal of Applied Physics, pp.93-3674, 2003.

]. E. Talbot, R. Larde, F. Gourbilleau, C. Dufour, and P. Pareige, An atomic scale observation for optimization of optical devices, EPL (Europhysics Letters), vol.87, issue.2, p.26004, 2009.
DOI : 10.1209/0295-5075/87/26004

URL : https://hal.archives-ouvertes.fr/cea-00411786

]. C. Ternon, F. Gourbilleau, X. Portier, P. Voivenel, and C. Dufour, An original approach for the fabrication of Si/SiO 2 multilayers using reactive magnetron sputtering, Thin Solid Films, vol.5, p.419, 2002.

]. C. Ternon, F. Gourbilleau, R. Rizk, C. Dufour, and . Si, SiO 2 multilayers: synthesis by reactive magnetron sputtering and photoluminescence emission, Physica E: Low-dimensional Systems and Nanostructures, pp.16-517, 2003.
DOI : 10.1016/s1386-9477(02)00632-x

]. G. Thompson, M. K. Miller, and H. L. Fraser, Some aspects of atom probe specimen preparation and analysis of thin film materials, Ultramicroscopy, vol.100, issue.1-2, pp.100-125, 2004.
DOI : 10.1016/j.ultramic.2004.01.010

]. K. Thompson, D. Lawrence, D. Larson, J. Olson, T. Kelly et al., In situ site-specific specimen preparation for atom probe tomography, Ultramicroscopy, vol.107, issue.2-3, pp.107-131, 2007.
DOI : 10.1016/j.ultramic.2006.06.008

]. S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbe et al., A silicon nanocrystals based memory, Applied Physics Letters, vol.68, issue.10, pp.68-1377, 1996.
DOI : 10.1063/1.116085

]. T. Trupke, M. A. Green, and P. Wurfel, Improving solar cell efficiencies by down-conversion of high-energy photons, Journal of Applied Physics, vol.92, issue.3, pp.92-1668, 2002.
DOI : 10.1063/1.1492021

A. F. Banerjee, J. C. Tasch, B. K. Campbell, J. M. Hance, and . White, Correlation between silicon hydride species and the photoluminescence intensity of porous silicon, Applied Physics Letters, pp.60-1700, 1992.

]. D. Tsoukalas, C. Tsamis, and P. Normand, Use of isotopically pure silicon material to estimate silicon diffusivity in silicon dioxide, Material Research Society Symposium Proceedings, pp.669-672, 2001.
DOI : 10.1063/1.110212

]. D. Tsoukalas, C. Tsamis, and J. Stoemenos, Investigation of silicon interstitial reactions with insulating films using the silicon wafer bonding technique, Applied Physics Letters, vol.63, issue.23, pp.63-3167, 1993.
DOI : 10.1063/1.110212

]. J. Vial, A. Bsiesy, F. Gaspard, R. Hérino, M. Ligeon et al., Mechanisms of visible-light emission from electro-oxidized porous silicon, Physical Review B, vol.45, issue.24, pp.45-14171, 1992.
DOI : 10.1103/PhysRevB.45.14171

]. F. Vurpillot, A. Bostel, and D. Blavette, Trajectory overlaps and local magnification in three-dimensional atom probe, Applied Physics Letters, vol.76, issue.21, pp.76-3127, 2000.
DOI : 10.1063/1.126545

R. Wang, G. G. Smirani, F. Ross, and . Schiettekatte, Ordered coalescence of Si nanocrystals in SiO 2, Physical Review B, pp.71-161310, 2005.

]. J. Wilcoxon and G. A. Samara, Tailorable, visible light emission from silicon nanocrystals, Applied Physics Letters, vol.74, issue.21, pp.74-3164, 1999.
DOI : 10.1063/1.124096

URL : https://digital.library.unt.edu/ark:/67531/metadc794812/m2/1/high_res_d/9475.pdf

]. S. Wise, J. Kim, and W. Johnson, Surface-directed spinodal decomposition in a stressed, two-dimensional, thin film, Thin Solid Films, vol.473, issue.1, pp.473-151, 2005.
DOI : 10.1016/j.tsf.2004.07.075

]. Xia and K. W. Cheah, Quantum confinement effect in thin quantum wires, Physical Review B, vol.55, issue.23, p.15688, 1997.
DOI : 10.1103/PhysRevB.55.15688

URL : http://ir.semi.ac.cn/handle/172111/15193

]. W. Young and E. W. Elcock, Monte Carlo studies of vacancy migration in binary ordered alloys: I, Proceedings of the Physical Society, pp.89-735, 1966.
DOI : 10.1088/0370-1328/89/3/329

]. D. Yu, S. Lee, and G. S. Hwang, On the origin of Si nanocrystal formation in a Si suboxide matrix, Journal of Applied Physics, vol.102, issue.8, p.84309, 2007.
DOI : 10.1063/1.2800268

J. Aceves, M. A. Carillo, and . Cabrera, Single electron charging in Si nanocrystals embedded in silicon-rich oxide, Nanotechnology, pp.14-959, 2003.

Z. Yuan, G. Pucker, A. Marconi, F. Sgrignuoli, A. Anopchenko et al., Silicon nanocrystals as a photoluminescence down shifter for solar cells, Solar Energy Materials and Solar Cells, pp.95-1224, 2011.
DOI : 10.1016/j.solmat.2010.10.035

]. A. Yurtsever, M. Weyland, and D. A. Muller, Three-dimensional imaging of nonspherical silicon nanoparticles embedded in silicon oxide by plasmon tomography, Applied Physics Letters, vol.89, issue.15, pp.89-151920, 2006.
DOI : 10.1063/1.2360906

]. M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt et al., Size-controlled highly luminescent silicon nanocrystals: A SiO, 2002.
DOI : 10.1063/1.1433906

]. W. Zhang, S. Zhang, Y. Liu, and T. Chen, Evolution of Si suboxides into Si nanocrystals during rapid thermal annealing as revealed by XPS and Raman studies, Journal of Crystal Growth, vol.311, issue.5, pp.311-1296, 2009.
DOI : 10.1016/j.jcrysgro.2008.12.038