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Résumé 
Au cours des deux dernières décennies, les semi-conducteurs nitrures (AlN, GaN, InN) 

ont  été sujets  à des recherches très intenses en raison des nombreuses applications (diodes 

électroluminescentes (LED), transistors de puissance, composants hyperfréquences, etc, ..).  

L'effort de recherche s'est amplifié depuis  2002, quand la bande d'InN a été réévaluée à 0,65 

eV au lieu de 1,89 eV, admis auparavant pendant plus de 20 ans. Cette découverte à ouvert la 

voie aux  nitrures pour la possible fabrication des LED multicolores qui devraient couvrir les 

gammes de longueurs d’onde de l'UV lointain au proche infrarouge avec des applications très 

attendue dans l'éclairage faible consommation par exemple. De plus, le semi-conducteur InN 

présente une mobilité d'électron de plus de 4000 cm2V-1s-1 ce qui pourrait aussi constituer une 

plateforme pour le développement de composants électroniques fonctionnant jusque dans  la 

gamme terahertz. Actuellement, la qualité des couches d'InN n'est pas encore optimale et 

beaucoup d'efforts de recherche sont encore nécessaire pour améliorer et comprendre  ses 

propriétés.   

Mon travail doctoral s'inscrit dans cette dynamique et porte sur « les propriétés 

structurelles, optiques et électroniques de films d'InN et hétérostructures riches en indium ». Il 

a été effectué dans les laboratoires de CIMAP et GREYC dans le cadre du projet RAINBOW 

Initial Training Network du 7ème Programme Cadre de Developpement Européén de la 

section People". Le projet RAINBOW (2008-2012) avait comme objectif la réalisation « des 

couches d'InN  de qualité optimale et l'investigation des propriétés intrinsèques d'InN et 

d'alliages de nitrures riches en indium ». Il consiste en une étude des dispositifs en corrélation 

avec les propriétés structurales.  A cet effet, deux dispositifs ont été abordés: 1) des 

composants, mis en forme par des techniques de photolithographie, dans des couches d'InN 

fabriquées par épitaxie aux jets moléculaires assistée par plasma, 2) des puits quantiques 

InGaN/GaN qui constituent les zones actives des diodes électroluminescentes et des diodes 

lasers. Dans le premier cas, nous avons cherché à accéder à la conduction de volume d'InN car 

ses propriétés remarquables  ne sont pas encore exploitées à cause d'une accumulation 

intrinsèque de charge aux surfaces. Pour se faire, nous avons utilisé des mesures du bruit 

basse fréquence. 

Le deuxième volet de ce travail s'est inscrit dans l'analyse des mécanismes qui 

pourraient expliquer la forte efficacité d'émission bleue dans les puits quantiques  InGaN/GaN 
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malgré les fortes densités  de défauts (>108cm-2). Pour se faire, nous avons analysé la 

structure, la chimie et la morphologie des puits quantiques en fonction des conditions de 

croissance. Ces données ont été corrélées avec les propriétés optiques. 

Le manuscrit est divisé en cinq chapitres. Le premier chapitre est divisé en deux 

sections. La première section constitue une brève description des propriétés et applications 

des semi-conducteurs nitrures et leurs alliages. Leur  structure cristalline  la plus stable est la 

structure wurtzite qui n'est pas centro-symétrique. Par conséquent, les couches  ont une  

polarité de cristal N ou métal et les surfaces correspondantes présentent des propriétés très 

différentes. Les techniques principales de croissance des nitrures sont l'épitaxie aux jets 

moléculaires (MBE) et l'épitaxie en phase vapeur aux organométalliques (MOVPE). Les 

substrats communément utilisés pour dépôt des nitrures sont le saphir, le carbure de silicium 

et le silicium. Comme la structure wurtzite est polaire, il existe un moment dipolaire qui 

engendre  un champ de polarisation spontané le long des directions polaires. En plus, une 

polarisation piézoélectrique est produite par la tension aux interfaces dans toute 

l’hétéroépitaxie. Ces champs de polarisation affectent les performances des dispositifs. Ils 

peuvent être diminués par un choix judicieux de l'orientation de croissance des couches. Au 

cours de ce travail, nous avons seulement étudié des couches épitaxiées le long de la direction 

polaire [0001]. La deuxième section du 1er chapitre porte sur l'analyse des matériaux et 

dispositifs par mesures du bruit basse fréquence. Ces  mesures constituent  un outil de 

diagnostic pour explorer les propriétés mésoscopiques et/ou microscopiques des matériaux, 

car le niveau et le type de bruit est très sensible aux processus de transport. En effet, le bruit 

intrinsèque dans un système électrique résulte des fluctuations spontanées dans la conductivité 

électrique. Il est mesuré en  termes de fluctuations sur la tension à travers les terminaux de 

l'appareil ou dans le courant qui y circule. Ces fluctuations peuvent être analysées dans le 

domaine spectrale à l’aide de la densité spectrale de bruit contenant généralement trois 

contributions :  le bruit blanc, le bruit Lorentzien et le bruit en 1/f. Les mesures de bruit 

présentaient, pour nous, un intérêt considérable car I) le niveau de bruit est un indicateur 

sensible de la qualité du matériau et II) il fournit, par la comparaison avec les modèles 

théoriques, une façon de déterminer les mécanismes dominants de conduction. 

Dans le deuxième chapitre, nous avons décrit premièrement les deux techniques de 

croissance les plus utilisées pour la réalisation des couches épitaxiales des nitrures et ensuite   

les techniques expérimentales utilisées pour caractériser les hétérostructures d'InN et 

InGaN/GaN. Nous avons utilisé une série de techniques de  microscopie (AFM, SEM, TEM, 
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HRTEM et STEM) pour déterminer la rugosité de surface, la morphologie, la microstructure 

ainsi que la composition dans puits quantiques InGaN/GaN. Le principe et le mode 

d'opération de chaque technique ont été exposés ainsi que les méthodologies pour la 

préparation d'échantillons de TEM. La caractérisation de la photoluminescence a été mise en 

œuvre pour analyser les propriétés optiques des couches d'InN et des puits quantiques   

InGaN/GaN. Les propriétés électriques de transport dans les  couches d'InN ont été mesurées 

sur une gamme de température s’étendant de celle de l’azote liquide jusqu’au température 

ambiante. Les détails des dispositifs expérimentaux permettant d’effectuer les mesures 

électriques notamment l’estimation de la résistivité et la mesure de bruit basse fréquence sont 

également exposés dans ce chapitre. 

Le troisième chapitre discute les résultats des mesures de bruit de basse fréquence dans 

les couches d'InN produite par épitaxie aux jets moléculaires (EJM). En ce qui concerne la 

fabrication des structures par les techniques classiques de la microélectronique 

(photolithigraphie, dépôt, gravure, etc.), nous avons d'abord montré que le recuit thermique 

devait intervenir après les étapes de  la gravure et de dépôt des métaux utilisés pour assurer les 

contacts électriques.   

Le niveau de bruit basse fréquence dans les couches est comparable à ceux publiés pour 

les semiconducteurs III/V tels que GaAs ou InAs pour lesquels des filières technologiques 

commerciales existent. Ce résultat montre que la qualité de nos couches en volume est 

suffisamment bonne  pour la fabrication de dispositifs. Par les mesures électriques en 

température, nous avons également confirmé l'existence d'une conduction de surface qui 

prédomine à haute température. Aux températures T inférieures à 100K, l’existence d’une 

conduction électrique volumique a été mise en évidence. Une étude spectroscopique en bruit a 

revélé l’existence d’un état discret dans la bande interdite situé à 53 meV du minimum de la 

bande de conduction. 

Dans le quatrième chapitre, nous avons mené une analyse détaillée de la microstructure 

des puits quantiques  d'InGaN/GaN. Dans la littérature, il y a eu un nombre d'explications 

pour l'efficacité d'émission dans le bleu pour ces composants. Il s'agit d'une part des clusters 

riches en indium qui pourraient aider à localiser les excitons, ou alors des dislocations 

traversantes  qui conduiraient à la formation des défauts en V bordés de puits quantiques 

inclinés de faible épaisseur. Ces puits constitueraient des barrières de potentiels efficaces 

empêchant les excitons d'atteindre les cœurs des dislocations. Au cours de cette étude, nous  

avons analysé la microstructure des puits quantiques avec  variation des différents paramètres 
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tels que le nombre de puits quantiques,  leurs épaisseurs, la composition nominale d'indium 

dans les puits.  Nous avons observé la formation systématique des défauts en V dans les 

hétérostructures fabriquées par épitaxie en phase vapeur aux organométalliques (EPVOM). 

Cependant, dans tous les échantillons analysés, il n'y a aucune influence de ces défauts sur la 

largeur des puits. Il est donc clair que l'émission dans nos dispositifs ne peut pas profiter 

d'effet bénéfique de barrières autour des dislocations.  Par ailleurs, nos puits de fabrication par 

EPVOM présentent une meilleure morphologies que ceux obtenus par EJM (uniformité en 

épaisseur), ce qui est corrélé avec la plus forte émission (intensité et largeur à mi-hauteur des 

pic d photoluminescence). D'après les mesures de la contrainte dans les images HRTEM, nous 

obtenons des fluctuation locales de la composition en indium, par contre, les compositions 

moyennes sont accord avec les longueur d'onde de luminescence.  

Le cinquième chapitre donne les conclusions de ce travail et indique quelques pistes de   

perspectives.  

En ce qui concerne l'analyse des propriétés des couches d'InN, nous avons obtenu les 

résultats suivants : 

 Le niveau de bruit à basse fréquence utilisé comme figure de mérite  indique  que nos 

couches d'InN pourraient donner des dispositifs aussi performants que ceux basés sur 

d’autres semi-conducteurs III/V tels que GaAs, ou InAs.  

 Dans notre étude du bruit en fonction de la température, les couches de InN présentent 

une transition du comportement semi-conducteur/ métal autour  de 130 K.  

 L’analyse du  bruit de 1/f en fonction de la température indique que la conduction de 

surface est prédominante au-dessus de 100 K.  

 Aux températures inférieures à 100 K, un bruit lorentzien apparaît en plus des bruits 

1/f et blanc. Ce nouveau type de bruit a été attribué à un processus de génération et 

recombinaison des porteurs par un niveau piège dont nous déterminé l'énergie 

d'activation à 50 meV au dessous de la bande de conduction. Ces résultats montrent 

donc, qu'en dessous de 100 K, il y a une contribution supplémentaire à la conduction 

électrique en plus de la conduction de surface. En  d'autres termes, nous avons pu 

accéder à la conductivité de volume dans nos échantillons grâce aux analyses du bruit. 

Pour l'émission dans les hétérostructures d'InGaN/GaN, les puits quantiques avaient une 

épaisseur de 1 nm à 3 nm, avec les compositions d'indium nominales de 20 à 25%, les 

longueurs d'ondes d'émission allaient du violet au  vert. 
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 Nous avons mis en évidence que des  barrières de GaN dopés Silicium, avaient  des 

interfaces abruptes dans une  monocouche atomique. 

 Les défauts en V se sont formés dans la croissance des puits par  EPVOM mais 

l'épaisseur des puits n'a pas été modifiée au voisinage de la dislocation. 

 La plus forte intensité mesurée dans les échantillons de EPVOM par rapport à ceux de 

EJM a été corrélée avec la morphologie des puits.  

 

Questions ouvertes et suggestions de poursuite au niveau des couches d'InN 

 Même si nous avons pu avoir accès à la conduction des charges aussi bien surface 

qu'en en volume, il reste encore faire cette séparation de  façon quantitative.  

 

 En utilisant des modèles simples, nous avons pu montrer que les fluctuation de 

mobilité provenaient du volume des couches d'InN, il faudra rapidement vérifier ce 

fait par des mesures de mobilité par effet Hall.   

 

 Bien sûr, notre démarche sera confortée lorsqu'on aura utilisé les mesures de bruit 

basse fréquence pour avoir accès à la conductivité électrique dans des couches d'InN 

dopées p.  

Comment compléter ce travail pour les puits quantiques InGaN/GaN 

 Pour confirmer le rôle des défauts en forme de V, il faudrait déterminer l'efficacité 

quantique des puits que nous avons étudiés. 

