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Resumé
Dans le but d'établir un modèle prédictif pour la croissance tumorale in-vivo et la
thérapie, le modèle multi-échelle doit être élaboré et calibré par étape et de façon indi-
viduelle pour chaque type de cellule ciblé et pour di�érents environnements (in-vitro et
in-vivo).

Nous présenterons, en tant que preuve de concept et à partir de di�érentes sources
de données, les étapes de la construction et de la paramétrisation du modèle de la
croissance avasculaire des lignées de cellules EMT6/Ro et SK-MES-1.

Dans une première étape, un modèle multi-échelle à base d'agents a été construit
et validé avec des données provenant de la littérature sur les sphéroïdes multicellulaires
de carcinomes mammaires de souris EMT6/Ro. Pour cette lignée de cellules, il a pu
prédire que la cinétique de croissance est contrôlée par une combinaison de contraintes
spatiales et de limitation des nutriments. Il a été trouvé que l'ATP est la ressource
critique que les cellules essayent de garder constante en permutant d'un métabolisme
aérobique à anaérobique et ce pour de larges plages de concentrations d'oxygène et de
glucose. La saturation de la croissance a été observé uniquement dans le cas de faibles
concentrations d'oxygène et de glucose ce que le modèle a pu expliqué par une migration
guidée par l'adhésion de cellule à cellule.

Dans une seconde étape, le modèle a été adapté à la lignée cellulaire SK-MES-1.
Nous avons calibré la cinétique de croissance qualitativement en analysant des images
de cryosections de sphéroïdes marquées pour l'apoptose et la prolifération et quantita-
tivement en la comparant des courbes de croissance. Au delà de l'ATP, le lactate a été
identi�é comme contrôlant la taille du noyau nécrotique.

Pour rendre compte de la situation in-vivo, nous proposons une extension du modèle
qui prend en compte un réseau de vaisseaux sanguins et le phénomène de l'angiogenèse
associé. A�n de paramétrer les propriétés des vaisseaux fonctionnels et dans le but de
valider les lois de l'angiogenèse, nous menons à partir d'images de perfusion d'agents de
contraste une étude de sensibilité aux paramètres.

Dans un premier temps, nous résolvons le problème direct de la perfusion des agents
de contraste dans un réseau de vaisseaux perméables ou non. Ensuite, nous résolvons
le problème inverse rigoureusement et, grâce à des comparaisons directes entre les
paramètres originaux et ceux récupérés, nous étudions la capacité de prédiction du
modèle dans di�érents cas.
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Abstract

In order to establish a predictive model for in-vivo tumor growth and therapy, a multi-
scale model has to be set-up and calibrated individually in a stepwise process to a
targeted cell type and di�erent environments (in-vitro and in-vivo).

As a proof of principle we will present the process chain of model construction and
parametrization from di�erent data sources for the avascular growth of the EMT6/Ro
and the SK-MES-1 cell line. In a �rst step, a multiscale and individual-based model has
been built up and validated with EMT6/Ro mouse mammary carcinoma multi-cellular
cell spheroid data from literature. For this cell line it predicted the growth kinetics to
be controlled by a combination of spatial restrains and nutrient limitation. ATP was
found to be the critical resource which the cells try to keep constant over a wide range of
oxygen and glucose medium concentrations by switching between aerobic and anaerobic
metabolism. Only if both, oxygen and glucose are very limiting saturation was observed
which the model could explain by cell-cell-adhesion-driven migration. In a second step,
the model was adapted to the SK-MES-1 cell line. The growth kinetics was calibrated
quantitatively in comparison with growth curves and qualitatively by image analysis of
spheroid cryosections stained for apoptosis and proliferation. Beside ATP, lactate was
identi�ed to control the size of the necrotic core.

For the transition to the in-vivo situation, we propose a model extension introducing
a blood vessel network and angiogenesis. In order to parametrize the functional vessel
properties and to validate angiogenesis rules, we study the parameter inference from
contrast enhanced perfusion images. As a benchmark, we �rst solve the direct problem
of contrast agent perfusion along a network of either permeable or non-permeable ves-
sels. Then by voxel-wisely solving the inverse problem and direct comparison between
recovered and original parameter maps we study its predictive e�ciency for di�erent
cases.
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Chapter 1

Introduction
This chapter aims at giving a summary of the motivations of this work: what is
cancer? How can mathematical models help to study cancer? How can such complex
models be parametrized with speci�c data? In the following, we will give a brief
background on the biology of cancer, treatment strategies and experimental
investigation methods of special interest for this thesis. In the next section, a coarse
overview of recent models addressing cancer in its avascular and angiogenic stages will
be given. An overview of the research conducted in this thesis will then be presented.
Finally, we will close with an outline of the manuscript.
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4 CHAPTER 1. INTRODUCTION

1.1 Motivation

Cancer is a leading cause of death worldwide, accounting for 7.6 million deaths
(around 13% of all deaths) in 2008. With almost 20% (1.37 million deaths)
lung cancer is the most common cause of cancer-related death in men and women
[http://www.who.int].

Computer simulations can help to guide experiments and identify (or exclude) the
microscopic mechanisms leading to phenomena on the tissue scale typically observed
in cancerous tissues: uncontrolled cell growth, hyper-nutrition/hypoxia, the creation of
necrotic areas, blood vessel remodeling/angiogenesis and the formation of metastasis.

Multi-scale models in particular are excellent tools to combine the �ndings from
very di�erent data sources (in-vitro tumor spheroids, in-vivo animal models and patient
data) on di�erent scales (molecular, cellular, tissue etc.) and, thus, allow us to relate
and extrapolate their insights between one another. Once a model is parametrized,
it can make predictions and be the basis for developing and optimizing new cancer
therapies and treatment strategies.

Below a more detailed introduction into cancer, models of cancer and multi-scale
models is given before an overview about this thesis is presented.

1.2 Background on Cancer

1.2.1 Carcinogenesis

Cancer arises from a series of mutations that are manifested in phenotypic changes of
both the cells and the local tissue structure. The process of a healthy cell turning into
a malignant cancer is in general referred to as carcinogenesis. It was shown that more
than one mutation is required before a normal cell will transform into a cancer cell
[FV90].
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Figure 1.1: Carcinogenesis. Schematic of the evolution from an healthy cell to a malig-
nant and invasive cancer. Image modi�ed from [http://science.education.nih.gov]

Figure 1.1 shows the typically observed evolution of a cancer. At the stage of
neoplasia or in-situ tumor, a pre-state on the path to invasive cancer, cells divide out
of control but still form a compact colony well separated from its environment. The
transition from an in-situ tumor to invasive cancer is marked by a number of steps. This
includes angiogenesis, the formation of new blood vessels to supply the growing tumor
with oxygen and nutrients, and detachment of cells from the tumor that subsequently
invade the tissue and the blood vessels to be transported into distant organs where they
can lead to the formation of secondary tumors, so called metastases [DJRC+10].

1.2.2 "Hallmarks" of Cancer

Figure 1.2: Hallmarks of cancer (1-8) and
enabling characteristics (A-B). Image mod-
i�ed from [HW11]

Hanahan and Weinberg [HW00, HW11]
believe that the capabilities all cancer (or
malignant tumor) cells acquire during car-
cinogenesis can be characterized by eight
common traits ("hallmarks") (see �gure
1.2):

(1) The acquisition of self-su�ciency
in growth signals and (2) the loss of sensi-
tivity to anti-growth signals leads to uncon-
trolled growth. (3) The acquired resistance
to cell death (i.e. apoptosis) allows cells
to grow despite genetic errors and external
anti-growth signals. (4) The loss of senes-
cence leads to limitless replicative poten-
tial (immortality). (5) The active recruit-
ment of new vessel via angiogenesis allows
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the tumor to grow beyond the limitations of passive nutrient di�usion. (6) Acquisition of
ability to invade neighboring tissues or blood vessels and to create metastases at distant
sites, the de�ning property of invasive carcinoma. (7) Deregulation of cellular energetics
limits the metabolism to glycolysis even under aerobic conditions. (8) Avoiding immune
destruction.

Thereby, the genetic alterations leading to a particular capability as well as the
order in which these capabilities are acquired might be quite variable across di�erent
cancer types.

1.2.3 Treatments

Several cancer treatments target some of the above described "hallmarks":

Chemotherapy Chemotherapeutic drugs exploit the fact that cancer cells have an
increased proliferative activity (Hallmarks 1 & 2). They a�ect cell division or DNA
synthesis and function, which in general stops cell division and leads to cell death
[TC08]. Chemotherapy is a very widely used anti-cancer therapy (without and after
surgery). Nevertheless, it has multiple side-e�ects, e.g. patients dramatically lose body
mass, and get a weakened immune-system due to chemotherapeutic drugs killing healthy
cells in proliferation as well.

Radiotherapy Radiation therapy works by damaging the DNA of cancerous cells.
This DNA damage is caused by one of two types of energy, photon or charged particle.
As cancer cells have a diminished ability to repair sub-lethal damage (Hallmark 3),
single-strand DNA damage is passed on through cell division. Consequently, damage to
the cancer cells' DNA accumulates, causing them to die or reproduce more slowly.

Anti-angiogenic therapies Folkman �rst made the hypothesis that tumor growth is
angiogenesis-dependent and that inhibition of angiogenesis could be therapeutic [Fol71]
(Hallmark 5). While VEGF (vascular endothelium growth factor) neutralization can
initially limit tumor proliferation due to its anti-angiogenic e�ect, it can also result
in transient vascular normalization with improved oxygenation and perfusion [Jai05],
favoring drug delivery. In the last 35 years, it has been estimated that > 200 compa-
nies have worked and are still working in the area of angiogenesis and several of the
compounds that modulate angiogenesis are currently being evaluated in clinical trials
[Rib10]. Nevertheless, their e�ciency stays very questionable: Clinical responses of
anti-angiogenic therapies have been found to be transitory and can even lead to an
increase of invasiveness and metastasis [ELCM+09]. For critical reviews on this subject
see ref. [BH08, Rib10, EK11].



1.2. BACKGROUND ON CANCER 7

1.2.4 Biological Tumor Models & Clinical Investigation

Tumors are studied with di�erent biological models.

In early development, tumors grow up to 1-2mm in diameter, nourished by nutrients
and oxygen of the existing vasculature. This phase is often called the avascular growth
(neoplastic and in-situ tumor stage, see �gure 1.1); many aspects of this growth phase
are extensively studied in-vitro by growing multi-cellular tumor spheroids (MCTS).
MCTS show a similar establishment of pathophysiological gradients and the concentric
arrangement of heterogeneous cell populations (see �gure 1.3(b)) as found in avascular
tumor nodules, micro-metastases or inter-capillary micro-regions of solid in vivo tumors.
Multi-Cellular Tumor Spheroids (MCTSs) can be cultivated in large batch cultures, e.g.
in hanging drops or microarrays (see �gure 1.3(a)). A recent review on MCTS can be
found in [HMD+10].

On the other hand, the e�ect of vascularization, angiogenesis as well as anti-angio-
genic drugs require an in-vivo model. As preclinical models, mouse xenografts became
a very popular tool to mimic cancer growth and tumor-induced vessel remodeling by
transplanting human cancer cells under the skin of mice. In general, a genetically
manipulated mouse, called the nude mouse (see �gure 1.4), is used which as consequence
of a mutation is lacking a thymus1. This is expressed by missing body hair and a reduced
number of T cells making nude mice a good host system for human tumor cells as their
immune system is not rejecting them. Its use for experimental and clinical investigations
of human tumor cells are discussed e.g. in [JB78, JB82].

For preclinical (e.g. xenografts, see above) and clinical (patient) studies of new
treatments or treatment e�ciency, non-invasive methods are used to examine tumor
progression and drug e�ects on tumor vascularization (in case of angiogenic treatment).
This allows a temporal monitoring without harming the body. Examples are ultrasound
(US), magnet-resonance imaging (MRI) or computer tomography (CT). In most cases
they are used in combination with contrast agents which are injected into the blood
stream in order to enhance the visibility of blood vessels. Contrast-Enhanced Ultra-
sound (CE-US) for example uses air-�lled micro-bubbles which, due to their echogenic-
ity2 di�erent to tissue, create a large contrast between vessels and tissue and allow the
quanti�cation of blood vessel volume (see �gure 1.4) [PHL+08]. More advanced tech-
niques of dynamic enhancement even allow to quantify dynamic properties as blood
�ow (for DCE-US see e.g. [LCC+11]) and vessel permeability (for DCE-MRI see e.g.
[BSP+91, TK91, BBH+99, TBB+99, BKL+04, BZKG09]) by the evaluation of temporal
sequences of images.

1The thymus "educates" T-lymphocytes (T cells), which are critical cells of the adaptive immune
system.

2Echogenicity is the ability to bounce an echo.
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C

Figure 1.3: An individual microarray can be accommodated within each of the wells of a
standard 6-well tissue culture plate for the scalable production of over 10,000 spheroids
(A). Microscopy image compilation of uniformly sized human HT29 colon carcinoma
spheroids cultivated on the perforated thin �lm polydimethylsiloxane (PDMS) micro-
pattern (B). Combination of analytical images of spheroid median sections studied with
di�erent technologies: autoradiography, the tunnel assay, bioluminescence imaging, and
probing with oxygen micro-electrodes. Together these measurements enable the concen-
tric arrangement of cell proliferation, viability and the micro-milieu in large spheroids
to be understood (C). Ref. [HMD+10]
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Figure 1.4: SPAQ-based molecu-
lar imaging. (A) A nude mouse
(tumor implanted s.c. on the right
hind leg) is placed on an ultra-
sound pad. (B) The ultrasound
transducer is �xed below the nav-
igable table that can be moved
in micrometer increments. (C )
During the ultrasound scan (me-
chanical index = 1.6), the tar-
geted micro-bubbles disintegrate
and emit detectable signals (yel-
low dots; red, region of inter-
est). The two-dimensional ultra-
sound images are reconstructed to
a three-dimensional dataset that
is analyzed quantitatively by an
automatic video densitometry sys-
tem as to the color pixel density
within the region of interest. Ref.
[PHL+08]
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1.3 Background on Modeling Tumor Growth

There are mainly three types of approaches for which representative recent references
are given: (1) continuum models (Partial Di�erential Equations (PDEs) in time and
space) where the density of the di�erent components evolves in time and space (see
e.g. [WLFC08, PT09, BRJ+09]), (2) agent-based models that describe each entity
individually (for example, at the cellular level how tumor and endothelial cells grow,
divide, move and die).

1.3.1 Multi-Scale Models for Cell Dynamics

The di�erent approaches have also been combined in hybrid or multi-scale models. Ex-
amples include agent-based models for cells and continuum models [SMH05, JPGCF05,
ABM05, DH05, DHB07, KSO07, WBR08, RCDCA08, RCCAD09] or simpli�ed assumed
pro�les [BR06, LR06] for di�usion of oxygen, nutrients and/or growth factors or in-
hibitors. Note that in [KSO07] the di�erent tumor zones were represented with either
agent-based models or continuum models.

1.3.2 Multi-Scale Models of Vascularization

The e�ect of vasculature is explored with a given network [ABM05] or includes angio-
genesis and remodeling [BR06, LR06, MMA+09, OAMB09], angiogenesis being by itself
an active subject of modeling (see e.g. [MAC06, MWO04, CM09, SGZ+09, PBC+11]).

1.3.3 Problem: Parametrization

Despite the large variety of models, the quantitative parametrization stays a di�cult
task. Problems are the large number of parameters and the lack of validation of underly-
ing mechanisms. Many models are �tted to the growth dynamics of the cell population
(e.g. [SMH05, JPGCF05]) without verifying that the mechanisms leading to certain
growth curves and cellular arrangements correspond to experimental �ndings (see �g-
ure 1.3(b)). E.g. the transition from the exponential to a linear radius growth phase
can be due to contact-inhibition or nutrient-limitation.

Especially challenging is the parametrization of models mimicking angiogenesis. The
spatial and functional organization of the vessel structure spans over many scales (µm−
cm). The dynamic properties (pressure, �ow, shear, etc.) depend on the topology (vessel
radii, branching, etc.) and vice-versa. In order to get the topological information of the
vascular trees down to the capillary scales (e.g. histology) one loses information about
the dynamic properties and the possibility to monitor their changes within the course
of time as the host has to be sacri�ced. Non-invasive acquisition strategies, on the other
hand, su�er from coarse resolutions not reaching the micro-vessel scales (�gure 1.4).
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1.4 Research Overview

1.4.1 Funding Project and Objectives

Figure 1.5: EPO ef-
fect on tumor pro-
gression. [LUNGSYS
proposal]

This thesis was de�ned in the scope of a research network and
grant project on lung cancer (LUNGSYS) funded by the Ger-
man ministry of education and research (BMBF).

In this project, the motivation to study lung cancer was,
that lung cancer is the most lethal cancer world wide. Due
to late diagnosis in the majority of the cases, only few pa-
tients undergo surgery. Instead, they are often treated by sys-
tematic chemotherapy which as a side-e�ect causes anemia3.
To compensate for anemia, chemotherapy is often combined
with the administration of Recombinant Human Erythropoietin
(rHuEPO) which is a growth factor that controls the red blood
cell production.

In clinics it has been observed, that the administration of
rHuEPO to patients might in some cases promote the propaga-
tion of lung cancer. One reason could be the over expression
of EPO-receptor discovered in many cancer cells, especially the
Non-Small-Cell Lung Carcinoma (NSCLC), or EPO-speci�c ef-
fects on endothelial cells promoting angiogenesis (see �g. 1.5).
But overall, the reasons remain unclear.

The LUNGSYS project addresses the question of how EPO
in�uences tumor growth during chemotherapy, by a system bi-
ology approach. The idea is to systematically analyze tumor
cells on di�erent scales (intra-cellular, cellular and tissue scale)
in di�erent systems (in-vitro monolayers and spheroids, in-vivo
xenograft models and patient) and combining their insights in
a multi-scale model to gain a better understanding of the inter-
actions on and between the di�erent scales.

1.4.2 Scienti�c Questions Addressed in this Thesis

Tumor Growth as a Complex Multi-Scale Process

The growth of tumors in-vivo is a complex process, which is largely in�uenced by many
di�erent factors:

3Anemia (or anaemia) is a decrease in number of red blood cells (RBCs) or less than the normal
quantity of hemoglobin in the blood.
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Figure 1.6: Components and relations between them involved in tumorigenesis or can-
cerogenesis spanning over di�erent time and space scales. Pictograms depict the biolog-
ical or biochemical compounds and the boxes their modeled counterparts. Otherwise
there were also signal transduction pathways, gene regulation networks etc.
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1. Cell Type: Every tumor cell type can show di�erent growth, death and even
migratory behaviors. Depending on the individual genetic, and thus phenotypic
alterations, tumor cells might respond di�erently to growth or survival promoting
(e.g. growth factors, nutriment supply, etc.) or - often resist - inhibiting (e.g.
contact-inhibition, nutrient-limitation, intoxication by metabolites and scattered
remainings of necrotic cells) conditions and signals.

2. Environment: the tumor cell population is embedded in a healthy tissue con-
sisting of other cells (e.g. tissue dependent cells, endothelial cells, macrophages
etc.). Those represent a physical constraint to an expanding tumor cell population
and furthermore - as the tumor cells themselves - have a fundamental impact on
the chemical environment (concentration gradients throughout the tissue). Cells
communicate with their surrounding via the secretion and reception of signal-
ing molecules (e.g. under-oxygenated cells spread Vascular Endothelial Growth
Factor (VEGF) which stimulates endothelial cells to grow and form new blood
vessels). The vascularization supplies nutrients and oxygen to the tissue (and
tumor) which is essential for cell survival and replication. Cells, on the other
hand, consume those nutrients and secrete metabolites which - especially under
anaerobe conditions - can harm other cells if not eliminated.

The spatio-temporal evolution of a tumor (see carcinogenesis in section 1.2.1, �gure
1.1), i.e. the speed and the pattern of expansion into the healthy tissue and the spatial
arrangement of cell phenotypes within the tumor (proliferating, quiescent and necrotic
cells), emerges directly from the interplay of all those factors on di�erent spatial and
temporal scales (see �gure 1.6).

Role of Mathematical Models

Biological experiments are the main tool to identify possible dependencies by systemat-
ically altering some of the (possible) factors, but cannot entirely explain the underlying
mechanisms linking those factors. Here mathematical models become very useful: hy-
potheses on biological mechanisms made from experimental observations can be tested
in-silico and tested by direct comparison between the experimental and simulation
outcomes. Mathematical and computational models give formalized interpretations of
the biological processes that lead to the experimental observations. This allows to
(1) integrate �ndings of di�erent experimental setups (in-vitro: suspended cell culture,
mono-layer and spheroid, in-vivo: xenografts) or patient and (2) to predict how tumor
progression changes under di�erent conditions. A fundamental di�erence between tu-
mors and multi-cellular tumor spheroids is the embedding tissue, vascularization and
the tumor-induced angiogenesis. We ask the question of how vascularization and angio-
genesis in�uence the growth of tumors, and vice-versa.
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1.4.3 Strategy & Methods

To pursue the questions asked above, a tumor growth model framework was created
in a step-wise process, increasing the complexity of the model gradually. For each new
component (cells, molecules and blood vessels) we studied how to parametrize the corre-
sponding model module and how to couple it to the rest of the model from experimental
data of comparable complexity. The parametrization process called several times for
enrichments of the model: proposal of mechanisms (chapters 3 & 4) to better capture
experimental spheroid data (chapters 2) and in the study of perfusion imaging, building
of a much more complex vascular network (chapter 6) than in the initial vascularized
tumor model (chapter 5). For a summary see �gure 1.7.
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Figure 1.7: Process chain of modeling and parametrization as a step-wise process per-
formed in this thesis.
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Part I: Model Framework for Avascular Tumor Growth

The �rst part of this thesis focuses on the construction of a model framework that
mimics avascular tumor growth and its parameterization from data of a speci�c cell
type. As avascular tumors show strong similarities with MCTSs (see section 1.2.4) in
terms of concentric organization (proliferating rim, quiescent rim and necrotic core) and
temporal evolution (exponential growth, linear radius growth and saturation), MCTSs
were chosen as the biological reference model for comparison and parameterization.

First a model framework was built mainly based on data from literature considering
all relevant spatial scales and components, i.e. cells (section 3.2) and molecules (section
3.3), as experimental data were not available at that time. Here spheroid data on
EMT6/Ro cells were chosen for parameterization as they are a very well studied cell
line.

In a second step, experiments with spheroids of the lung cancer cell line SK-MES-
1 were performed by our experimental partners from funding project LUNGSYS, Dr.
Benedikt Müller and Prof. Margareta Müller from the DKFZ (German Cancer Research
Center), Heidelberg, Germany (section 2.1), and the acquired data were analyzed (sec-
tion 2.3) to parametrize and extend the model for this cell line (section 4.2).

Cell Model (Chapter 3)

Cells were previously modeled following di�erent approaches. As already stated in sec-
tion 1.3 two types of models have been proposed in the literature: individual-based
and continuum models. As this thesis aimed at identifying the cell-based mechanisms
leading to phenomena at the tissue scale, cells were represented as individual objects
permitting individual state, decisions and behavior. In addition this type of model
explicitly represents the di�erent processes that can be a basis for phenomenological
advection-reaction-di�usion continuum models. Here one further distinguishes between
lattice-based (cells populating a �x or dynamic lattice) and o�-lattice models. While
o�-lattice models position cells in a continuum space, in lattice based approaches cells
populate a static or dynamically changing underlying lattice. Consequently for the �rst
one the cell movement and size can be represented completely continuously in time and
space: they are driven by forces which act on each cell by the environment and cell-
cell-interactions. In contrast, lattice-based models represent the cellular dynamics by
de�ned rules which represent the result of these underlying biophysical forces. However,
o�-lattice models su�er from large computational costs. Besides they cannot easily be
up-scaled to scales (>1mm3) necessary to study certain tumor-related phenomena at
the tissue scale. This is for example necessary to model in-vivo vascularized tumor
growth, which a predictive treatment-relevant tumor model should aim at. The tempo-
ral dynamics of lattice-based models can be calculated stochastically e.g. by minimizing
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an energy functional such as the Hamiltonian in the cellular Potts model, or by solving
the master equation. In the �rst approach the probabilities to accept a certain system
change are based on an Hamiltonian that includes adhesion energies, and volume and
surface area constraints. Cells occupy many lattice sites, and thus can have various cell
shapes. On the other hand such a high resolution combined with the fact that many
system changes are refused, limits the total number of simulated cells due to computa-
tional costs. Thus a master equation approach was chosen here to describe the systems
spatio-temporal evolution taking into account the characteristic time distributions of the
biological processes (cell growth, division, migration and death). The master equation
can be solved analytically only for very simple systems. Here the stochastic simulation
algorithm proposed by [Gil77] solves it numerically.

The model proposed in this thesis is an extension of the model described in
[RBH+09]. Cells occupy exactly one lattice site. Cells can migrate to neighboring
free lattice sites by free migration or with a bias among all free neighboring sites. Cells
can divide if there is a free site with a maximal distance of proliferation length ∆L. If
a division takes place, then �rst all cells are shifted along the shortest path from the
dividing cell to the closest free site, and then a new daughter cell occupies the newly
freed site.

As an extension a more general approach for the cell decision between division
and quiescence was chosen. As it was shown by the radial pro�les extracted from the
experimental spheroid cryo-sections, the transition from high proliferation activity in
the outer rim to quiescence in the inner part of the spheroids is much smoother than a
step function. The model was extended by a generic function of the distance of a certain
cell to the closest free space to determine the probability of its re-entrance into the cell
cycle, e.g. Heavy side function, Hill function or exponential decay. Furthermore, the
list of processes was extended by necrosis (of viable cells) and lysis (of necrotic cells)
processes linking the cellular and the nutrient models. Furthermore, cell growth was
included as a sub-event of the cell cycle. Cells will thus double their volume at a de�ned
moment of the cell cycle by occupying a second lattice site. Migration can be either
free or biased by adhesion or the local gradient of a morphogen.

Molecular Model (Chapter 3 & 4)

As molecules are much smaller than cells, a continuum approximation was chosen to
represent them at the cell scale. Glucose, oxygen, lactate and morphogen are modeled by
time-varying reaction-di�usion partial di�erential equations. The extra-cellular matrix
evolves locally with ordinary di�erential equations.

The nutrient-related parameters derive from experiments neglecting the in�uence of
contact-inhibition. The consumption rates of glucose and oxygen were �tted to mea-
surements made for single cells in a suspension culture exposed to di�erent nutrimental
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conditions [FS85].

Parametrizing the Cell Model (Chapter 4)

The purely cell-dependent parameters (e.g. cell cycle time, shape and thickness of
proliferating rim) are derived from the comparison with biological experiments where
nutrient-limitation could be neglected. For the EMT6/Ro cell line the cell parame-
ters were estimated from growth curves of spheroids growing in suspension with 16.5
mM glucose and 0.28 mM oxygen, and for the SK-MES-1 cell line from growth curves
and quanti�ed concentric arrangements of spheroids growing in suspension with 25mM
glucose and 0.28 mM oxygen (assuming physiologically relevant conditions around 3-
15 mM and 0.05-0.2 mM [Buc11]). The growth rate was �tted from the exponential
growth phase (i.e. all cells are dividing) of the number of cells per spheroid in time.
The (apparent) thickness of the proliferating rim was �tted from the geometric growth
phase (i.e. when the spheroid radius is linear function of time).

Coupling of Cell and Molecular Models (Chapter 4)

The coupling of nutrients and the cellular phenotype (proliferating, quiescent, apop-
totic) could not be directly addressed as no data on the relation between the concentra-
tion and the induced change in cell phenotype was directly accessible. Because of the
stochastic behavior of the (cell) model an automated parameter estimation could not
be applied. Initial trials with methods like gradient decent, which evaluate the gradient
of a de�ned �tness function (e.g. mean squares between experimentally and numeri-
cally obtained growth curves and radial pro�les) in the parameter space to estimate the
optimal path towards a set of best �tting parameters, failed. The problem is that the
�uctuations between single simulations lead either to non-reliable gradients, and thus
to a random walk-like behavior in the parameter space, or to reliable gradients, but non
reasonable computation times by increasing the number of single simulations for the
average behavior. Instead a systematic sensitivity analysis was performed to study the
in�uence of each parameter on the system behavior to estimate the possible ranges.

Part II: Vascular Tumor Modeling & Parametrization

The second part of this thesis investigates the in�uence of vascularization and tumor
progression via a multi-scale model integrating a vascular network (and rules for re-
modeling and angiogenesis), and the possibility to infer the functional and architectural
vessel properties from perfusion data.
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Vascular Model (Chapters 5 & 6)

The vascularization can be modeled in many ways representing blood vessels as the
density of endothelial cells in a continuum approach or as discrete objects. As we are
interested in the spatio-temporal interaction of blood vessels with the cells as well as
the dynamical properties (blood �ow, pressure and shear stress), the vasculature was
chosen to be represented by a vessel graph consisting of vessel nodes and vessel segments
similar to that in [WR10]. The functional properties of the vessels, �ow (segments) and
pressure (nodes), are described by Poiseuille's law and linked by algebraic relations.
In order to solve the system, boundary conditions must be given (i.e. pressure at the
entrance and exit of the vessel network) as well as the architectural properties of the
vascularization (length, radius). Blood viscosity is assumed to be a function of the
radius [PSG+94].

Angiogenesis (Chapter 5)

To study the interplay between vascularization and tumor progression, the vascular
model was coupled to the avascular tumor growth model.

As the domain size is limited to 1mm3 blood vessels were assumed to be mainly
capillaries. They have the same dimension as cells and populate the same underlying
unstructured lattice. Besides, they serve as the only source of glucose and nutrients to
the system. On the other hand, cells which are hypo-nourished produce VEGF. VEGF
is modeled by a reaction-di�usion equation.

Vessel remodeling and angiogenesis rules are inspired by the model de�ned in ref.
[BR06]: if the local VEGF concentration is large enough, blood vessels sprout or dilate
with a certain probability. Vessels collapse with a certain probability if the oxygen
concentration and �ow, or shear stress are too low.

Starting with an initial network with a typical cell-capillary distance of a healthy
tissue, the in�uence of the angiogenic switch on tumor progression was studied and
compared to tumors growing in a static vessel network or without nutrient-limitation.

Parameterization of Vascular Model (Chapter 6)

The vasculature is a complex structure where functional (�ow, pressure, leakiness),
architectural (vessel radii) as well as topological (network topology) properties are
all inter-related. Thus it is insu�cient to just look at the histological information
of tumor vascularization as the topological and functional aspect are missing. The
three-dimensional reconstruction of vascular trees from non-invasive Magnet Resonance
Imaging (MRI) or Computer Tomography (CT) can give a good insight into the topol-
ogy, but is limited to the larger vessels due to the image resolution. Micro-CT gives
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a much higher resolution but this data acquisition method is invasive and often re-
quires for resolution purposes, the sacri�ce of the host organism (e.g. xeno-graft) as
for histology, and thus is not able to monitor long term changes of the same tumor
vasculature.

A promising tools in diagnosis are Dynamic Constrast Enhanced-Magnetic Res-
onance Imaging (DCE-MRI), Dynamic Constrast Enhanced-Computer Tomography
(DCE-CT), and more recently Dynamic Constrast Enhanced-Ultrasonography (DCE-
US), which estimate functional and architectural vessel properties from a temporal
sequence of perfusion images. The images show the intensity of an injected Contrast
Agent (CA) transported along the vessels, in some case di�using into the interstitial
space and that �nally gets washed out. Many simpli�ed non-spatial models mimicking
the perfusion of CA have been proposed to infer in each region of interest the functional
and structural vessel properties via an inverse procedure. But little is known about how
the accuracy of these models.

We propose to develop virtual vascularizations where all properties are known by
construction to �rst simulate the perfusion of a CA as a direct problem. This process
leads to in-silico perfusion images. In a second step those perfusion images are used to
evaluate the accuracy of the two-compartment model proposed by Brix et al.[BKL+04].

For this purpose a stand-alone vascularization is created on a regular lattice. Start-
ing from prede�ned arterial and venous root nodes a completely random network of
arterial and venous vessel trees is grown. Then by applying the algorithm proposed by
Goedde and Kurz [GK01], the capillary shear stress is homogenized among the whole
vessel network by iteratively collapsing capillaries with low shear stress and randomly
regrow the vascular trees. Between iterations the vessel radii are calculated via a power
law of all vessel segment radii at a branch. The exponents for arterial and venous vessels
are chosen by comparing the resulting average vessel properties for di�erent vessel sizes
with experimental data.

The tumor it-self was not explicitly modeled, but its typical vascularization (see
Chapter 5) is constructed by di�erent rules inside regions de�ned as tumor or necrotic
core: (1) di�erent vessel collapse and regrow probabilities, (2) vessels of arterial and
venous trees are connected by a number of parallel capillaries to account for a higher
micro-vessel density, and (3) vessels are more permeable to CA.

