A. Clément and G. Thomas, Atlas du Paris souterrain : la doublure de la Ville lumière, Paris : Parigramme, pp.193-195, 2001.

L. Gauffre, P. Joannis, C. Breysse, D. Gibello, C. Desmulliez et al., Gestion patrimoniale des réseaux d'assainissement urbains : Guide méthodologique, 2005.

M. Satin and B. Selmi, Guide technique de l'assainissement : Moniteur référence technique, pp.660-662, 2010.

F. Jorand, Structures et fonctions de la cellule bactérienne : les enveloppes. Ecole thématique CNRS, 2009.

C. Beloin, Formation des biofilms chez E. coli : « les dessous de la vie sur les surfaces, Ecole thématique CNRS, Microbiologie et physico-chimie des biofilms, 2009.

W. Kaempfer and M. Berndt, Estimation of service life of concrete pipes in sewer networks, Durability of Building Materials and Components, vol.8, pp.36-45, 1999.

D. Muynck, W. De-belie, N. Vertraete, and W. , Effectiveness of admixtures, surface treatments and antimicrobial compounds against biogenic sulfuric acid corrosion of concrete, Cement and Concrete Composites, vol.31, issue.3, pp.163-170, 2009.
DOI : 10.1016/j.cemconcomp.2008.12.004

W. M. Olmstead and H. Hamlin, Converting portions of the Los Angeles outfall sewer into a septic tank, Engineering News, vol.44, pp.317-138, 1900.

R. L. Morton, W. A. Yanko, D. W. Grahom, and R. G. Arnold, Relationship between metal concentrations and crown corrosion in Los Angeles County sewers, Research Journal of Water Pollution Control Federation, vol.63, pp.789-798, 1991.

T. Mori, T. Nonaka, K. Tazaki, M. Koga, Y. Hikosaka et al., Interactions of nutrients, moisture and pH on microbial corrosion of concrete sewer pipes, Water Research, vol.26, issue.1, pp.29-37, 1992.
DOI : 10.1016/0043-1354(92)90107-F

N. Ismail, T. Nonaka, S. Noda, and T. Mori, Effect of carbonation on microbial corrosion of concretes., Doboku Gakkai Ronbunshu, vol.20, issue.474, pp.133-138, 1993.
DOI : 10.2208/jscej.1993.474_133

J. L. Davis, Characterization and modeling of microbially induced corrosion of concrete sewer pipes, 1998.

J. Monteny, N. De-belie, E. Vincke, W. Verstraete, and L. Taerwe, Chemical and microbiological tests to simulate sulfuric acid corrosion of polymer-modified concrete, Cement and Concrete Research, vol.31, issue.9, pp.1359-1365, 2001.
DOI : 10.1016/S0008-8846(01)00565-8

E. Vincke, E. Van-wanseele, J. Monteny, A. Beeldens, N. De-belie et al., Influence of polymer addition on biogenic sulfuric acid attack of concrete, International Biodeterioration & Biodegradation, vol.49, issue.4, pp.283-292, 2002.
DOI : 10.1016/S0964-8305(02)00055-0

R. D. Pomeroy and A. G. Boon, The problem of hydrogen sulphide in sewers, 1990.

D. K. Thistlethwayte and E. E. Goleb, THE COMPOSITION OF SEWER AIR, Advances in Water Pollution Research, proceedings of the Sixth International Conference, pp.281-288, 1972.
DOI : 10.1016/B978-0-08-017005-3.50031-1

J. S. Matos and C. M. Aires, Mathematical modelling of sulphides and hydrogen sulphide gas build-up in the costa do estoril sewerage system, Water Science and Technology, vol.31, issue.7, pp.255-261, 1995.
DOI : 10.1016/0273-1223(95)00342-K

R. D. Pomeroy and F. D. Bowlus, Progress Report on Sulfide Control Research, Sewage Works Journal, vol.18, pp.597-640, 1946.

H. D. Peck and . Jr, Bioenergetics strategies of the sulphate-reducing bacteria, In: " The sulphate-reducing bacteria: contemporary perspectives, Brook / Springer Series in contemporary bioscience, pp.41-76, 1993.

L. Gall, J. Fauque, and G. , Dissimilatory reduction of sulfur compounds Biology of anaerobic microorganisms, pp.587-639, 1988.

H. Cypionka, Solute transport and cell energetics Sulfate-reducing bacteria, Biotechnology Handbooks, vol.8, pp.151-184, 1995.

S. Okabe, T. Itoh, H. Satoh, and Y. Watanabe, Analyses of spatial distributions of sulfate-reducing bacteria and their activity in aerobic wastewater biofilms, Applied Environmental Microbiology, vol.65, pp.5107-5116, 1999.

D. K. Thistlethwayte, The control of sulphides in sewerage systems, Ann Arbor Science, 1972.

M. G. Alexander, A. Goyns, and C. Fourie, Experiences with a full-scale experimental sewer made with CAC and other cementitious binders in Virginia, South Africa ? Calcium Aluminate Cement : Proceedings of the Centenary Conference, 2002.

A. G. Boon and A. R. Lister, Formation of sulphide in rising main sewers and its prevention by injection of oxygen, Progress in Water Technology, pp.289-300, 1975.

R. D. Pomeroy and J. D. Parkhurst, The forecasting of sulfide buildup rates in sewers, Progress Water Technology, vol.9, pp.621-628, 1977.

L. Zhang, P. De-scryver, B. De-gusseme, W. De-muynck, N. Boon et al., Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: A review, Water Research, vol.42, issue.1-2, pp.1-12, 2008.
DOI : 10.1016/j.watres.2007.07.013

R. Sharma, K. Yuan, Z. De-haas, D. Hamilton, G. Corrie et al., Dynamics and dynamic modelling of H2S production in sewer systems, Water Research, vol.42, issue.10-11, pp.2527-2538, 2008.
DOI : 10.1016/j.watres.2008.02.013

A. G. Sadowski, Synthèse sur l'hydrogène sulfuré et son traitement, 2005.

H. Heukelelekian, Effect of the addition of sodium nitrate to sewage on hydrogen sulphide production and BOD reduction, Sewage Works, vol.15, pp.255-261, 1943.