 

 Lorsque nous avons fait des essais en microscopie en balayage et transmission très 

haute résolution, les compositions en indium que nous avons obtenu se sont avérées 

toujours inférieures aux nominales. Cette sous-estimation systématique demande un 

travail minutieux additionnel pour en comprendre les raisons. En effet, cette technique 

devrait être la plus précise actuellement disponible pour ce type d'analyse locale.  
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Introduction  
 

For the last two decades, the nitride semiconductors (AlN, GaN, InN) have been under 

extensive investigations due to the numerous applications, which span from Light Emitting 

Diodes LEDs (for solid state lighting), high power and high frequency components. The research 

effort has even more increased by 2002, when the band gap of InN has been re-evaluated as 0.65 

eV instead of the earlier 1.89 eV. With the new band gap, the applications of the nitride 

semiconductors family should include multicolour LEDs through the whole visible range (true 

colour), as well as the highest efficiency heterojunction solar cells. Additionally, with an electron 

mobility of over 4000 cm2V-1s-1 and very high saturation velocities, InN provides an ideal 

material platform for the development of electronic transport devices operating up to the 

terahertz range. To ensure the reliability of commercial devices, a large fundamental research 

effort is required to establish the optimal growth mechanisms and maximise the electronic and 

optical performance of this exciting material. As of today, group III-nitrides have gained a 

significant position in the science and technology of compound semiconductors, as well as in 

modern electronic and optical devices. Though InN is novel, still many of its properties are 

poorly known, and much research work is still needed to bring about this knowledge.  

In this scope, the contribution of my PhD research is on the “structural, optical and 

electronic properties of InN films and In heterostructures”. This work was carried out in CIMAP 

and GREYC laboratories in Caen within the framework of ‘RAINBOW ITN’ European project 

entitled as “High quality material and intrinsic properties of InN and indium rich nitride alloys”. 

This manuscript relates a detailed study on transport properties of Plasma Assisted Molecular 

Beam Epitaxial InN layers, as well as Transmission Electron Microscopy (TEM) and 

photoluminescence studies of InGaN/GaN Quantum Wells (QWs). 

Despite the novel properties of InN, there is still a hindrance for device applications 

because of an intrinsic charge accumulation at the surfaces. The first target to deal was the issue 

of bulk electrical conduction in InN thin films. Low frequency noise (LFN) measurements were 

used as a tool to access the bulk conductivity in InN layers which is crucial to achieve for device 

applications.  

In spite of having huge defect densities ≥ 108 cm-2 in the thin films, InGaN/GaN QWs 

exhibit a higher efficiency in comparison with GaAs based devices. In this scope, the target of 

this work was to address the issue of the origin of high emission efficiency for solid state lighting 

applications. So in this context, efforts were dedicated to characterize the structure and 
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morphology of the QWs, to determine how they are affected by the growth conditions and to 

relate this with the optical properties.  

The manuscript starts with a brief overview of growth, properties and applications of  

group III nitride semiconductors, along with an introduction to the concept of low frequency 

noise.  

The second chapter gives a description of the growth and the experimantal techniques 

used for characterizing the samples.  

The third chapter describes a brief review of related work done in InN transport 

properties and emphasizes on electrical conduction in InN layers with LFN technique. Indeed, 

we have been the first to use the LFN technique to probe bulk conduction in InN layers. 

The fourth chapter has been focused on investigating the possible origin of “High optical 

efficiency on InGaN/GaN QWs”. It gives an overview of the existing explanations about the 

origin of high optical efficiency in these QWs. Following the literature, we have systematically 

studied TEM and optical properties with a variation of parameters such as number of QWs, 

thickness of QWs, nominal In composition and PL peak emissions. Finally, the TEM 

observations and its correlation with optical properties give light on the origin of high optical 

emission in these QWs. 

The last Chapter summarizes the results and presents some future challenges in relation to 

this work. 
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Chapter 1 
Introduction to III-nitride semiconductors 

and low frequency noise 
 

The two aims of this dissertation were to improve the quality of materials and to expand 

the arena of nitride based devices. A fundamental requisite of a material for device applications 

is to have a complete knowledge about its intrinsic properties. So the first section of this chapter 

briefly describes the main properties of group III nitride semiconductors. The second part 

introduces the basic concepts of low frequency noise (LFN) to understand the upcoming chapters 

on LFN. 

 

1.1 Brief History of Nitrides  

Group III nitrides are one of the most adequate semiconductor families for the 

optoelectronic, high temperature and high power electronic devices. The fundamental bandgap 

range of III-nitride alloy system is the widest of all known compound semiconductors, extending 

from InN (0.7 ± 0.05 eV1, near IR), to GaN (3.4 eV, mid UV) and finally to AlN (6.2 eV, deep-

UV)2. Thus group III nitrides can be used for optoelectronic applications ranging from the near 

infrared to the deep ultraviolet spectral region 3 .Group III nitrides can operate at high 

temperatures and hostile environments which allow them to be used in space and nuclear 

reactors where Si and GaAs technologies fail to compete3.   

The history of research in group III nitrides dates effectively from about 100 years. The 

first synthesis of AlN, GaN and InN were reported in 19074, 19105 and 19326 respectively. 

However it took decades to receive significant research attention. In 1970’s a significant advance 

took place in GaN research by the growth of GaN epitaxial layers on sapphire substrates using 

Hydride Vapor Phase Epitaxy (HVPE)7, Molecular Organic Vapor Phase Epitaxy (MOVPE)8 

and Molecular beam epitaxy9. The interest in these materials was outburst with the achievement 

of p-type doping10,11 which initiated the advent of violet to yellow LEDs12,13,14, laser diodes13, 

UV LEDs14,15. The development of InGaN based solar cells is also one of the emerging field of 

research in III-nitrides16. An additional effort has been made towards High Electron Mobility 
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Transistors (HEMTs) based on nitride heterojunctions17; and intense research activity has been 

dedicated towards the application of III-V nitride materials in high power, microwave-frequency 

electronic devices18 , 19 . The large breakdown fields and high saturation velocities make the 

nitrides ideal for producing high power HFETs and a full range of unipolar and bipolar 

devices20,21.The transport properties of InN are better than those of GaN, which tops InN as the 

material most adequate for device applications in the ultra-high speed area22.  

1.2 Properties of III nitride semiconductors 

1.2.1 Crystalline structure  

The three (Al, Ga, In) nitride compounds and their alloys may occur in three configurations 

namely: Wurtzite (hexagonal), Zinc blende (cubic) and rock salt. The Wutrzite structure (shown 

in Figure 1.1) is the most stable one23,24. It consists of two hexagonal close packed sublattices of 

group III metal and nitrogen atoms respectively. Crystals with wurtzite structure belong to the 

space group of P63mc. The two sublattices are constituted by one atomic species, resulting in 

four atoms per unit cell and are shifted along [0001]  ܿ	ሬሬ⃗  - axis by u=3c/8. Each atom of one kind 

is surrounded by four atoms of the other kind which are arranged at the edges of a tetrahedron. 

The hexagonal unit cell as shown in Figure 1.1b, is defined by the axis a of the basal hexagon 

along [112ത0] axis, height c of the hexagonal prism along the [0001] axis, and the anion-cation 

bond length u along the [0001] axis. 

 

Figure 1.1. (a) Illustration of atomic distribution in wurtzite structure25. (b) Hexagonal unit cell. Where a1, 
a2 and a3 are base vectors. 

The anion-cation bond length is significant in consideration as it changes with different cations 

and ionic radii26. In a hexagonal system, the notations for the four indices (h k i l) is assigned to 
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the three base vectors ܽଵሬሬሬሬ⃗ , 	ܽଶሬሬሬሬሬ⃗ , 	ܽଷሬሬሬሬሬ⃗ 		and		c		ሬሬሬ⃗  respectively. The third index i is defined as, i = - (h+k) 

and these base vectors are separated by 120°. 

The lattice parameters of group III nitride binary systems are given in Table 1.1. In case of 

ternary compounds (e.g. AxB1-xN), the lattice parameters can be deduced by using Vegard’s law: 

	ܽ஺஻ = ஺ܽݔ + 	(1 −  ஻         (1.1)ܽ(ݔ

The lattice mismatch in a heterostructure is measured by a misfit parameter (fm) defined as,  

௠݂ = ௙భି௙మ
௙భ

    (1.2) 

where f1 and f2 are the lattice parameters of the two material systems. In case of ternary system, 

for example InxGa1-xN grown on GaN, its lattice constants depend on the composition x. 

Assuming that Vegard’s law is valid, the lattice constant al(x) of the alloy epilayer is given by  

                                ܽ௟(ݔ) = ܽீ௔ே + (ܽூ௡ே − ܽீ௔ே)(1.3)                          ݔ    

Now the misfit parameter is also a function of the alloy composition x, i.e., f m = f m(x)2. 

Table 1.1. Lattice parameters and lattice mismatch of bulk InN, GaN and AlN at room temperature24. 

Parameters (Å) InN GaN AlN Heterostructure Lattice mismatch 
along a parameter 

a 3.54 3.189 3.112 InN/GaN 11 % 
c 5.705 5.185 4.982 GaN/AlN 2.3 % 
u 0.377 0.376 0.380 InN/AlN 13.7% 

1.2.2 Crystal polarity 

The group III nitrides are not centrosymmetric crystal structures, as a result, the two 

crystallographic directions [0001] and [0001ത ] are not equivalent. Conventionally, the [0001] 

polarity is defined by the direction of the vector associated to the metal (Al/Ga/In)- nitrogen(N) 

bond as shown in Figure 1. 2. The epitaxial layer grown along this direction is called metal polar 

and the material grown in the opposite direction is called nitrogen polar. Hence the metal polar 

and nitrogen polar structures are the mirror images to each other. The two different polar 

materials possess distinct properties in terms of surface morphology, chemical reactivity, thermal 

stability and even the growth conditions. For instance, metal-polarity surfaces are more 

chemically stable than nitrogen polarity surfaces27,28.  
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Figure 1. 2. Polarity in Group III nitride: Metal polar along [0001] and Nitrogen polar along [0001ത]29. 

The realization of the two polarities of this Group III nitride system i.e. metal polar or     

N-polar, is especially sensitive to the chosen substrate material and the applied growth technique 

as well30. The polarity of the films can be probed by various techniques like wet chemical 

etching, electron microscopic techniques such as Convergent Beam Electron Diffraction (CBED) 

patterns, Co-Axial Impact Collision Ion Scattering Spectroscopy (CAICISS) and recently 

hydrogen irradiation has been proposed to effectively determine the polarity27. 

1.2.3 Dislocations  

Dislocations are linear defects which arise from the imperfections in the crystalline 

structure. A material system is often prone to have dislocations irrespective of homo or hetero 

epitaxy. These dislocations are generated to relax the stress which arises during the growth and 

to decrease the global energy of the material system. These dislocations can strongly affect the 

device performance31,32. The origin of dislocations is the difference of lattice parameters and 

thermal expansion coefficients of the substrate and the epilayer. The dislocations are 

characterized by their Burgers vector ( ሬܾ⃗ ) and dislocation line (ݑሬ⃗ ).  

In group III nitride epitaxy, the most common dislocations are Threading Dislocations 

(TDs)33,34 generated at the interface of the substrate and propagating up to the surface of the 

layer. A dislocation can either be perfect or partial. A dislocation is said to be perfect, when its 

Burgers vector corresponds to an entire translation of the lattice; it is partial when the Burgers 

vector is a fraction of a translation of the lattice. In nitride layers grown along c, the main defects 

are TDs (shown in table 1.2), which forms as edge, screw or mixed type and are distinguished by 

the angle made between the burgers vector and the dislocation line.  
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(1)  For a pure edge type dislocation, the dislocation line is perpendicular to Burgers vector 

( ሬܾ⃗ ). A schematic diagram of atomic planes can be used to illustrate lattice defects such as 

dislocations. The "extra half-plane" concept of an edge type dislocation is shown in Figure 1.3.  

(2)  For a screw type dislocation, the dislocation line is parallel to Burgers vector as shown 

in Figure 1.3.  

(3)  For a mixed type dislocation, there does not exist a particular well defined angular 

relationship between the dislocation line and the Burgers vector. 

 

       Figure 1.3.  A schematic diagram showing, edge and screw dislocation35. 

Table 1.2. Perfect and partial dislocations in group III nitride layers, with lines along [0001] direction32, 33. 

