
HAL Id: tel-00780232
https://theses.hal.science/tel-00780232

Submitted on 23 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

TIREX : une représentation textuelle intermédiaire pour
un environnement d’exécution virtuel, échanger des

informations du compilateur et d’analyse du programme
Artur Pietrek

To cite this version:
Artur Pietrek. TIREX : une représentation textuelle intermédiaire pour un environnement d’exécution
virtuel, échanger des informations du compilateur et d’analyse du programme. Autre [cs.OH]. Uni-
versité de Grenoble, 2012. Français. �NNT : 2012GRENM046�. �tel-00780232�

https://theses.hal.science/tel-00780232
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Informatique

Arrêté ministérial : 7 août 2006

Présentée par

Artur Pietrek

Thèse dirigée par Jean-Claude Fernandez
et codirigée par Benoît Dupont de Dinechin

préparée au sein VERIMAG
et de l’Ecole Doctorale Mathématiques, Sciences et Technologies de
l’Information, Informatique

TIREX: a textual target-level
intermediate representation
for virtual execution environment, compiler
information exchange and program analysis

Thèse soutenue publiquement le 2 octobre 2012,

devant le jury composé de :

Mr. Philippe Clauss
Professeur, Université de Strasbourg, Rapporteur

Mr. Albert Cohen
Directeur de Recherche, INRIA, Rapporteur

Mr. Benoît Dupont de Dinechin
Directeur du Développement Logiciel, Kalray, Co-Directeur de thèse

Mr. Jean-Claude Fernandez
Professeur, Université Joseph Fourier, Directeur de thèse

Mr. Jean-Francois Méhaut
Professeur, Université Joseph Fourier, Président

Mr. Fabrice Rastello
Chargé de recherche, INRIA, Examinateur

2

Acknowledgements

Foremost, I would like to express my gratitude to my both advisors: Jean-Claude
Fernandez from Verimag, and Benoît Dupont de Dinechin from Kalray; first for the
opportunity to work on the subject, and for their patience and knowledge, as well as
motivation and encouragement in the tough moments.

I would also like to thank Philippe Clauss, Albert Cohen, Jean-François Méhaut
and Fabrice Rastello, the members of my thesis committee, for their interest in my
work and insightful comments. Special thanks go to Albert Cohen for his attempt to
change my focus on engineering problems into a deeper, research view; and to Fabrice
Rastello for interesting discussions on loops, data dependencies and traces.

Also, I thank to all my colleagues from Kalray and my fellow labmates from Ver-
imag, for support during that three and a half years, and helpful comments. Especially
to Florent Bouchez and Marc Poulhiès for their help.

I also have to mention my friends who helped me in many different things and
spent their time with me on many activities: Vasso, Paris, Jean, Eduardo, Kasia, Piciu,
Asia, Gosia, Karo, Justyna, Maciek, Radek, Michał, and others. Thank you! Especially
I would like to thank to my parents for encouragement and to Oyuna for supporting
me.

3

4

Abstract

Some environments require several compilers, for instance one for the operating
system, supporting the full C/C++ norm, and one for the applications, potentially
supporting less but able to derive more performance. Maintaining different compilers
for a target requires considerable effort, thus it is easier to implement and maintain
target-dependent optimizations in a single, external tool. This requires a way of con-
necting these compilers with the target-dependent optimizer, preferably passing along
some internal compiler data structures that would be time-consuming, difficult or even
impossible to reconstruct from assembly language for instance.

In this thesis we introduce Tirex, a Textual Intermediate Representation for EX-
changing target-level information between compilers, optimizers an different tools in
the compilation toolchain. Our intermediate representation contains an instruction
stream of the target processor, but still keeps the explicit program structure and sup-
ports the SSA form(Static Single Assignment). It is easily extensible and highly flexible,
which allows any data to be passed for the purpose of the optimizer.

We build Tirex by extending the existing Minimalist Intermediate Representation
(MinIR), itself expressed as a YAML textual encoding of compiler structures. Our
extensions in Tirex include: lowering the representation to a target level, conserving
the program data stream, adding loop scoped information and data dependencies.
Tirex is currently produced by the Open64 and the LLVM compilers, with a GCC
producer under work. It is consumed by the Linear Assembly Optimizer (LAO), a
specialized, target-specific, code optimizer.

We show that Tirex is versatile and can be used in a variety of different applica-
tions, such as a virtual execution environment (VEE), and provides strong basis for
a program analysis framework. As part of the VEE, we present an interpreter for a
Static Single Assignment (SSA) form and a just-in-time (JIT) compiler. We show how
interpreting a target-level representation eliminates most of the complexities of mixed-
mode execution. We also explore the issues related to efficiently interpreting a SSA
form program representation.

5

Résumé

Certains environnements ont besoin de plusieurs compilateurs, par exemple un pour
le système d’exploitation, supportant la norme C/C++ complète, et l’autre pour les
applications, qui supporte éventuellement un sous-ensemble de la norme, mais ca-
pable de fournir plus de performance. Le maintien de plusieurs compilateurs pour
une plateforme cible représente un effort considérable. Il est donc plus facile d’implé-
menter et de maintenir un seul outil responsable des optimisations particulières au
processeur ciblé. Il nous faut alors un moyen de relier ces compilateurs à l’optimiseur,
de préférence, en gardant au passage certaines structures de données internes aux
compilateurs qui, soit prendraient du temps, soit seraient impossible à reconstruire à
partir du code assembleur par exemple.

Dans cette thèse, nous introduisons Tirex, une représentation textuelle intermé-
diaire pour échanger des informations de bas niveau, déjà dépendantes de la cible,
entre les compilateurs, les optimiseurs et les autres outils de la chaîne de compilation.
Notre représentation contient un flot d’instructions du processeur cible, mais garde
également la structure explicite du programme et supporte la forme SSA (Static Single

Assignment). Elle est facilement extensible et très flexible, ce qui permet de transmettre
toute donnée jugée importante à l’optimiseur.

Nous construisons Tirex par extension de MinIR, une représentation intermédiaire
elle-même basée sur un encodage YAML des structures du compilateur. Nos exten-
sions de Tirex comprennent : l’abaissement de la représentation au niveau du pro-
cesseur cible, la conservation du flot de données du programme, ainsi que l’ajout
d’informations sur les structures de boucles et les dépendances de données.

Nous montrons que Tirex est polyvalent et peut être utilisé dans une variété d’ap-
plications différentes, comme par exemple un environnement d’exécution virtuel (VEE),
et fournit une base forte pour un environnement d’analyse du programme. Dans le
cadre d’un VEE, nous présentons un interprèteur de la forme SSA et un compilateur
just-in-time (JIT). Nous montrons comment l’interprétation d’une représentation au ni-
veau du processeur cible élimine la plupart des problèmes liés à l’exécution en mode
mixte. Nous explorons également les questions liées à l’interprétation efficace d’une
représentation de programme sous la forme SSA.

6

Contents

Contents 7

1 Introduction 3

1.1 Program compilation . 3
1.1.1 Just-In-Time . 5
1.1.2 Dynamic optimization . 8

1.2 A third approach . 9
1.3 Contributions . 10
1.4 Outline of this thesis . 11

2 Background 13

2.1 Program and control-flow graph . 13
2.1.1 Program structure . 14
2.1.2 Control-flow graph and its dominator tree 15

2.2 Intermediate representation . 16
2.3 Static Single Assignment form . 16
2.4 On data, data dependence and loop nesting forest 18

2.4.1 Data dependence definition and types 18
2.4.1.1 Data dependence graph 19

2.4.2 On loops and loop nesting forests 19
2.5 Summary . 21

3 Prior Work 23

3.1 Interpretation of the SSA form . 23
3.2 Compilation Just-In-Time . 24

3.2.1 The beginning . 24
3.2.2 Java . 25
3.2.3 Common Language Infrastructure 26
3.2.4 Staged dynamic compilation . 27

3.3 Static Binary optimizers . 27
3.4 Dynamic Optimizers and Binary Translators 28
3.5 Binary instrumentation . 29

7

8 CONTENTS

3.5.1 Static binary instrumentation . 29
3.5.2 Dynamic binary instrumentation 29
3.5.3 Hybrid approach . 30

3.6 Code cache management . 30
3.7 Summary . 31

4 C to CIL compilation 33

4.1 Common Intermediate Language . 34
4.2 The Community . 36

4.2.1 LCC.NET . 36
4.2.2 The DotGNU Portable.NET and ILDJIT Projects 37
4.2.3 The GCC4NET . 37
4.2.4 The Mono Project . 38
4.2.5 The LLVM-MSIL code generator 38

4.3 C to CIL compilation: study of issues . 38
4.3.1 Example . 39

4.4 The GCC-CIL Compiler . 42
4.4.1 LLVM versus GCC4NET . 42
4.4.2 The Compiler . 42
4.4.3 Correctness . 44
4.4.4 Improvements . 45

4.5 Results . 46
4.6 Summary and Conclusions . 48

5 The Framework 49

5.1 Machine Description System . 50
5.1.1 SSA Form on Target-Level Code 51

5.1.1.1 MDS Support for SSA Form 51
5.1.1.2 Operand Constraints in SSA Form 53
5.1.1.3 Predicated Instructions in SSA Form 53

5.2 Low Level Virtual Machine . 54
5.2.1 LLVM in our toolchain . 54
5.2.2 The Tirex Code Generator . 55
5.2.3 Current state and limitations . 56

5.3 Linear Assembly Optimizer . 56
5.3.1 Program processing . 57

5.4 Summary . 58

6 Tirex 59

6.1 The MinIR project . 61
6.2 Consistent architectural description . 62
6.3 Extensions to MinIR . 64

CONTENTS 1

6.3.1 Code Stream Representation . 67
6.3.2 Sections . 68
6.3.3 Data Stream Representation . 70

6.4 Loop Scoped Information . 71
6.5 The use cases . 74
6.6 Summary . 75

7 The Tirex Runtime 77

7.1 Overview . 79
7.2 Interpreter . 81

7.2.1 Interpreting Instructions . 82
7.2.2 Calling Native Code . 82
7.2.3 Interpreting the SSA Form . 84

7.3 The JIT Compiler . 86
7.3.1 Code generation . 87
7.3.2 Code cache . 88

7.4 Summary . 90

8 Conclusion 91

8.1 Future work . 91
8.1.1 Intermediate representation . 91
8.1.2 The runtime . 92

8.2 Perspectives . 93
8.2.1 Execution traces and program analysis 93
8.2.2 WCET . 95
8.2.3 Native software simulation . 96

8.3 Summary . 97

List of Figures 101

Listings 103

Bibliography 105

2 CONTENTS

Chapter 1

Introduction

1.1 Program compilation

Software development evolved drastically since first computers. Starting from pro-
grams written directly in the machine binary code, through assembly languages that
made the process easier, up to many different kinds of high-level languages with dif-
ferent levels of abstraction. Depending on the needs, programmer can choose the
language that makes it easier and less time-consuming to express the algorithms, pro-
vides portability among several different architectures, and allows to reuse some parts
of the code, as well as provides easier ways of debugging.

Programs written in high-level languages depend on an other special program, a
compiler, to transform them into binary code that can be executed on a given machine.
The most important task of the compiler is to preserve the semantics of a source
program in the resulting code. However, the higher abstraction of the source language,
the more complicated it is for the compiler to generate optimal code, that is, code that
would have performance similar to code written directly in the assembly language by
an experienced programmer.

Of course, modern compilers deal with optimization problems quite well, assum-
ing they do not have constraint resources in terms of time and memory. This is usually
the case when a whole program is compiled into a given processor binary code prior
to execution. Figure 1.1 shows a simplified compilation model, which includes in the

Figure 1.1: Static compilation

3

4 CHAPTER 1. INTRODUCTION

Figure 1.2: Dynamic compilation

compilation box phases such as assembling1 and linking2. In such a case it does not
matter how long the process will take, with, obviously, some reasonable limits, as
it would be difficult to develop an application when a compiler processes one com-
pilation unit for several hours or days. This compilation model is known as static

compilation, where a complete, directly executable, native code is generated statically
before execution of the program.

A static compiler, can produce fairly well optimized code, however, it does not
have the knowledge about program execution like given parameters, size of processed
data, or even the fact that not the whole program is run but rather some specific
parts of it, for instance, not all conditional branches might be taken. The compiler
can only speculate on the program execution behavior and misses some optimization
opportunities.

Opposite to static compilation, which is terminated prior to program execution,
the dynamic compilation model as shown on Figure 1.2 employs a virtual execution

environment (VEE) or virtual machine3 (VM) where the program is in some kind of in-
termediate form (generated statically from a high-level language) and is loaded and
executed either by interpretation or after being compiled to native code on demand,
prior to execution (hence the name dynamic compilation). Such a model adds to pro-
gram execution time, thus the VEE should spend as little time as possible managing
the interpretation and the compilation processes. Also, the dynamic compiler should
perform only transformations that would not exceed the time gained by applying these
transformations in the first place.

The dynamic compilation techniques have been known for several decades. Al-
though at the beginning perceived too expensive in terms of time and resources to be
used as an alternative to static compilation, they evolved in the last two decades be-

1The process of binary encoding the assembler language, resulting with so called object files.
2Combining several object files into single executable.
3A Virtual Execution Environment or Virtual Machine is a software that implements a machine capable

of executing a program or a whole operating system. It hides the physical machine or/and the host
operating system from the executed program.

1.1. PROGRAM COMPILATION 5

coming more and more popular with the increasing performance and memory space of
modern machines. They were also popularized due to the widespread of Java and .Net
environments. Nowadays they could be found even in embedded, resource-constraint
devices such as mobile phones and other portable devices.

These techniques, even though aiming lots of different goals, have one thing in
common, that is the ability to inspect and alter a program during its execution and
make use of obtained information. This could be useful not only for gaining addi-
tional performance, but also for detecting and preventing faulty or malicious program
behaviors.

Among many different dynamic compilation systems, two main branches can be
distinguished: Just-In-Time (JIT) and dynamic optimization.

1.1.1 Just-In-Time

Just-In-Time divides the compilation process into two stages. First the program writ-
ten in a high-level language is translated into a target-independent intermediate rep-
resentation with the instruction set and the ABI4 of a given Virtual Machine. Then,
the intermediate representation can be partially interpreted, as well as compiled to
target-processor code during execution, or in other words compiled just-in-time for
execution.

The main goal of this approach is to provide a way to abstract any program from
the underlying operating system and processor. A program can be written and stat-
ically compiled only once into a redistributable package, without any knowledge or
assumptions about the host machine, targeting a Virtual Machine instead.

JIT also aims to improve performance of programs versus their statically compiled
versions. For instance, a static compiler has to assume that the smallest subset of in-
structions of a given architecture can be used, otherwise a program could be executed
only on the specific versions of a processor that provide the particular functionality. A
JIT compiler, in contrary, can generate code that use all the capabilities of the version
of the processor that the Virtual Machine runs on.

A simplified JIT structure is depicted on 1.3. Usually the execution starts in in-
terpretation mode. Opposite to compilation, and although less efficient than running
native code, this process does not introduce overhead. During interpretation, program
execution is observed and frequently executed fragments of the given program are
identified. Then, instead of translating the whole program to the native instruction
stream, the compilation and optimization processes are limited only to these “hot”
fragments.

4Application Binary Interface – describes the interface between functions and a program with the
operating system. It defines details such as data types with theirs sizes and alignments, the calling
conventions (how the arguments are passed and results returned), stack-frame organization and register
usage.

6 CHAPTER 1. INTRODUCTION

Figure 1.3: Simplified JIT structure

As an alternative, some JIT environments do not implement an interpreter at all,
but rather employ two or three different compilation schemes, such as:

• fast non-optimizing compiler that produces instrumented code,

• non-optimizing compiler,

• optimizing compiler.

JIT can also benefit from the knowledge about the program execution gathered
during interpretation, e.g., specializing the code to favor the paths of a program that
are taken more often, or by observing that some variables in fact have constant or pre-
dictable values it can benefit from value-based optimizations. All these improvements
are limited just to most frequently executed fragments, while the rest of the program,
depending on the JIT constructions, is interpreted or compiled on demand with a fast,
non-optimizing compiler. The hot fragments used by JIT environment as compilation
and optimization units are either hot functions or hot traces.

Hot Functions In classical JIT a unit of compilation and optimization is a function.
Each time a call to a function occurs a counter associated to it is incremented. When
a threshold is exceeded, a function is considered to be hot and its (optimized) compi-
lation is triggered. From that moment every call to this function results in calling the
native code from the code cache instead of interpreting.

Operating on whole functions makes the management of compiled code relatively
easy (its recompilation with more optimizations or eviction). However, obviously some
paths within a function could be never or not frequently taken, thus the native code
would take more space in the code cache than it is really required.

1.1. PROGRAM COMPILATION 7

Hot Traces Some recent JIT compilers operate not on functions, but rather on traces
of instructions. These hot traces, or hot paths, are usually gathered with a resolution
of basic blocks during the interpretation of a program and correspond to the path
taken in the control-flow graph. The scope of such a trace is not limited to a function
boundary, but can capture several function calls or even recursive calls to the same
function.

The difficulty of such approach is to handle the non-frequently taken, conditional
paths which could be not captured into the trace. If the result of some conditional
branch is different than expected, there is a need for special stub that will exit from
the trace and execute the correct code. Also, some parts of different traces can overlap
when capturing a recursive call, leading to code duplication in the code cache. How-
ever, the code locality in the code cache is much better in comparison to the function
compilation approach.

Mixed-mode execution in JIT Although there exists JIT environments that do not
rely on interpretation but rather on a few different JIT compilers instead (e.g., fast
non-optimizing and slower optimizing), the process is still employed as a cheap and
easy way for gathering profile, identification of hot functions or hot traces, as well as
some other information. It is much easier to add profiling mechanisms along with
interpretation routines than to dynamically insert special code inside a compiled pro-
gram.

This, however, results in mixed-mode execution, a situation where both interpreted
and native code are executed together. The difficulty lies in the differences between
the Application Binary Interface (ABI) of the Virtual Machine and the target platform.
These differences, especially endianess and calling conventions complicates the process
of calling a native function from within the interpreted code and getting back the
result. The same situation occurs when the native code calls a function that is not
yet compiled, which results in falling back to the interpreter. These calls have to be
handled through a special interface that ensures the arguments, results and the global
data are compatible on both sides. This becomes more complicated when using non
basic data types but complex structures and when accessing global data.

A few words on JIT compilation Before starting optimizing the code, a JIT compiler
has to perform a lot of tasks, including among others:

• interpretation,

• ABI lowering,

• instruction selection,

• data layout and stack frames formation,

8 CHAPTER 1. INTRODUCTION

Figure 1.4: Simplified dynamic optimizer structure

• register allocation,

• instruction scheduling.

Most of these tasks are the result of target-independent intermediate representation
and do not profit much from information gained at run-time. Thus even before starting
optimizations, a JIT compiler introduces overhead, limiting the time that can be spent
on optimizations to gain more performance.

1.1.2 Dynamic optimization

Dynamic optimization focuses mainly on improving performance of existing target-
dependent binaries by exploiting run-time information that was not previously avail-
able for the static compiler prior to program execution. Figure 1.4 shows the structure
of a simplified dynamic optimizer. First, the input native instruction stream is disas-
sembled, then the program execution is observed by interpreting that disassembled
instruction stream. When a branch occurs, the branch address is looked up in the
trace cache. If found, the trace is executed from the cache, otherwise interpretation is
continued until a trace of instructions for code generation and optimization is selected.

Hot Traces Similarly to trace JIT, only the hot traces are subject to optimization and
specialization. A trace of blocks of instructions is gathered during interpretation, and
is not limited to function boundaries, but can cover several function calls (including
recursive calls) and can contain the same portions of code as other traces.

1.2. A THIRD APPROACH 9

Limitations The target-dependent binary does not contain as much information as
higher-level intermediate representation. For instance, there is no explicit program
structure inside a binary. Because of that, during interpretation dynamic optimizer has
to rebuild, often limited, program view and identify functions, basic blocks and loops.
Identification of variables can be more complicated and sometimes even impossible,
as it requires tracking memory accesses and operations on registers.

Mixed-mode execution in dynamic optimizer In contrast to JIT, dynamic optimizers
interpret a native instruction stream of a given machine. Thanks to that there is only
one ABI, in particular the endianess and calling conventions used for interpretation and
compiled code are the same. This drastically simplifies the interoperability between
interpreted and directly executed native code as there is no need to convert parameters
and global data.

A few words on dynamic optimizers Before starting optimizing the code, dynamic
optimizers also have to perform some time consuming tasks:

• disassembly,

• interpretation,

• instruction scheduling,

• reassembly.

The task of rebuilding the program structure, including identification of variables
needed to optimize the code, is time consuming, difficult and sometimes even impossi-
ble. This limits both the time spent for optimizing the code and possible optimizations.

1.2 A third approach

The two approaches presented above (JIT and dynamic optimizers) have one goal
in common: gain more performance. In many ways being similar to each other, by
using interpretation, the same code cache management concepts and optimization
techniques, they approach the problem from opposite directions: high-level and target-
level program representation, resulting in different problems they have to struggle
with.

A closer look on the two aforementioned dynamic environments leads us to a
conclusion that both of them have, among others, one important need in common:
information not explicitly provided with the input program representation. This need
requires considerable effort to construct or retrieve that information, or even guess
it from the execution context, and both of these environments spend the resources
for this task at the expense of the time that could be used for their main purposes.

10 CHAPTER 1. INTRODUCTION

Interestingly, both of them rely on the static compilation phase, and the static compiler
already has to construct the same information for its internal use, just to discard it
before even emitting the IR or target binary.

The problem of the need for reconstruction of information (i.e., program structure,
loop information, data dependencies, Static Single Assignment form and others which
we discuss later) that has been already created but discarded after its use (which at
some point can lead to an irretrievable loss) is not limited only to the virtual execution
environments. As we will show later in this work, it occurs also in complex static
compilation toolchains, where the compilation process can be divided into several
phases implemented in different tools, as well as for the purpose of static and dynamic
program analysis that have to be performed in the context of the underlying machine,
thus on a very-low level representation.

Following these observations, we raise and provide answers for the question whether
it is useful to pass previously mentioned information through an intermediate repre-
sentation as an input for a virtual execution environment which combines the advan-
tages of JIT and dynamic optimizers and tries to avoid their problems. Finally, we ask
whether additional information would be advantageous in complex toolchains and as
a base for low-level program analysis frameworks.

1.3 Contributions

The CIL compilation toolchain Motivated by the opportunities given by the JIT com-
pilation, that is gaining performance while keeping the redistributable form of the
program target-independent, we have studied the possibilities of compilation of the C
language into the Common Intermediate Language (CIL), followed by its JIT compila-
tion and execution using the existing open-source tools. This led us to the investigation
of the CIL backend in the Low Level Virtual Machine (LLVM) compilation framework
and identification of the issues related to the execution of the generated CIL code on
the open-source Mono platform. We have completed the backend and corrected the
issues found in the backend as well as provided a working set of tools allowing to
compile programs (with the focus on C language) and execute them correctly on the
Mono platform, with the intention to use that code in our own Virtual Machine.

We have noticed, however, that the JIT compiler was spending time and resources
on compilation phases that do not benefit much from information gained during ex-
ecution of a program. Moreover, the target-independent intermediate representation
(IR) was making the interoperability between interpretation of the CIL code and exe-
cution of native code complicated, especially when operating on a complex, non-basic
data structures. Also, the fact that the frontend C language allows for direct memory
access and pointer arithmetic, it is difficult and in can be impossible to guarantee the
target-independence of the IR.

This execution model does not leave much time for the compiler to perform opti-

1.4. OUTLINE OF THIS THESIS 11

mizations and limits the possibilities only to optimizations that will not consume too
much time and resources, otherwise they would slow down the execution instead of
improving performance.

A universal IR The need for connecting several tools in a single compilation toolchain
lead us to development of Tirex, a hybrid, linear SSA intermediate representation with
instructions very close to the underlying processors, an explicit program description
and additional information, including loop nesting forest and memory dependencies.
Its purpose is also to provide a way for writing tests for optimizer passes, as well as
a strong foundation of program analysis framework and virtual execution environ-
ments.

Virtual Execution Environment The experience with JIT and the study of dynamic
optimization pushed us to explore a new path of dynamic code manipulation, placed
between the two aforementioned. We have decided to give up the portability in favor
of gaining more time for optimizations. We have come to a clear realization that Tirex
can be perfectly suitable for this task.

As interpretation is a vital part of any virtual execution environment, which pro-
vides easy way of gathering program execution traces, in this thesis we present study
on SSA interpretation of Tirex. Although interpreting SSA form is challenging, we
are showing that it is feasible. Also, the interoperability between interpreted and na-
tive code (mixed-mode execution) proved to be much more simplified with Tirex in
comparison with classical JIT approach.

We were able to generate native code from the Tirex IR dynamically, showing
that this process is simplified with regard to classical JIT, and again confirming the
ease of interoperability between interpreted and native code, leaving more time for
optimizations.

1.4 Outline of this thesis

In Chapter 1 we have presented a brief introduction to the world of dynamic compi-
lation and optimization, as well as the problems related to it. Additionally, Chapter 1
summarizes the contributions of this thesis. Next, in Chapter 2 we introduce defini-
tions and descriptions of basic concepts and terms used in this work. After that in
Chapter 3 we discuss existing dynamic execution and optimization environments, as
well as other concepts that made the foundations of our work. Chapter 4 shows issues
related with C to CIL compilation and our contributions in this matter. After that in
Chapter 5 we describe the framework used for the purpose of this thesis. In Chapter 6
we introduce and describe in details Tirex intermediate representation following by its
virtual execution environment consisting of a interpreter SSA and JIT compiler, both

12 CHAPTER 1. INTRODUCTION

described in Chapter 7. Finally we conclude our work and discuss perspectives in
Chapter 8.