Preliminary work was performed on assessing the inverse procedure �rst on simple
topologies and then on healthy and diseased vascularizations. The direct problem of
CA perfusion is calculated by a transport equation within the vascular compartment
and a di�usion equation within the interstitial space compartment (i.e. extra-vascular
and extra-cellular space). Both compartments are coupled by an exchange term for the
di�usion across the membrane. For purely intra-vascular CAs only the intra-vascular
transport was solved numerically using the explicit Upwind scheme. The blood vessel
segments were re�ned in order to reduce numerical di�usion. For extra-cellular agents
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the full system was solved by an implicit scheme in 2D and 3D and by explicit Lax-
Wendro� for the transport term in 1D without vessel re�nement. Then the perfusion
images created by the direct problem were used for the inverse problem. Here, for each
voxel the non-spatial Brix II model [BKL+04] was �tted to the CA concentration by
using the Levenberg-Marquardt algorithm.

1.4.4 Main Contributions

Work Presented in this Thesis

It could be shown that a hybrid-multi-scale model can be parametrized such that it
explains the growth curves (spheroid volume and number of viable cells as functions of
the time) of EMT6/Ro MCTS cultivated under four di�erent nutrimental conditions
varying glucose and oxygen concentrations. The model-components were parametrized
directly from data of the same cell type: the nutrient-independent cell behavior from the
growth curves of EMT6/Ro spheroid experiments [FS86] during the exponential (cell cy-
cle time τ) and geometric growth phase (proliferation length ∆L and cell size), and the
nutrient-related parameters from measurements of the glucose and oxygen consumption
rates in suspended EMT6/Ro cell culture of varying glucose and oxygen concentrations
[FS85]. The proposed model was able to explain all three growth phases - exponen-
tial, and geometric growth phase as well as saturation of radius growth - by a mix of
mechanical contact-inhibition, ATP-limited cell growth and survival and an adhesion-
driven cell migration. ATP is proposed to be a direct outcome of the consumed glucose
and oxygen assuming that cells maximize the amount of ATP produced from given
glucose and oxygen. This allows cells to automatically and smoothly switch between
aerobic and anaerobic metabolisms. Furthermore, two ATP thresholds are proposed
as criteria for cell growth and survival. The estimation of both threshold values for
�tting the oxygen-limited case gives a good prediction for the glucose-limited case as
well, and vice-versa. For the low glucose and oxygen condition, saturation of spheroid
radius expansion was explained by a homeostasis of cell division in the periphery and
central necrosis, and could only be established by proposing the following mechanism:
an adhesion-driven migration, which as a result keeps the spheroids at a �xed size.

For another cell line, the SK-MES-1 cells, we established a process chain of designing
experiments, quantitative image analysis and model parametrization. Beside the growth
curves of spheroids, the radial pro�les of proliferating and necrotic nuclei fraction as
well as the density of Extra-Cellular Matrix (ECM) was used for the �tting procedure.
It could be shown that the cells decision between proliferation or quiescence is not de-
terministic, i.e. cells divide with probability 1 if there is free space within a distance
∆L, else they are quiescent, but rather probabilistic with a probability to reenter the
cell cycle after a cell division which exponentially decreases with the distance to the
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closest free space. While the �rst leads to a compact proliferating rim, only the sec-
ond shows an agreement with the smoothly decreasing proliferative activity toward the
spheroid centers found by quantitative image analysis. Even if both approaches can lead
to comparable spheroid expansion speeds for conditions where nutrient-limitation is ne-
glectable, the predictive value of the model increases using the correct proliferation pro-
�les as nutrient-limitation modi�es those pro�les only at a certain depth. Furthermore,
a correlation of low ECM density and a drop of proliferative activity at the outermost
spheroid border could be explained by a model extension by ECM which is produced by
cells and necessary for cell cycle re-entrance. The model was able to explain the growth
curves (radius as function of time) and radial pro�les (proliferating and necrotic nuclei
fraction, and ECM-density as function of the distance to the spheroid border) during
exponential and geometric growth phases of SK-MES-1 spheroids cultured under two
nutrimental conditions. The simultaneous �t of growth curve and radial pro�les was
reached only, if - beside low ATP - a high lactate concentration induced cells to become
necrotic. Lactate is a direct side-product of the proposed metabolic model.

For the transition to the in-vivo situation, a model extension was proposed to inte-
grate vascularization, vascular remodeling and angiogenesis. Blood vessels populate the
same unstructured lattice as the tumor cells and thus can physically interact with each
other. The model incorporates components on the sub-cellular (oxygen, glucose and
VEGF), cellular (tumor and endothelial cells) and tissue scale (endothelial cells form
vascular network) that are all coupled together. The environment is three-dimensional
and permits to simulate a tissue cube of 1mm3 (= 106 cells) in reasonable time (30days
= 1day to compute4). The solver for the partial di�erential equations is parallelized.

In addition, we aimed at estimating the vascularization model parameters (architec-
ture and function) from non-invasively acquired dynamic contrast-enhanced perfusion
images which up to now is a purely diagnostic tool. To this aim, we proposed an
extended spatial in-silico tumor vascularization to simulate the perfusion of a virtual
contrast-agent. The resulting virtual perfusion images can serve as a direct bench-
mark to evaluate the predictive value of simpli�ed non-spatial inverse methods that are
typically used in radiology. Such a method could also serve to estimate angiogenesis
parameters.

These contributions have been leading to one published book chapter and two pub-
lications in preparation (on the avascular and perfusion imaging topics respectively).

Additional Work not further Described in this Thesis

The three following paragraphs summarize projects that are not further described in
this manuscript because they represent satellite contributions to the main PhD work.

4on an HP Z800 Workstation, Intel Quad-Core 3GHz, 32GBytes RAM
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Upscaling : the current models for avascular tumor growth and angiogenesis are
limited by there individual cell-based nature to a maximal population size of a few mm3.
To reach the centimeter scale the possibility of coarse-graining the cell and molecular
components of the model was studied. Here, we pursued (a) a purely coarse-grained
approach (one lattice site contains up to N cells) and (b) a hybrid approach using a
lattice which dynamically changes its resolution locally adapted to the need of accuracy
(see section 7.3).

Downscaling : in order to reach a sub-cellular resolution which e.g. permits the
consideration of di�erent cell shapes and sizes, cells are associated to several lattice
sites.

Bioreactors: the growth of epithelial cells in bioreactors was simulated with the
same model for the purpose of optimizing the production of in�uenza vaccine. Epithelial
cells are a very fast growing cell type and thus ideal to create in a short time a large
host population to be infected by a chosen strand of in�uenza virus. Then the host
population serves as a biological factory of large amount of viruses which in inactivated
form or whose extracted hull proteins serve as the �nal vaccine. As epithelial cells
grow only attached to surfaces, the growth media in the bioreactors are enriched with
small microcarrier beads. The choice of culture conditions as the size and number of
the microcarriers, the inoculation number of cells into the medium, etc. was subject of
investigation to optimize the total gain of host cells in limited time. A publication is in
preparation.

1.5 Outline of Thesis

The thesis is organized in four parts containing this brief summary of the subject,
the Avascular Tumor Spheroid Modeling (Part I : 2. image processing and analysis, 3.
avascular model and 4. parametrization), Tumor Vascularization (Part II : 5. angio-
genesis tumor modeling, 6. parametrization from perfusion images), and some closing
conclusions and discussions on the implications and perspectives of this work.

1.5.1 Part I: Avascular Tumors - Modeling & Parameterization

The goal of Part I is to successively set up a multi-scale model (chapter 3) incorporating
di�erent sources of information: literature data, experimental measurements and the
outcome of image analyzing tools treated in chapter 2. Then based on the comparison
between the in-silico results and the experimental observations we study the di�erent
spatio-temporal growth phenomena of growing tumor spheroids to identify (or exclude)
the mechanisms leading to the experimental observations described above (chapter 4).
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1.5.2 Part II: Vascularization - Modeling & Parameter Inference

In Part II, the avascular tumor model proposed in chapter 3 is extended to blood
vessels (as a certain type of cells), their function (hemodynamics, nutrient providers) and
interactions with the other model components (angiogenesis and remodeling) in chapter
5. How to parametrize the vascular compound of the model by better understanding
contrast-agent perfusion images is elaborated in chapter 6.
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Chapter 2

Data Acquisition from Histological

Spheroid Images via an Image

Processing Chain
In this chapter, we will introduce and apply some image processing techniques to images
of stained cryosections of tumor spheroids. We will extract quantitative information of
the extra-cellular matrix density, the cell size, the proliferative activity and mortality as
a function of depth (or distance to the outer spheroid border) which in the following
chapter will serve as input for the model parameterization.
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2.1 Tumor Spheroids Cultivation & Data Acquisition

In the following subsections, you will �nd a summary of how the multi-cellular spheroid
of SK-MES-1 cells were cultivated under di�erent nutrimental conditions, and how
the temporal growth curves and immuno�uorescence images were acquired from the
spheroids scari�ed at di�erent moments of the experiments [MM]. The Experiments as
well as the image acquisition was performed by Dr. Benedikt Müller and Prof. Mar-
gareta Müller from the DKFZ (German Cancer Research Center), Heidelberg, Germany.

2.1.1 Cell Culture

NSCLC cell line SK-MES-1 used in this study was obtained from ATCC (Manassas,
VA, USA) and cultivated in a humidity controlled incubator at 37◦C and 5% CO2 in
150cm2 tissue culture dishes (TPP) in DMEM (Dulbecco's modi�ed Eagle's medium,
LONZA, Verviers, Belgium) supplemented with 10% FCS (fetal calf serum, Southern
America, GIBCO, Germany) and 1% Penicillin/Streptomycin (Biochrom AG, Berlin,
Germany). Cells were used between passages 10 and 30 and passaged at a split ratio of
1:4 to 1:6. Cultures were routinely tested for mycoplasma contamination as described
by Stacey and Doyle 1997 and always found to be negative. Additional medium for the
test cultures was DMEM w/o Glucose (GIBCO, Germany) supplemented with 10%FCS
and 1mM Glucose (Carl Roth GmbH, Germany), and DMEM with 1,0 g/L glucose w/o
L-Glutamine (LONZA, Verviers, Belgium) supplemented with 10% FCS and 25mM L-
Glutamin (SIGMA, Germany). Additionally, cells were kept in a humidity controlled
incubator at 37◦C and 5% CO2 and either normal normal atmospheric 20% O2 (corre-
sponding to 0,28mM) or 5% O2 (corresponding to 0,07mM).

Solutions

2% Methocel solution was prepared by stirring 6g Methylcellulose (SIGMA, Germany)
in 250ml propagation medium at 60◦C for 20min. Then a further 250ml of medium were
added and stirred at 4◦C over night. The solution was aliquotted in 50ml Falcon tubes,
centrifuged two times for 99min at 4000 rpm to concentrate long Methylcellulose-Fibers
at the bottom of the tube. Tubes were then stored upright at 4◦C.

2% Agar-Solution was prepared by solving 5g bacterial grade Agar (GIBCO, Ger-
many) in 250ml of H20. This solution was autoclaved and then kept at 60◦C until 24
well-Plates were coated.

Spheroid generation and cultivation

For the generation of spheroids with de�ned size and cell number, a hanging drop
assay was employed. Here cells were �rst trypsinized, counted, then centrifuged and
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resuspended in propagation medium with 20% Methocel-Solution. Drops of 20µl of this
cell suspension were pipetted on the lid of a 150cm2-culture dish, which was subsequently
carefully inverted back onto the dish. In this approach, all suspended cells in the
resulting hanging drop contribute to the formation of a single spheroid. After 48h in
the hanging drop the spheroids were transferred on 24 well plates, by carefully pipetting
with a cut 200ml pipette tip, with one spheroid in one ml of respective medium per
well. The wells were pre-coated with 250µl of 2% agar each to prevent attachment of
spheroids. Medium was changed once a week. Four di�erent glucose/oxygen conditions
were employed: I: 1mM Glucose / 0,28 mM O2, II: 5 mM Glucose / 0,28 mM O2, III:
25mM Glucose / 0,28 mM O2 and IV: 25 mM Glucose / 0,07 mM O2 (see table 2.1(a)).
Spheroids were cultivated over a period of over 48 days.

2.1.2 Spheroid Growth Curves

Growth of spheroids was monitored by acquisition of bright �eld images through an
Olympus IX-70 microscope �tted with an AxioCam Erc5s camera (Zeiss, Germany)
twice a week. The projected area of spheroids was determined using ImageJ, software
version 1.43u. Mean areas and standard deviations were calculated using Microsoft
Excel. At least 4 Spheroids were evaluated per time point and condition.

2.1.3 Cryosectioning and Immuno�uorescence Staining

Spheroids were taken out at speci�ed time points, embedded in TissueTek R©(SAKURA
Finetek, Netherlands) cryo-medium, frozen over liquid nitrogen and processed for cryo-
stat sectioning. Cryosections of 6-8 µm thickness were mounted on slides, air dried
and then �xed with 4% PFA for 20 min at RT, washed in PBS for 30 min at RT, per-
meabilized with ice cold 0,1% TritonX-100 / 0,1% sodium citrate for 2min on ice. To
stain for apoptotic cells we employed the In Situ Cell Death Detection Kit (No. 12 156
792 910 Roche Applied Science) according to the manufacturer's protocol. Staining for
proliferating cells and ECM component Collagen IV was performed with anti human
Ki67, mouse monoclonal (No. M7240 DakoCytomation, Glostrup, Denmark) and anti
Collagen IV, rabbit polyclonal (No. 10760, Progen, Heidelberg, Germany) antibody in
12% BSA respectively. Secondary antibodies used were anti mouse, donkey, Cy3 (No.
715-166-151, Dianova, Hamburg, Germany) and anti rabbit, goat, Alexa 488 (No. A-
11034 Molecular Probes USA/NL) in 12% BSA. In both cases, nuclei were stained with
Bisbenzimide H 33258 (SERVA, Heidelberg, Germany) in 12%BSA. Sections were ex-
amined and photographed using a Leica DM RBE (Leica, Germany) microscope �tted
with epi�uorescence optics.
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Table 2.1: Culture and imaging information.

(a) Culture conditions

Condition [G] [O2]

I 1 mM 0.28 mM
II 5 mM 0.28 mM
III 25 mM 0.28 mM
IV 25 mM 0.07 mM

(b) Cryosectioning
& IF imageing

Timepoint

T1 = 5days
T2 = 10days
T3 = 17days
T4 = 24days
T5 = 34days
T6 = 46days

(c) Supplementary Information

Observation Value Reference

nucleus diameter dnucleus = 10µm Estimation from images
cycle time τ = 20− 24h [MM]

cryosection depth hslice = 6− 8µm [MM]
image resolution pixel = 1.03µm2 [MM]

2.2 Applied Image Processing Techniques

The images acquired (see section 2.1) are raw data. They consist in a set of pixels with
position (x, y) ∈ N

2 and color intensities for the three color channels red, green and
blue de�ned by

Ichannel(x, y) ∈ [0, 1]

Ichannel : N2 → R
(2.1)

where channel ∈ {red, green, blue}.
In the following, some image processing tools are introduced which will be used to

preprocess the raw images (e.g. to reduce noise) and to identify, or segment, objects
(e.g. cell nuclei) which will be the subject of quantitative analysis in section 2.3.

2.2.1 Smoothing & Noise Reduction

In order to reduce noise as well as to smooth the image (necessary for the later segmen-
tation algorithm, see section 2.2.2), a number of di�erent linear and non-linear �lters
can be applied.
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Linear Time-Invariant (LTI) Filters

Filters are operators which transform an continuous input signal (in our case the image
data) i(x, y) into an impulse response i∗(x, y). For LTI-�lters the impulse answer is
usually calculated by convolution with a �lter function k(x, y) given as

i∗(x, y) = (i ⋆ k)(x, y)

=

∫∫

i(x+ x′, y + y′)k(x′, y′)dx′dy′.
(2.2)

As the pixel information is discrete, the �lters can be reduced to �lter matrices or �lter
kernels of a de�ned size n× n, corresponding to the area (or window of pixels) a�ected
by the �lter and in the following referred to as the kernel region. Then

I∗[x, y] = (I ⋆ K)[x, y]

=

n−1∑

i=0

n−1∑

j=0

I[x+ i− a, y + j − a]K[i, j],
(2.3)

where a = (n− 1)/2.

• Mean �lters basically average locally among all pixels within the kernel region.
The kernel of size 3× 3 looks like the following.
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mean =





1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9



 (2.4)

• Gauss �lters modify the input signal by convolution with a Gaussian function.

g(x, y, σ) =
1

2πσ2
e−

x2+y2

2σ2 (2.5)

The corresponding kernel can be obtained by

Kn×n
gauss,σ = (g (i− a, j − a, σ))0≤i<n,0≤j<n , (2.6)

where a = (n− 1)/2.

Instead of an expensive 2d-convolution a one-dimensional gauss kernel can be
applied in two passes for each dimension.

Kn
gauss,σ = (g (i− a, σ))0≤i<n , (2.7)

where a = (n− 1)/2 and g(x, σ) = 1
2πσ2 e

− x2

2σ2 .

This reduces the computational complexity from O(n2m2) to O(2nm2), m being
the number of pixels of the image.
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Non-linear Filters

• Median Filter is very widely used in digital image processing because, under cer-
tain conditions, it preserves edges1 while removing noise. The impulse response
for each input pixel is the median of neighboring entries within a certain 'window'
of size n× n.

• Dilation Filter is a morphological operator for probing and expanding the shapes
contained in the input image. It application is emphasize shapes or to remove
"holes" within shapes. Its impulse response is de�ned by

I ′[x, y] = max
|x−x′|≤a
|y−y′|≤a

{I[x′, y′]} (2.8)

where a = (n− 1)/2 for a kernel size of n× n.

• Erosion Filter is a morphological operator doing exactly the opposite of the Di-
lation Filter. It reduces shapes in size. Usually it is used to remove small objects
from an image. Its impulse response is de�ned by

I ′[x, y] = min|x−x′|≤a
|y−y′|≤a

{I[x′, y′]} (2.9)

where a = (n− 1)/2 for a kernel size of n× n.

Figure 2.1 shows the results of smoothing the blue color channel of an image section
via a median �lter (kernel size 9 × 9) and an Gaussian �lter (σ = 2.5). For both
�lters we can see a much smoother intensity landscape compared to the original image.
Nevertheless, the median �lter conserves better the original features of the landscape
than the Gaussian �lter. Thus, in the following we will use the median �lter for image
smoothing.

2.2.2 Watershed Algorithm

The watershed algorithm is a segmentation algorithm2 separating an image into di�erent
regions using the concept of watersheds. It was �rst proposed by [BL79] and later
enhanced by a fast algorithm presented in [VS91].

1Edge-preserving smoothing is an image processing technique that smoothes away textures whilst
retaining sharp edges.

2Segmentation is the process of partitioning a digital image into multiple segments (sets of pixels,
also known as superpixels). The goal of segmentation is to simplify and/or change the representation
of an image into something that is more meaningful and easier to analyze.
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Figure 2.1: Image smoothing. The original image (top) was smoothed by two di�erent
�lters: median �lter (center) and Gaussian �lter (bottom). The smoothed images (left)
are visualized as landscapes of the inverted blue color channel intensities, 1 − Iblue

(right).
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What is a watershed? A watershed is the area of land (or landscape) that drains
to a particular point along a stream (see �gure 2.2(a)). The line dividing di�erent of
such areas is called watershed line. The areas they divide are called catchment basins.

Algorithm The idea of the algorithm is to treat the images as landscapes, where the
color intensities I[x, y] corresponds to the amplitude. The landscape representation of
three example images are shown in �gure 2.1. The local minima of the landscape are the
minima of the corresponding catchment basins (see �gure 2.2(b)). To detect the exact
shapes of those basins, the landscape is successively "�ooded" and pixels of the current
altitude will be associated to the basin of the neighboring pixels (already associated to
a basin). If two basins touch each other they will create a watershed line between each
other and locally stop expanding. The algorithm either stops at a chosen maximum
altitude (color intensity), or when none of the basins can expand anymore.

As each local minimum is giving rise to one catchment basin, it is important to
smooth the images before the segmentation in order to avoid an over-segmentation 3.

(a) Watershed in Landscape.
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(b) Creating Watersheds in Images.

Figure 2.2: Watersheds in landscapes and images. (a)Areas of land that drain to a
particular point along a stream are called water sheds [Lab]. (b) The area associated
to local minima of color intensities in an image can be estimated by the same concept
[VS91].

2.3 Results of Image Processing and Image Analysis

In this section, at �rst the cell nuclei, the spheroid lumen and the spheroid border are
extracted from the images. Then in a second step some quantitative analysis will be
performed.

3A key problem in segmentation is that of splitting up into too few (under-segmentation) or too
many regions (over-segmentation).
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2.3.1 Nuclei Segmentation

The cell nuclei were stained with HOECHST staining (blue color channel, see �gure
2.3). In order to segment the single nuclei, the images were smoothed by a series of four
median �lters with kernel size 3 × 3 (see section 2.2.1) as a preprocessing step. In the
following, the watershed algorithm (see section 2.2.2) was applied to the inverted blue
color channel, 1−I[x, y]blue, for pixels above a certain threshold, I[x, y]blue > IHOECHST

(see table 2.2). The threshold avoids the segmentation of the whole image, focusing only
on regions clearly stained by HOECHST and thus associated with the cellular nuclei.

Figure 2.3(b) shows the result of the nuclei segmentation of �gure 2.3(a). The red
and blue areas are the detected nuclei.

2.3.2 Spheroid Lumen & Border

The base for estimating the spheroids borders are the cell nuclei (in section 2.3.1). By
applying a series of dilation �lters (see equation 2.8) will give a coarse approximation
of the cell shapes around the nuclei. Finally, the empty spaces (necrotic areas) in the
center of the spheroids are removed by hole-�lling algorithms (e.g. by �ood �lling).

Figure 2.3(b) shows the estimated spheroid lumen around the cell nuclei in green
color for an example picture (see �gure 2.3(a)). The spheroid border is assumed to be
the interface between the green (lumen) and the black (background) area(s).

2.3.3 Radial Pro�les, Binning & Averaging

As the spatial arrangement of cell phenotypes and ECM density can be assumed to be
concentric, the following sections will focus on extracting the statistical information as
radial pro�les. As �gure 2.3(a) shows, the spheroids are not completely spherical, but
slightly elongated and with irregular surfaces. To account for this, all statistics will be
extracted as a function of distance to the spheroid border, de�ned by ∆b, instead as
a function of distance to the center of mass. For the estimation of the radial pro�les
binning is used. I.e. ∆b is divided into small intervals ∆b,i, so-called bins, of 1µm length
(image resolution: pice = 0.98µm2). Then each nuclei who has at least one pixel whose
distance to the closest border pixel is ∆b ∈ [∆b,i,∆b,i+1) will enter into the statistics of
bin i. Then the statistical information in bin i or interval [∆b,i,∆b,i+1) is the average
of all nuclei concerned. The average curves created from the radial pro�les of single
images are average values of the corresponding bins with the same index.

2.3.4 Nuclei Density & Cell Diameter

The local cell density can be estimated by the relation number of nuclei per area. Its
inverse is the area per nucleus. Approximating the 2D cell shapes by a Voronoi diagram
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(a) Original Image (b) Segmented Image

Figure 2.3: Cell nuclei segmentation and spheroid lumen estimation. (a) The micro-
graphs show a cryosection of a spheroid stained with HOECHST (red), Ki67 (blue) and
ColIV (green). (b) The cell nuclei where segmented from the blue color channel (sec-
tion 2.3.1) and di�erentiated between Ki67 positive (red) and negative (blue) nuclei by
means of the red channel (section 2.3.5). The spheroid lumen (green) is approximated
by in�ated nuclei (section 2.3.2). For a more detailed view see �gure 2.9.

of the segmented cell nuclei4 (segmentation in section 2.3.1), the area per nucleus was
estimated by the area of the corresponding Voronoi cell.

Figure 2.4 shows the result of the cell density estimation. In �gure 2.4(a), one can
see the Delaunay triangulation5 of a set of segmented nuclei (from �gure 2.3). The
locally estimated cell diameter, d2Dcell ≈

√

4/π(area per nucleus), is plotted as function
of distance to the spheroid border (�gure 2.4(b)). One can see that in the outer parts
cells are larger (d2Dcell = 16− 17µm) and decreases in size to a minimum (d2Dcell ≈ 15µm)
the deeper you go inside the spheroid. This might be due to the larger fraction of
proliferating cells in the periphery which as a consequence of cell growth on average
have a larger size than quiescent cells. Even deeper (at > 200µm) the cell diameter
increases again, which is rather an artifact of not considering the empty (non-cellular)
area, and just re�ects a lower cell density in the core region dominated by necrosis.

4A nucleus is represented as the center of mass of all pixels associated to the nucleus.
5The Delaunay triangulation is the dual representation of the Voronoi diagram.
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(a) Triangulation of cell nuclei (b) Radial Cell Size Pro�le

Figure 2.4: Cell density and cell size estimation. (a) The Delaunay triangulation of all
segmented nuclei serves to estimate the cell sizes via its dual, the Voronoi diagram. (b)
Average cell diameter as a function of distance to the spheroid border. The black curve
is the average pro�le of six images (condition III, T3, see table 2.1) with bin size 1µm
and the red curve is the gliding average with window size 10µm.

Relating 2D Diameter (Cryosection) to 3D Diameter (Tissue)

The density of cells is de�ned by

ρcells =
1cell

1Vcell
=

6

π
d−3
cell. (2.10)

But how can one relate the nuclei density, ρ2Dcells, within a two-dimensional tissue
slice of thickness hslice to the e�ective nuclei density in three dimensions, ρ3Dcells? We
assume the following

ρ3Dcells
ρ2Dcells

=
number of cells intersecting with slice

number of nuclei intersecting with slice
. (2.11)



38 CHAPTER 2. IMAGE PROCESSING

Figure 2.5: Schematic of cryo-section with height hslice of a tissue of cells with height
hcell and nuclei radius rnu.

Assuming all cells intersecting with the slice to be randomly transposed in lateral
direction to the slicing plane and their nuclei to be in the center of the cell, then one
can approximate the fraction of cells whose nuclei are intersected as well by

number of nuclei intersecting with slice

number of cells intersecting with slice
≈ rnu + hslice + rnu

hcell
, (2.12)

where hcell is the height of the cell, hslice the thickness of the slice and rnu = dnu/2 the
average nucleus radius.

Assuming cubic cell shapes (hcell =
3
√

π/6dcell) and combining the equations 2.10,
2.11 and 2.12 lead to

d3Dcell =
[

3
√

6/π
(
d2Dcell

)3
(dnu + hslice)

]1/4
. (2.13)

Consequently, for given values of dnu and hslice (table 2.1(c)) the rescale radii for cells
in the outer rim (d3Dcell = 16.9...18.2µm) and inside the spheroids (d3Dcell = 16.1...17.4µm).
Both cell sizes are very close to each other. Assuming that almost no cells proliferate
in the inner part of the spheroids and thus the measured radii represent the size cell
have directly after division, this may suggests a low proliferating cell fraction even in
the outer rim.

Alternative Method to Estimate the Cell Diameter

An alternative method to estimate the cell diameter from the images is to analyze the
linear relationship between the number of cell nuclei and the distance to the spheroid
border within a compact and spherical in-silico arrangement of cells. Then by applying
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the same relation to the radial pro�le of the number of cells of the images can be used
to approximate the average cell diameter.
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Figure 2.6: Cell diameter estimation. (a) The linear relation (dashed line) between the
number of cells and distance to border can be adjusted in-silico (solid lines). (b) Fitting
the same linear law to the curves extracted from images of in-vitro tumor spheroids gives
a hint on the cell diameters.

As �gure 2.6 illustrates, we �nd a cell diameter of dcell = 16.8µm which lies in the
range of what was found above. Thus, in the following we will assume the cell diameter
at the beginning of the cell cycle to be dcell = 16.8µm.

Remark: The peek at the outer border is due to the rough surface of the spheroids.
Consequently, a lot more cells are at the surface then predicted by the linear relation.
The rougher the surface, the larger will be the peeks (in amplitude and width).

2.3.5 Estimation of Proliferating Cell Fraction

Ki67

The Ki-67 protein is a cell cycle speci�c protein and present during all cell cycle phases:
in G1, S and G2 phase exclusively within the cell nucleus and during mitosis mostly
relocated to the surface of the chromosomes. In cell in G0 phase it is completely absent
and thus an excellent marker for cell proliferation.
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Automated Distinction

In order to quantify the cell proliferation, we have to distinguish between those nuclei
which are Ki67 positive (red) and those which are not (blue). To distinguish between
background noise (due to staining from di�erent layer, image artifacts, etc.) and Ki67
positive nuclei we have to introduce hard measures which minimize the number of "false
positives" and "false negatives".

Via a intensity threshold, IKi67, we accept a pixel (x, y) to be Ki67 positive only if
its red color intensity Ired(x, y) is above a certain value

Ki67(x, y) =

{
1 , Ired(x, y) ≥ IKi67

0 , Ired(x, y) < IKi67 (2.14)

Via a fractional threshold, ϕKi67, we decide whether a nucleus X is Ki67 positive or not.

Ki67(X) =

{
1 , 1

|X|

∑

(x,y)∈X Ki67(x, y) ≥ ϕKi67

0 , else
(2.15)

Depending on how one chooses the parameters IKi67 and ϕKi67 one can control the
acceptance of heterogeneously (small ϕKi67) and weakly (small IKi67) stained nuclei.
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Figure 2.7: Sensitivity analysis for threshold parameters IKi67 and ϕKi67.
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As �gure 2.7 illustrates very di�erent combinations of parameters lead to very similar
patterns of proliferating cells in the outer parts and with a decreasing tendency toward
the center. Although the global patterns look similar (e.g. IKi67 = 0.14, ϕKi67 = 0.1
and IKi67 = 0.08, ϕKi67 = 0.75) the detected cells might di�er a lot and be a result of
artifacts (as e.g. falsely detected cells covered by stained remainings of scattered cell
from di�erent layer/slice).

Evaluation of Method

In order to evaluate the predictive value of the method, one image section (see �gure
2.10) was manually analyzed by distinguishing the visible nuclei into Ki67-positive and
Ki67-negative by hand. Then for automated detection using di�erent values for ϕKi67

and IKi67, we count the number of nuclei which are true positive (TP)6, true negative
(TN)7, false positive (FP)8 and false negative (FN)9. In the following one can calcu-
late the sensitivity or true positive rate indicating the proportion of nuclei that tested
positive of all the nuclei that actually are positive

TPR =
TP

TP + FN
, (2.16)

the speci�city or true negative rate indicating the proportion of nuclei that tested neg-
ative of all the nuclei that actually are negative

TNR =
TN

TN + FP
, (2.17)

and the classi�cation error indicating the proportion of falsely classi�ed nuclei of all
nuclei

ǫ =
FP + FN

TP + FP + TN + FN
. (2.18)

Figure 2.8 shows the values of the above-described indicators applying automated de-
tection to the benchmark image in �gure 2.9 (left) for wide parameter ranges of ϕKi67

and IKi67.
An good agreement (small classi�cation error) between automated and manual Ki67

detection was reached for rather small fractions of the nuclei (ϕKi67 ≤ 0.2) stained with
a moderate intensity (0.35 ≤ IKi67 ≤ 0.5). The parameter values which will be used in
the following can be found in table 2.2 and the corresponding comparison of manually
and automatically detected Ki67-positive nuclei is shown in �gure 2.9.

6correctly detected to be positive
7correctly detected to be negative
8negative, but falsely detected to be positive
9positive, but falsly detected to be negative
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Figure 2.8: Sensitivity analysis for threshold parameters IKi67 and ϕKi67.
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Figure 2.9: Manual versus automated image analysis. left : For one image the Ki67
positive nuclei were marked by hand. right : By successively varying the threshold
parameters IKi67 and ϕKi67 the automated detection showed comparable results.

Parameter Value

IHOECHST 0.15
ITUNEL 0.45
ϕTUNEL 0.20
IKi67 0.35
ϕKi67 0.05

Table 2.2: Image processing parameters.

Postprocessing: Proliferating Cell Fraction & Proliferating Cell Density

Once all Ki67 positive nuclei are detected, some statistical analysis can be done on the
spheroids. By measuring the distance of each nucleus (represented by the center of mass
of related pixels) (see section 2.3.1) to the closest spheroid border (see section 2.3.2)
one can estimate the number of Ki67 positive and negative nuclei as a function of the
distance to the outer border (see �gure 2.10, left). Dividing the number of Ki67 positive
nuclei by the total number of nuclei gives us a estimate of the proliferating cell fraction



44 CHAPTER 2. IMAGE PROCESSING

(see �gure 2.10, right). Multiplying the cell fraction with the cell density (see section
2.3.4) gives us the density of Ki67 positive nuclei.
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Figure 2.10: Proliferating cell fraction. left Radial pro�les of the total number of nuclei
(blue) and the nuclei detected to be Ki67 positive (red). right Dividing both pro�les
gives the radial pro�le of the fraction of proliferating cells. The proliferation pro�le
(thick line) is a result of averaging over 6 independent curves (thin line) extracted from
di�erent images (T3, Condition III).

