@. A. Gaidon, M. Marszalek, and C. Schmid, Publications This thesis has led to several publications summarized below. International conferences, Mining visual actions from movies Proceedings of the British Machine Vision Conference, 2009.

S. Ali, A. Basharat, and M. Shah, Chaotic Invariants for Human Action Recognition, 2007 IEEE 11th International Conference on Computer Vision, 2007.
DOI : 10.1109/ICCV.2007.4409046

F. R. Bach, G. R. Lanckriet, and M. I. Jordan, Multiple kernel learning, conic duality, and the SMO algorithm, Twenty-first international conference on Machine learning , ICML '04, p.24, 2004.
DOI : 10.1145/1015330.1015424

A. Basharat and M. Shah, Time series prediction by chaotic modeling of nonlinear dynamical systems, 2009 IEEE 12th International Conference on Computer Vision, p.92, 2009.
DOI : 10.1109/ICCV.2009.5459429

P. R. Beaudet, Rotationally invariant image operators, ICPR, p.19, 1978.

M. Blank, L. Gorelick, E. Shechtman, M. Irani, and R. Basri, Actions as space-time shapes, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1, p.16, 2005.
DOI : 10.1109/ICCV.2005.28

A. Bobick and J. Davis, The recognition of human movement using temporal templates, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.23, issue.3, pp.257267-126, 2001.
DOI : 10.1109/34.910878

L. Bourdev and J. Malik, Poselets: Body part detectors trained using 3D human pose annotations, 2009 IEEE 12th International Conference on Computer Vision, p.113, 2009.
DOI : 10.1109/ICCV.2009.5459303

G. Bradski and A. Kaehler, Learning OpenCV: Computer vision with the OpenCV library. O'Reilly Media, p.60, 2008.

M. Brand and V. Kettnaker, Discovery and segmentation of activities in video, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.22, issue.8, p.15, 2000.
DOI : 10.1109/34.868685

M. Brand, N. Oliver, and A. Pentland, Coupled hidden Markov models for complex action recognition, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, p.14, 1997.
DOI : 10.1109/CVPR.1997.609450

W. Brendel and S. Todorovic, Activities as Time Series of Human Postures, ECCV, 2010. (pages xiii, 15, 92, and 103
DOI : 10.1007/978-3-642-15552-9_52

W. Brendel and S. Todorovic, Learning spatiotemporal graphs of human activities, 2011 International Conference on Computer Vision, p.114, 2011.
DOI : 10.1109/ICCV.2011.6126316

T. Brox and J. Malik, Object Segmentation by Long Term Analysis of Point Trajectories, ECCV, pp.20-57, 2010.
DOI : 10.1007/978-3-642-15555-0_21

L. W. Campbell and A. F. Bobick, Recognition of human body motion using phase space constraints, Proceedings of IEEE International Conference on Computer Vision, 1995.
DOI : 10.1109/ICCV.1995.466880

C. C. Chen and J. K. Agarwal, Modeling human activities as speech, CVPR 2011, pp.2011-2025
DOI : 10.1109/CVPR.2011.5995555

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.662.1771

O. Chomat and J. L. Crowley, Probabilistic recognition of activity using local appearance, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149), p.7, 1999.
DOI : 10.1109/CVPR.1999.784616

J. Cohn and T. Kanade, Use of automated facial image analysis for measurement of emotion expression, Handbook of emotion elicitation and assessment. Oxford UP Series in Aective Science, p.31, 2006.

G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray, Visual categorization with bags of keypoints, Workshop on statistical learning in computer vision, ECCV, p.22, 2004.

O. G. Cula and K. J. Dana, Compact representation of bidirectional texture functions, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, p.22, 2001.
DOI : 10.1109/CVPR.2001.990645

R. Cutler and L. S. Davis, Robust real-time periodic motion detection, analysis, and applications, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.22, issue.8, p.116, 2000.
DOI : 10.1109/34.868681

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.112.8904

M. Cuturi, Fast Global Alignment Kernels, pp.2011-108

M. Cuturi, J. P. Vert, O. Birkenes, and T. Matsui, A Kernel for Time Series Based on Global Alignments, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '07, p.92, 2007.
DOI : 10.1109/ICASSP.2007.366260