Chapter 2

Background

In this chapter we define the terminology for the next chapters. First, we define the
vocabulary related to the program itself and its structure from the compilers point of
view and provide overview of intermediate representations. Then, we introduce the
Static Single Assignment form. After that, we describe loop forests and their relation
with data dependencies.

2.1 Program and control-flow graph

A computer program is a sequence of instructions that executed would perform the
task intended by a programmer. Or more formally, a program is a set of instructions
connected by control-flow edges. An edge from instruction s to instruction d means
that instruction d can be executed after s. The control-flow1 refers to the order in
which the instructions are executed, and can be represented by a graph, described in
Section 2.1.2.

An instruction is a smallest, single operation that possibly uses some variables and
possibly defines other variables. It can, but does not have to, take some input values,
and also can return a result of some computation. Examples of some instructions are
shown on the Figure 2.1.

Instruction Definitions Uses
add $r0, $r1, 123 $r0 $r1, 123

goto BB4 ∅ BB4

nop ∅ ∅

Figure 2.1: Instructions with the defined values and used parameters.

We also consider a group of instructions that will be executed in parallel, and call it

1Or flow of control.

13

14 CHAPTER 2. BACKGROUND

a bundle. Bundles are specific for VLIW processors that have the capability of execut-
ing multiple instructions in the same clock cycle, depending on the resources available
(logical units). For instance, a load from memory and some arithmetic operations on
registers can be performed simultaneously. Of course, the exact number of instructions
in one bundle is constrained by architecture of the processor, availability of resources
and mutual dependencies between the instructions. All the instructions in a bundle
are encoded in a binary form together resulting in a very long instruction word, hence
the name VLIW.

2.1.1 Program structure

For the convenience of the programmer, and for the purpose of the compiler as well,
a program can be divided into more units than simple instructions (or bundles of in-
structions). What we call a structured model of programming was initiated in 1960s
by work of Bohm and Jacopini, and Edsger Dijkstra. As a contrast to an older, pre-
viously used model, where some condition test and goto instructions were used, this
one introduced the use of procedures2, blocks of instructions, and loops. Although this
model can slightly differ within different programming languages, internal low-level
representation (independent from the used programming language) from the compiler
point of view is structured in a similar fashion. This structure evolved during the years
to have granularity suitable for different kind of optimizations.

In this thesis we will refer to this structure hierarchically: a program contains
procedures build of basic blocks made of instructions (or bundles). Also, some basic
blocks within a procedure can form a loop (we talk about loops in Section 2.4.2).

A basic block is a maximal sequence of instructions in a given program, in which
flow of control enters at the beginning and leaves at the end without branch or call in
the middle. In other words, a basic block is a portion of code that would be executed
sequentially from its beginning (entry point) to the end (exit point). No entering or
leaving path is allowed in the middle. Usually the last instruction in a basic block
is a branch, call or return instruction, however it is not mandatory – in that case the
control flow falls to the following basic block in the program.

Grouping the instructions that are executed sequentially without any control change
in between allows for using blocks of instructions as optimization unit, e.g., in basic-

block reordering which is used to reduce branch cost and the number of mispredicted
branches.

A procedure is a way of abstraction and encapsulation of a part of a program that
usually performs a specific task. In many environments it serves as a unit for separate
compilation. At the same time it is also a unit of some optimizations that could not

2Also called functions, or subroutines.

2.1. PROGRAM AND CONTROL-FLOW GRAPH 15

be performed more locally (i.e., cannot be done on a single basic block). In more
formal way, a procedure is a portion of code build from one or more basic blocks, that
possibly takes some arguments and possibly returns a result.

2.1.2 Control-flow graph and its dominator tree

A procedure can be represented by the control-flow graph (CFG), a directed graph
G = (N, E, r, t), with set of nodes N, set of edges E, the entry node r with no incoming
edge, and the exit node t with no outgoing edge.

The CFG models the flow of control in that procedure and provides a graphical rep-
resentation of all possible run-time paths. Usually the nodes represent basic blocks. In
static analysis, the CFG is a basic tool used in several phases of compilation, including
instruction scheduling and register allocation.

procedure foo

BB1: if Cond1 goto BB3

BB2: if Cond2 goto BB5

BB3: if Cond3 goto BB2

BB4: goto BB3

BB5: if Cond4 goto BB5

BB6: if Cond5 goto BB1

BB7: end foo

BB1

BB2 BB3

BB4BB5

BB6

BB7

BB1

BB2

BB3

BB4

BB5

BB6

BB7

Figure 2.2: Example procedure, its control-flow graph and a dominator tree.

Figure 2.2 shows an example procedure, its CFG and a dominator tree (defined
below) for that CFG. The basic block BB1 is the entry node, and BB7 – the exit node.

Dominance property and the dominator tree A node a in a CFG dominates a node
b, denoted a dom b, if every path from the entry node r to b contains a. If a dom b and
a 6= b then a strictly dominates b, or a sdom b. The node a is an immediate dominator

of the node b, a idom b, if a sdom b and there is no node c such that a sdom c and c

sdom b.
A dominator tree rooted at r is a directed graph whose nodes are the nodes of the

given CFG and where each node other than r is pointed to by its immediate dominator.

16 CHAPTER 2. BACKGROUND

2.2 Intermediate representation

Intermediate representation (IR), is a language of an abstract machine used to rep-
resent a program independently from a programming language used to write that
program and often independently from the target processor. Modern compilers usu-
ally convert the original program into such IR, and perform analysis and optimizations
on it. In some compiler implementations there could be more than one IR involved,
however in such cases one of the representations is the main IR.

From the view of structural organization IRs can fall into three categories: graphi-
cal, linear, and hybrid.

Graphical IRs represent the code as trees or graphs and consist of nodes and
edges. Trees are a natural representation for the grammatical structure of the source
code. Graphs, however, are more useful for representing other properties of a program,
such as the control flow.

The graphical IRs are usually not the only IR in the compilation process. The data
dependence graphs are generally used for a specific task, created just before the use,
and destroyed afterwards. The control-flow graph (CFG) also comes with another IR
for representing the operations inside basic blocks.

Linear IRs share a resemblance to assembly code in the sense that they both are a
simple sequence of instructions, executed in order of their appearance. In that form, in
contrast to graphical IRs, there is a need to encode transfer of control, hence generally
each basic block ends with a branch, call or return instruction.

The two, most common linear IRs are bytecode and three-address code. Byte-
code is also called stack-machine code or one-address code, as each instruction has at
most one parameter (one address) which is placed on the evaluation stack before its
execution. The result of the instruction is also placed on the stack, thus it has to be
explicitly stored in memory if required. The bytecode is used in applications where
size is essential, as it is very compact. Three-address code resembles more the code
of modern processors, were most of the instructions get two operands and produce
one result (thus making it three-address). Of course, some of the instructions will need
fewer arguments and in some cases more than three.

Hybrid IRs try to combine properties of both aforementioned. A common practice
is keeping linear code within basic blocks, and use graphs to represent the flow of
control between these blocks. An example of commonly used hybrid IR is a linear IR
in the Static Single Assignment form, which we describe in the following section.

2.3 Static Single Assignment form

The Static Single Assignment form is a naming convention for variables, which was
the result of work on data-flow analysis, in particular on the identification and elimina-
tion of redundant computations published by Alpern et al. [1988]; Rosen et al. [1988].

2.3. STATIC SINGLE ASSIGNMENT FORM 17

Later, the foundations of SSA were presented in more details in a journal paper by
Cytron et al. [1991].

A program is in SSA form if each variable is defined exactly once in the program
text. In other words, a variable can occur on the left hand side of an assignment
expression only once in a given program, hence there is one unique static definition.
It is possible, however, to get multiple dynamic definitions – for example, as a result
of the definition inside a loop. Usually, in SSA all definitions should occur before its
use, i.e. it is considered with dominance property.

We have already defined the dominance property while talking about the CFG in
Section 2.1.2. SSA is said to be with dominance property if, for every variable a,
de f (a) dom use(a), where de f (a) is the instruction that defines a and use(a) is a set of
the instructions that use a.

Since some variables have multiple definitions, to convert a program to SSA unique
names have to be given to each definition of the same variable. However, simple
renaming is not enough. At points where different control-flow paths merge (e.g.,
after an if else condition), the correct value has to be chosen depending on the path.
For that purpose so-called virtual φ-functions were introduced.

A φ-function is a virtual operation placed at the beginning of a basic block, which
takes as many arguments as the number of this block’s incoming flow edges, and
returns the nth argument, when the execution path comes from the nth incoming flow
edge.

if(b)

a = 2;

else

a = 3;

c = a + 1;

if(b)

a_1 = 2;

else

a_2 = 3;

a_3 = φ(a_1, a_2);

c = a_3 + 1;

Figure 2.3: Example of C code and its representation in SSA.

The φ-functions need a particular treatment for multiple reasons. First, they act as
multiplexers that choose a value depending on which control-flow path the program
comes from, hence their behavior depends on past execution.

For instance, as shown on Figure 2.3 suppose a conditional branch in the original
program with assignment a=2 in the true branch and a=3 in the false one. Since SSA
allows only one static assignment, this would be transformed into a1=2 and a2=3 in the
branches, and the φ-function a3=φ(a1, a2) at the join, meaning that a3 takes the value
of a1 if the path comes from the true branch, and a2 if it comes from the false branch.

Moreover, multiple φ-procedures at the beginning of a block need to be executed
concurrently as their semantics is that the selection of values is done in parallel. Failure
to do so may produce wrong results, the classical example (see Figure 2.4) being the

18 CHAPTER 2. BACKGROUND

a = φ(b, ...);

b = φ(a, ...);

Figure 2.4: Swapping of two variables in SSA form using φ-procedures.

“swap problem” was identified by Briggs et al. [1998] where φ-procedures are used to
swap values in variables. Executing them sequentially would result in the overwriting
of variable a before its use in the second φ.

2.4 On data, data dependence and loop nesting forest

A complete program, besides the instruction stream, has to contain data used for the
computations. While talking about the data stream in our intermediate representa-
tion, we will use the term object. Data objects correspond to definition of variables

and constants referenced in a program. They describe how much storage has to be
assigned for the variables and constants, and how should they be placed in memory in
order to correctly perform operations on them. Some of the variables and all constants
have to be set to some initial values before program execution. We will refer to that
value as initializer.

In more general view data is an input (operand) of some program statements3, and
can be its product (result of computation). The compiler, in order to perform some
optimizations has to keep track of data dependencies between the program statements.
Otherwise it could for example move a definition of a variable after it use, resulting in
a faulty computation. To perform so-called aggressive optimizations, the compiler needs
memory dependencies annotated by the type of relation and discriminated by loop
level.

2.4.1 Data dependence definition and types

A statement Sw depends on statement Sv if and only if both of these statements access
the same memory location and at least one of them stores into that memory location,
and there exists a path of execution from Sv to Sw.

There are three types of dependencies (see Figure 2.5 for examples):

Flow dependence Statement Sw is data flow-dependent on Sv (denoted as SvδSw), if a
value computed in statement Sv is used in statement Sw.

Anti dependence Statement Sw is data anti-dependent on Sv if a variable is used in
statement Sv before it is reassigned in statement Sw (SvδSw).

3Or instructions in case of low-level program representation

2.4. ON DATA, DATA DEPENDENCE AND LOOP NESTING FOREST 19

Output dependence Statement Sw is data output-dependent on Sv when a variable is
assigned in statement Sv and later reassigned in statement Sw (Svδ◦Sw).

Sv : x = 5
Sw : y = x

(a) Flow dependence

Sv : y = x
Sw : x = 2

(b) Anti dependence

Sv : x = 5
Sw : x = 2

(c) Output dependence

Figure 2.5: Example of data dependencies between statements.

2.4.1.1 Data dependence graph

The data dependence graph is a directed graph G = (N, E), where each node n ∈

N corresponds to one of s program statements Sx(1 ≤ x ≤ s), and each edge e =

(Sv, Sw) ∈ E, is a dependence relation between statements Sv and Sw.

S1: mov $r0, 123

S2: add $r1, $r0, 1

S3: neg $r3, $r0

S4: mov $r2, 321

S5: mul $r4, $r1, $r2

S6: add $r6, $r4, $r3

S7: mul $r7, $r6, $r0

S1

S3S2

S5 S4

S6

S7

Figure 2.6: Example of data dependence graph.

Figure 2.6 shows a simple program in a three-address form and its data depen-
dence graph. Statements S1 and S4 have no incoming dependency, while the other
statements are flow-dependent on other statements in the program.

2.4.2 On loops and loop nesting forests

When discriminating dependencies by loop nesting level, all the producers and con-
sumers of the intermediate representation have to agree on what loop they are talk-
ing about. A loop nesting forest is a data structure representing loops and relations

20 CHAPTER 2. BACKGROUND

between them in a control-flow graph. There are several definitions (with different
properties) of what a loop nesting forest is, e.g., Sreedhar et al. [1996]; Steensgaard
[1993]; Havlak [1997].

Ramalingam [2002] proposed the axiomatic definition of loop nesting forests. In his
definition, the header of a loop can be any node not dominated by other in the SCC
(strongly connected collection) that defines the loop body. So in case of irreducible
loops, there is an ambiguity.

In his PhD thesis, Boissinot [2010] defines the notion of a minimal connected loop
nesting forest, which has applications to find live sets and perform liveness checks
under the SSA form. A minimal loop nesting forest is a loop nesting forest such that
no loop body from the forest is covered by another loop, and it is connected if the loop
headers are selected from the set of entry nodes of the loop. In practice, loop forests
proposed by Havlak [1997] are the best choice of minimal connected loop nesting
forests.

Havlak’s loops A loop is a sequence of statements that can be executed repeatedly.
A loop consists of a header basic block and loop body that contains one or more basic
blocks. The body of a loop can be executed a specified number of times, until some
condition is satisfied, or indefinitely.

For a compiler, a loop is one of the most important scopes for some optimizations,
as this is usually where the most time is spent during execution. These optimizations
aim to improve cache performance and speed of loop execution, making use of parallel
execution of some statements in the loop.

In this work we use definitions as provided by Havlak [1997], because only one ba-
sic block can be the header, hence there is no ambiguity as in Ramalingam’s axiomatic
definition and others. A more formal definition of loops comes from the notion of a
strongly connected component.

In a given graph G(N, E), a strongly connected component (SCC) is a nonempty
set of nodes S ⊂ N such that for any nodes a, b ∈ S, there exists a path from a to b and
a path from b to a. A maximal strongly connected component is a SCC to which no more
node can be added.

A loop in a graph G(N, E) is a pair (B, H) of non-empty sets of nodes B ⊂ N and
H ⊂ N, such that H ⊆ B, where B is a strongly connected component, the body of the
loop, and H is the set of headers of the loop. An outermost loop is a maximal SCC
with at least one internal edge.

When traversing a graph with the classical depth-first search algorithm, a spanning
tree is created as a by-product, which is then used for numbering the visited nodes.
A header node of the loop is the first visited node of the SCC. A loop nested inside a
loop L with header h is an outermost loop in the subgraph with node set (L − h).

This definition allows us to represent the loop nesting with a tree, where for each
node its parent is a header of the smallest loop containing that node. A loop with

2.5. SUMMARY 21

BB1

BB2 BB3

BB4BB5

BB6

BB7

(a) CFG

BB1

BB2

BB3

BB4

BB5

BB6

BB7

(b) Spanning tree

BB1

BB2

BB3

BB4

BB6

BB5

reducible

irreducible

irreducible

nonheader

self

nonheader

(c) Loop tree

Figure 2.7: An example of a loop tree for given CFG and its spanning tree.

a single entry is a reducible loop, while loop with multiple entries – an irreducible

loop.
We give an example of a loop tree on Figure 2.7 with a corresponding CFG and a

spanning tree. Havlak gives additional labels to the nodes in a loop tree. Nodes with
descendants are headers and are marked reducible or irreducible. Nodes that do not
have any descendant are marked either as nonheader or self, where self is a special
case of a reducible loop with a single node, hence the header in itself is the loop.

2.5 Summary

In this chapter, we defined the main notions used in this thesis. We provided the
notions about program structure and data stream, defined the control-flow graphs
and discussed the intermediate representations. We introduced the SSA form, which
is supported by our intermediate representation and used by the framework, both
of which are presented in the following chapters. Finally, we provided background
information on data dependencies and loop nesting forests, also supported by the
proposed IR, to be used in the future by our framework.

22 CHAPTER 2. BACKGROUND

Chapter 3

Prior Work

The main motivation of this thesis is to fill the gap between the execution environments
that employ the classical Just-In-Time execution model with the Dynamic optimizers, and
combine the advantages of both of them. These virtual execution environments seem
to be the two major approaches in the wide family of dynamic code modification
systems. The work done in this thesis rely however also on other technologies, that
we describe in this chapter.

3.1 Interpretation of the SSA form

Interpretation, although providing much less performance than execution of native
code, is nonetheless very important tool in a virtual execution environment, as it al-
lows for fast start-up of execution without the overhead of a compiler. It is also a cheap
and easy implementation base for gathering traces and other useful information about
the program execution. The interpretation techniques themselves being not new are
well known, however not many interpreters of SSA form exist.

One of the interpreter operating on the SSA form could be found as a part of the
Low Level Virtual Machine (described in more details in Chapter 5). It is written in
C++ and designed for executing LLVM’s bitcode, a target-independent intermediate
representation which is in the SSA form by design. However, no work on measuring
its performance or describing its implementation could be found. The authors state
themselves in the source code, that it was designed “to be very simple, portable and
inefficient.”

Another work on interpretation of the SSA form was done by von Ronne et al.
[2004]. Von Ronne proposes an “Interpretable SSA intermediate representation”, which
introduces some extensions to a classical SSA flavor in order to enable direct im-
perative interpretation of SSA. These extensions include a dedicated virtual register
containing the edge number used by φ-functions and a special instruction marking
explicitly the end of φ-functions in a basic block.

23

24 CHAPTER 3. PRIOR WORK

Although Von Ronne mentions that recursive calls would require storing the vari-
ables, probably on the stack, the discussion ends on that point.

3.2 Compilation Just-In-Time

3.2.1 The beginning

The idea of the classical JIT compilation can be traced to Rau [1978] who was consider-
ing a universal host machine (UHM). Rau classified program representations into three
groups (see Section 2.2) according to their level of abstraction and usability for the
execution on a virtual machine. The UHM was targeting multiple source languages,
called by Rau high-level representations (or HRLs). He postulated the introduction of
an intermediate representation (DIR) that the different HLRs would be statically com-
piled to. This DIR was suitable for interpretation and dynamic translation to the host
machine code (DER).

Rau in his work also discussed the different design criteria of DIRs, such us code
compaction versus semantic level of instructions and their impact on the UHM. He
proposed also the use of dynamic translation instead of interpretation, as well as the
organization of dynamic translation buffer (what would be called now a code cache) and
its similarities to processors’ cache memory.

The work of Rau inspired Deutsch and Schiffman [1984] for improving the Smalltalk
[Goldberg and Robson, 1983] system. Smalltalk is a purely object-oriented language
used in an interactive, exploratory programming model. Its source code is compiled
statically to a bytecode representation. This bytecode was originally executed in a
virtual machine by a stack-oriented interpreter. Deutsh and Schiffman in their imple-
mentation of Smalltalk as one of the optimizations used dynamic translation of the
bytecode to native code. The procedures were compiled in a lazy scheme, i.e. just
before the call, and the native version was cached for later use.

Smalltalk influenced another purely object-oriented system that uses dynamic trans-
lation techniques, Self Ungar and Smith [1987]. Rather than interpreter, Self used a
fast, non-optimizing compiler for lazy compilation of procedures. Hölzle and Ungar
[1994] credited this idea to work of Deutsch and Schiffman in Smalltalk. Three gener-
ations of Self’s implementation provided lots of important observations used later in
other systems.

Hölzle proposed the use of second, optimizing compiler and its application to
hot spots. When a method was executed often, it was recompiled with that optimizing
compiler. It was also Hölzle who noticed, that it is more important for the performance
to carefully choose what to compile rather than when to compile, i.e., that instead of
compiling a method whose counter triggered the compilation it could be better to
compile its caller and inline the frequently called method.

3.2. COMPILATION JUST-IN-TIME 25

3.2.2 Java

One of the best known environments using dynamic translation is Java [Gosling et al.,
1996] released by Sun Microsystems in 1995. It was designed as an alternative to C++,
that would provide facilities for security, threading, distributed programming, as well
as automatic memory management, and above all – target architecture independence
that would allow programmers to write and compile their software only once but
deploy on any environment where a Java Virtual Machine is available. As a result of
lot of invested time and money, nowadays it could be found everywhere from desktop
computers to embedded devices, even in mobile phones; in fact it is Java that brought
the term just-in-time (or simply JIT) into use in computing.

Java, as other JIT environments, separates the compilation process into two phases.
First the source code is compiled statically into a bytecode representation, next the
bytecode is executed on the Java Virtual Machine (JVM). This bytecode was designed
for a stack-based (virtual) machine and in the first releases was simply interpreted
which resulted in very poor performance.

This problem was addressed by Cramer et al. [1997] with, once more, use of the
techniques proposed by Rau and pioneered by Deutsch and Shiffman: dynamic trans-
lation of bytecode to native code. The compiler used for runtime code generation
has to be much faster than static compiler. Cramer and his colleagues stated, that
even though the bytecode, as being designed for stack-based interpretation, is not per-
fect for JITing, there is no time and resources for constructing different intermediate
representation as in static compilers. They advocated the use of bytecode as the inter-
mediate representation of the JIT compiler. Although the compiler was very simple,
the results showed increase of performance, depending on benchmark, from 2 to 9
times versus the interpreted code.

Cramer also noticed, that although there obviously is lot of place for improvement
in the JIT compiler, the performance of whole virtual execution environment depends
not only on the native code generation and optimizations. According to him, the inter-
pretation process took in average only 68% of execution time, while the rest was spent
by the virtual machine on synchronization and garbage collection, and surprisingly
only 1% on calling native code.

The following years, in particular with the work of Cierniak and Li [1997]; Adl-
Tabatabai et al. [1998]; Burke et al. [1999]; Suganuma et al. [2000] and others, resulted
in new ideas in Sun’s JIT compiler as well as in different research JIT compilers for
Java that improved the performance significantly. Important conclusion of this work
is that simply generating native code instead of interpreting is not enough, bringing
focus on optimization techniques suitable for JIT compilation.

Interesting implementation of Java Virtual Machine is Java HotSpot [Oracle, 2010].
It addressed also other issues related to execution of Java bytecode, i.e., synchroniza-
tion and garbage collection, however we will focus only on the JIT compilation.

26 CHAPTER 3. PRIOR WORK

From the very beginning [Microsystems, 2001], instead of the lazy compilation
model, i.e., compiling one method on demand, the execution started in the interpre-
tation mode. The interpretation process was used not only to avoid the compilation
overhead, but also to detect the frequently executed parts of the program (i.e., hot

spots). Java HotSpot provides two JIT compilers: client and server. The client compiler
is tuned to be used with a typical client applications that require fast response and
does not perform any optimization except minimal inlining. The server compiler is
tuned to optimize long-running server application. It perform all classical optimiza-
tions, such as dead code elimination, loop invariant hoisting, common subexpression
elimination and constant propagation.

The stack-based IR considered previously by Cramer as suitable for the JIT process
have been replaced for compiler’s internal purpose by a register-based IRs, and the
server compiler started to exploit the properties of the SSA form. Later versions of the
client compiler use two intermediate representations, one of which is SSA-based, and
the server compiler has been improved versus the older one to gain more performance
and has been equipped with Java-specific optimizations, such us null-check and range-
check elimination and exception throwing optimizations.

3.2.3 Common Language Infrastructure

In early 2000 Microsoft introduced his .Net Framework, which was later partially pub-
lished under the name of Common Language Infrastructure (CLI) as ECMA Interna-
tional [2006] standard. Its goal was to unify other Microsoft technologies under one
API, thus allowing the programmers to develop and debug GUI, console, web and
other applications in the same fashion. CLI in many ways is similar to Java, however it
was designed later, thus its creators could make use of lessons learned by the creators
of Java. In contrast to Java, which was designed to support only the Java language,
CLI’s philosophy is to provide support for multiple frontend languages and the inter-
operability between the code written in these languages, hence giving the possibility
to choose the best suitable language to perform a given task.

Programs written in high-level frontend languages are compiled to stack-based
bytecodes called Common Intermediate Language (CIL) previously known as Mi-
crosoft Intermediate Language, which is part of the Ecma standard and was described
in details by Lidin [2006]. CIL is independent of the frontend language and from the
underlying hardware, and although is suitable for interpretation, the .NET framework
does not use an interpreter, but directly calls a JIT compiler [Gough, 2001] whenever
a function is called for the very first time.

The .NET framework relies on two JIT compilers [Microsoft, 2006]: Standard-JIT
and Econo-JIT. The latter is a fast, non-optimizing compiler, while the former produces
better code.

A shared source, research implementation of CLI, named Shared Source CLI (SSCL

3.3. STATIC BINARY OPTIMIZERS 27

or Rotor) was also released by Microsoft. It was equipped with a one, very simple
JIT compiler that did not perform any optimization, nor register allocation. It was
designed to generate native code very fast in one pass and simulate the stack in a
dedicated register. Vaswani and Srikant [2003] proposed a profile guided JIT compiler
for Rotor with two level optimizations. Again, as it happened in Java, this JIT compiler
internally was operating on a register-based intermediate representation.