Burger vector (࢈ሬሬ⃗ ) Type of dislocation Character 

1/3<112ത0> Edge  type (a) Perfect 

<0001> Screw type (c) Perfect 

1/3<112ത3> Mixed type (a+c) Perfect 

1/3<11ത00>  Shockley partial 

1/6<202ത3>  Frank-Shockley partial 

1/2<0001>  Frank partial 

1.2.4 Spontaneous and piezoelectric polarization 

As the wurtzite structure is polar, there exists a non zero dipole moment, which gives rise 

to spontaneous polarization ( ௦ܲ௣ሬሬሬሬሬ⃗ ) along the polar directions. Piezoelectric polarization is 

generated by stress from a lattice mismatch or changes in the anion-cation bond length, which 
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changes the whole lattice structure as shown in Figure 1.4. The total polarization field inside the 

wurtzite crystal is the sum of spontaneous polarization and piezoelectric polarization. 

 

Figure 1.4.(a) Spontaneous and (b) piezoelectric polarization along [0001] direction in wurtzite 
structure36. 

The values of spontaneous polarization37,38 is presented in the table 1.3 for the three binary 

compounds. 

Table 1.3. Spontaneous polarization for group III nitrides37,38. 

Material Polarization C/m2 InN GaN AlN 
Psp -0.042 -0.034 -0.090 

The magnitudes of the polarization components have different values for various material 

combinations in heterostructures. For example, in InGaN/GaN system, the lattice mismatch 

increases steeply with the indium content, so that the resulting piezoelectric polarization 

dominates rapidly over the spontaneous polarization, whereas in AlGaN/GaN the lattice 

mismatch is smaller and spontaneous polarization is always dominant or at most comparable to 

piezoelectric polarization. These polarizations are known to affect considerably the operation of 

various III-nitride optoelectronic and electronic devices. However, the effects due to polarization 

can either be eliminated or reduced by appropriately choosing growth orientations such as non 

polar or semipolar directions. 
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Quantum Wells (QWs) 

 A QW is a thin layer which can confine carriers into two dimensions. This is obtained in 

semiconductors, by fabricating a heterostructure in which a material with a specific band gap is 

sandwiched between layers of material with a wider band gap. If this thickness of the QW is of 

the order of Bohr radius (3.4 nm), the energy levels inside will be quantized and their distance 

increased further as the well width decreases, which is known as quantum confinement energy. 

This quantum confinement leads to overlap of electron and hole wave functions, which in turn 

enhances the recombination and transition rate of these carriers. With increasing well width, the 

transition energy of a QW is expected to converge towards the bandgap of bulk material39. For 

instance in InGaN/GaN QWs, the emission energy is a function of well thickness and indium 

concentration. When QW structures are grown along the [0001]-direction, as the nitrides are 

piezoelectric material, a large strain-induced piezoelectric field is expected to be present. This 

internal electric field which alters the band structure of these heterostructures (shown in Figure 

1.5) is called the Quantum Confined Stark Effect (QCSE).  

 
 

Figure 1.5. Electronic band structure of quantum well under applied bias showing QCSE, resulting in 
effective bandgap narrowing and spatial separation of electron and hole wave functions40. 

The primary effect of QCSE is the shift of energy levels to lower levels: the first electron 

level in the conduction band and the first hole level in the valence band get closer in energy. This 

results in a red shift of the emission41  in addition to reduction of oscillator strength42, 43. There is 

an adverse affect on emission efficiency due to the reduction of oscillator strength whereas this 
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strong in built internal field is advantageous in GaN/AlGaN system to fabricate high electron 

mobility transistors.  

The other structural, electronic, thermal and optical properties of wurtzite AlN, GaN and 

InN are listed in Table 1. 4. 

Table 1. 4. Physical properties of III nitride materials2, 3, 44, 45. 

Parameter AlN GaN InN 

Mass density (gcm-3) 3.23 6.15 6.81 
Thermal conductivity 

(W/cm K) 
2.85 2.06-2.1 0.8 

Thermal expansion 
(X 10-6 K-1) 

∆a/a =4.2 
∆c/c =5.3 

∆a/a =5.59 
∆c/c =3.17 

∆a/a =3 
∆c/c =4 

Refractive index 2.15 ± 0.05 2.33 2.8-3.05 

Dielectric constant 
€0 = 8.5 ± 0.2 

€∞ = 4.68 - 4.84 
€0 = 9.5 

€∞ = 5.35 
€0 = 15.3 
€∞ = 8.4 

Electron effective mass 
(me) 

0.48 0.2 0.06 

Electron concentration 
(cm-3) < 1016 ~ 1017 1016- 1020 

Electron mobility 
(cm2V-1S-1) 

300(Theoretical) 
426(Experimental) 

1000(Theoretical) 
900(Experimental) 

4400(Theoretical) 
3980(Experimental) 

Peak drift velocity 
(X 107 cms-1) 1.7 2.9 4.2 

1.3 Group III nitrides epitaxy 

The common growth techniques for III nitrides are Molecular beam epitaxy (MBE), Metal 

organic Vapor Phase epitaxy (MOVPE), Hydride Vapor Phase epitaxy (HVPE), Sputtering and 

Pulsed Laser Deposition (PLD). Among them MOVPE and MBE are the most used for device 

processing and we have employed these techniques to grow the samples which are investigated 

in this work.  

The quality of epitaxial layers depends upon the growth technique, the epitaxial growth 

mode (homoepitaxial or heteroepitaxial), the substrate used and the processing conditions. The 

choice of growth technique depends on the desired structure and needs, for example, in case of 

industrial production, MBE had less success for nitrides than MOVPE. For group III nitrides 

growth, although bulk GaN and AlN are available, the small size and high cost prevent their 
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wide usage. Therefore, due to the current lack of affordable bulk nitride substrates, group III 

nitrides are grown by heteroepitaxy. However, a number of research groups and industries are 

currently pioneered in the growth of bulk nitride substrates2. Lattice and thermal mismatch 

between epitaxial layers and substrates have long been the major challenge in obtaining high 

quality devices in the III-Nitride material system. The properties of the most commonly used 

substrates for group III nitrides are listed in Table 1.5, which indicates a large lattice and thermal 

mismatch between the III–nitrides and the substrates. Because of this mismatch the growth of 

good quality epilayers is challenging. 

1.3.1 Substrates and buffer layers for group III nitrides  

       For epitaxial growth, one of the major issues is to select the suitable substrate. 

Generally, close matched substrates are used to reduce the film stress and dislocations in 

epitaxial films. There are many factors which contribute to select the substrates for group III 

nitride epitaxy, and no single material possesses all of the desired qualities. The foremost 

important factors are the lattice parameters and the thermal expansion coefficients of the 

substrate closely match with the epitaxial film. Furthermore, the substrates must be chemically 

and mechanically stable at high temperatures. A substrate should be easily available in large 

wafer size at relatively low cost in order to make production-scale devices. A high thermal 

conducting substrate increases device lifetime and allows devices to operate at higher power 

densities. For optoelectronic purposes, the substrate should have a wide band gap and a high 

refractive index, so that the photons generated in the active layers of the film are not absorbed by 

the substrate. A number of substrates have been used for Group III nitrides epitaxy and a 

complete review was reported by Liu et al44. 

Table 1.5. Properties of substrates for III-Nitride growth44,45,46. 

Substrate 

 

Crystal 
symmetry 

 

Lattice constant 
Å 

Lattice  mismatch, ∆a/a 
(%) 

Thermal expansion 
coefficient 
(10-6K-1) 

A c GaN InN ∆a/a ∆c/c 

α-Al2O3 Hexagonal 4.765 12.982 ~16 ~30 5.0 9.03 
SiC Hexagonal 3.0806 15.1173 ~3.5 ~14.8 4.3 4.7 
Si Cubic a= b= c=5.431 ~21 ~8   3.59 
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1.3.1.1 Sapphire substrate 

Sapphire is the most extensively used substrate for growth of the III–nitrides despite of its 

large structural and thermal mismatch with GaN and InN (shown in Table 1.5). This is supported 

by the fact that the layers grown on sapphire have, in many cases, better quality and sapphire is 

easily available up to inches in diameter at relatively low cost. Sapphire substrates are 

transparent and stable at high temperatures. In general, the quality of the films grown directly 

(i.e., without the buffer layer) on any plane of sapphire is poor. Obtaining a good quality nitride 

epilayers necessitates the nitridation of sapphire substrates and an insertion of a low temperature 

intermediate buffer layer. Furthermore, the optical transparency of sapphire is beneficial in back-

illuminated detectors and LEDs for lack of absorption. The main drawback of sapphire as a 

substrate, is the low thermal conductivity, which causes heat management as an important 

concern for high current density devices36.  

1.3.1.2 Silicon carbide (SiC) substrate 

Extensive work has been done on the growth of III– nitrides on SiC substrates47, 48. SiC has 

several advantages over sapphire for InN and GaN epitaxy, which includes a smaller lattice 

mismatch and higher thermal conductivity. Additionally, SiC has good electrical conductivity 

which eases to make electrical contacts to the backside of the substrates and thereby simplifies 

the device structure compared to sapphire substrates. Large good quality SiC substrates are 

commercially available. Low temperature GaN or AlN buffer layers are also deposited on the 

SiC substrates before growing the nitrides. The stress developed in the films grown on SiC is 

smaller than that grown on sapphire, because of less lattice mismatch. SiC is also a polar 

material which facilitates the growth of single polar nitrides.  

1.3.1.3 Silicon (Si) substrate 

Generally, nitride-based devices are grown on sapphire, silicon carbide substrates. 

However, a considerable work has been done on the growth of group III nitrides on Si substrate. 

The major attractive points of Si as a substrate includes high quality, low cost, availability of 

large size, good electrical and thermal conductivity. In addition, Si substrate can accomplish the 

integration of III nitride devices with other Si based electronics. Although the crystal quality of 

GaN grown on Si is still poorer than that on sapphire and SiC, research on this is in great 

progress. A low temperature buffer layer of AlN is usually grown on Si before the growth of the 

main epilayer to avoid the formation of SixNy. The growth of a polar epilayer on nonpolar 
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substrate is more complicated due to the formation of additional defects, such as inversion 

domains.  

1.4 Applications of group III nitrides 

The properties of group III nitride binary compounds and alloys make them exclusive for 

applications in the fields of electronics and optoelectronics. The quest for these applications has 

led to extensive research work on these materials from the last two decades. The re-                        

evaluation of InN bandgap has even more broadened the spectrum of these applications. 

1.4.1 Optical applications 

  The Solid State Lighting (SSL) technology has the potential to cut the world lighting 

energy usage by 20% and could contribute significantly to climate change solutions49. So the 

research aims at bringing LEDs solid-state lighting as the next generation of light sources for 

general illumination, from homes to commercial applications. In this field, research on group III 

nitride semiconductors is realizing breakthroughs in efficiency and performance in terms of 

successful launching of nitride LEDs and Laser diodes. 

LED applications 

  Of group III (Al, Ga, In) N system, InN plays a major role in empowering the fabrication 

of high efficient light emitting diodes by widening the spectral region with the tuning of indium 

composition as shown in Figure 1.6. In other words the group III nitrides spans from near infra- 

 
Figure 1.6. (a) Bandgap of all group III nitrides as a function of molar fraction. The solid and dashed lines 
are bowing curves with best-fit bowing parameters16. 
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red to deep ultraviolet region. The research on nitride based LEDs was kindled by the advent of 

blue/green LED based on InGaN heterostructure grown on sapphire substrate50. Thereafter the 

research in this system was endured by red LED with indium rich InGaN heterostructures and 

white LEDs which have been developed by coating blue GaN LED with phosphors51.  

Laser applications 

The fabrication of high quality LEDs paves the way for the realization of lasers which can 

operate at light wavelengths from ultraviolet (UV) to green. The blue ray disc technology has 

replaced the traditional DVDs as the blue laser diodes can allow five times higher storage 

capacity. A major breakthrough in research has been accomplished by the infrared lasing in high 

quality single crystalline InN nanobelts52. The possibility of making ternary and quaternary 

nitride systems fosters the semiconductor lasers emitting from deep UV to infrared region. 

Emitters and detectors 

The wide band gap AlN and GaN binaries posses the potential for fabrication of UV 

emitters and detectors. UV emitters can be used in various applications such as material 

identification, forensic location, disinfection and in material processing. These  III-nitride based 

UV detectors finds outmost usage in UV sensing applications such as automobile engine 

combustion sensing, high temperature flame sensing, environmental monitoring, solar blind 

detectors, missile plume detection for military use etc. The other most significant application of 

III nitride semiconductors is in the fabrication of quantum infrared detectors. Photoconductors 

are the most common type of quantum infrared detectors which can be realized by nitride 

semiconductors. The narrow band gap of InN and its alloying with GaN makes it perfect for 

photovoltaic applications. The InGaN ternary system can be tuned to absorb the entire visible 

range of solar radiation and this could result in high efficiency solar cells.  