N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), p.78, 2005.
DOI : 10.1109/CVPR.2005.177

URL : https://hal.archives-ouvertes.fr/inria-00548512

N. Dalal, B. Triggs, and C. Schmid, Human Detection Using Oriented Histograms of Flow and Appearance, ECCV, p.70, 2006.
DOI : 10.1023/A:1008162616689

URL : https://hal.archives-ouvertes.fr/inria-00548587

T. Darrell and A. Pentland, Space-time gestures, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, p.15, 1993.
DOI : 10.1109/CVPR.1993.341109

D. Castro and C. Morandi, Registration of translated and rotated images using nite Fourier transforms, p.77, 1987.

P. Dollár, V. Rabaud, G. Cottrell, and S. Belongie, Behavior Recognition via Sparse Spatio-Temporal Features, 2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, p.6572, 2005.
DOI : 10.1109/VSPETS.2005.1570899

O. Duchenne, I. Laptev, J. Sivic, F. Bach, and J. Ponce, Automatic annotation of human actions in video, 2009 IEEE 12th International Conference on Computer Vision, pp.10-31, 2009.
DOI : 10.1109/ICCV.2009.5459279

O. Duda, P. E. Hart, and D. G. Stork, Pattern Classication and Scene Analysis, p.56, 1995.

A. A. Efros, A. C. Berg, G. Mori, and J. Malik, Recognizing action at a distance, Proceedings Ninth IEEE International Conference on Computer Vision, p.16, 2003.
DOI : 10.1109/ICCV.2003.1238420

P. Ekman and W. V. Friesen, Facial Action Coding System, p.31, 1978.

G. Farnebäck, Two-Frame Motion Estimation Based on Polynomial Expansion, Image Analysis, vol.363370, issue.60, p.20, 2003.
DOI : 10.1007/3-540-45103-X_50

P. F. Felzenszwalb, R. B. Girshick, D. Mcallester, and D. Ramanan, Object Detection with Discriminatively Trained Part-Based Models, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.32, issue.9, p.31, 2009.
DOI : 10.1109/TPAMI.2009.167

P. F. Felzenszwalb, R. B. Girshick, D. Mcallester, and D. Ramanan, Object Detection with Discriminatively Trained Part-Based Models, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.32, issue.9, pp.27-113, 2010.
DOI : 10.1109/TPAMI.2009.167

R. Fergus, L. Fei-fei, P. Perona, and A. Zisserman, Learning object categories from Google's image search, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1, p.23, 2005.
DOI : 10.1109/ICCV.2005.142

M. A. Fischler and R. C. Bolles, Random sample consensus: a paradigm for model tting with applications to image analysis and automated cartography, Communications of the ACM, vol.24, issue.6, pp.381395-77, 1981.

L. Foster, A. Waagen, N. Aijaz, M. Hurley, A. Luis et al., Stable and ecient gaussian process calculations, JMLR, vol.10, pp.857882-66, 2009.

C. Fowlkes, S. Belongie, F. Chung, and J. Malik, Spectral grouping using the nystrom method, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.26, issue.2, pp.214225-57, 2004.
DOI : 10.1109/TPAMI.2004.1262185

M. Fradet, P. Robert, and P. Pérez, Clustering Point Trajectories with Various Life-Spans, 2009 Conference for Visual Media Production, p.57, 2009.
DOI : 10.1109/CVMP.2009.24

Y. Freund and R. Schapire, A desicion-theoretic generalization of on-line learning and an application to boosting, Computational learning theory, pp.2337-2358, 1995.
DOI : 10.1007/3-540-59119-2_166

A. Gaidon, M. Marszaªek, and C. Schmid, Mining visual actions from movies, Procedings of the British Machine Vision Conference 2009, pp.18-40, 2009.
DOI : 10.5244/C.23.125

URL : https://hal.archives-ouvertes.fr/inria-00440973

A. Gaidon, Z. Harchaoui, and C. Schmid, Actom Sequence Models for Ecient Action Detection, CVPR, 2011a, pp.10-91

A. Gaidon, Z. Harchaoui, and C. Schmid, A time series kernel for action recognition, Procedings of the British Machine Vision Conference 2011, p.12
DOI : 10.5244/C.25.63

URL : https://hal.archives-ouvertes.fr/inria-00613089

A. Gaidon, Z. Harchaoui, and C. Schmid, Recognizing activities with clustertrees of tracklets, BMVC, p.11, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00722955

D. M. Gavrila and L. S. Davis, Towards 3-d model-based tracking and recognition of human movement: a multi-view approach, International Workshop on Automatic Face and Gesture recognition, p.15, 1995.