The Mono project1 provides an open-source implementation of the Common Lan-
guage Infrastructure. Mono has its own JIT compiler. For its internal purpose starting
from version 2.0 it converts the CIL bytecodes into a register-based linear intermediate
representation [Mono, 2012]. It performs all the usual optimizations, such as copy and
constant propagation, branch optimizations, dead code elimination. It performs the
SSA optimizations as well, however the internal linear IR is not in SSA, thus requires
its construction and destruction.

3.2.4 Staged dynamic compilation

Other methods are used in staged dynamic compilation [Auslander et al., 1996; Con-
sel and Noël, 1996; Grant et al., 1999]. The compilation process of a program is also
divided into two parts: static and dynamic. The static compiler chooses only por-
tions of code, typically previously annotated by user and generates templates, which
are used at runtime by a dynamic compiler to specialize these parts of code without
introduction of any intermediate representations.

Leone and Dybvig [1997] proposed even to statically compile the regions of code
into three forms for different kind of optimizations: high-level IR for heavyweight op-
timizations, mid- or low-level IR for simple optimizations, and native code for regions
that cannot benefit from dynamic optimizations.

3.3 Static Binary optimizers

Srivastava and Wall [1992] developed OM for link-time optimizations. OM takes object
files and converts them into RTL language. This representation is optimized profiting
from inter-modular optimizations not possible during compilation of each unit, and
converted back to object form.

Spike [Cohn et al., 1997] is a profile-driven Alpha binaries optimizer for Windows
NT. It automatically instruments binaries and collect profile data during execution.
The collected data is used for static optimizations of the entire images of programs,
including dynamic libraries.

1http://www.mono-project.com/

28 CHAPTER 3. PRIOR WORK

3.4 Dynamic Optimizers and Binary Translators

We classify the dynamic optimizers and binary translators together, as they are similar
in the way they operate on existing, target-dependent binaries rather than dedicated
intermediate representations. Usually they observe the execution by interpreting the
instruction stream, gather hot traces of instructions, and generate (optimized) native
code.

One of such systems is Dynamo introduced by Bala et al. [2000]. It is designed
for to transparently improve performance of statically generated binaries for PA-RISC
processor. While interpreting the program, it gathers the hot-traces and generates
optimized code for them. In case of performing worse than original binary it has a
bailout mechanism to fallback to the original program. Dynamo converts the traces
into a low-level IR, very close to underlying architecture and performs simple branch
optimizations, redundancy removal, constant and copy propagation, strength reduc-
tion, loop invariant code motion and loop unrolling. Bala reported performance gain
up to 22% in some cases, and an averages speedup of 9%.

Bruening et al. [2003] proposed a direct descendant of Dynamo called DynamoRIO,
which provides a dynamic binary inspection and modification framework with an
API exposed to higher-level applications, allowing to construct tools that can perform
several different tasks. Its goal is not only to dynamically optimize existing programs,
but rather to provide a framework for implementing such dynamic optimizations and
analyses. It also uses interpretation for gathering traces, however to avoid overhead it
caches translations of frequently executed code for direct execution.

Chen et al. [2000] worked on Mojo, a dynamic optimization system targeting Win-
dows running on IA-32 architecture. Its goal is to run not only research benchmarks
but also real-world, large applications with multithread support. As it is designed
for a CISC processor, the authors, instead of using the interpreter as in Dynamo or
DynamoRIO, proposed direct execution of native basic-blocks identified through dis-
assembling and placed in a basic-block cache. Control instructions in such basic-blocks
are patched to go back to a dispatcher. After identifying a hot-path, corresponding
basic-blocks are optimized and placed in the path cache. The optimizations focus on
code layout and branches, as well as loop unrolling. Mojo was also equipped with
bailout mechanism in case of performing worse than native version of a given pro-
gram.

DELI is a binary translation framework developed by Desoli et al. [2002], meant
for near-native performance emulation with an API exposed to clients. It allows to
build code manipulation, observation and emulation tools by providing some basic
functionalities, such as code caches and fragment linking mechanisms. However, in-
terpreter or JIT compiler of one ISA to native has to be provided by the client tools.

Strata [Scott and Davidson, 2001] is yet another framework for developing dynamic
translation clients. Its goal is to provide a retargetable platform that has some common

3.5. BINARY INSTRUMENTATION 29

services, such as memory management, code cache and dynamic linking. The authors
show a use case for inspecting applications during execution and protect the system
from malicious behaviors, as well as an dynamic instruction scheduler.

3.5 Binary instrumentation

3.5.1 Static binary instrumentation

A framework for writing program analysis tools for the Alpha platform, through a
high-level API was implemented in ATOM [Srivastava and Eustace, 1994]. It is based
on the OM project and contains instrumenting services and requires the user to specify
only the tool detail. It inserts function calls to analysis framework at the user-specified
points. User’s tool compiled with the ATOM services results in the profiling tool which
is further combined with the application resulting in a self-profiling and analyzing
executable. Atom, however does not allow for modifying existing instructions, but
only allows to call instrumentation functions.

EEL is a very similar toolkit to ATOM. Although released for SPARC, was designed
with a platform-independent interface for “exutable editing” that would require only
minimal knowledge about the target platform.

Another instrumentation toolkit, PEBIL Laurenzano et al. [2010], was influenced
by a dynamic toolkit DynInst (described later), but instruments program statically by
replacing some instructions with calls to instrumentation routines at specified points.
To acquire enough space for this reason in case of variable-length instructions, it per-
forms function relocation. Also, it supports insertion of instrumentation snippets – hand
written assembly code, to avoid instrumentation functions.

3.5.2 Dynamic binary instrumentation

DynInst [Buck and Hollingsworth, 2000] is a C++ class library that provides an API for
dynamic program instrumentation and modification. The API also allows for changing
function calls and removing them from the application. It uses machine independent
representation to describe the instrumentations that allows to use the same instru-
mentation code across different platforms. The inserted code is translated to machine
language and emitted into array in the application address space. Than, in order to
call this code, one or more instructions in the point of instrumentation is replaced with
a branch to a trampoline. Next another, mini-trampoline is called that saves the machine
state (registers and condition codes), executes a snippet of the instrumentation code,
restores the machine state and branches back to the main trampoline. Here another
snippets can be called. When the process is finished, the replaced original instructions
are executed, and the trampoline branches back to the point of insertion.

Another library that provides API for building dynamic instrumentation tools is
implemented in Pin [Luk et al., 2005]. Similar to DynInst it provides the possibility to

30 CHAPTER 3. PRIOR WORK

write target-independent instrumentations. However, instead of trampolines, it uses
dynamic compilation techniques to instrument executables while they are running.
It has capabilities to optimize the instrumentations and uses code caching and trace
linking.

Different framework for dynamic binary instrumentation is provided by the Val-
grind [Nethercote and Seward, 2007] project. It comes as a core tool with plug-ins. The
core provides services to make common tool tasks easier. Valgrind relies on dynamic
compilation techniques – after loading the plug-in, the client’s code is disassembled
into an intermediate representation, instrumented and compiled just-in-time. As op-
posed to other systems, Valgrind does not execute the original code and it does not
target the performance, but the program analyses itself.

3.5.3 Hybrid approach

The previously mentioned static approaches instrument existing binaries. VMAD [Jim-
borean et al., 2012] in the other hand, rely on a specially prepared x86_64 binary files.
The profiling is initiated by the programmer who insert in the source code dedicated
pragmas to mark the regions of interest. Next, a custom compilation pass generates
multiple versions of that regions: instrumented and original. It differs from the static
framework also by the fact, that this multiversion binary is executed on a virtual ma-
chine. Although the x86_64 binary does not require dynamic compilation techniques,
VMAD tries to optimize the code according to the gathered profile. The multiversion
approach minimizes the overhead of the instrumentations, as the instrumented version
can be executed only when needed.

3.6 Code cache management

Important of any dynamic code manipulation environment is the code cache and its
efficient management, especially in environments with constraint resources.

Several management schemes were evaluated by Hazelwood and Smith [2002].
Hazelwood concluded, that treating the code cache as a circular buffer reduces the
miss rate by half compared to what is achieved by flushing the cache when full. Fur-
thermore, such a model does not require complicated bookkeeping and hence does
not add significantly to the overhead and memory requirements of the whole virtual
execution environment.

Hazelwood and Smith [2003] brings her work even further with a proposition of
a generational cache management. She proposes to group together code traces with
similar expected lifetime and introduces two separate circular buffers to keep short-
lived and long-lived traces and a third one called nursery used as a temporary step
before either promotion of shored-lived trace to long-lived one or its eviction. As

3.7. SUMMARY 31

Hazelwood noted, this scheme results in an average miss rate reduction of 18% over a
unified code cache.

3.7 Summary

In this chapter, we have described several different virtual execution environments,
from classical JIT to dynamic optimizers and binary translators, showing many ideas
and evolution of dynamic code manipulation systems. We have also discussed ex-
isting interpreters of the SSA form, as well as the techniques related to code cache
management – equally important element of a virtual execution system as the dy-
namic compilers itself. The VEE proposed in this thesis is based on some of the ideas
presented here and tries to avoid problems that exist in these solutions, to provide
another, not yet explored path of virtual execution.

32 CHAPTER 3. PRIOR WORK

Chapter 4

C to CIL compilation

The C language is still very popular, especially among the embedded software devel-
opers, even though several other high-level languages exist. This comes partially from
the fact that most of such developers are used to write software which is very close to
the underlying machine but also due to the performance and resources necessary to
execute a program written in C versus higher-level languages such as Java, C# or even
C++. Furthermore, lot of legacy code that is still being used was written in C, making
rewriting it from scratch in higher-level language time consuming, thus expensive.

Still, programs written in C, including the legacy code, could profit from the dy-
namic compilation and optimization techniques to gain more performance versus their
statically compiled versions. Some open-source tools to achieve this goal exist, how-
ever none of them is complete in terms of fully functional compilation and execution
chain.

In comparison to JIT compilation of C# or Java, requirements of a virtual machine
for executing C-written programs are much lower as C is not a type-safe language; it
also does not require garbage collection and complicated exceptions handling. Hence,
assuming a robust C to intermediate representation compiler exists, a lightweight vir-
tual execution environment for dynamic code specialization and optimization could
be provided.

From the two widely known JIT environments, that is Java Virtual Machine (JVM)
and the Common Language Infrastructure (CLI, also known as .NET), the latter brought
our attention due to its intermediate representation which has been designed to sup-
port multiple frontend languages, including non-type-safe languages, as opposite to
JVM’s IR designed solely for the compilation of the Java language. Moreover, some
parts of the CLI, including its IR were standardized. This fact, along with some open-
source tools available, including a virtual machine, makes it interesting subject of
experiments.

In this chapter we present existing open-source tools, as well as our contributions

33

34 CHAPTER 4. C TO CIL COMPILATION

Figure 4.1: GCC-CIL compilation and execution flow

that include the study of issues related to the compilation of C to the Common In-
termediate Language (CIL) and its execution on the open source virtual machine, the
Mono platform. We also provide an open source compilation chain as shown on Fig-
ure 4.1, called GCC-CIL that allows to generate robust CIL from C code and execute
it on the Mono platform with the support for native libraries, and a possible future
execution in a custom, lightweight, embedded virtual machine. Furthermore, the in-
troduced compilation chain in contrast to some other existing solutions does not rely
on DotGNU Portable.NET and a custom linker to produce CIL bytecode from multiple
compilation units, hence simplifies the compilation process.

In the whole chapter, we will refer to the CIL code as managed code, as opposed to
the native code.

4.1 Common Intermediate Language

The Common Intermediate Language was introduced as an intermediate language
for the Microsoft .NET framework under the name Microsoft Intermediate Language
(MSIL). Later however, the foundations of the Microsoft .NET framework, have been
published as the ECMA standard 334 for the C# language and the ECMA standard
335 for the Common Language Infrastructure (CLI). In particular, the latter specifies
the CIL for use by a virtual execution environment.

Similarly to Java IR, the CIL is also a bytecode program representation designed
to be executed on a stack-based machine. It has, however, a major advantage in the

4.1. COMMON INTERMEDIATE LANGUAGE 35

context of C language compilation compared to the Java bytecode: it was designed to
be used as a target for the compilation of multiple, different frontend languages. It
can support low-level imperative languages like C, object-oriented languages like Java
and C#, and even functional languages of the OCaml family like F#. Furthermore,
while Java itself provides mechanisms to interoperate with native code, it is done via
Java Native Interface, a special API designed for that function, the calls to native code
cannot be expressed directly in the bytecode, making it greatly limited. CIL in contrary
is capable to express these calls, hence does not suffer from the same problems.

The standardization of a processor-independent binary format suitable to repre-
sent compiled C programs, combined with the availability of dependable tools and
the virtual execution environment maintained by the Mono project, offer significant
opportunities to the high-performance and embedded systems community:

• Multiprocessors and grid computing systems could abstract away the processor
ISA when compiling application code, provided a CIL to native code genera-
tor and a virtual execution environment exist for each processor. In case of
non-managed languages like C/C++, the virtual execution environment can be
reduced to a bare minimum by omitting garbage collection, exception handling,
and the .NET framework libraries. C++ is non-managed from the viewpoint of
a CLI virtual execution environment, as its exception handling and type intro-
spection are not compatible with the CLI.

• Aggressive program specialization techniques, that leverage JIT compilation of
high-level bytecode, could become generally applicable to C/C++ programs.
Combining program specialization with dynamic instrumentation and JIT com-
pilation is state-of-the-art in Java virtual machines like the Jikes RVM. Con-
versely, the application of static program specialization techniques (without JIT
compilation) results in significant code expansion. This problem precludes the
use of static program specialization in embedded computing, where program
code size is a main constraint.

• Assuming robust C to CIL compiler exist, when defining a new processor, most
of the compiler development effort reduces to retargeting a CIL to native code
generator. As a side note, Microsoft discontinued the C to CIL compilation af-
ter the release of Visual Studio 2003. Meanwhile, the C++ compilation on any
version of Visual Studio does not produces ’pure’ CIL: object files are not CLI-
compliant, and they embed native code. So compilation of C/C++ programs to
pure CIL is another area where open-source delivers more value than proprietary
software.

• Since the CIL bytecode is a standard program representation (as opposed to the
serialization of compiler internal representations, such as the Open64 WHIRL or

36 CHAPTER 4. C TO CIL COMPILATION

the LLVM bitcode), it behaves like any other machine languages as far as GPL
licensing is concerned. However, the CIL program representation is processor-
independent, so it does not leak details of the target processor architecture and
implementation to potential competitors.

A project evaluating the potential of CLI-related technologies for embedded com-
puting applications was started by a team at STMicroelectronics Manno laboratory in
2005, in particular with the work of Costa and Rohou [2005]; Cornero et al. [2008]. The
by-products of this project, closed in 2007, are contributions of Costa et al. [2007] and
Svelto et al. [2009], known as GCC4NET in the st/cli GCC branch. Work of Dinechin
[2008] and Boissinot et al. [2008, 2009] provided a research virtual execution environ-
ment for CLI called PVM, and a JIT compiler for the ST200 VLIW and ARM processor
families. Of these, only the GCC4NET contributions are open-sourced.

Motivated by the opportunities mentioned above, in early 2009 we have resumed
the work on C to CIL compilation, based this time on an LLVM-MSIL code generator
that was orphaned by its creator, Roman Samoilov. LLVM was selected at the time for
its post-link optimization capabilities.

4.2 The Community

The projects that provide tools useful for C to CIL open-source compilation community
include:

• LCC.NET,

• DotGNU Portable.NET,

• ILDJIT,

• GCC4CIL,

• Mono,

• LLVM-MSIL.

4.2.1 LCC.NET

LCC.NET is an extension to the Princeton LCC compiler by Fraser and Hanson. Al-
though developed for Windows .NET, is available as source code that is easily portable
to GNU/Linux. More important, this extension was described by Hanson [2004]
in a companion paper, which provides the blueprint for correct and complete C to
CIL compilation. Indeed, Hanson is also one of the fathers of the LCC compiler at
Princeton University (before moving to Microsoft Research). As acknowledged in this

4.2. THE COMMUNITY 37

LCC.NET paper, he benefited from direct access to the Microsoft .NET team members
when developing LCC.NET.

LCC.NET however, comes not without limitations. The main one is that the LCC
compiler is C89-compliant only. It means that long long types implemented as 64-bit
integers are not supported. The other limitation is that LCC itself and LCC.NET are
not open-source, even though source code is available. This prevents the redistribution
of modifications to LCC.NET, including our port to GNU/Linux. LCC.NET also intro-
duces useless complications, as far as Mono execution on GNU/Linux is concerned.
In particular, the provision of a thunk mechanism whose only purpose is to correct
the mismatch of calling conventions between the Win32 native code and the Microsoft
.NET JITed code.

4.2.2 The DotGNU Portable.NET and ILDJIT Projects

The DotGNU Portable.NET1 project sponsored by Southern Storm Software aims to
provide everything to compile C and C# programs and execute them on a CLI-compliant
virtual execution environment. In order to support separate C compilation and access
to other assemblies, the C compiler implements extensions to the C language, and the
provided ilasm tool is able to encode incomplete CIL text files into a binary format
that generalizes the CLI assembly specification.

The DotGNU Portable.NET project seems to be stalled since early 2007, and at that
time neither the C compiler nor the companion C library were stable enough. Fortu-
nately, the just-int-time compiler called libjit 2 appears to be still actively developed, in
relation with the ILDJIT3 project. The ILDJIT project at Politecnico di Milano focuses
on parallel and distributed dynamic compilation.

4.2.3 The GCC4NET

The GCC4NET4 contributions originate from STMicroelectronics work in two related
areas. The first contribution called gcccil is a frontend for GCC that parses .NET
assemblies using Mono libraries, and compiles to native code. The .NET assemblies
accepted as input are currently constrained to be result from C to CIL compilation.
The second contribution is the GCC branch st/cli-be that compiles C to CIL text files.

In order to support separate compilation, a number of choices have been made,
most notably the use of GCC attributes to tag references to native functions in the
C source code, and the use of the DotGNU Portable.NET ilasm tool that allows the
compilation of CIL text files into incomplete (non-CLI compliant) assembly binary

1http://www.gnu.org/software/dotgnu/
2http://en.wikipedia.org/wiki/LibJIT
3http://ildjit.sourceforge.net/
4http://gcc.gnu.org/projects/cli.html

38 CHAPTER 4. C TO CIL COMPILATION

files. These incomplete assembly files are then turned into CLI-compliant assembly
files using the DotGNU Portable.NET ilalink tool.

The GCC4NET contribution eschews some of the issues of native code linking by
providing a standard C library that can be compiled to managed code. Bindings of
this C library to the guest operating system relies on a system call like interface that
only deals with unstructured data and basic types.

4.2.4 The Mono Project

The Mono5 project supported by Novell is the most actively developed and main-
tained open-source CLI-compliant virtual execution environment. Thanks to on-going
collaborations between STMicroelectronics and the Mono team, Mono provides a sta-
ble execution platform and dependable tools that enable to execute CIL programs on
GNU/Linux, including those that result from C compilation.

The Mono project initially had its own plans to develop a C to CIL compiler based
on Open64 then GCC, which were discontinued after the release of GCC4NET 6. Nev-
ertheless, the Mono project still envisions a different way of addressing the native code
linking issues by using their cecil link tool library.

4.2.5 The LLVM-MSIL code generator

Development of the MSIL code generator in LLVM (see Chapter 5) was started by
Roman Samoilov with the purpose of assembling and executing the resulting managed
code with Microsoft .NET.

A particular feature of the LLVM-MSIL code generator is that it is patterned after
the C backend of the LLVM, unlike the ’real’ code generators of LLVM. Unlike the
C backend however, the LLVM-MSIL was unable to emit correct code after SSA op-
timizations for the classic ’swap problem’ of SSA destruction described by Sreedhar
et al. [1999].

4.3 C to CIL compilation: study of issues

There are several issues with the C to CIL compilation which could be divided into two
groups: generic, independent from any particular code generator; and these related to
implementation of code generator in a specific compilation framework. The latter we
discuss in Section 4.4, while here we focus on the three generic problems, related to
each other, that have, in our opinion, the most significant engineering impact:

• the support of separate compilation;

5http://www.mono-project.com/
6http://www.mono-project.com/Gcc4cil

4.3. C TO CIL COMPILATION: STUDY OF ISSUES 39

• native code linking;

• calls to variadic native functions.

Separate compilation units In the CLI world there is no equivalent for the C-style
separate compilation of source files and static linking. Rather, compilation of source
code directly produces load modules (similar to System V dynamic libraries) called
assemblies, which are the units of deployment and versioning. Within each assembly,
external references are either to code and data in other assemblies, or to native code
functions in designated dynamic libraries. In order to avoid target processor depen-
dencies in the CIL programs, there is no access to data exported by native libraries.
While this feature can be a problem for accessing global variables like stdin or errno,
these are special cases for which workaround exist 7.

Native code linking When working in a traditional separate compilation flow, a C to
CIL compiler needs to know whether a particular function referenced but not defined
will be provided as managed code, or is a reference to external native code. In the
former case, as standard C does not provide support for importing existing .NET
assemblies, the function must be part of the current assembly. In the latter case, a so-
called p/invoke (platform invoke) stub must be created by the compiler that specifies
the dynamic library where the native function will be found.

Calls to variadic native functions If the called native code function is variadic the
situation is even more complicated. All the call sites in the managed code must be
patched to remove the ’vararg’ tag from the call signature. Following that, one stub
for each call signature must be provided. This fix is currently required by the Mono
runtime on GNU/Linux.

4.3.1 Example

We illustrates these issues using a patched version of LCC.NET. In this example we
compile separately two files from C to CIL. The first file defines function func():

cat -n func.c

1 int func(int i) {

2 return i + 1;

3 }

The second file defines function main(), which calls function func() and also the
variadic function printf() twice, with two different signatures:

7In orther to use global variables from native libraries, one has to provide native wrapper functions
that simply return pointers to these variables.

40 CHAPTER 4. C TO CIL COMPILATION

cat -n main.c

1 int printf(const char *format, ...);

2 int func(int i);

3

4 int main(void) {

5 printf("Hello!\t");

6 printf("func(%d)=%d\n", 1, func(1));

7 return 0;

8 }

The result of compiling func.c to managed code is straightforward. Function
argument 0, then constant 1, are loaded on the evaluation stack. Managed code adds
them, leaving the result on the evaluation stack, then returns:

cat -n func.il

1 // file=func.c

2 .method public hidebysig static int32 ’func’(int32) cil managed {

3 .maxstack 2

4 ldarg 0

5 ldc.i4 1

6 add

7 $L1:

8 ret

9 }

The result of compiling main.c to managed code is more involved. First, the C-
style string must be represented by specific data-types, which are defined in lines 2
and 3. These strings are then initialized using the CLI static field mapping feature
in lines 24 – 27. Then there are the two calls to the printf() function. These two
calls should normally appear like the commented in lines 8 and 17. However, the
printf() function will eventually be discovered to be implemented as native code. In
that case, correct execution on Mono requires that native calls are non-variadic (calls to
variadic functions implemented by managed code work as expected). So we eliminate
the variadic tags from the call sites, and this results in lines 9 and 18.

cat -n main.il

1 // file=main.c

2 .class private value explicit ansi sealed ’int8[8]’ { .pack 1 .size 8 }

3 .class private value explicit ansi sealed ’int8[13]’ { .pack 1 .size 13 }

4 .method public hidebysig static int32 ’main’() cil managed {

5 .locals ([0] int32 ’1’)

6 .maxstack 3

7 ldsflda valuetype ’int8[8]’ $4a2ce9df_65e5__2

8 //call vararg int32 ’printf’(void*)

9 call int32 ’printf’(void*)

10 pop

11 ldc.i4 1

12 call int32 ’func’(int32)

13 stloc 0

14 ldsflda valuetype ’int8[13]’ $4a2ce9df_65e5__4

15 ldc.i4 1

16 ldloc 0

17 //call vararg int32 ’printf’(void*,...,int32,int32)

4.3. C TO CIL COMPILATION: STUDY OF ISSUES 41

18 call int32 ’printf’(void*,int32,int32)

19 pop

20 ldc.i4 0

21 $L1:

22 ret

23 }

24 .field public static valuetype ’int8[13]’ $4a2ce9df_65e5__4 at $4a2ce9df_65e5_7

25 .data $4a2ce9df_65e5_7 = { bytearray (66 75 6e 63 28 25 64 29 3d 25 64 a 0) }

26 .field public static valuetype ’int8[8]’ $4a2ce9df_65e5__2 at $4a2ce9df_65e5_8

27 .data $4a2ce9df_65e5_8 = { bytearray (48 65 6c 6c 6f 21 9 0) }

Those two files cannot be assembled yet. They need to get completed by a file
that defines all the remaining undefined references, whether managed or native code.
In addition, because function main() is the entry point in C, we need to startup the
execution by initializing static data (not necessary in our example), and to terminate
execution by a call to exit(). The illink tool of the LCC.NET distribution, again with
our patches, produces the following file:

cat -n x.il

1 .assembly ’x.exe’

2 {

3 .hash algorithm 0x00000000

4 .ver 0:0:0:0

5 }

6

7 //.method public static hidebysig pinvokeimpl ("/lib/libc.so.6" as "printf" ansi cdecl)

8 //vararg int32 printf (void*) cil managed preservesig { }

9

10 .method public static hidebysig pinvokeimpl ("/lib/libc.so.6" as "printf" ansi cdecl)

11 int32 printf (void*) cil managed preservesig { }

12

13 .method public static hidebysig pinvokeimpl ("/lib/libc.so.6" as "printf" ansi cdecl)

14 int32 printf (void*, int32, int32) cil managed preservesig { }

15

16 .method public static hidebysig pinvokeimpl ("/lib/libc.so.6" as "exit" ansi cdecl)

17 default void exit (int32) cil managed preservesig { }

18

19 .method public static hidebysig

20 default void $Main (string[] argv) cil managed

21 {

22 .entrypoint

23 .maxstack 1

24 call int32 main()

25 call void exit(int32)

26 ret

27 }

The interesting point is that the illink tool infers that the unresolved function
references (printf() and exit()) must be native code, so it automatically manufac-
tures the p/invoke stubs for these functions. Again, to work around the limitation of
native calls to variadic functions with Mono, we replace the commented in lines 7 – 8
by the lines 10 – 14. Finally, those three files can be assembled with the Mono ilasm

to produce a single assembly file, executable with the Mono runtime on GNU/Linux,
Microsoft .NET, or any other CLI-compliant virtual execution environment.