R. A. Poduska and B. D. Anderson, Successful storage lagoon odor control, Journal of Water Pollution Control Federation, vol.53, pp.299-310, 1981.

D. Firer, E. Friedler, and O. Lahav, Control of sulfide in sewer systems by dosage of iron salts: Comparison between theoretical and experimental results, and practical implications, Science of The Total Environment, vol.392, issue.1, pp.145-156, 2008.
DOI : 10.1016/j.scitotenv.2007.11.008

A. H. Nielson, J. Vollertsen, and T. Hvitved-jacobson, Kinetics and stoichiometry of sulfide oxidation by sewer biofilms, Water Research, vol.39, issue.17, pp.4119-4125, 2005.
DOI : 10.1016/j.watres.2005.07.031

J. Vollertsen, A. H. Nielsen, H. S. Jensen, T. Wium-andersen, and T. Hvitved-jacobsen, Corrosion of concrete sewers???The kinetics of hydrogen sulfide oxidation, Science of The Total Environment, vol.394, issue.1, pp.162-170, 2008.
DOI : 10.1016/j.scitotenv.2008.01.028

S. Yasyerli, G. Dogu, I. Ar, and T. Dogu, Dynamic analysis of removal and selective oxidation of H2S to elemental sulfur over Cu???V and Cu???V???Mo mixed oxides in a fixed bed reactor, Chemical Engineering Science, vol.59, issue.19, pp.4001-4009, 2004.
DOI : 10.1016/j.ces.2004.03.045

R. Steudel, Mechanism for the Formation of Elemental Sulfur from Aqueous Sulfide in Chemical and Microbiological Desulfurization Processes, Industrial & Engineering Chemistry Research, vol.35, issue.4, pp.1417-1423, 1996.
DOI : 10.1021/ie950558t

C. D. Parker, Species of Sulphur Bacteria Associated with the Corrosion of Concrete, Nature, vol.159, issue.4039, pp.439-440, 1947.
DOI : 10.1038/159439b0

R. L. Starkey, PRODUCTS OF THE OXIDATION OF THIOSULFATE BY BACTERIA IN MINERAL MEDIA, The Journal of General Physiology, vol.18, issue.3, pp.325-349, 1935.
DOI : 10.1085/jgp.18.3.325

R. L. Islander, J. S. Devinny, F. Mansfeld, A. Postyn, and H. Shih, Microbial Ecology of Crown Corrosion in Sewers, Journal of Environmental Engineering, vol.117, issue.6, pp.751-770, 1991.
DOI : 10.1061/(ASCE)0733-9372(1991)117:6(751)

I. Suzuki, Oxidation of inorganic sulfur compounds: Chemical and enzymatic reactions, Canadian Journal of Microbiology, vol.45, issue.2, pp.97-105, 1999.
DOI : 10.1139/w98-223

T. Rohwerder and W. Sand, The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp., Microbiology, vol.149, issue.7, pp.1699-1709, 2003.
DOI : 10.1099/mic.0.26212-0

B. S. Chahal, A further study on the purification of the sulfur-oxidising enzyme from Thiobacillus thiooxidans ? M, 1986.

I. Suzuki, Incorporation of atmospheric oxygen-18 into thiosulfate by the sulfur-oxidizing enzyme of Thiobacillus thiooxidans, Biochimica et Biophysica Acta (BBA) - Enzymology and Biological Oxidation, vol.110, issue.1, pp.97-101, 1965.
DOI : 10.1016/S0926-6593(65)80098-4

T. Rohwerder and W. Sand, Oxidation of Inorganic Sulfur Compounds in Acidophilic Prokaryotes, Engineering in Life Sciences, vol.417, issue.4, pp.301-309, 2007.
DOI : 10.1002/elsc.200720204

M. E. Oprime, O. Garcia, and A. A. Cardoso, Oxidation of H2S in acid solution by Thiobacillus ferrooxidans and Thiobacillus thiooxidans, Process Biochemistry, vol.37, issue.2, pp.111-114, 2001.
DOI : 10.1016/S0032-9592(01)00179-0

D. Prieur, Les endosymbioses trophiques et leur rôle dans l'évolution passée et contemporaine des Eucaryotes ? Ecole thématique du CNRS organisée à la station biologique de Roscoff du 20 au 23 octobre, ] Process Design Manual for Sulfide Control in Sanitary Sewerage Systems, pp.6251-74, 1974.

P. D. Wilmot, K. Cadee, J. J. Katinic, and B. V. Kavanagh, Kinetics of sulfide oxidation by dissolved oxygen. Water Pollution Control Federation, pp.1264-1270, 1988.

A. Kotronarou and M. R. Hoffmann, Catalytic autoxidation of hydrogen sulfide in wastewater, Environmental Science & Technology, vol.25, issue.6, pp.1153-1160, 1991.
DOI : 10.1021/es00018a021

R. A. Jolley and C. F. Forster, The kinetics of sulphide oxidation, Environmental Technology Letters, vol.6, issue.1-11, pp.1-10, 1985.
DOI : 10.1080/09593338509384313

O. Aviam, G. Bar-nes, Y. Zeiri, and A. Sivan, Accelerated biodegradation of cement by sulfur-oxidizing bacteria as a bioassay for evaluating immobilisation of low level radioactive waste, Applied and Environmental Microbiology, pp.6031-6036, 2004.

S. Okabe, M. Odagiri, T. Ito, and H. Satoh, Succession of Sulfur-Oxidizing Bacteria in the Microbial Community on Corroding Concrete in Sewer Systems, Applied and Environmental Microbiology, vol.73, issue.3, pp.971-980, 2007.
DOI : 10.1128/AEM.02054-06

D. J. Roberts, D. Nica, G. Zuo, and J. L. Davis, Quantifying microbially induced deterioration of concrete: initial studies, International Biodeterioration & Biodegradation, vol.49, issue.4, pp.227-234, 2002.
DOI : 10.1016/S0964-8305(02)00049-5

T. Chaussadent, Etat des lieux et réflexions sur la carbonatation du béton armé ? Etude et, Recherche du LCPC, p.80, 1999.