A. Gilbert, J. Illingworth, and R. Bowden, Action recognition using mined hierarchical compound features. PAMI, pp.883897-883918, 2010.
DOI : 10.1109/tpami.2010.144

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.301.1835

L. Gorelick, M. Blank, E. Shechtman, M. Irani, and R. Basri, Actions as Space-Time Shapes, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.29, issue.12, pp.22472253-22472259, 2007.
DOI : 10.1109/TPAMI.2007.70711

A. Gretton, O. Bousquet, A. Smola, and B. Schölkopf, Measuring Statistical Dependence with Hilbert-Schmidt Norms, Algorithmic Learning Theory, pp.6377-94, 2005.
DOI : 10.1007/11564089_7

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.105.477

M. Grundmann, F. Meier, and I. Essa, 3D Shape Context and Distance Transform for action recognition, 2008 19th International Conference on Pattern Recognition, p.57, 2008.
DOI : 10.1109/ICPR.2008.4761435

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.214.3917

Z. Harchaoui, F. Bach, and E. Moulines, Testing for homogeneity with kernel Fisher discriminant analysis, Adv. NIPS, p.97, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00270806

Z. Harchaoui, F. Bach, and E. Moulines, Kernel change-point analysis, NIPS, p.116, 2009.

C. Harris and M. Stephens, A Combined Corner and Edge Detector, Procedings of the Alvey Vision Conference 1988, p.19, 1988.
DOI : 10.5244/C.2.23

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.231.1604

R. Hastie, J. Tibshirani, and . Friedman, The elements of statistical learning, p.57, 2008.

M. Hein and O. Bousquet, Hilbertian metrics and positive denite kernels on probability measures, AISTATS, pp.38-143, 2005.

Z. Z. Hoai, F. Lan, and . De-la-torre, Joint segmentation and classication of human actions in video, CVPR, pp.2011-2025

T. Hofmann, Unsupervised learning by probabilistic latent semantic analysis, Machine Learning, pp.177196-177219, 2001.

S. Hongeng and R. Nevatia, Large-scale event detection using semi-hidden markov models, ICCV, p.28, 2003.

W. Hu, T. Tan, L. Wang, and S. Maybank, A Survey on Visual Surveillance of Object Motion and Behaviors, IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), vol.34, issue.3, p.334352, 2004.
DOI : 10.1109/TSMCC.2004.829274

N. Ikizler-cinbis and S. Sclaro, Object, Scene and Actions: Combining Multiple Features for Human Action Recognition, ECCV, p.77, 2010.
DOI : 10.1007/978-3-642-15549-9_36

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.300.3773

N. Ikizler-cinbis, R. G. Cinbis, and S. Sclaro, Learning actions from the Web, 2009 IEEE 12th International Conference on Computer Vision, p.18, 2009.
DOI : 10.1109/ICCV.2009.5459368

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.300.6853

T. S. Jaakkola and D. Haussler, Exploiting generative models in discriminative classiers, p.113, 1999.

Z. Jiang, Z. Lin, and L. Davis, Recognizing Human Actions by Learning and Matching Shape-Motion Prototype Trees, pp.2012-58

A. Joulin, F. Bach, and J. Ponce, Multi-class cosegmentation, 2012 IEEE Conference on Computer Vision and Pattern Recognition, p.114, 2012.
DOI : 10.1109/CVPR.2012.6247719

URL : https://hal.archives-ouvertes.fr/hal-00717448

A. Joulin, F. Bach, and J. Ponce, A convex relaxation for weakly supervised classiers, ICML, 2012b, p.114

I. N. Junejo, E. Dexter, I. Laptev, and P. Pérez, View-Independent Action Recognition from Temporal Self-Similarities, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.33, issue.1, p.20, 2010.
DOI : 10.1109/TPAMI.2010.68