42 CHAPTER 4. C TO CIL COMPILATION

4.4 The GCC-CIL Compiler

4.4.1 LLVM versus GCC4NET

LLVM, mentioned before in Section 5.2 in 2008 already had a proof-of-concept CIL
generator, and offered mature post-link optimization capabilities. LLVM allows to
compile multiple files into its own IR and link them together. This plus its post-link
optimization before code generation eliminates the separate compilation steps pre-
sented in previous section as far as CIL is involved, and also simplify the native code
linking problems. Indeed, at the post-linking step all the compilation units that will
be combined into a CLI assembly are available to the code generator. Any other func-
tion referenced that is not defined in those compilation units must be implemented as
native code in a dynamic library.

Given a C to CIL compiler that can delay the managed code generation for a CLI
assembly until all the compilation units are known, there is no need for the DotGNU
Portable.NET ilasm and ilalink. These tools are only required to support the non
CLI-compliant assemblies that result from C-style separate compilation, and replacing
them avoids problems. For instance, the standard CLI static field mapping feature for
data initializations Lidin [2006] is now supported by the Mono ilasm, but not by the
DotGNU Portable.NET ilasm.

Because GCC4NET requires the DotGNU Portable.NET ilasm and ilalink tools,
it cannot benefit from the standard CLI static field mapping. So GCC4NET generates
potentially huge static class constructors for data initializations, thus negating the code
size advantages of the bytecode program representation, and slowing down program
startup. In our experience, these problems are a significant inconvenience when using
GCC4NET for real-life embedded software.

4.4.2 The Compiler

We call GCC-CIL the compiler that results from combining GCC with LLVM-MSIL
through the DragonEgg library. This library takes advantage of the new plugin ar-
chitecture of GCC 4.5 to disable GCC code generators and create LLVM ’bitcode’ as
output. The purpose of DragonEgg is to replace the llvm-gcc compiler that was basi-
cally a gcc-4.2.1 augmented with LLVM optimizers.

Multiple compilation units The high-level view of the GCC-CIL compiler is that it
operates like the LCC.NET compiler, except that the results of separate compilation are
kept as LLVM ’bitcode’ files instead of CIL text files. In our example, the commands
to compile to managed code and execute on Mono are:

separate compilation to LLVM IR files:

gcc -fplugin=dragonegg.so -fplugin-arg-dragonegg-emit-ir -S main.c -o main.ll

gcc -fplugin=dragonegg.so -fplugin-arg-dragonegg-emit-ir -S func.c -o func.ll

4.4. THE GCC-CIL COMPILER 43

produce ’bitcode’ files from LLVM IR:

llvm-as main.ll -o main.bc

llvm-as func.ll -o func.bc

LLVM linking of separate ’bitcode’ files:

llvm-ld main.bc func.bc -o out.bc

producing CIL assembly from ’bitcode’ file:

llc -march=msil out.bc -o out.il

generating CIL assembly with Mono ilasm:

ilasm2 out.il

running the assembly with Mono runtime:

mono out.exe

The key advantage of using GCC-CIL is that a multi-file C project can be first com-
piled to LLVM ’bitcode’ independently for each file. Later the ’bitcode’ files are linked
together into a single program, which can be further optimized. In particular, trivial
function inlining can be applied at this point, which always improves the resulting
code. In C there is also a single name-space for the top-level names, so all the static
variables and functions must have unique names. The LLVM infrastructure takes care
of this step automatically.

Variadic function calls Previously mentioned in Section 4.3 interfacing native func-
tion calls through p/invoke has special requirements when the code will be executed
on the Mono platform. With regards to GCC-CIL we use exactly the same technique as
we proposed for LLC.NET: in case of variadic functions, such as for instance printf,
we remove the ’vararg’ keyword and generate function declaration for each different
call signature of that function found in the code.

For instance, with the following C source code:

printf("Hello world!\n");

printf("i=%d\nj=%d\n",1,23);

printf("String=%s\n","[some string]");

The resulting CIL text file contains these printf() stubs and calls:

//Function declarations

.method static hidebysig pinvokeimpl("MSVCRT.DLL")

int32 modopt([mscorlib]System.Runtime.CompilerServices.CallConvCdecl)

’printf’(void*) preservesig {}

.method static hidebysig pinvokeimpl("MSVCRT.DLL")

int32 modopt([mscorlib]System.Runtime.CompilerServices.CallConvCdecl)

’printf’(void* , int32 , int32) preservesig {}

.method static hidebysig pinvokeimpl("MSVCRT.DLL")

int32 modopt([mscorlib]System.Runtime.CompilerServices.CallConvCdecl)

’printf’(void* , void*) preservesig {}

//Function calls

...

call int32 modopt([mscorlib]System.Runtime.CompilerServices.CallConvCdecl)

’printf’(void*)

...

44 CHAPTER 4. C TO CIL COMPILATION

call int32 modopt([mscorlib]System.Runtime.CompilerServices.CallConvCdecl)

’printf’(void* , int32 , int32)

...

call int32 modopt([mscorlib]System.Runtime.CompilerServices.CallConvCdecl)

’printf’(void* , void*)

4.4.3 Correctness

Although a Common Intermediate Language code generator was implemented in
LLVM, it was only a proof of concept and in the end due to lack of interest among the
LLVM developers, was abandoned. In its current state it was not mature enough to
provide correct CIL code for any input C program. Several issues had to be investi-
gated.

We have first identified the problems and corrected a number of errors and miss-
ing features that prevented correct C compilation and execution on Mono and Mi-
crosoft.NET without LLVM optimizations enabled.

Among lots of minor bugs and incorrectly generated instructions, some of the fixes
include:

• lowering of the LLVM intrinsic functions,

• initialization of static data storage containing pointers,

• incorrect printing of float and double constants,

• conversion of integers bit widths from LLVM to those supported by CIL,

• some incorrect function call signatures,

• some wrong values returned by comparison operators,

• incorrect signed operations on integers (extension, truncate, compare, shifts).

Interestingly, the LLVM internal representation does not keep the information
about the signedness of integer variables. Rather, it uses operations which interpret
those integers as signed or unsigned when needed. On the other hand, CIL distin-
guishes signed from unsigned for a larger number of operations. As a result, we have
to insert signed cast operation to a proper bit width just after loading each argument
of such operations on the evaluation stack.

A more serious problem appeared when we enabled the LLVM optimizations,
which was traced back to the SSA destruction. The correct way of destructing the
SSA form with interferences between Φ-related SSA variables was not known until
work by Sreedhar et al. [1999], and the full understanding of those issues was pro-
vided by Boissinot et al. [2009] quite recently. For the LLVM-MSIL code generator, we

4.4. THE GCC-CIL COMPILER 45

implemented the Sreedhar Method I, which is not efficient but always safe. The Sreed-
har methods rely on insertion of COPY operations to break Φ-related SSA variable
interferences. For our simple CIL code generation, we implemented COPY operations
by storing to / reading from local variables.

4.4.4 Improvements

Native libraries Beyond correctness, we improved the LLVM-MSIL code generator
for better identification of the native libraries where native code functions are defined.
By default, the LLVM-MSIL code generator emits p/invoke stubs like:

//Function declarations

.method static hidebysig pinvokeimpl("MSVCRT.DLL")

int32 modopt([mscorlib]System.Runtime.CompilerServices.CallConvCdecl)

’printf’(void*) preservesig {}

While the library name mapping feature of Mono reroutes such calls to the C
library, this is not sufficient when native code functions are implemented in non-
standard libraries. The LCC.NET illink tool escapes this problem by probing with
dlsym() what library provides a particular symbol, given a list of libraries on the
command line.

We implemented a different solution, based on a mapping file. For instance, given
the following sample file libs.def (the ’;’ line is a comment):

;<symbol name>,<real symbol name>,<library name>,<managed|unmanaged>,<module|assembly>

printf,myprintf,mylibrary.dll,unmanaged,module

myfunc,myfunc,myotherlibrary.dll,managed,module

This file can be referenced during code generation with the -msildef option:

llc -march=msil -msildef=libs.def out.bc -o out.il

This command instructs the code generator to map the printf function to the
myprintf native code defined in mylibrary, and to map myfunc to the managed func-
tion of the same defined in myotherlibrary.dll. So it is possible to specify libraries
for symbols without modifying the source code, and this solution applies to both man-
aged and unmanaged code. If no file is specified or the mapping file does not include
an external symbol name, code generator will use MSVCRT.DLL as default native library.

Reducing local variables Another improvement is reduction of local variables in
functions. In its current form, the CIL code generated by GCC-CIL is almost a straight
translation of the LLVM SSA-based internal representation. Precisely, each LLVM
statement is translated to a series of load, execute, and store operations. This results

46 CHAPTER 4. C TO CIL COMPILATION

with lots of local variables and load/store operations that in fact are redundant, with a
negative impact on code size. Our only optimization for now is keeping the result on
the stack whenever it is an operand of the following operation, thus reducing amount
of local variables and load/store operations.

In the similar fashion, a call to a function that returns a value on the evaluation
stack will result in a store to local variable after that call, even if the value is never
used. In that case we change the store to pop operation, again reducing amount of
local variables.

4.5 Results

GCC4NET GCC-CIL Ratio GCC4NET GCC-CIL Ratio
arrayacc 5144 2948 0.57 jpeg 14440 10500 0.73
autcor 4848 3364 0.69 kmpsearch 5196 3556 0.68
bitaccess 4476 6420 1.43 latanal 5892 7060 1.2
bitonic 5488 3908 0.71 lms 9776 3460 0.35
bitrev 5312 3028 0.57 logop 4308 2244 0.52
bitupck 5588 2852 0.51 lsearch 4568 3444 0.75
bkfircopt 5756 3460 0.6 max 5128 4836 0.94
bkfir 5832 2884 0.49 maxindex 5096 4948 0.97
bsearch 5964 3540 0.59 mergesort 5132 3284 0.64
casetest 4132 2708 0.66 param 4004 1844 0.46
control 5184 3204 0.62 polynome 4328 1844 0.43
copya 4908 3060 0.62 quicksort 4464 3060 0.69
ctrlstruct 4112 2532 0.62 recursive 4088 2308 0.56
cxfir 6400 7780 1.22 sha1 5076 4292 0.85
dct 6700 5428 0.81 shellsort 4516 2724 0.6
dotprod 5120 3124 0.61 squareroot 4120 1924 0.47
euclid 4364 2916 0.67 ssfir 5776 2900 0.5
fft99 11436 4772 0.42 stanford 31668 27492 0.87
fieldacc 3864 1812 0.47 strtrim 4492 2436 0.54
fir8 6256 5204 0.83 strwc 4928 2292 0.47
fircirc 6072 6692 1.1 vadd 5360 4452 0.83
fir_int 10584 2628 0.25 vecmax 4700 2484 0.53
floydall 6080 2724 0.45 vecprod 5004 2468 0.49
heapsort 4616 3076 0.67 vecsum 5132 2484 0.48
iir 5368 3092 0.58 viterbi 7152 4132 0.58

Table 4.1: Comparison of code sizes between GCC-CIL and GCC4NET at -Os.

Even though the code GCC-CIL generates could be still improved, it is already sig-
nificantly better than the code generated by GCC4NET, even though the latter has been
specifically improved with a new intermediate form Svelto et al. [2009]. Precisely, we
report in Table 4.1 the text segment sizes produced by those two compilers on a series
of embedded computing benchmarks optimized for size (-Os). In the CIL bytecode

4.5. RESULTS 47

�
��
�
�
�
�
�

�
�
��
�
�

�
	�
�
�
�

�
�

�
	�
�
�
	�

�
	��

�
	��
�
�
�

�
�
�	�
�
�
�
�

�
�
�	�

�
�

�
��
�

�
�
�

�

�
�

�
�
�
��
�
�

�
�
�
�
�

�
��
��
��
�
�
�

�
�
�	�
�
�
�

�
�
��
��
�

�
�
�	�

��
��
�

�	

��
�
�
�

�	�
�

�	�
�
	�
�

�	�
�
	�
�

���
�
�
�
��

�

�
�
�
�
��
		�

��

�

�
�
�
�

�
��
�

��
��
�
�
� ��
�

��
�
�
�

��

�
��
�

�
�
�

�
�
�
	�
�

�

�

��

�
�
��

�
�
��
�

�
�
��
�
�
�

�
�
	�
�
�
�
��

�

�
�
��
	

�
�
�
�

�
�

���
�
��

�
�
�
�
�

��
�
�

�
�
�	�

�
��
�
��
��

�
��
��
	� �
��
�
�

�
�
�

�
�
�
�

�
�
��
�

�
�
�
�

	�

��
	

�

�

!

�

��

��

�

�!

"## $%&'()* "## $%&'()� "##(+,-.'()*

Figure 4.2: CIL Code sizes normalized by CIL code size of GCC-CIL -Os.

representation, the text segment contains both the CIL code and the metadata.

By taking the classic measure of compression ratio (smaller size divided by larger
size), it is apparent from this table that the text produced by GCC-CIL is significantly
more compact than the text of GCC4NET. Precisely, by summing the text sizes of all
compilations from Table 4.1, we obtain 307948 bytes for GCC4NET versus 205624 for
GCC-CIL, that is, a 0.67 compression ratio.

In order to investigate the main contributions to the text sizes, we compiled the
same benchmarks using maximum optimization level (-O3) in addition to -Os, and we
measured both the CIL code sizes and the metadata sizes. In Figure 4.2, we display
the GCC4NET -O3, the GCC4NET -Os, and the GCC-CIL -O3 CIL code sizes, nor-
malized by those of the GCC-CIL -Os. In Figure 4.3, we display the GCC4NET -O3,
the GCC4NET -Os, and the GCC-CIL -O3 metadata sizes, normalized by those of the
GCC-CIL -Os.

We first observe no significant size differences between -O3 and -Os for the GCC-
CIL compiler. Indeed, the DragonEgg plugin in its current state bypasses most GIM-
PLE optimizations. Then, we observe that the metadata sizes show little variation
between -O3 and -Os for the GCC4NET compiler, however those sizes are consistently
larger than those of the GCC-CIL compiler. We attribute those effects to the post-link
optimizations alone. Finally, the CIL code sizes show the most extreme variations,
between 0.7 and over 6.4 for GCC4NET and GCC-CIL compared at -Os. The large
code size expansions correspond to the cases where GCC4NET initializes nonzero
static storage data in the CIL code, instead of relying on the standard CLI static field
mapping feature Lidin [2006].

48 CHAPTER 4. C TO CIL COMPILATION

�
��
�
�
�
�
�

�
�
��
�
�

�
	�
�
�
�

�
�

�
	��
�
	�

�
	�
�

�
	��
�
�
�

�
�
�	�
�
�
�
�

�
�
�	
�

�
�

�
��
�

�
�
�

�

�
�

�
�
�
��
�
�

�
�
�
�
�

�
��
��
��
�
�
�

�
�
�	
� �
�
�

�
�
��
��
�

�
�
�	�

��
��
�

�	

��
�
�
�

�	�
�

�	�
�
	�
�

�	�
�
	�
�

���
�
�
�
��

�

�
�
�
�
��
		�

��

�

�
�
�
�

�
��
�

��
��
�
�
� ��
�

��
�
�
�

��

�
��
�

�
�
�

�
�
�
	�
�

�

�

��

�
�
��

�
�
��
�

�
�
��
�
�
�

�
�
	�
�
�
�
��

�

�
�
��
	

�
�
�
�

�
�

���
�
��

�
�
�
�
�

��
�
�

�
�
�	�

�
��
�
��
��

�
��
��
	� �
��
�
�

�
�
�

�
�
�
�

�
�
��
�

�
�
�
�

	�

��
	

�

��

�

��

!

!�

"

#$$%&'()*+" #$$%&'()*+� #$$*,-./)*+"

Figure 4.3: Metadata sizes normalized by metadata size of GCC-CIL -Os.

4.6 Summary and Conclusions

Our goal was to assemble a production-worthy C to CIL compilation path that lever-
ages the high-level optimization capabilities of GCC, in order to research the areas of
dynamic compilation and run-time specialization for high-performance and embed-
ded computing applications.

The significant improvements of the GCC-CIL compiler, although encouraging, did
not stopped us from noticing that the LAO-based CLI-JIT compiler (Chapter 5) was
spending resources on, among others, instruction selection, function calls lowering
and static data layout – steps that seem not benefit much from run-time information.

Also, one can observe the tendency of reducing interest for the .NET platform by its
founder, thus reducing effort for its improvements in favor of other technologies; some
licence and patent issues reagarding Java after its acquisition by Oracle and the fact
that in the popular Android environment its authors although using Java language,
do not follow the classical JVM approach.

These problems has led us to a reevaluation of the JIT approach for embedded
system and resulted in a concept of a dynamic compilation environment that would
target performance rather then processor independence. In Chapter 6 we propose a
novel intermediate representation with its interpreter and JIT compiler described in
Chapter 7.

Chapter 5

The Framework

In this chapter we describe the framework build and used for the purpose of this
thesis. This framework, as depicted on Figure 5.1, allows to compile programs written
in C language into the Tirex (see Chapter 6) and its further processing. It could be
simple generation of native code, optimization, or even interpretation and Just-In-
Time compilation.

The framework consists of three main parts:

• Machine Description System

• Low Level Virtual Machine

• Linear Assembly Optimizer

Figure 5.1: The framework

49

50 CHAPTER 5. THE FRAMEWORK

5.1 Machine Description System

The Machine Description System (MDS) is a structured data repository and a collec-
tion of programs used to target software development tools to a particular processor
architecture family. The software development tools need to implement a number of
architecture and processor-dependent tasks:

Encoding and Decoding The binary files that represent a target machine program are
encoded by the assembler and the linker, then decoded by the simulator or the
debugger.

Assembling and Linking The assembler needs to parse the assembly language syntax
in order to produce relocatable binary programs. The linker needs to process
the relocations in order to produce the executable binary programs. Both the
assembly language syntax and the relocation algorithms are machine-dependent.

Instruction Bundling On a VLIW processor, the instructions are grouped into bun-
dles that execute in parallel. The instruction bundling constraints are usually
less regular that the instruction scheduling constraints. In particular, the allowed
contents of a bundle may be dependent on the bundle start address.

Instruction Simulation The instruction simulator executes a target machine program
on a host machine and provides performance estimates. It needs to model the
behavior of the machine at the architecture level and the cycle-accurate level.

Instruction Scheduling The compiler optimizes the target machine program by re-
ordering its operations order. In order to preform this scheduling, the compiler
needs an abstract model of the machine resources and of the dependence laten-
cies.

Register Allocation The register allocation of the compiler maps each program vari-
able to either target processor registers or to memory locations. To make these
decisions, the compiler needs a complete description of the registers including
the cost of moving their contents from / to memory.

Operand Constraints When optimizing the target machine program, the compiler
must satisfy the architecture constraints on the instruction operands. In par-
ticular: the range of set of values that can be encoded in immediates; the restric-
tion of register specifiers to subsets of register files; the coupling between two
register specifiers, such as source and destination in 2-operand instructions, or
auto-modified addressing modes.

Instruction Rewriting In this optimization, the compiler matches a pattern of target
machine operations and replaces it by a more effective pattern. In its simplest

5.1. MACHINE DESCRIPTION SYSTEM 51

form this is the so-called peephole optimization (patterns are sequences). In the
modern form, patterns are identified on the data-flow graph and matching is
enabled by filters on the operands (such as the active bit width).

Instruction Semantics For the purposes of program analysis and optimizations, the
compiler needs to abstract behaviors of instructions. One example is constant
propagation, the compiler emulates the target processor execution to reduce ex-
pressions to constants.

Instruction Attributes Summary information about the instruction properties are needed
by the compiler optimizations, such as: control flow instruction, memory access
instruction, arithmetic instruction, arithmetic properties, predicated execution,
input and output precision, etc.

Instruction Selection The compiler must translate the machine-independent expres-
sions and statements into the target processor instructions. This is usually done
by minimum-cost covering of the expressions by tree patterns, where each tree
pattern represents a machine instruction.

As illustrated in Figure 5.2, MDS comprises a frontend that processes human-
readable machine descriptions to create a Machine Description Database (MDD) as
a set of XML tables under the Layman normal form.1 MDS also comprises backend
tools that process the MDD contents and instantiate template files that are then used
to build the software development tools. Because several backend processing tools
need to share particular views of the MDD contents, these views are created once by a
Machine Description Expanded (MDE) contents. Unlike the MDD, the MDE contains
redundancy, but is better suited to the needs of the MDS backend processing tools.
The common parts between the MDE views of the different processors, in particular
the architectural features are then factored by the Machine Description Fusion (MDF).

5.1.1 SSA Form on Target-Level Code

The major trend of code generation is the use of the static single assignment (SSA)
form that was previously confined to the target-independent compiler optimizations
(before code generation).

5.1.1.1 MDS Support for SSA Form

The SSA form needs to expose all the uses and definitions of the target processor
instructions, whether corresponding to encoded operands, or to implicit operands.
The MDS exposes the processor instruction set architecture by a three-level hierarchy:

1http://www.ltg.ed.ac.uk/ ht/normalForms.html

52 CHAPTER 5. THE FRAMEWORK

Figure 5.2: MDS (Machine Description System) work-flow.

Instruction Table Element of the processor instruction set, for instance add, load,
store, etc.

Opcode Table Results from the database join between Instruction(s), and Format(s).
For instance, add two register and add a register with an immediate are two
different Opcode(s) of the same Instruction.

Operator Table Results from the expansion of Opcode(s) with regards to Modifier(s),
and from the exposition of explicit uses and definitions of the Opcode.

Modifiers are variable fields of instruction encoding that are neither immediates nor
register specifiers. They provide a parameter to the instruction behavior, for instance a
comparison “comp” returning true for equality (comp.eq), greater than (comp.gt), etc.

Tirex represents code as sequence of operations, each operation composed from
an operator and the explicit list of uses and definitions. Besides target-dependent
operators, we introduce generic operators:

• to represent target-level SSA form, including φ-functions2 (PHI), and parallel
copies with variable number of arguments (PCOPY) for operand pinning con-
straints;

• to represent or recognize in one operation standard computations without hav-
ing to know the architectural details, e.g., creation of the stack frame at the
beginning of a function without knowing if the stack frame size fits in the target
architectural immediates (SPADJUST);

2Note that the order of the arguments matters for φ-functions, it is based on the indexes of predecessor
basic blocks.

5.1. MACHINE DESCRIPTION SYSTEM 53

• to write unit tests of code generation algorithms, which need to be target in-
dependent, hence we use generic operations to put a value in a register (COPY),
perform arithmetic operations (ADD, SUB,. . .), branch (un-)conditionally (JUMP,
GOTRUE,. . .), call a function (CALL), return from a function (RETURN), etc.

As a result, our intermediate representation has the feature of accepting any mix of
generic and target-dependent operations.

5.1.1.2 Operand Constraints in SSA Form

Code generation expose the target processor constraints, in particular the instruction
set architecture (ISA) restrictions and the calling conventions requirements on reg-
ister operands. The first general solution to accommodate these register operands
constraints in SSA form was proposed by Leung and George [1999]. Before the ap-
pearance of the SSA form in code generators, either operands pinned to architectural
registers could not be promoted to SSA variables, or register usage constraints were
considered as register coalescing problems. However, the SSA form optimizations
introduce register interferences that hinders traditional register coalescing, while the
register coalescing under SSA form is, according to Rastello et al. [2004], a natural
sub-problem of the SSA form destruction problem.

We focus on the register operand constraints on the form of: a use and a def of
an operation must be mapped back to the same pseudo register (before a non-SSA
register allocation phase); some or all use and def of an operation are pinned to an
architectural register. Boissinot et al. [2009] demonstrated and implemented in the
ST200 LAO how to handle these constraints: by introducing parallel copies (PCOPY
operators) before and after the operation with pinning constraints, then applying a
generalized coalescing algorithm.

5.1.1.3 Predicated Instructions in SSA Form

The other issue of using the SSA form in code generators is the support of predicated
execution. This problem has not received a general solution until the discovery of
the Psi-SSA form by Stoutchinin and de Ferrière [2001]; de Ferrière [2007], first imple-
mented in the LAO code generator for the ST120 VLIW-DSP processor. The Psi-SSA
form is exploited by the Open64-based ST200 production compilers not only for the
classic SSA analyzes, but also for simpler IF-conversion algorithms such as these pre-
sented in work of Stoutchinin and Gao [2004]; Bruel [2006].

In the current LAO, we have implemented a simpler alternative to the Psi-SSA
form; We let the MDS deduce from the behavior of instructions that the execution of
a particular operation is predicated, i.e., it has no side effect if some condition of the
operand values holds. To emulate this “non-effect,” we create an extra use for each
definition in the operation and mark each such use/definition pair as constrained to
be mapped to the same pseudo register.