K. L. Scrivener and A. Capmas, Calcium Aluminate Cements In: Lea's chemistry of cement and concrete, Fourth Edition, 1999.

L. Robertson and G. Kuenen, The Genus Thiobacillus, Prokaryotes, vol.5, pp.812-827, 2006.
DOI : 10.1007/0-387-30745-1_37

D. Kelly and A. Wood, Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov, INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, vol.50, issue.2, pp.511-516, 2000.
DOI : 10.1099/00207713-50-2-511

S. A. Waksman and J. S. Joffe, ACID PRODUCTION BY A NEW SULFUR-OXIDIZING BACTERIUM, Science, vol.53, issue.1366, pp.53-216, 1921.
DOI : 10.1126/science.53.1366.216

K. S. Cho and T. Mori, A newly isolated fungus participates in the corrosion of concrete sewer pipes, Water Science and Technology, vol.31, issue.7, pp.263-271, 1995.
DOI : 10.1016/0273-1223(95)00343-L

J. D. Gu, T. E. Ford, N. S. Berke, and R. Mitchell, Biodeterioration of concrete by the fungus Fusarium, International Biodeterioration & Biodegradation, vol.41, issue.2, pp.101-109, 1998.
DOI : 10.1016/S0964-8305(98)00034-1

N. De-belie, J. Monteny, A. Beeldens, E. Vincke, D. Van-gemert et al., Experimental research and prediction of the effect of chemical and biogenic sulfuric acid on different types of commercially produced concrete sewer pipes, Cement and Concrete Research, vol.34, issue.12, pp.2223-2236, 2004.
DOI : 10.1016/j.cemconres.2004.02.015

S. Lamberet, D. Guinot, E. Lempereur, J. Talley, and C. Alt, Field investigations of high performance calcium aluminate mortar for wastewater applications ? Calcium aluminate Cements, proceedings of the centenary Conference, 2008.

T. Haile and G. Nakhla, A Novel Zeolite Coating for Protection of Concrete Sewers from Biological Sulfuric Acid Attack, Geomicrobiology Journal, vol.49, issue.6, pp.322-331, 2008.
DOI : 10.1016/j.watres.2007.07.013

T. Haile, G. Nakhla, E. Allouche, and S. Vaidya, Evaluation of the bactericidal characteristics of nano-copper oxide or functionalized zeolite coating for bio-corrosion control in concrete sewer pipes, Corrosion Science, vol.52, issue.1, pp.45-53, 2010.
DOI : 10.1016/j.corsci.2009.08.046

N. A. Padival, J. S. Weiss, and R. G. Arnold, Control of <I>Thiobacillus</I> by means of microbial competition: Implications for corrosion of concrete sewers, Water Environment Research, vol.67, issue.2, pp.201-205, 1995.
DOI : 10.2175/106143095X131358

L. H. Lee, B. Lustigman, I. Y. Chu, and H. L. Jou, Effect of aluminum and pH on the growth ofAnacystis nidulans, Bulletin of Environmental Contamination and Toxicology, vol.17, issue.5, pp.720-726, 1991.
DOI : 10.1007/BF01689958

M. Wood and J. E. Coope, Acidity, aluminium and multiplication of Rhizobium trifolii: Effects of initial inoculum density and growth phase, Soil Biology and Biochemistry, vol.20, issue.1, pp.83-87, 1988.
DOI : 10.1016/0038-0717(88)90130-7

D. N. Munns and H. N. Keyser, Response of Rhizobium strains to acid and aluminium stress, Soil Biology and Biochemistry, vol.13, issue.2, pp.115-118, 1981.
DOI : 10.1016/0038-0717(81)90006-7

C. Exley and J. D. Birchall, The cellular toxicity of aluminium, Journal of Theoretical Biology, vol.159, issue.1, pp.83-98, 1992.
DOI : 10.1016/S0022-5193(05)80769-6

S. J. Karlik, G. L. Eichhorn, P. N. Lewis, and D. R. Crapper, Interaction of aluminum species with deoxyribonucleic acid, Biochemistry, vol.19, issue.26, pp.5991-5998, 1980.
DOI : 10.1021/bi00567a008

D. M. Roy, P. Arjunan, and M. R. Silsbee, Effect of silica fume, metakaolin, and low-calcium fly ash on chemical resistance of concrete, Cement and Concrete Research, vol.31, issue.12, pp.1809-1813, 2001.
DOI : 10.1016/S0008-8846(01)00548-8

S. Ehrich, L. Helard, R. Letourneaux, J. Willocq, and E. Bock, Biogenic and Chemical Sulfuric Acid Corrosion of Mortars, Journal of Materials in Civil Engineering, vol.11, issue.4, pp.340-344, 1999.
DOI : 10.1061/(ASCE)0899-1561(1999)11:4(340)

J. Monteny, E. Vincke, A. Beeldens, N. De-belie, L. Taerwe et al., Chemical, microbiological, and in situ test methods for biogenic sulfuric acid corrosion of concrete, Cement and Concrete Research, vol.30, issue.4, pp.623-634, 2000.
DOI : 10.1016/S0008-8846(00)00219-2

S. Roux, F. Feugeas, and A. Cornet, Biod??gradation des b??tons??: analyse des b??tons et mortiers en contact avec une eau douce naturelle, Mat??riaux & Techniques, vol.93, pp.123-135, 2005.
DOI : 10.1051/mattech:2006011

S. Roux, Evaluation des risques de biodégradation des bétons en contact avec une eau douce naturelle. Thèse, Docteur de l'Université Louis Paster ? Starsbourg I Discipline : Sciences pour l'ingénieur soutenue le 21 mai, 2008.
DOI : 10.1051/mattech:2006011

K. Hormann, F. Hofmann, and M. Schmidt, Stability of concrete against biogenic sulfuric acid corrosion, a new method for determination, Proceedings of the 10 th International Congress on the Chemistry of Cement, 1997.

M. Schmidt, K. Hormann, F. J. Hofmann, and E. Wagner, Concrete with greater resistance to acid and to corrosion by biogenous sulfuric acid, Concrete Precasting Plant and Technology, pp.64-70, 1997.