1.4.2 Electronic applications 

The unique properties of InN such as small effective mass, high electron mobilities, and 

high peak electron velocities make InN promising for electronic devices. InN is of great interest 

for realization of high speed, high performance, and high frequency devices due to its inherent 

unique properties. InAlN can be a good candidate for high power, high temperature microwave 
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applications because of its higher breakdown voltages. InN is also ideal for terahertz 

applications. 

1.5 Low frequency noise 

The study of fluctuations in physical quantities can yield an insight into the physical 

phenomena, associated with fluctuations. The spontaneous fluctuations of physical quantities in 

the domain of electron devices are termed as noise and both terms; fluctuations and noise, are 

used interchangeably. For the outmost usage of the physical and chemical properties of a 

material, it is essential to predict the limitations of the device performances. To this end, 

electrical noise claims to be an accurate indicator of the quality of the materials and devices 

since it arises from various relaxation processes of the charge carriers, defects, or group of 

defects53. Noise measurement is a diagnostic tool to explore the microscopic and/or mesoscopic 

properties of materials under study, as noise is sensitive to transport processes; and also noise 

limits the smallest signal level that can be measured.   

In this work, the noise measurements were of considerable interest because of primarily 

two reasons. Firstly, the noise as a sensitive indicator of material quality, and therefore can be 

used as a feedback to growers. Secondly, it provides, by comparison with theoretical models, a 

way to determine the dominant conduction mechanisms. 

1.5.1 Noise definition 

 In the broadest sense, noise is any unwanted signal that comes along with the desired 

signal. The sources of noise can be classified into mainly two categories. The first is extrinsic 

noise sources which comes from interactions between the investigated system or device and the 
external environment which may result from electrostatic or electromagnetic coupling between 

the circuit and the A.C power lines or fluorescent lights, cross talk between adjacent circuits, 

humming from D.C. power suppliers or microphonics caused by mechanical vibration of 

components. Most of these disturbances can often be eliminated or minimized by adequate 

shielding, filtering or the layout of circuit components53. The intrinsic noise is the spontaneous 

fluctuations which result from the physics of devices and the materials that make up the 

electrical system. This noise is measured in terms of random fluctuations either in the voltage 

across the terminals of the device or current flowing through the device and is relative to static 
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values. The noise is randomly distributed in value and sign fluctuations are small compared to 

static values. From signal point of view, it can be represented as a function, b(t) which is 

expressed in volt for voltage fluctuations and in ampere for current fluctuations. One typical 

view of a noise signal is shown in Figure 1.7. 

The mathematical properties of this function are the following: considering at an instant t=t0, it 

can be written as 

തതതതതതห௧ୀ௧బ(ݐ)ܾ                                     = 	 		lim
்→ஶ

ଵ
் ∫ ݐ݀(ݐ)ܾ = 0௧ା௧బ

௧బ
                               (1.4) 

and the mean square,          ܾ(ݐ)ଶതതതതതതതห
௧ୀ௧బ

= 	 		lim
ܶ→∞

1
ܶ∫ 0ݐ+ݐݐ2݀(ݐ)ܾ

0ݐ
                                      (1.5) 

is constant at instant t0,  and is constant for any t0 and depends on the physical mechanisms at the 

origin of the fluctuations, the bias level and the frequency range of measurements.  

 

Figure 1.7. A typical view of noise signal in time domain 

1.5.2 Noise spectral density 

The analysis of noise is more precise in the frequency domain. In the Fourier space, one 

can define the noise spectral density as  

                                    ܵ஻(݂) = 	 ଶ
்೚್ೞ

 ଶ                                     (1.6)|[(ݐ)ܾ]	ܶܨ|

where ܵ஻(݂)  is expressed in V2/Hz for voltage fluctuations and in A2/Hz for current 

fluctuations.	 ௢ܶ௕௦ is the duration of observation of the noise and FT is the Fourier Transform. 
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Note that,  ௢ܶ௕௦  should be sufficiently long, such that the mathematical statistical properties 

expressed before are approximately verified.        

  The different contributions can clearly be distinguished when one measures the noise 

spectral density versus frequency, which is diagrammatically represented in Figure 1. 8 in a    

log-log scale, where different shapes appear: 1. The white noise, where the noise spectral density 

is independent of the frequency; 2. Lorentzian noise which consists first in a plateau and then a 

decrease after a characteristic frequency fL. Several lorentzian shapes may be observed in one 

noise spectrum. 3. 1/f noise with a decrease of the noise spectral density that follows a 1/f γ law. 

Experimental values of γ between 0.8 and 1.3 have been reported. In our case, γ value was close 

to 1, so it will not appear in the following. 

 
Figure 1. 8. A diagram of the noise spectral density in log-log scale. 

 Considering the voltage fluctuations, the noise spectral density is expressed as the sum of the 

three noises, as follows: 

                                          ܵ௩ = ܣ		 + 	஻
௙
	+ 	∑ ௔೔

ଵା		൤ ೑೑೔
൨
మ

ேಽ
௜ୀଵ 																			                    (1.7)                                   

Where A represents the white noise level, 	஻
௙
		is the 1/f noise and the parameter ܤ	represents the 

voltage noise spectral density level at 1 Hz. The third term of the equation contributes a sum of 

Lorentzian components, with ai as the plateau value and  fi  as the characteristic frequencies. 
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1.5.3 White noise sources 

There are two distinct types of white noise: thermal noise, shot noise. 

Thermal noise: It is often termed as Johnson noise or white noise and is caused by the random 

motion of charge carriers in thermal equilibrium. In every conductor, above the absolute zero 

temperature, charge carriers are in random motion and this vibration is dependent on 

temperature.Since the motion is random, at any given time there might be a surge of charge on 

one side or the other leading to a voltage across the material. For a semiconductor of electrical 

resistance R at a temperature T, the spectral voltage noise density (Sv) is given as in equation 1.8, 

which shows that Sv is independent of frequency as can be seen in Figure 1. 8. 

                                                                 ܵ௩ = 4݇஻TR                                                              (1.8) 

 
Figure 1.9. Noise representation for a physical resistor53. 

 

Figure 1.9 represents the thermal noise model by replacing the noisy resistor with the 

combination of a noise-free resistor in series with a voltage-noise generator.  

Shot noise: It arises from discrete carrier motion in devices. The shot noise results from the 

random emission of charged particles which are discrete and independent. Shot noise can be 

noticed in Schottky-barriers and in PN-junctions where the current results from the random 

motion of charged particles. The shot noise spectral density is given by,   

                                                     	(ܵூ)௦ =  (1.9)                                                              ܫݍ2

where I is DC bias in amperes and q is elementary charge= 1.6 X 10-19 C. 
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Figure 1.10. Shot noise in a diode: Noise equivalent model. 

1.5.4  Lorentzian noise sources 

Many kind of mechanisms exists that creates lorentzian shape in the noise spectral density. 

First order low pass filtering of the white noise sources, popcorn or random telegraph noise for 

instance. In this work, we have focused on generation recombination (GR) processes of free 

charge carriers in a semiconductor. Such processes are related to impurities that create a trap 

level state at energy ET in the bandgap characterized by a time constant τ. In the noise spectral 

density the charge carriers generation recombination at such trap level create a lorentzian shape 

where the characteristic frequency of the lorentzian is   ଵ		
ଶπτ

.  

 Using result from SRM model54, a relationship exists between τ and ET according to the 

following equation,  

                ݈݊(߬.ܶଶ) = 		ா೎		ష				ா೅
௞ಳ்

				+ 					 ݈݊ ቎ ௛య

ସ			௞ಳమ	ఙ೙		ට଺గయ	௠೐	∗
భ
మ				௠೓	∗

య
మ						

቏            (1.10) 

Where h: Planck’s constant, ݉௘
∗ : effective electron mass, ݉௛

∗ : effective hole mass, ݇஻  is 

Boltman constant and ߪ௡  is capture cross section of electrons respectively. By plotting 

ln(߬. ܶଶ)	versus  ଵ
௞ಳ்

   , one can obtain an Arrhenius diagram. If experimental data are well 

aligned, from the slope of the linear fit, the energy trap level ET can be extracted. 

1.5.5  1/f noise sources 

Whenever a constant voltage is applied to a resistor, a fluctuating component of the current 

is observed in addition to the thermal noise. Hence it is measured as excess random fluctuations 
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in the voltage when a current flows through the given resistor. The magnitude of these voltage 

fluctuations is proportional to the current and thus it is measured as fluctuation in the 

conductivity. 1/f noise is also called low frequency noise because it has increasing spectral power 

at lower frequencies. The GR noise and 1/f noise are often termed as excess noise as they are 

present in addition to thermal noise and shot noise. 

1.5.6  1/f noise models 

It is well known that in homogeneous sample, the electrical conductivity	(ߪ), is given by    

 nqμ, where q = 1.6 X 10−19 C, n is the free carriers concentration and μ is the free carriers = ߪ

mobility. The conductivity fluctuations in a material can either result from fluctuations in the 

number of carriers or in their mobility. Thus, 1/f current noise fluctuations can arise from either 

fluctuations in the number of carriers (∆N model) or fluctuations in the carrier mobility            

(∆μ model). Thus the voltage fluctuation spectral density,  ܵ௩	  depends on either number 

fluctuation spectral density (ܵே) or mobility fluctuation spectral density	(ܵµ), given by 

                                         	ௌೡ
௩మ

= 		 ௌಿ
ேమ
				 or     ௌೡ

௩మ
= 	 ௌµ

ஜమ
                                                   (1.11) 

where N is the total number of carriers in a homogeneous semiconductor which is related to the 

carrier concentration as N= n x volume, and µ is mobility of charge carriers.  

In chapter 3, the quadratic dependency of 	ܵ௩ 		versus ݒ is represented as 	ݏ௩ = 		௄ೡ
௙
	 . ଶݒ . 

This relation is used independent of the origin of the fluctuations, whereܭ௩, gives the noise level 

at 1 Hz with a DC voltage of 1V which is applied to the resistance.  

There is no universal theory for 1/f noise, however, two major competing models are 

available which will be briefly described in the following sections. 

 Mobility fluctuations 

 In this model, it is considered that the carriers scattering due to the lattice vibrations gives 

rise to the origin of 1/f noise fluctuations55,56.The mobility fluctuations are connected to the 

volume effect, as the fluctuations in the mobility of the carriers occur in the bulk of the material 

which results the observed conductivity fluctuations. By following the semi empirical formula 

proposed by Hooge, one can write,   
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ௌಔ
ஜమ

= 	 ఈ
௙ே

                                                            (1.12) 

Where the parameter ߙ is a constant, which is very sensitive to material quality and processing 

techniques. Thus, it can be used as an indicator to measure the quality and the noise level of 

materials and devices. 

Number fluctuations  

Number fluctuations are related to GR centres and as it has already been discussed, GR 

processes lead to Lorentzian spectrum. One condition for obtaing 1/f noise is to consider GR 

centres with a distribution of time constants that follows as (1/ τ) law between ߬ଵ and ߬ଶ. It can 

then be proved that for frequencies between 
ଵ

ଶగఛభ
 and  

ଵ
ଶగఛమ

 , the noise spectral density follows a 

pure 1/f noise dependency. Interface states allow obtaining such time constant distribution. It 

follows that number fluctuations, when observed are associated with a surface or an interface 

localization of 1/ f noise sources.  
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Chapter 2 
Experimental techniques 

                             
The chapter outlines the experimental techniques which have been utilized in this dissertation 

to grow and to characterize the hetero-epitaxial layers. It is organized as follows: firstly the growth 

techniques are presented followed by the description of the characterization tools. 

2.1 Growth Techniques 

 In chapter 1, we have already mentioned about the different substrates and buffer layers 

which can be employed in group III nitrides epitaxy. Here we will briefly describe the growth 

techniques for the epitaxial layers investigated in this dissertation.   

2.1.1 Molecular Beam Epitaxy (MBE) 

MBE1 was developed in late 1960s by A.Y. Cho, since then it has evolved into one of the most 

widely used techniques for producing high purity epitaxial layers. MBE can provide good uniform 

and atomically sharp interfaces even at substantially low growth temperatures (for instance InN the 

growth temperature from 420-620 °C depending on the In or N polar2). As MBE is operated at high 

vacuum it provides accurate in-situ monitoring capabilities. Hence, MBE is very suitable for 

precisely controlling the growth parameters. 