54 CHAPTER 5. THE FRAMEWORK

5.2 Low Level Virtual Machine

The Low Level Virtual Machine (LLVM)3 is an open source project written in C++,
which aims to be a complete compiler framework supporting lifelong program op-
timization: compile-time, link-time, run-time, and off-line. It contains modern SSA-
based, target and source language independent optimizer, with the code generation
support for many architectures. The core of LLVM contains libraries with well defined
API and documentation, thus making it good foundation for many different projects,
including comercial, open-source and research.

One of LLVM’s subprojects is Clang, a C family languages frontend compiler 4

with excelent error and warning messages mechanisms. Clang is also a platform for
building source-level tools.

LLVM uses its own intermediate representation designed to be used in three,
forms: internal in-memory for compiler purpose; stored on disk as bitcode suitable
also for dynamic compilation; and in textual, human readable form. All these three
forms are equivalent and could be easily converted from/to each other. LLVM IR is
SSA, low-level target independent representation with provided type information.

5.2.1 LLVM in our toolchain

Our target processor is a custom VLIW-DSP processor for which first we have written
a LLVM backend. That backend – a part of the compiler that translates the target-
independent bitcode into target-dependent code – consists of tables describing the
instruction set, register set and calling conventions, and code written in C++ respon-
sible for handling all the CPU related issues. The aim was to emit target assembly as
much optimized as possible, that would pass correctly some validation benchmarks.
Although the code generator profits from LLVM’s target-independent optimizations,
it does not contain VLIW instruction scheduler and does not support generation of
instruction bundles, hence we emit suboptimal linear code, that would be optimized
further in the LAO.

To automate the generation of the backend and to provide synchronization of the
target dependent parts (instructions, registers, etc), the tables mentioned above are
automatically generated from the MDS. This also facilitates support of modifications
in the processor architecture, which is under development, thus constantly changing.

The C to Tirex compilation is done as depicted on Figure 5.3. First the C code is
processed by the frontend compiler, Clang, that outputs LLVM’s bitcode file. After
that, target independent LLVM optimization passes are applied. If all the compilation
units are compiled to the bitcode and linked together, the code could be optimized
even further due to interprocedural optimizations. After that, instruction selection,

3http://www.llvm.org/
4Previously LLVM relied on GCC

5.2. LOW LEVEL VIRTUAL MACHINE 55

Figure 5.3: C to Tirex compilation using LLVM

ABI lowering and partial prologues and epilogues passes are executed as well as some
target dependent optimizations. Optionally registers could be allocated resulting in a
fully formed native stream, or the SSA form could be kept. The final step is to generate
Tirex code.

5.2.2 The Tirex Code Generator

One of the motivations of the work presented in this thesis was connecting several
tools in a compilation chain with the possibility of passing additional information.
This resulted in development of the Tirex intermediate representation described in
more details in Chapter 6.

Tirex is a descendant of MinIR project, for which a code generator was imple-
mented in LLVM by André Tavares. This code generator, although sufficient for the
purpose of MinIR project, was not providing enough information for complete assem-
bly file emission. Moreover, the Tirex specification moved far away from its ancestor.
Also, all the features specific to our processor required special care during the Tirex
emission. All that issues forced us to reimplement the Tirex code generator from
scratch.

The Tirex is very close to assembly language, hence naturally the code generator

56 CHAPTER 5. THE FRAMEWORK

is implemented as a subclass of LLVM’s machine code streamer and the assembler
printer. Additionally some custom passes where written to provide some processor-
specific features. The Tirex code can be generated as post- or pre- register allocation
pass, thus allowing to output the code in SSA with only partially formed stack frames,
or fully formed.

One of the requirements of connecting any compiler to LAO is a definition of basic
blocks. In case of LLVM, a call instruction is not a terminator of a given basic block,
even though execution of that instruction results in change of the control flow. In
contrary, LAO requires that a call instruction should be a terminator of a basic block.
For the compatibility reasons, we have written a pass that is executed just before code
emission, that splits the basic blocks whenever a call instruction occurs, thus to satisfy
the requirements of the LAO.

5.2.3 Current state and limitations

Our previous Tirex code generator was based on the Open64 compiler, in which we
have implemented our own pass to construct loop nesting forest with data dependen-
cies and include it in the Tirex output. However, as later we have decided to move our
productional compilers to more modern compilation frameworks, the implementation
has been abandonded.

In the nearest future we plan to finish the Tirex code generator in GCC framework
and complete the implementation in LLVM. For example, the pass for constructing
Havlak’s loop forest with memory dependencies has to be completed in both LLVM
and GCC to provide the same maturity as the implementation in Open64.

5.3 Linear Assembly Optimizer

The Linear Assembly Optimizer (LAO) is a tool placed at the end of the compilation
chain, which does not contain a compiler for a high-level source language, but rather
relies on “external” frontend compiler that provides low-level, target-dependent code
and data streams. In the work done for this thesis the function of frontend compiler is
performed by LLVM, described in previous section.

LAO was previously used in production compilers for the ST120 VLIW-DSP and
the ST200/Lx VLIW processorsas described by Dinechin et al. [2000]; Dinechin [2004].
The LAO was also a platform for an experimental Just-In-Time (JIT) compiler for the
Common Language Infrastructure (CLI) for the ST200/Lx VLIW processors (CLI-JIT)
developed by Dinechin [2008]; Cornero et al. [2008].

LAO is written in C and already have proven itself to be easily portable, especially
with the target-dependent parts automatically generated from the MDS (described in
section 5.1). Although written in non-object oriented programming language, its con-
struction is object-like providing good encapsulation and a means of self-testing of

5.3. LINEAR ASSEMBLY OPTIMIZER 57

each module.

In its early releases, LAO’s input was a Linear Assembly Input (LAI) language,
which was a superset of the GP32 assembly language with extensions. Later, the
connection between LAO and a frontend compiler (Open64 in that case) was done via
an API exposed in the LAO. This connection however was fragile and error prone,
moreover, replacement of the frontend compiler was difficult due to the fact that the
API was shaped to be used by Open64 and factored to its internals. Currently, the
Tirex intermediate representation is used (see Chapter 6), which allows easier testing
as well as replacement of the frontend compiler or even adding more tools in the
compilation chain.

The LAO contains several production-grade instruction schedulers and software
pipeliners based on heuristics or integer programming as proposed by Dinechin [2007].
LAO also supports the Static Single Assignment (SSA) form at target level, with in-
novative high-quality and high-speed SSA form optimizations developed by Boissinot
et al. [2008, 2009] and register allocator with split spilling and coalescing phases pro-
posed by Bouchez [2009] in his thesis.

5.3.1 Program processing

As we noted before, the input of LAO is a Tirex program that contains data and
program streams along with some additional information (more details in Chapter 6).
This file is parsed and kept internally as LAO Intermediate Representation (LIR), and
thanks to the explicit structure of Tirex program there is no need for function and basic
block boundaries and the data segments identification. Tirex maps to LIR one-to-one.

LIR is just a set of C-structures and data containers internally used by LAO to keep

the Tirex instead of YAML or some binary form and provide easy and fast access to

all the program fields.
After that, LAO applies optimizations, where the most important include:

Global Optimizations Constant propagation, dead code elimination and expression
simplification.

Loop Restructuring Loop unrolling, mapping to hardware loops.

Pattern Optimizations Recognizing the DSP and other specialized instruction pat-
terns.

IF-conversion Predication of single-entry control-flow regions into superblocks.

Prepass Scheduling Superblock scheduling and software pipelining with modulo schedul-
ing.

Register Allocation Register allocation with split spilling and coalescing phases.

58 CHAPTER 5. THE FRAMEWORK

Figure 5.4: Program processing in the LAO

Postpass Scheduling Superblock scheduling.

Finally, after these optimizations, the LIR is mapped to the Assembler Intermediate
Representation (AIR) and the assembly code is emitted. LAO can be also used as a
Virtual Execution Environment on top of the target architecture. The Tirex program
could be interpreted or dynamically compiled (more details in Chapter 7) providing
platform for dynamic code optimization and specialization.

5.4 Summary

Working in a multiple tool environment could be complicated when a change in one
tool requires changes in all the others, especially when the target architecture is under
constant development. In the presented framework synchronization is centralized in
one module, thus allows for relatively fast and easy changes whenever needed.

The framework is the base for the work presented in this thesis, including gener-
ation of Tirex IR presented in Chapter 6, as well as its virtual execution environment
(see 7) consisting of interpreter of the SSA form, a JIT compiler and infrastructure
responsible for managing the code generation, code cache and optimizations. It pro-
vides the necessary foundation and allows us to avoid implementing all basic services
from scratch.

Chapter 6

Tirex

The main objective of this work is to fill the gap between the two major virtual ex-
ecution environments: the classical JIT and the dynamic optimizers. The idea came
from the observation that the Just-In-Time approach spends compilation resources on
passes that do not benefit much from the information available in a dynamic com-
pilation environment, in particular: instruction selection, function call lowering, and
static data layout. The dynamic optimizers in the other hand leave these tasks for the
static compilation phase and focus only on the performance. However, due to lack of
higher-level view of the program, their possibility of optimizations is limited.

We believe that the target-level intermediate representation we propose opens a
third direction to explore for dynamic compilation. Compared to dynamic optimiza-
tion, we anticipate significant increases of native code performance, thanks to the
availability of global and high-level information. Compared to the JVM, CLI, and
LLVM virtual execution environments that embed a bytecode or bitcode interpreter
and a JIT compiler, we expect a simpler virtual execution environment thanks to the
simplification of mixed mode execution, and a reduction of the JIT compilation re-
sources since the program representation is already lowered at the level of the target
processor (see Chapter 7).

Tirex, however, was created because of different reasons than the ones we have
mentioned above. We work in a mixed, production and research compilation envi-
ronment. Such a situation often involves several different compilers and other tools
for performing different tasks on the different compilation stages. We maintain three
different compilers: GCC, Open64, and LLVM. Although all three of them target the
same architecture – a new VLIW-DSP processor that requires advanced optimizations
in the code generator – their purpose differs from operating systems and GNU tools
compilation, to research on optimization algorithms. These advanced optimizations on
the code generator level, in particular, are in the areas of matching complex instruction
(e.g., fixed-point arithmetic), register allocation, If-conversion, and global instruction
scheduling including software pipelining.

59

60 CHAPTER 6. TIREX

Implementing these target-dependent optimizations three times in three different
compilers requires a lot of effort and extensive knowledge of all three of them. De-
bugging these implementations and making modifications also requires much effort.
It seems natural that it would be better to keep all of them in a separate tool, hence,
we add an additional, target-specific code generator into our compilation flow.

All these target-specific parts are implemented within LAO tool (Chapter 5) which
was previously connected with the Open64 compiler via an API designed specially
for the compatibility with Open64’s internals. As we moved to LLVM for its modern
infrastructure, and to GCC for compiling operating systems with our new VLIW-DSP
processor as the target, we were motivated to connect LAO to these three compilers
with a more generalized way.

We have decided to create an intermediate representation suitable for passing
target-level code with an explicit program structure that would support additional
information and be easily extendable when needed. In the end it turned out that Tirex
is not only good for connecting different tools, but also for hand-writing tests, pro-
gram analysis tools, as well as interpretation and dynamic compilation. Moreover it
easy very easy extendable it does not need sophisticated parsers.

Tirex is based on MinIR intermediate representation described in more details in
Section 6.1. We have selected MinIR because Open64 and LLVM, though with some
limitations, were already capable of emitting it when we started this project. Based on
YAML, MinIR is human-readable, well structurized and very easily extendable.

Using a target-level intermediate representation for the environment depicted in
Figure 6.1 raises a number of challenges, which we discuss and address later, including
the following:

• Ensuring that all the tools have a consistent description of the target processor.
This is achieved by using a Machine Description System (MDS), which generates
all the target-dependent source files for the different tools, see Section 6.2;

• Representing the SSA form on a target dependent code; The challenging areas
are the pinning of SSA variables to the architectural registers studied by Rastello
et al. [2004], and the representation of predicated instructions presentet in the
work of Stoutchinin and de Ferrière [2001], see Section 7.2.3;

• Representing executable programs in Tirex (code stream, data stream), which we
present in Section 6.3, with the optional embedding of high-level information
that cannot be easily reconstructed by a code generator, for instance loop scoped
memory dependences, presented in Section 6.4.

Our contribution presented in this chapter is a extensible, target-level intermediate
representation suitable for:

6.1. THE MINIR PROJECT 61

������

���	

�
���
��
�

���
��

	��

��
���

����
�
��
���

��������

���

Figure 6.1: Tirex in our toolchain. The MDS supplies target-specific files to build the
upstream compilers and LAO code generator. The path from GCC is not yet functional.

• fully functional program representation in SSA,

• data exchange between different tools in the compilation toolchain,

• compilers and tools testing,

• interpretation SSA,

• dynamic compilation,

• program analysis.

6.1 The MinIR project

The MinIR1 project was started by Christophe Guillon and Fabrice Rastello and work
on it was continued by Le Guen et al. [2011]; and stands for Minimalist Intermediate

Representation. It was intended to be an educational tool that ease the work on compi-
lation research by providing a program representation abstracted from any compiler,
language or target. As it is based on YAML serialization specified by Ben-Kiki et al.
[2009], it inherits human friendly textual representation of data-structures. Moreover,
YAML is easily read and processed by scripting languages such as Perl, Python or
Ruby, as well as the C language; they all come with free libraries designed to support
reading and editing YAML. Thanks to that it is easy to inspect and modify programs
by editing the text files, and read or write it in whichever language one prefers without
the need for implementing a parser. MinIR is highly useful for compiler researchers
and practitioners interested in trying new algorithms before implementing them in
productional compilers, hence without the burden of handling all corner cases typi-
cally found in them.

1http://minir.org/

62 CHAPTER 6. TIREX

Thanks to its YAML foundation, MinIR is structured yet extremely versatile. The
structure of a MinIR program contains the names of common fields (functions, label,. . .),
functions are organized into basic blocks (bbs) comprising operations (ops) that use
an operator (op) on parameters (uses) to define registers (defs). Any additional infor-
mation may be provided in the existing YAML mappings to help the MinIR client or
allowing it to perform more advanced optimizations. For instance, a target key in a
jump operation allow the client to know which basic block is targeted without having
to know at which position in the argument list the target is. See the Listing 6.1 for an
example of MinIR code.

Since the MinIR format is not fixed, compilers reading this representation also have
the possibility of choosing whether to take the information provided. If they cannot
handle some of the additional information or do not need it, they simply can ignore
it. MinIR can be either sparse and provide only the code stream, or contain arbitrary
description, complicated precomputed data for an optimizing compiler. This makes
MinIR versatile, easily generated in its minimal version from the internal representa-
tion of a compiler, or more complete for a more demanding client, while still being
readable by simple compilers. The MinIR format is flexible and easy to extend to fulfill
a particular need, while keeping the backward compatibility, hence without breaking
the other tools.

Besides the definition of this intermediate representation, the MinIR1 project pro-
vides tools for reading, dumping and verifying a MinIR file, as well as tools for static
analysis, experimental register allocation and a SSA form interpreter. MinIR is used
as an interchange format between those tools; we show in the next section how we
extended it into Tirex to use it not only in a research and educational context, but also
as a target-level interchange format in a compiler toolchain.

6.2 Consistent architectural description

As we note in the introduction to this chapter, one of the challenges is ensuring that all
the tools have a consistent description of the target architecture. The frontend compiler
has to use exactly the same names of registers and the same calling conventions as the
backend code generator.

It is often the case that some instructions with the same mnemonic exist in different
variants within an instruction set of a given processor. These variants depend on the
kinds of operands (i.e., register or immediate) and the size of immediate values; and
have impact on how an instruction will be encoded in the binary. As the instruction
selection process is done in the frond-end compiler it is better to use a unique identi-
fier (a “shortname”), of instruction’s variant rather than a mnemonic to disambiguate
instructions and avoid the need for matching a right variant once more. The mnemon-
ics are defined by the architecture description, however the names of variants are not,

6.2. CONSISTENT ARCHITECTURAL DESCRIPTION 63

Listing 6.1: Example of a MinIR program from the MinIR project
1 #

A loop with a test.
#
x = 0
y = 0

6 # while x < 100
if x < y
x = x + 2
else
x = x + 1

11 # y = y + 1
#

functions:
− label: testloop

16 entries: [entry]
exits: [exit]
bbs:
− label: entry

operations:
21 − { defs: [X0.R], op: mov.32, uses: [’0’] }

− { defs: [Y0.R], op: mov.32, uses: [’0’] }
− label: loophead

operations:
− { defs: [X1.R], op: phi, uses: [X0.R<entry>, X4.R<endloop>] }

26 − { defs: [Y1.R], op: phi, uses: [Y0.R<entry>, Y4.R<endloop>] }
− { defs: [B1.B], op: cmplt.32, uses: [X1.R, ’100’] }
− { op: brt, target: test, fallthru: exit, uses: [B1.B] }

− label: test
operations:

31 − { defs: [B2.B], op: cmplt.32, uses: [X1.R, Y1.R] }
− { op: brt, target: branch1, fallthru: branch2, uses: [B2.B] }

− label: branch1
operations:
− { defs: [X2.R], op: add.32, uses: [X1.R, ’2’] }

36 − { op: jump, target: endloop }
− label: branch2

operations:
− { defs: [X3.R], op: add.32, uses: [X1.R, ’1’] }
− { defs: [Y3.R], op: add.32, uses: [Y1.R, ’1’] }

41 − label: endloop
operations:
− { defs: [X4.R], op: phi, uses: [X2.R<branch1>, X3.R<branch2>] }
− { defs: [Y4.R], op: phi, uses: [Y1.R<branch1>, Y3.R<branch2>] }
− { op: jump, target: loophead }

46

− label: exit
operations:
− { op: return }

64 CHAPTER 6. TIREX

and the naming conventions usually are different for the same architecture in different
compilers.

For instance, an add instruction could have different opcodes depending on whether
it adds two registers or a register and an immediate. We add a “shortname” field to
instructions description; “shortnames” are obtained by appending to the assembly
mnemonic the list of types of operands, then any modifier. We then prune the short-
name to remove operands common to all variants, see Figure 6.2 for an example of
shortnames for an addition and comparison.

Operation Names concatenation Shortname
reg = reg1 + reg2 add_r_r_r add_r

reg = reg1 + signed10 add_r_r_s10 add_s10

reg = reg1 + signed32 add_r_r_s32 add_s32

reg = (reg1 != signed10) comp_r_r_s10.ne comp.ne_s10

reg = (reg1 == reg2) comp_r_r_r.eq comp.eq_r

Figure 6.2: Shortnames are created by using operand types to disambiguate instruc-
tions with the same mnemonic.

Keeping the architecture description centralized makes the maintenance of the
tools easier, especially when the architecture is under development and all the details
change often making the manual changes in a complex toolchain time consuming. For
that purpose, we use the Machine Description System (described in more details in
Chapter 5, which allows for synchronization of all the tools in a compilation flow.

6.3 Extensions to MinIR

The extensions to MinIR we have published previously [Pietrek et al., 2011] evolved
slightly since, as we have realised that some things could be simplified and others
added. A target-level program comprises two mandatory parts: the code stream and
the data stream. The root of a YAML file is a “mapping” (a hash table of “key:
value” pairs) that contains only the key “functions” in MinIR, listing the functions
of the program as a YAML array. We have changed the “root” of the YAML mapping
to “program” as now it contains not only functions but also other elements like data
objects (object), loop scoped information and dependences (loop),section definitions
(section) and architecture description for optimizations (optimize). Instead of having
a list for elements of each type, a program simply contains directly each of these
elements.

6.3. EXTENSIONS TO MINIR 65

Program elements
function function description and body
optimize architecture description
section section definition
object objects of the program data stream

Our current extensions to form Tirex are threefold: supporting SSA form on target
code; adding data stream to the representation, including unresolved symbols; and
allowing more complex program representations to better suit our optimizing needs,
in particular to avoid recomputing known data or losing high-level information.

We give an example of Tirex in Listing 6.2 to illustrate the discussions of this
section. This example shows a function under SSA form before register allocation
with a “for” loop (from 1 to 10) printing at each iteration the induction variable and
a float number approximating π. Architectural registers are used because of calling
conventions and implicit operands of some instructions, but other computations use
temporaries.

Listing 6.2: Dummy example of a Tirex program

1 program:
− optimize:

processor: xxx # dummy processor architecture

convention: 3 # convention ID according to MDS

− section: ".text" # section definition

6 flags: [Alloc, Exec]
align: 0

− function: callme
section: .text # function goes in the text section define before

entries: [B0]
11 exits: [B3]

blocks:
− block: B0

flags: [Entry]
successors: [B1: 1]

16 frequency: 1 # frequency of execution

operations: # create a 80−byte stack frame by adjusting the Stack Pointer

− {op: SPADJUST, defs: [$r12], uses: [$r12, ’80’]}
save callee−save registers in temporaries (incl. return address)

− {op: PCOPY, defs: [V1−V10], uses: [$ra, $r10, $r13−$r20]}
21 − {op: PCOPY, defs: [V11], uses: [$r0]} # get function argument

− {op: make_s16, defs: [V13], uses: [’1’]} # init variable i

− block: B1
labels: [.L_001] # additional name for this block

predecessors: [B0, B2]
26 successors: [B3: 0.1, B2: 0.9] # 1/10 chance of branching to B3

frequency: 10 # block in loop is executed more often

operations:
− {op: PHI, defs: [V14], uses: [V13, V15]} # SSA φ-function
− {op: comp_s10.gt , defs: [V101], uses: [V14, ’10’]} # is i>10 ?

66 CHAPTER 6. TIREX

31 − {op: cb.nez, uses: [V101, .L_002],
target: B3, # false => branch to .L_002 (i.e., B3)

fallthru: .next, # true => continue to next block (B2)}

− block: B2
predecessors: [B1]

36 successors: [B1: 1] # always branches to B1

frequency: 10 # block in loop is executed more often

operations:
− {op: make_s32, defs: [V20], uses: [[L.float]]} # make float value

− {op: lw_r_s10, defs: [V21], uses: [V20, ’0’]} # from constant pool

41 − {op: make_s32, defs: [V110], uses: [[’L.str’]]} # address of string

prepare call arguments in registers

− {op: PCOPY, defs: [$r0, $r1, $r2], uses: [V110, V14, V21]}
call function using (external) symbol; may clobber some registers

− {op: call, uses: [[’printf’]] implicit_defs:[$ra, $r0−$r9, $r11}
46 − {op: add_s10, defs: [V15], uses: [V14, V11]] # increment i by arg

− {op: goto, uses: [.L_001]} # loop back−edge

− block: B3
labels: [.L_002]
frequency: 1

51 operations:
− {op: make_s10, defs: [V130], uses: [’42’]} # prepare return value

− {op: PCOPY, defs: [$r0], uses: [V130]} # of function

restore callee−save registers

− {op: PCOPY, defs: [$ra, $r10, $r13−$r20], uses: [V1−V10]}
56 # delete stack frame (adjust Stack Pointer)

− {op: SPADJUST, defs: [$r12], uses: [$r12, ’−80’]}
− {op: RETURN, uses: [$ra]} # jump to return address

loops:
− loop: L1

61 header: B1 # header of the loop

body: [B2] # body of the loop

object:
label: L.float # define π in constant pool

align: 4 # float are 4−byte aligned

66 init:
− float: 3.14159265e+00

− section: ".rodata"
flags: [Alloc]
align: 4

71 − object:
label: L.str # define new string symbol for printf

align: 1 # a string may start at any alignment

size: 24 # string is 24 bytes long (incl. null char)

section: ‘‘.rodata’’ # belongs to ‘‘read−only’’ section

76 init:
− ascii: ‘‘iteration %d, PI is %f\n\0’’ # data initialization

6.3. EXTENSIONS TO MINIR 67

6.3.1 Code Stream Representation

The code stream of the program is partitioned into functions, corresponding to func-
tions of the source language. Functions usually belong to the text assembly section,
but some of them can be put in special sections by the compiler, to be specially man-
aged later by binary utilities. sections have to be defined before being referenced in a
function (see Section 6.3.2). Functions may also have static storage data, for instance
local variables declared with the C static keyword, or constants pools.2 We also
added to the code stream loop scoped information, see Section 6.4.

Function level
section string assembly section, defined before
entries string list of entry blocks
exits string list of exit blocks
blocks (see below) list of basic blocks
objects (see below) data local to the function
loops (see Sec. 6.4) loop scoped information

The code stream at this level of representation is not yet linearized. It is still
represented as a control-flow graph (CFG), using (labeled) basic blocks that appear
in the Tirex block field of functions. Instructions are given in the operations field,
and the program flow is encoded in Tirex in the “jump” instructions through the
use of the target and fallthrough keys. Since upstream compilers may generate
several labels for a basic block (e.g., after deleting an empty basic block), we provide
a list of additional basic block labels. We also added the possibility to give a list
of predecessor and successor basic blocks to easily write unit tests for program-flow
analysis algorithms. And finally, we use frequency to give profiling information on
the execution of a basic block.

Basic block level
block prefix+number number must be unique for function
labels string array additional labels

predecessors string array labels of predecessor basic blocks
successors array of mappings labels of successor basic blocks

[0.0 – 1.0] with probability of taking the branch
frequency float normalized number of executions
operations (see below) list of operations in this basic block

Instructions contain a operation field op. To easily distinguish generic operators
and avoid any conflict with a target-specific operator, we write them in capital letters,
while the target-specific are using “shortnames” described in Section 6.2. Finally, in-
structions also have uses and defs.3 Branch (or “jump”) instructions have also the

2Constants values that cannot be expressed as immediates in the target architecture, for instance, most
constant values on ARM.

3MinIR/Tirex also provide an implicit_defs array used for instance to list clobbered registers (e.g.,
caller-saved registers for a function call).