E. Vincke, S. Verstichel, J. Monteny, and W. Verstraete, A new test procedure for biogenic sulfuric acid corrosion of concrete, Biodegradation, vol.10, issue.6, pp.421-428, 1999.
DOI : 10.1023/A:1008309320957

W. Sand, T. Dumas, and S. Marcdargent, Tests for biogenic sulfuric acid corrosion in a simulation chamber confirm the on site performance of calcium aluminate based concretes in sewage applications, International Symposium on Microbiologically Influenced Corrosion (MIC) Testing ? USA, 1992.

K. Milde, W. Sand, W. Wolff, and E. Bock, Thiobacilli of the corroded concrete walls of the Hambourg sewer system, Journal of General Microbiology, vol.129, pp.1327-1333, 1983.

W. Sand, T. Dumas, and S. Marcdargent, Accelerated biogenic sulfuric-acid corrosion test for evaluating the performance of calcium-aluminate based concrete in sewage applications ? Microbiologically influenced corrosion testing, 1994.

B. J. Kearns and . Little, American Society for Testing and materials, pp.234-249

S. Ehrich, Untersuchungen zur biogenen Schwefelsäurekorrosion von zementgebundenen Baustoffen, 1998.

C. W. Fourie, Biologically induced sulphuric acid attack on concrete samples in the experimental sewer section at Virginia. Department of Civil Engineering, 2002.

S. Okabe, M. Odagiri, T. Ito, and H. Satoh, Succession of Sulfur-Oxidizing Bacteria in the Microbial Community on Corroding Concrete in Sewer Systems, Applied and Environmental Microbiology, vol.73, issue.3, pp.971-980, 2007.
DOI : 10.1128/AEM.02054-06

H. Satoh, M. Odagiri, T. Ito, and S. Okabe, Microbial community structures and in situ sulfate-reducing and sulfur-oxidizing activities in biofilms developed on mortar specimens in a corroded sewer system, Water Research, vol.43, issue.18, pp.4729-4739, 2009.
DOI : 10.1016/j.watres.2009.07.035

C. Humes, Pipeline Materials in H 2 S, 1977 Werribee Pipeline ? Information Series of CSR Humes, p.101, 1997.

T. Mori, M. Koga, T. Nonaka, F. Mishina, Y. Sakai et al., Microbial corrosion of concrete sewer pipes, H 2 S production from sediments and determination of corrosion rate, Water Science and Technology, vol.23, pp.1275-1282, 1991.

K. Tazaki, T. Mori, and T. Nonaka, Microbial jarosite and gypsum from corrosion of Portland cement concrete, Canadian Mineralogist, vol.30, pp.431-444, 1992.

A. Goyns, Calcium aluminate cement linings for cost-effective sewers, International Conference on CAC, pp.617-631, 2001.

A. Goyns, Virginia sewer rehabilitation, Progress report n° 1 ? PIPES, 2003.

H. Saricimen, M. Shameem, M. S. Barry, M. Ibrahim, and T. A. Abbasi, Durability of proprietary cementitious materials for use in wastewater transport systems, Cement and Concrete Composites, p.7, 2003.
DOI : 10.1016/S0958-9465(02)00082-3

M. G. Alexander, A. Goyns, and C. Fourie, Experiences with a full-scale experimental sewer made with CAC and other cementitious binders in Virginia, South Africa ? Calcium Aluminate Cement : Proceedings of the Centenary Conference, 2008.

C. W. Fourie, Biologically induced sulphuric acid attack on concrete samples in the experimental sewer section at Virginia. Department of Civil Engineering, 2002.

A. Goyns, Calcium aluminate cement linings for cost-effective sewers, International Conference on CAC, pp.617-631, 2001.

A. Goyns, Virginia sewer rehabilitation, Progress report n° 1 ? PIPES, 2003.

C. D. Parker, Species of Sulphur Bacteria Associated with the Corrosion of Concrete, Nature, vol.159, issue.4039, pp.439-440, 1947.
DOI : 10.1038/159439b0

F. M. Gilchrist, Microbiological studies of the corrosion of concrete sewers by sulphuric acid producing bacteria. The South African Industrial Chemist, pp.214-215, 1953.

K. Milde, W. Sand, W. Wolff, and E. Bock, Thiobacilli of the corroded concrete walls of the Hambourg sewer system, Journal of General Microbiology, vol.129, pp.1327-1333, 1983.

N. Yoshida, T. Morinaga, and Y. Murooka, Characterization and identification of bacterial strains isolated from corroded concrete in the accumulation stratum and their resistance levels to heavy metals, Journal of Fermentation and Bioengineering, vol.76, issue.5, pp.400-402, 1993.
DOI : 10.1016/0922-338X(93)90031-3

S. Okabe, M. Odagiri, T. Ito, and H. Satoh, Succession of Sulfur-Oxidizing Bacteria in the Microbial Community on Corroding Concrete in Sewer Systems, Applied and Environmental Microbiology, vol.73, issue.3, pp.971-980, 2007.
DOI : 10.1128/AEM.02054-06

K. S. Cho and T. Mori, A newly isolated fungus participates in the corrosion of concrete sewer pipes, Water Science and Technology, vol.31, issue.7, pp.31-263, 1995.
DOI : 10.1016/0273-1223(95)00343-L

J. D. Gu, T. E. Ford, N. S. Berke, and R. Mitchell, Biodeterioration of concrete by the fungus Fusarium, International Biodeterioration & Biodegradation, vol.41, issue.2, pp.101-109, 1998.
DOI : 10.1016/S0964-8305(98)00034-1

S. Lamberet, D. Guinot, E. Lempereur, J. Talley, and C. Alt, Field investigations of high performance calcium aluminate mortar for wastewater applications ? Calcium aluminate Cements, proceedings of the centenary Conference, 2008.