The principle of MBE growth essentially consists of atoms or clusters of atoms which are 

produced by heating up a solid or liquid source. They are then led to impinge on a hot rotating 

substrate, where they can diffuse and eventually form the desired film. The process takes place in an 

Ultra High Vacuum (UHV) environment (pressure ~ 10−9 mbar). The precursor sources can be 

shutoff and turned on rapidly using shutters, enabling MBE to make abrupt composition changes 

within a monolayer. 

Nowadays, to take the advantage of liquid and gaseous sources, variations of MBE are used 

for Group III nitrides as well as for various dopants. There are two variations in MBE which are 
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specific to Group III nitrides: Ammonia MBE and Plasma Assisted (PA) MBE. Ammonia MBE uses 

ammonia (NH3) as the nitrogen source and solid sources of In, Ga and Al metals for group III 

components. However dissociating ammonia to make atomic Nitrogen introduces Hydrogen (H), an 

impurity for nitride growth. On the other hand, PAMBE uses Nitrogen as the group V source. This 

necessitates Radio-Frequency (RF) plasma to crack the N2 and create highly reactive atomic N since 

the N2 molecule (unlike NH3) has a very high thermal stability. 

2.1.2 Metal Organic Vapor Phase Epitaxy (MOVPE) 

MOVPE 3  is an efficient technique for the growth of Group III nitride heterostructures, 

quantum wells and superlattices. With this technique one can produce almost atomically sharp 

interfaces. Its high growth rate, good uniformity, large area and multiple wafer growth has  attracted 

the  nitride industry for mass production of devices.  

The typical organic precursors for III nitrides are trimethylindium (TMIn) for In, 

trimethylgallium (TMGa) for Ga, trimethylaluminium (TMAl) for Al and ammonia (NH3) as the 

nitrogen source. It is to be noted that, triethyls (In/Ga/Al) can also be used instead of trimethyls 

(In/Ga/Al). For the growth, the organic precursors are driven on to over hot substrate, with the help 

of carrier gases like hydrogen and nitrogen where the organic species decompose and react with the 

atomic nitrogen. In this process molecules of required semiconductor material are produced, which 

then adsorbs on the substrate surface to produce an epitaxial layer.  

MOVPE requires high growth temperature, as it must satisfy the conditions for NH3 pyrolysis. 

However, for the growth of InN, this is an inherent disadvantage as it dissociates already below   

600 °C.   

2.1.3 Epitaxial layers used in this dissertation 

The materials mentioned in this dissertation were grown by MBE and MOVPE. The major 

part of this thesis contains MBE grown samples. The InN samples were grown by plasma assisted 

Molecular beam epitaxy (MBE) at Instituto de Sistemas Optoelectronicos y Microtecnologia 

(ISOM), Universidad Politecnica de Madrid (UPM) in Spain. The InGaN/GaN samples, which 

consist of quantum well structures, were grown by MBE as well as MOVPE techniques at École 
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Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland and other samples from Centre 

de Recherche sur l’Hétéro-Epitaxie et ses Applications (CRHEA),Valbonne, France. 

2.2 Samples characterization 

The surface of the films was inspected by Scanning Electron Microscopy (SEM). The 

quantitative information about the surface morphology in terms of roughness (rrms) were investigated 

by Atomic Force Microscopy (AFM) in the tapping mode. One of the essential parts of this thesis is 

the micro structural characterization of the thin films, in which the interest was about all kinds of 

defects in the film itself and in the quality of interfaces between the various heteroepitaxial layers. 

For such a characterization, Transmission Electron Microscope (TEM) was used. The optical 

properties were studied by photoluminescence spectroscopy. The electrical transport properties like 

the electrical resistivity and the low frequency noise were carried out using a semiconductor 

parameter analyzer (HP 4156B) and a dedicated low frequency noise measurement set-up, including 

a low temperature four probe equipment (Lakeshore TTP4).  

2.2.1 Microscopy techniques 

2.2.1.1 Atomic Force Microscopy (AFM) 

 Atomic Force Microscopy4,5,6 is a basic technique to determine the surface morphology at 

atomic resolution and as well as the quantitative surface roughness of thin films. The AFM consists 

of a microscale cantilever with a sharp tip (probe) mounted at the end of the cantilever and used to 

scan across the surface of the specimen. The AFM tips are typically made from silicon nitride or 

silicon with a tip radius of curvature on the order of nanometers.  

When the tip is brought into proximity of a sample surface, forces between the tip and the 

sample lead to a deflection of the cantilever according to Hooke's law. In general, the force acting 

between the cantilever and the sample is a sum of Vander Waals, electrostatic, magnetic, 

electrodynamic, chemical bonding and capillary forces, which are compensated by elasticity forces 

resulting from the cantilever bending and the sample deformation. Typically, the deflection is 

measured using a laser spot reflected from the top surface of the cantilever into an array of 
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photodiodes. A feedback mechanism is employed to adjust the tip-to-sample distance to maintain a 

constant force between the tip and the sample. The sample can move in the z direction for 

maintaining a constant force, and the x and y directions for imaging the surface in Å scale by three 

piezo crystal sensor which allows driving very precise sample movements. A schematic diagram of 

AFM is shown in Figure 2.1. There are three scanning modes associated with AFM, namely; contact 

mode, non-contact mode and tapping mode. In the contact mode, the tip is static and in contact with 

the sample and the image is obtained by repulsive forces between the tip and the sample. This 

technique can often damage either the sample surface or the tip. In non-contact mode, the tip 

oscillates above the surface, and the image is obtained from the attractive forces between the tip and 

the sample. In tapping mode, the image is obtained by the tip, which just taps the surface for small 

periods of time. This method lessens the damage done to the surface and the tip compared to the 

case of contact mode. An important parameter which characterizes the surface of thin films is the 

roughness. The rms (root mean square) roughness is the standard deviation of the z values in a given 

area. It is calculated by the AFM software which processes the acquired images. 

 

Figure 2.1. A schematic diagram of AFM with components5. 

All the AFM images in this work, which will be shown in the preceding chapters, were 

obtained in tapping mode using a Nanoscope III (Digital Instrument) atomic force microscope with 

a silicon tip (10 nm of radius of curvature). 
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2.2.1.2 Electron microscopy 

In the Electron Microscope6,7, a beam of high energy electrons is used to illuminate the object 

and a magnified image is formed using electromagnetic lenses. The observations can yield the 

information about the topography, morphology, composition and structure of the specimen. 

Interaction of electrons with matter 

         When an electron beam hits a specimen, several phenomenons occur as depicted in Figure 2.2. 

These phenomenons are interconnected and all of them depend to some extent on the topography, 

structure, atomic number and chemical composition of the specimen. Each signal can be employed 

to extract different information as illustrated in Figure 2.2. 

 

Figure 2.2. The signals generated by interaction of electron beam with a specimen7. 

         The Back Scattered Electrons (BSEs) constitute a fraction of the incident electrons and their 

quantity depends on the atomic number of the scattering atomic nucleus i.e. heavier the nucleus, 

greater the number of back scattered electrons. The BSEs may be used to detect contrast between 

areas with different chemical compositions. BSEs can also be used to form Electron Back Scatter 
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Diffraction (EBSD) image which can yield the crystallographic structure of the specimen. The main 

topography information is obtained from secondary electrons in the Scanning Electron Microscopy 

(SEM). The elastically scattered electrons are the major source for image contrast in Transmission 

Electron Microscopy (TEM) techniques such as bright and dark field TEM images. The inelastically 

scattered electrons are used for analytical electron microscopy, such as electron energy loss 

spectroscopy, X-ray microanalysis, Scanning Transmission Electron Microscopy (STEM), energy 

dispersive spectroscopy and cathodoluminescence. 

2.2.1.2.1 Scanning Electron Microscopy  

         SEM8 is the most widely used form of electron microscope in the field of materials science for 

surface analysis of bulk materials and thin films. SEM uses a focused beam of high-energy electrons 

to generate a variety of signals at the surface of solid specimens. The signals that derive from 

electron-sample interactions reveal the information about the sample including external morphology 

(texture), chemical composition etc. Areas ranging from approximately 1 cm to 5 microns in width 

can be imaged in a scanning mode using conventional SEM techniques (magnification 

approximately 300,000 X, spatial resolution of 10 nm)9. This technique is simple with the possibility 

of large area observation and it does not involve complex sample preparation unlike TEM. The 

schematic diagram of SEM is shown in Figure 2.3.  

In SEM, the electrons with energy ranging from 0.2 keV to 40 keV are generated by a 

thermoionic or field emission gun and are accelerated by a high potential difference and collimated 

to a sharp beam. Cathodes like W or LaB6 are used for thermionic emission while W or ZrO are 

used for field emission12. The electron beam is made to raster the surface of the sample under 

observation. The high energetic beam undergoes interactions with the specimen, giving rise to many 

signals such as the secondary electrons (see in Figure 2.2), which are then turned to electrical signal 

and gives the information about the topography and the morphology of the specimen. The secondary 

electron yield depends on many factors, and is generally higher for high atomic number targets, and 

at higher angles of incidence10. 
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    Figure 2.3. Schematic diagram of a SEM set-up11. 

The SEM images were taken with ZEISS SUPRA 5512 on InN heterostructures. In this case, 

we have used field emission cathode (W) for generating the high energetic electrons. 

2.2.1.2.2 Transmission Electron Microscopy  

TEM7 is a versatile instrument, which is capable of characterizing the internal structure of 

materials with a wide range of imaging and analytical methods. The major advantage of using a 

TEM rests on the fact that real and reciprocal space information is available simultaneously at 

various length scales. Small sampling volume, specimen preparation for TEM are the main 

drawbacks and radiation damage due to high incident beam energies can be a cause of concern 

depending on the system under investigation. Despite of these limitations, TEM has emerged as a 

powerful tool for materials science, as it offers a wide range of complementary information 
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(crystallographic information about defects, strain, interfaces and boundaries). These informations 

are available as a result of different operation modes and imaging techniques, like Bright Field (BF), 

Dark Field (DF), Selective Area Electron Diffraction (SAED) and High Resolution TEM (HRTEM). 

In TEM, we consider the scattering of high energy electrons, whose accelerating voltage is ≥ 50 kV 

and having small scattering angles, which obeys Bragg´s law, and we also consider very thin 

crystals of thickness about zero to less than 500 nm.     

This section presents a short review of the instrument, modes of operation and analytical 

procedures in TEM. 

 

Figure 2. 4. The two basic operations of TEM imaging system (a) imaging mode, (b) diffraction mode13. 

TEM mainly consists of four types of lenses which are condenser, objective, intermediate and 

projector lenses, are shown in Figure 2. 4. The condenser lens controls how strongly the electron 
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beam is focussed onto specimen. The objective lens forms the image of the specimens. The 

intermediate lens is used to magnify the image or the diffraction pattern, which is formed in the 

focal plane of the objective lens. And finally the projector lens is used to control the magnification 

of final image or the diffraction pattern which may be collected on a fluorescent screen, CCD 

cameras and electron sensitive plates. 

The TEM can mainly be operated in two modes: diffraction mode and imaging mode, the 

corresponding ray diagrams are shown in Figure 2. 4 (a) and (b) respectively. 

Diffraction mode 

When the electron beam passes through the sample, it experiences scattering as a result of an 

interaction of the beam with crystal structure of the specimen. The elastic scattered electrons suffers 

small scattering angles and which obeys Bragg´s law (2݀௛௞௟ߠ =  The scattered beams from the .(ߣ

same set of atomic planes are brought to one diffraction spot in the back focal plane of the objective 

lens (diffraction plane), in which the central spot corresponds to the transmitted beam and the other 

spots originate from the diffracted beams as shown in Figure 2. 4(b).  It is possible to select a specific 

spot or set of spots from the diffraction pattern for generating different images (will be explained in 

the next section). The control of the diffraction spots is achieved by tilting the sample to a desired 

orientation.   

Imaging 

Bright or Dark field imaging modes 

Bright Field (BF) and Dark Field (DF) imaging techniques are employed to form images using 

the transmitted beam or a diffracted beam as shown in Figure 2.5. When the direct beam is selected 

by the objective aperture, we form the BF image whereas the selection of diffracted beam gives the 

DF image. Usually, the DF images are obtained by a slight tilting the incident beam to have the 

diffracted beam on the optical axis, thus minimizing aberrations. 
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Figure 2. 5. Ray diagrams for: (a) Bright Field image and (b) Dark Field image14 

High resolution TEM imaging 

High resolution imaging is used for direct observation of the sample lattice at atomic 

resolution. The contrast in high resolution is due to the interference of the transmitted and diffracted 

beams; it is called phase contrast, in other words, more than one beam is required for phase contrast 

imaging. In phase contrast, the electrons wave experiences a phase shift, as they interact with the 

atoms of the specimens. In the image formation process, the interactions of the transmitted and 

diffracted beams give rise to constructive or destructive interference whose patterns corresponds to 

lattice fringes along the particular zone axis.  