2.3.6 Estimation of Apoptotic/Necrotic Cell Fraction

A common method to identify apoptotic cells is the terminal deoxynucleotidyl transferase
dUTP nick end labeling (TUNEL). It detects DNA fragmentation which typically occurs
in the last phase of apoptosis, but might as well label the remainings of a necrotic cell.

In a similar procedure as for proliferating cells (see section 2.3.5), the necrotic cell
nuclei can be detected using an intensity threshold ITUNEL and a fractional threshold
ϕTUNEL to detect TUNEL stained cells.

2.3.7 Estimation of Extra-Cellular Matrix Density

Beside Ki67 and TUNEL the images were stained for collagen type IV (ColIV) in green
color (see �gure 2.3(a)). ColIV is mainly found in the basal lamina, i.e. a layer of ECM
secreted by the epithelial cells, which makes it a marker for ECM.

To quantify the ECM, we will use the local intensity of ColIV staining (green color
channel), [ECM ] ∼ Igreen. For each pixel (x, y) of the spheroid lumen (see section
2.3.2) we can determine the distance to the spheroid border (i.e. distance to closest
border pixel), ∆b(x, y), and average their ColIV intensities Igreen(x, y) as a function of
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Figure 2.11: Apoptotic cell fraction. left : Radial pro�les of the total number of nuclei
(blue) and the nuclei detected to be TUNEL positive (red). right : Dividing both pro�les
gives the radial pro�le of the fraction of apoptotic cells. The apoptosis pro�le (thick line)
is a result of averaging over 3 independent curves (thin line) extracted from di�erent
images (T3, Condition III).

the ∆b

I
green

(∆b) =

∑

∆b(x,y)=∆b
Igreen(x, y)

∑

∆b(x,y)=∆b
1

(2.19)

Figure 2.12 shows the estimated ColIV intensity pro�les for a image stack of spheroids
grown under similar conditions.
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Figure 2.12: ColIV staining intensity pro-
�le. The extra-cellular matrix (ECM) pro-
�le (thick line) is a result of averaging over
6 independent ColIV staining intensity pro-
�les (thin line) extracted from di�erent im-
ages (T3, Condition III).
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2.4 Conclusions & Discussion

With a number of image processing tools, we preprocessed stained cryosections of tumor
spheroids which were grown under four di�erent nutritional conditions [MM]. The cell
nuclei have been segmented from the blue color channel (HOECHST staining) and the
spheroid lumen was approximated by in�ating the nuclei.

The cell size was estimated via a Voronoi tessellation of the segmented nuclei.
In the following we established an automated detection of proliferating and apoptotic

nuclei. The red color channel intensities within the segmented nuclei were evaluated via
two thresholds, a pixel-wise intensity threshold and a nuclei-wide fractional threshold,
in order to decide if a nuclei is Ki67 (or TUNEL) positive and thus in proliferation
(or apoptosis). Both threshold could be adjusted such that we get a good agreement
between a few manually evaluated images and the automatic detection.

At last, the radial pro�les of the proliferating and apoptotic nuclei fractions as well
as the ECM density were determined as functions of distance to the spheroid border.
The averaged pro�les among all images of the same nutrimental condition and time
point can be seen in �gure 2.14 and 2.13. In addition to the proliferating/apoptotic
nuclei fraction, �gure 2.15 shows the density pro�les of proliferating/apoptotic nuclei.

Cell Proliferation Commonly, it can be observed that the proliferating cell fraction
(�gure 2.14, left) reaches its highest value at a depth of 20-30µm. Toward the outer
border and toward the spheroid center the proliferative activity continuously decreases.
At a depth of 200-250µm the proliferating cell fraction approaches 0. Furthermore, with
time advancing the pro�les lower in amplitude. At T6 (= 46days) there is almost no
proliferative activity anymore. So most of the cells became quiescent. An exception
are the pro�les of condition I - we remark that condition I has the lowest glucose per
oxygen ratio of all conditions: [G]/[O2] = 3.6 (for other conditions: II:17.9, III:89.3,
IV:357). Here - in contrast to the other conditions - after an initial drop the proliferating
cell fraction increases toward the spheroid center and with time advancing the pro�les
amplitude even increases. This might be due to the cells being deprived of glucose at
the beginning. Later on, they digest the accumulating material of dying cells. Thus,
the digestion of dead cells may allow them to regain proliferative activity. Small peeks
in the pro�les of other conditions (II and IV) in the spheroid center seem to con�rm
that.

Apoptosis The radial pro�les of apoptosis (nuclei fraction and density, �gures 2.14
and 2.15, left) have opposite shapes to the proliferation pro�les. There is very little
apoptosis found at the outer part, while toward the spheroid center it is increasing. In
time, the pro�le amplitudes increase (from T3 to T5) and then drop to a very low level
(< 10% at T6). It seems, that in the phase of growth saturation, the cells stopped



2.4. CONCLUSIONS & DISCUSSION 47

dividing and the spheroids remain at a size su�ciently small to nourish all cells and to
avoid further cell death. Especially interesting is the comparison of condition II and
III. For condition III there seems to be almost no apoptosis in the outer zone of a depth
of around 150µm followed by a sudden increase. On the other hand, spheroids growing
under nutrimental condition III initially show very few apoptosis (T3). The pro�les
have a smooth shape. Interestingly, at later stages (T4) those smooth pro�les increase
in amplitude among the whole spheroid. In the outer parts, one can observe now much
more apoptotic cells than for condition II, though the amount of glucose in the medium
is �ve times higher! This indicates that under condition III the reason for increased cell
death in the outer regions can not be nutrimental deprivation. We suggest that it is due
to accumulating lactate which cells produce as a waste product under over-saturation
of glucose.

Extra-cellular Matrix (ECM) The ECM density (�gure 2.13) shows very similar
radial pro�les for all conditions. At the outer border we �nd a base level of ECM
density. With increasing depth the ECM density increases reaching a saturation at
a value around 0.15. As cells in the outer parts are younger than cells deeper inside
the spheroids the observed increase in ECM density might be a result of continuously
produced ECM accumulating around the cells. The density of saturation might be the
result of continuous production and the auto-degradation of ECM reaching an equilib-
rium. At a depth of around 150 µm the ECM density decreases toward the spheroid
center. This coincides with the increased occurrence of apoptosis which seems to shift
the equilibrium of production and degradation to lower values as the overall density of
viable cells diminishes.
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Figure 2.13: Extra-cellular matrix density. The curves show the radial pro�les of the Co-
lIV intensity. All curves are averages over the pro�les extracted from single images taken
at the same time Tx (x ∈ {3, 4, 5, 6}) and same culture condition y ∈ {I, II, III, IV }.
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Figure 2.14: Proliferating and apoptotic nuclei fraction. The curves show the radial
pro�les of the Ki67 positive (left) and TUNEL positive (right) nuclei fractions. All
curves are averages over the pro�les extracted from single images taken at the same
time Tx (x ∈ {3, 4, 5, 6}) and same culture condition y ∈ {I, II, III, IV }.
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Figure 2.15: Proliferating and apoptotic nuclei density (2D). The curves show the radial
pro�les of the Ki67 positive (left) and TUNEL positive (right) nuclei densities. All
curves are averages over the pro�les extracted from single images taken at the same
time Tx (x ∈ {3, 4, 5, 6}) and same culture condition y ∈ {I, II, III, IV }.



Chapter 3

Multi-scale Modeling Framework

for Avascular Tumor Growth

The goal of this chapter is to successively set up a multi-scale model for avascular
tumor growth based on common knowledge (literature) on tumor spheroids grown in-
vitro. After a brief background on tumor spheroids, the di�erent model components -
for tumor cells and involved molecules - will be introduced. This model framework will
be the subject of parameterization in the following chapter 4.
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3.1 Multi-cellular Tumor Spheroids

3.1.1 Why spheroids?

MCTSs are a well established system for cultivation and study. MCTSs can be grown
from many cell types (especially tumor cell lines) with little time and small e�orts. Per-
fect system to study the population dynamics of a single cell type under very controlled
conditions (impossible in in-vivo experiments).

3.1.2 Observation

Looking at MCTSs we are confronted with an interplay of very di�erent mechanisms on
the microscopic scale leading to a concentric organization on the macroscopic scale (see
�gure 1.3(b), ref. [HMD+10]) and a sequential arrangement of distinguishable growth
phases on the temporal scale (see �gure 3.1, ref. [FS86, CZ83]):

1. Geometric Progression or Exponential Growth Phase: All cells are proliferating.

2. Linear (radius) growth phase: Cell proliferation is limited to a rim of a �xed
thickness ∆L, while cells in the center are growth inhibited.

3. Saturation: The size of the tumor spheroid does not exceed a certain size. Prob-
ably due to

(a) homeostasis of proliferating and dying cells as well as cell migration toward
the center, or

(b) growth inhibition induced by nutrient limitation and the accumulation of
waste products.

Hereby, the occurrence of the single phases and their temporal extent depend very much
on the cell type and the environmental conditions as the composition of the growth
medium (nutrients, growth factors, substrates etc.).

Model-derived explanations for the occurrence of the di�erent phases reach from
growth and survival promotors and inhibitors (growth factors, nutrient limitation, lac-
tate intoxication etc.)(e.g. [Cha96, WK97, JPGCF05, MMA+09]) to mechanically in-
duced growth inhibition (e.g. [AM02, BP03, DH03, DH05, SMH05, DHB07]).

3.1.3 Modeling Challenge

The di�culty is not to �nd a mechanism that qualitatively and/or quantitatively can
describe the experimental observations, but to validate di�erent possible mechanisms
and identify the mechanism closest to "reality". This is the key of constructing a
predictive tool.
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Figure 3.1: Temporal evolution of the concentric arrangement of MCTSs[CZ83]. A
representation of the model for the interaction of growth promoters (GP), viability
promoters (VP), growth inhibitors (GI) and viability inhibitors (VI) at di�erent stages
in the growth of a spheroid. Arrows indicate the direction and extent of penetration
into or cut out of the spheroid; shading indicates the presence of proliferating cells,
non-proliferating cells, and acellular necrosis. Details of the model are given in the text
[FS86].
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Thus, in this chapter we will construct a multiscale model framework for avascu-
lar tumor growth which comprises several mechanisms which on the macroscopic scale
compete for the similar e�ects. E.g. mechanical vs. nutrient-limited growth inhibi-
tion, cell-cell-adhesion-driven vs morphogen-driven migration and starvation-induced
vs. waste-product-induced cell death. In chapter 4, several opposing mechanisms will
be evaluated in comparison to data.

3.2 A Stochastic Cellular Automaton Approach

The model used to represent the tumor cells and to mimic their spatio-temporal behavior
is an extension of [RBH+09].

3.2.1 Infrastructure / Spatial Representation

Lattice-based and Agent-based:

In order to later on upscaling to large scales, we will be interested mainly in a lattice-
based environment for biological cells. That means that our n-dimensional domain
Ω ⊂ R

n is subdivided into an spatial tessellation. Biological cells will be considered as
individual discrete objects, also called agents, which populate the tiles of this tessellation
and use it as a kind of infrastructure like cars a network of streets.

Cell Shapes and Choice of Tessellation:

Isolated cell can have very di�erent cell shapes. Due to adhesion and the formation of
cell-cell-bounds, cells in aggregation rather have a polygonal shape. As illustrated by
�gure 3.2 the Voronoi tessellation of a irregularly distributed set of construction points
is a suitable representation of cell shapes and avoids su�ciently the occurrence of lattice
artifacts [Dra05].

3.2.2 Spatio-Temporal Evolution & Model Processes

The spatial and temporal evolution of the system is considered to be stochastic following
the characteristic distributions for the duration of the mimicked biological processes and
the spatial directions. Therefore, the average system behavior is calculated by solving
the corresponding master equation numerically with the Gillespie algorithm [Gil77] (see
section B.2.2). Consequently, all temporal distribution will be limited to be exponential
or Erlang distributed (see section B.2.3).

In the following the main biological processes taken into account and their modeled
counterpart will be described in detail.
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Figure 3.2: Cell shape in aggregation and Voronoi tessellation[LL07]. a) Isolated cell
have a round shape, but depending on the cell type can have very di�erent shapes. b)
In contact with other cells they form cell-cell-bounds and rather �at interfaces. c) Cell
aggregates have polyhedral pattern very similar to d) Voronoi tessellations composed
of Voronoi cell (white lines and blue vertices). Its dual is the Delaunay triangulation
(black lines and red vertices).
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3.2.3 Cell Replication

Cell Cycle:

In order to perform a cell division a cell has to undergo a chain of steps and processes
until it �nally can physically divide into two separate cells. This chain of processes is
called the cell cycle and can be mainly divided into the following phases: G1-phase,
S-phase, G2-phase and M-phase (see �gure 3.3(a)). Cells which are not dividing are
generally arrested in the G0-phase. Then they are called quiescent. During the cell
cycle cells have to double their genetic code (S-phase), volume (G1, S & G2-phase) and
cell organelles.

The time each cell takes from the moment of entrance into the cell cycle until the
physical division can vary among a population of cell and follows a speci�c distribution.
The shape of this distribution might change between di�erent cell types and environ-
mental conditions.

(a) cell cycle scheme (b) chain of Poisson processes

Figure 3.3: Cell cycle. (a) Schematic diagram of the cell cycle illustrates the cell cycle
phases (G1, S, G2 and M ), the resting phase (G0 ) and the cell cycle checkpoints (red
arrows). (b) Cell cycle is modeled by a chain of Poisson processes.

In the multi-cellular model the cell cycle is mimicked by a chain of Poisson pro-
cesses which a cell has to pass until actually two cells emerge from it (see �gure 3.3(b)).
The waiting time of a process composed by Poisson processes becomes Erlang dis-
tributed with a distribution shape parameter m ∈ N which corresponds to the number
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of sub-processes. This enables the model to capture a variety of di�erent cell cycle
time distribution shapes from exponentially distributed cell cycle times (m = 1) to very
sharp Erlang-distributed cell cycle times (m → ∞) (see �gure 3.4 for examples). Mea-
surements of cell-cycle time distributions have shown to be consistent with a gamma
distribution ([Ken48, Pow55]) which is the continuous version of the Erlang distribution
with m ∈ R. On the other hand side, single subprocesses mi (m1,m2, ...,md) can be
related to the di�erent cell cycle phases (G1, S, G2 and M) or to speci�c events as
checkpoints, volume growth (mg) and cell division (md).

Figure 3.4: Sensitivity of Erlang distributed cycle times in respect to Erlang number m.

left: Probability density function p(x) = xm−1e−x/(mτ)

(mτ)m(m−1)! . right: Cumulative distribution

function cdf(x) =
∑m−1

n=0
1
n!e

−x/(mτ) x
mτ

n.

Figure 3.5 compares the measured cell cycle time distribution of retinal progenitor
cells [GZC+11] with the Erlang distribution. One can see that Erlang number m = 10
gives a reasonable �t and will be used in the following as the default value.
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Figure 3.5: Cycle time distribution of reti-
nal progenitor cells [GZC+11] (black) com-
pared to a Erlang distributed cell cycle
time for Erlang number m = 10 and di-
vision rate τ−1 = 87h−1 (red).
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First Double Volume, Then Divide

Usually cells �rst double their volume during the G1-phase before they decide to repli-
cate their DNA (S-phase) and divide into two daughter cells (M-phase). We de�ne mg

the instant when the volume doubling takes place, 1 ≤ mg ≤ md. By default a cell in
cell cycle step mg will then occupy one randomly chosen free neighbor site.

Figure 3.6: Growing cell expandes to free neighbor site.

Spatial Growth Limitation

If there is no more free space available for a growing cell to expand to, the cell will
become quiescent. Here the de�nition of "no space" varies a lot among di�erent types
of cells:

1. Contact-Inhibition: Many cells stop their growth and division in the case they
are completely surrounded by other cells. This is know for example for epithelial
cells which grow as a monolayer in petri dishes until convolution and then stop
dividing.

2. Density-Inhibition: Tumor cells are known for their loss or perturbation of the
mechanisms regulating cell proliferation. Thus even cells completely surrounded
by other cells still continue to divide. Nevertheless, it was observed (ref. [FS86])
that only the outer rim of spheroids shows a proliferative activity. This implies a
certain maximal distance ∆L which cells are able to rearrange their local neigh-
borhood in order to double their cell volume and divide.

So generally speaking before a cell is expanding it evaluates its neighborhood within a
radius of ∆L for free lattices sites.

Rearrangement / Shifting

In the case of a cell being completely surrounded by other cells a growing cell �rst
pushes its neighboring cells along the shortest path toward the closest free lattice site
before expanding to the liberated one (see �gure 3.7).
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Figure 3.7: Growing cell shifts cells toward closest free lattice site before expanding to
neighbor site.

Cell Division

At the end of the cell cycle, m = md, the mother cell will divide into two daughter cells
by replacing the old agent by two new agents which each for its self will occupy one of
the mother cells lattice sites.

Figure 3.8: At the end of the cell cycle the cell divides into two daughter cells.

3.2.4 Cell Motion

Cell motion in general can be mimicked by an "hopping" process moving one cell from
one lattice site to a unoccupied neighboring site. The motion rate (corresponding to
the cells velocity) and the probability distribution for pi→j to move to from lattice site
i to one of the neighboring site j determines the type of movement.

Di�usion (in liquids):

Cells which �oat in a liquid and do not actively move still perform a kind of random-
walk-like movement. The solvent molecules of the media are self propelled by their
thermal energy. Collisions between those molecules and the cell membrane will lead to
a random drifting of cells, the so-called Brownian motion. The resulting spread of cells,
and of other particles as well, due to random movement is called di�usion.

As the motion is performed unbiased and into arbitrary direction the probability
pi→j is homogeneously distributed,

∑

j pi→j = 1 and ∀j, k : pi→j = pi→k.
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Figure 3.9: Di�using cell moves randomly to neighbor sites.

The di�usion rate kdiff can be derived from the di�usion coe�cient Dcell

kdiff =
3Dcell

dR2
(3.1)

where d is the number of spatial dimensions and R is the hopping distance (depends on
the underlying lattice). The di�usion coe�cient depends on the properties of the cell
and the surrounding (liquid) media.

Dcell =
kBT

6πηR0
(3.2)

where kB is the Boltzmann constant, T is the temperature, η is the viscosity of the
medium and R0 the hydrodynamic radius of the cell which for the cells can be assumed
to be approximately equivalent to the cells radius, R0 ≈ Rcell.

Parameter Unit

kdiff h−1

Rcell µm

Constant Unit Value Reference

d − 3
kB JK−1 1.38× 10−23

T K 310.15 at 37◦C
η µN · s ·m−2 700 for H2O at 37◦C

Migration & Cell-Cell-Adhesion:

Figure 3.10: Cell migrating into a niche in order to increase cell-cell-bounds.
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Cells interact with other cells and substrate via adhesion and migration. There cell
create bounds with other cells and/or underlying substrate and can release those bounds
at other parts of their membrane. This way cells crawl into a certain direction.

This can be mimicked via a migration process with migration rate kmi a biased
direction motion taking into account the cohesive energies of cell-cell-bounds.

Ei,j :=

{
1 if i and j are cells
0 else

(3.3)

If a cell is moving, it may lose and/or gain bounds. The energy balance is

∆Ei→j := −
∑

k 6=j

Ei,k +
∑

k 6=i

Ej,k (3.4)

The individual rates for a cell moving from lattice site i to a free neighbor site j is given
by

kmi,i→j = kmi e
−

∆Ei→j
Eref (3.5)

where Eref is the reference energy controlling the degree of stochasticity and kmi is a
migration rate parameter controlling the migration speed. The total migration rate of
a cell at lattice site i to move is given by

kmi,i = kmi

∑

j

e
−

∆Ei→j
Eref . (3.6)

3.2.5 Cell Death

We can distinguish between two kinds of cell deaths: the so-called programmed cell
death which in the following will be summarized under the expression apoptosis, and
the premature traumatic cell death as a result of cellular injury, intoxication or hypo-
nutrition which will be referred to as necrosis.

Apoptosis

Apoptosis can be caused by external signaling (as hormones and toxins) or internal
events (as for example the detection of DNA damage, nutrient deprivation and hypoxia
[SEK+96]).

As a reaction the cells activate the apoptotic pathways which in the following will
lead to cell shrinkage, nuclear fragmentation, chromatin condensation, chromosomal
DNA fragmentation and cell fragmentation into apoptotic bodies (see �gure 3.11).
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Figure 3.11: Hallmarks of the apoptotic and necrotic cell death process. Apoptosis
includes cellular shrinking, chromatin condensation and margination at the nuclear pe-
riphery with the eventual formation of membrane-bound apoptotic bodies that contain
organelles, cytosol and nuclear fragments and are phagocytosed without triggering in-
�ammatory processes.The necrotic cell swells, becomes leaky and �nally is disrupted
and releases its contents into the surrounding tissue resulting in in�ammation. Modi-
�ed from [CdB02].
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"These bodies are mostly engulfed by neighboring cells and in particular by
macrophages. The macrophage recognizes the apoptotic cell fragments by their ex-
pression of phosphatidylserin on the outside of the plasma membrane. However, due
to the absence of phagocytes in in-vitro culture apoptotic cells may undergo so-called
secondary or apoptotic necrosis." [CdB02]

Necrosis (defective apoptotic pathway)

If dying cells are not able to initiate the apoptotic pathways because of cellular injury,
intoxication or a dysfunctional apoptotic pathway as in the case of many cancer cell
lines they will undergo necrosis.

"Necrosis is marked by cellular swelling, often accompanied by chromatin condensa-
tion and eventually leading to cellular and nuclear lysis with subsequent in�ammation
(3.11)." [CdB02]

Necrosis (in-silico)

As the model is mainly focusing on cancer cells cell death will be taken into account
by necrosis (neglecting apoptosis) if certain survival conditions are locally not ful�lled
anymore. Via a Poisson process (by default with Erlang number mnec = 1) with rate
knec a cell changes it state from "dividing" to "necrotic" (see �g. 3.12).

Figure 3.12: A dying cell changes its state to necrotic.

Phagocytosis (in-vivo)

Phagocytosis is the cellular process of engul�ng solid particles by the cell membrane to
form an internal phagosome by phagocytes and protists [Wikipedia]. Removing dead
cell material is the main function of macrophages, a di�erentiated white blood cell. So
phagocytosis can only take place in the presence of macrophages, but not in an in-vitro
monoculture of cells.
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Lysis (in-vitro)

An alternative process is cell lysis. Lysis refers to the breaking down of a cell, often by
viral, enzymatic, or osmotic mechanisms that compromise its integrity [Wikipedia]. As
it is a passive process lysis takes much longer than phagocytosis. It depends very much
on the embedding environment. Very often it is an incomplete process leaving some
material un-lysed.

Lysis (in-silico)

Lysis will be mimicked by Poisson process (by default with Erlang number mnec = 1)
with rate klys which removes a cell in "necrotic" state from the lattice (see �g. 3.13).

Figure 3.13: A necrotic cell is remove from the lattice via lysis.

3.3 Reaction-Di�usion Equations

3.3.1 Cell Metabolism

The central and most important pathways in the cell metabolism are the glucolysis and
the citrate acid cycle (Krebbs cycle). During a stepwise process one molecule glucose is
oxidized by O2 to water and CO2 to produce the cells energy current ATP. The simple
chemical equation looks as following.

glucose+ 6 ·O2 + 36 ·ADP → 6 ·H2O + 6 · CO2 + 36 ·ATP (3.7)

On a very low level of oxygen concentration cells can still remain viable by producing
the essential ATP using the anaerobic way. Muscle cells, for example, are able to break
down glucose molecules without using O2 but excreting lactate.

glucose+ 2 ·ADP → 2 · lactate+ 2 ·ATP (3.8)

This alternative way of metabolizing glucose is less e�cient, because it yields only 2
ATP instead of 36, and creates an acid milieu which is harmful to cells. By experimental
estimations of average oxygen and glucose uptake rates for another cell line a consid-
erable deviation from the ideal ratio has been found with about 1:1 [KSDMKG00].
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For EMT6/Ro cells, in [WNM+00] a ratio of about 1:3.9 is reported. Other works
[FS85, JPGCF05] suppose that most of the glucose consumed (75%) �ows through
the anaerobic glycolysis and produces lactate as waste, while a minority (25%) �ows
through the Krebbs cycle and respiration; oxygen consumption is connected to glucose
consumption through respiratory catabolism to generate CO2, which rapidly di�uses
away.

Continuum model: [G] & [O2]

Glucose and oxygen are one of the main metabolites of most of the biological cells. In
normal tissue they are provided su�ciently by vessels. On the other hand, in tumor
spheroids and avascular tumors we can �nd regions lacking glucose (hypo-nutrition)
and/or oxygen (hypoxia). This is mostly due to perturbed or missing regulatory mech-
anisms leading to uncontrolled cell growth and thus a higher energy demand.

The molecular dynamics is modeled by a classical system of reaction-di�usion equa-
tions

∂tu = Du∇u+ r(u) (3.9)

where Du is the di�usion coe�cient of molecule u ∈ {[O2], [G]} and r(u) the reaction.
The di�usion should be chosen in dependance of the the environment (tissue, liquid
etc.). The reaction term is reduced to the consumption by cells

r(u, x) =

{
−q(u, x) if σ(x) = tumor cell

0 else
(3.10)

How to chose correctly your q depends on the cell type and the environmental conditions
as well. Possible approaches are shown in �gure 3.14.
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Figure 3.14: Di�erent consumption rates:
a) constant consumption: q(u) = k,
b) piecewise linear: q(u) = min{qmax, ku},
c) Michaelis-Menten-like: q(u) = qmax · u

u+k

d) Sigmoidal: q(u) = qmax · 1
1+ek(u0−u)
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In experimental measurements of glucose and oxygen consumption for varying con-
centrations of glucose and oxygen it was observed that the concentrations of both
molecules in�uence the consumption behavior [FS85](see �gure 3.15). Casciari et al.
[CSS92a] proposed a extended Michaelis-Menten-like consumption rate for glucose and
oxygen

qG = V G
m · [G]

[G] + kmG
(3.11)

qO2 = VmO2 ·
[O2]

[O2] + kmO2

(3.12)

where the maximum consumption rates VmG and VmO2 depend on the opposite nutrient

VmG =

(

AG +
BG

[O2]

)
1

[H+]n

VmO2 =

(

AO2 +
BO2

[G][H+]m

)

.

(3.13)

For small nutrient concentrations, both rates have an asymptotic behavior toward in-
�nity and thus are unsuitable. In the following we will use a modi�ed version for VmG

and VmO2 which is cross-coupling both nutrients via a second Michaelis-Menten-like
term and neglects the in�uence of protons (in acid milieu) on the consumption behavior
(compared to equation 3.13)

VmG = qmax
G

(

1−
(

1− qmin
G

qmax
G

)
[G]

[G] + kG

)

VmO2 = qmax
O2

(

1−
(

1−
qmin
O2

qmax
O2

)

[O2]

[O2] + kO2

) (3.14)

The parameters of equations were aquired by �tting equations 3.11, 3.12 and 3.13 to
measurements of [FS85](see �gure 3.15).

Coupling cellular & molecular Scale

In order to estimate the in�uence of the local glucose and oxygen concentration we
need to understand the cells motivation for the measured uptake rates. Beside the
usage as cell material glucose is mainly used to gain energy for cell maintenance and
reproduction. This happens by oxydating glucose:

C6H12O6 + 6O2 → 6CO2 + 6H2O (3.15)
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Figure 3.15: Consumption rate of glucose (a) and oxygen (b) depend on both concen-
trations. The equations 3.11 and 3.12(green) are compared to measurements (red dots)
in [FS85]. Units: mM for [G] and [O2], 10

−16mM/h/cell for qG and qO2 .

The freed energy (∆G = -2880 kJ per mole) is thereby stored in the cells energy current,
ATP. Regarding the participation of oxygen we have to distinguish between a �rst
anaerobic reaction step, the so-called glycolysis,

Glucose
k1−→ 2Pyruvate+ 2ATP (3.16)

and aerobic citric acid cycle.

Pyruvate+ 3O2
k2−→ 17ATP (3.17)

From measurements we know that

d[G]

dt
= −k1[G] = −qG (3.18)

d[O2]

dt
= −3k2[Pyruvate][O2]

3 = −qO2 (3.19)

The changes in ATP concentration can be written as following

d[ATP ]

dt
= 2k1[G] + 17k2[Pyruvate][O2]

3 (3.20)

Applying equations 3.18 and 3.19 we can reformulate equation 3.20 and obtain

d[ATP ]

dt
= 2qG +

17

3
qO2 (3.21)
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In reality a cell can not produce any ATP, if it doesn't consume any glucose anymore.
So �nally our equation should be extended to

d[ATP ]

dt
= 2qG + 34min

{

qG,
1

6
qO2

}

︸ ︷︷ ︸

qaerobicG

(3.22)

The percentage of aerobically and anaerobically metabolized glucose is then given by

qaerobicG /qG = min

{

1,
1

6

qO2

qG

}

qanaerobicG /qG = 1−min

{

1,
1

6

qO2

qG

} (3.23)

Figure 3.16(a) illustrates nicely how cells regulate their consumption of glucose and
oxygen under very di�erent circumstances, hypo-nutrition (low glucose) and hypoxia
(low oxygen), in such a way that a yield of ATP is maintained at a values between 80
and 100 ·10−17mM/h per cell. Based on this observation we can assume that EMT6/Ro
cells which are continuously dividing need at least 80 ·10−17mM/h.

On the other hand side, equation 3.22 implies that EMT6/Ro cells metabolize only
10% of the consumed glucose in the Krebbs-cycle - even under su�cient glucose and
oxygen supply (see �gure 3.16(b)). The other 90% only �ow through the glycolysis
(anaerobic) and are either fermented to lactate or used to build up other cell components
(e.g. amino acids, nucleotides) nevertheless important for cell reproduction. Jiang et al.
[JPGCF05] indicated a much lower fraction (75%) of anaerobically metabolized glucose.

Discretization

The processes on the molecular scale follow di�erent time scales (seconds - minutes)
than on the cellular scale (hours). We assume that the dynamics on the molecular
scale perturbed by a change on the cellular scale (cell division, cell motion, cell death
etc.) will a steady state within minutes. Thus the reaction di�usion equations (see
equation 3.9) for glucose and oxygen can be solved for their steady states, ∂tu = 0 for
u ∈ {[G], [O2]},

0 = Du∆u− cqu (3.24)

c being the local cell density. As both equations are coupled via their consumption rates
qG and qO2 they will be solved iteratively in a single system by an implicit scheme for
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(a) ATP production. (b) Percentage of glucose metabolised anaerobically.

Figure 3.16: Cells requirement of ATP regulates the consumption of glucose and oxygen
in such a way that the amount of produced ATP stayes constant (a) and switches
smoothly between aerobic and anaerobic metabolism (b). Units: mM for [G] and [O2],
10−17mM/h for qATP .

di�usion and consumption.

un+1
∣
∣
∂Ω

= ub

Du∆un+1 − c
qnu
un

un+1

︸ ︷︷ ︸

An·un+1

= 0
︸︷︷︸

b

(3.25)

The di�usion term (second derivative in space) is discretized by a �rst order �nite
di�erence scheme

Du∆u = Du

(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)

(
∂2u

∂x2

)

i,j,k

=
ui−1,j,k − 2ui,j,k + ui+1,j,k

h2
+O(h2)

(
∂2u

∂y2

)

i,j,k

=
ui,j−1,k − 2ui,j,k + ui,j+1,k

h2
+O(h2)

(
∂2u

∂z2

)

i,j,k

=
ui,j,k−1 − 2ui,j,k + ui,j,k+1

h2
+O(h2)

(3.26)

The system is updated by inverting matrix An

un+1 = (An)−1b (3.27)
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(a) Aerobic metabolic pathway: glycolysis and cit-
ric acid cycle.

(b) Anaerobic metabolic pathway: glycolysis and
lactate fermentation.

Figure 3.17: Metabolic pathways: glycolysis, citric acid cycle and lactate fermentation.
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3.3.2 Lactate Fermentation

Under anaerobic conditions the cell accumulates pyruvate molecules from glycolysis (see
equation 3.16 and �gure 3.17(a)) as they can not be further processed in the citric acid
cycle (or Krebbs cycle) without the presence of oxygen. On the other hand side, NADH
can not be oxidized back to NAD+ which is needed for the glycolysis to continue (see
�gure 3.17). To over come this shortcoming of NAD+, the pyruvate will be reduced to
lactate by incorporating a proton of NADH.