URL : https://hal.archives-ouvertes.fr/hal-01064695

S. H. Jung, Y. Guo, H. Sawhney, and R. Kumar, Action video retrieval based on atomic action vocabulary, Proceeding of the 1st ACM international conference on Multimedia information retrieval, MIR '08, p.92, 2008.
DOI : 10.1145/1460096.1460138

Y. Ke, R. Sukthankar, and M. Hebert, Volumetric Features for Video Event Detection, International Journal of Computer Vision, vol.73, issue.3, p.17, 2010.
DOI : 10.1007/s11263-009-0308-z

T. K. Kim and R. Cipolla, Canonical correlation analysis of video volume tensors for action categorization and detection. PAMI, 2009.

A. Klaser, M. Marszalek, and C. Schmid, A Spatio-Temporal Descriptor Based on 3D-Gradients, Procedings of the British Machine Vision Conference 2008, p.18, 2008.
DOI : 10.5244/C.22.99

URL : https://hal.archives-ouvertes.fr/inria-00514853

A. Kläser, M. Marszalek, I. Laptev, and C. Schmid, Will person detection help bag-of-features action recognition? Research report, p.103

A. Kläser, M. Marszaªek, C. Schmid, and A. Zisserman, Human Focused Action Localization in Video, SGA, 2010b, pp.17-49
DOI : 10.1007/978-3-642-35749-7_17

A. Kovashka and K. Grauman, Learning a hierarchy of discriminative spacetime neighborhood features for human action recognition, CVPR, pp.24-58, 2010.

H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre, HMDB: A large video database for human motion recognition, 2011 International Conference on Computer Vision, pp.77-83
DOI : 10.1109/ICCV.2011.6126543

K. Kulkarni, E. Boyer, R. Horaud, and A. Kale, An Unsupervised Framework for Action Recognition Using Actemes, ACCV, p.14, 2010.
DOI : 10.1109/TASSP.1984.1164320

URL : https://hal.archives-ouvertes.fr/inria-00568906

I. Laptev, On space-time interest points, IJCV, vol.64, issue.127, pp.107123-78, 2005.

I. Laptev, STIP: Spatio-Temporal Interest Point library, 2011.

I. Laptev and T. Lindeberg, Space-time interest points, p.18, 2003.

I. Laptev and P. Pérez, Retrieving actions in movies, 2007 IEEE 11th International Conference on Computer Vision, pp.45-48, 2007.
DOI : 10.1109/ICCV.2007.4409105

I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld, Learning realistic human actions from movies, 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp.31-79, 2008.
DOI : 10.1109/CVPR.2008.4587756

URL : https://hal.archives-ouvertes.fr/inria-00548659

B. Laxton, J. Lim, and D. Kriegman, Leveraging temporal, contextual and ordering constraints for recognizing complex activities in video, 2007 IEEE Conference on Computer Vision and Pattern Recognition, p.15, 2007.
DOI : 10.1109/CVPR.2007.383074

S. Lazebnik, C. Schmid, and J. Ponce, Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Volume 2 (CVPR'06), pp.23-145, 2006.
DOI : 10.1109/CVPR.2006.68

URL : https://hal.archives-ouvertes.fr/inria-00548585

V. Le, W. Y. Zou, S. Y. Yeung, and A. Y. Ng, Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis, CVPR 2011, pp.2011-103
DOI : 10.1109/CVPR.2011.5995496

B. Leibe, E. Seemann, and B. Schiele, Pedestrian Detection in Crowded Scenes, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), p.23, 2005.
DOI : 10.1109/CVPR.2005.272

J. Lezama, K. Alahari, J. Sivic, and I. Laptev, Track to the future: Spatio-temporal video segmentation with long-range motion cues, CVPR 2011, p.20, 2011.
DOI : 10.1109/CVPR.2011.6044588

URL : https://hal.archives-ouvertes.fr/hal-00817961

H. T. Lin, C. J. Lin, and C. Weng, A note on Platt???s probabilistic outputs for support vector machines, Machine Learning, pp.267276-267314, 2007.
DOI : 10.1007/s10994-007-5018-6

Y. Lin, G. Wahba, H. Zhang, and Y. Lee, Statistical Properties and Adaptive Tuning of Support Vector Machines, Machine Learning, pp.115136-115174, 2002.