Dislocations analysis from TEM images 

 For characterization of dislocations, we extract some important information from TEM 

images, which are mentioned as follows: 

1. The direction and the magnitude of the Burgers vector (b), normal to the (hkl) diffracting 

planes 

2. The dislocation line direction and hence the character of the dislocation (edge, screw or 

mixed) 

3. The density of dislocations 
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To a first approximation called invisibility criteria, one used the diffracting vector g and the burgers 

vector b.  When   g.b=0, there will be no contrast from the dislocation in the image, and hence it will 

not be visible in the bright or dark field images15.  In Table 2. 1, we have summarized the invisibility 

criterion for the dislocations which are commonly observed in group III nitride epitaxial layers. 

For this work, a major part of TEM was performed by JEOL JEM-2010 operated at 200 kV 

using a thermoionic lanthanum hexaboride (LaB6) source.  

Table 2. 1. Invisibility criterion of dislocations in Wurtzite systems 

Burger vector,	࢈ሬሬ⃗ ሬሬ⃗ࢍ  = ૙૙૙૚ ࢍሬሬ⃗ = ૚૚૛૙ ࢍሬሬ⃗ = ૚૙૚૙ 
[0001] Visible Invisible Invisible 

ൣ0001൧ Visible Invisible Invisible 
1
3
ൣ1120൧ Invisible Visible Visible 

1
3
ൣ2110൧ Invisible Visible Visible 

1
3
ൣ1210൧ Invisible Visible Invisible 

1
3
ൣ2113൧ Visible Visible Visible 

1
3
ൣ1213൧ Visible Visible Visible 

1
3
ൣ1123൧ Visible Visible Visible 

2.2.1.2.3  Scanning Transmission Electron Microscopy (STEM)   

 STEM16 is another mode in TEM, in which the electron probe is formed by focussing electron 

beam into a fine spot, which is scanned across the sample. Each pixel of STEM image is generated 

by the scattered intensity recorded corresponding to the same point. The STEM may use a High 

Angle Annular Dark Field (HAADF) detector, which allows chemically sensitive imaging.  

The image intensity strongly depends on the specimen thickness (t) and composition. The 

integrated intensity (I) on the detector is a function of the mean atomic number Z of the atomic 

columns illuminated by the focused electron probe, which is represented16 as equation 2.1.  

 (2.1)                                                                        ݐଶܼ~ܫ                                                                     
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Figure 2. 6 shows a schematic diagram of a STEM-HAADF system. We have used STEM as a 

tool to investigate the chemical mapping of composition in InGaN QWs. The STEM images were 

further analyzed in order to extract the local indium composition inside InGaN QWs. 

 

 

Figure 2. 6:  Schematic of STEM-HAADF system configuration17. 

2.2.1.2.4 TEM sample preparation 

             A convenient way to study the epitaxial films and the interfaces is to investigate them in 

cross section. The samples presented in this thesis for TEM observation, were prepared by two 

different methods. The first was mechanical polishing and the other was tripod polishing. The steps 

involved in these two different sample preparation techniques are shown in the flow chart in Figure 

2. 7.  As can be seen few steps are common in both of these methods.    
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Figure 2. 7.  A flow chart for TEM sample preparation.  

Mechanical polishing 

             First, the specimens are sliced into small rectangular pieces (length ~ 10 mm, width~ 

2.5 mm). The slices are bonded using a epoxy with the multilayers facing each other. Then the as 

prepared sandwich is introduced into a cylindrical tube as shown in Figure 2. 8 (a), (b) and (c) and 

then fixed inside with epoxy. Afterwards it is closed by a cap of cylindrical structure of 3 mm 

diameter shown in Figure 2. 8 (d). Then the whole structure is heated at about 100° C for about half 

an hour to cure the glue. This cylindrical structure is then cut into discs of about 800 µm thicknesses. 

Subsequently, different grain sizes silicon carbide papers are used to polish the 800 µm thick disc 

from both sides to reduce it down to 80-100 µm thickness. Then dimpling is performed to reduce 

further thickness of the disc in the central portion, in order to decrease the time for ion beam 

thinning. The final step is ion milling. 
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Figure 2. 8. Specimen preparation steps from (a) sandwich structure, (b) cylindrical tube, (c) sample 
embedded inside tube, (d) cylindrical tube closed with cap18. 

Tripod polishing 

         In this case, the sandwich structure is prepared with two slices of specimen (800 µm 

wide and 3 mm long) are bonded using (MBOND 610 b) epoxy. After allowing near about 2 hours 

for bonding, the sandwich is mounted on the tripod support (shown in Figure 2.9) and  polished 

using different grain size (30 µm, 15 µm, 9 µm, 6 µm, 3 µm, 1 µm and 0.5 µm) diamond papers. 

This process is done for both sides of the sandwich and the thickness is reduced down to less than  

10 µm. Next a copper ring is glued on the polished sample and the set is processed by ion milling 

down to electron transparency. 

 

Figure 2.9. Tripode set18. 
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 Ion milling  

 The TEM samples are ion milled down to the formation of a small hole. In order to minimize 

the ion beam damage, the samples were maintained at the liquid nitrogen temperature during ion 

milling using the Gatan PIPS at 5 keV, with a final step at 0.7 keV for cleaning the amorphous layer 

formed while thinning. During the whole procedure, the beam angle was set at 5°. This low 

incidence leads to large electron transparent areas around the hole.  

2.2.2 Optical characterization  

If electron and hole pairs are excited and then recombined radiatively, the phenomenon is 

called luminescence. The electrons and holes can be created for example by an impinging electron 

beam in Cathodoluminescence (CL) or by light in Photoluminescence (PL) or as in case of a p-n 

junction by carrier injection in Electroluminescence (EL). Such experiments are used to probe the 

optical properties of semiconductors. In this work, the photoluminescence spectroscopy was used to 

characterize the films, and it is briefly described in the following sub section. 

2.2.2. 1 Photoluminescence spectroscopy  

It is a contactless, non-destructive method to probe the optical transitions in the 

semiconductors and other materials. Light is absorbed when directed onto a sample and it transfers 

excess energy into the material in a process called photo excitation. One way this excess energy can 

be dissipated by the sample is through the emission of light, or luminescence. In the case of photo-

excitation, this luminescence is called photoluminescence.  

The intensity and spectral content of this photoluminescence is a direct measure of optical 

properties. Photo-excitation causes the electrons to move within the material into allowed excited 

states. When these electrons return to their equilibrium states, the excess energy is released and may 

emit the light through a radiative process or a nonradiative process. The energy of the emitted light 

(photoluminescence) relates to the difference in energy levels between the two electron states 

involved in the transition between the excited state and the equilibrium state. The quantity of the 

emitted light is related to the relative contribution of the radiative process. In a semiconductor, the 

fundamental optical band edge transition and impurity or defect related transitions can be probed by 
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PL directly and precisely. The PL measurements were performed at room temperature as well as 

close to liquid Helium temperatures. For temperature dependent measurements a cold finger of a 

closed-loop gaseous helium cryopumps from APD Cryogenics was used to measure in temperature 

range between 5 K and 300 K. The experimental set up used for the PL measurement of InN and In-

rich InGaN alloys is shown in Figure 2.10.  

 

 

Figure 2.10. A schematic diagram for PL experimental set up. 

A Lakeshore temperature controller was used to monitor and as well as to control the 

temperature of the cryostat. All the measurements took place in one run for an easier comparison of 

the samples. The wavelength measurement was done with a monochromator. The detection system 

is constituted by an InGaAs detector for wavelengths over 1 µm and a photomultiplier for 

wavelengths below 1 µm, which then produces an electrical current signal. An optical chopper and 

lock-in amplifier is used in order to improve the signal to noise ratio. 
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The analog electrical signal is transformed into a digital one, which is then transferred into the 

computer. The spectrometer is controlled by the computer which also collects the obtained data. In 

this work we used, different lasing sources. For instance, in case of InGaN layers, PL was studied by 

using a CW He–Cd laser whose excitation energy was 3.815 eV (325 nm). In case of InN samples, 

we employed argon laser whose excitation wavelength was 488 nm. 

The raw photoluminescence spectra depend on the grating and detector response used in this 

system. In order to normalize the obtained PL spectra, the calibration was done with a tungsten lamp, 

whose spectral response behave like a blackbody source at the temperature of the filament, so all the 

as acquired PL spectra were corrected with this calibration.  

2.2.3 Electrical characterization  

The study of carrier kinetics is an essential aspect in characterizing the semiconductors 

towards the development of devices. There are several techniques available for studying the 

transport properties of these materials. In this work, we have performed the temperature dependence 

(80 K to 300 K) of electrical resistivity and low frequency noise, to investigate the transport 

properties of InN heterostuctures.  

 The low frequency noise versus temperature technique is a powerful diagnostic technique for 

determining Generation Recombination (GR) trapping parameters in semiconductors. The noise 

measurement set up was automated by GPIB interfacing using LABVIEW 7. In the following 

section, we present the probe stations, the experimental peripheral apparatus and the instrumentation 

for DC and low frequency noise characterizations. 

2.2.3.1 Probe Stations 

Probe stations allow us to achieve electrical contact with or access to a point in the active 

circuitry of the device. It employs a special piece of equipment known as a microprobing station, 

which is commonly referred to as a 'probe station’. In this work, two probe stations (Suss Microtech 

PM5 prober and Lakeshore TTP4 prober) were used accordingly with the working temperature 

conditions. These probe stations are equipped with built-in cameras. Both probers are used for non-

destructive testing of devices. The photographs of these two probe stations are shown in Figure 2.11. 
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Electrical contact is made by positioning fine-tipped probe needles directly on the point of interest, 

or on an area to which the point of interest is connected.  

 
Figure 2.11. Probe stations: (a) Suss Microtech PM5 prober dedicated for room temperature measurements19, 
(b) Lakeshore TTP4 prober for 80 K – 475 K20. 

 Suss Microtech PM5 prober: The SUSS PM5 is simple and manual, probing solution for 

wafers and substrates up to 150 mm. Large application flexibility is ensured for DC and HF 

measurements, device and wafer characterization tests, failure analysis, submicron probing, MEMS 

tests. This prober is easy to use and allow convenient access to the probes and Device Under Test 

(DUT). The X and Y axes can be adjusted independently. Once it has reached the test position, the 

stage locks into place and provides additional fine adjustment in the Z direction. A pull-out stage 

permits quick loading and unloading of the DUT. This prober has been used for the measurements 

carried at room temperature.  

 Lakeshore TT prober (TTP4): It is a versatile cryogenic micromanipulated probe station 

used for the devices on full and partial wafers up to 2 inches in diameter. The sample chamber is 

very well shielded from external electrical effects and the capacitive coupling is extremely small. 

Temperatures can be varied from 4 K to 475 K, in our case we limit the temperature investigation 

between 80 K to 300 K. The probe station provides efficient temperature operation and control with 

a continuous refrigeration system using either liquid helium or liquid nitrogen. Two control heaters 

on the cold head, minimize temperature gradients across the sample and, along with the radiation 

shield heater, provide the probe station with fast thermal response. The TTP4 is user configured with 
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up to four ultra stable micro-manipulated stages, each providing precise 3-axis control of the probe 

position to accurately land the probe tip on the device features. Proprietary probe tips in a variety of 

sizes and materials minimize thermal mass and optimize electrical contacts to the DUT. Probe tips 

are thermally linked to the cold head to minimize heat transfer to the DUT. 

2.2.3.2 Peripheral apparatus 

 Semiconductor Parameter Analyzer (SPA): It is capable of measuring, analyzing and 

graphically displaying the DC characteristics of voltage and current sensitive devices easily. It is 

provided with 4 Source Monitor Units (SMUs), two programmable Voltage Source Units (VSUs) 

and two Voltage Monitor Units (VMUs) and a floppy drive which can be used to store the measured 

data. Precision DC I-V measurements are typically made with high-precision Source-Measure Units 

(SMUs) to generate current versus voltage curves. SMUs can source and measure both current and 

voltage. With the appropriate programming of SMUs and VMUs as current and voltage sources, one 

can perform a wide range of operations (like I vs V, V vs I, interfacing the SPA with probe stations 

for automation etc) on the DUT. The measured data stored in the internal disc can be transferred 

through the floppy disc. In our case we have employed Hewlett-Packard HP 4156B Precision 

Semiconductor Parameter Analyzer. 