Pyruvate+NADH
k2−→ Lactate+NAD+ (3.28)

This process is called the lactic acid fermentation (see �gure 3.17(b)).

Continuum Model: Lactate

In the model we assume lactate to be a direct side product of glucose metabolized in the
anaerobic way. For each molecule of glucose entering the anaerobic lactate fermentation
the cell will produce 2 molecules of Lactate. Assuming the lactate production rate to
be pL ≈ 2qanaerobicG and lactate to leak out of cells and di�use among the tissue results
in the following formulation of the lactate dynamics

d[L]

dt
= ∇ · (DL∇[L]) + 2qG + 2min

{

qG,
1

6
qO2

}

, (3.29)

where DL is the di�usion coe�cient (see table 3.1), qG the glucose consumption rate
(equation 3.11) and qO2 the oxygen consumption rate (equation 3.12).

Discretization

To solve the lactate dynamics in time a �nite di�erences scheme implicit in time for
production and di�usion is used

[L]n+1
∣
∣
∂Ω

= [L]b

[L]n+1 − dtDL∆[L]n+1 − dtc
pnL
[L]n

[L]n+1

︸ ︷︷ ︸

An·un+1

= [L]n
︸︷︷︸

bn

(3.30)

The system is updated by inverting matrix An (see section C.3, algorithm 6)

un+1 = (An)−1bn (3.31)
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Table 3.1: Default Continuum Model Parameters

Parameter Unit Value Reference

DO2 µm2/h 6300000 [SMH05]
DG µm2/h 378000 [SMH05]
DL µm2/h 756000 [RLP+08]

kGG mM 0.068049 �t for measurements in [FS85]

kO2
G mM 0.030789 �t for measurements in [FS85]

qmin
G mM/h 14.727716 · 10−17 �t for measurements in [FS85]

qmax
G mM/h 53.672035 · 10−17 �t for measurements in [FS85]

kO2
O2

mM 0.030752 �t for measurements in [FS85]

kGO2
mM 0.100326 �t for measurements in [FS85]

qmin
O2

mM/h 10.171515 · 10−17 �t for measurements in [FS85]

qmax
O2

mM/h 22.800151 · 10−17 �t for measurements in [FS85]



Chapter 4

Parameterization of Avascular

Tumor Model
In this chapter, we will systematically parametrize the avascular model introduced in
chapter 3 to two di�erent tumor cell lines: EMT6/Ro and SK-MES-1 cells. For the
EMT6/Ro cell line, uniquely the growth curves under di�erent nutrimental conditions
will be used as a criteria. For the SK-MES-1 cell line, in addition to the growth curves,
the concentric arrangement of cell phenotypes (proliferating, quiescent and apoptotic)
and extra-cellular matrix density resulting from the simulations will be directly com-
pared to the image processing results of chapter 2.
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4.1 Results on EMT6/Ro Cell Line

A largely studied cell line in the past is the EMT6/Ro cell line [MKS82, MK84, FS85,
FS86, CSS88, Fre88, WDMK90, FSJ+91, CSS92b]. It is a mouse breast cancer cell line.
The group around Freyer and Sutherland did a study of EMT6/Ro tumor spheroids
[FS85, FS86]. One article of great interest was the growth data of spheroids growing
under di�erent nutrient conditions [FS86]:

(I): [G] = 16.5mM , [O2] = 0.28mM

(II): [G] = 16.5mM , [O2] = 0.07mM

(III): [G] = 0.8mM , [O2] = 0.28mM

(IV): [G] = 0.8mM , [O2] = 0.07mM

where [G] and [O2] are the concentrations of glucose and oxygen in the growth medium.

Beside the total number of cells and the spheroid volumes as a function of time (see
�gure 4.1) they published the measurements of the glucose and oxygen consumption
rates (see �gure 3.15) of EMT6/Ro cells exposed to a large variety of nutrimental
conditions.
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Figure 4.1: Growth rates of spheroids in terms of total spheroid cell content (left) and
total spheroid volume (right) as a function of time in culture for growth in the indicated
conditions. (◦) and (•), individual values from two di�erent experiments determined
from diameter measurements; lines are nonlinear least- squares best �ts to the Gompertz
growth equation.From [FS86].

Due to the richness of literature about this cell line, the EMT6/Ro cells will be the
target cell line for a �rst model parameterization following in the next sections.
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4.1.1 Growth Dynamics Neglecting Nutrients

In this section we will parameterize the cellular model (described in section 3.2) ne-
glecting nutrient limitation in order to adapt the purely cell-dependent parameters. As
we are missing some information, at the beginning for this section a few assumptions
have to be made.

Assumptions:

1. Cells proliferate with cycle time τ following an Erlang distribution with Erlang
number md = 10 (observed for other cell types, see section 3.2.3).

2. For su�ciently supplied nutrients ([G] = 25mM and [O2] = 0.28mM), we can ne-
glect the in�uence of nutrients on the growth curves (number of cells and spheroid
volume versus time).

3. The proliferating rim has a constant size ∆L, within this rim all cells divide with
probability 1.

Estimate the Growth Rate from Exponential Growth Phase:

We can estimate the growth rate (λ) from the apparent growth rate (λ−1
app = 43.5h)

measured during the exponential growth phase (see �gure 4.2) and the relation between
both rates for Erlang distributed cycle time with shape parameter m = 10 (see equation
B.6 in section B.2.3).

dN

dt
= N · λapp

= N/43.5h

λ−1 = λ−1
app ·m(21/m − 1)

= 43.5h · 0.72
≈ 31.22h

(4.1)
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Estimate the Thickness of the Proliferating Rim:

After the initial exponential growth phase at about 10 days the expansion velocity of
the radius converges against a constant value.

V = N · V cell

R =
3

√

N · V cell ·
3

4π

(4.2)

dR

dt
= ∆L · λapp (4.3)

= k · 3

√

V cell · λapp
(4.4)

3

4π

dN
1
3

dt
= k · λapp = k/43.5h

k ≈ 4

(4.5)

So k is the thickness of the outer proliferating rim of the spheroid in terms of number
of cells.
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Figure 4.2: Estimation of growth rate (left) and thickness of proliferating rim (right).
Left : An exponential growth law (dashed line) is compared to the experimental growth
curves of the number of cells in time (circles). Right : A linear growth law (dashed line)
is compared to the experimental growth curves of the third root of the number of viable
cells in time (circles).

Fit Spheroid Volume: Cell Size

As we know that the outer growing cell layer must be approximately 4 cells thick we
can relate this cell number to the actual cell size in the outer layer by �tting equation
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4.4 to the radius expansion of the very same spheroids.

As �gure 4.3 shows the expansion velocity is estimated to be v = 1.32µm/h. For
given λapp and k it can be decomposed into the thickness of the proliferating rim ∆L =
57.7µm (eq. 4.4) and the average cell volume within the proliferating rim V cell =
3000µm3 (eq. 4.4 and 4.3). If we assume the proliferating cells are homogeneously
distributed over all cell cycle phases and the cellular volume increases linearly in time
then the cell volume can be assumed to vary between Vcell = 2000...4000µm3.
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Figure 4.3: Estimation of average cell volume in proliferating rim. Left : Measurements
of the average cell size in spheroids as function of the spheroid diameter [FS85]. Right :
The power law spheroid radius (eq. 4.4) compared to experimental growth curves of
the spheroid radius from [FS85].

Result:

Figure 4.4 and 4.5 show that a model parametrized with the values for the cell cycle
time τ = 31.22h, thickness of proliferating rim k = 4 (in cells) and the cell size Vcell =
3000µm3 is able to explain the growth curves of the spheroid volume and the number
of viable cells in time.

4.1.2 Growth Dynamics under Nutrient Limitation

In the following the cell model will be coupled with the continuum model for the glucose
and oxygen kinetics discribed in section 3.3.1. Two di�erent criteria for the cells decision
for growth/quiescence and survival/death will be compared.
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Figure 4.4: Temporal evolution of the total number of cells. Single cell based model
(line) neglecting nutrient limitation compared to data of EMT6/Ro spheroid (cirle).
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Figure 4.5: Temporal growth of spheroid radius (right) and volume (left). Single
cell based model (line) neglecting nutrient limitation compared to data of EMT6/Ro
spheroid (cirlce).
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Critical Product of Glucose and Oxygen

For the cell kinetics, [SMH05] proposed a critical product of oxygen and glucose con-
centration to switch the cells behavior from proliferation to quiescence & necrosis. Cells
only enter the cell cycle if the product of glucose and oxygen concentration exceeds a
certain threshold [SMH05]. If not, cells become quiescent and enter necrosis. So we can
summarize proliferation and necrosis conditions a following.

ϑp := [G] · [O2] ≥ P crit (4.6)

ϑn := [G] · [O2] < P crit (4.7)

As we can see in �gure 4.6, we only can �t the growth curves of changing the glucose
concentration while keeping oxygen supply constant (or the way around). But the
proposed kinetics is not able to explain a larger variety of di�erent glucose and oxygen
concentrations.

Critical ATP

Much better �ts were obtained by relating the cell behavior to the amount of ATP a
cell is able to produce under the given conditions (see equation 3.22)

ϑp := pATP ≥ ppATP

ϑn := pATP < pnATP

pATP = 2qG + 34min

{

qG,
1

6
qO2

} (4.8)

Figure 4.7 shows the that amount of ATP a cell can gain from given nutrients (glu-
cose and oxygen) seems to be a much more appropriate criterion for the cells decision
about cell growth or quiescence and survival and cell death. The growth curves of
the viable cells as well as the spheroid volumes match quiet nicely the experimental
observations of conditions I, II and III (whether high glucose or oxygen concentration
in growth medium) [FS85]. Nevertheless, without considering further mechanisms the
model fails to explain saturation which is observed for condition IV (low glucose and
oxygen concentration in growth medium). As the cells at the outer spheroid border are
always su�ciently supplied with nutrients, they will continue to proliferate and cause
the spheroid radius to continuously expand. The next section proposes one possible
mechanism which can explain saturation via cell-cell-adhesion and biased migration.
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Figure 4.6: Fit of experimental data of growth EMT6/Ro tumor spheroids using a
critical product of oxygen and glucose concentration as criteria for the cells decision
on growth/quiescence and survival/death. The growth curves of the experimentally
measured (circles) number of viable cells in time are compared to the simulation results
(solid line) for four di�erent nutrimental conditions. The dashed lines depict the number
of necrotic cells.
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Figure 4.7: Fit of experimental data of growth EMT6/Ro tumor spheroids using a
critical ATP production rate as criteria for the cells decision on growth/quiescence and
survival/death. The growth curves of the experimentally measured number of viable
cells (black circles) and the spheroid volumes (white circles) in time are compared to
the simulation results (solid line for viable cells; dashed lines for spheroid volume) for
four di�erent nutrimental conditions.
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4.1.3 Saturation: Cell Adhesion

Biased migration

In the case of cell death (apoptosis, necrosis) inside of the spheroids, the "holes" left by
the dead and lysed cells might be closed by the surrounding cells. Observations show
that cells migrate in order to maximize the contact area with other cells.

Figure 4.8 shows the result of a simulation considering cell migration as described
in section 3.2.4. The migration rate was assumed to be kmi = 2h−1 and the direction of
migration was chosen to be biased by cell-cell-adhesion (see equation 3.4). That is, cells
more probably migrate into a direction where they will increase the number of cell-cell-
bonds. One can see that after an initial growth phase the spheroid volume saturates at
around 2000 cells. Furthermore, one can see oscillations directly after saturation which
in time become small. This is due to the fact that initially the tumor becomes larger
than its saturation size. This leads to the dead of a large number of cells resulting in
a population size smaller than the saturation size. So the oscillations are due to delays
between phases of regrowth, death and "contraction" of the spheroid by migration. It
can be compared to the behavior found in predator-prey-systems.

Figure 4.8: Fit of experimental data us-
ing a biased cell migration which takes
the cell-cell-adhesion into account. The
growth curves of the experimentally mea-
sured number of viable cells (black circles)
and the spheroid volumes (white circles) in
time are compared to the simulation results
(solid line for viable cells; dashed lines for
spheroid volume) for the condition of low
nutriment concentrations: [G] = 0.8mM
and [O2] = 0.07mM

4.2 Results on SK-MES-1 cell line

In the following subsections, a similar systematic parameterization procedure will be
applied to the SK-MES-1 cell line. Figure 4.9 shows the growth curves of SK-MES-1
tumor spheroid growing under four nutrimental conditions [MM]:

(I): [G] = 1mM , [O2] = 0.28mM

(II): [G] = 5mM , [O2] = 0.28mM

(III): [G] = 25mM , [O2] = 0.28mM
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Table 4.1: Fit Parameters for EMT6/Ro Cell line

Parameter Unit Value / Range Reference

dcell µm 15.1 �t from [FS85], see �gure 4.3
k - 4 �t from [FS85], see �gure 4.2
md - 10 �t from [GZC+11], see �gure 3.5
mg - 10 assumption
τ h 31.2 �t from [FS85], see �gure 4.2
kmi h−1 2 estimation for [FS85]
knec h−1 0.007 assumption
klys h−1 0.35 assumption
P crit mM 0.025 [SMH05]
ppATP mM/h/cell 40 ·10−17 estimation for [FS86], see �gure 3.16(a)
pnATP mM/h/cell 40 ·10−17 estimation for [FS86], see �gure 3.16(a)

Table 4.2: Fit Parameters for SK-MES-1 Cell line

Parameter Unit Value / Range Reference

dcell µm 16.8 estimated from [MM], see �gure 2.4(b)
k - ∞ no limited size of proliferating rim
∆L µm 130 �t from [MM], see �gures 4.12(b) and 4.14
md - 10 �t from [GZC+11], see �gure 3.5
mg - 10 assumption
τ h 31.2 �t from [FS85], see �gure 4.2
kmi h−1 0 assumption
knec h−1 0.01 estimation, see �gure 4.19
klys h−1 0.035 estimation, see �gure 4.16
ΦL mM 10 estimation, see �gure
ppATP mM/h/cell 40 ·10−17 estimation for [FS86], see �gure 3.16(a)
pnATP mM/h/cell 40 ·10−17 estimation for [FS86], see �gure 3.16(a)
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(IV): [G] = 25mM , [O2] = 0.07mM

where [G] and [O2] are the concentrations of glucose and oxygen in the growth medium.
As a result of an image processing and analysis (chapter 2), the radial pro�les of the
proliferating and necrotic cell fractions as well as the extra-cellular matrix densities were
given for di�erent time points. Beside the growth curves, they will serve as an additional
validation criterion by comparing them to the concentric arrangements emerging from
model simulations. As for EMT6/Ro cells, the parameterization will be done succes-
sively by �rst neglecting any molecular dynamics and then step-wisely increasing the
model complexity by the studying and identi�cation of further dependencies.

4.2.1 Parameter Estimation Neglecting Nutrient Limitation

Analyzing the slopes of the spheroid volume (exponential growth phase) and the
spheroid radius (linear growth phase) give us �rst preliminary information.

During the exponential growth phase, i.e. all cells are assumed to proliferate, the
apparent growth rate λapp can be estimated from the volume growth curves (see �gure
4.9) using equation 4.9

V (t) = V0e
(t−t0)λapp (4.9)

dV

dt
= V λapp (4.10)

≈ v/5days (4.11)

Assuming an Erlang distributed cell cycle time with Erlang number m ≈ 10 (ref.)
gives a growth rate of λ = 1/3.5days. So a cell division is taking place on average
every 3.5days - which is extremely long! (typically its about 24h) - or not all cells are
dividing. In the following we will assume that only a forth of the initial bulk of cells
enter the cell cycle while the rest stays in G0.

During the linear (radius) growth phase the radius expansion rate can be measured

R(t) = R0 +∆L(t− t0)λapp (4.12)

dR

dt
= ∆L · λapp (4.13)

≈ 14µm/day (4.14)

Integrating the measured cell fraction in proliferation as a function of the distance to
the spheroid border gives us the apparent growing radius fraction ∆L = 30.9...46.3µm
(see �gure 4.10).

∆L ≈
∫ ∞

0
φKi67dl (4.15)
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Figure 4.9: SK-MES-1 tumor spheroids growing under four di�erent nutrimental condi-
tions. The �gures show the comparison of experimentally measured spheroid volumes
(left, circles) and radii (right, circles) in time to an exponential (left, line) and linear
(right, line) growth law. Data from [MM]

Following equation 4.13 cells divide with rate λ = 1/38.1h (λapp = 1/53h) for Erlang
distributed cell cycle times (m = 10).

4.2.2 Cell Cycle Re-entrance: Deterministic or Probabilistic Cell De-
cision?

Many people assumed that the spheroids are organized radially and as a stack of well
separable layers: growing outer layer, quiescent layer and necrotic core. So the prob-
ability that a cell (re-)enters the cell cycle, pre, is changing with the distance d to the
spheroid surface. In the following we will modify the division process (md → m1) such
that the daughter cells reenter the cell cycle with probability pre and become quiescent
with probability 1− pre. In the following, we will evaluate di�erent assumptions of pre.

Heavy Side Function (deterministic cell decision)

Following this assumption cells should be able to divide until a certain depth ∆L (dis-
tance to the spheroid surface) with a base probability premax. All cells any deeper than
∆L will become quiescent.

pre = premax ·Hd<dref (4.16)

Figure 4.11 shows a sensitivity analysis of the two parameters premax and dref .
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Figure 4.10: Proliferating radius fraction ∆L is estimated from the radial pro�les of the
proliferating cell fractions (see section 2.3.5) by integration over the distances to the
spheroid border.

Hill Function (probabilistic cell decision)

The pro�les can be smoothed out by using the Hill function instead of heavy side.

pre = premax ·
dn

dn + dnref
(4.17)

Exponentially Decaying (probabilistic cell decision)

Despite its good agreement with the experimentally determined proliferation pro�les,
the Hill function was introduced in biochemistry to describe the kinetics of cooperative
enzyme-catalyzed chemical reactions and might thus be inappropriate.

On the cellular level a cell which wants to divide has reorganize its local environment
in order to freely grow and divide. Surrounding cell have to be pushed away. Conse-
quently, their cell-cell bonds have to be broken. The farther away a cell is from the
spheroid surface the more cells it has to move and the more cell-cell bonds have to be
broken. So the energy E a cell has to exert to reorganize its surrounding is proportional
to its distance to the spheroid surface.

E ∼ Eref

dref
· d (4.18)

Eref is the energy needed to break the cell-cell bonds at a reference length dref .
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(a) Varying depth dref
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(b) Varying height pmax
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Figure 4.11: Deterministic cell decision: Heavy Side Function. Bottom: Comparison
between the radial pro�les of the proliferating cell fraction (solid lines) estimated from
experimental data and simulation results. The di�erent in-silico pro�les result from
the cell cycle reentrance probability function (dashed lines) being a Heavy side function
rescaled in depth dref (a) and height pmax (b). Top: The corresponding cell arrange-
ments of proliferating (red) and quiescent (blue) cells are shown.
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(a) Hill Function: Varying exponent n

1

4

100

0 100 200 300 400 500 600
Distance to Spheroid Border [µm]

0

0,2

0,4

0,6

0,8

F
ra

ct
io

n
 o

f 
C

el
l 

N
u
cl

ei
 i

n
 C

el
l 

C
y
cl

e

hill(x), V=0.85,K=150,n=1
hill(x), V=0.85,K=150,n=4
hill(x), V=0.85,K=150,n=100
Condition III, T3
Condition III, T4

(b) Exponential: Varying depth dref
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Figure 4.12: Probabilistic cell decision: Hill Function versus exponential decay. Com-
parison between the radial pro�les of the proliferating cell fraction (solid lines) esti-
mated from experimental data and simulation results. The di�erent in-silico pro�les
result from the cell cycle re-entrance probability function (dashed lines) being assumed
to be a Hill function (a) (with varying dref ) or an exponentially decaying function (b)
(with varying n). Top: The corresponding cell arrangements of proliferating (red) and
quiescent (blue) cells are shown.
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So the probability that a cell reenters the cell cycle, and thus reorganizes its sur-
rounding, can be described by an approach from statistical mechanics

pre = premax · e
− ∆E

Eref (4.19)

and rewritten in terms of distance d by combining equation 4.18 and 4.19

pre = premax · e
− d

dref (4.20)

dref is the distance where the re-entrance probability is pre = 1
e . Figure 4.12(b) shows

how the re-entrance probability pre and the growing nuclei fraction φgro changes for
varying dref and premax = 1.

Conclusion

Neglecting nutrient limitation the integration of pre over all possible distances d ∈
[0,+∞) to the closest unoccupied space (which in this case corresponds to the distance
to the outer border) gives a good approximation of the apparent growing radius fraction
∆L .

∆L ≈
∫ +∞

0
predd (4.21)

For all previously described deterministic (eq. 4.16) and probabilistic (eq. 4.17 and
4.20) approaches this will result in the same ∆L′

∆L ≈ dref · premax (4.22)

So by choosing dref and premax in such a way that the resulting∆L corresponds to the one
estimated from the data ([MM], �gure 4.10) will give us for all approaches the correct
expansion speed of the spheroids in the case without nutrient limitation. In the case of
nutrient limitation, which usually a�ects cells at a certain depth, the wrong choice of
pre will lead to wrong predictions. Example: If nutrients are limiting at a depth of ∆L
then the expansion velocity will not change at all for deterministic density inhibition
(eq. 4.16) while it would slow down for its probabilistic counterpart (eq. 4.20).

The comparison with experimentally estimated proliferation pro�les indicate a
rather probabilistic cell response to space limitation and thus will be our choice for
the following simulations.

4.2.3 Extra-cellular Matrix

Studying in detail the proliferation pro�les we observe a contra-intuitive drop in pro-
liferative activity at the outer part of the spheroids. This is in direct contradiction to
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Figure 4.13: Radius expansion (left) and radial pro�le of proliferating cell fraction
(right). Simulation results for two di�erent re-entrance probability functions are com-
pared with experimental data.
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Figure 4.14: ECM dependency. Comparison of the radial pro�les for the proliferating
cell fraction (left) and ECM density between experimental data and simulation results.
Simulations were done for di�erent ECM growth thresholds.
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strictly monotone pro�les resulting from eq. 4.20. On the other hand, the drop corre-
lates very well with the lack of extra-cellular matrix at the spheroid surface (see section
2.3.7).

As we can see in �gure 2.13, SK-MES-1 cells produce ECM which slowly accumulates
between cells, but does not exceed a certain value. This can be described by the following
partial di�erential equation.

∂[ECM ]

∂t
= kprodECMc− kdegECM [ECM ] (4.23)

where kprodECM is the production rate of ECM which depends on the local cell density c,

and kdegECM is the rate of auto-degradation. Cells only enter the cell cycle if su�ciently
surrounded by ECM

premax =

{
1 , ECM ≥ φgro

ECM

0 , else
(4.24)

Figure 4.14 illustrate that introducing this kind of ECM-dependency improves the �t
the proliferation pro�les now matching the initial drop and the ECM pro�les using the
parameters indicated in table 4.3.

Table 4.3: Model Parameters for ECM dependency.

Parameter Unit Value

kprodECM h−1 0.0005

kdegECM h−1 0.003
φgro
ECM - 0.05

4.2.4 Nutrient-Driven Control of Cell Proliferation & Death (Single
Condition)

Applying the same ATP-dependence on cell growth and survival as for EMT6/Ro cells
(section 4.1.2, equation 4.8) will not lead to satisfying �ts. As �gure 4.15 shows the
necrotic nuclei fraction pro�les can not be �tted by large range of necrosis rates (knec =
0...0.1h−1) and in-vivo lysis rate klys = 0.35h−1.

For low necrosis rates we can observe some necrotic cells at a depth of 100µm leading
to a synchronous increase of the proliferating cell fraction in the center. This is due to
newly available free space cause by lysis of dead cells.

Increasing the necrosis rate will increase both fractions at the border of the necrotic
core, but as a consequence will leave an almost empty hole in the center.
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VARYING NECROSIS RATE
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Figure 4.15: Sensitivity analysis for necrosis rate. Comparison of radial proliferation
(a) and necrosis (b) pro�les between data and simulations using di�erent necrosis rates
knec. (c) The corresponding "in-silico stainings" show proliferating (Ki67, red), necrotic
(TUNEL, red) and the lysated cells (yellow).
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Problem:

If cells die at a depth of 100µm and are removed on average within 3h (klys = 0.35h−1)
then the very few remaining proliferating cells in this area are not capable to replace
the dying cells and keep the dead cell fraction at the observed 10% (and more).

Hypothesis I : In-vitro Lysis Rate very low

In the absence of macrophages lysis of dead cells (apoptotic & necrotic) will be much
slower in-vitro compared to in-vivo. Figure 4.16 shows how the fraction of necrotic cells
increases when decreasing the lysis rate klys.

4.2.5 Nutrient-Driven Control of Cell Proliferation & Death (Two
Conditions)

Hypothesis II : Schaller Kinetics & Morphogen-Driven Migration

In order to supply the necrotic core with living cell material, cells might migrate from
the viable rim into the necrotic area. So, cell migration might be motivated by the
material of a necrotic cell. Here we introduce a morphogen to the system of di�erential
equations.

∂[M ]

∂t
= ∇ · (DM∇[M ]) + kprodM cnec

[M ]|∂Ω = 0
(4.25)

[M ] is the local concentration of morphogen. It is generated by necrotic cells of density

cnec with rate kprodM and di�uses with di�usion coe�cient DM . Cell migration on the
other hand side is in�uenced by the morphogen concentration and the morphogen gra-
dient ∇[M ]. The rate of a cell moving from lattice site i to a free lattice site j is given
by

kmi,i→j = kmi e
∇[M ]i·(xj−xi)

[M ]ref

≈ kmi e
[M ]j−[M ]i

[M ]ref

(4.26)

where [M ]i is the morphogen concentration in lattice site i, [M ]ref is the reference con-
centration controlling the degree of stochasticity and kmi is a migration rate parameter
controlling the migration speed. The total migration rate of a cell at lattice site i to
move is given by

kmi,i = kmi

∑

j

e
[M ]j−[M ]i

[M ]ref . (4.27)
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VARYING LYSIS RATE
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Figure 4.16: Sensitivity analysis for lysis rate. Comparison of radial proliferation (left)
and necrosis (right) pro�les between data and simulations using di�erent necrosis rates,
knec = 0.001h−1 (a) and knec = 0.01h−1 (b). (c) The in-silico "stainings" for knec =
0.001h−1 show proliferating (Ki67, red), necrotic (TUNEL, red) and the lysated cells
(yellow).
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VARYING MIGRATION RATE
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(a) Condition III: [G] = 25mM, [O2] = 0.28mM
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Figure 4.17: Sensitivity analysis for lysis rate. The collages for nutrimental condition
III (a) and II (b) show the "stained" slices of in-silico spheroids when reached a radius
of 300µm (top) and the radial pro�les of the proliferating (left) and necrotic (right) cell
fractions. The radial pro�les emerging in-silico are compared to data. The simulations
were done for di�erent migration rates kmi. The color code of the spheroid slices are:
proliferating (red), quiescent (blue) and the lysated cells (yellow)
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Hypothesis III : ATP Kinetics

Figure 4.18 shows simulation results of using the intra-cellular production of ATP
molecules for given glucose and oxygen consumed under two di�erent conditions. Vary-
ing the maximal glucose consumption rate via parameter qmax

G , one gets a good agree-
ment of the radial proliferating and necrotic cell fraction pro�les for condition III (see
�g. 4.18(a)). Surprisingly, changing the consumption rate does almost not a�ect the
pro�les of condition II (see �g. 4.18(b)).

We can conclude that considering only the intra-cellular ATP for the cell decision
can not explain both nutrimental conditions. A di�erence of a factor �ve in the growth
medium glucose concentrations will always lead to a thinner viable rim in condition II,
while the necrotic pro�les suggest the contrary. One can even see, that the necrotic cell
fraction in the outer parts is higher in condition III compared to condition II though
the nutrient supply should be less limiting there. Consequently, we have to consider
di�erent criteria for both conditions which we explore in the next paragraph.

Hypothesis IV : ATP & Lactate Kinetics

While in condition II, one can see a dramatic increase in necrosis at a depth of around
150µm, for condition III we see a smooth increase starting even at the outer border.
Cell death in the outer regions can hardly be explained by starvation as in condition
III the spheroids are su�ciently supplied with both, glucose and oxygen. On the other
hand, we saw that well nourished cells gain 90% of their ATP from the anaerobic lactate
fermentation (see section 3.3.2) even if enough oxygen is available. So in condition III
cells accumulate much more of the rather harmful lactate than in condition II where
cells are forced to optimize their metabolism at a certain point. In the following, we
propose a second criteria for cell decisions on growth or quiescence and survival or death:

1. intra-cellular production of ATP molecules for given glucose and oxygen consumed

2. local lactate concentration

Then the proliferation and necrosis conditions can be summarized as follows

ϑp := pATP ≥ ppATP and [L] < [L]p,

ϑn := pATP < pnATP and [L] ≥ [L]n,
(4.28)

where ppATP is the required ATP production rate permitting proliferation and [L]p is
the critical lactate concentration inhibiting proliferation. On the other hand, pnATP

is the required ATP production rate to insure survival and [L]n is the critical lactate
concentration causing cell death.

Figure 4.19 shows simulation results of this combination of criteria for the cell deci-
sion. One can see that the lactate threshold does not a�ect the rather undernourished
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VARYING GLUCOSE CONSUMPTION RATE
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(a) Condition III: [G] = 25mM, [O2] = 0.28mM
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Figure 4.18: Sensitivity analysis for glucose consumption parameter qG,max. The col-
lages for nutrimental condition III (a) and II (b) show the "stained" slices of in-silico
spheroids when reached a radius of 300µm (top) and the radial pro�les of the prolifer-
ating (left) and necrotic (right) cell fractions. The radial pro�les emerging in-silico are
compared to data. The simulations were done for di�erent values of glucose consump-
tion parameter qG,max. The color code of the spheroid slices are: proliferating (red,
Ki67), quiescent (blue, Ki67), necrotic (red, TUNEL), viable (blue, TUNEL) and the
lysated cells (yellow)
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spheroids of condition II, but dramatically changes the size of the necrotic core in con-
dition III.

Best Fit

Figures 4.20 and 4.21 show the best �tting parameter sets for all compared curves:
growth curves and the radial pro�les for the ECM intensity, proliferating cell fraction
and necrotic cell fraction.

4.3 Conclusions & Discussion

We parametrized the multiscale model for avascular tumor introduced in chapter 3
to two di�erent cancer cell lines: EMT6/Ro and SK-MES-1 cells. The constraints for
EMT6/Ro were the growth curves of the number of viable cells and the spheroid volume
in time measured for four di�erent nutrimental settings. For SK-MES-1, in addition to
the growth curves in time, the radial pro�les of proliferating and necrotic cell fractions
as well as the extra-cellular matrix densities were given for di�erent time points. The
pro�les were a result of image processing and analysis of micrographs from the same
experiments (chapter 2).

4.3.1 Parameter Estimation from Nutrient-Independent Data

For both cell lines, the purely cell-related (without involvement of molecules) parameters
were estimated from the exponential and geometric growth phase from experiments were
e.g. nutrient-limitation can still be excluded. Those parameters include the growth rate
τ−1, the apparent thickness of the proliferating rim ∆L (or respectively k in numbers
of cells) and the cell size (for EMT6/Ro).

Mechanical Growth Inhibition One can assume that in order to grow, a cell has
to rearrange its local environment. The energy needed for the rearrangement would
be proportional to the cell-cell-bonds a cell has to break to push other cells toward
unpopulated space. Thus, this energy E can be approximated by E ∼ ∆free, where
∆free is the distance to the closest unoccupied space. For EMT6/Ro cells we assumed
all cells in the outer rim of thickness ∆L to proliferate with probability 1, while all other
cells are quiescent. Thus, the cells decision to grow and divide depends on a threshold
of E (or ∆free respectively) and would be a deterministic decision. By comparison
between the radial pro�les of the proliferating cell fraction extracted from experimental
images (SK-MES-1 spheroids) and the patterns emerging from simulations we could
show that this assumption can not be true. A better agreement of the radial pro�les
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VARYING LACTATE THRESHOLD AND NECROSIS RATE
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(a) Condition III: [G] = 25mM, [O2] = 0.28mM
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(b) Condition II: [G] = 5mM, [O2] = 0.28mM

Figure 4.19: Sensitivity analysis for lactate threshold φL and necrosis rate knec. The
collages for nutrimental condition III (a) and II (b) show the "stained" slices of in-silico
spheroids when reached a radius of 300µm (top) and the radial pro�les of the prolifer-
ating (left) and necrotic (right) cell fractions. The radial pro�les emerging in-silico are
compared to data. The simulations were done for di�erent values of lactate threshold
φL and necrosis rate knec. The color code of the spheroid slices are: proliferating (red,
Ki67), quiescent (blue, Ki67), necrotic (red, TUNEL), viable (blue, TUNEL) and the
lysated cells (yellow).
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Figure 4.20: Best �t for condition III: [G] = 25mM and [O2] = 0.28mM . The collage
shows the comparison between data and simulation results for the growth curves of the
spheroid radius (top, left), the radial pro�les of ECM density (top, right), proliferating
cell fraction (center, left) and necrotic cell fraction (center, right). (Bottom): The slices
of in-silico spheroids when reached a radius of 300µm indicate proliferating (red, left),
quiescent (blue, left), necrotic (red, right), viable (blue, right) and the lysated cells
(yellow)
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Figure 4.21: Best �t for condition II: [G] = 5mM and [O2] = 0.28mM . The collage
shows the comparison between data and simulation results for the growth curves of the
spheroid radius (top, left), the radial pro�les of ECM density (top, right), proliferating
cell fraction (center, left) and necrotic cell fraction (center, right). (Bottom): The slices
of in-silico spheroids when reached a radius of 300µm indicate proliferating (red, left),
quiescent (blue, left), necrotic (red, right), viable (blue, right) and the lysated cells
(yellow).
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are obtained for probabilistic cell decisions were the probability to reenter into the cell
cycle is smoothly decreasing function of ∆free. We propose an exponential law.

