Études du transport de la neige par le vent en conditions alpines : observations et simulations à l'aide d'un modèle couplé atmosphère/manteau neigeux

Abstract : Blowing and drifting snow are crucial components of the interaction between the cryosphere and the atmosphere. In mountainous areas, they affect the temporal and spatial distribution of snow depth throughout the winter season and influence avalanche formation. Numerical modeling offers a solution for studying the complex interaction between the snowpack and the wind field and to assess the related processes in a spatially distributed way. In this context, this PhD describes the development and the validation of a coupled snow/atmosphere model which is dedicated to the study of blowing and drifting snow in alpine terrain. The coupled model consists in the atmospheric model Meso-NH and the detailed snowpack model Crocus. Blowing and drifting snow have been monitored at the Col du Lac Blanc (Grandes Rousses range, French Alps) experimental site. A database consisting of blowing snow events observed over 10 years allowed us to identify the main features of these events. Numerical simulations using Crocus illustrated the necessity of taking the wind-dependence of snow grain characteristics into account in order to simulate satisfactorily the occurrence of blowing snow events. We also carried out two measurement campaigns at our experimental site in 2011 and 2012 in order to collect validation data for the model. This includes measurements of vertical profiles of wind speed and snow particle fluxes near the surface and the mapping of areas of erosion and deposition using terrestrial laser scanning. The coupled Meso-NH/Crocus model has been developed in order to account for blowing and drifting snow. It simulates snow transport in saltation and in turbulent suspension and includes the sublimation of suspended snow particles. In the atmosphere, a double-moment scheme allows the model to simulate the spatial and temporal evolution of the snow particle size distribution. The implementation of a surface boundary layer scheme at the interface between Meso-NH and Crocus turned out to be necessary to reproduce the strong vertical gradient of snow particle concentration near the surface. Meso-NH/Crocus is the first coupled snow-atmosphere model that can simulate snow transport in alpine terrain in an interactive way. Meso-NH/Crocus has been evaluated against data collected near Col du Lac Blanc during the first measurement campaign in 2011. The simulation of a blowing snow event without concurrent snowfall showed that the model captures the main structures of atmospheric flow in complex terrain, the vertical profile of wind speed and the snow particle fluxes. However, the horizontal resolution of 50 m is found to be insufficient to simulate the location of areas of snow erosion and deposition observed around Col du Lac Blanc. We used downscaling techniques (grid nesting) to simulate a second blowing event with concurrent snowfall. The increase in horizontal resolution enhanced the contrast of wind speed between windward and leeward slopes. However, it only slightly affects the amount and the spatial pattern of snow precipitation around Col du Lac Blanc. When activated, blowing and drifting snow are the main sources of spatial variability of snow accumulation.
Complete list of metadatas

https://pastel.archives-ouvertes.fr/tel-00781279
Contributor : Vincent Vionnet <>
Submitted on : Friday, January 25, 2013 - 6:47:42 PM
Last modification on : Friday, April 5, 2019 - 8:14:20 PM
Long-term archiving on : Friday, April 26, 2013 - 3:58:24 AM

Identifiers

  • HAL Id : tel-00781279, version 1

Citation

Vincent Vionnet. Études du transport de la neige par le vent en conditions alpines : observations et simulations à l'aide d'un modèle couplé atmosphère/manteau neigeux. Météorologie. Université Paris-Est, 2012. Français. ⟨tel-00781279v1⟩

Share

Metrics

Record views

73

Files downloads

143