 Dynamic Signal Analyzer: We have used HP 3562A Dynamic Signal Analyzer for 

extracting the low frequency noise data. It features a dual-channel fast Fourier transform-based 

network, spectrum and waveform analyzer which provides analysis capabilities in both the time and 

frequency domains. This unit operates from 0.1 Hz to 100 kHz frequency range. For transient 

analysis, the signals can be digitized and stored internally or exported via HP-IB interface to a 

computer (which is the case in our set up).   

2.2.3.3  Current-Voltage (I - V) and resistance measurements 

Electrical resistivity is one of the most important electrical parameter of semiconductors. The 

electrical resistivity and its variation with the temperature are often used to classify the materials 

into metals, semiconductors and insulators.  
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  Bulk resistivity: The bulk resistivity (ρ) is an intrinsic electrical property related to carrier 

drift in materials such as metals and semiconductors. From a macroscopic point of view, the 

resistivity (ρ) can be viewed as the normalization of the bulk resistance (RM) by its geometrical 

dimensions; the cross-sectional area (A = Wt, where W is width and t is thickness) through which 

the current flows, and the distance between the two ideal contacts L, as shown in Figure 2.12. The 

electrical resistivity is given by, 

ߩ                                                                      = 		ோಾ		஺
௅

                                                        (2.2) 

          In case of thin semiconductor layers, the sheet electrical resistivity ߩ௦  is often used instead of 

the bulk electrical resistivity ρ. The sheet electrical resistivity is the bulk electrical resistivity divided 

by the thickness of the sample. This normalized parameter is related to the resistance of a square of 

side L and is called the sheet resistance as  ߩ௦	 = 	 ܴ□ , in Ω/square.  

 
Figure 2.12. Bulk electrical resistance and its geometrical dimensions in: (a) two probe configuration, the 
voltmeter is connected to the probes where a source is connected, (b) four probe configuration where 2 other 
probes are used (This four probe configuration was used for measurements on TLM structures ). 

              The simple way to determine bulk electrical resistivity is to measure the voltage drop along 

a uniform semiconductor bar through which a DC current (I) flows, as shown in the Figure 2.12. 

Thus, the measured electrical resistance and the knowledge of the geometrical dimension can lead to 

an estimation of the bulk electrical resistivity. 

The total measured resistance (RT) includes the contact resistance (2Rc), probes metal contact 

resistance (2RP) and the resistance of the sample (RM). The different contributions of contact, sheet 

and probe resistances are schematically shown in Figure 2.13.  

                                                        ்ܴ			 = 		 ܴெ			 + 	2ܴ௖ + 2ܴ௉			                                            (2.3) 
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Figure 2.13. Schematic diagram for showing contact, probe and measured resistances. 

In order to eliminate or at least to minimize the contact contribution to the measured resistance 

value, techniques based on a separated current injection and voltage drop measurements have been 

developed21. In this dissertation, for DC measurements, the two probes are used for current injection 

and two probes are used for measuring voltage drop, which will suppress the resistance 2RP
21

.  The 

contact resistance includes the resistance of the metal Rmetal, interfacial metal-semiconductor 

resistance Ri and the resistance associated with the semiconductor just below the contact in the 

contact region, Rsc
21. Thus contact resistance can be expressed as,  

                                                       ܴ௖			 = 		 ܴ௠௘௧௔௟			 + 	ܴ௜			 + ܴ௦௖			                                        (2.4) 

The contact resistance can be significant for small-geometry samples because ܴ௖			  is strongly 

dependent on the metal–semiconductor structure. Hence the contact resistance measurements are of 

great importance. One of the main test structures to determine contact characteristics is 

Transmission Line Model (TLM) structure. 

Transmission Line Model test structures: The TLM test patterns are commonly used for assessing 

the electrical quality of planar ohmic contacts21. The TLM test structures consist of depositing a 

metal grid pattern of unequal spacing between the contacts. From this linear TLM structures, the 

contact resistance and specific contact resistance can be determined through the linear relationship 

between the resistance and the spacing between the contacts. TLM patterns must be mesa-isolated to 



44 
 

prevent fringing currents around the edges of the pattern. Metal pads of finite Length S and width W 

are deposited on the mesa at a linearly increasing pad spacing Li, such that L1<L2<… <L5. The 

schematic TLM structure is shown in Figure 2.14.  

 

 

Figure 2.14. Schematic diagram of a semiconductor material with ohmic contact pads of the TLM structures. 

Each resistor is changed by its distance Li between two adjacent contacts as shown in the Figure 2.14 

and which can be expressed as  

                                                                  ܴ௅			 = 		 ܴெ		 + 	2ܴ௖			                                               (2.5) 

where Rc is resistance due to contact and RM is the resistance of the semiconducting material. From 

Rs we can extract the sheet resistivityߩ௦ , as   RM is given by,   

                                                                         ܴெ			 = 		 ఘೞ		௅೔			
ௐ௧

                                                      (2.6)               

A constant current is passed through two adjacent contact pads through two probes and two other 

probes are used to measure the voltage drop across the same pads to eliminate the resistance 

contribution due to the probes. This process is repeated and then by plotting the measured resistance 

across each adjacent contact pads as a function of the contact spacing Li and according to the equation 

2.5, the sheet resistance RS and the contact resistance Rc, can be deduced from the slope and from the 

intercept at Li = 0 respectively as shown in the Figure 2.15. 
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Figure 2.15. Measured resistance versus length between adjacent pads. This plot is a schematic for extracting 
contact and sheet resistances using TLM test structures. 

LT is called transfer length (which is shown in Figure 2.15), within which the current transfers from 

the metal to the semiconductor. The physical meaning of LT is the characteristic distance inside the 

contact from its edge where 1/e of total current has been transferred from the semiconductor to the 

contact22. 

2.2.3.4 Instrumentation for DC measurements 

The set-up for DC characterization is mainly constituted of a probe station and a Hewlett-

Packard HP 4156B Precision Semiconductor Parameter Analyzer (SPA). The device under test is 

placed inside the probe station and is connected to the SPA via a set of BNC cables. It is important 

to note that probing should be done with sufficient optimum pressure on the contacts; not too much 

to avoid pierce through the layer and not too low to ensure consistent measured results. In the 

present work, the DC characteristics: I vs V measurements, contact and sheet resistances were 

investigated using SPA, configured with two SMUs which provide the current and two VMUs 

which measure the voltage across the sample. The I-V characteristics were deduced with this set up. 
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2.2.3.5 Instrumentation for low frequency noise 

The noise measurements were performed in four probe configuration as shown in Figure 2.16. 

A DC source is connected to two current pads and a low noise voltage amplifier is AC connected to 

two voltage pads and is used to measure the voltage fluctuations. It is considered that the input 

impedence of the differential amplifier is very high, that the differential amplifier noise current can 

be neglected and that the voltage gain of the amplifier is constant over all the frequency range of 

interests. The fluctuations are small and a voltage gain of around 2000 is necessary so that the 

spectrum analyzer calculates the noise spectral density in optimum conditions. This set up has been 

developed at GREYC laboratory in Caen23. In order to remove all contact contributions, the output 

impedence of the DC current source has to be much higher than sample resistance. The noise 

spectral density can then be measured by a spectrum analyzer connected at the output of the 

amplifier24. These noise measurements were made in the frequency range of 10 Hz and 100 kHz and 

in some cases from 5 Hz to 50 kHz using either using the room temperature prober (Figure 2.11 (a)) 

or cryogenic prober (Figure 2.11 (b)) depending upon the need of measurements.  

 
Figure 2.16. A schematic representation of the four-probe noise measurement setup24. 

To minimize the external noise, shielding boxes were used throughout. All the measurements 

were performed at low bias (in our case up to 8 mA) in order to carry out the measurements in a safe 

mode of the devices. For all the data reported in chapter 3, the 1/f noise level was obtained by 
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dividing the output noise by the gain of the amplification chain (gain of the amplifier = 2095). A 

voltmeter was also connected between the voltage pads in order to measure the sample resistance 

and to confirm the results that obtained using HP4156B SPA set up. For all the resistance values and 

at each frequency much care has been taken to ensure that the set up noise level was negligible 

compared to the device noise, thus providing a guarantee that the observed noise came from the 

material and not from the electronics.  
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Chapter 3 
Plasma Assisted Molecular Beam Epitaxial InN 

layers electrical conduction 
In this chapter, low frequency noise measurements were used as a tool to qualify the quality of 

the material and to access the bulk conductivity in InN layers which is crucial to achieve for device 

applications.  
 

3.1 Introduction  

Indium Nitride (InN) is known from six decades, but until recently there had been a lack of 

research attention mainly, because of the difficulty in growing high quality single crystalline InN. In 

2002, the reevaluation of band gap from 1.89 eV1 to 0.7 eV2, has rekindled the research in nitride 

community and afterwards InN came up with its many interesting properties like the smallest 

electron effective mass3, the largest mobility4 and the highest peak and saturation electron drift 

velocities among the known semiconductors3. Therefore, InN has emerged as a promising candidate 

for high speed electronic and optoelectronic applications up to terahertz frequencies5.  However, 

there are still many challenges for device fabrication which are related to material’s properties. One 

of them is the presence of high residual n – type carrier concentration above 2x1017 cm-3, 

irrespective of growth technique used 6 . The lowest room temperature n- type residual carrier 

concentration and mobility achieved were about 3.5x1017 cm-3  and  2050 cm2V-1s-1 by (MBE)7 and 

4x1017 cm-3  and 1180 cm2V-1s-1 by (MOVPE)8. In other words, the material properties of InN 

changes dramatically with the growth techniques employed. It is commonly admitted that MBE 

grown samples exhibit better quality in terms of structural and superior electrical properties than 

MOVPE or other techniques. Though MBE left a benchmark in growing first single crystalline InN 

films, it is still a challenge to obtain higher quality layers. The major two bottlenecks to obtaining 

high quality layers are the low dissociation temperature of InN and the extremely high equilibrium 
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vapor pressure of nitrogen. The lack of native substrates is also an additional difficulty for InN 

epitaxy9.  

This chapter is related with the electrical transport properties of InN layers grown by Plasma 

Assisted Molecular Beam Epitaxy (PAMBE). The following section will give a brief review about 

the growth of InN layers with PAMBE and its transport properties as found in the literature. 

3.1.1 PAMBE growth regimes of InN 

InN layers are known to grow at reduced processing temperatures due to its low dissociation 

temperature. Therefore, the temperature-processing window for the growth of InN is very narrow, 

about 400-480° C for In polar InN10 and 480-600ºC for N polar InN11. Most of the InN films are 

grown on GaN or AlN buffer layers on sapphire substrates. InN has two growth regimes as In rich 

and N rich regions. Polarity is an important issue, which affects the surface and bulk properties of 

InN layers. The growth temperature is also greatly influenced by the film polarity. The growth 

details of In polar and N polar InN are given in the following paragraphs. 

Gallinat et al.9  proposed a growth diagram for In polar and N polar InN material system 

which is shown in the Figure 3. 1. The figure 3.1 (a) represents the growth diagram of In polar InN.  

 

 
Figure 3. 1. PAMBE growth diagram of : In polar InN10 and (b) N polar InN11, where ΦN is nitrogen flux . 
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As it can be seen, the decomposition rate of InN is significant for substrate temperature above 480° 

C. There are two regimes: (i) In droplet region under In rich growth conditions and slightly N rich 

conditions and (ii) dry region under more N rich conditions. The boundary between the In-rich and 

N-rich regimes is assumed to occur, when the active nitrogen and indium fluxes are equal. The 

transition from the In-rich to intermediate regime is possible only when there is significant In flux 

(ΦIn) desorbing from the surface, such that an equilibrium metal accumulation can be achieved. This 

curve has been estimated from the desorption of indium from indium metal as described by the 

Hertz-Knudsen equation12. The N polar InN has three different growth regimes as shown in Figure 3. 

1 (b). It consists of (i) In droplet on top of adlayer structure under In rich growth conditions, (ii) In 

adlayer structure under slightly In-rich and also slightly N-rich growth conditions at high 

temperatures and (iii) a dry no adlayer terminated surface under more N - rich growth conditions. In 

short, the best growth temperature of N-polar InN is higher than that of In-polar InN. The growth 

temperatures beyond 500° C are not possible for In face InN, while growth temperatures as high as 

640° C can be achieved for N face InN. The smoothest surface morphologies for both InN polarities 

were obtained in films grown with excess In, in which a metallic In-adlayer was present (2.5 ML for 

the In-face and ~1 ML for the N-face; where ML is monolayer) during growth9. To attain atomically 

flat surface, four important factors are necessary: 

(1) In-polarity is preferred because it exhibits a smoother morphology than N-polar films13. 