68 CHAPTER 6. TIREX

target label of branches. To those, we added the possibility to use the .next keyword
for the fall-through since, at this stage of the compilation, basic blocks are usually
ordered and the program flow naturally continues to the next block if a branch is not
taken. We also added the possibility to supply profiling information on the probability
of taking conditional branches using frequency. Each operation could have also node

field with a unique number, used in for describing dependences (see Section 6.4).

Instruction level
op string target dependent and unique operator

defs string array list of definitions
uses string array list of uses

fallthru .next fall to next block if conditional jump fails
node integer a unique node identifier

The only supported operands are registers, immediate values, and temporaries—
variables not assigned yet to registers. We use the convention that architectural register
names start with a ’$’, while temporary variable names start with ’V’, followed by a
(unique) number. We also need to denote ranges of architectural registers or variables
for side-effects of instructions, so we allow range of architectural register or variables
using the dash (-) sign.

We added support for unresolved symbols, i.e., address locations not known at
compile time. It can be for instance the address of some static data, or the address of
a function. Symbols may have an offset (positive or negative integer) and a relocation
(for explicit relocations, e.g., get an offset relative to the global data pointer or the
thread-local storage pointer). We express unresolved symbols by using a YAML array,
where the first element is the name of the symbol and the two other elements are
optional strings starting with either +, -, or @.

Operand level
$r42 register number 42
V102 unassigned temporary

$r0-$r7 all registers with numbers between 0 and 7
[printf] use a function symbol as argument for a call

[foo, ’+12’] address of 12th byte in object foo
[bar, ’@TP’] offset of bar relative to the thread pointer

6.3.2 Sections

In order to emit correct assembly or binary file, the code generator has to know in
what sections parts of the program should be emitted. A section definition should
contain a unique name, a list of flags and alignment. Elements of Tirex program, such
as functions or objects, should reference only one section, which was defined before in
the Tirex program.

6.3. EXTENSIONS TO MINIR 69

Section definition
section string a unique name of a section
flags string array list of flags
align integer alignment of this section

Listing 6.3 shows example of section definitions and their references by other ele-
ments of a Tirex program.

Listing 6.3: Example of section definitions.

#sections definition

− section: ".text"
3 flags: [Alloc, Exec]

align: 0
− section: ".data"

flags: [Write, Alloc]
align: 4

8 − section: ".rodata"
flags: [Alloc]
align: 4

− object:
13 section: ".data"

origin: 0x0
label: "tab.2488.2.5" # 0x0

init:
− word: [0x1]

18 − word: [0x2]
space: 8
end of initialization for "tab.2488"

− object:
section: ".rodata"

23 origin: 0x0
label: "q.2486.2.3" # 0x0

init:
− word: [[".rodata", +8]]
end of initialization for "q.2486"

28 − object:
section: ".rodata"
origin: 0x4
label: "r.2487.2.4" # 0x4

init:
33 − word: [[".rodata", +16]]

end of initialization for "r.2487"

− object:
section: ".rodata"
origin: 0x8

38 init:
− string: "abcd"

− object:
section: ".rodata"

70 CHAPTER 6. TIREX

origin: 0x10
43 init:

− string: "xyzt"

6.3.3 Data Stream Representation

The original MinIR does not include the program data stream. We propose to describe
the data stream in the YAML format, using a similar structure as data sections at
assembly level. We use the key objects, appearing either at the Tirex root level (same
as functions), or inside a Tirex function for local data.

Each “object” consists of a number of bytes stored in memory. Since the actual
object address is unknown at compile time, it is represented by a symbolic name,
i.e., a unique string in the compilation unit. Object layout in memory is constrained
by the type of data contained in the object, so we provide the memory alignment in
our intermediate representation. Different data sections can hold objects, for instance,
objects in rodata are read-only, and those in the bss section are zero-initialized at
program launch. Finally, we can pass additional attributes (e.g., “global,” “static,” or
“external” flags) with compiler-defined keywords, and objects can have initialization
values.

Symbol specification
label string symbol name
size integer size in bytes

section string assembly section reference
origin integer offset from the beginning of the section
align integer alignment of the symbol
attr string array optional list of attributes
init (see below) optional initialization of data

If an object is initialized, all bytes must be specified. In this case, the init key
provides a YAML list of “type: value.” Although it is possible to specify all static
data initializations using the byte type, we provide other data types so that the initial-
ization stays human-readable and modifiable, and allows for instance to recover field
values in C structures. If some data field is a pointer, its initializer may be a relocatable
symbol instead of an absolute value, see the table below and the initialization of the
ptr field of the C structure in Figure 6.3 for an example.

6.4. LOOP SCOPED INFORMATION 71

struct s {
char str[16];
int i;
short s;
float *ptr;
long long l;
float f;
double d;

};

struct s foo = {
"Hello world!\n",
−2,
−1,
&foo.f,
123456,
2.1,
22.1234

};

C code

− section: ".data"
flags: [Write, Alloc]
align: 4

− object:
section: ".data"
origin: 0x0
label: foo
align: 8
size: 52
init:
− ascii: "Hello world!\n\0\0\0"
− s32: −2
− byte: 0xff
− byte: 0xff
− space: 2
− word: [foo, ’+40’]
− s64: 123456
− f32: 2.100000e+00
− space: 4
− f64: 2.212340e+01

Tirex data

Figure 6.3: A global structure in C on the left and the corresponding object in Tirex on
the right. The initialization is not unique, the short −1 uses two bytes to form 0xffff,
but could have been “s16: -1” or “u16: 65535.” The “space” where added to
satisfy alignment constraints of the pointer (4) and the double float (8).

Data initialization
byte hex string 8-bit hexadecimal value (e.g., "0x9f")

word hex string∗ 32-bit hexadecimal value
quad hex string† 64-bit hexadecimal value

s8 / u8 integer 8 bits signed/unsigned data
s16 / u16 integer 16 bits signed/unsigned data
s32 / u32 integer∗ 32 bits signed/unsigned data
s64 / u64 integer† 64 bits signed/unsigned data
f32 / f64 float 32/64-bit float / double float data

ascii string non null-terminated string of bytes
space integer pad a number of bytes with zeros

∗can also be symbol 32-bit address unknown at compile time
†can also be symbol 64-bit address unknown at compile time

6.4 Loop Scoped Information

In Tirex, we use the loops key to describe the loops within a function. A loop contains
its identifier, flags, an identifier of header basic block, description of body of the loop

72 CHAPTER 6. TIREX

and a parent loop identifier in case of nested loop. Memory dependences between
instructions are defined using a list of nodes and arcs connecting them. A unique
node must be previously added to an instruction within a basic block. The arcs contain
two node, and type of the dependence : flow, anti, output, and input.4

Listing 6.4 shows an example of a program with nested loops. On Listing 6.5
are fragments of the resulting Tirex code which show nodes naming and loop scope
definitions.

Loop scope information
loop string loop identifier
flags string array extra flags
header string this loop info header block
parent string identifier of parent loop if nested
body string array list of body basic blocks and nested loops
nodes string array list of nodes in this loop
arcs array arcs defined between the nodes

Listing 6.4: Example of a nested loop in C.

void main(int *A, int *B, int N) {
int i, j;
for (j =0;j<N;j++) {

A[j] += B[j];
for (i=0;i<N−2;i++) {

B[i+2] = B[i]+B[i+1];
}

}
}

Listing 6.5: Loop scoped dependences example.

1

− block: B5
frequency: 68.9708
successors: [B28: 1]
predecessors: [B4]

6 labels: [".L_BB5_main"]
operations:
− { op: mov_r_r, defs: [T187], uses: [’$r0’] }
− { op: mov_r_r, defs: [T184], uses: [T124] }
operation marked as node N1

11 − { op: ldw_i, defs: [T189], uses: [’4’, T124], node: N1 }
operation marked as node N2

− { op: ldw_i, defs: [T190], uses: [’0’, T124], node: N2 }
− { op: mov_r_r, defs: [T160], uses: [T189] }

16 − block: B7

4“Input” is not an actual dependence, but is used to detect and remove unnecessary loads.

6.4. LOOP SCOPED INFORMATION 73

frequency: 6897.08
successors: [B22: 0.01, B7: 0.99]
predecessors: [B28, B7]
labels: [".L__0_14"]

21 operations:
− { op: add_r, defs: [T160], uses: [T193, T160] }
− { op: cmpne_b_r, defs: [T163], uses: [T187, T142] }
operation marked as node N3

− { op: stw_i, uses: [’8’, T184, T160], node: N3 }
26 − { op: add_i, defs: [T184], uses: [T184, ’4’] }

− { op: mov_r_r, defs: [T193], uses: [T190] }
− { op: mov_r_r, defs: [T190], uses: [T160] }
− { op: add_i, defs: [T187], uses: [T187, ’1’] }
− { op: br, uses: [T163, ’.L__0_14’] }

31 − block: B4
frequency: 97.07
successors: [B26: 0.289474, B5: 0.710526]
predecessors: [B2, B8]
labels: [".L__0_9"]

36 operations:
operation marked as node N4

− { op: ldw_i, defs: [T147], uses: [’0’, T175], node: N4 }
operation marked as node N5

− { op: ldw_i, defs: [T146], uses: [’0’, T178], node: N5 }
41 − { op: add_r, defs: [T148], uses: [T146, T147] }

operation marked as node N6

− { op: stw_i, uses: [’0’, T178, T148], node: N6 }
− { op: br, uses: [T141, ’.L_BB5_main’] }

loops description

46 loops:
− loop: L1 # loop identifier

flags: [Inner] # Inner loop in the loop nest

header: B7 # header block

parent: L2 # parent loop identifier

51 body: [B7] # body basic blocks

nodes: [N3] # nodes marked inside the loop

arcs: [] # no arcs between nodes in this loop

− loop: L2
header: B4

56 body: [B4, B5, B28, [L1], B22, B26, B8] # list of basic blocks and nested loops

nodes: [N4, N5, N6, N1, N2] # nodes marked in this loop

arcs: # arcs definition

− [N4, N6, anti, 1, 0] # anti dependence between N4 and N6

− [N5, N6, anti, 1, 0] # anti dependence between N5 and N6

61 − [N6, N2, flow, 1, 0] # flow depencence between N6 and N2

− [N6, N1, flow, 1, 0] # flow depencence between N6 and N1

74 CHAPTER 6. TIREX

6.5 The use cases

Tools connection The first goal of the Tirex representation was to connect different
frontend compilers with the LAO optimizer. We have succesfully implemented Tirex
code generator in Open64 and LLVM after register allocation and before (SSA form).
The Tirex generator in GCC currently is implemented after register allocator, but the
work on the SSA Tirex form is ongoing. The generated code can be succesfully loaded
by the LAO and processed further, i.e., the program can be optimized and target
assembly generated. Specially modified compilation drivers allow for using the Tirex
step and connection to LAO transparently for the user.

What is important, as opposed to other existing IRs, Tirex allows to pass arbitrary
information when needed – it is very easy to add more extensions to the code gener-
ator without supporting it in all the consumers except the one that actually uses it. A
good example of such extensions is the loop scoop information that we pass from the
front compiler to the LAO.

Tirex in compiler testing One of the difficulties when writing and debugging com-
pilers is to find how to test specific parts of a compiler. Compiler phases are usually
deeply intertwined with other optimizations and the closer it is to the backend, the
farther it is from the frontend, hence the more difficult it gets to construct a working
high-level example written in source language. Indeed, every change in the flow of
compilation can slightly modify the intermediate representation, and the test might
then not work as expected. Worse, some parts of the compiler might become untested
without the programmer even realizing it. To complicate matters, our LAO compiler
receives its input from another compiler, which makes it even more difficult to gener-
ate the test cases we need.

Still, unit tests are mandatory in a production compiler, and the only alternative we
had prior to using Tirex was to explicitly construct the intermediate representation of
test programs on which to run our algorithms. For instance, to create a simple register
assignment “$r4 = 42” in a LAO unit test, we had to perform the six following steps:
create a new operation with one argument and one result, set the operator to COPY,
create a new temporary of type “immediate” with value 42, set it as the argument,
create a new temporary of type “assigned” to register 4, set it as the result.

Having a Tirex reading capability in LAO allowed us to rewrite most of our tests
in Tirex files given as input of the self-tests, making it easier to understand existing
tests and keeping them up-to-date with regards to the functionality they are testing.
This is also true for control-flow analyzes by using the Tirex predecessors and succs

keys in basic blocks, hence giving the possibility to have empty blocks, which would
not be possible in a C source file.

6.6. SUMMARY 75

Virtual execution environment While working on Tirex we have noticed that it could
be also used as an intermediate representation for a virtual execution environment, in
particular it could be interpreted or native code could be generated dynamically. Tirex
is target-dependent, i.e. the instruction set and ABI is exactly the same as for the
machine that hosts the VEE, but contains arbitrary information that could be used
by a dynamic compiler. This simplifies the interpretation and dynamic compilation
processes, but also makes the interoperability between native code and interpreter
much easier. We continue the discussion in the following chapters.

6.6 Summary

We have extended the specifications of MinIR to make it a target-level intermediate
representation for exchanging information between compilers (Tirex). Extensions in-
clude adding support for passing the data stream as well as loop scoped information
such as memory dependences to enable code generator optimizations. With these ex-
tensions, we were able to connect multiple upstream compilers (LLVM, Open64, and
soon GCC) to the LAO code generator, thus factoring target specific optimizations; It
can also be used as input of JIT systems lighter than those working on generic repre-
sentations since it is already at a target level; Finally, we also use Tirex to write unit
tests for the LAO code generator.

To conclude, we proposed a novel approach to JIT compilation, using a target-level
instruction stream in SSA form augmented, in particular, with loop scoped informa-
tion. This opens the door for exploration of techniques considered too expensive for
runtime. Our work on an SSA form interpreter and JIT compiler is described in Chap-
ter 7.

76 CHAPTER 6. TIREX

Chapter 7

The Tirex Runtime

In Chapter 1 we have already presented the main branches of dynamic translation
techniques, that is Just-In-Time and dynamic optimizers. The former is using a target-
independent IR for execution via interpretation and native code generation, and often
optimizes the native code by making use of information gained at runtime. The lat-
ter also uses dynamic information to gain more performance, but rather focuses on
existing, target-level binaries.

It became apparent since the Self system introduced by Hölzle and Ungar [1994];
Hölzle [1995], that achieving a good compromise between compilation speed and code
quality requires dynamic instrumentation or sampling techniques, that would allow
to decide what and when compile, and how to optimize it. This could be done by in-
terpretation, which facilitates the gathering of dynamic information during program
execution, as it is easier to implement profiling mechanisms along with interpretation
routines than inserting special code inside generated binary. Thanks to that, inter-
pretation is still a vital part of most of the modern virtual execution environments
that host dynamic optimizers [Bala et al., 2000], binary translators [Desoli et al., 2002]
and Just-in-Time compilers. Byte-code interpreters and JIT compilers are nowadays in
widespread use thanks to the Java programming language [Gosling et al., 1996]. Al-
though it is less efficient than direct execution of native code, it does not incur the time
and space overhead of running a compiler, which makes it beneficial on non frequently
executed portions of the program. This makes the coexistence of interpreters and JITs
reasonable and justified, and leads to introduction of virtual execution environments
such as the Java HotSpot engine designed by Oracle [2010].

Mixed-mode execution A problem inherent with interpreting target-independent
representations in a virtual execution environment is the mixed-mode execution inves-
tigated by Agesen and Detlefs [2000]. Processor calling conventions and data layout
rules (the processor ABI), and byte endianness, are usually not the same for the IR
and the underlying platform. This makes the calls to native functions (JIT compiled

77

78 CHAPTER 7. THE TIREX RUNTIME

or from libraries) from within the interpreted program problematic. The interpreter
has to call these functions via a trampoline, which is a special piece of code that makes
the function arguments compatible with the ABI requirements of the target processor,
and provides the result of a call compliant to the ABI of the interpreted IR. This task
could be more difficult depending on the complexity of the data structures passed as
the arguments and results.

The SSA form Modern compilers, including JIT compilers, exploit the advantages
of the Static Single Assignment (SSA) form. Whenever dynamic optimizers try to
improve performance of an existing binary containing native code (obviously not in
SSA), they have to transform this code into SSA to be able to benefit from the SSA
optimizations.

With regards to the SSA form, the target-independent IRs are in a slightly different
situation – they are not directly executable by a processor but rather by a virtual
machine. Although such IRs could be SSA by design, in practice they are not, with
the exception of the Low Level Virtual Machine bitcode. We think that one of the
reasons could be the fact noticed by Gal et al. [2005], that the size of code increases
when transformed to the SSA form because of increased number of variables and the
introduction of φ-functions in the instruction set. This of course is undesirable in
embedded systems with a constraint storage space.

Also, the bytecode IRs of the Java JVM or the CLI were designed before the prop-
erties of SSA were explored in virtual execution environments, and with an efficient
interpretation in mind. Krintz [2002] reported that for effective use of the SSA op-
timizations it would be better to have that form prepared statically, hence for the
compatibility reasons, he proposed to store and distribute two versions of a program
together: in SafeTSA (an IR in the SSA form developed by Wolfram et al. [2001]) for
compilation and in the Java bytecode for interpretation.

Stack versus Registers Most of the IRs executed on virtual machines are designed for
stack-based machines. However, as we reported in the introduction chapter, nowadays
most of such execution environments convert that stack-based IR into a three-address,
register based IR, usually in SSA for the JIT compilation purpose. Also, Shi et al. [2008]
reported that although stack-based IR is smaller, register-based IR requires less virtual
machine instructions to be interpreted, hence the execution time is smaller.

Tirex on the other hand, while being target-level is already in the three-address
form, moreover it supports SSA flavor, explicitly maintains the program structure,
keeps data objects separate, and allows for additional high-level information. Cur-
rently, this includes loop nesting forest and loop-scoped memory dependencies. Such
information ensures that program specialization and aggressive compiler optimiza-
tions can still be applied. Compared to target-independent IRs such as JVM and CLI

7.1. OVERVIEW 79

��������
���

����

���	
�

�

�
����

	
�

��

�
���������
�
������

���	�������
	

���������

�
��

������������
	

���

���

��������
�������
	 �� ��
�������
	
�����

�����
�������

��
��
��������

������

�!�������"����

"�
�#�������

�	�����	���
	�

"��	����������

�����������

�����������

����
��
��

������
�

���

�
��������
�

������������

 �

Figure 7.1: Tirex for mixed mode execution and JIT compilation.

bytecodes, or LLVM bitcode, Tirex needs more storage space and gives up the target
processor independence, but allows to move the burden of code lowering to proces-
sor ABI and instruction selection back to the upstream compiler, with the goal of
increasing the budget available for run-time compiler optimizations, thus targeting
performance. Also, the target-level IR simplifies interoperability between the inter-
preted and JITed code, as well as external native libraries by having the same ABI and
allowing to share between all three of them the run-time stack and global data.

Motivated by the limitations of both JIT and dynamic optimizers, and by the lack of
interpreters of the SSA form, in particular a target-dependent low-level intermediate
representation, in this chapter we present our work on a virtual execution environment
that fills the gap between these two aforementioned systems. It is designed to execute
Tirex by interpretation and run-time compilation. We also discuss the problems related
to SSA form interpretation and present our solutions. We provide a proof-of-concept JIT
compiler for Tirex and talk about issues with its dynamic compilation and code cache
management. Finally, we provide a framework (see Figure 7.1) that would allow for
experimentation with aggressive dynamic optimizations on a very low, target-level
SSA program representation.

The properties of Tirex allow to eliminate the mixed-mode execution problems re-
lated to ABI mismatch. Thanks to SSA form interpretation, we avoid SSA construction
overhead as well. Tirex is a three-address register-based IR, hence there is no need for
conversion from stack-based to register-based during runtime. This leads to a simpler
virtual execution environment that can reduce the execution and compilation time.

7.1 Overview

The Tirex runtime is implemented on the top of the Linear Assembly Optimizer frame-
work (see Figure 7.2). Its main blocks are the parser, the execution engine, the inter-

80 CHAPTER 7. THE TIREX RUNTIME

preter and dynamic code generator. What is interesting, in such system the run-time
stack and the global data can be shared among the interpreter, JITted code and external
native functions.

Figure 7.2: The Tirex virtual execution environment.

Parser The Tirex representation, being a YAML document when in textual form, can
be easily parsed by standard tools like libyaml. However, the LAO only uses libyaml
to tokenize the Tirex file. A recursive-descent parser directly builds the code and data
streams in the LAO internal structures. This design ensures that, by just changing
the tokenizer, a binary encoding of a Tirex representation could be read with low
overhead.

The Execution Engine The Figure 7.3 shows the initialization process of the exe-
cution engine (EE) in JIT-only mode. In case of mixed-mode execution with both
interpreted and compiled code, depending on the profiling data it either runs the in-
terpreter or triggers the JIT compilation and executes the resulted code. Its role in
the future will be also to decide when to recompile some parts of the code and apply
different optimizations.

After loading a program the EE allocates memory space for global data and re-
solves its addresses. If the data in Tirex program contains initial values the allocated
memory is set accordingly. After that, in the JIT-only mode the EE looks up the main
function which is used as the entry function and calls the JIT compiler. When the
compilation process is over, the main function is called.

Global data If a program contains the (global) data stream, after loading the program
and before the interpretation, memory space is allocated and the symbols related to
the data objects are resolved. Later, during interpretation, addresses of referenced

7.2. INTERPRETER 81

Figure 7.3: Execution engine initialization.

data are provided via the symbols. If a data object contains an initializer, the allocated
memory is initialized according to it. As the interpreted and native code use the same
ABI, there is no need of conversion when native (JITted or from libraries) functions
are called, hence exactly the same memory space is used.

The run-time stack The run-time stack is used to keep the stack frames of functions.
It is an array of memory that reflects an internal state of the interpreter. The run-time
stack of the interpreter should not be confused with the evaluation stack in stack-
based Virtual Machines (Tirex is a target-level IR, hence register-based). Similarly to
the global data, the run-time stack is shared by the interpreter and the native code.

7.2 Interpreter

The program interpretation is initialized by the execution engine, depending on given
options. A program can be run in the interpreter-only mode, JIT-only mode, or mixed-
mode. The interpreter support SSA form of Tirex, but can execute also a Out-of-

SSA Tirex allowing to keep some parts of the program fully formed. The core of the
interpreter consists of:

Behavioral functions The MDS uses the target processor description to generate a set
of behavioral functions. These functions are divided into three phases: fetch,
execute and write-back. While being initially designed to be used by the instruc-
tion set simulator (ISS), these functions are also used by our interpreter, which
we describe in more details in Section 7.2.1

The register Set The MDS provides the register set description and ABI register con-
ventions for the LAO. The register set description leads to the creation of an array
as a part of the interpreter. Elements of this array are then used by the behav-

82 CHAPTER 7. THE TIREX RUNTIME

ioral functions during interpretation, as if they were the architectural registers,
to store the computed values.

The trampoline The trampoline is a special function written in the assembly language
of the target architecture to ensure that no stack or register operation is per-
formed by the compiler. As arguments it takes three addresses that point to: the
interpreted register set, the interpreted stack, and the called function. It is used
to prepare the processors registers and to switch the stack before a function call.
We talk about the whole process with an example in Section 7.2.2.

7.2.1 Interpreting Instructions

An age-long debate whether a stack-based architecture or a register-based better suits
the interpretation did not provide general conclusions until work of Shi et al. [2008].
He shows that although stack-based code is smaller, the register-based requires fewer
executed instructions leading to significant speedups. The Tirex, being target-level,
naturally is register-based, thus the interpreter works with SSA variables and inter-
preted registers and the run-time stack used for local function storage.

The interpreter is implemented as a threaded interpreter, which executes so called
instruction behavioral functions that correspond to instructions in the Tirex form. These
functions are automatically generated by MDS and were designed to be used by the
instruction set simulator, but are suitable for interpretation purposes as well.

The Tirex IR does not contain entry directive, but rather the interpreter assumes
that a main function is the entry of a program. Hence, after loading Tirex, the inter-
preter searches for the main function and starts the execution from the first instruction
of this function. Interpretation of branch instruction is extended to process φ-functions
after executing behavior function for branch; Details are explained in Section 7.2.3.

φ-functions, call and return instructions are not interpreted using automatically
generated behavior functions, but by custom code. Call instructions are treated differ-
ently depending on whether the target is a function in the interpreted Tirex program
or some native code. In the first case a new context (memory space reserved for the
values of a function, see Section 7.2.3) is created and the target function is interpreted
afterward. When the return instruction is interpreted, the context is destroyed and the
interpreter goes back to the caller. If the target is a native function, a trampoline is
called to prepare the registers and stack as described in Section 7.2.2.

7.2.2 Calling Native Code

The fact that Tirex is already a target-level representation simplifies significantly inter-
operability between the interpreter and the native code, also called mixed-mode execu-
tion. Usually, when the interpreted intermediate representation is target-independent,

7.2. INTERPRETER 83

the ABI differs for native and interpreted code. This, plus in some cases, different en-
dianness and different sizes of types, require the interpreter to emit special code that
prepares the parameters passed to the native code and to get back the correct result.

Tirex, in the other hand, is already target-level with the same endianness, data
layout, calling conventions and sizes of parameters, hence the problem of mixed-mode
execution simply does not exist. To perform the call, the interpreter uses a trampoline,
which has to perform only a small number of tasks before:

1. Store the return address and stack pointer in memory

2. Copy arguments in interpreted registers to processor’s.

3. Point the processor’s stack pointer to the interpreter stack

4. Call the function (using indirect call, i.e., the address of the function)

and after:

1. Copy the returned values in processor registers to interpreted registers

2. Restore original return address and stack pointer

Depending on the call signature, the target processor architecture and its ABI,
parameters can be passed through registers, on the stack or both. An interesting
property of interpreting the Tirex representation is that the parameters are already
prepared by instructions preceding the call instruction. Parameters required to be in
registers will be put in interpreted registers, and those required to be on the stack will
be placed on the interpreter stack. Then, during the interpretation of a call instruction,
the trampoline function is called by the interpreter.