J. Liu, J. Luo, and M. Shah, Recognizing realistic actions from videos in the wild, CVPR, p.18, 2009.

J. Liu, B. Kuipers, and S. Savarese, Recognizing human actions by attributes, CVPR 2011, pp.2011-58
DOI : 10.1109/CVPR.2011.5995353

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.463.8447

D. G. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, vol.60, issue.2, pp.91110-77, 2004.
DOI : 10.1023/B:VISI.0000029664.99615.94

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.4931

Z. Lu, T. K. Leen, Y. Huang, and D. Erdogmus, A reproducing kernel Hilbert space framework for pairwise time series distances, Proceedings of the 25th international conference on Machine learning, ICML '08, p.92, 2008.
DOI : 10.1145/1390156.1390235

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.149.8347

B. D. Lucas and T. Kanade, An Iterative Image Registration Technique with an Application to Stereo Vision, IJCAI, p.674679, 1981.

F. Lv and R. Nevatia, Single View Human Action Recognition using Key Pose Matching and Viterbi Path Searching, 2007 IEEE Conference on Computer Vision and Pattern Recognition, p.14, 2007.
DOI : 10.1109/CVPR.2007.383131

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.309.9878

A. Maji, J. Berg, and . Malik, Classication Using Intersection Kernel Support Vector Machines is ecient, CVPR, p.38, 2008.

S. Maji, L. Bourdev, and J. Malik, Action recognition from a distributed representation of pose and appearance, CVPR 2011, p.113, 2011.
DOI : 10.1109/CVPR.2011.5995631

M. Marszalek, I. Laptev, and C. Schmid, Actions in context, 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp.50-124, 2009.
DOI : 10.1109/CVPR.2009.5206557

URL : https://hal.archives-ouvertes.fr/inria-00548645

P. Matikainen, M. Hebert, and R. Sukthankar, Trajectons: Action recognition through the motion analysis of tracked features, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, 2009.
DOI : 10.1109/ICCVW.2009.5457659

P. Matikainen, M. Hebert, and R. Sukthankar, Representing Pairwise Spatial and Temporal Relations for Action Recognition, ECCV, vol.25, issue.58, p.24, 2010.
DOI : 10.1007/978-3-642-15549-9_37

R. Messing, C. Pal, and H. Kautz, Activity recognition using the velocity histories of tracked keypoints, 2009 IEEE 12th International Conference on Computer Vision, 2009.
DOI : 10.1109/ICCV.2009.5459154

K. Mikolajczyk and H. Uemura, Action recognition with motion-appearance vocabulary forest, 2008 IEEE Conference on Computer Vision and Pattern Recognition, p.21, 2008.
DOI : 10.1109/CVPR.2008.4587628

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.323.8584

T. B. Moeslund, A. Hilton, and V. Kruger, A survey of advances in visionbased human motion capture and analysis, Computer Vision and Image Understanding, vol.104, issue.2-3, pp.90126-90140, 2006.

F. Mordelet and J. P. Vert, A bagging SVM to learn from positive and unlabeled examples, Pattern Recognition Letters, vol.37, p.53
DOI : 10.1016/j.patrec.2013.06.010

URL : https://hal.archives-ouvertes.fr/hal-01101852

J. C. Niebles and L. Fei-fei, Hierarchical model of shape and appearance for human action classication, CVPR, 2007.

J. C. Niebles, H. Wang, and L. Fei-fei, Unsupervised learning of human action categories using spatial-temporal words, IJCV, vol.79, issue.30, pp.299318-299340, 2008.

J. C. Niebles, C. Chen, and L. Fei-fei, Modeling Temporal Structure of Decomposable Motion Segments for Activity Classication, ECCV, 2010. (pages xiv, pp.31-75

S. A. Niyogi and E. H. Adelson, Analyzing and recognizing walking gures in XYT, CVPR, p.15, 1994.

S. Nowozin, G. Bakir, and K. Tsuda, Discriminative subsequence mining for action classication, ICCV, p.21, 2007.
DOI : 10.1109/iccv.2007.4409049

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.109.5751

E. J. Nyström, Über die praktische auösung von integralgleichungen mit anwendungen auf randwertaufgaben, Acta Mathematica, vol.54, issue.1, pp.185204-64, 1930.