Extra-Cellular Matrix (ECM) Requirement The low proliferating activity at the
outer border of the SK-MES-1 spheroids could be explained by relating the cell-cycle
reentrance to the local ECM density. Thus, a certain amount of ECM is required in
order that cells reenter the cell cycle. The proposed reaction-di�usion equation shows
a good agreement with radial pro�les of ECM density.

4.3.2 Parameter Estimation from Nutrient-Dependent Data

Then, in a second step the in�uence of nutrient-limitation and metabolites on the cell
growth and survival were studied.

ATP The ATP production rate assumed in this model considers the cells to maximize
the outcome of ATP for all given glucose and oxygen concentrations. Depending on the
ratio of glucose and oxygen concentration the metabolism will thus switch automatically
between aerobic and anaerobic metabolism. Based on this assumption and the measured
consumption rates, it could be shown that the ATP production rate stays constant for
a wide range of glucose and oxygen concentrations. This suggests that cells regulate
their glucose and oxygen consumptions in such a way that the ATP outcome is kept
constant at a certain value.

For the EMT6/Ro cells two criteria for the cell decision on growth-quiescence and
survival-death were evaluated for four nutrimental conditions: the critical product of
the local glucose and oxygen concentration, and the production rate of ATP. Though,
the ATP-threshold criterion shows a slightly better �t of condition I, II and III than the
critical product, none of them is able to explain the growth saturation under condition
IV.

While there is no signi�cant di�erence between the critical oxygen-glucose-product
and a critical ATP production for EMT6/Ro cells in respect to the overall agreement
with the data, for the SK-MES-1 cell line using the critical ATP production leads too
a much better �ts than the critical oxygen-glucose-product. Nevertheless, ATP as the
only criterion for cell death or survival does not su�ce to explain the radial necrosis
pro�les of condition II and III.

Di�erent Cell Types, Di�erent Consumption Rates? By a sensitivity analysis
it could be observed that a lower glucose consumption rate than originally estimated
from measurements made for EMT6/Ro cells improves the �ts of the SK-MES-1 cell
line.
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Lactate The automatic switch from aerobic to anaerobic metabolism introduced by
the heuristic ATP production rate permits the estimation of lactate molecules produced
per consumed glucose molecule. The di�erent shapes of the radial necrosis pro�les of
condition II and III (SK-MES-1) and the rather high necrotic cell fraction for condition
III (with 5 times larger glucose concentration compared to condition II) suggest that
there might be di�erent causes. Introducing lactate as an additional cause of death to
the model can explain condition II and III.

The parameters of the best �t all four conditions of the EMT6/Ro cell line are shown
in table 4.1.The best �tting parameters of SK-MES-1 cell line for condition II and III
(without saturation) are summarized in table 4.2.

4.3.3 Growth Phases

The exponential and geometric growth phases could be reasonably explained for both
cell lines (EMT6/Ro and SK-MES-1) for the examined conditions. For the SK-MES-1
cell line, the model should be validated for conditions I and IV. The phase of saturation
could be explained by cell-cell-adhesion-driven migration in the case of very low glucose
and oxygen medium concentrations. Here it has to be stated that in this case a necrotic
core is not yet created. As soon as we a necrotic core establishes in the spheroid core,
the cell-cell-adhesion-driven migration is not able anymore to stabilize the spheroids
at a constant size (result not shown). It can be concluded at this point that short
range interactions of cell-cell-adhesion are not su�cient to keep a large spheroid with
a necrotic core together. The morphogen-driven migration as introduced might be an
alternative due to the fact that it allows cells to communicate along the whole spheroid
via a morphogen gradient (long range interaction). Nevertheless, the radial pro�les
extracted from micrographs taken during the phase of growth saturation show almost
no proliferative activity. Thus, all cells seems to have become quiescent due to growth
inhibitors from inside the tumor.

4.3.4 Validity of Hypothesis

Di�erent model mechanisms have been proposed to explain the high necrotic cell frac-
tion in the center of the spheroids (low in-vitro lysis rate, and morphogen-driven cell
migration) and the high similarity of the proliferating and necrotic cell fractions of con-
ditions II and III (di�erent survival criteria: low lactate and high ATP concentration).
Those mechanisms would have to be validated by further biological experiments.
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Chapter 5

Modeling Tumor Growth and

Angiogenesis

In this chapter1, we will propose an extension of the avascular model (chapter 3) by
blood vessels and rules for tumor-induced vessel remodeling and angiogenesis mainly
based on the vascular endothelial growth-factor (VEGF) and the dynamic properties
of blood vessels (pressure, shear stress, etc.). Finally, the simulation results of three
growth scenarios will be compared and discussed: (1) avascular tumor growth neglecting
nutrient-limitation, (2) nutrient-limited tumor growth in a static blood vessel network
and (3) tumor-induced angiogenesis.
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lems. In: From single scale-based models to multiscale modeling, Eds. Chauviere, A. and Preziozi, L.
and Verdier, C., 2009.
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5.1 Angiogenesis and Impact on Tumor Progression

The transition from an in-situ tumor to invasive cancer is marked by a number of
steps. This includes angiogenesis, the formation of new blood vessels to supply the
growing tumor with oxygen and nutrientss. Angiogenesis is the process during which
endothelial cells divide and generate new vessels sprouting towards the tumor as a
response to angiogenesis factors secreted directly and indirectly by the tumor cells.
Many angiogenesis factors have been identi�ed so far [Wei07]. The most prominent one
is probably VEGF which is related to platelet-derived growth factor (PDGF). A shortage
of oxygen triggers an increase of the intracellular concentration of an active form of the
protein hypoxia-inducible factor 1 (HIF-1) which then stimulates transcription of the
VEGF gene. The protein VEGF is secreted into the extracellular space acting on the
nearby endothelial cells as described above.

Di�erent from monolayers and multicellular spheroids, which grow only up to about
a millimeter in diameter, tumors growing in-vivo, e.g. Xenografts of human NIH3T3
cells in the mouse model [RBH+09], can reach a size of several centimeters. As the
multi-cellular spheroids the Xenografts have a largely spherical shape but in contrast
to multi-cellular spheroids they are well vascularized and show only decent necrotic
and apoptotic �gures. Hence the induction of new vessels permits growth of tumor cell
population up to about 3-4 magnitudes more than multi-cellular spheroids and, as in
the case of NIH3T3 cells, is capable to avoid the formation of a central necrotic core.

5.2 Vascular Model

5.2.1 Growth factors

In this model, the endothelial growth factors are released by the (hypoxic) necrotic cells
and di�use into the tumor environment following the equation

∂[V EGF ]

∂t
= DV EGF∆[V EGF ]

[V EGF ] = [V EGF ]bv at necrotic nodes

[V EGF ] = 0 on the external boundary

where DV EGF is the di�usion constant and [V EGF ]bv the boundary source of growth
factors released by the necrotic cells.

For a list of all the parameters used in the simulations, see Table 5.1.



5.2. VASCULAR MODEL 109

5.2.2 Vascularization, angiogenesis and remodeling

The models for the vascularization and its adaptation to the micro-environment are
largely inspired by the two-dimensional model of ref. [BR06] and the three-dimensional
model in ref. [LR06]. We also refer to ref. [BR06] for biological references of every
mechanism that these models describe.

Preexisting network: The preexisting network of vessels is generated on the ran-
dom lattice, common with the tumor cells. The vessel orientation follows the three
spatial directions, with an average distance between vessels of dbv. Each node of
the lattice is thus either free or occupied by a tumor cell (TC) or an endothelial
cell (EC). Two neighboring EC nodes are linked by an edge eij of length |eij | that
represents a blood vessel of radius rij , initially at the homogeneous value of rij

0.
Flow through a vessel Qij and pressure at the nodes Pi and Pj are computed in
all the vessels based on the simplest resistance law (Poiseuille law) that linearly
relates the pressure gradient in a segment with the �ow through it. Poiseuille law
reads as follow:

Pi − Pj =
8µbv|eij |
πrij4

Qij . (5.1)

µbv is the dynamic viscosity of the blood, taken constant as a �rst approximation.
Pressure is prescribed as a boundary condition at the entrances Pin and exits Pout

of the network, and solved at nodes using Kircho�'s law. A measure of the shear
stress fij in the vessel is calculated as a linear function of the pressure gradient
and the radius: fij = rij (Pi − Pj). We denote by fij

0 its value in the initial
network.

Angiogenesis: A sprout can form from a blood vessel with a probability propor-
tional to the time step divided by the endothelial proliferation time tEC , if certain
criteria are met. From a given EC node i, a new blood vessel that goes until the
sprouting node j can emanate if the distance between the two existing EC nodes
is smaller than a maximum length lmax. In addition, along the possible new vessel
path the nodes must be all free and the growth factor concentration higher than
the threshold θGF that characterizes the angiogenic switch.

Remodeling: Within the living tumor zone (proliferating and quiescent zones),
blood vessels cannot sprout but they can dilate due to proliferation induced by
growth factors if the local growth factor concentration is above the threshold θgf .
This occurs with a certain probability proportional to the time step divided by
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the endothelial proliferation time tEC , up to a maximum diameter dmax, with an
increment of the radius rij of 1/2π(|eij |+ 1). In contrast, under-perfused vessels
can also collapse due to the high pressure generated by the proliferation of tumor
cells or disappear because they are not functional enough and thus experience
themselves hypoxia, or are sensitive to the anti-angiogenic factors. This is modeled
by the collapse of a vessel if its shear force is too low (fij/fij

0 is below a critical
value θss) and the density of tumor cells is too large (percentage of TC nodes above
pTC
c ), with a probability proportional to the time step divided by the collapsing
time constant tr. The vessel can also be removed with probability 0.5 if the �ow
is zero and the local concentration of oxygen is below a critical threshold θO2

bv .

The vascular network responds to the changes of the local micro environment by
angiogenesis or remodeling. The local radius, pressure, �ow and shear values are thus
continuously updated. In turn, the changing vascular network in�uences the growth of
the tumor as explained in the cellular model above.

Parameter Value Unit Reference

DGF 100 µm2/h [JPGCF05]

[O2]
bv 0.07 mM [FS85, FS86, JPGCF05],order of magnitude of [BR06]

[G]bv 5.5 mM [FS85, JPGCF05]

[GF ]bv 1 mM [LR06]
dbv 150 µm order of magnitude of [LR06]
rij

0 10 µm [BR06]
µbv 0.1 Pas order of magnitude from [Fun90]
Pin 100 Pa de�ned up to a multiplicative constant
Pout 100 Pa de�ned up to a multiplicative constant
lmax 100 µm [LR06]
θGF 0.01 mM [BR06]
θO2 0.01 mM [BR06]
tEC 40 h [BR06]
dmax 35 µm [BR06]
θss 0.5 − [LR06]
pTC
c 80 % [LR06]

tr 50 h [LR06]

θO2
bv 0.01 mM [LR06]

Table 5.1: Parameters of vascularization.
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5.3 Results

We compared the growth of a tumor not constrained by nutrient and oxygen limitation
with a tumor in a static blood vessel environment and a tumor that is able to modify
the static blood vessel environment by triggering the formation of new blood vessels.
In Figure 5.1, the radius of the tumor is plotted versus time for three cases: (1) with
neither oxygen nor nutrient limitation, (2) with nutrient limitation but without the
angiogenic switch, and (3) with nutrient limitation and angiogenesis.

In the "no limitation" scenario, oxygen and nutrients concentrations are set to be
high enough to meet the tumor demands, both in space and time. All cells can divide
and the tumor thus �rst expands exponentially (zone a of Figure 5.1). After some
time, the cells in the center cannot divide anymore due to contact inhibition and they
become quiescent. When the proliferating rim reaches a constant thickness, the radius
becomes a linear function of time (zone c of Figure 5.1).

For the two other simulated scenarios there is nutrient limitation: oxygen and
nutrients are supplied by sources (blood vessels) and di�use out of them in the
interstitial space but they are also locally consumed by the cells. As the tumor mass
expands, there is a �rst period where demands are lower than supplies (as seen by
the superposition of the three curves in zone a of Figure 5.1). Then, supplies cannot
balance demands anymore, due to an increasing consumption: this is the nutrient
limitation phase. This slows down the growth of the tumor, as can be seen by the
decreasing slope in zone b of curves (2) & (3) of Figure 5.1.

After some time, the angiogenic switch occurs and enables the tumor to expand
with a higher speed as indicated by the higher slope of the curve (3) compared to curve
(2) in zone c of Figure 5.1: its demands of oxygen and nutrients are better ful�lled.
Note that this slope is however lower than that of the no limitation scenario, since the
latter constitutes an upper bound to the growth speed.

In addition to the tumor size, its structure varies signi�cantly with the di�erent
environmental conditions. When there are neither oxygen nor nutrient limitations
(Figure 5.2 1a&b&c, 2a, 3a), cells are either proliferating (yellow) or quiescent
(green), but none of the cells are necrotic. In contrast, when oxygen or nutrients are
lacking because their di�usions from blood vessels are not fast enough and their local
concentrations are too low, necrotic cells (blue) appear in the center (Figure 5.2 2b&3b).

As a response to hypoxia and hyponutrition, cells produce growth factors that
di�use through the tissue, reach the existing blood vessels and �nally trigger sprouting
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from them to create new blood vessels (Figure 5.2 3c). If no new blood vessels are
created, the necrotic zone increases (blue region in Figure 5.2 2c larger than in Figure
5.2 3c, where only decent necrosis can be observed). Note the quiescent zones around
the blood vessels inside the tumor (Figure 5.2 2c&3c): in these regions, there is enough
oxygen and nutrients for the cells but they cannot divide due to contact inhibition
of growth. As time goes, the case without limitation continues to growth with a
spherical shape and without any necrosis (Figure 5.2 1c). In the limited case, the
tumor continues to growth, although it tries to grow towards or along blood vessels
(Figure 5.2 2c). In the angiogenic case, new vessels are forming towards and inside the
tumor (Figure 5.2 3c) as it continues to grow with a speed closer to the no limitation
case (Figure 5.1).
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Figure 5.1: Time evolution of the radius of a tumor cell population for three di�erent
scenarios: (1) without any nutrient limitation (solid line), (2) nutrient limited growth in
vascularized tissue (dashed line) and (3) nutrient limited growth inducing angiogenesis
(dotted line).
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Figure 5.2: Screenshots from the simulations at times t/τ = 4.8 (left), t/τ = 9.6 (center)
and t/τ = 17.6 (right). Each �gure is composed by an exterior view on the left-hand
side and a central-cropped view of the simulated domain on the right-hand side. The
colors indicate proliferating (yellow), quiescent (green) and necrotic cells (blue) as well
as blood vessels (red). The upper sequence shows the reference simulation of growth
without any nutrient limitation in contrast to the lower two sequences. The lower
sequences show the scenarios of nutrient limited tumor growth in vascularized tissue
without (center) and with angiogenesis (bottom).
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Chapter 6

Parameter Estimation from

Perfusion Images

6.1 Introduction
Figure 6.1: Simple dia-
gram of the human circu-
latory system [wikipedia]

Vascularization

The vascularization is composed of a complex three-dimensional tree-like structure.
It can be subdivided into arteries, veins and capillaries. In the systemic circulation,
arteries are the vessels which transport the oxygenated blood from the heart to the
tissue. Veins carry back the oxygen-de�cient blood to the heart. In the pulmonary
circulation, it is the reverse. Capillaries are the micro-vessels connecting both, arteries
and veins, and are mainly responsible for the molecular exchange between the blood
and tissue (nutrition, oxygen, metabolites etc.).

The functionality of a vessel network is not only determined by its local properties
as vessel diameter and permeability surface, but to a large extent results from the
typological structure at the tissue scale. Optimal blood delivery to all parts of the
tissue depends on the circulation which depends on the �ow which depends on the
interplay of topology and local properties.

So in order to parametrize an in-silico model of vascularized tissue and tumor-
induced angiogenesis one needs to study carefully key aspects of vascularization. The
reconstruction of vascularizations has been done e.g. from 3D X-ray micro-CT images
of animal lungs �lled with solid radio-opaque contrast agent by [YYR+10]. Tissue
samples can also be analyzed with this method. It gives insight into the overall topo-
logical structure of the vascularization, except for the smallest vessels. Moreover it is
a rather expensive and invasive technique. Other methods are the histological analysis
of tissue slice to get quantitative information about the micro-vessel density, the vessel
size distribution etc. Nevertheless, information of the three-dimensional organization
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and functional properties of the micro-vascularization is not su�ciently accessible. In
general, those techniques coincide with the sacri�ce of the host (limited to animal ex-
periments) and thus excludes the study of vascular change in time due to angiogenesis.

Figure 6.2: Di�erent classes of contrast agents. Image from [FB03]

Non-invasive Imaging

A non-invasive technique widely used in clinical diagnosis is MRI. It permits to visual-
ize polar molecules (especially the protons of hydrogen contained by water) in parts of
the body. As di�erent tissues contain di�erent amounts of hydrogen they become dis-
tinguishable by the contrast in the resulting images. In Constrast Enhanced-Magnetic
Resonance Imaging (CE-MRI) the visibility of blood vessels is increased even further by
injecting CAs into the bloodstream which alters the visibility of protons in the tissue
they are located. It can be distinguished between two relevant CAs (see �gure 6.2):
Intra-vascular agents stay in the blood vessels while extravascular contrast agents can
leak through the vessel walls into the interstitial space (i.e. extra-vascular-extra-cellular
space). As one can see in �gure 6.3 showing a sequence of CE-MRI images of the lung
one can clearly identify the large vessels. For small arteries and veins, one only sees
their combined perfusion e�ect in an image voxel. The typical resolution of a voxel
is 0.3mm × 0.3mm × 3mm (3mm being the thickness of the slice), but it can vary a
lot. In general one can state, that a higher spatial resolution (SR) results in a longer
acquisition time. The acquisition time has an impact on the temporal resolution (TR)



6.1. INTRODUCTION 117

in DCE-MRI. Some examples are: SR=1.8× 2.1× 10mm3 and TR=2.8ms [WRZ+12],
SR=1.9 × 3.6 × 4.0mm3 and TR=1.5s [DRL+06], and SR=0.23 × 0.47 × 2.0mm3 and
TR=14s [ESG+09].

Figure 6.3: left:T1-weighted dynamic contrast-enhanced magnetic resonance imaging
(MRI) of a volunteer. The images represent a single partition of a three-dimensional
volume dataset covering the entire lung at di�erent time points (interval, 1.5s). After
the injection of an MR contrast agent bolus, an enhancement of the pulmonary vessels
as well as lung tissue can be observed. right: Time-signal intensity (SI) curves com-
puted from contrast-enhanced perfusion MRI using regions of interest (ROI) localized
in isogravitational nondependent lung (ROI 1 and 2) and dependent lung (ROI 3). Ref.
[DRL+06]

Parameter Acquisition via Inverse Problem

In order to quantify the architectural (vascular volume fraction) and functional (�ow
and permeability) vessel properties the contrast kinetics are tracked in time via DCE-
MRI. Here a temporal sequence of CE-MRI images of the same part of tissue is acquired
and used to get some insight into the dynamic properties. The general idea is to �t a
physiologically simple and non-spatial model describing the processes of CA perfusion
to the observed CA intensity time curse in each voxel of the image sequence to recover
the local parameters of vascular volume fraction, blood �ow and vessel permeability
(depending on the model).
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Similar techniques are DCE-CT and DCE-US. Though DCE-CT has a similar image
quality as DCE-MRI it has the disadvantage of exposing the patients to ionizing radi-
ation and is less suited to soft than solid tissues (e.g. bones, teeth etc.). On the other
hand, DCE-US is based on Microbubble (MB)s used as purely intra-vascular agents.
It is much cheaper than DCE-MRI and DCE-CT and has shown a similar predictabil-
ity for non-progressive survival (of treated patients) as DCE-MRI [PHL+08, LCC+11].
Though it su�ers from coarser spatial resolution.

For clinical diagnosis those techniques are important tools to detect the extent of
tumoral tissue by the relative di�erences in the local vessel properties (e.g. vascular
volume fraction) between healthy tissue and highly vascularized tumor tissue. But
also to monitor the treatment with an anti-angiogenic drug [LCC+11]. Nevertheless,
little work was done on studying the errors introduced by using a physiologically simple
pharmaco-kinetic model ([BSP+91, BBH+99, TK91, TBB+99, BKL+04, BZKG09] etc.)
to model a physiologically complex process [LHBtHR10].

This Chapter:

This chapter proposes a process chain to create arti�cial contrast-enhanced perfusion
data data (comparable to DCE-US, DCE-MRI and DCE-CT) for di�erent in-silico vas-
culatures as a benchmark for the evaluation of inverse methods and to better understand
the relationship between the recovered perfusion parameters and the underlying true
vasculature (form & function).

Section 6.2 will focus on the construction of in-silico vasculatures representing typ-
ical test cases as a highly functional vascularization in healthy tissue and vasculatures
locally modi�ed by an embedded tumor. The vessel properties will be taken from liter-
ature. The construction laws are chosen such that the resulting properties agree with
physiological observations from the literature.

In section 6.3 a numerical model will be proposed to simulate the perfusion of (purely
intra-vascular as well as extra-cellular) agents through given in-silico vascularizations.
As an outcome of the simulations in-silico MRI images will be discussed.

In section 6.4 an inverse method is applied to study its predictability by comparing
recovered and original parameter maps for di�erent topologies and settings.

6.2 Creating in-Silico Vasculature

6.2.1 Vessel and Voxel Arrangement

The vessels will be represented by a graph G = (V,E) of vessel nodes V and vessel
segments E ⊂ V ×V . For simplicity the vessels nodes will be placed on a square lattice
(see �gure 6.4, dashed lines). Two vessel nodes can be connected if they are in each
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Figure 6.4: Arrangement of voxels (solid lines) and vessels (dashed lines) on a square
lattice. Vessel nodes can sprout to free lattice sites within their von Neumann neigh-
borhood (light blue). Here a tip (yellow, (a)) sprouts to the right becoming an interior
vessel node (pink, (b)). Neighboring tips form inter-tip-connections.

other's von Neumann neighborhood (see �gure 6.4, blue squares). So one vessel node
could theoretically be connected with 2d neighboring nodes, d being the dimension of
the lattice.

The dual of the vessel lattice is a square lattice as well. It describes the spatial parti-
tion into voxels (see �gure 6.4, solid lines). Voxels are the three-dimensional counterpart
of pixels. Here they will represent the spatial compartments of tissue.

6.2.2 Vessel Properties

Vessel nodes will be considered to be either a root (boundary to the unconsidered blood
circuit of the body), interior or tip (tree leaves creating capillary connections with other
tips) (see �gure 6.4).

For a given vessel network we can calculate the following vessel geometrical and
functional properties:

Vessel Radii: The radii of the vessel tip are assumed to be r = 4µm. Then the radii
of the remaining vessel trees can be calculated recursively by

rαroot = rαleft + rαright. (6.1)
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In literature the values of α vary between 2 and 3 depending on the vessel size and
tissue. Kurz and Sandau [KS97] proposed α = 2.7. We will use di�erent values for
arteries, αart = 3, and veins, αven as they were found to better �t the asymmetric
network properties (see section 6.2.6).

Blood Viscosity: The apparent blood viscosity1 was found to depend on the vessel
radius and hematocrit. Hematocrit is the volume fraction of red blood cells in blood. It
is normally about 0.45 for men and 0.40 for women [PSOH03]. The following equation
published by Pries et al. [PSG+94] approximates the measured dynamic apparent blood
viscosity for hematocrit of 0.45.

η(r) = 4 · 10−6 ·
(

6e−0.17r + 3.1− 2.44e−0.06(2r)0.645
)

(6.2)

rij being in µm and η in kPa · s.

Pressure and Flow: In the microcirculation, the Reynolds and Womersley numbers
are small, and thus �ow is essentially steady unidirectional and developed. Hagen-
Poiseuille �ow is a good approximation [ref Fung book Circulation chapter] if detailed
velocity and pressure around each red blood cell is not needed, as is the case in the
present study. The relation between the �ow, fij , through a vessel segment (i, j) and
the pressure of its vessel nodes, ∆pij = pi − pj , is described by the law of Hagen-
Poiseuille as following.

fij =
π

8
·

r4ij
η(rij) · lij

·∆pij = Gij ·∆pij (6.3)

Gij is the inverse of the resistance to �ow.

As both trees (venous and arterial) are separate from each other we assume all
neighboring tip nodes to form inter-tip connections of capillary size (r = 4µm). The
pressure in the vessel nodes can be calculated by applying the Kircho�-law and solving
a linear system of the relation between the pressure in node i and its neighbor nodes j.

∑

j

Gij · pi −
∑

j

Gij · pj = 0 (6.4)

The pressure in the root nodes is given in table 6.2. In the following the �ow in the
vessel segments are obtained by equation 6.3.

1Viscosity is a measure of the resistance of a �uid which is being deformed by either shear stress or
tensile stress.
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Shear Stress: The shear stress for Poiseuille �ow is given by

τij =
∆pij
2 · lij

· rij (6.5)

6.2.3 Initialization of Network

As a starting point the root nodes of the future arterial and venous vessel trees are
placed. To insure blood �ow at least one root of each vessel type (artery or vein) is
needed. Optionally, an initial vessel is placed in the domain connecting an arterial and
a venous root node.

6.2.4 Randomly Growing Blood Vessels from existing Network

In a naive approach vessels grow and branch randomly until all lattice points are oc-
cupied. Here we iterate over all vessel nodes. If at least one neighboring voxel (see
section 6.2.1) is still not occupied by a vessel node then the vessel node sprouts with
probability pspr (table 6.1) to one of the free neighbor voxels. The vessel sprouting is
done by adding another vessel node to the center of the targeted voxel and connecting
it to the originating node of sprouting via a vessel segment. The new node becomes a
tip. If the originating node was a tip as well it becomes a interior.

Algorithm:

1. For all vessel nodes vi ∈ V do
(a) if vi has free neighbor voxels sprout with probability pspr = 0.5:

i. add vessel node to randomly chosen free neighbor voxel: V := V ∪ {vj}
ii. add vessel segment connecting both nodes: E := E ∪ {(vi, vj)}
iii. update vj to tip and vi to interior

2. Go back to (1.).

6.2.5 Capillary Shear Stress Homogenization

The aim of the algorithm described in the following is to create a blood vessel network
consisting of arterial and venous vessel trees with a high functionality. That means that
blood �ow at the tree leaves is maximized and homogenized among the whole network.

For this purpose Goedde and Kurz [GK01] proposed a Monte-Carlo method which
iteratively leads to non-functional vessels collapses (uniquely the tree leaves or tips) and
functional vessels sprouts. A possible measure for functionality could be the (insu�cient
and su�cient) intra-vascular �ow in the vessel tips. Goedde and Kurz [GK01] found
that it is rather the capillary shear stress which regulates the vessel remodeling. An
algorithm largely inspired by those assumptions can be summarized as the following.
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Algorithm:

1. Calculate the vessel radii (eq. 6.1), pressure (eq. 6.4), �ow (eq. 6.3) and shear
stress (eq. 6.5) in vessel network

2. Estimate minimum and maximum shear stress among all tip segments:
τmin and τmax.

3. Perform a vessel collapse/degeneration for tips randomly chosen with probability

pdegij = τmax−τi
τmax−τmin

.

4. Perform 10 iterations of vessel sprouting of randomly chosen nodes (see section
6.2.4) with sprouting probability pspr (table 6.1)

5. Go back to (1.).

Examples: Capillary Shear Stress Homogenization

Figure 6.5 shows how a completely randomly initialized vascularization (section 6.2.4)
changes during shear stress homogenization (section 6.2.5). At the beginning the single
arterial and venous trees �ll up more or less well separated areas. Consequently, in
many areas - especially inside those trees - there is very low and partially no �ow at all
as the pressure di�erences stay very small. Due to the collapse of non-functional vessels
(inside the trees) and the survival of capillaries with high shear (usually at the interfaces
of arterial and venous trees) the trees of di�erent types (artery/vein) penetrate each
other and increase their common interfaces. As a consequence the inter-tree-connections
increase and with them the overall �ow.

Figure 6.6 shows the same algorithm applied to a vascularization in a three-
dimensional environment (of size 100 × 100 × 50 voxels). Starting from a random
vascularization with one arterial (centrally placed in the x-y-plane) and �ve venous root
nodes (randomly spread among the domain border), most of the initial vascularization
collapsed after the �rst iteration due to non-functionality (low shear stress). Already
after 20 iterations the whole domain is �lled with vessels and the overall �ow maxi-
mized. I.e. the vascularization still changes by random collapse, but does not increase
anymore in number of inter-tip-connections - especially in inter-tree-connections.

6.2.6 Comparison with Data

In several statistics over the properties of vessels of di�erent size/diameter, it can be
observed that there are di�erences between di�erent types of tissues (e.g. pressure, see
�gure 6.9) and asymmetries between venous and arterial blood vessels (e.g. wall shear
stress and blood velocity, see �gures 6.10 and 6.11).

In order to take those asymmetries into account, in the following we will compare
di�erent functional properties (pressure, wall shear stress, blood �ow and velocity) with
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(a) Random Network (b) After 20 Iterations (c) After 200 Iterations

Figure 6.5: Capillary shear stress homogenization in 2D. (a): Vessel network after
randomly extending the venous (blue) and arterial (red) root nodes until �lling the
whole domain (section 6.2.4). Blood vessel networks resulting from 20 (b) and 200 (c)
iterations of collapsing blood vessels with low shear stress and random regrowth (section
6.2.5). The �gures show the vessel arrangement (top) and the �ow rates (bottom). The
color in the topological maps visualize the intra-vascular pressure (blue= 2kPa and
red= 12kPa).
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(a) After 1 Iteration (b) After 20 Iterations

Figure 6.6: Flow homogenization in 3D. (a) Vessel network after randomly extending
the venous (blue) and arterial (red) root nodes until �lling the whole domain. (b): Final
blood vessel network after 20 iterations of collapsing blood vessels with low �ow and
random regrowth.

(a) A:3, V:2 (b) A:2.7, V:2.4 (c) A:2.7, V:2.7

Figure 6.7: Vascular networks (in-silico) created by the CSSH algorithm (200 iterations)
and di�erent combinations of power-law exponents.
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measured data by varying the exponents αart and αven of the power-law (eq. 6.1) which
determine the radius distribution among the vascular trees.

Figure 6.7 shows three di�erent vascularizations in a two-dimensional arrangement
of voxels. The smaller the exponent α the larger the vessels grow in diameter toward
the tree roots (and vice-versa). As we will see in the following the functional properties
will strongly depend on the choice of α.

Figure 6.8 indicates that the �ow rate is following a similar power law as the radius
f ≈ rα.
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Figure 6.8: Blood �ow. left: in-silico pro�les of blood �ow for di�erent combinations
of exponents for arterial and venous trees. The right: Time-averages �ows measured in
right coronary artery (RCA), left anterior descending coronary artery (LAD), and left
circum�ex artery (LCx) and respective exponents of 2.40, 2.30, and 2.13. Image from
[HK07].

Figure 6.9 shows how pressure depends on α. The smaller α the less pressure changes
inside the vessel tree. So low α exponents lead to pressure plateaus among the individual
trees followed by a sudden pressure drop (or increase) at the capillary level. Large α's
rather lead to a smooth transition of pressure between di�erent trees.

The shear stress is the highest at the "bottle neck" of the vascular networks, the
capillary interface between arterial and venus trees. Figure 6.10 shows that all in-silico
vascularizations reach the same average capillary shear stress as found in literature. For
larger venules the shear stress decreases to a �at plateau. In the arterial trees the shear
stress increases again for larger arterioles after having reached a local minimum. The
latter one was found in silico only for α = 3.