S. Brunauer, P. H. Emmett, and E. Teller, Adsorption of Gases in Multimolecular Layers, Journal of the American Chemical Society, vol.60, issue.2, pp.309-319, 1938.
DOI : 10.1021/ja01269a023

E. P. Barrett, L. G. Joyner, and P. P. Halenda, The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms, Journal of the American Chemical Society, vol.73, issue.1, pp.373-380, 1951.
DOI : 10.1021/ja01145a126

M. Schallenberg, J. Kalff, and J. B. Rasmussen, Solutions to problems in enumerating sediment bacteria by direct counts, Applied and Environmental Microbiology, vol.55, pp.1214-1219, 1985.

Z. Xu, D. S. Pilch, A. R. Srinivasan, W. K. Olson, N. E. Geacintov et al., Modulation of nucleic acid structure by ligand binding: induction of a DNA??RNA??DNA hybrid triplex by DAPI intercalation, Bioorganic & Medicinal Chemistry, vol.5, issue.6, pp.1137-1147, 1997.
DOI : 10.1016/S0968-0896(97)00050-3

S. Wei, M. Sanchez, D. Trejo, and C. Gillis, Microbial mediated deterioration of reinforced concrete structures, International Biodeterioration & Biodegradation, vol.64, issue.8, pp.748-754, 2010.
DOI : 10.1016/j.ibiod.2010.09.001

F. Joux and P. Lebaron, Use of fluorescent probes to assess physiological functions of bacteriaat single-cell level, Microbes and Infection, vol.2, issue.12, pp.1523-1535, 2000.
DOI : 10.1016/S1286-4579(00)01307-1

G. Grégori, M. Denis, D. Lefèvre, and J. C. Romano, Viabilit?? des bact??ries h??t??rotrophes dans la baie de Marseille, Comptes Rendus Biologies, vol.326, issue.8, pp.739-750, 2003.
DOI : 10.1016/j.crvi.2003.07.001

M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry, vol.72, issue.1-2, pp.248-254, 1976.
DOI : 10.1016/0003-2697(76)90527-3

A. Goyns, Virginia sewer rehabilitation, Progress report n° 1 ? PIPES, 2003.

H. Saricimen, M. Shameem, M. S. Barry, M. Ibrahim, and T. A. Abbasi, Durability of proprietary cementitious materials for use in wastewater transport systems, Cement and Concrete Composites, vol.25, issue.4-5, pp.421-427, 2003.
DOI : 10.1016/S0958-9465(02)00082-3

D. Belie, N. Monteny, J. Beeldens, A. Vincke, E. Van-gemert et al., Experimental research and prediction of the effect of chemical and biogenic sulfuric acid on different types of commercially produced concrete sewer pipes, Cement and Concrete Research, vol.34, issue.12, pp.2223-2236, 2004.
DOI : 10.1016/j.cemconres.2004.02.015

Z. T. Chang, X. J. Song, R. Munn, and M. Marosszeky, Using limestone aggregates and different cements for enhancing resistance of concrete to sulphuric acid attack, Cement and Concrete Research, vol.35, issue.8, pp.1486-1494, 2005.
DOI : 10.1016/j.cemconres.2005.03.006

F. Girardi, W. Vaona, D. Maggio, and R. , Resistance of different types of concretes to cyclic sulfuric acid and sodium sulfate attack, Cement and Concrete Composites, pp.595-602, 2010.

D. J. Roberts, D. Nica, G. Zuo, and J. L. Davis, Quantifying microbially induced deterioration of concrete: initial studies, International Biodeterioration & Biodegradation, vol.49, issue.4, pp.227-234, 2002.
DOI : 10.1016/S0964-8305(02)00049-5

S. Nishimura and M. Yoda, Removal of hydrogen sulfide from an anaerobic biogas using a bio-scrubber, Water Science and Technology, vol.36, issue.6-7, pp.349-356, 1997.
DOI : 10.1016/S0273-1223(97)00542-8

D. Schieder, P. Quicker, R. Scheinder, H. Winter, S. Prechtl et al., Microbiological removal of hydrogen sulfide from biogas by means of a separate biofilter system: Experience with technical operation, Water Science and Technology, vol.48, pp.209-212, 2003.

A. Hirayama and R. D. Vetter, Kinetics of sulfide and thiosulfate oxidation by the hydrothermal vent Bacterium Thiomicrospira crunogina and comparison with Thiobacillus neapolitanus. Abstract I43, Proceedings of the annual meeting -1989 American Society of Microbiology, 1989.

S. Ehrich, Untersuchungen zur biogenen Schwefelsäurekorrosion von zementgebundenen Baustoffen, 1998.

J. Fischer, A. Quentmeier, S. Gansel, V. Sabados, and C. G. Friedrich, Inducible aluminum resistance of Acidiphilium cryptum and aluminum tolerance of other acidophilic bacteria, Archive of Microbiology, pp.554-558, 2002.

G. Piña, R. Cervantes, and C. , Microbial interactions with aluminium, BioMetals, vol.89, issue.65, pp.311-316, 1996.
DOI : 10.1007/BF00817932

R. C. Bruce, L. A. Warrell, D. G. Edward, and L. C. Bell, Effects of aluminum and calcium in the soil solution of acid soils on root elongation of Glycine max cv, pp.319-338, 1988.

S. Silver, Bacterial Interactions with Mineral Cations and Anions: Good Ions and Bad, Biomineralization and Biological Metal Accumulation. Dordrecht: Reidel, pp.439-457, 1983.
DOI : 10.1007/978-94-009-7944-4_44

P. D. Wilmot, K. Cadee, J. J. Katinic, and B. V. Kavanagh, Kinetics of sulfide oxidation by dissolved oxygen. Water Pollution Control Federation, pp.1264-1270, 1988.