A. Oikonomopoulos, I. Patras, and M. Pantic, An implicit spatiotemporal shape model for human activity localization and recognition, 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, p.21, 2009.
DOI : 10.1109/CVPRW.2009.5204262

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.159.2205

N. M. Oliver, B. Rosario, and A. P. Pentland, A Bayesian computer vision system for modeling human interactions, p.14, 2000.

P. Over, G. Awad, M. Michel, J. Fiscus, W. Kraaij et al., Trecvid 2011 an overview of the goals, tasks, data, evaluation mechanisms and metrics, Proceedings of TRECVID 2011, p.3, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00763912

L. Page, S. Brin, R. Motwani, and T. Winograd, The pagerank citation ranking: Bringing order to the web, p.21, 1999.

V. Parameswaran and R. Chellappa, View Invariance for Human Action Recognition, International Journal of Computer Vision, vol.36, issue.3, p.83101, 2006.
DOI : 10.1007/s11263-005-3671-4

A. Patron-perez, M. Marszaªek, A. Zisserman, and I. D. Reid, High ve: Recognising human interactions in TV shows, British Machine Vision Conference, pp.74-80, 2010.

J. Platt, Probabilistic outputs for support vector machines, Advances in Large Margin Classiers, pp.6174-6212, 2000.

R. Polana and R. Nelson, Low level recognition of human motion, Proc. IEEE Workshop on Nonrigid and Articulate Motion, pp.7782-7798, 1994.

A. Prest, V. Ferrari, and C. Schmid, Explicit Modeling of Human-Object Interactions in Realistic Videos, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.35, issue.4, p.113
DOI : 10.1109/TPAMI.2012.175

URL : https://hal.archives-ouvertes.fr/hal-00720847

A. Prest, V. Ferrari, and C. Schmid, Explicit Modeling of Human-Object Interactions in Realistic Videos, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.35, issue.4, pp.2012-57
DOI : 10.1109/TPAMI.2012.175

URL : https://hal.archives-ouvertes.fr/hal-00720847

A. Quattoni, S. Wang, L. P. Morency, M. Collins, and T. Darrell, Hidden conditional random elds, PAMI, vol.29, issue.10, pp.18481852-18481878, 2007.
DOI : 10.1109/tpami.2007.1124

L. R. Rabiner and R. W. Schafer, Introduction to digital speech processing. Foundations and trends in signal processing, pp.14-31, 2007.
DOI : 10.1561/2000000001

J. O. Ramsay and B. W. Silverman, Functional Data Analysis, p.92, 2005.

C. Rao, A. Yilmaz, and M. Shah, View-invariant representation and recognition of actions, International Journal of Computer Vision, vol.50, issue.20, p.203226, 2002.

M. Raptis, I. Kokkinos, and S. Soatto, Discovering discriminative action parts from mid-level video representations, 2012 IEEE Conference on Computer Vision and Pattern Recognition, p.28, 2012.
DOI : 10.1109/CVPR.2012.6247807

URL : https://hal.archives-ouvertes.fr/hal-00918807

K. K. Reddy, J. Liu, and M. Shah, Incremental action recognition using feature-tree, 2009 IEEE 12th International Conference on Computer Vision, p.58, 2009.
DOI : 10.1109/ICCV.2009.5459374

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.154.5998

M. D. Rodriguez, J. Ahmed, and M. Shah, Action MACH a spatio-temporal Maximum Average Correlation Height filter for action recognition, 2008 IEEE Conference on Computer Vision and Pattern Recognition, p.16, 2008.
DOI : 10.1109/CVPR.2008.4587727

M. Rosenblatt, Remarks on some nonparametric estimates of a density function . The Annals of Mathematical Statistics, p.39, 1956.

S. T. Roweis and L. K. Saul, Nonlinear Dimensionality Reduction by Locally Linear Embedding, Science, vol.290, issue.5500, pp.23232326-84, 2000.
DOI : 10.1126/science.290.5500.2323

URL : http://astro.temple.edu/~msobel/courses_files/saulmds.pdf

S. Sadanand and J. J. Corso, Action bank: A high-level representation of activity in video, 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp.2012-84
DOI : 10.1109/CVPR.2012.6247806

H. Sakoe and S. Chiba, Dynamic programming algorithm optimization for spoken word recognition, Transactions on Acoustics, Speech and Signal Processing, p.15, 1978.