As for the �ow rate larger α's increase the blood velocity at the tree root nodes (see
�gure 6.11). For α = 3 the blood velocity of 13mm/s at the root reaches the values
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Figure 6.9: Intra-vascular pressure. left: in-silico pro�les for di�erent combinations of
exponents for arterial and venous trees. right: Image from [FZ74]
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Figure 6.10: Intra-vascular wall shear stress. left: in-silico pro�les for di�erent combi-
nations of exponents for arterial and venous trees. right: Image from [FB03]
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found in literature for larger arterioles. An α = 2.7 leads to much lower velocities of
around 5− 8mm/s rather corresponding to what was measured in veins.
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Figure 6.11: Blood velocity. left: in-silico pro�les for di�erent combinations of expo-
nents for arterial and venous trees. right:Image from [PS08]

Conclusion: The high velocity and shear stress in large arterioles, as well as a rather
smoothly decreasing pressure gradient indicate a large arterial power law exponent of
αart = 3. For the venous counterpart the very low wall shear stress in larger venules
and the constant pressure among all vessels preference a very low αven = 2...2.4. On
the other hand, the measured in-vivo velocities are only reached for at least αven = 2.7.
For all following simulations we will thus use αart = 3 and αven = 2.7 (see table 6.2).

6.2.7 Vessel Remodelling in Tumorous Tissue and Angiogenesis

Inside growing tumors the conditions are di�erent from "normal" or healthy tissue
(see chapter 5). In order to create a "tumor-like" vascularization we will introduce
two regions - a tumor region and a necrotic core - where the rules/parameters for the
homogenization algorithm will be chosen di�erently.
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Increased Micro-vessel Density (MVD) in Tumorous Tissue

Due to a high proliferative activity the tumor cells consume much more nutrients than
the quiescent cells in the surrounding healthy tissue. Consequently, an increased pro-
duction of VEGF in hypo-nourished parts of tumor will stimulate vessel sprouting.

On one hand, the vessel sprouting probability psprtumor is increased while the vessel

collapse probability pdegtumor is decreased. Both values are assumptions (see table 6.1).
On the other hand, the higher MVD is mimicked by connecting neighboring capillary
ends with n parallel vessels. Consequently some algorithm-relevant vessel properties
have to be adapted. The vessel radii power law changes to

rαroot = nleftr
α
left + nrightr

α
right. (6.6)

The Hagen-Poiseuille-law modi�es to

fij =
π

8
·

nijr
4
ij

η(rij) · lij
·∆pij = Gij ·∆pij (6.7)

The plasma volume fraction in tumorous tissue was found increased by one order of
magnitude (see table 6.4). In the following we assume n = 10 for inter-tip-connections
inside tumoral regions (see table 6.1). Figure 6.12 shows three examples of di�erent
n = 1, 4 and 10. One can see how with larger n not only the inter-tip-connections
increase, but the average vascular volume fraction as well due to equation 6.6.

(a) n = 1 (b) n = 4 (c) n = 10

Figure 6.12: Vascular networks (in-silico) after 110 iterations of homogenization (100
without and 10 with tumor) and n parallel capillaries in the tumor region (black circle)
of diameter dtum = 1.8mm.

Increased Vessel Collapse in Necrotic Core

Beyond a certain size, the central parts of the tumor are not nourished su�ciently
anymore. As a consequence, a necrotic core appears. It was observed that this necrotic
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zone is not only lethal to tumor cells, but to endothelial cells and thus blood vessels as
well.

The vessel sprouting probability psprnecrotic is decreased and the vessel collapse proba-

bility pdegnecrotic increased in respect to healthy tissue. Here the choice of parameter was
an heuristic assumption (see table 6.1).

(a) rnec = 0µm (b) rnec = 300µm (c) rnec = 600µm

Figure 6.13: Vascular networks (in-silico) after 110 iterations of homogenization (100
without and 10 with tumor and necrotic core), n = 10 parallel capillaries in the tumor
region (black circle) and a necrotic core of di�erent size rnec.

Normal Tissue Tumor Necrotic Core

Sprouting
Probability

psprnormal = 0.5 psprtumor = 1 psprnecrotic = 0.1

Degeneration
Probability

pdegnormal =
τ−τmin

τmax−τmin
pdegtumor = pdegnormal/10 pdegnecrotic = pdegnormal · 10

Micro-Vessel
Density

nnormal = 1 ntumor = 10 nnecrotic = 10

Table 6.1: Construction parameters varying in "healthy", tumorous and necrotic tissue
zones.

6.3 Perfusion Model

6.3.1 Microscopic Contrast Agent Concentration

The contrast-agent CA is here considered as a diluted specie that does not a�ect the
velocity of the �uid that contains it. At each point in the blood or the interstitial space,
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Parameter Unit Value Description

rtip µm 4 radius of vessel segment at tips
αart − 3 power law exponent for arterial vessel segments
αven − 2.7 power law exponent for venous vessel segments
l µm 60 length of vessel segment (lattice constant)
part kPa 12 pressure at arterial roots
pven kPa 2 pressure at venous roots

Table 6.2: Vessel properties for arterial and venous trees.

Variable Unit Description

pi kPa pressure at vessel node i

rij µm radius of vessel segment ij
fij µm3 · s−1 �ow through vessel segment ij
∆pij kPa pressure di�erence among vessel segment ij
ηij kPa · s blood viscosity in vessel segment ij
τij kPa shear stress in vessel segment ij
kPS = PS µm3 · s−1 exchange rate between vessel and interstitial space
Sij µm2 blood vessel surface
CA mM marker concentration in arterial roots
CP mM marker concentration in vessel
CI mM marker concentration in interstitial space
C mM total marker concentration
VP µm3 volume of vessels
VI µm3 volume of interstitial space
V = VP + VI µm3 total volume

Table 6.3: Variables.
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mass conservation of the CA leads to the following mass CA concentration equation
[PG08]

∂C

∂t
+∇ · (C~v) +∇ · ~J = 0 x ∈ Ωm (6.8)

assuming that no reaction occures. C is the concentration of CA. ~v is the velocity of
the �uid containing CA, and ~J is the �ow of CA relative to the velocity of the �uid.

Blood Vessels

In a given blood vessel, ~v is given by Poiseuille �ow (see equation 6.3). It is a unidirec-
tional axisymmetric velocity, in the direction of the blood vessel axis, with a parabolic
pro�le that is the same at each cross-section of the vessel axis, going from 0 at the vessel
border to a maximum velocity at the center, such that

~vmax = 2fA, (6.9)

where f is the volumetric �ow rate inside the vessel, and A its cross-sectional area.
Di�usion is neglected.

Interstitial Space

In the interstitial space, no advection is considered. However, there exists CA di�usion
which is described by Fick's 2nd law of di�usion (see section 6.3.3)

~J = −D∆C, (6.10)

where D is the di�usion coe�cient of CA.

Membrane Flux

At the interface between the blood vessels and the interstitial space, the blood vessel
walls are modeled as a permeable membrane. The di�usion �ux across a membrane is
described by Fick's 1st law of di�usion (see section 6.3.2).

6.3.2 Di�usion Flux across Membrane (Fick's 1st Law)

The �ux J of a molecule di�using in a given medium can be described by the �rst Fick's
law [Fic55b, Fic55a, Fun90]

J =
1

S

dQ

dt
= −D

∂C

∂x
, (6.11)

where J represents the �ux and dQ the amount of a substance di�using in time dt across
a plane of area S under an instantaneous gradient ∂C

∂x . C is the concentration of the
substance and D its di�usion coe�cient at a de�nite temperature in the medium.
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C1 C2

Assuming the simplest model of di�usion or kinetic formulation across a membrane
[PG08], equation 6.11 simpli�es to

dQ

dt
= −DS

H
(C1 − C2), (6.12)

H being the thickness of the permeable membrane. The change in concentration on
each side of the membrane, C1 and C2, can be described by

V1
dC1

dt
= −DS

H
(C1 − C2)

V2
dC2

dt
=

DS

H
(C1 − C2)

(6.13)

where V1 and V2 are the corresponding compartment volumes.

6.3.3 Di�usion & Advection in Space (Fick's 2nd Law)

Fick's second law [Fic55b, Fic55a, Fun90] predicts how di�usion causes the concen-
tration �eld to change with time. It can be derived from Fick's �rst law and mass
balance

∂C

∂t
= − ∂

∂x
~J =

∂

∂x

(

D
∂

∂x
C

)

(6.14)

In higher dimensions the �rst derivative ( ∂
∂x) generalizes to the gradient (∇)

∂C

∂t
= ∇ · (D∇C) (6.15)

If the di�usion coe�cient is constant we can further simplify to

∂C

∂t
= D∇2C = D∆C (6.16)

6.3.4 Macroscopic (Multi-Phase) Perfusion Model

On larger scales, each piece of tissue is modeled by a multiphase continuum that include
the following components: blood plasma P and interstitial space I (see �gures 6.14 and
6.15). The cellular compartment will be neglected as all CA considered do not enter
into the cells.
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Blood Plasma

Figure 6.14: Perfusion of two di�erent types of CA. The CA is transported by the blood
through the blood vessels. Depending on its molecular weight CA passes (or does not
pass) the vessel walls into the interstitial space, and di�uses in the interstitial space.
Image modi�ed from [TKO+09]

Multiphase equations can be obtained at the macroscopic level by integration of the
microscopic equations inside the two phases (plasma and interstitial spaces). Assuming
no di�usion or dispersion of the CA inside the blood, and that blood vessel walls are
permeable membranes following kinetics of equation 6.13, the mass concentration of CA
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inside the plasma of volume VP in a small volume of tissue V follows

∂

∂t

(
VP

V
CP

)

+∇ ·
(
VP

V
CP ~vM

)

= −DMSM

HMV
(CP − CI) in Ω,

CP |∂Ω = CA (entering �ow),

(6.17)

where CA is the blood plasma concentration in the feeding arteries. CP is the averaged
microscopic plasma CA concentration in V and CI is the averaged interstitial CA con-
centration in V . ~vM is the macroscopic blood velocity, andDMSM/HM the macroscopic
membrane exchange rate, both will be de�ned later.

Interstitial Space

Assuming no transport in the interstitial space, the mass concentration of interstitial
space CA follows

∂

∂t

(
VI

V
CI

)

= ∇ ·
(

Deff
I ∇CI

)

+
DMSM

HMV
(CP − CI) in Ω,

VI

V

∂CI

∂t

∣
∣
∣
∣
∂Ω

= 0 (homogeneous Neumann B.C.)

(6.18)

where Deff
I is the e�ective di�usion coe�cient due to the fact that the molecules are not

di�using freely among the whole volume, but are limited by the cell and vessel borders.
So the di�usion becomes

Deff
I =

DIφIδ

τ
(6.19)

where φI = VI
V is the porosity2, δ < 1 is the constrictivity3 (ratio of the diameter of the

di�using particle to the pore diameter), and τ > 1 is the tortuosity4. If we assume that
constrictivity and tortuosity balance each other we get

∂

∂t

(
VI

V
CI

)

= ∇ ·
(

Deff
I

VI

V
∇CI

)

+
DMSM

HMV
(CP − CI) (6.20)

with symmetric boundary conditions (Neumann conditions) considering the situation
to be comparable in the neighboring environment.
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(a) di�usion (b) transport (c) exchange

Figure 6.15: Scheme of inter-compartmental �uxes

6.3.5 Discretization

The above described equations 6.17 and 6.20 are solved on the voxel lattice de�ned
in section 6.2.1. Via the �nite volumes method we calculate the �uxes between the
compartments of neighboring voxels (see �gure 6.15(b) and 6.15(a)) and within the
same voxel (see �gure 6.15(c)). In the following, we take into account the knowledge of
the underlying microvasculature.

Intravascular Macroscale Properties

The intravascular compartment of a voxel is de�ned by the volume VP,i occupied by all
vessel segments j connected to the central node i.

VP,i =
∑

j

1

2
πr2ijlij (6.21)

rij is the radius and lij the length of vessel segment (i, j). The voxel exchange rate is
de�ned as

KPS,i =

(
DMSM

HM

)

i

. (6.22)

2Porosity is a measure of the void spaces in a material, and is a fraction of the volume of voids over
the total volume, between 0 and 1, or as a percentage between 0-100%.

3Constrictivity is a dimensionless parameter used to describe transport processes (often molecular
di�usion) in porous media. Constrictivity is viewed to depend on the ratio of the diameter of the
di�using particle to the pore diameter.

4Tortuosity is a property of curve being tortuous (twisted; having many turns).
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Given the fact that the microscopic blood vessel network is known, it is natural to
calculate the voxel exchange rate by

KPS,i =
∑

j

1

2
PijSij (6.23)

where Pij is the permeability and Sij = 2πrijlij the surface of vessel segment (i, j).

Upwind Scheme for Intra-vascular Transport

To discretize equation 6.17 in space, the �rst-order upwind scheme was chosen for the
transport term:

dCP,i

dt
=
∑

j

f in
ij

VP,i
CP,j −

∑

j

fout
ij

VP,i
CP,i −

KPS,i

VP,i
(CP,i − CI,i) (6.24)

where f in
ij are only the �ows entering the voxel i and fout

ij the �ows leaving it.

Explicit in Time (Forward Euler) Intravascular Discretization

Solving these Ordinary Di�erential Equations (ODEs) explicitly in time leads to the
following update during time dt between time step n and n+ 1

Cn+1
P,i = Cn

P,i +
dt

VP,i




∑

j

f in
ij C

n
P,j −

∑

j

fout
ij Cn

P,i −KPS,i(C
n
P,i − Cn

I,i)



 (6.25)

Implicit in Time (Backward Euler) Intravascular Discretization

These equations can alternatively be solved implicitly in time

Cn+1
P,i



1 +
dt

VP,i
KPS,i +

∑

j

dt

VP,i
fout
ij



−
∑

j

Cn+1
P,j

[
dt

VP,i
f in
ij

]

−Cn+1
I,i

[
dt

VP,i
KPS,i

]

= Cn
P,i

(6.26)

Extra-vascular Macroscale Properties

Neglecting the cellular compartment, the interstitial compartment is de�ned by the
extra-vascular volume VI,i

VI,i = Vi − VP,i (6.27)

where Vi is the volume of the voxel i.



6.3. PERFUSION MODEL 137

Centered Scheme for Extra-vascular Di�usion

Equation 6.20 can be discretized in space by the

dCI,i

dt
=

D

2dx2

∑

j

(

1 +
VI,j

VI,i

)

(CI,j − CI,i) +
KPS,i

VI,i
(CP,i − CI,i), (6.28)

where dx is the lattice constant of the underlying voxel lattice.

Explicit in Time (Forward Euler) Extra-vascular Discretization

Solving equation 6.20 explicitly in time leads to the following update during time dt
between time step n and n+ 1

Cn+1
I,i = Cn

I,i +
dt

VI,i




D

dx2

∑

j

VI,i + VI,j

2

(
Cn
I,j − Cn

I,i

)
+KPS,i(C

n
P,i − Cn

I,i)



 . (6.29)

Implicit in Time (Backward Euler) Extra-vascular Discretization

Solving equation 6.20 implicitly in time leads to the following update during time dt
between time step n and n+ 1

Cn+1
I,i



1 +
dtD

2dx2

∑

j

(

1 +
VI,j

VI,i

)

+
dt

VI,i
KPS,i



−
∑

j

Cn+1
I,j

[
dtD

2dx2

(

1 +
VI,j

VI,i

)]

−Cn+1
P,i

[
dt

VI,i
KPS,i

]

= Cn
I,i

(6.30)

Choice of Numerical Method

Stability: To solve the hyperbolic partial di�erential equation 6.25 a necessary con-
dition for convergence is the Courant-Friedrichs-Lewy (CFL) condition [CFL28]

v
dt

dx
≤ Cr (6.31)

where v is the velocity and Cr a dimensionless constant. With respect to the above
described scheme the velocity corresponds to v = f/S with S being the cross-sectional
area of a blood vessel segment. dx is the length of the segment. The chosen time step
dt needs to ful�ll the following condition for the whole network

dt ≤ Crmin
i

{
VP,i

fi

}

(6.32)
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Equation 6.26 is implicit and thus unconditionally stable if solved alone.
The implicit scheme costs more computation time per iteration as a matrix has to

be inverted, while the explicit scheme allows direct update. But the time step for the
implicit scheme can be chosen to be much larger than for the explicit one from the
stability point of view.

Accuracy: On the other hand, the implicit scheme will always introduce numerical
di�usion. For the inverse problem the CA perfusion simulations avoid numerical dif-
fusion in order to exclude misinterpretation of inaccurate data caused by numerical
errors.

Thus, for simulations which do not demand a very high accuracy the implicit scheme
will be used. This is the case for all perfusion images in section 6.3) of intra- and
extra-vascular agents whose main purpose is to study the impact of di�erent vascular
topologies and properties on the spatial and temporal appearance of color intensity in
the image sequences. For accurate simulations needed for the inverse problem in section
6.4 the explicit scheme will be used. In order to reduce numerical di�usion several
approaches can be pursued: increasing the spatial and temporal order of the numerical
scheme or re�ning the space (and time). For the one-dimensional case this was studied
in section C.2.2. Second order transport schemes reduce dramatically the di�usivity,
but cannot be applied directly to a network topology. Thus, spatial and temporal
re�nement was chosen. Here blood vessel segments (transport equation) will be re�ned
by sub-nodes to decrease the numerical di�usion. As �gure C.1 shows, Cr = 0.1 and
30 vessel sub-nodes resulting in sub-segments of length l/30 = 2µm (see table 6.2) lead
to su�cient accuracy.

6.3.6 Parameters & Border Conditions

Arterial Input Function

Parker et al. [PRM+06] propose a functional form of the arterial input function (Arterial
Input Function (AIF)) derived and averaged over a population of 113 AIF's measured
in the descending aorta or iliac arteries of patients (see �gure 6.16).

CA(t) =

2∑

n=1

An

σn
√
2π

· e−(t−Tn)2/(2σn)2 + αe−βt/(1 + e−s(t−τ)) (6.33)

Permeability

The exchange rate KPS (µm3/min) indicates the volume of �uid that passes a mem-
brane in a certain amount of time. It can be written as the product of the surface of
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Parameter Value Unit

A1 0.809 mM ·min
A2 0.330 mM ·min
T1 0.171 min
T2 0.365 min
σ1 0.056 min
σ2 0.132 min
α 1.050 mM
β 0.169 min−1

s 38.078 min−1

τ 0.483 min

Figure 6.16: Global mean (crosses) and model �t to data (red). Error bars depict +/-
1 SD across the population of 113 AIFs.

the membrane, S (µm2), and the permeability coe�cient, P (µm/min)

KPS = P · S =
DS

H
(6.34)

or as the product of the di�usion coe�cient, D, and the membrane surface, S, divided
by the membrane thickness, H.

As approximation the average vessel surface per tissue volume, E(S/V ), or per
plasma volume, E(S/VP ), can be estimated from a typical in-silico vascularization (�g-
ure 6.5(c)) created by CSSH (section 6.2.5). In the literature, the average values of
E(KPS/V ) and E(KPS/VP ) can be found. For both, literature and in-silico estima-
tions, see table 6.4. Then the order of magnitude of P (considered homogeneous over
the domain for now, but could be modi�ed to take into account increased leakiness of
some tumor vessels, etc) can be approximated by

P ≈ E(KPS/V )

E(S/V )
≈ E(KPS/VP )

E(S/VP )
. (6.35)

By given values for E(KPS/V ) and E(KPS/VP ) (see table 6.4) one can estimate a
range of P = The average vessel surface per tissue volume in one representative in-
silico vascularization was found to be E(S/V ) = 0.0135µm−1. Thus the permeability
is assumed to be P = 0.12− 25µm/s for vessels in healthy tissue and P = 0.086µm/s
in carcinoma. In the following we will assume a constant permeability for all vessels
P = 0.1µm/s (see table 6.5).

Locally, KPS varies according to 6.34 and the local S.
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Di�usion coe�cient

The di�usion coe�cient is CA-speci�c. Values found in literature [LLK+09] were of the
same order of magnitude as water molecules (see table 6.4). In the following we will
assume the di�usion coe�cient to be 1000µm2/s (see table 6.5).

Variable Unit Value Ref

KPS/V min−1 0.2 (0.01-1) [BZKG09]
KPS/VP min−1 1.2 (+/-0.5) pectoral muscle, [BKL+04]

min−1 0.86 (+/-0.62) carcinomas, [BKL+04]

F/V min−1 0.5 (0.1-1) [BZKG09]
F/VP min−1 2.4 (+/-1.3) pectoral muscle, [BKL+04]

min−1 2.4 (+/-0.7) carcinomas, [BKL+04]

φP − 0.04 (0.01-0.1) [BZKG09]
− 0.04 (+/-0.01) pectoral muscle, [BKL+04]
− 0.2 (+/-0.07) carcinomas, [BKL+04]

φI − 0.1 (0.02-0.35) [BZKG09]
− 0.09 (+/-0.01) pectoral muscle, [BKL+04]
− 0.34 (+/-0.06) carcinomas, [BKL+04]

S/V µm−1 0.0135 in-silico estimation after CSSH
S/VP µm−1 0.166 in-silico estimation after CSSH

D µm2/s 1.13(0.94− 1.28)× 103 Healthy pancreas [LLK+09]
µm2/s 1.15(0.74− 1.60)× 103 Pancreatic cancer [LLK+09]

P µm/s 0.12 (0.12- 0.25) healthy tissue, estimate from [BKL+04, BZKG09]
µm/s 0.086 carcinoma, estimate from [BKL+04]

Table 6.4: Values from the literature or own estimation.

.

Parameter Unit Value (Range) Ref

D µm2/s 1× 103 assumption

P µm/s 0.1 assumption

Table 6.5: Perfusion model parameters.

.

6.3.7 Perfusion of Intra-Vascular Agents (DCE-US)

A novel ultrasound method employing microbubbles (MB) contrast o�ers portable, non-
invasive dynamic assessment of tumor blood �ow. A MB contrast agent (De�nity, Lan-
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theus, Boston) is infused to produce vascular enhancement on nonlinear ultrasound
imaging. The MBs, the size of red blood cells, remain intravascular. MBs are disrupted
with an ultrasound pulse and the wash-in of new bubbles is imaged. This method,
DCE-US, measures blood �ow, velocity and vascular volume in multiple planes.

The following examples will explore possible cases of tissues perfused by a purely
intra-vascular CA. Later on, in section 6.3.8 perfusion extra-cellular agents used for
DCE-MRI is explored.

Comparing Di�erently Homogenized Vascularizations (without Tumor)

Figure 6.17 shows the result of performing the simulation of CA perfusion on the three
example vascularizations (�gure 6.5) of di�erent degree of shear stress homogenization
(see section 6.2.5). The images depict screenshots of the macroscopic CA concentrations,
C = φPCP +φICI , at di�erent times of the perfusion simulation (2, 10, 30 and 180sec).

The random vessel network (�gure 6.17, top row) is very poorly perfused. The overall
amount of CA is very small (few CA arrives at the peripheral venes) and many parts
of the tissue stay completely undelivered (large dark patches between large vessels).

Already 20 iterations of shear stress homogenization (�gure 6.17, center row) in-
crease the total amount of perfused CA dramatically and leave just a few areas without
circulation.

After 200 iterations of shear stress homogenization (�gure 6.17, bottom row) the
total amount of perfused CA doesn't increase very much, but furthermore decreases the
number and size of unperfused areas. The existence of still unperfused areas is more
due to fact that the simulations were restricted to two dimensions. As overlapping
vessels are not allowed some arterial capillaries are blocked by large arteries and thus
stay inaccessible to venous capillaries (and vice-versa).

Comparing Di�erent Scales

In DCE-MRI the images are acquired from a thin cross-section of tissue where the color
intensity of each pixel is a projection of the CA intensity in a tissue voxel. The voxel
resolution can vary a lot. In general one can state, that a higher spatial resolution
(SR) results in a longer acquisition time. The acquisition time has an impact on the
temporal resolution (TR) in DCE-MRI. Some examples are: SR=1.8×2.1×10mm3 and
TR=2.8ms [WRZ+12], SR=1.9×3.6×4.0mm3 and TR=1.5s [DRL+06], and SR=0.23×
0.47× 2.0mm3 and TR=14s [ESG+09]. DCE-MRI has to make a compromise between
spatial and temporal resolution as one needs to capture the temporal features as the
CA intensity oscillations after a bolus injection (see �g. 6.16) and spatial features of the
tissue as blood vessels. At typical resolutions, �ne structures as capillaries (∅ = 8µm)
and small vessels (8 < ∅ < 100µm) can not be captured anymore as single objects but
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Figure 6.17: Impact of shear stress maximization on the blood perfusion. Images show
the contrast agent (CA) intensities per voxel at di�erent moments in time after CA
injection into the blood stream. The three rows correspond to di�erent levels of capillary
shear stress homogenization.
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will contribute to the average CA intensity in each image pixel. So it is important to
understand if the vessels contribution can still be recognized in the resulting perfusion
images and to which extend the image resolution averages out important information.

To mimic coarser image resolutions the original voxels of size 60× 60× 60µm3 will
be grouped in larger voxels of size 300×300×60µm3 for two-dimensional arrangements
and of size 300×300×3000µm3 for three-dimensional arrangements.The CA intensities
on the coarse scale are then an average among all the �ne scale CA intensities within
one coarse voxel.

On larger scales the image resolution exceeds the size of �ne structures. Blood
vessels become less visible as each voxels CA intensity represents the average of a whole
region. While in the �rst stage of perfusion - especially the �rst peak if the AIF (10sec)
- large vessels are still recognizable (compare bottom row of �g. 6.17 and �g. 6.18)
at later time (180sec) the di�erence between regions of large vessels and small vessels
dissolve on coarse scale (�g. 6.18) while on the �ne scale (�g. 6.17) they are still visible.

2sec 10sec 30sec 180sec

20
0
It
er
at
io
n
s

Figure 6.18: Coarse image resolution. Images show the contrast agent (CA) intensities
averaged over several voxels (image pixel = 300 × 300 × 60µm3) at di�erent moments
in time after CA injection into the blood stream. The perfusion simulation was done in
a network after 200 iterations of capillary shear stress homogenization.

Embedded Tumor: High Micro-vessel Density

Assuming the permeability to be equal for all vessels (Pnormal = P tumor = 0µm/s), but
the capillary density within the tumor region to be increased by factor 10 (ntumor = 10,
nnormal = 1) leads to the results shown in �gure 6.19.

The tumor becomes already visible during the two peaks of the AIF (10sec and
30sec) due to its increased MVD. On the long term the visibility decreases at the same
extend as in the surrounding tissue as it su�ers from the same "wash-out"/elimination.
If the permeability is the same the tumor can not bene�t from larger amounts of accu-
mulated CA in the interstitial space.
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Figure 6.19: Increased micro-vessel density in the tumor region. Top row: Parameter
maps show the vessel network, vascular volume fraction and the �ow rate. Bottom
rows: Images show the contrast agent (CA) intensities in the voxels (image pixel =
60× 60× 60µm3) and averaged over several voxels (image pixel = 300× 300× 60µm3)
at di�erent moments in time after CA injection into the blood stream. The micro-vessel
density in the tumor region is 10 times higher than in the surrounding.
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Sensitivity MVD

Figure 6.20 shows how di�erent degrees of MVD in the tumor region a�ect the visibility
of the tumor in the CA intensities. As expected, a more vascularized tumor shows more
contrast agent in that region.
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Figure 6.20: Varying capillary density in tumor region. Images show the CA intensities
averaged over several voxels (image pixel = 60× 60× 60µm3) at di�erent moments in
time after CA injection into the blood stream. The micro-vessel density in the tumor
region is n times higher than in the surrounding.

2D versus 3D

Initial Remarks: In the third dimension the opposing arterial and venous vessel trees
can much better penetrate each other than in two dimensions leading to a much more
homogeneously perfused tissue. On the other hand, the vessel trees have to �ll up the
tree dimensional space instead of a surface. Consequently, the trees are much larger as
are the diameters of the tree roots and the �ow passing through.

Tumor embedded in well-perfused Vascularization: Figure 6.21 shows the result
of the three-dimensional example of a non-permeable (P = 0) vascularization embedding
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a tumor. At 10sec one can see the CA streaming from the centrally placed artery into
the vascularization. After 20sec the CA spread already among the whole network.
Over time the intra-vascular CA concentration diminishes and thus results in a lower
CA intensity per voxel.

On an arbitrary slice on the high resolution (voxel size 60µm× 60µm× 60µm, top)
one sees a part of the central artery and some of the large vessels. As the tumor was
not intersected it is not visible in the image.

On the coarse solution (voxel size 300µm×300µm×3000µm, bottom) typically used
in DCE-MRI one can nicely see the tumor (bright area) and its necrotic core (black spot)
in the lower part of the tissue at around 20sec after the CA injection into the blood.
Large vessels are not identi�able as they are average out by the depth of the voxels.
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Figure 6.21: Increased capillary density in tumor region. Images show the contrast agent
(CA) intensities in the voxels within a slice of a three-dimensional vessel arrangement
not intersecting the tumor (top, image pixel = 60× 60× 60µm3) and averaged among
many voxels (bottom, image pixel = 300×300×3000µm3) at di�erent moments in time
after CA injection into the blood stream. The micro-vessel density in the tumor region
is 10 times higher than in the surrounding.

Tumor far away from Single Feeding Vessel: Figure 6.22 shows the snapshots
of CA perfusion through a vascularization with a single feeding vessel. One can see
how the contrast agent streams into the vascularization from the left where the arterial
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root node is located. After around 20s it reaches the center of the tissue. A part of
the tumor becomes visible. After 40s the CA spread among the whole vascularization.
Now the tumor as a whole can be identi�ed as the bright area in the lower part of the
tissue with its necrotic core visible as a black spot.

In contrast to the example above where the blood needs to pass the capillaries to
reach the veins, here the blood can �ow with very little resistance from the arterial
root node (left) through the large vessel directly toward the venous root (right). Conse-
quently, the surrounding vascularization even after CSSH stays less perfused. Compar-
ing �gure 6.21 and 6.22, one can notice that it takes twice the time to homogeneously
deliver the CA to the whole network. In the �rst case this is reached immediately after
the bolus (section 6.3.6) passed the artery the �rst time ( 20s) while in the latter it
needs two passes.
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Figure 6.22: Increased capillary density in tumor region. Images show the contrast agent
(CA) intensities in the voxels within a slice of a three-dimensional vessel arrangement
not intersecting the tumor (top, image pixel = 60× 60× 60µm3) and averaged among
many voxels (bottom, image pixel = 300×300×3000µm3) at di�erent moments in time
after CA injection into the blood stream. The micro-vessel density in the tumor region
is 10 times higher than in the surrounding.



148 CHAPTER 6. PARAMETERIZATION F. PERFUSION IMAGES

6.3.8 Perfusion of Extra-Cellular Contrast Agents (DCE-MRI)

Embedded Tumor: Normal Permeability & Increased MVD

Topology φP F [µm3/s] KPS = P · S [µm3/s]
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Figure 6.23: 2D vascularization was created from a random vascularization, followed by
100 iterations of capillary shear stress homogenization, followed by further 10 iterations
with embedded tumor (black circle) and necrotic core (red circle). Top: Topology and
parameter maps. Center : Macroscopic CA concentration in voxels of size (60µm)3 and
bottom: (300µm)2 × 60µm.

Embedded Tumor: High Permeability ("Leaky" Vessels) & Normal MVD

Typically tumors are more visible in DCE-MRI images. There can be several reasons for
an increase accumulation of CA in the tumoral regions. Assuming the capillary density
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within the tumor region to be similar to the normal tissue (ntumor = nnormal = 1), but
the permeability to be 100 times higher (Pnormal = 0.1µm/s, P tumor = 100µm/s) leads
to the results shown in �gure 6.24.
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Figure 6.24: 2D vascularization was created from a random vascularization, followed by
100 iterations of capillary shear stress homogenization, followed by further 10 iterations
with embedded tumor (black circle) and necrotic core (red circle). Top: Topology and
parameter maps. Center : Macroscopic CA concentration in voxels of size (60µm)3 and
bottom: (300µm)2 × 60µm.

After the �rst two peaks of the AIF passed the tissue (10sec and 30sec) the large
vessels become �ooded by CA and are nicely visible in the in-silico DCE-MRI images.
As the tumor vasculature is not more functional or denser than in the surrounding tissue
the tumor itself can not be recognized from the images.

After the �rst peaks (> 30sec) we see the elimination of CA from the blood which
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leads to a steady decrease of intra-vascular CA and thus a decreasing brightness. At
the same time more and more contrast passes the vascular membrane and di�uses
into the interstitial space. So while the CA concentration in large vessels decreases it
accumulates in the interstitial space around the highly permissive vessels in the tumor
periphery. The un-vascularized necrotic core stays dark.