As an example, lets assume that the ABI requires up to four parameters to be
passed in registers r0 to r3 and the rest on the stack. Similarly a function should
return the result in up to four registers r0 to r3 or in the buffer allocated by the caller
on the stack if the result is bigger. An example of Tirex code just before a call could
be seen on Figure 7.4. While interpreting the code, each parameter is prepared in the
interpreted (not physical) register set and on the interpreter stack if necessary.

As illustrated on the Figure 7.5, inside the trampoline the processor return address
and stack pointer are saved in memory. At this moment the processor stack pointer
keeps the frame of the function that interprets the Tirex code. We set it to point to
the run-time stack of the interpreter. In other words, the real stack is switched with
the virtual run-time stack of the interpreter for the duration of the native call. This
allows interpreted and native code to effectively use the same stack. After this, the
interpreted registers specified in the ABI to pass the parameters are copied to their
processor equivalents. Finally the function is called using the provided address.

84 CHAPTER 7. THE TIREX RUNTIME

Figure 7.4: Example of a call in Tirex

Figure 7.5: Passing arguments before the call, saving stack pointer and return address
and switching stack pointers

After returning from the called function, only the return address and original stack
pointer are restored, as could be seen on the Figure 7.6. Also the processor registers
containing the result are copied to their interpreted equivalents. If the result was
passed on stack, there is no need to do anything as the run-time stack was switched
with the interpreted stack for the time of call.

The interpretation of target-level IR on the target architecture itself removes the
need to take care of any other registers in the trampoline. The caller-save processor
registers are already saved by code generated during the compilation of the interpreter
itself. As the trampoline does not use any register but the argument passing ones, it
does not matter if the called function uses the physical caller-save register or not.

7.2.3 Interpreting the SSA Form

The SSA form can be challenging for the interpretation process. The main property
of the SSA is that each variable has exactly one static assignment in the program. In
other words, a variable in a program can occur on the left side of only one instruction

7.2. INTERPRETER 85

Figure 7.6: Copying the result to the interpreted registers after the call and restoring
stack pointer and return address

in a program, possibly leading to a large number of variables. Another difficulty for
interpretation is the notion of φ-functions introduced to select and assign values at the
beginning of a basic block, depending on the incoming edge in the control flow.

Interpreted registers and contexts A source program uses a finite but unbounded
number of variables, while native code uses only a fixed (and small) number of reg-
isters. The process of mapping those variables to either memory or registers is called
register allocation. This step is one of the last performed during compilation, and a
program under SSA form still uses variables; Moreover it use even more variables than
the original program because of the SSA construction. Hence the memory require-
ments to store all the values during interpretation can be large.

Furthermore, we must ensure that the values in variables do not get erased by
mistake. The variables are given unique names so that different functions cannot
overwrite the values of their variables. However, these variables are not divided into
caller-save and callee-save as the processor registers. So, if a function is called multiple
times in different contexts, e.g., in the case of recursive functions, the variables in
this function will be overwritten. This makes the memory requirements even bigger,
especially in case of recursive calls.

Although a program in SSA could have large number of variables, which of them
will be actually used depends on the control-flow. So the amount of storage space,
obviously with a cost of dynamic allocation, could be limited to only required values.
Each time a function is entered, we create a new context on the context stack in similar
fashion as a new stack frame. A context is destroyed when control reaches return
instruction. A storage space for a value is provided on demand when needed in a
current context. As the amount and order of values inserted into a context could
differ, a context is implemented as a hash table to allow fast access to a required value.

86 CHAPTER 7. THE TIREX RUNTIME

Figure 7.7: An example of recursive function interpretation trace and its context stack
in different execution states.

Figure 7.7 shows a trace of instructions during interpretation of a recursive function
call (reduced only to two instructions per call for readability) and the context stack
in different execution states. After first instruction, variable T232 is inserted to the
current context, where already T231 was previously inserted. When interpreting a call
instruction, a new context is pushed on the context stack, on which variables will be
inserted. At this point, SSA variables can have multiple storage spaces, one for each
existing context. When return from function occurs, its context is popped from the
context stack.

φ-functions In his Interpretable SSA (ISSA) von Ronne et al. [2004] intermediate rep-
resentation, Von Ronne proposed to extend the instruction set with a “pfe” instruction
marking the end of φ-functions in a block, and an auxiliary CFG-Edge Number (CEN)
register. The CEN register is set when interpreting branching instructions to store the
path taken by the program. The φ-functions are then interpreted one by one but stor-
ing the results in temporary values. Finally, when encountering the pfe instruction,
results are copied into the correct variables. This solution allows for real direct im-
perative interpretation but requires extensions of the classical SSA form with a special
instruction and register, which we believe is unnecessary.

In our case, instead of setting an auxiliary register, interpretation of a branch in-
struction simply checks if there are any φ-function in the target basic block. If so,
they are interpreted and the results are also stored in temporary storage. Our SSA
form only allows φ-functions to be placed at the beginning of a basic block (as it is
usually the case), so when there is no more φ-function left, the values are copied to
their correct interpreted registers.

7.3 The JIT Compiler

In previous section we have shown that Tirex is suitable for interpretation of the SSA
form target-level program representation. However, execution only by interpretation

7.3. THE JIT COMPILER 87

does not make the virtual execution environment efficient, especially on a VLIW pro-
cessor where multiple instructions could be executed in parallel. In this section we
describe the proof-of-concept JIT compiler.

7.3.1 Code generation

The compilation process of the Tirex representation is very simple compared to com-
pilation of JVM or CLI bytecodes. It does not require lowering of calling conventions
and laying out the data. The instruction selection process was also done by the front-
end static compiler, thus the code generator has to perform only few tasks to emit a
binary code, including:

• register allocation if in SSA form,

• gathering call sites of other Tirex functions,

• request memory space from the code cache,

• encode the function.

Call sites To avoid keeping track of all call sites and the need for patching the native
code every time one of the called functions within is recompiled, all the calls are done
via a special callback function. For this purpose, during the compilation of a function
all the call instructions to Tirex functions are gathered, and the return address for each
of them is computed. Each call target is set to the callback function. Gathered pairs
of addresses and symbols related to the called functions are kept in a hash table as
shown on the Figure 7.8 and used later to identify the callee from within the callback
function.

Figure 7.8: Gathering call sites during compilation.

Figure 7.9 shows how a call occurs from within a compiled code. The callback
function is written in the target assembly to allow stack modification and registers
manipulation without loosing the call context of the callee itself. At the beginning a
new temporary stack frame is created where the call arguments are stored. Then the
symbol of the callee is looked up in the hash table using the given return address. If

88 CHAPTER 7. THE TIREX RUNTIME

the callee was already compiled, a pointer to the native code is returned, otherwise
the compilation is triggered.

After obtaining the pointer, call arguments previously stored on the stack frame
are restored, the temporary stack frame is destroyed and finally the callee function is
executed.

Figure 7.9: A function call from compiled code.

All the calls happen without giving back the control to the execution engine, hence
simplifying the process and chaining together the functions in a similar fashion as
bypassing the main translation loop in some virtual machines [Cmelik and Keppel,
1994; Lattner et al., 2002].

Instruction encoding The LAO relies on the MDS, which automatically generates
encoding functions and bundle templates based on the architecture description. Dur-
ing the final, code generation phase, the LAO emits the binary code directly to the
memory provided by the code cache, using the encoding functions.

7.3.2 Code cache

The code cache is an important part of a JIT environment. It is a memory space
designated to keep the generated native code and to execute this code from within.
As opposed to a static program, in a JIT environment the code is generated only for
parts of a program. Moreover, it is not always kept in memory during the whole
execution of that program because of the space constraints as well as a possibility of
its recompilation with a different optimization scheme applied.

The possibility and in some cases the need for removing the code because of re-
compilation or running out of memory space leads to memory fragmentation, bad
code locality and cash misses. These problems are a direct result of the code eviction

7.3. THE JIT COMPILER 89

Figure 7.10: The Code Cache.

algorithm used for the cache management. When the code cache is full, in order to
provide memory space for newly generated code a decision has to be made which
parts of existing code should be removed. This decision is difficult as it is hard to pre-
dict when and how often the existing fragment of code will be executed. In addition to
that difficulties, some parts of the code in the cache could be marked as unremovable
due to its current execution.

In LAO we use a single, circular buffer-like scheme shown on Figure 7.10, which
provides good performance with relatively cheap bookkeeping [Hazelwood and Smith,
2002]. In the future, when the profiling mechanisms and the interoperability with the
interpreter are on place, it will be extend to three-level generational code cache as
proposed by Hazelwood and Smith [2003], similar to shown on Figure 7.11.

Figure 7.11: Three level, generational Code Cache.

Each entry in the code cache starts with a metadata which contains a pointer to

90 CHAPTER 7. THE TIREX RUNTIME

the symbol attached to this entry, size of entry, and a pointer to next entry in the code
cache.

If the JIT compiler requires memory space to place the code, the code cache, start-
ing from current pointer, is gathering entries of space greater or equal than required
memory size plus the metadata. If one of the entries is marked as non-removable (i.e.,
being a function during execution), the process restarts from next entry. If the end
of buffer is reached, process restarts from the beginning. When sufficient entries are
found simply the metadata of the first one is overwritten to point to the next valid
entry and skipping the ones that will be overwritten without removing them. All the
values of symbols related to the entries being removed are set to NULL, to tell the call
back function that these functions are not yet compiled.

7.4 Summary

By choosing a target-level intermediate representation, we give up program portability
across processor architectures. However, this allows to keep the same processor calling
conventions and data layout rules (ABI) for both interpreted and native code. As our
implementation demonstrates, this choice dramatically simplifies the tasks that the
virtual execution environment has to do before and after a native function call in order
to provide compatibility of function arguments and results. In practice, mixed-mode
execution is no longer a problem.

A dynamic compiler is a natural complement of a interpreter-based virtual ma-
chine. Although our JIT compiler is not yet finished, we have shown that Tirex is
suitable for dynamic code generation and perfect for a mixed-mode execution with an
interpreter and external native libraries.

We also show how the SSA form of Tirex once loaded in the virtual execution
environment internal structures provides a unified program representation which is
directly used for interpretation and JIT compilation. Keeping only one intermediate
representation, in the SSA form, for both compilation and interpretation, assuming a
SSA interpreter exists, simplifies the virtual machine and reduces the memory require-
ments compared to keeping both, non-SSA and SSA, at the same time; and removes
the need for run-time SSA form construction.

In the following chapter we discuss future perspectives of the Tirex in static anal-
ysis and dynamic execution environment and we summarize the work presented in
this thesis.

Chapter 8

Conclusion

In this thesis we have presented a new, target-level intermediate representation called
Tirex, as well as its various applications. The work on Tirex, however, is not yet
complete, but also creates new opportunities. In the following sections we discuss the
future work and ideas that can be realized using Tirex and existing infrastructure, and
summarize this thesis.

8.1 Future work

8.1.1 Intermediate representation

Although the current state of the intermediate representation allows for generating
fully functional program, as well as passing additional information used by the op-
timizer and code generator, there is still some work left on important functionality,
including passing debug information and encoding the IR in a binary form, as well as
providing some more extensions.

Debug information One of the first reasons of creating Tirex was connection of some
popular compilers with an advanced, target-specific optimizer. This step interferes
with a regular compilation chain. It is already not trivial task to provide accurate
debug information when aggressive optimizations are applied in a single compiler,
thus tracing the faulty code back to the source code while providing additional level
of optimizations outside the main compiler could be even more difficult. Nevertheless,
in an industrial quality software development toolkit this functionality is required. In
its current state, however, Tirex does not specify debug information, but we plan to
extend the specification and implement it in the both Tirex code generator and the
optimizer in the nearest future.

91

92 CHAPTER 8. CONCLUSION

Binary form The current, textual form of the Tirex representation, although being
excellent for experiments and testing parts of the compilation toolchain with the ability
of its inspection and modification by hand, is not well suitable for virtual execution
environment due to the overhead of text parsing and its size. Because of that we
need to encode Tirex in a binary which was already considered during the design of
the current parser. Also, this can speed up the static compilation process of bigger
projects with the aggressive optimizations enabled by reducing the time of writing
and reading of a text file.

Polyhedral optimizations Polyhedral representation of static control loops is a sig-
nificantly more powerful representation of loop behavior and memory dependencies
than the current loop scoped information with regards to program transformations,
but it is restricted to special cases, the so-called “static control program” parts. As we
plan to use optimizations based on the polyhedral model, again, we will need to find
a way to efficiently encode this information in Tirex.

8.1.2 The runtime

The Tirex runtime is already partially in place, however in the current state being
more proof-of-concept than production-grade, requires some cleanup and improvements
focused on the interpreter and the dynamic compiler.

Instruction interpretation The core of the interpreter was build using the behavior
functions generated automatically from the Machine Description System. It allowed
to save lot of time while building a working interpreter, however not without price.
These function were designed to be part of the instruction set simulator, thus to pro-
vide correct results of instructions on any architecture. They use extensively casting
up for the internal computation purpose and casting back down while returning com-
puted values, as well as bit manipulation and calling helper functions, making the
interpretation process inefficient.

Tirex, however, is a target-level representation, and as such must be interpreted
on a specific architecture. In such case it is more natural to interpret the instruction
set with the underlying processor’s instruction set. In the nearest future we will re-
place the behavior functions by automatically generated inline assembly that would
execute correct instructions directly by the processor and improving the interpretation
efficiency drastically.

Profiling The main reason of using interpreter is to avoid the startup overhead in-
troduced by the JIT compiler and relatively easy prepare the ground for that compiler
to work. We plan to implement mechanisms of gathering profile and dynamic infor-
mation of a program to use them to drive the JIT compilation process and deciding

8.2. PERSPECTIVES 93

what and how to optimize. Thanks to a unified, target-level intermediate represen-
tation for both interpretation and JIT, the control-flow after Out-of-SSA in generated
(not-optimized) binary will be similar to that in the interpreted code, thus the profile
gathered by the interpreter will more accurately reflect the native code and hopefully
be more useful for optimizations.

JIT compiler The current proof-of-concept JIT compiler does not do much more than
compiling one function at a time when the threshold is exceeded in the interpreter
mode and managing the code cache. Tirex with the memory dependencies annotated
along with a program has the potential for aggressive runtime optimizations. The
future work will focus mainly on enabling and experimenting with these optimizations
and dynamic instruction scheduling on a VLIW processor.

Also, our JIT system is running on a massively parallel processor, thus exploring
multicore code generation and execution with provided memory dependencies, as
well as interpretation, code generation and optimizations in parallel, is a natural step
forward in gaining performance.

There is also space left for improving the code cache in terms of efficient pro-
cessor’s cache and memory management especially challenging in a heavily parallel
environment.

8.2 Perspectives

8.2.1 Execution traces and program analysis

Tirex with its runtime can be also used as a tool for program analysis, which could
be useful not only for further optimizing of a given program, but also for finding
problems in the compilers itself. In this section we present an idea of such a use case
of Tirex proposed by Fabrice Rastello, that we plan to implement in the nearest future.

Figure 8.1: Dependencies verification and optimal schedule search.

94 CHAPTER 8. CONCLUSION

The idea is based on a simple use of the Tirex interpreter for tracing memory
loads and stores, and arithmetic instructions that are accessing registers, all of them
discriminated by loops, hence directly profiting from the loop nesting forest kept in
the Tirex form.

Each loop is equipped with a counter set to zero while passing by the entry node
or exit edge, and incremented while passing by a back-edge. To avoid having to big
traces, the number of iterations traced is limited to n. Also, to get a unique iteration
vector for each line of trace, each instruction in the trace has a unique identifier.

Such a trace could be used, among others, for two purposes, as shown on Fig-
ure 8.1. One of them is to construct data dependencies that could be compared with
dependencies computed by a static compiler. Further analysis of both dependencies
can be useful for investigating why compiler decided not to perform some optimiza-
tions and potentially verify correctness of the computed dependencies. Finally, this
knowledge can also be used for instruction scheduling in a dynamic execution en-
vironment, thus allowing to obtain more optimal schedule, than the one generated
during static compilation.

Later, for the purpose of trace, Tirex could be equipped with more information
than simple loop nesting forest, but also with data dependencies, aliasing and other if
needed to perform more sophisticated tracing and program analysis.

The trace The trace will most likely be also represented using YAML, similarly to
Tirex, profiting from its human-readable form and making it easy to write analyses
using scripting languages like Perl, Python or Ruby.

S0

S1

S2

S3

S4

LbLa

Figure 8.2: Simplified example of loop Lb nested inside loop La. S0 − S4 correspond
to some statements inside the loops.

On Figure 8.2 we give a very simple example of two loops La and Lb. For the
simplicity we omit the division to basic blocks leaving only statements S0 − S4 that
correspond to some arithmetic or memory access instructions inside the loops.

8.2. PERSPECTIVES 95

Example of the trace gathered by the interpreter is given on Listing 8.1. The field
Index is a iteration vector, where the numbers are accordingly La counter, Lb counter
and statement identifier. Statement corresponds to an actual operation that could
be specified directly or renamed in the header of the trace. Def and Uses contains
given operation results and arguments. In the example $A(), $B(), $C() are arrays
of memory, that should be specified in the header of trace. Instead an address could
be used directly.

Listing 8.1: Example of trace memory and register accesses.

Trace:
− { Index: "(0,0,0)", Statement: S0, Def: $r12 }
− { Index: "(0,0,1)", Statement: S1, Uses: [@A(0)], Def: $r10 }
− { Index: "(0,0,2)", Statement: S2, Uses: [@B(0)], Def: $r11 }
− { Index: "(0,0,3)", Statement: S3, Uses: [$r12, $r10, $r11], Def: $r12 }
− { Index: "(0,1,1)", Statement: S1, Uses: [@A(1000)], Def: $r10 }
− { Index: "(0,1,2)", Statement: S2, Uses: [@B(1)], Def: $r11 }
− { Index: "(0,1,3)", Statement: S3, Uses: [$r12, $r10, $r11], Def: $r12 }
− { Index: "(0,2,1)", Statement: S1, Uses: [@A(2000)], Def: $r10 }
− { Index: "(0,2,2)", Statement: S2, Uses: [@B(2)], Def: $r11 }
− { Index: "(0,2,3)", Statement: S3, Uses: [$r12, $r10, $r11], Def: $r12 }
− { Index: "(0,0,4)", Statement: S3, Uses: [$r12], Def: @C(0) }
− { Index: "(1,0,0)", Statement: S0, Def: $r12 }
− { Index: "(1,0,1)", Statement: S1, Uses: [@A(1)], Def: $r10 }
− { Index: "(1,0,2)", Statement: S2, Uses: [@B(0)], Def: $r11 }
− { Index: "(1,0,3)", Statement: S3, Uses: [$r12, $r10, $r11], Def: $r12 }
− { Index: "(1,1,1)", Statement: S1, Uses: [@A(1001)], Def: $r10 }
− { Index: "(1,1,2)", Statement: S2, Uses: [@B(1)], Def: $r11 }
− { Index: "(1,1,3)", Statement: S3, Uses: [$r12, $r10, $r11], Def: $r12 }
− { Index: "(1,2,1)", Statement: S1, Uses: [@A(2001)], Def: $r10 }
− { Index: "(1,2,2)", Statement: S2, Uses: [@B(2)], Def: $r11 }
− { Index: "(1,2,3)", Statement: S3, Uses: [$r12, $r10, $r11], Def: $r12 }
− { Index: "(1,0,4)", Statement: S3, Uses: [$r12], Def: @C(1) }

8.2.2 WCET

Worst case execution time or WCET is an important program analysis used as an input
for schedulability in real-time systems. WCET is a maximal time that a given task
needs to complete the computation for any input data on a specific hardware.

Some of the main WCET timing computation techniques rely on the static anal-
ysis [Wilhelm et al., 2008]. As high-level languages lack the context and the target-
processor details, they are inadequate to calculate the accurate time. Because of that,
the analysis is done on the assembly to capture all effects of the given processor, how-
ever often with some annotations passed from the higher-level language [Li and Malik,
1995; Mok et al., 1989].

Generalized approach to WCET requires three steps:

96 CHAPTER 8. CONCLUSION

control-flow analysis Also called high-level analysis, tries to identify possible paths of
execution and bounding the loops.

processor-behavior analysis Or low-level analysis, determining the effects of the archi-
tecture on the execution time.

WCET computation Combining the two above to obtain the overall WCET.

One of the main approaches to such a WCET computation is technique called
IPET (Implicit Path Enumeration Technique) proposed by Li and Malik [1995] and imple-
mented in the Otawa [Ballabriga et al., 2010] project. In this method, each basic-block
and program flow edge has given time coefficient corresponding to its upper bound
execution time, and a counter corresponding to the number of times the basic-block
is executed or flow edge taken. Then the sum of products of the execution times and
counts is used to computed the WCET.

The IPET method, as well as other static methods require, as mentioned before,
control-flow analysis and processor-behavior analysis. The tools like Otawa, operating
on binaries, have to reconstruct the CFG, identify basic blocks and loops before starting
the computation. Also, as the Otawa authors state, some information needed for the
WCET computation cannot be automatically extracted from the binary, hence must
be provided by the programmer as special annotations. This information is called
flow-facts and in Otawa contains mainly loop bounds information specified in a special
file.

We believe that Tirex could be successfully used in WCET computation process
instead of the target binary and flow-fact file. First, it is target-level, hence suitable for
processor-behavior analysis, secondly containing explicit program structure, including
basic-blocks and loops, thus simplifying the CFG construction, and finally by allowing
for passing additional information, which in that case would be loop bounds informa-
tion as well as any other required for the purpose of WCET technique.

8.2.3 Native software simulation

Native software simulation [Yoo et al., 2003] comes from a very simple idea applied very
often by embedded software developers: software compilation on the host machine
instead of cross-compiling, in order to perform fast, functional validation. Thus, as op-
posed to classical Instruction Set Simulators (ISS) where each instruction is interpreted
one by one, in native software simulation a program is compiled and executed on the
host machine with some wrappers to connect event-driven simulation environment.

Pure native simulation, however, allows only for functional simulation, without
any accurate target-specific information, that would allow for estimate timings. Petrot
et al. [2011] discuss different approaches to simulation, including native simulation.

One of the approaches discussed by Pétrot and his colleagues, uses binary transla-

tion techniques. The process starts directly from the target binary code. The binary is

8.3. SUMMARY 97

translated statically or during the simulation (JIT simulation) to the instruction-set of
the underlying machine. Everything that cannot be provided by the host-platform is
modeled in the simulation framework. However, to obtain accurate simulation results,
the host-platform code has to be annotated with the target-specific details. The target
binary has to be inspected in order to recreate the program structure, the CFG, and to
extract information such as number of instructions per basic block, number of memory
accesses, etc.

We believe, that Tirex can be used as an input for the binary translation method.
It is already target-dependent and contains explicit program structure that allows for
easy CFG construction. Also, the ability for passing additional information when
needed can be useful for the simulation purpose.

8.3 Summary

We have presented Tirex, a new intermediate representation, characterized mainly by
the following properties:

Human-readability The textual, YAML foundation makes it human-readable, thus
useful for fast inspection and modification ’by hand’. This property makes the
tools prototyping and testing processes, as well as program analysis very simple.
YAML simplifies also the parsing process and allows for processing using many
different scripting languages.

Target-level We have intentionally given up target-independence, to be able to move
as much of work as possible to the frontend compiler. The backend compiler has
to focus only on the target-level optimizations.

Explicit program structure Although target-level, Tirex is much more useful for fur-
ther processing then assembler, thanks to the explicit program structure, includ-
ing functions, loops and basic blocks, as well as uses and definitions of instruc-
tions and branch targets.

Static single assignment Tirex supports programs in SSA and mixed-forms, hence
avoiding the need of SSA construction in the backend compiler.

Flexibility One of the design goals was to allow adding more information when
needed, without the need of implementing its support in all the tools. We have
presented an example of such extension, data dependencies. If a backend com-
piler or other tool does not know what to do with this information, it could
simply ignore it.

Thanks to these properties, although created to simplify connection between main-
stream, frontend compilers, with proprietary, specialized, target-specific backend op-

98 CHAPTER 8. CONCLUSION

Figure 8.3: Tirex in many applications.

timizer, Tirex have proven to be useful also for writing backend tests ’by hand’ or
modifying compiler-generated files, by providing very clear and extensible structure.

Our interest in dynamic compilation techniques and the search for gaining more
performance lead us also to use of Tirex in a virtual execution environment, consisting
of a interpreter and JIT compiler. Tirex, being very low-level, moves the burden of lots
of compilation phases that do not really profit from dynamic information, to the fron-
tend compiler. Of course, this comes with the price of loosing target-independence
in contrast to Java JVM or CLI, but as in our environment the frontend languages
are mostly C and C++, that is languages allow for pointer arithmetics and direct op-
erations on memory, the target-independence would be difficult or even impossible
to achieve. In return, however, we gain the time to perform during runtime more
aggressive, target-dependent optimizations that could further benefit from additional
information included in the IR, such as data dependencies discriminated by loops.