A. Kotronarou and M. R. Hoffmann, Catalytic autoxidation of hydrogen sulfide in wastewater, Environmental Science & Technology, vol.25, issue.6, pp.1153-1160, 1991.
DOI : 10.1021/es00018a021

R. A. Jolley and C. F. Forster, The kinetics of sulphide oxidation, Environmental Technology Letters, vol.6, issue.1-11, pp.1-10, 1985.
DOI : 10.1080/09593338509384313

D. J. Roberts, D. Nica, G. Zuo, and J. L. Davis, Quantifying microbially induced deterioration of concrete: initial studies, International Biodeterioration & Biodegradation, vol.49, issue.4, pp.227-234, 2002.
DOI : 10.1016/S0964-8305(02)00049-5

R. L. Islander, J. S. Devinny, F. Mansfeld, A. Postyn, and H. Shih, Microbial Ecology of Crown Corrosion in Sewers, Journal of Environmental Engineering, vol.117, issue.6, pp.751-770, 1991.
DOI : 10.1061/(ASCE)0733-9372(1991)117:6(751)

A. P. Joseph, J. Keller, H. Bustamante, and P. L. Bond, Surface neutralization and H2S oxidation at early stages of sewer corrosion: Influence of temperature, relative humidity and H2S concentration, Water Research, vol.46, issue.13, pp.4235-4245, 2012.
DOI : 10.1016/j.watres.2012.05.011

K. Y. Chen and J. C. Morris, Kinetics of oxidation of aqueous sulfide by oxygen, Environmental Science & Technology, vol.6, issue.6, pp.529-537, 1972.
DOI : 10.1021/es60065a008

G. Chiu and E. J. Meehan, Monodisperse sulfur sols from the air oxidation of hydrogen sulfide solutions, Journal of Colloid and Interface Science, vol.62, issue.1, pp.1-7, 1977.
DOI : 10.1016/0021-9797(77)90058-3

O. 'brien, D. J. Birkner, and F. B. , Kinetics of oxygenation of reduced sulfur species in aqueous solution, Environmental Science & Technology, vol.11, issue.12, pp.1114-1120, 1977.
DOI : 10.1021/es60135a009

R. Steudel, Aqueous sulfur sols. Elemental sulfur and sulfur-rich compounds I, Topics in Current Chemistry, vol.230, pp.69-78, 2003.
DOI : 10.1007/b12113

R. S. Steudel, Mechanism for the Formation of Elemental Sulfur from Aqueous Sulfide in Chemical and Microbiological Desulfurization Processes, Consideration in image analysis as applied to investigations of the ITZ in concrete. Cement and Concrete Composites, pp.1417-1423, 1996.
DOI : 10.1021/ie950558t

S. Diamond and J. Huang, The ITZ in concrete ? a different view based on image analysis and SEM observations. Cement and Concrete Composites, pp.179-188, 2001.

M. E. Oprime, O. Garcia, and A. A. Cardoso, Oxidation of H2S in acid solution by Thiobacillus ferrooxidans and Thiobacillus thiooxidans, Process Biochemistry, vol.37, issue.2, pp.111-114, 2001.
DOI : 10.1016/S0032-9592(01)00179-0

T. Rohwerder and W. Sand, Oxidation of Inorganic Sulfur Compounds in Acidophilic Prokaryotes, Engineering in Life Sciences, vol.417, issue.4, pp.301-309, 2007.
DOI : 10.1002/elsc.200720204

A. R. Lesley and J. G. Kuenen, The Genus Thiobacillus, Prokaryotes, vol.5, pp.812-827, 2006.

T. Rohwerder and W. Sand, Oxidation of Inorganic Sulfur Compounds in Acidophilic Prokaryotes, Engineering in Life Sciences, vol.417, issue.4, pp.301-309, 2007.
DOI : 10.1002/elsc.200720204

T. Beffa, C. Fischer, and M. Aragno, Growth and respiratory oxidation of reduced sulfur compounds by intact cells ofThiobacillus novellus (type strain) grown on thiosulfate, Current Microbiology, vol.258, issue.6, pp.323-326, 1993.
DOI : 10.1007/BF01576263

J. London, Thiobacillus intermedius nov.sp., Archiv f???r Mikrobiologie, vol.61, issue.4, pp.329-337, 1963.
DOI : 10.1007/BF00408489

A. Matin and S. C. Rittenberg, Utilization of glucose in heterotrophic media by Thiobacillus intermedia, Journal of Bacteriology, vol.104, pp.234-238, 1970.

C. L. Johnson and W. Vishniac, Growth inhibition in Thiobacillus neapolitanus by histidine, methionine, phenylalanine and threonine, Journal of Bacteriology, vol.104, pp.1145-1150, 1970.

C. Lors, M. H. Chehade, and D. Damidot, pH variations during growth of Acidithiobacillus thiooxidans in buffered media designed for an assay to evaluate concrete biodeterioration, International Biodeterioration & Biodegradation, vol.63, issue.7, pp.880-883, 2009.
DOI : 10.1016/j.ibiod.2009.06.012

D. P. Klein and A. M. Charles, Media effects on the growth ofThiobacillus novellus, Current Microbiology, vol.21, issue.2, pp.107-110, 1983.
DOI : 10.1007/BF01589371

H. Miokono, E. Lors, C. Lamberet, S. Damidot, and D. , Mise au point d'un test accéléré de biodétérioration de mortiers mettant en jeu une succession de bactéries sulfooxydantes, Matériaux et Techniques, pp.555-563, 2011.

S. Okabe, M. Odagiri, T. Ito, and H. Satoh, Succession of Sulfur-Oxidizing Bacteria in the Microbial Community on Corroding Concrete in Sewer Systems, Applied and Environmental Microbiology, vol.73, issue.3, pp.971-980, 2007.
DOI : 10.1128/AEM.02054-06

S. Lamberet, D. Guinot, E. Lempereur, J. Talley, and C. Alt, Field investigations of high performance calcium aluminate mortar for wastewater applications ? Calcium aluminate Cements, proceedings of the centenary Conference, 2008.