Conclusion: Highly permeable vascularization is visible rather on the long term of
DCE-MRI while a locally increased MVD is visible during the peaks of the AIF. The
latter is dominated by the fast transport/�ow through the vascular network, while the
�rst depends on the rather slow intra-extra-vascular di�usion. Consequently, one needs
to study di�erent phases of the DCE-MRI sequences to gain information about di�erent
properties of the vascularization.

6.4 Parameter Estimation from DCE-MRI Data

Looking at DCE-MRI you just get macroscopic information of how the total concen-
tration of CA changes in the single parts (voxels) of a tissue. The exact structure of
the vascularization in each voxel and the interconnection between voxels is completely
unknown. Thus, very simpli�ed and non-spatial models mimicking the microcirculation
of CA in each voxel separately are used as �t functions for an inverse procedure to
recover this information.

As the coarseness of the data and the lack of spatial consideration during the inverse
procedure might lead to wrong conclusion the aim of this section is to study the outcome
of such an inverse procedure in comparison with the parameters used for the direct model
to produce the data.

6.4.1 2-Compartment-Model (Brix II Model)

For data acquisition from MRI data there are a number of two-compartment models (ref.
[BSP+91, BBH+99, TK91, TBB+99]) used to characterize the tissue microcirculation
and quantify regional blood �ow, capillary permeability, and relative compartmental
volumes. In the following we will focus only on the model proposed by Brix et al.
[BBH+99].

As �gure 6.25 shows the space will be assumed to be subdivided into two compart-
ments: the plasma compartment and the interstitial space compartment. The plasma
compartment is fed from the artery, with blood �ow rate F going in and out of the
compartment. The membrane di�usion is mimicked by the intra-vascular-extra-vascular
exchange rate KPS .
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Figure 6.25: Two compartment model de-
scribing the tissues microcirculation of a
contrast agent.

Model Equations

The corresponding equations derived from conservation of mass are

∂CP

∂t
= − F

VP
(CP − CA)−

KPS

VP
(CP − CI) (6.36)

for the concentration of contrast agent in the plasma compartment, CP , and

∂CI

∂t
=

KPS

VI
(CP − CI) (6.37)

for the concentration of contrast agent in the interstitial space, CI . VP and VI are the
volumes of the two compartments.

Numerical Scheme (Intra-vascular Marker)

Numerically we can solve the system of equations for each time step dt using an implicit
scheme in time

Cn+1
P − Cn

P

dt
=

F

VP
(Cn

A − Cn+1
V )− KPS

VP
(Cn+1

P − Cn+1
I )

Cn+1
I − Cn

I

dt
=

KPS

VI
(Cn+1

P − Cn+1
I )

(6.38)

Both equation reduce to the following linear system




[

1 + dt
VP

F + dt
VP

KPS

] [

− dt
VP

KPS

]

[

1− dt
VI
KPS

] [
dt
VI
KPS

]





︸ ︷︷ ︸

A

·
(

Cn+1
P

Cn+1
I

)

︸ ︷︷ ︸

un+1

=

(
Cn
P + dt

VP
FCn

A

Cn
I

)

︸ ︷︷ ︸

bn

(6.39)
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and can be solved by simply inverting matrix A

(
Cn+1
P

Cn+1
I

)

= A−1bn (6.40)

The total concentration of contrast agent in the tissue is

C =
VPCP + VICI

V
(6.41)

6.4.2 Inverse Procedure

The temporally sampled evolution of the mean CA concentration C[i] is compared to
the sampled 2-compartment solution C(i · dt) for each voxel using mean squares as a
distance measure.

S(β) =
∑

i

(C[i]− C(i · dt, β))2 (6.42)

To get the best �tting set of parameters β, S is minimized using the Levenberg-
Marquardt algorithm (see section D.4) with λ = 0.1 for 100 iterations.

6.4.3 Examples & Results

1D without Vascular Permeability

As a very �rst example a one-dimensional arrangement of 100 voxels was chosen. The
size of each voxel is 60µm × 60µm × 60µm. In the center of each voxel there is one
vessel node. The vessel nodes of neighboring voxels are connected by vessel segments
(see �gure 6.26(a)). The pressure di�erence between the extremities of the vessel is
10kPa.

As �gure 6.26(b) shows the Brix2 compartment model with three �t parameters
β = {φP ,KPS , F} (assuming φP = 1 − φI) gives a good �t in voxels which are very
close to the artery mimicked by the arterial input function. The farther away the worst
the �t. The best �tting parameters for each voxel are shown in �gure 6.27 (green line).
While the vascular volume fraction φP and the intra-/extra-vascular exchange rate KPS

are very close to the originally used values, the �ow rate F is completely underestimated.
This is due to the later "arrival" of the AIF which is �tted by lower �ow rate.

To overcome this drawback of Brix2 we can just add a temporal delay for the arterial
input function as a forth parameter β = {φP ,KPS , F, t0} taking into account the delayed
arrival of the AIF for voxels far away from arteries. Figure 6.26(c) shows how such a
improved Brix2+Delay model improves the �t in all voxels.

Looking at the �t parameters (�gure 6.27, red line) con�rms the much better agree-
ment with the original parameters for volume fraction and �ow rate as well.
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(a) Topology
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(b) Brix2 Fit Curves with 3 Voxels
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(c) Brix2+Delay Fit Curves for 3 selected Voxels

Figure 6.26: Contrast agent transport along a non-permeable vessel within one-
dimensional voxel arrangement. (a) The one-dimensional topology of the non-permeable
blood vessel. The color indicate the pressure gradient (red=12kPa, blue=2kPa). (b)
Comparison between direct method and Brix2 �t curve. (c) Comparison between direct
method and Brix2+Delay �t curve. The curves show the contrast agent time course in
the arterial root voxel (yellow), central voxel (green) and venous root voxel (magenta)
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Figure 6.27: Parameter comparison between values used for direct method (dashed line)
and the values recovered by Brix2 (red) and Brix2+Delay (green). x denotes the voxel
in the one-dimensional arrangement. Units: F and KPS in µm3/s.
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1D with Vascular Permeability

Using exactly the same arrangement as in the example before one can now add some
permeability (P = 0.1) to the vessels.

(a) Topology
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(b) Brix2 Fit Curves for 3 selected Voxels
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(c) Brix2+Delay Fit Curves for 3 selected Voxels

Figure 6.28: Contrast agent transport along a permeable vessel within one-dimensional
voxel arrangement. (a) The one-dimensional topology of the permeable blood vessel.
The color indicate the pressure gradient (red=12kPa, blue=2kPa). (b) Comparison
between direct method and Brix2 �t curve. (c) Comparison between direct method
and Brix2+Delay �t curve. The curves show the contrast agent time course in the
arterial root voxel (black/brown), central voxel (red/magenta) and venous root voxel
(green/blue)

Figure 6.28 shows that the voxel-wise �ts are better for Brix2 with time delay than
the original Brix2 as in the example without permeability.

The �t parameters (see �gure 6.29) for the vascular volume fraction φP and the
intra-/extra-vascular exchange rate KPS are only close to the original values for voxels
close to the artery. The farther away from the artery the more they diverge. Both
values seem to be underestimated due to the misinterpreted loss of intra-vascular CA
caused by the vascular permeability. On the other hand, the �ow rate F , though it is
underestimated, stays stable along the whole domain.
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Figure 6.29: Parameter comparison between values used for direct method (dashed line)
and the values recovered by Brix2 (red) and Brix2+Delay (green). x denotes the voxel
in the one-dimensional arrangement. Units: F and KPS in µm3/s. .
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2D in Symmetric Arrangement (without Permeability)

In the two dimensional example illustrated in �gure 6.30(a) the vessel trees are com-
pletely symmetrically organized. Thus at each arterial branch the �ow and the vascular
volume split up equally among the two sub-trees. At branches at in the venous tree two
equal �ows merge into one large vessel. Figure 6.30(b) shows the time CA concentration
curves of three voxels (marked in �g. 6.30(a)): the arterial root, a capillary and the
venous root. The curves in both root nodes have identical shapes with a small time
delay at the venous root. The amplitude in the capillary is smaller due to the smaller
vascular volume fraction.
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(b) Brix2+Delay Fit Curves for 3 selected Voxels

Figure 6.30: Contrast agent transport along a non-permeable symmetric vessel net-
work within two-dimensional voxel arrangement. (a) The symmetric topology of the
non-permeable blood vessel. The color indicate the pressure gradient (red=12kPa,
blue=2kPa). (b) Comparison between direct method and Brix2+Delay �t curve. The
curves show the contrast agent time course in the arterial root voxel (grey), capillary
voxel (magenta) and venous root voxel (green)

Although delayed Brix2 perfectly �ts the time CA concentration curves of all vox-
els the parameter estimation partially underestimates the �ow rate while recovering
the exact vascular volume fractions. This con�rms the observations done in the one-
dimensional case.

2D in Tumor Embedding Vascularization

Figure 6.32(a) shows the topology of an asymmetric vascularization created by 200
iterations of CSSH from initially 4 venous and one arterial root node followed by further
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φP = 1− φI KPS [µm3/s] F [µm3/s] t0 [s]
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Figure 6.31: Parameter comparison. Parameter maps show the values of vascular
volume fraction ΦP , exchange rate KPS , �ow rate F and time delay t0 (only for
Brix2+Delay) used for the direct method and recovered by Brix2 and Brix2+Delay.
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10 iterations after embedding a tumor.

Figure 6.32(b) shows the time CA concentration curves of the direct model for four
di�erent voxels: the arterial root node, the venous root node and two nodes within the
tumor region (close to large vessel, away from large vessel). Delayed Brix2 �ts well.

(a) Topology
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(b) Brix2+Delay Fit Curves for 2 selected Voxels

Figure 6.32: Contrast agent transport along a non-permeable asymmetric vessel network
embedding a tumor within a two-dimensional voxel arrangement. (a) The symmetric
topology of the non-permeable blood vessel. The colors indicate the pressure gradient
(red=12kPa, blue=2kPa). (b) Comparison between direct method and Brix2+Delay �t
curve. The curves show the contrast agent time course in the arterial root voxel (red),
capillary voxel (yellow), intermediate voxel with large vessel (black) and venous root
voxel (blue)

As can be seen in �gure 6.33 in the asymmetric case as well the vascular volume
fraction is nicely recovered. Nevertheless, comparing the parameter maps for the �ow
rate F indicates an underestimation of almost three orders of magnitude for the ve-
nous root nodes. Thus the error for vessels far away from the feeding artery increases
tremendously.
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Figure 6.33: Parameter comparison. Parameter maps show the values of vascular
volume fraction ΦP , exchange rate KPS , �ow rate F and time delay t0 (only for
Brix2+Delay) used for the direct method and recovered by Brix2 and Brix2+Delay.
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6.5 Upscaling: Does the Transition to Larger Scales still
permit Accurate Parameter Estimation?

Cvoxel
1

Cvoxel
I,1 Cvoxel

P,1

Cvoxel
2

Cvoxel
I,2 Cvoxel

P,2
. . .

Cvoxel
N

Cvoxel
I,N Cvoxel

P,N

Cpixel

Cpixel
I Cpixel

P

VP
dCP

dt
= KPS(CI − CP )

VI
dCI

dt
= −KPS(CI − CP )

C(t) = φICI + φPCP

(6.43)

Assuming we have a 2-compartment model describing the dynamics in the subunits of
a domain (neglecting for now all inter-subunit relations) which in the following will be
referred to as voxels. Now by coarse-graining, the voxels will be grouped as blocks of
N voxels which we will refer to as the pixels.

Question: If we try to infer parameters on the coarse scale (pixel) from data which
is a result from dynamics on the �ne scale how much can one trust those parameters
(error estimation) and what is there meaning for the �ne scale?
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6.5.1 Local Concentrations (Voxels)

Phasic concentrations are de�ned as CI within the interstitial space and CP in the
plasma compartment.

CP = QP /VP

CI = QI/VI
(6.44)

where QP and QI are the amounts of substance in the respective compartments of size
VP and VI .

Macroscopic concentrations are de�ned as C. It is the averaged concentration
among a voxel or pixel and can be derived from the phasic concentrations by

Q = QP +QI (6.45)

V C = VPCP + VICI (6.46)

C = φPCP + φICI (6.47)

where V is the total volume of both compartments and φP and φI the compartmental
volume fractions corresponding to V .

6.5.2 Upscaling Concentrations (From Voxels to Pixel)

Upscaling Volume Fractions

The compartmental volumes just sum up

V pixel
P =

N∑

i=1

V voxel
P,i (6.48)

If all voxels have the same size (V voxel = V pixel/N) then the volume fractions can be
upscaled to the pixel by

φpixel =
1

N

N∑

i=1

φvoxel
i (6.49)
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Upscaling Phasic Concentration

The phasic compartmental concentrations CP and CI can be upscaled from the voxel
to pixel -scale as follows (for CP )

Qpixel
P =

N∑

i

Qvoxel
P,i (6.50)

V pixel
P Cpixel

P =

N∑

i

V voxel
P,i Cvoxel

P,i (6.51)

Cpixel
P =

∑N
i V voxel

P,i Cvoxel
P,i

V pixel
P,i

(6.52)

=

∑N
i V voxel

P,i Cvoxel
P,i

∑N
i V voxel

P,i

(6.53)

Upscaling Macroscopic Concentration

The macroscopic concentrations C can be upscaled from the voxel to pixel -scale as
follows

Qpixel =
N∑

i

Qvoxel
i (6.54)

Cpixel =

∑N
i Qvoxel

i

V pixel
(6.55)

=

∑N
i V voxel

i Cvoxel
i

V pixel
(6.56)

=
1

N

N∑

i

Cvoxel
i (6.57)
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6.5.3 Upscaling (E�ective) Permeability

The e�ective permeability surface product of a pixel is the sum of all permeability
surface products for all vessel membranes in this voxel.

Kpixel
PS =

DM

HM
Spixel
M (6.58)

=
DM

HM

N∑

i

Svoxel
M,i (6.59)

=
N∑

i

Kvoxel
PS,i (6.60)

6.5.4 Estimating the Apparent Permeability

Applying an inverse method to the observation on the coarse scale, Cpixel(t) =
∑

iC
voxel
i (t)/N , we want to use the same model as was used on the �ne scale to pro-

duce Cpixel
1 (t), ..., Cpixel

N (t) as �t function (e.g. equation 6.43). In this case the coarse
observations of changes in time would be interpreted purely on the coarse scale. This
can be described by the conservation of mass:

dQpixel =
N∑

i

dQvoxel
i (6.61)

In the case of model 6.43 this gives

dQpixel = Kpixel
PS (Cpixel

P − Cpixel
I ) (6.62)

=

N∑

i

Kvoxel
PS,i (C

voxel
P,i − Cvoxel

I,i ) (6.63)

We can see that the apparent Kpixel
PS emerging at the coarse scale depends on the com-

partmental volume fractions (on both scales), the local exchange rates Kvoxel
PS,i as well as
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the local phasic concentrations Cvoxel
P,i and Cvoxel

I,i

Kpixel
PS =

∑N
i Kvoxel

PS,i (C
voxel
P,i − Cvoxel

I,i )

(Cpixel
P − Cpixel

I )
(6.64)

=

∑N
i Kvoxel

PS,i (C
voxel
P,i − Cvoxel

I,i )
∑N

i V voxel
P,i Cvoxel

P,i
∑N

i V voxel
P,i

−
∑N

i V voxel
I,i Cvoxel

I,i
∑N

i V voxel
I,i

(6.65)

=

∑N
i Kvoxel

PS,i (C
voxel
P,i − Cvoxel

I,i )
∑N

i φvoxel
P,i Cvoxel

P,i
∑N

i φvoxel
P,i

−
∑N

i φvoxel
I,i Cvoxel

I,i
∑N

i φvoxel
I,i

(6.66)

= N ·
∑N

i Kvoxel
PS,i (C

voxel
P,i − Cvoxel

I,i )

∑N
i

φvoxel
P,i

φpixel
P

Cvoxel
P,i − φvoxel

I,i

φpixel
I

Cvoxel
I,i

(6.67)

Necessary assumptions for time-invariant Kpixel
PS :

• const. volume fractions among pixel: φvoxel
P,i = φpixel

P , φvoxel
I,i = φpixel

I

Kpixel
PS = N ·

∑N
i Kvoxel

PS,i (C
voxel
P,i − Cvoxel

I,i )
∑N

i Cvoxel
P,i − Cvoxel

I,i

(6.68)

• const. exchange rate among pixel: Kvoxel
PS,i = Kvoxel

PS

Kpixel
PS = N ·Kvoxel

PS (6.69)

Figure 6.34 shows three test examples where the equations 6.43 were solved inde-
pendently within N voxels with:

• constant volume fractions, but varying KPS,i among the voxels

• varying volume fractions, but constant KPS,i among the voxels

• constant volume fractions and KPS,i among the voxels

One can see that only for constant volume fractions and KPS,i among all voxels the
apparent KPS is identical to the e�ective KPS (see equation 6.60).

Figure 6.35 shows a sensitivity analysis of the apparent KPS to di�erent degrees of
heterogeneity of local volume fractions and KPS,i.
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N = 100
φP = φI = 0.5,

KPS ∈
[
1µm3s−1, 2µm3s−1

]

φP ∈ [0, 1], φI = 1− φP ,
KPS = 2µm3s−1

φP = φI = 0.5
KPS = 2µm3s−1

Figure 6.34: Two compartment model describing the tissues microcirculation of a con-
trast agent.
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N = 100
E(φP ) = E(φI) = 0.5,
E(KPS) = 2µm3s−1

Figure 6.35: Two compartment model describing the tissues microcirculation of a con-
trast agent.

6.5.5 Error Estimation between E�ective and Apparent Permeability

absolut error:

ǫa =

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
Kpixel

PS −
N∑

i

Kvoxel
PS,i

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

(6.70)

=

∑N
i Kvoxel

PS,i (C
voxel
P,i − Cvoxel

I,i )

1
N ·∑N

i

φvoxel
P,i

φpixel
P

Cvoxel
P,i − φvoxel

I,i

φpixel
I

Cvoxel
I,i

−
N∑

i

Kvoxel
PS,i (6.71)

=

N∑

i

Kvoxel
PS,i · αi

β
−

N∑

i

Kvoxel
PS,i (6.72)

=

N∑

i

Kvoxel
PS,i · αi

β
−Kvoxel

PS,i (6.73)

=
N∑

i

Kvoxel
PS,i · αi − β

β
(6.74)
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relative error:

ǫr =
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Kpixel
PS −∑N
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∣
∣

(6.75)

=

∑N
i Kvoxel

PS,i · αi
β −∑N

i Kvoxel
PS,i

∑N
i Kvoxel

PS,i · αi
β

(6.76)

=

∑N
i Kvoxel

PS,i · αi −Kvoxel
PS,i β

∑N
i Kvoxel

PS,i · αi

(6.77)

= 1−
∑N

i Kvoxel
PS,i β

∑N
i Kvoxel

PS,i · αi

(6.78)

6.5.6 Upscaling Flow

The total �ow through a voxel (or pixel) is the sum of all �ows entering the voxel (or
pixel) at its outer borders.

F pixel =
∑

i∈pixel,j /∈pixel

F voxel
i→j (6.79)

6.6 Conclusion & Discussion

6.6.1 Vascularization

We established a framework to create generic vascularizations as benchmark environ-
ment to simulate contrast agent perfusion and produce in-silico dynamic contrast en-
hanced perfusion images which later on were used to study the accuracy of an inverse
method. Though, chosen a very simple square lattice topology, the vessel properties
had a good agreement with experimental measurements.

In future work - especially for the integration of such a vascular model into an
predictive multi-scale model - it could be interesting to generalize the framework toward
a more realistic and lattice-free approach. This would allow to approach more realistic
branching angles and di�erent vessel densities.

6.6.2 Perfusion & Numerical Methods

The explicit upwind scheme in combination with a re�nement of blood vessel segments
was able to produce reliable data for the inverse problem. The needs for space and time
re�nement to avoid numerical di�usion could be replaced by a higher order scheme:
Lax-Wendro� or Flux-Limiter (SuperBee, Minmod etc.). The problem is that higher
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order schemes are not well de�ned for numerical problems on graphs as they are whether
1D, 2D nor 3D.

6.6.3 Inverse Problem

It is possible to use non-spatial inverse methods as Brix2 or delayed Brix2 to get an
idea of the local vessel properties (volume fraction, permeability, �ow rate), but not (in
all cases) an exact estimate. In the case of a purely intra-vascular agent, one gets a
good recovery of the volume fractions (plasma and interstitial space) used in the direct
model. The �ow rate on the other hand was in all cases found to be underestimated the
farther the region of interest was away from the feeding artery. The underlying reason is
currently not clear. This might be the e�ect of both: a remaining numerical di�usion in
the direct problem of the extra-vascular agent case and an overlap of di�erent transport
velocities in the asymmetric networks.

Numerical Di�usion

As it can be seen in �gure 6.26 and 6.30 the numerical di�usion was reduced dramatically
by re�ning the vessel segments and the time step. A remarkable drop in the estimated
�ow rate can be observed (see �gures 6.27 and 6.31) the farther away a voxel is located
from the feeding artery. If this drop should be due to the small remaining numerical
di�usion in the direct problem then this would suggest a high sensitivity of the inverse
problem to small modi�cations in the shape of the curves. Parameter estimations in
in-vivo measurements would thus already by the level of noise lead to very doubtful
results. Here a more extensive and systematic sensitivity analysis should be done on
the in�uence of small perturbations (noise and numerical errors) to the outcome of the
inverse problem.

Network Asymmetries

On the other hand, network asymmetries as they are the reality in in-vivo lead to
pro�les composed of a specter of input signals transported at di�erent velocities among
the network. Thus neglecting the contributions of di�erent �ow rates and delays to the
input signal of each voxel will in an optimistic case just give an relative estimate of
the real properties. Here the inverse method could be already improved by replacing
the AIF by a population of AIFs with individual �ow rates and delays. This would
multiply the number of �t parameters, but correct the correspondence to the true local
properties while keeping the inverse problem a non-spatial problem.
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Permeability

The perfusion of agents leaking into the extra-vascular space adds further di�culties.
The drain of contrast agent along the path of transport leads to lower amplitudes of
the input signals in voxels far away from feeding arteries. A non-spatial model not
considering the loss in between the feeding artery and the voxel/region of interest will
compensate this lack of information by other �t parameters. As can be seen in �gure
6.29 it mainly re�ects in an underestimation of the plasma volume fraction φP and
the intra-extra-vascular exchange rate KPS . An improvement could be reached by
estimating the loss as a function of distance from the feeding artery whether directly by
automated artery detection or by time delay parameter t0 (�gure 6.29). The estimate
would stay very rough as the loss is approximated in a heuristic way, but would have
the advantage of keeping the inverse problem non-spatial. For an exact quanti�cation
one would have to take the inter-voxel �uxes into account. Then the complexity of the
inverse problem would be equal to the direct problem.

Conclusion

Non-spatial inverse methods give a good estimate of the relative di�erences of vessel
properties in neighboring voxels, but are only capable to a very limited extent to make
exact parameter estimations in order to parametrize models. With minor extensions the
non-spatial model used for the inverse problem could improve dramatically in accuracy
for data of purely intra-vascular CA perfusion (DCE-US). For extra-cellular agents
leaking into the interstitial space the inter-voxel relations have to be taken into account.
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Chapter 7

Conclusion & Perspectives

7.1 Avascular Tumor Growth Model & Parameterization

A multi-scale model was constructed and parametrized to explain data of EMT6/Ro
cells grown under four di�erent nutrient conditions. This includes exponential growth,
mechanically-limited growth, nutrient-limited growth and saturation. Then in a sec-
ond step, it was adapted to the SK-MES-1 cell line under additional consideration of
the concentric arrangements of cell phenotypes (proliferating, quiescent and necrotic
cells) and the extra-cellular matrix densities. Those were extracted from micrographs
of cryosected and stained spheroids at di�erent instances of the growth process by a
quantitative image analysis chain.

We could show, that it is important to guide experiments in order to capture the
right mechanisms explaining certain observed phenomena. For quantitative predictions
this is even essential. By comparison of the extracted radial pro�les with the in-silico
arrangements emerging from model simulation, many possible mechanisms leading to
the same macroscopic phenomena can be reduced to the most plausible one(s).

For example, it could be shown that the proliferating rim of spheroids does not cor-
respond to the outermost layer uniquely containing proliferating cells which is followed
by a layer of uniquely quiescent cells. The radial pro�les extracted from spheroid mi-
crographs rather suggest a smoothly decaying fraction of proliferating cell toward the
spheroid center. Nevertheless, based on the �rst assumption - of a compact proliferating
rim - the growth curves of EMT6/Ro spheroids could be explained, while at the same
time the smoothly decaying radial proliferation pro�les led to good �ts of the growth
curves of SK-MES-1 spheroids (for two di�erent nutrient medium conditions). Espe-
cially, for studying nutrient-limited growth scenarios the predictions would be incorrect
if the wrong mechanism is selected: a smoothly decaying, but deeper proliferating zone
would be more a�ected by nutrient-limitation than a compact and thinner one.
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Furthermore, ATP and lactate were identi�ed to mainly control cell growth and
survival during the exponential and geometric growth phase of tumor spheroids. A
necessary requirement for cells to reenter into the cell cycle seems to be su�cient supply
of extra-cellular matrix. Growth saturation comes along with an overall decrease in
proliferative activity as well as necrosis instead of an homeostasis of both.

Growth saturation could however not be explained satisfyingly by the mechanisms
currently captured by the model and should be the subject of further investigation.
As the outermost cells become quiescent as well while still su�ciently supplied with
nutrients, a growth inhibition by waste products or metabolites as lactate accumulating
in the spheroid center might be a reason.

7.2 Modeling Tumor Growth & Angiogenesis

The avascular model was extended to the in-vivo situation by incorporating endothelial
cells which populate the same lattice as the tumor cells and form a vessel network on
the tissue scale. Via vessel remodeling and angiogenesis rules, it could be shown that
the initially slowly expanding tumor overcomes its nutrient-limitation by recruiting new
vessels sprouting from already existing nearby vasculature.

Nevertheless, the underlying angiogenesis rules require a veri�cation with experimen-
tal data. A promising source of information are dynamic enhanced perfusion images.
As they are acquired in a non-invasive way (e.g. by magnetic resonance imaging, com-
puter tomography or ultrasound) they are ideal to long-time monitor the changes in
vascularization during tumor progression (angiogenesis and necrosis) or therapy.

Parameter Inference from Dynamic Enhanced Perfusion Images

In order to understand what kind of data can be acquired and under which precision,
we studied one common parameter inference procedure with an in-silico phantom vas-
cularization.

We created a framework to create generic vascularizations as benchmark environ-
ment to simulate contrast agent perfusion and produce in-silico dynamic contrast en-
hanced perfusion images which later on were used to study the accuracy of an inverse
method. Non-spatial inverse methods give a good estimate of the relative di�erences
of vessel properties in neighboring voxels, but are only capable to a very limited extent
to make exact parameter estimations in order to parametrize models. With minor ex-
tensions the non-spatial model used for the inverse problem could improve dramatically
in accuracy for data of purely intra-vascular contrast agent (CA) perfusion (dynamic
contrast enhanced ultrasound). For extra-cellular agents leaking into the interstitial
space the results indicate that the inter-voxel relations have to be taken into account.
In such a case, inverse methods for spatio-temporal models (as the direct model) would
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be warranted but would require a di�erent magnitude of computational time to infer
parameters.

7.3 Upscaling

The single cell-based model reaches its upper computational limit at a tissue size of a
few millimeters. To study certain cancer related phenomena as for example angiogenesis
the model has to reach the centimeter scale.

Two possibilities to upscale the model to the centimeter scale are:

1. Coarse Graining: occupying one lattice site with maximally N cells, 0 ≤ n ≤ N .
Figures 7.1, 7.2 and 7.3 show that the model parameters can be rescaled in such
a way that the dynamics is still the same.

2. Hybrid-Coarse-and-Single-Cell-Based Model: in order maximize the resolution
where necessary and coarse grain where no accuracy is needed, a hybrid model
could be used which automatically switches the resolution depending on its need
(see �gure 7.4)

While these methods have been successfully sought for the core cell model, its extension
to the nutrient-limited and vascularized models would be an interesting challenge to
pursue.
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Figure 7.1: Single-cell-based (dots) vs. coarse-grained model (lines): Cells divide within
an exponentially distributed cell-cycle time (m = 1).
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Figure 7.2: Single-cell-based (dots) vs. coarse-grained model (lines): Cells divide within
an Erlang distributed cell-cycle time (m = 100).
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Figure 7.3: Single-cell-based (dots) vs. coarse-grained model (lines): Cells divide within
an exponentially distributed cell-clycle time (m = 1) and migrate.
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Figure 7.4: Hybrid-Model. Regions of interest are high-resoluted while others are coarse.
With the growing tumor front the high-resoluted quiescent cells (green) will be coarse-
grained while free space invaded by the proliferating tumor cells (red) are re�ned.
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Appendix A

Spatial Discretization

Spatial models are applied only to a part of the world while everything else is neglected.

De�nition A.1 (Domain)

A domain is a set Ω ⊂ R
n in the n-dimensional space.

The interactions with the outside is de�ned by boundary condition.
As digital computers are only able to handle a �nite number of elements instead of

continuum representation the spatial (and temporal) dimensions have to be represented
by their discrete counterparts. For the spatial dimension this is done by the tesselation
of the domain Ω.

De�nition A.2 (Cells & Tessellation)

Tessellation is the sub-division or partition of a domain Ω into a set of cells Ω̂ :=
{φ ⊂ Ω} with no overlaps, ∀φi, φj : φi ∩ φj = ∅, and no gaps,

⋃
φi = Ω.

In general the cells of a tessellation can have any shape, but in most cases they will
be described by polytope.

De�nition A.3 (n-Polytope)

A n-polytope is a geometric object with �at sides in d dimensions. Example: The

2-polytope is known as polygon and the 3-polytope as polyhedron.

The elements n-dimensional polytopes are composed of are summarized in table A.1.
The following sections will focus on di�erent ways how to discretize a �nite space by

regular and irregular tessellations and how to de�ne neighborhoods on such tesselations.
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Dimension Element Name

0 Vertex
1 Edge
2 Face
3 Cell
...

...
j j-face - element of rank j = −1, 0, 1, 2, 3, ..., n
...

...
n− 1 Facet - (n− 1)-face
n Body - n-face

Table A.1: Elements of a n-polytope.

A.0.1 Duality: Lattices and Tesselations

We can distiguish between two types of graphes: Tesselations subdivide the space into
tiles, while lattices discribe the neighborship relations between those tiles.

A.1 Regular Lattice

De�nition A.4 (Regular Cells & Tessellations)

A n-polytope is called regular if all its elements or j-faces (for all 0 ≤ j ≤ d, where

n is the dimension of the polytope) - cells, faces and so on - are also transitive. A

regular tessellation is a highly symmetric tessellation made up of congruent regular

polytopes.

In two dimensions there exist only three regular tessellations: those made up of equilat-
eral triangles, squares, or hexagons. In three and higher dimensions it is just one: the
cubic or d-hypercubic honeycomb. The three-dimensional counterparts of the triangular
and hexagonal tessellation, the tetrahedral and rhombic dodecahedral honeycomb, do
not ful�ll the regularity condition anymore, but are less strict uniform tessellations.

De�nition A.5 (Uniform Cells & Tessellations)

A uniform tessellation is composed by uniform polytopes. A polytope is uniform if

its facets are regular polytopes and it is vertex-transitive (i.e. there is an isometry

mapping any vertex onto any other).
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A.2 Triangulation

A triangulation is a special kind of tessellation as it cells are . In advanced geometry,
in the most general meaning, triangulation is a subdivision of a geometric object into
simplices.

De�nition A.6 (Simplex)

A simplex is a generalization of the notion of a triangle or tetrahedron to arbitrary

dimension. Speci�cally, an n-simplex is an n-dimensional polytope which is the

convex hull of its n + 1 vertices.

In particular, in the plane it is a subdivision into triangles, hence the name. Di�erent
branches of geometry use slightly di�ering de�nitions of the term.

De�nition A.7 (Triangulation)

A triangulation T of Ω ⊂ R
n is a subdivision of Ω into n-dimensional simplices

such that any two simplices in T intersect in a common j-face, j < n, or not at all.

Let S ⊂ Ω be a set of points then Ω can be triangulated by subdividing Ω into
simplices whose vertices are a subset of S. Then S is called a set of construction points
of the resulting triangulation TS . The number of possible triangulation for a given set
of construction S can be very large.

De�nition A.8 (Delaunay Triangulation)

A Delaunay triangulation for a set P of points in R
n is a triangulation DT (P ) such

that no point in P is inside the circumsphere of any simplex in DT (P ). Delaunay

triangulations maximize the minimum angle of all the angles of the simplex in the

triangulation; they tend to avoid skinny simplices.