We have proven that Tirex is suitable for both, interpretation (also in SSA) and
JIT compilation, and what is even more important in case of mixed-mode execution,
by using exactly the same stack and global data as well as the ABI for interpretation
and native code, the process of calling native code from within the interpreter, and
interpreted from native, does not require very special care from the VEE, hence making
the switch between interpretation, JIT and the code from native libraries very cheap.
Furthermore, the same IR in SSA form for both interpretation and JIT removes the
need for IR conversion and makes the CFG in both cases very similar, thus making the
profiling information very accurate.

With the additional information, such as data dependencies, and its ability for
extending that information (e.g., aliasing) in combination with the interpreter, Tirex

8.3. SUMMARY 99

opens lots of possibilities for tracing memory and register accesses and its further
analysis potentially allowing for finding problems in frontend compilers or simply
amend dynamic optimizations in the VEE. The explicit program structure, including
loop nesting forest with other information could be used in static analysis, program
execution analysis and in other tasks including WCET computation and native simu-
lation, hence giving unlimited possibilities of program analysis on a very low level.

100 CHAPTER 8. CONCLUSION

List of Figures

1.1 Static compilation . 3
1.2 Dynamic compilation . 4
1.3 Simplified JIT structure . 6
1.4 Simplified dynamic optimizer structure 8

2.1 Instructions with the defined values and used parameters. 13
2.2 Example procedure, its control-flow graph and a dominator tree. 15
2.3 Example of C code and its representation in SSA. 17
2.4 Swapping of two variables in SSA form using φ-procedures. 18
2.5 Example of data dependencies between statements. 19
2.6 Example of data dependence graph. 19
2.7 An example of a loop tree for given CFG and its spanning tree. 21

4.1 GCC-CIL compilation and execution flow 34
4.2 CIL Code sizes normalized by CIL code size of GCC-CIL -Os. 47
4.3 Metadata sizes normalized by metadata size of GCC-CIL -Os. 48

5.1 The framework . 49
5.2 MDS (Machine Description System) work-flow. 52
5.3 C to Tirex compilation using LLVM . 55
5.4 Program processing in the LAO . 58

6.1 Tirex in our toolchain. The MDS supplies target-specific files to build
the upstream compilers and LAO code generator. The path from GCC
is not yet functional. 61

6.2 Shortnames are created by using operand types to disambiguate instruc-
tions with the same mnemonic. 64

6.3 A global structure in C on the left and the corresponding object in
Tirex on the right. The initialization is not unique, the short −1 uses
two bytes to form 0xffff, but could have been “s16: -1” or “u16:
65535.” The “space” where added to satisfy alignment constraints of
the pointer (4) and the double float (8). 71

101

102 LIST OF FIGURES

7.1 Tirex for mixed mode execution and JIT compilation. 79
7.2 The Tirex virtual execution environment. 80
7.3 Execution engine initialization. 81
7.4 Example of a call in Tirex . 84
7.5 Passing arguments before the call, saving stack pointer and return ad-

dress and switching stack pointers . 84
7.6 Copying the result to the interpreted registers after the call and restoring

stack pointer and return address . 85
7.7 An example of recursive function interpretation trace and its context

stack in different execution states. 86
7.8 Gathering call sites during compilation. 87
7.9 A function call from compiled code. 88
7.10 The Code Cache. 89
7.11 Three level, generational Code Cache. 89

8.1 Dependencies verification and optimal schedule search. 93
8.2 Simplified example of loop Lb nested inside loop La. S0− S4 correspond

to some statements inside the loops. 94
8.3 Tirex in many applications. 98

Listings

6.1 Example of a MinIR program from the MinIR project 63
6.2 Dummy example of a Tirex program . 65
6.3 Example of section definitions. 69
6.4 Example of a nested loop in C. 72
6.5 Loop scoped dependences example. 72
8.1 Example of trace memory and register accesses. 95

103

104 LISTINGS

Bibliography

Ali-Reza Adl-Tabatabai, Michał Cierniak, Guei-Yuan Lueh, Vishesh M. Parikh, and
James M. Stichnoth. Fast, effective code generation in a just-in-time java compiler.
SIGPLAN Not., 33:280–290, May 1998. ISSN 0362-1340.

Ole Agesen and David Detlefs. Mixed-mode bytecode execution. Technical report,
Mountain View, CA, USA, 2000.

B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality of variables in pro-
grams. In Proceedings of the 15th ACM SIGPLAN-SIGACT symposium on Principles

of programming languages, POPL ’88, pages 1–11, New York, NY, USA, 1988. ACM.
ISBN 0-89791-252-7. doi: 10.1145/73560.73561. URL http://doi.acm.org.gate6.

inist.fr/10.1145/73560.73561.

Joel Auslander, Matthai Philipose, Craig Chambers, Susan J. Eggers, and Brian N.
Bershad. Fast, effective dynamic compilation. SIGPLAN Not., 31:149–159, May 1996.
ISSN 0362-1340.

Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo: a transparent
dynamic optimization system. SIGPLAN Not., 35:1–12, May 2000. ISSN 0362-1340.

Clément Ballabriga, Hugues Cassé, Christine Rochange, and Pascal Sainrat. Otawa:
An open toolbox for adaptive wcet analysis. In SEUS, pages 35–46, 2010.

Oren Ben-Kiki, Clark Evans, and Brian Ingerson. YAML 1.2 Specification, 2009. http:
//www.yaml.org/spec/.

Benoit Boissinot. Towards an SSA-based Compiler Back-end: Some Interesting Properties of

SSA and Its Extensions. PhD thesis, École Normale Supérieure de Lyon, 2010.

Benoit Boissinot, Sebastian Hack, Daniel Grund, Benoît Dupont De Dinechin, and
Fabrice Rastello. Fast Liveness Checking for SSA-Form Programs. In CGO ’08:

Proceedings of the sixth annual IEEE/ACM international symposium on Code Generation

and Optimization, pages 35–44, New York, NY, USA, 2008. ACM.

105

106 BIBLIOGRAPHY

Benoit Boissinot, Alain Darte, Fabrice Rastello, Benoît Dupont De Dinechin, and
Christophe Guillon. Revisiting Out-of-SSA Translation for Correctness, Code Qual-
ity and Efficiency. In CGO ’09: Proceedings of the 2009 international symposium on

Code Generation and Optimization, pages 114–125, Washington, DC, USA, 2009. IEEE
Computer Society.

Florent Bouchez. A Study of Spilling and Coalescing in Register Allocation as Two Separate

Phases. PhD thesis, École Normale Supérieure de Lyon, 2009.

Preston Briggs, Keith D. Cooper, Timothy J. Harvey, and L. Taylor Simpson. Prac-
tical improvements to the construction and destruction of static single assign-
ment form. Softw. Pract. Exper., 28:859–881, July 1998. ISSN 0038-0644. doi:
10.1002/(SICI)1097-024X(19980710)28:8<859::AID-SPE188>3.0.CO;2-8. URL http:

//dl.acm.org/citation.cfm?id=295545.295551.

Christian Bruel. If-Conversion SSA Framework for partially predicated VLIW archi-
tectures. In ODES 4, pages 5–13, March 2006.

Derek Bruening, Timothy Garnett, and Saman Amarasinghe. An infrastructure for
adaptive dynamic optimization. In Proceedings of the international symposium on Code

generation and optimization: feedback-directed and runtime optimization, CGO ’03, pages
265–275, Washington, DC, USA, 2003. IEEE Computer Society. ISBN 0-7695-1913-X.

Bryan Buck and Jeffrey K. Hollingsworth. An api for runtime code patching. Inter-

national Journal of High Performance Computing Applications, 14(4):317–329, 2000. doi:
10.1177/109434200001400404. URL http://hpc.sagepub.com/content/14/4/317.

abstract.

Michael G. Burke, Jong-Deok Choi, Stephen Fink, David Grove, Michael Hind, Vivek
Sarkar, Mauricio J. Serrano, Vugranam C. Sreedhar, Harini Srinivasan, and John
Whaley. The jalapeno dynamic optimizing compiler for java. In Proceedings of the

ACM 1999 conference on Java Grande, JAVA ’99, pages 129–141, New York, NY, USA,
1999. ACM. ISBN 1-58113-161-5.

Wen-Ke Chen, Sorin Lerner, Ronnie Chaiken, and David M. Gillies. Mojo: A dynamic
optimization system. In Proceedings of the 3rd ACM Workshop on Feedback-Directed and

Dynamic Optimization, pages 81–90, 2000.

Michal Cierniak and Wei Li. Briki: an optimizing java compiler. Computer Conference,

IEEE International, 0:179, 1997. ISSN 1063-6390.

Bob Cmelik and David Keppel. Shade: a fast instruction-set simulator for execution
profiling. In Proceedings of the 1994 ACM SIGMETRICS conference on Measurement and

modeling of computer systems, SIGMETRICS ’94, pages 128–137, New York, NY, USA,
1994. ACM. ISBN 0-89791-659-X. doi: http://doi.acm.org/10.1145/183018.183032.
URL http://doi.acm.org/10.1145/183018.183032.

BIBLIOGRAPHY 107

Robert S. Cohn, David W. Goodwin, and P. Geoffrey Lowney. Optimizing alpha exe-
cutables on windows nt with spike. Digital Technical Journal, 9:3–20, 1997.

Charles Consel and François Noël. A general approach for run-time specialization
and its application to c. In POPL ’96: Proceedings of the 23rd ACM SIGPLAN-SIGACT

symposium on Principles of programming languages, pages 145–156, New York, NY,
USA, 1996. ACM. ISBN 0-89791-769-3.

Marco Cornero, Roberto Costa, Ricardo Fernandez Pascual, Andrea Ornstein, and
Erven Rohou. An Experimental Environment Validating the Suitability of CLI as
an Effective Deployment Format for Embedded Systems. In HiPEAC International

Conference, 2008.

Roberto Costa and Erven Rohou. Comparing the Size of .NET Applications with
Native Code. In CODES+ISSS ’05: Proceedings of the 3rd IEEE/ACM/IFIP international

conference on Hardware/software codesign and system synthesis, pages 99–104, New York,
NY, USA, 2005. ACM.

Roberto Costa, Andrea Ornstein, and Erven Rohou. CLI Back-End in GCC. In Proceed-

ings of the GCC Developers’ Summit, 2007.

Timothy Cramer, Richard Friedman, Terrence Miller, David Seberger, Robert Wilson,
and Mario Wolczko. Compiling java just in time. IEEE Micro, 17(3):36–43, May
1997. ISSN 0272-1732. doi: 10.1109/40.591653. URL http://dx.doi.org/10.1109/

40.591653.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck. Efficiently computing static single assignment form and the control depen-
dence graph. ACM Trans. Program. Lang. Syst., 13(4):451–490, 1991. ISSN 0164-0925.

François de Ferrière. Improvements to the psi-ssa representation. In Proceedingsof the

10th international workshop on Software & compilers for embedded systems, SCOPES ’07,
pages 111–121, New York, NY, USA, 2007. ACM.

Giuseppe Desoli, Nikolay Mateev, Evelyn Duesterwald, Paolo Faraboschi, and
Joseph A. Fisher. Deli: a new run-time control point. In Proceedings of the 35th annual

ACM/IEEE international symposium on Microarchitecture, MICRO 35, pages 257–268,
Los Alamitos, CA, USA, 2002. IEEE Computer Society Press. ISBN 0-7695-1859-1.

L. Peter Deutsch and Allan M. Schiffman. Efficient implementation of the smalltalk-80
system. In Proceedings of the 11th ACM SIGACT-SIGPLAN symposium on Principles of

programming languages, POPL ’84, pages 297–302, New York, NY, USA, 1984. ACM.
ISBN 0-89791-125-3. doi: 10.1145/800017.800542. URL http://doi.acm.org/10.

1145/800017.800542.

108 BIBLIOGRAPHY

Benoît Dupont De Dinechin. From machine scheduling to VLIW instruction schedul-
ing. ST Journal of Research, 1(2), 2004.

Benoît Dupont De Dinechin. Time-IndexedFormulations and a Large Neighborhood
Search for the Resource-Constrained Modulo Scheduling Problem. In 3rd Multidis-

ciplinary International Scheduling conference: Theory and Applications (MISTA), 2007.

Benoît Dupont De Dinechin. Inter-block Scoreboard Scheduling in a JIT Compiler for
VLIW Processors. In Euro-Par, pages 370–381, 2008.

Benoît Dupont De Dinechin, François de Ferrière, Christophe Guillon, and Artour
Stoutchinin. Code Generator Optimizations for the ST120 DSP-MCU Core. In
CASES’00: Proceedings of the 2000 international conference on Compilers, Architecture,

and Synthesis for Embedded Systems, pages 93–102, New York, NY, USA, 2000. ACM.

ECMA International. Standard ECMA-335 - Common Language Infrastructure (CLI). 4 edi-
tion, 2006. URL http://www.ecma-international.org/publications/standards/

Ecma-335.htm.

Chris Fraser and David Hanson. lcc, A Retargetable Compiler for ANSI C.
http://www.cs.princeton.edu/software/lcc/.

Andreas Gal, Christian W. Probst, and Michael Franz. Structural encoding of static
single assignment form. Electron. Notes Theor. Comput. Sci., 141(2):85–102, 2005. ISSN
1571-0661.

Adele Goldberg and David Robson. Smalltalk-80: the language and its implementation.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1983. ISBN 0-
201-11371-6.

James Gosling, Bill Joy, and Guy L. Steele. The Java Language Specification. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1996. ISBN 0201634511.

K. John Gough. Compiling for the .Net Common Language Runtime. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 2001. ISBN 0130622966.

Brian Grant, Matthai Philipose, Markus Mock, Craig Chambers, and Susan J. Eggers.
An evaluation of staged run-time optimizations in dyc. SIGPLAN Not., 34:293–304,
May 1999. ISSN 0362-1340.

David R. Hanson. lcc.NET: targeting the .NET Common Intermediate Language from
Standard C. Software Practice and Experience, 34(3):265–286, 2004.

Paul Havlak. Nesting of reducible and irreducible loops. ACM Transactions on Pro-

gramming Languages and Systems, 19(4), 1997.

BIBLIOGRAPHY 109

Kim Hazelwood and Michael D. Smith. Code cache management schemes for dynamic
optimizers. Interaction between Compilers and Computer Architecture, Annual Work-

shop on, 0:102, 2002. doi: http://doi.ieeecomputersociety.org/10.1109/INTERA.
2002.995847.

Kim Hazelwood and Michael D. Smith. Generational cache management of code traces
in dynamic optimization systems. In Proceedings of the 36th annual IEEE/ACM Inter-

national Symposium on Microarchitecture, MICRO 36, pages 169–, Washington, DC,
USA, 2003. IEEE Computer Society. ISBN 0-7695-2043-X. URL http://dl.acm.org/

citation.cfm?id=956417.956551.

Urs Hölzle. Adaptive optimization for self: Reconciling high performance with ex-
ploratory programming. Technical report, Mountain View, CA, USA, 1995.

Urs Hölzle and David Ungar. A third-generation self implementation: reconciling
responsiveness with performance. In Proceedings of the ninth annual conference on

Object-oriented programming systems, language, and applications, OOPSLA ’94, pages
229–243, New York, NY, USA, 1994. ACM. ISBN 0-89791-688-3. doi: http://doi.acm.
org/10.1145/191080.191116. URL http://doi.acm.org/10.1145/191080.191116.

Alexandra Jimborean, Luis Mastrangelo, Vincent Loechner, and Philippe Clauss.
Vmad: An advanced dynamic program analysis and instrumentation framework.
In Michael O’Boyle, editor, Compiler Construction, volume 7210 of Lecture Notes in

Computer Science, pages 220–239. Springer Berlin / Heidelberg, 2012. ISBN 978-3-
642-28651-3.

Chandra Krintz. Improving mobile program performance through the use of a hybrid
intermediate representation. In Proceedings of the inaugural conference on the Principles

and Practice of programming, 2002 and Proceedings of the second workshop on Intermediate

representation engineering for virtual machines, 2002, PPPJ ’02/IRE ’02, pages 175–180,
Maynooth, County Kildare, Ireland, Ireland, 2002. National University of Ireland.
ISBN 0 901519 87 1. URL http://dl.acm.org/citation.cfm?id=638476.638511.

Chris Lattner, Misha Brukman, and Brian Gaeke. Jello: a retargetable just-in-time
compiler for llvm bytecode, 2002.

Michael Laurenzano, Mustafa M. Tikir, Laura Carrington, and Allan Snavely. Pebil:
Efficient static binary instrumentation for linux. In ISPASS, pages 175–183. IEEE
Computer Society, 2010. ISBN 978-1-4244-6022-9. URL http://dblp.uni-trier.

de/db/conf/ispass/ispass2010.html#LaurenzanoTCS10.

Julien Le Guen, Christophe Guillon, and Fabrice Rastello. Minir, a minimalistic in-
termediate representation. In Florent Bouchez, Sebastian Hack, and Eelco Visser,
editors, Proceedings of the Workshop on Intermediate Representations, pages 5–12, 2011.

110 BIBLIOGRAPHY

Mark Leone and R. Kent Dybvig. Dynamo: A staged compiler architecture for dy-
namic program optimization, 1997.

Allen Leung and Lal George. Static single assignment form for machine code. In
Proceedings of the ACM SIGPLAN 1999 conference on Programming language design and

implementation, PLDI ’99, pages 204–214, New York, NY, USA, 1999. ACM. ISBN
1-58113-094-5.

Yau-Tsun Steven Li and Sharad Malik. Performance analysis of embedded software
using implicit path enumeration. In Proceedings of the ACM SIGPLAN 1995 workshop

on Languages, compilers, & tools for real-time systems, LCTES ’95, pages 88–98, New
York, NY, USA, 1995. ACM. doi: 10.1145/216636.216666. URL http://doi.acm.

org/10.1145/216636.216666.

Serge Lidin. Expert .NET 2.0 IL Assembler. Apress, 2006.

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: build-
ing customized program analysis tools with dynamic instrumentation. SIGPLAN

Not., 40(6):190–200, June 2005. ISSN 0362-1340. doi: 10.1145/1064978.1065034. URL
http://doi.acm.org/10.1145/1064978.1065034.

Microsoft. Unix custom application migration guide, 2006. URL http://technet.

microsoft.com/en-us/library/bb496996.aspx.

Sun Microsystems. The java hotspot virtual machine, 2001. URL http://java.sun.

com/products/hotspot/docs/whitepaper/Java_HotSpot_WP_Final_4_30_01.html.

A. Mok, P. Amerasinghe, M. Chen, and K. Tantisirivat. Evaluating tight execution time
bounds of programs by annotations. IEEE Real-Time Syst. Newsl., 5(2-3):81–86, May
1989. URL http://dl.acm.org/citation.cfm?id=87662.87681.

Mono. Linear intermediate language, 2012. URL http://www.mono-project.com/

Linear_IL.

Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight dy-
namic binary instrumentation. SIGPLAN Not., 42(6):89–100, June 2007. ISSN 0362-
1340. doi: 10.1145/1273442.1250746. URL http://doi.acm.org/10.1145/1273442.

1250746.

Oracle. The java hotspot performance engine architecture, 2010. URL http://java.

sun.com/products/hotspot/whitepaper.html.

Frederic Petrot, Nicolas Fournel, Patrice Gerin, Marius Gligor, Mian-Muhammed
Hamayun, and Hao Shen. On mpsoc software execution at the transaction level.

BIBLIOGRAPHY 111

IEEE Design & Test of Computers, 28:32–43, 2011. ISSN 0740-7475. doi: http:
//doi.ieeecomputersociety.org/10.1109/MDT.2010.118.

Artur Pietrek, Florent Bouchez, and Benoît Dupont De Dinechin. Tirex: A target-level
intermediate representation for compiler exchange. In Florent Bouchez, Sebastian
Hack, and Eelco Visser, editors, Proceedings of the Workshop on Intermediate Represen-

tations, pages 13–20, 2011.

G. Ramalingam. On loops, dominators, and dominance frontiers. ACM Transactions on

Programming Languages and Systems, 24(5), 2002.

Fabrice Rastello, François de Ferrière, and Christophe Guillon. Optimizing Translation
Out of SSA Using Renaming Constraints. In CGO ’04: Proceedings of the international

symposium on Code generation and optimization, pages 265–278, 2004.

Bob Ramakrishna Rau. Levels of representation of programs and the architecture of
universal host machines. In MICRO 11: Proceedings of the 11th annual workshop on

Microprogramming, pages 67–79, Piscataway, NJ, USA, 1978. IEEE Press.

B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers and re-
dundant computations. In Proceedings of the 15th ACM SIGPLAN-SIGACT sympo-

sium on Principles of programming languages, POPL ’88, pages 12–27, New York,
NY, USA, 1988. ACM. ISBN 0-89791-252-7. doi: 10.1145/73560.73562. URL
http://doi.acm.org.gate6.inist.fr/10.1145/73560.73562.

Kevin Scott and Jack Davidson. Strata: A software dynamic translation infrastructure.
In In IEEE Workshop on Binary Translation, 2001.

Yunhe Shi, Kevin Casey, M. Anton Ertl, and David Gregg. Virtual machine showdown:
Stack versus registers. ACM Trans. Archit. Code Optim., 4:2:1–2:36, January 2008.
ISSN 1544-3566. doi: http://doi.acm.org/10.1145/1328195.1328197. URL http://

doi.acm.org/10.1145/1328195.1328197.

Vugranam C. Sreedhar, Guang R. Gao, and Yong-Fong Lee. Identifying loops using
dj graphs. ACM Trans. Program. Lang. Syst., 18:649–658, November 1996. ISSN 0164-
0925. doi: http://doi.acm.org/10.1145/236114.236115. URL http://doi.acm.org/

10.1145/236114.236115.

Vugranam C. Sreedhar, Roy Dz-Ching Ju, David M. Gillies, and Vatsa Santhanam.
Translating Out of Static Single Assignment Form. In SAS ’99: Proceedings of the

6th International Symposium on Static Analysis, pages 194–210, London, UK, 1999.
Springer-Verlag.

Amitabh Srivastava and Alan Eustace. Atom: a system for building customized pro-
gram analysis tools. SIGPLAN Not., 29(6):196–205, June 1994. ISSN 0362-1340. doi:
10.1145/773473.178260. URL http://doi.acm.org/10.1145/773473.178260.

112 BIBLIOGRAPHY

Amitabh Srivastava and David W. Wall. A practical system for intermodule code
optimization at link-time, 1992.

Bjarne Steensgaard. Sequentializing program dependence graphs for irreducible pro-
grams. Technical report, 1993.

Artour Stoutchinin and François de Ferrière. Efficient Static Single Assignment Form
for Predication. In MICRO: Proceedings of the 34th Annual International Symposium on

Microarchitecture, pages 172–181, 2001.

Artour Stoutchinin and Guang Gao. If-conversion in ssa form. In Marco Danelutto,
Marco Vanneschi, and Domenico Laforenza, editors, Euro-Par 2004 Parallel Process-

ing, volume 3149 of Lecture Notes in Computer Science, pages 336–345. Springer Berlin
/ Heidelberg, 2004.

T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue, M. Kawahito, K. Ishizaki, H. Ko-
matsu, and T. Nakatani. Overview of the ibm java just-in-time compiler. IBM Syst.

J., 39(1):175–193, January 2000. ISSN 0018-8670. doi: 10.1147/sj.391.0175. URL
http://dx.doi.org/10.1147/sj.391.0175.

Gabriele Svelto, Andrea Ornstein, and Erven Rohou. A Stack-Based Internal Repre-
sentation for GCC. In International Workshop on GCC Research Opportunities (GROW),
2009.

David Ungar and Randall B. Smith. Self: The power of simplicity. In Conference pro-

ceedings on Object-oriented programming systems, languages and applications, OOPSLA
’87, pages 227–242, New York, NY, USA, 1987. ACM. ISBN 0-89791-247-0. doi:
10.1145/38765.38828. URL http://doi.acm.org/10.1145/38765.38828.

Kapil Vaswani and Y. N. Srikant. Dynamic recompilation and profile-guided optimi-
sations for a .net jit compiler. IEE Proceedings - Software, 150(5):296–302, 2003.

Jeffery von Ronne, Ning Wang, and Michael Franz. Interpreting programs in static
single assignment form. In Proceedings of the 2004 workshop on Interpreters, virtual

machines and emulators, IVME ’04, pages 23–30, New York, NY, USA, 2004. ACM.
ISBN 1-58113-909-8. doi: http://doi.acm.org/10.1145/1059579.1059585. URL http:

//doi.acm.org/10.1145/1059579.1059585.

Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan
Thesing, David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann,
Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat, and Per
Stenström. The worst-case execution-time problem–overview of methods and sur-
vey of tools. ACM Trans. Embed. Comput. Syst., 7(3):36:1–36:53, May 2008. ISSN 1539-
9087. doi: 10.1145/1347375.1347389. URL http://doi.acm.org/10.1145/1347375.

1347389.

BIBLIOGRAPHY 113

Am Wolfram, Niall Dalton, Jeffery von Ronne, and Michael Franz. Safetsa: a type
safe and referentially secure mobile-code representation based on static single as-
signment form. In Proceedings of the ACM SIGPLAN 2001 conference on Programming

language design and implementation, PLDI ’01, pages 137–147, New York, NY, USA,
2001. ACM. ISBN 1-58113-414-2. doi: http://doi.acm.org/10.1145/378795.378825.
URL http://doi.acm.org/10.1145/378795.378825.

Sungjoo Yoo, Iuliana Bacivarov, Aimen Bouchhima, Yanick Paviot, and Ahmed A. Jer-
raya. Building fast and accurate sw simulation models based on hardware abstrac-
tion layer and simulation environment abstraction layer. In DATE ’03: Proceedings of

the conference on Design, Automation and Test in Europe, page 10550, Washington, DC,
USA, 2003. IEEE Computer Society. ISBN 0-7695-1870-2.