P. Sand and S. Teller, Particle Video: Long-Range Motion Estimation Using Point Trajectories, International Journal of Computer Vision, vol.30, issue.3, p.7291, 2008.
DOI : 10.1007/s11263-008-0136-6

S. Satkin and M. Hebert, Modeling the Temporal Extent of Actions, ECCV, pp.30-114, 2010.
DOI : 10.1007/978-3-642-15549-9_39

S. Savarese, A. Delpozo, J. C. Niebles, and L. Fei-fei, Spatial-Temporal correlatons for unsupervised action classication, Motion and video Computing, pp.18-24, 2008.

K. Schindler and L. Van-gool, Action snippets: How many frames does human action recognition require?, 2008 IEEE Conference on Computer Vision and Pattern Recognition, p.16, 2008.
DOI : 10.1109/CVPR.2008.4587730

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.329.7430

B. Schölkopf and A. J. Smola, Learning with Kernels, p.90, 2002.

B. Schölkopf, A. Smola, and K. R. Müller, Nonlinear Component Analysis as a Kernel Eigenvalue Problem, Neural Computation, vol.20, issue.5, pp.12991319-64, 1998.
DOI : 10.1007/BF02281970

C. Schüldt, I. Laptev, and B. Caputo, Recognizing human actions: a local SVM approach, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004., p.99, 2004.
DOI : 10.1109/ICPR.2004.1334462

D. W. Scott, Multivariate density estimation: theory, practice, and visualization, p.39, 1992.
DOI : 10.1002/9781118575574

D. Sculley, Web-scale k-means clustering, Proceedings of the 19th international conference on World wide web, WWW '10, p.72, 2010.
DOI : 10.1145/1772690.1772862

J. Shawe-taylor and N. Cristianini, Kernel methods for pattern analysis, pp.73-97, 2004.
DOI : 10.1017/CBO9780511809682

E. Shechtman and M. Irani, Space-Time Behavior Based Correlation, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), p.16, 2005.
DOI : 10.1109/CVPR.2005.328

Y. Sheikh, M. Sheikh, and M. Shah, Exploring the space of a human action, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1
DOI : 10.1109/ICCV.2005.90

J. Shi and J. Malik, Motion segmentation and tracking using normalized cuts, ICCV, pp.11541160-64, 1998.

J. Shi and J. Malik, Normalized cuts and image segmentation, PAMI, vol.22, issue.70, pp.888905-63, 2000.

J. Shi and C. Tomasi, Good features to track, CVPR, pp.593600-60, 1994.

Q. Shi, L. Cheng, L. Wang, and A. Smola, Human Action Segmentation and Recognition Using Discriminative Semi-Markov Models, International Journal of Computer Vision, vol.6, issue.4???5, pp.2011-2025
DOI : 10.1007/s11263-010-0384-0

J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio et al., Real-time human pose recognition in parts from single depth images, CVPR, pp.6-126, 2011.

T. Simon, M. Nguyen, F. De-la-torre, and J. Cohn, Action unit detection with segment-based SVMs, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, p.31, 2010.
DOI : 10.1109/CVPR.2010.5539998

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.173.182

J. Sivic and A. Zisserman, Video Google: a text retrieval approach to object matching in videos, Proceedings Ninth IEEE International Conference on Computer Vision, p.22, 2003.
DOI : 10.1109/ICCV.2003.1238663

A. F. Smeaton, P. Over, and W. Kraaij, Evaluation campaigns and TRECVid, Proceedings of the 8th ACM international workshop on Multimedia information retrieval , MIR '06, 2006.
DOI : 10.1145/1178677.1178722

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.329.3415

T. Starner and A. Pentland, Real-time American Sign Language recognition from video using Hidden Markov Models, International Symposium on Computer Vision, p.14, 1995.
DOI : 10.1109/iscv.1995.477012

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.153.6485

C. Sun, I. Junejo, and H. Foroosh, Action recognition using rank-1 approximation of joint self-similarity volume, ICCV, p.102, 2011.