A point set triangulation, i.e., a triangulation of a discrete set of points P ⊂ R
n is a

subdivision of the convex hull of the points into simplices such that any two simplices
intersect in a common face or not at all and the set of points that are vertices of
the subdividing simplices coincides with P . The Delaunay triangulation is a famous
triangulation of a set of points where the circum-hypersphere of each simplex contains
none of the points.

The Delaunay triangulation of a discrete point set P in general position corresponds
to the dual graph of the Voronoi tessellation for P .

A Voronoi diagram is a special kind of decomposition of a metric space determined
by distances to a speci�ed discrete set of objects in the space, e.g., by a discrete set of
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Figure A.1: Dualism: left: The Delaunay triangulation with all the circumcircles and
their centers (in red). right: Connecting the centers of the circumcircles produces the
Voronoi diagram (in red).

points. In the simplest case, we are given a set of points P in the plane, which are the
Voronoi sites. Each site p has a Voronoi cell, also called a Dirichlet cell, V (p) consisting
of all points closer to p than to any other site. The segments of the Voronoi diagram
are all the points in the plane that are equidistant to the two nearest sites. The Voronoi
nodes are the points equidistant to three (or more) sites. [wikipedia]

A.3 Construction Algorithms

There are several algorithms to create a Delaunay triangulation from a point cloud S.
Most of them have a running time of O(n log n).

A.3.1 Flip

One of the �rst algorithms to construct a Delaunay triangulation was proposed by Law-
son [Law77]. It is based on the circumstance that a triangulation T can be transformed
into an other triangulation T ′ via �ipping the edge of two adjacent triangles if and only
if they form a convex quadrilateral [Law72].
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Figure A.2: Flip Algorithm: left: Triangles not ful�lling the Delaunay criterion. right:
The triangles after the middle edge has been �ipped.

The algorithm starts with an initial triangulation of all points which must not ful�ll
the Delaunay condition. The only requirement is that the edges are not overlapping.

Then for every triangle it has to be checked if an other point lays inside its circum-
circle. If this is the case the common edge with the adjacent triangle containing this
point will be switched as illustrated in �gure A.2. This way the triangulation becomes
locally Delaunay, but might reintroduce a violation of the Delaunay condition to the
neighboring triangles. In the worst case all triangles have to be revisited which leads to
a running time of O(n2).

A.3.2 Incremental Algorithm

The idea of the incremental algorithms is to add points iteratively to an existing De-
launay triangulation (for example a super triangle containing all points to insert) by
re-triangulating only the a�ected region (see section A.4).

A.3.3 Alternative Construction Algorithms

Alternatives to the �ip (section A.3.1) and incremental algorithm (section A.3.2) are
Divide and Conquer, Sweepline and Sweehull.
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(a) local re-triangulation (b) edge �ipping

Figure A.3: Incremental Algorithm (I): (a) Triangle containing new point p is replaced
by 3 new triangles. (b) The neighboring triangles which don't ful�ll the Delaunay
criterion �ip edges until all triangles are Delaunay.

Figure A.4: Search Algorithm: Walk through the triangulation following the shortest
path toward the triangle containg point p.

A.4 Point Insertion

a) Insertion & local Edge Flip

One possibility to do this is to look for the triangle t which contains the new point p
and replace it by 3 new triangles by connecting each edge of t with p (see �gure A.3(a)).
Then for all neighboring triangles which don't ful�ll the Delaunay condition anymore
the edges have to be �ipped until the Delaunay condition is ful�lled again (see �gure
A.3(a) and section A.3.1).

In the worst case we have to test all triangles to �nd the one containing p. This
would result in a complexity of order O(n) for the search algorithm. Depending on
the data structure this can be reduced to O(

√
n) by a direct walk from a randomly

chosen triangle among neighboring triangles toward the triangle containing p (see �gure
A.4). After the local retriangulation we might have to �ip all triangles to reestablish the
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Figure A.5: Incremental Algorithm: left: Triangles not ful�lling the Delaunay criterion.
right: The triangles after the middle edge has been �ipped.[Geo]

Delaunay condition which leads to a complexity of O(n). So for n points the algorithm
is of order O(n2).

b) Local Delaunay Triangulation

The second possibility was proposed by Bowyer and Watson [Bow81, Wat81]. Here the
above described local re-triangulation of one triangle followed by the edge �ipping of
neighboring was replaced by a single re-triangulation step.

First all triangles whose circumcircle contain the new point p (see �gure A.5(b))
will be removed from the triangulation leaving cavity (see �gure A.5(c)). Then the
remaining edges in the cavity can be connected with p and added to the triangulation
as new triangles (see �gure A.5(d)). The insertion algorithm has complexity O(1). So
the overall algorithm depends mainly on the search algorithm and takes O(n log n) time.

Algorithm 1 Bowyer-Watson Algorithm

form super triangle, enclosing all points p ∈ V
for all p ∈ V do
1. insert vertex p ∈ V into triangulation
2. �nd circumcircles containing p with corresponding triangles
3. remove triangles to get insertion polygon
4. retriangulate insertion polygon by simply adding edges to p

end for
remove super triangle
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A.5 Point Deletion

The point deletion is the inverse procedure of inserting a point into the triangulation.
At �rst all triangles containing the point p are removed from the triangulation leaving
a cavity. Then the vertices of the cavity have to be re-triangulated without violating
the Delaunay condition of the neighboring triangles.

In principle we have a stack containing all edges of the cavity. Then for each edge
we count the number of triangles that can be created with other points in the cavity
and ful�ll the Delaunay condition. If the number of possible triangles is exactly one
then this new triangle is added to the triangulation. The old edge which is now not a
part of the cavity anymore is removed from the stack. If the new edges were already
edges of the cavity then they are removed as well. If not they are added to the stack as
new part of the cavity.

The algorithm stops when the stack is empty and all edges are retriangulated.

Algorithm 2 Point Deletion Algorithm

remove triangles containing point p
initialize list with all edges of the remaining cavity
initialize queue with all vertices of the remaining cavity
repeat
take vertex v from queue
if only one edge e in list creates a valide triangle with v then
add triangle to triangulation
remove e from stack

end if
add vertex v to queue

until stack is empty
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Stochastic Spatio-Temporal Cellular

Automata

B.1 Environment

B.1.1 Discretization

The environment is subdivided by the Voronoi tesselation of a set of irregularily dis-
tributed points, so-called construction points. The distribution of those points is guided
by two principles:

1. Global regularity : The points are homogenously distributed among an underlying
square lattice with lattice constant l, id est each square of the square lattice
containes exactly one construction point.

2. Local irregularity : Within each square the point is placed randomly.

While global regularity ensures a homogenous distribution of points among the do-
main and limits the volume variation of the resulting Voronoi cells, local irregularity
avoids lattice-artifacts due to symmetry-e�ects. An other advantage of this choice of
construction is the inherent one-on-one relation between the Voronoi cells and squares
on both lattices which later can be easily used for solving partial di�erential equations
with the �nite di�erences method.

The lattice contant is choosen such that l =
(
π
6

) 1
3 dcell, where dcell is the diameter of

a cell at the beginning of the cell cycle. In that case the average volume of the Voronoi
cells (≈ l3) is equal to the volume of a cell (Vcell =

π
6d

3
cell).
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B.1.2 Neighborhood

B.2 Cellular automaton model

(a) Voronoi Tesselation
(b) State Diagram

Figure B.1: A cell is de�ned by its position, its internal state and a set of transition
rules.

B.2.1 Cells & Population

Biological cells are represented individually in the model. The state of each cell
ci = (Xi, qi) consists of its position Xi ⊂ X, i.e. each cell can occupy one or
two lattice sites (Voronoi cells), and its internal state qi ∈ Q = {m = 0, ...,m =
md, quiescent, apoptotic} (see �g. B.1(b)). The population can then be de�ned as the
assembly of all cells C = (ci).

B.2.2 State Transitions & Temporal Evolution

Cells change their states (position, internal state) and in many cases as well of their
environment via transition rules. The general form of transitions can be de�ned chemical
reaction-like

A
µ−→ B (B.1)

where A is the original state, B the resulting state and µ the transition rate.Master Equation
The systems spatio-temporal evolution can be described by the master equation

∂P (C, t)

∂t
=
∑

C′

µC′→CP (C ′, t)− µC→C′P (C, t) (B.2)
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where C is the current state of a cell population and C ′ any other state. In a sys-
tem where the state space C can become very large it is almost impossible to solve
the master equation analytically. Assuming all processes to be Poisson processes, i.e. Gillespie

Algorithmtheir waiting time τ are exponentially distributed, Gillespie[Gil77] proposed an exact
stochastic simulation algorithm (SSA) to numerically solve the master equation. The
idea is to perform random walks through the state space C. At each point in time the
next transition was chosen randomly by from all possible transitions. The probabilities
of each transition was derived from the second term of the master equation (see eq.
B.2).

P (C → C ′) =
1

µΣ
· µC→C′ (B.3)

µΣ =
∑

C′

µC→C′ (B.4)

The passed time ∆t is an exponentially distributed random number and can be calcu-
lated by

∆t =
1

µΣ
log

(
1

ξ

)

(B.5)

where ξ is a unit-interval uniform random number, i.e. ξ ∈ [0, 1), and µΣ is total rate
of transition out of state C.

It was shown that for a su�cient number of realizations the mean behavior converges
against the exact solution of the master equation. Figure B.2(c) illustrates how the SSA
converges against the analytical solution for a non-spatial birth process (see example
B.2.2).

Example : Birth process Let the problem be a simple non-spatial birth process where the
system state represents the actual population size C ∈ N and the state space contains
all possible population sizes C := N. The division rate of each cell in the system is µ.
Consequently, the total transition rate is µΣ = C · µ.

B.2.3 Cell Cycle Time Distribution & Synchronisation

The above described SSA algorithm is based on Poisson processes (see sec. B.2.2) which
imply exponentially distributed waiting times τ . From processes like the cell cycle we
know that they follow a rather tighter gaussian-like distribution than an exponential
distribution. If we subdivide a process into m Poisson subprocesses in such a way that Erlang

Distributionµsub
i = µ · m, 1 ≤ i ≤ m, then the waiting time τ becomes Erlang-distributed with

shape parameter m.
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cell

µ

(a) State diagram of single cell.

N N+1
µΣ

(b) State diagram of population. (c) Exponentially distributed cycle times

Figure B.2: Non-spatial birth process simulated with the SSA. (c) Examples B.2.2: the
growth curves are averages over a di�erent number of realizations N . ?? Example B.2.3:
the growth curves are averages over 1000 realizations using di�erent simulated with the
averaged over a di�erent number of realizations using a di�erent Erlang number M .

Example : Example: Erlang distributed birth process Let the problem be a non-spatial birth
process. The cell cycle of each cell is subdivided into m ≥ 1 processes with rate µsub =
m · τ−1. So the cells internal state is its current cell cycle phase qi ∈ {1, ...,m}. After
passing all m processes a cell divides into two daughter cells with qi = 1 and qj = 1. The
system state is de�ned as the set of the current cell cycle phase C := {qi : i is a cell} of all
cells in the system. The problem can be reduced to

• Ni being the number of cells in cell cycle phase i

• C := {Ni}i=1,...,m is the population state

• {Ni, Ni+1} Niµi−−−→ {Ni − 1, Ni+1 + 1} for 1 ≤ i < m

• {Nm, N1} Nmµm−−−−→ {Nm − 1, N1 + 2}

Figure B.3 shows that the growth speed of the whole population slows down by
increasing the number of subprocesses m. A good approximation for the change of the
growth velocity was indicated [Dra05] to be

µeff = m(21/m − 1)µ (B.6)

On the other hand side cells divide simultaneously and their cell cycles stay synchro-
nized.
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(a) State diagram of single cell (b) Erlang distributed cycle times

Figure B.3: Non-spatial birth process with Erlang distributed cycle times (see example
B.2.3). (a) The state diagram shows the transitions between subsequent cell cycle
phases i of a single cell and the related transition rates µi. (b) : the growth curves
are averages over 1000 realizations using di�erent simulated with the averaged over a
di�erent number of realizations using a di�erent Erlang number M .

B.2.4 Space & Space Limitation

Cell Position

The cell divsion is not only in�uenced by internal mechanisms, but the spatial arrange-
ment as well. In order to do this the cell state will be extended to

ci = {Xi, qi} (B.7)

where Xi ⊂ X is the space occupied by the cell and qi ∈ Q the internal state of the cell.
If X ⊆ R

3 then the cells can take any possible shape in the three-dimensional space.
For computational reasons the space will rather be a discrete tessellation of R3, in our
case a Voronoi tessellation as described in section B.1.

Cell Size & Growth

In order to gain volume, for example for a following cell division (see section B.2.4),
cells can extend to reachable (in general neighboring) parts of the domain Xext ⊂ Ω̂.

{q,X} µ(g)

−−→ {q,Xnew} (B.8)

Xnew/X ⊆ Xext (B.9)
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where X ⊂ Ω is the cells old position and Xnew the cells position after expansion.
In general we can assume that the cells will extend to the close neighbor hood. The
generalized transitionNow we can de�ne multiple spatial constraints to the cell growth

by the choice of growth rate, µ
(g)
x = µ

(g)
X→X∪{x}, and the reachable area of expansion,

Xext.

Example : Example: Contact Inhibition In monolayers we can observe that cells stop growing
and dividing as soon as they are surrounded by other cells. The mechanism which is
regulating this behavior is called contact inhibition. The cells growth rate can be de�ned
as the following

µ
(g)
X→X∪{x} =

{
P (X → X ∪ {x}) · µ(g) , if x is free

0 , else
(B.10)

The probability P (X → X ∪ {x}) that a cell expands to x ∈ Xext out of all possible
expansion sites in Xext can be choosen to be uniformly distributed beween all available
(free) sites

P (X → X ∪ {x}) =
1

|free(Xext)|
(B.11)

∑

x∈free(Xext)

P (X → X ∪ {x}) = 1 (B.12)

∑

x∈free(Xext)

µ
(g)
X→X∪{x} = µ(g) (B.13)

free(X) := {x ∈ X|x is not occupied by a cell} (B.14)
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Structured vs. Unstructured Lattice:

There are structured lattice topologies like the most commonly used square lattice or
the hexagonal and triangular lattices. The equivalents in three dimensions are cubic,
rhombic dodecaedrical honey comb (see �gure B.4).

In structured lattices we have the set connectivity of the grid which makes it easy to
�nd the neighboring nodes of a given node, this can be done by addition. Unstructured
lattices call for a list of neighbors to be stored for each node, this is due to the arbitrary
connectivity between the nodes. This makes structured lattices less memory heavy.

Figure B.4: Regular tesselations of the the plane (top: square, triangular and hexagonal
lattice) and the space (bottom).

On the other hand side, the symmetric nature of structured lattices can lead to
artifacts due to privileged directions for all kind of propagating processes performed
on the lattice. Figure B.5 illustrates how di�erent lattice topologies lead to di�erent
population shapes to due lattice symmetries. The simulations were done by a simple
cellular automaton with �x time step permitting cells to divide to a randomly chosen
unoccupied neighboring lattice site (see algorithm 3).

So in the following we will only focus on unstructured lattices.
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Algorithm 3 Cellular Automaton for Cell Proliferation

occupied(p, n) = "vertex p is occupied by a cell at time n"
neighbors(p, q) = "vertices p and q are neighboring lattice sites"
while abortion criteria not reached do
for all p ∈ P do
if occupied(p, n) then
occupied(p, n+ 1) := true
if ∃q : neighbors(p, q)∧!occupied(q, n) then
randomly chose unoccupied neighbor site q
occupied(q, n+ 1) := true

end if
end if

end for
n := n+ 1
t := t+∆t

end while

Figure B.5: Regular tesselations of the the plane (top: square, triangular and hexagonal
lattice) and the space (bottom).
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Global Rearrangements: Shifting

In many cases cells are even growing even if they are completely surrounded by other
cells. In this case cell growth coincides with the movement of the surrounding cells
away from the growing cell. "In the case were there is no free neighboring site cells are
pushed away along the shortest track to the nearest free site so that a free adjacent
place for the o�spring occurs."[RBH+09]

Example : Example: Density Inhibition & Shifting Cells will grow if the cells around are not
too dense, i.e. if within a radius of l there is at least one free lattice sites.

µ(g) =

{
τ−1 , if ∃x ∈ free(neighl(X))
0 , else

(B.15)

If the cell can freely expand without shifting other cells away, ∃x ∈ free(neigh1(X)), then
the choice of its expansion side is random following uniform distribution between all possible
choices.

µ
(g)
X→X∪{x} = P (X → X ∪ {x}) · µ(g) (B.16)

P (X → X ∪ {x}) =
1

|free(Xext)|
(B.17)

If there is no free lattice site within the immediate neighborhood, free(neigh1(X)) = ∅,
cells will be pushed along the shortest track to the nearest free lattice site.

∀x ∈ free(neighl(X)) : x 6= xnearest → min
y∈X

|xnearest − y| < min
y∈X

|x− y| (B.18)

Cell Motion

Agents/cells can move among the domain by "hopping" from one lattice site to a neigh-
boring one. The hopping rate is de�ned for the overall velocity of movement. The
choice of the probability distribution among the destination sites depends on the kind
of movement.

Cell Division & Cell Cycle Reentrance

Is a cell c0 dividing into two daughter cells, c1 and c2, then the formerly occupied space
X0 will be divided and associated to the new cells

{q,X} µ(d)

−−→ {q1, X1}, {q2, X2} (B.19)

X1 ∪X2 = X (B.20)

X1 ∩X2 = ∅ (B.21)

Subsequently the two daughter cells can reenter the cell cycle, q1 = q2 = 1, or become
quiescent, q = {quiescent} depending on external circumstances.
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Appendix C

Partial Di�erential Equations

C.1 Parabolic Equation: Di�usion

C.1.1 Finite Di�erence Method

Principle: derivatives in the partial di�erential equation are approximated by linear
combinations of function values at the grid points.

In 1D a domain Ω = (0, X) is discretized in the following manner:

ui ≈ u(xi),

i = 0, 1, ..., N
(C.1)

where xi = i∆x are the discrete lattice/mesh points and ∆x = X
N the mesh size.

A 2D domain Ω = (0, X)× (0, Y ) is discretized as follows

ui,j ≈ u(xi, yj),

i = 0, 1, ..., N

j = 0, 1, ...,M

(C.2)

where ∆x = X
N and ∆y = Y

N are the mesh sizes in both directions. In many cases the
mesh size is chosen to be similar for all directions, ∆x = ∆y = h.
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Approximation of �rst-order derivatives: by doing a Taylor series expansion
u(x) =

∑∞
n=0

(x−xi)
n

n! (∂
nu

∂xn )i of u in point x we get

T1: for x = xi+1:

ui+1 = ui +
(∆x)
1 (∂u∂x)i +

(∆x2)
2 (∂

2u
∂x2 )i +

(∆x3)
6 (∂

3u
∂x3 )i + ...

T2: for x = xi−1:

ui−1 = ui − (∆x)
1 (∂u∂x)i +

(∆x2)
2 (∂

2u
∂x2 )i − (∆x3)

6 (∂
3u

∂x3 )i + ...

Accuracy of �nite di�erence approximations

T1 :

(
∂u

∂x

)

i

=
ui+1 − ui

∆x
︸ ︷︷ ︸

forward di�erences

−(∆x)

2

(
∂2u

∂x2

)

i

− (∆x)2

6

(
∂3u

∂x3

)

i

− ...

︸ ︷︷ ︸

truncation error O(∆x)

T2 :

(
∂u

∂x

)

i

=
ui − ui−1

∆x
︸ ︷︷ ︸

backward di�erences

+
(∆x)

2

(
∂2u

∂x2

)

i

− (∆x)2

6

(
∂3u

∂x3

)

i

+ ...

︸ ︷︷ ︸

truncation error O(∆x)

T1 − T2 :

(
∂u

∂x

)

i

=
ui+1 − ui−1

2∆x
︸ ︷︷ ︸

central di�erences

−(∆x)2

6

(
∂3u

∂x3

)

i

− ...

︸ ︷︷ ︸

truncation error O(∆x)2

(C.3)

Approximation of second-order derivatives:

T1 + T2 :

(
∂2u

∂x2

)

i

=
ui+1 − 2ui + ui−1

(∆x)2
︸ ︷︷ ︸

central di�erences

+
(∆x2)

12
(
∂4u

∂x4
)i + ...

︸ ︷︷ ︸

truncation error O(∆x)2

(C.4)
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In three dimensions for similar mesh sizes for all dimensions, ∆x = ∆y = ∆z = h:

∇ · (∇u) =
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
(
∂2u

∂x2

)

i,j,k

= Du
ui−1,j,k − 2ui,j,k + ui+1,j,k

h2
+O(h2)

(
∂2u

∂y2

)

i,j,k

= Du
ui,j−1,k − 2ui,j,k + ui,j+1,k

h2
+O(h2)

(
∂2u

∂z2

)

i,j,k

= Du
ui,j,k−1 − 2ui,j,k + ui,j,k+1

h2
+O(h2)

(C.5)

C.2 Hyperbolic Equation: Transport

F, v F, v

r

A

Let u be an unknown variable The transport of particles along a blood vessel depends
on the velocity v and the size (radius) r.

∂u

∂t
+∇ · (vu) = 0 (C.6)

Let us consider a unidirectional �ow along the axis of the vessel. transport is thus only
along this direction.

C.2.1 Finite Volume Method

The �nite volume method discretizes the volume into �nite volume elements. In this
1D example, the lateral �uxes are considered to be zero. The unknown ui associated

ui−1 ui ui+1

i− 1 i i+ 1

fi−1 1
2

fi− 1
2

fi+ 1
2

fi+1 1
2

with the volume Vi is its average volume concentration uni at each time step n∆t. The
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transport equation (eq. C.2.2) is integrated over each volume element and solved by
calculating the �uxes among the surface of the given elements.

un+1
i = uni +

∆t

∆Vi

(

fluxi− 1
2
− fluxi+ 1

2

)

(C.7)

The �uxes depend on the �ow rate f across the surfaces and the particle concentration
u at the surface.

C.2.2 Piece-wise Linear Flux Approximation

As the concentration is here the average value among the whole element (i) the values
at the interfaces (i− 1

2 and i+ 1
2) can be approximated by piece-wise linear interpolation

fluxi− 1
2
= fi− 1

2

(

ui−1 +
1

2
δui−1

)

fluxi+ 1
2
= fi+ 1

2

(

ui +
1

2
δui

) (C.8)

where ui (or ui−1) is the upstream sampling value and δui (or δui−1) the estimated
gradient at the surface. Several explicit schemes are proposed to approximate those
gradients:

Upwind: δuUW
i = 0 (C.9)

Centered Euler: δuCE
i = (ui+1 − ui) (C.10)

Lax-Wendro�: δuLWi = (ui+1 − ui) · (1− fi+ 1
2

∆t

∆Vi
) (C.11)

Beam-Warming: δuBW
i = ui − ui−1 (C.12)

Fromm: δuFR
i =

1

2
(ui+1 − ui−1) (C.13)

Min Mod: δumm
i =min{max{ui − ui−1, 0},max{ui+1 − ui, 0}}

+max{min{ui − ui−1, 0},min{ui+1 − ui, 0}}
(C.14)

Superbee: δusbi =(sign(ui − ui−1) + sign(ui+1 − ui))

·min{|ui − ui−1|, |ui+1 − ui|,
1

2
max{|ui − ui−1|, |ui+1 − ui|}}

(C.15)

Solving equation with the upwind scheme, a necessary condition for convergence is the
CFL condition [CFL28]

v
dt

dx
≤ Cr (C.16)
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Figure C.1: Upwind scheme. O(∆x,∆t)
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Figure C.2: Lax-Wendro� scheme. O(∆x2,∆t2)

where v is the velocity and Cr a dimensionless constant.

Figure C.1 shows that for Cr = 1 the upwind scheme gives the exact solution
while for smaller values of Cr the solution becomes di�usive and converges against a
certain shape. Re�ning in space decreases the numerical error. Figures C.2, C.3 and
C.4 show the same sensitivity analysis for Cr and dx for Lax-Wendro�, Fromm and
Beam warming. Those pro�les are less di�usive, but more dispersive. I.e. they cause
oscillations.
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Figure C.3: Fromm scheme. O(∆x2,∆t2)
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Figure C.4: Beam warming scheme. O(∆x2,∆t2)
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C.3 Solver

C.3.1 Conjugate Gradient

The conjugate gradient method is an algorithm for the numerical solution of particular
systems of linear equations, namely those whose matrix is symmetric and positive-
de�nite. It was developed by Hestenes and Stiefel [HS52].

Algorithm 4 Conjugate Gradient Algorithm

r0 = b−Ax0
p0 = r0 (or p0 = M−1r0 with preconditioner)
for i = 1, 2, 3... do

αi =
rTi ri
pTi Api

(or αi =
rTi M−1ri
pTi Api

with preconditioner)

xi+1 = xi + αipi
If xi+1 is accurate enough then quit
ri+1 = ri − αiApi

βi =
rTi+1ri+1

rTi ri
(or βi =

rTi+1M
−1ri+1

rTi ri
with preconditioner)

pi+1 = ri+1 + βipi (or pi+1 = M−1ri+1 + βipi with preconditioner)
end for

C.3.2 Bi-Conjugate Gradient

The bi-conjugate gradient method provides a generalization to non-symmetric matrices,
but it is numerically unstable.

C.3.3 Bi-Conjugate Gradient Stabilized

The bi-conjugate gradient stabilized method (BiCGSTAB) is an iterative method devel-
oped by H. A. van der Vorst [vdV92, Saa03] for the numerical solution of non-symmetric
linear systems. It is a variant of the bi-conjugate gradient method (BiCG) and has faster
and smoother convergence than the original BiCG as well as other variants such as the
conjugate gradient squared method (CGS). It is a Krylov subspace method.

To solve a linear system Ax = b, BiCG-STAB starts with an initial guess x0 and
proceeds as follows:
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Algorithm 5 Bi-Conjugate Gradient Algorithm

r0 = b−Ax0
r̂0 = b−AT x̂0
p0 = r0 (or p0 = M−1r0 with preconditioner)
p̂0 = r̂0 (or p̂0 = r̂0M

−1 with preconditioner)
for i = 1, 2, 3... do

αi =
r̂Ti ri
p̂Ti Api

(or αi =
r̂Ti M−1ri
p̂Ti Api

with preconditioner)

xi+1 = xi + αipi
If xi+1 is accurate enough then quit
x̂i+1 = x̂i + αip̂i
ri+1 = ri − αiApi
r̂i+1 = r̂i − αiA

T p̂i

βi =
r̂Ti+1ri+1

r̂Ti ri
(or βi =

r̂Ti+1M
−1ri+1

r̂Ti ri
with preconditioner)

pi+1 = ri+1 + βipi (or pi+1 = M−1ri+1 + βipi with preconditioner)
p̂i+1 = r̂i+1 + βip̂i (or p̂i+1 = r̂i+1M

−1 + βip̂i with preconditioner)
end for

Algorithm 6 BiCG-STAB Algorithm

r0 = b−Ax0
Choose an arbitrary vector r̂0 such that (r̂0, r0) 6= 0, e.g., r̂0 = r0
ρ0 = α = ω0 = 1
v0 = p0 = 0
for i = 1, 2, 3... do
ρi = (r̂0, ri−1)
β = (ρi/ρi−1)(α/ωi−1)
pi = ri−1 + β(pi−1 − ωi−1vi−1)
vi = Api
α = ρi/(r̂0, vi)
s = ri−1 − αvi
t = As
ωi = (t, s)/(t, t)
xi = xi−1 + αpi + ωis
If xi is accurate enough then quit
ri = s− ωit

end for
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Curve Fitting

Curve �tting is the process of constructing a curve, or mathematical function, that has
the best �t to a series of data points, possibly subject to constraints. Curve �tting can
involve either interpolation, where an exact �t to the data is required, or smoothing, in
which a "smooth" function is constructed that approximately �ts the data. A related
topic is regression analysis, which focuses more on questions of statistical inference such
as how much uncertainty is present in a curve that is �t to data observed with random
errors. Fitted curves can be used as an aid for data visualization, to infer values of a
function where no data are available, and to summarize the relationships among two or
more variables. Extrapolation refers to the use of a �tted curve beyond the range of the
observed data, and is subject to a greater degree of uncertainty since it may re�ect the
method used to construct the curve as much as it re�ects the observed data. [wikipedia]

D.1 Least Squares Problem

The objective consists of adjusting the parameters of a model function to best �t a data
set. A simple data set consists of n points (data pairs) (xi, yi), i = 1, ..., n, where xi is an
independent variable and yi is a dependent variable whose value is found by observation.
The model function has the form f(x, β), where the m adjustable parameters are held
in the vector β. The goal is to �nd the parameter values for the model which "best"
�ts the data. The least squares method �nds its optimum when the sum, S, of squared
residuals

S =
n∑

i=1

r2i (D.1)
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is a minimum. A residual is de�ned as the di�erence between the value predicted by
the model and the actual value of the dependent variable

ri = yi − f(xi, β). (D.2)

An example of a model is that of the straight line. Denoting the intercept as β0 and
the slope as β1, the model function is given by f(x, β) = β0 + β1x. See linear least
squares for a fully worked out example of this model. A data point may consist of more
than one independent variable. For an example, when �tting a plane to a set of height
measurements, the plane is a function of two independent variables, x and z, say. In
the most general case there may be one or more independent variables and one or more
dependent variables at each data point. [wikipedia]

D.2 Gradient Decent

Gradient descent is based on the observation that if the real-valued function f(β) is
de�ned and di�erentiable in a neighborhood of a point β, then f(β) decreases fastest if
one goes from β in the direction of the negative gradient of f at β, −∇f(β). It follows
that, if

α = β − γn∇f(β) (D.3)

for γ > 0 a small enough number, then f(α) ≤ f(β). With this observation in mind,
one starts with a guess for a local minimum of f , and considers the sequence such that

βn+1 = βn − γ∇f(βn), n ≥ 0 (D.4)

We have

f(β0) ≥ f(β1) ≥ f(β2) ≥ ..., (D.5)

so hopefully the sequence βn converges to the desired local minimum. Note that the
value of the step size γ is allowed to change at every iteration. [wikipedia]

D.3 Newton-Gauss method

The distinctive property of least-squares problems is that given the Jacobian matrix
J , we can essentially get the Hessian (∇2f(x)) for free if it is possible to approximate
the rj s by linear functions (∇2rj(x) are small) or the residuals (rj(x)) themselves are
small. The Hessian in this case simply becomes

∇2S(βn) ≈ J(βn)
TJ(βn) (D.6)

http://en.wikipedia.org/wiki/Least_squares
http://en.wikipedia.org/wiki/Gradient_descent
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Then we obtain the Gauss-Newton method by iteratively calculating

J(βn)
TJ(βn)∆βn = −J(x)T r(x) (D.7)

and updating

βn+1 = βn +∆βn. (D.8)

D.4 Levenberg-Marquardt algorithm

The Levenberg-Marquardt algorithm (LMA) interpolates between the Gauss-Newton
algorithm (GNA) and the method of gradient descent.



J(βn)
TJ(βn)

︸ ︷︷ ︸

Gauss-Newton

+ λI
︸︷︷︸

gradient descent



∆βn = −J(x)T r(x) (D.9)

Replacing the identity matrix, I, with the diagonal of JTJ , avoids slow convergence in
the direction of small gradient. The resulting Levenberg-Marquardt algorithm consists
in iteratively solving the following linear system

(
J(βn)

TJ(βn) + λdiag(J(βn)
TJ(βn))

)
∆βn = −J(x)T r(x) (D.10)

and updating

βn+1 = βn +∆βn. (D.11)
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Acronyms

ODE Ordinary Di�erential Equation

PDE Partial Di�erential Equation

NSCLC Non-Small-Cell Lung Carcinoma

IF Immuno�uorescence

EPO Erythropoietin

rHuEPO Recombinant Human Erythropoietin

MCTS Multi-Cellular Tumor Spheroid

VEGF Vascular Endothelial Growth Factor

ECM Extra-Cellular Matrix

AIF Arterial Input Function

CA Contrast Agent

MB Microbubble

MRI Magnet Resonance Imaging

CE-MRI Constrast Enhanced-Magnetic Resonance Imaging

DCE-MRI Dynamic Constrast Enhanced-Magnetic Resonance Imaging

CT Computer Tomography

DCE-CT Dynamic Constrast Enhanced-Computer Tomography

DCE-US Dynamic Constrast Enhanced-Ultrasonography

209



APPENDIX D. CURVE FITTING

MVD Micro-vessel Density

CSSH Capillary Shear Stress Homogenization

CFL Courant-Friedrichs-Lewy
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