D. W. Smith and S. C. Rittenberg, On the sulfur-source requirement for growth of Thiobacillus intermedius, Archives of Microbiology, vol.104, issue.1, pp.65-71, 1974.
DOI : 10.1007/BF00446307

A. P. Wood, C. A. Woodall, and D. P. Kelly, Halothiobacillus neapolitanus strain OSWA isolated from ???The Old Sulphur Well??? at Harrogate (Yorkshire, England), Systematic and Applied Microbiology, vol.28, issue.8, pp.746-748, 2005.
DOI : 10.1016/j.syapm.2005.05.013

A. Prange, R. Chauvistre, H. Modrow, J. Hormes, H. G. Trüper et al., Quantitative speciation of sulfur in bacterial sulfur globules: X-ray absorption spectroscopy reveals at least three different species of sulfur, Microbiology, vol.148, issue.1, pp.267-276, 2002.
DOI : 10.1099/00221287-148-1-267

A. J. Janssen, G. Lettinga, and A. De-keizer, Removal of hydrogen sulphide from wastewater and waste gases by biological conversion to elemental sulphur, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.151, issue.1-2, pp.389-397, 1999.
DOI : 10.1016/S0927-7757(98)00507-X

G. E. Jones and R. L. Starkey, Surface-active substances produces by Thiobacillus thiooxidans, Journal of Bacteriology, vol.82, pp.788-789, 1961.

G. E. Jones and A. A. Benson, Microbial physiology and metabolism phosphatidyl glycerol in Thiobacillus thiooxidans, Journal of Bacteriology, vol.89, pp.260-261, 1965.

W. Vishniac and M. Santer, The Thiobacilli, Microbiology and Molecular Biology Reviews, vol.21, pp.195-213, 1957.

I. Suzuki, Oxidation of inorganic sulfur compounds: Chemical and enzymatic reactions, Canadian Journal of Microbiology, vol.45, issue.2, pp.97-105, 1999.
DOI : 10.1139/w98-223

H. G. Schlegel, General Microbiology, p.390, 1995.

J. M. Visser, G. C. Stefess, L. A. Robertson, and J. G. Kuenen, Thiobacillus sp. W5, the dominant autotroph oxidizing sulfide to sulfur in a reactor for aerobic treatment of sulfidic wastes, Antonie van Leeuwenhoek, vol.72, issue.2, pp.127-134, 1997.
DOI : 10.1023/A:1000252126252

R. Sommer, Yeast extract: production, properties and components, Food Australia, pp.181-183, 1998.

T. Nagadawithana, Savory Bioprocess Production of Flavour Fragnance and Color Ingredients, pp.135-168, 1994.

B. Mechalis and S. C. Rittenberg, Energy coupling in Desulfovibrio desulfuricans, Journal of Bacteriology, vol.80, pp.501-507, 1960.

M. H. Huang, Y. M. Li, and G. W. Gu, Chemical composition of organic matters in domestic wastewater, Desalination, vol.262, issue.1-3, pp.36-42, 2010.
DOI : 10.1016/j.desal.2010.05.037

A. T. Akarsubasi, O. Ince, B. Kirdar, N. A. Oz, D. Orhon et al., Effect of wastewater composition on archaeal population diversity, Water Research, vol.39, issue.8, pp.1576-1584, 2005.
DOI : 10.1016/j.watres.2004.12.041

P. Lavigne and M. , Revue bibliographique : Biodétérioration des ciments en réseaux d'assainissement, LISBP INSA-Toulouse, 2009.

J. C. Gottschal, S. De-vries, and J. G. Kuenen, Competition between the facultatively chemolithotrophic Thiobacillus A2, an obligately chemolithotrophic Thiobacillus and a heterotrophic spirillum for inorganic and organic substrates, Archives of Microbiology, vol.19, issue.3, pp.241-249, 1979.
DOI : 10.1007/BF00425062

J. C. Gottschal, H. Nanninga, and J. G. Kuenen, Growth of Thiobacillus A2 under Alternating Growth Conditions in the Chemostat, Microbiology, vol.126, issue.1, pp.85-96, 1981.
DOI : 10.1099/00221287-126-1-85

D. P. Kelly and A. P. Wood, Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov, INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, vol.50, issue.2, pp.511-516, 2000.
DOI : 10.1099/00207713-50-2-511

J. G. Kuenen and R. F. Beudeker, Microbiology of Thiobacilli and Other Sulphur-Oxidizing Autotrophs, Mixotrophs and Heterotrophs [and Discussion], Philosophical Transactions of the Royal Society B: Biological Sciences, vol.298, issue.1093, pp.473-497, 1982.
DOI : 10.1098/rstb.1982.0093

B. Espinosa, R. Letourneux, and S. Marcdargent, Acid attack of hydraulic cementbound materials: corrosion kinetics and neutralisation capacity, Proceeding of the 13 th International Corrosion Congress, pp.494-503, 1996.

V. Zivica and A. Bajza, Acidic attack of cement-based materials???a review Part 2. Factors of rate of acidic attack and protective measures, Construction and Building Materials, vol.16, issue.4, pp.215-222, 2002.
DOI : 10.1016/S0950-0618(02)00011-9

C. Shi and J. A. Stegemann, Acid corrosion resistance of different cementing materials, Cement and Concrete Research, vol.30, issue.5, pp.803-808, 2000.
DOI : 10.1016/S0008-8846(00)00234-9

C. F. Baes and R. E. Mesmer, Hydrolysis of cations, 1986.

N. De-belie, H. J. Verselder, B. De-blaere, D. Van-nieuwenburg, and R. Verschoore, Influence of the cement type on the resistance of concrete to feed acids, Cement and Concrete Research, vol.26, issue.11, pp.1717-1725, 1996.
DOI : 10.1016/S0008-8846(96)00155-X

J. M. Bergamaschi, M. Serrasqueiro, N. Segre, and I. Joekes, Acid attack to mortars: Influence of cement type and conditioning factors on the rate of reaction and mass loss, 13 th International Congress on the Chemistry of Cement, pp.3-8, 2011.

O. Cizer, J. Elsen, D. Feys, G. Heirman, L. Vandewalle et al., Microstructural changes in self-compacting concrete by sulphuric acid attack, 13 th International Congress on the Chemistry of Cement, pp.3-8, 2011.

V. Zivica and A. Bajza, Acidic attack of cement based materials ??? a review., Construction and Building Materials, vol.15, issue.8, pp.331-340, 2001.
DOI : 10.1016/S0950-0618(01)00012-5

A. A. Almusallam, Effect of degree of corrosion on the properties of reinforcing steel bars, Construction and Building Materials, vol.15, issue.8, pp.361-368, 2001.
DOI : 10.1016/S0950-0618(01)00009-5

T. Ishida and K. Maekawa, Modelling of pH profile in pore water based on mass transport and chemical equilibrium theory. Translation from Proceedings of JSCE, 2000.