K. Tang, L. Fei-fei, and D. Koller, Learning latent temporal structure for complex event detection, 2012 IEEE Conference on Computer Vision and Pattern Recognition, p.28, 2012.
DOI : 10.1109/CVPR.2012.6247808

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.309.7443

G. Valiente, Algorithms on Trees and Graphs, p.115, 2002.
DOI : 10.1007/978-3-662-04921-1

A. Veeraraghavan, R. Chellappa, and A. K. Roy-chowdhury, The Function Space of an Activity, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Volume 1 (CVPR'06), p.15, 2006.
DOI : 10.1109/CVPR.2006.304

H. Wang, M. M. Ullah, A. Kläser, I. Laptev, and C. Schmid, Evaluation of local spatio-temporal features for action recognition, Procedings of the British Machine Vision Conference 2009, pp.18-91, 2009.
DOI : 10.5244/C.23.124

URL : https://hal.archives-ouvertes.fr/inria-00439769

H. Wang, A. Kläser, C. Schmid, and L. Cheng-lin, Action recognition by dense trajectories, CVPR 2011, pp.78-79, 2011.
DOI : 10.1109/CVPR.2011.5995407

URL : https://hal.archives-ouvertes.fr/inria-00583818

Y. Wang and G. Mori, Hidden Part Models for Human Action Recognition: Probabilistic versus Max Margin, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.33, issue.7, p.26, 2011.
DOI : 10.1109/TPAMI.2010.214

L. Wasserman, All of statistics: a concise course in statistical inference, p.39, 2004.
DOI : 10.1007/978-0-387-21736-9

D. Weinland, R. Ronfard, and E. Boyer, Free viewpoint action recognition using motion history volumes, Computer Vision and Image Understanding, vol.104, issue.2-3, p.249257, 2006.
DOI : 10.1016/j.cviu.2006.07.013

URL : https://hal.archives-ouvertes.fr/inria-00544629

D. Weinland, M. Özuysal, and P. Fua, Making Action Recognition Robust to Occlusions and Viewpoint Changes, ECCV, p.103, 2010.
DOI : 10.1007/978-3-642-15558-1_46

URL : http://infoscience.epfl.ch/record/149447

G. Willems, T. Tuytelaars, and L. Van-gool, An ecient dense and scaleinvariant spatio-temporal interest point detector, ECCV, p.19, 2008.
DOI : 10.1007/978-3-540-88688-4_48

G. Willems, J. H. Becker, T. Tuytelaars, and L. Van-gool, Exemplar-based Action Recognition in Video, Procedings of the British Machine Vision Conference 2009, 2009.
DOI : 10.5244/C.23.90

C. Williams and M. Seeger, Using the nyström method to speed up kernel machines, NIPS, p.64, 2001.

A. D. Wilson and A. F. Bobick, Learning visual behavior for gesture analysis, Proceedings of International Symposium on Computer Vision, ISCV, p.14, 1995.
DOI : 10.1109/ISCV.1995.477006

A. D. Wilson and A. F. Bobick, Parametric hidden Markov models for gesture recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.21, issue.9, p.18, 1999.
DOI : 10.1109/34.790429

S. F. Wong, T. K. Kim, and R. Cipolla, Learning Motion Categories using both Semantic and Structural Information, 2007 IEEE Conference on Computer Vision and Pattern Recognition, p.23, 2007.
DOI : 10.1109/CVPR.2007.383332

J. Yamato, J. Ohaya, and K. Ishii, Recognizing human action in timesequential images using hidden markov model, CVPR, p.14, 1992.

A. Yao, J. Gall, and L. Van-gool, A Hough transform-based voting framework for action recognition, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, p.21, 2010.
DOI : 10.1109/CVPR.2010.5539883

J. Yuan, Z. Liu, and Y. Wu, Discriminative video pattern search for ecient action detection, pp.2011-2032

M. Zelnik-manor and . Irani, Event-based analysis of video, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, p.7, 2001.
DOI : 10.1109/CVPR.2001.990935

Z. Zeng and Q. Ji, Knowledge Based Activity Recognition with Dynamic Bayesian Network, ECCV, p.14, 2010.
DOI : 10.1007/978-3-642-15567-3_39