B. Johannesson and P. Utgenannt, Microstructural changes caused by carbonation of cement mortar, Cement and Concrete Research, vol.31, issue.6, pp.925-931, 2001.
DOI : 10.1016/S0008-8846(01)00498-7

Q. Y. Chen, C. D. Hills, M. H. Yuan, H. H. Liu, and M. Tyrer, Characterisation of carbonated tricalcium silicate and its sorption capacity for heavy metals: A micron-scale composite adsorbent of active silicate gel and calcite, Journal of Hazardous Materials, vol.53, pp.775-783, 2008.

A. Seidel, Y. Zimmels, and R. Armon, Mechanism of bioleaching of coal fly ash by Thiobacillus thiooxidans, Chemical Engineering Journal, vol.83, issue.2, pp.123-130, 2001.
DOI : 10.1016/S1385-8947(00)00256-4

D. P. Kelly and A. P. Wood, Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov, INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, vol.50, issue.2, pp.511-516, 2000.
DOI : 10.1099/00207713-50-2-511

L. A. Robertson and J. G. Kuenen, The Genus Thiobacillus, Prokaryotes, vol.5, pp.812-827, 2006.
DOI : 10.1007/0-387-30745-1_37

S. Roux, F. Feugeas, and A. Cornet, Alt??ration des p??tes de ciment par colonisation bact??rienne, Matériaux et Techniques, Hors série 94, pp.495-506, 2006.
DOI : 10.1051/mattech:2007024

M. Bach, F. Feugeas, F. Farcas, I. Dupont, E. Marie-victoire et al., Influence bacterienne sur le comportement et l'efficacité d'un inhibiteur de corrosion organominéral pour des éléments métalliques en fer pur, Matériaux et Techniques, Hors série 93, pp.99-109, 2005.

S. Ehrich, L. Helard, R. Letourneux, J. Willocq, A. Member et al., Biogenic and Chemical Sulfuric Acid Corrosion of Mortars, Journal of Materials in Civil Engineering, vol.11, issue.4, pp.340-344, 1999.
DOI : 10.1061/(ASCE)0899-1561(1999)11:4(340)

W. Sand, Importance of hydrogen sulfide, thiosulfate, and methylmercaptan for growth of thiobacilli during simulation of concrete corrosion, Applied and Environmental Microbiology, vol.53, pp.1645-1648, 1987.

G. D. Gutiérrez-padilla, A. Bielefeldt, S. Ovtchinnikov, M. Hernandez, and J. Silverstein, Biogenic sulfuric acid attack on different types of commercially produced concrete sewer pipes, Cement and Concrete Research, vol.40, issue.2, pp.293-301, 2009.
DOI : 10.1016/j.cemconres.2009.10.002

S. Ehrich, Untersuchungen zur biogenen Schwefelsäurekorrosion von zementgebundenen Baustoffen, 1998.

A. P. Joseph, J. Keller, H. Bustamante, and P. L. Bond, Surface neutralization and H2S oxidation at early stages of sewer corrosion: Influence of temperature, relative humidity and H2S concentration, Water Research, vol.46, issue.13, pp.4235-4245, 2012.
DOI : 10.1016/j.watres.2012.05.011

R. L. Islander, J. S. Devinny, F. Mansfeld, A. Postyn, and H. Shih, Microbial Ecology of Crown Corrosion in Sewers, Journal of Environmental Engineering, vol.117, issue.6, pp.751-770, 1991.
DOI : 10.1061/(ASCE)0733-9372(1991)117:6(751)

D. P. Kelly, A. Wood, R. David, D. J. Boone, R. W. Brenner et al., In : Bergey's Manual of Systematic Bacteriology, 2000.

C. Lors, M. Hajj-chehade, and D. Damidot, pH variations during growth of Acidithiobacillus thiooxidans in buffered media designed for an assay to evaluate concrete biodeterioration, International Biodeterioration & Biodegradation, vol.63, issue.7, pp.880-883, 2009.
DOI : 10.1016/j.ibiod.2009.06.012

H. Miokono, E. Lors, C. Lamberet, S. Damidot, and D. , Mise au point d'un test accéléré de biodétérioration de mortiers mettant en jeu une succession de bactéries sulfooxydantes, Matériaux et Techniques, pp.555-563, 2011.

P. D. Wilmot, K. Cadee, J. J. Katinic, and B. V. Kavanagh, Kinetics of sulfide oxidation by dissolved oxygen. Water Pollution Control Federation, pp.1264-1270, 1988.

A. Kotronarou and M. R. Hoffmann, Catalytic autoxidation of hydrogen sulfide in wastewater, Environmental Science & Technology, vol.25, issue.6, pp.1153-1160, 1991.
DOI : 10.1021/es00018a021

G. Thomas and M. J. Goringe, Transmission Electron Microscopy of Materials, 1979.

G. E. Jones and R. L. Starkey, Surface-active substances produces by Thiobacillus thiooxidans, Journal of Bacteriology, vol.82, pp.788-789, 1961.

G. E. Jones and A. A. Benson, Microbial physiology and metabolism phosphatidyl glycerol in Thiobacillus thiooxidans : Béton prêt à l'emploi, Journal of Bacteriology ISO, vol.89, issue.9227, pp.260-261, 1965.

C. Delbes, R. Moletta, and J. J. Godon, Monitoring of activity dynamics of an anaerobic digester bacterial community using 16S rRNA polymerase chain reaction-single-strand conformation polymorphism analysis, Environmental Microbiology, vol.2, issue.5, pp.506-515, 2000.
DOI : 10.1046/j.1462-2920.2000.00132.x

C. Delbes, R. Moletta, and J. J. Godon, Bacterial and archaeal 16S rDNA and 16S rRNA dynamics during an acetate crisis in an anaerobic digestor ecosystem, FEMS Microbiology Ecology, vol.35, issue.1, pp.19-26, 2001.
DOI : 10.1016/S0168-6496(00)00107-0