In fact, the step height is 2 or 4ML for the smoothest surface of the N-polar InN and it is 

difficult to obtain an atomically flat surface with a one-monolayer step height9,14, 15. 

(2)  A slightly In-rich growth condition has to be chosen9. 

(3)  A GaN template with low dislocation density has to be used9. 

(4) A high growth temperature should be used, as close as possible to the decomposition 

limit9. 

3.1.2 Transport properties of indium nitride 

Figure 3. 2 shows the dependence of electron concentration9 on growth temperatures for three 

different ΦIn corresponding to In droplet, stoichiometric and N rich growth for In face InN. As shown 

in Figure 3. 2 (a) the electron concentrations are lower for the films grown in In droplet region and 

the mobilities of these In rich InN layers are the highest as can be seen in Figure 3. 2 (b). The 
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minimum electron concentrations and maximum electron mobilities were measured for In-face InN 

films grown at the highest possible temperatures (prior to thermal decomposition) in the In-droplet 

growth regime. 

 
Figure 3. 2. (a) Dependence of electron concentration and (b) electron mobility on substrate temperature for 
InN samples grown at three different In flux (ΦIn) and constant N flux (ΦN)9. 

 

Figure 3. 3 shows reported values of InN electron density and mobility as a function of the layer 

thickness16. The electron mobility increases with layer thickness, while the free electron 

concentration decreases. Closed symbols are grown on a GaN buffer, open are on AlN. Circles  

 

 

Figure 3. 3. Electron density and mobility as a function of InN thickness16, 9. 
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are carrier density, triangles are mobility. Dotted lines are fits to GaN characteristics to provide a 

smoothed function for differentiation. Solid lines are extraction of differential density and  

mobility16. Lu et al.17  observed a gradient of carrier concentration ranging from 1020 to 1018 cm−3 

within 6 nm in depth at the InN surface which shows a strong accumulation of charge carriers at the 

surface. 

Surface electron accumulation is observed as an intrinsic property of the InN epitaxial layers. 

Recently, this surface electron accumulation phenomenon on InN layers has attracted much attention. 

Indeed, despite the novel properties of InN, there is still a hindrance for device applications because 

of the presence of this intrinsic charge accumulation at InN clean surfaces. However the presence of 

an electron accumulation layer is of great interest for sensor applications18. The main cause of 

electron accumulation on the InN surface and how it is related to the surface atomic configuration 

are still not clear. A number of reports have shown that this electron accumulation layer is strongly 

localized within several nanometers of the film surface17,19. These surface effects are pronounced in 

the layers of InN less than 300 nm thickness. The magnitude of the electron accumulation layer is 

highly accounted for polarity effects, and hence is likely due to a high density of donors near or at 

the surface. Swartz et al20  reported that there were two distinct conducting layers. A high mobility 

layer with a mobility of >1000 cm2V-1s-1 was assigned to bulk conduction, while a low mobility 

layer of ~200 cm2V-1s-1 was assigned to surface and/or interface conduction. An additional factor 

which can influence the electron accumulation within films is the surface morphology21. There are 

many reports on surface charge accumulation in InN layers, including the measurements of sheet 

carrier density as a function of InN film thickness and Capacitance-Voltage (C-V) profiling18. 

Photoemission results from Ti deposited on Ar-sputtered InN indicated that the Fermi level is 

located high in the conduction band22. The existence of an electron accumulation layer on clean InN 

(0001) surfaces has been confirmed by High Resolution Electron Energy Loss Spectroscopy 

(HREELS) and X-ray Photoemission Spectroscopy23. Angle-resolved Photoemission Spectroscopy 

was used to observe quantized energy levels in the surface electron accumulation layer on InN films 

grown by Radio Frequency Plasma - Assisted Molecular Beam Epitaxy24.  Bhatta et al. 25 claimed 

the presence of charge accumulation on InN layers grown by High Pressure Chemical Vapour 

Deposition by using HREELS and suggested that the excess surface electron accumulation presence 

in InN was not due to excess indium or In-In bonds. This is consistent with the pinning of the 
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surface Fermi level in the conduction band26. As was shown during the last few years, the surface 

Fermi energy in InN is pinned at 0.9 eV above the bottom of the conduction band by donor like 

surface defects, which creates a n-type accumulation layer at the surface that seems unaffected by 

chemical or physical treatments19. Obviously, the conductivity of this surface layer has to be 

considered in any investigation of the electrical properties of InN samples. The electrolyte based 

chemical C-V measurements have been used to point out a net concentration of ionized acceptors 

below the n-type surface and demonstrated the possibility of InN  p-type  doping using Mg 

acceptors27.  

Despite the large amount of studies on electron accumulation at InN surfaces, we have been 

the first to use noise measurements to investigate this issue. With these measurements, one can 

overcome the problem of other conventional techniques like C-V measurements, which needs 

schottky contacts. We have been able to distinguish between surface conduction and bulk 

conduction in InN layers by using low frequency noise28.  

3.2 Objectives of this research  

 In this work, we have carried out Low Frequency Noise (LFN) measurements to qualify the 

devices in terms of material quality and then to investigate the electrical conduction mechanisms, 

and finally to relate them to the bulk and surface transport properties. 

3.3 Description of samples  

3.3.1 Samples schematic 

This chapter contains two different sets of InN heterostructures grown at ISOM, Madrid. All 

the samples were grown on c-plane sapphire substrates by (PA-MBE). The schematic of the InN 

heterostructures used in this work is shown in Figure 3. 4.  The wafers consisted of the following 

multilayer structure: A commercial LUMILOG semi-insulating Ga polar GaN layer (5µm) grown by 

MOVPE on sapphire substrates served as a template. The PA-MBE then started with the growth of a 

90 nm thick GaN layer and the InN layers were grown on top with a nominal thickness of ~250 nm 

to 400 nm. All of the samples are In polar InN layers and were grown in slightly N-rich (A series 

and B3) or slightly In-rich (B1 and B2) conditions as mentioned in Table 3. 1. The structural 
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investigations of as grown InN epilayers show that they are of substantially good crystalline 

quality21.  

 
Figure 3. 4 Schematic heterostructure of InN sample 

 
Table 3. 1 Specification of as grown InN epilayers from ISOM 

 

Series 
of 

samples 

 
 

Wafer Sample 
No. 

Specimen 
name 

Growth 
temperature 

(° C) 

InN 
nominal 
thickness 

(nm) 

Growth 
regime 

Roughness 
of as grown 

wafer by 
AFM 
(nm) 

A-series 
 

R465 
 

 
1-5 

 

 
A1, A2, 
A3, A4, 

A5, 
 

400 400 N - rich 10.9 

B-
series 

 

R489 6 B1 325 255 In - rich 1.44 
R338 7 B2 440 400 0.7-2.03 
R441 8 B3 440 345 N - rich 11 

As it can be seen from Table 3. 1, there are two different series of samples named as A and B series, 

respectively, the description and the motivation behind the studies related to both series are 

mentioned below. 

A series of samples were used to optimize the device fabrication steps on InN layers. This set 

consists of 5 samples cut from a single layer (R465), the description of as grown layer is given in 

Table 3.1. The AFM observations confirmed that this sample R465 has been grown in slightly N 

rich conditions (roughness: 10.9 nm, Table 3. 1).  As stated earlier these samples were grown and 

fabricated at ISOM. So after following the sample specifications, we counter checked that this wafer 

is grown in slightly N rich growth condition, which was confirmed after surface morphology 

studies. 
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B series and along with the optimized A series samples, were used to investigate the electrical 

transport properties versus growth conditions. (In and N rich InN, growth temperatures and layers 

thickness). 

3.3.2 Samples geometries and fabrication process 

A- Series 

Geometry: Each sample of this series consists of four devices as shown in Figure 3.5 (a), 

which is an optical microscopy picture. Every device has a specific mask (shown in Figure 3.5 b) 

which is repeated all over the wafer as shown in Figure 3.5 (a).  Hence, each device has three 

different geometries for different purposes like (I) Hall measurements, (II) TLM structures to study 

contact and sheet resistances and (III) noise properties studies. In this work, we have utilized the 

geometries II and III respectively. The lengths and widths of these geometries are schematically 

represented in Figure 3.5 (b). 

 
Figure 3.5. Geometry of A series samples. (a) An optical image of one of the samples composed of 4 devices, 
(b) Mask geometry of one device. 

On each device, we have three TLM structures of different sizes of contact pads as 98 x 50 µm2, 150 

x 50 µm2 and 190 x 50 µm2, and the distances between the metallic pads were 56µm, 48 µm, 38 µm, 

30 µm, 19 µm and 10 µm respectively. As shown in Figure 3.5 (b), the geometry III has 6 contact 

pads in which we have used four pads: 2 pads across L , for current(160 x 160 µm2 ) and the other 
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two along either of the sides of the geometry as voltage pads(100 x 100 µm2). The noise 

measurements were done at all the temperatures across this geometry III.   

Fabrication process: In these series, two different fabrication steps were followed: (1) 

electrical isolation of every device through a mesa; (2) deposition of metallic contacts(Ti/Al/Ni/Au) 

and photolithography. In the patterned devices, one can notice in Figure 3.5 (b), the light blue colour 

corresponds to InN, while around it is white or transparent, which means absence of InN, and hence 

GaN. Usually, Mesa etching induces damages to the material; which can be reduced by thermal 

annealing. In order to see the impact of thermal annealing before and after electrical isolation, we 

followed the fabrication steps as shown in the flow chart of Figure 3. 6.  

 

 
Figure 3. 6:  A flowchart for fabrication steps: A cross section view of fabrication steps. for samples A1, A2, 

A3, A4 and A5. 

Samples A1, A2, A3 and A4 are first went through the electrical isolation followed by metallization 

and then thermal annealing was done at 400°C in a nitrogen atmosphere. For sample A5, first metal 
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contacts were deposited and then thermal annealed followed by electrical isolation. For samples A1, 

A2, A3, A4 and A5, the annealing time was varied as 0 min, 5 min, 10 min, 20 min and 10 min 

respectively. 

B-  series 

  Geometry: Each sample of this series consists of many devices. Every device has a specific 

mask  which is repeated all over the wafer as shown in Figure 3. 7 (a). As shown in the Figure 3. 7 

(a) , each device was made of three TLM structures, constituted of a series of contact pads (area 94 x 

48 µm2) with spacings of  210 µm, 170 µm, 114 µm, 57 µm and 38 µm respectively mentioned for  

TLM1. The contact and sheet resistance were extracted from three TLM structures which are sown 

in Figure 3. 7 (b). The noise measurements were performed on TLM1 across contact spacing of 210 

µm. 

 

Figure 3. 7. Geometry of B series. (a) A photograph of one of the samples, (b) A view of the elemental device. 
 

Fabrication process: All 3 samples of this series were fabricated using the same process. A 

stack of metals Ti/Al/Ni/Au (20 nm/40 nm/20 nm/80 nm) was deposited using e-beam evaporation. 

Films were photolithographically patterned and processed by Reactive Ion Etching to form 

Transmission Line Method (TLM) structures and were annealed at 400°C during 15 min in a N2 

flow. The fabrication steps followed were same as A1, A2, A3 and A4 (Figure 3. 6 ). 
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3.4 Effect of processing modulation on electrical performances of 
N rich InN layers 

The device fabrication processes can also have an effect on the material properties, as in the 

case of the passivation induced stress or the change of strain after annealing. The objective for this 

section of work is to study the effect of device technological processing steps and the role of 

annealing on the surface roughness, photoluminescence and transport properties of the InN layers. 

To this end, we have chosen  N rich InN layer, because it gives more accurate transport properties 

due to the higher surface conductivity contribution to the total electrical conduction as stated by 

Fehlberg et al.29 . For a careful investigation of this topic, we used same InN wafer which was cut 

into 5 pieces and then subjected to different technological steps and annealing.  

3.4.1 Characterization 

3.4.1.1 The surface morphology by AFM and SEM 

Figure 3. 8, shows the 10 x 10 µm2, AFM images of patterned InN resistors which were grown in 

slightly N rich condition. The left hand side image corresponds to the non-annealed InN layer(A1) 

and the right hand side picture represents the sample annealed for 20 mins(A4). As it can be seen the 

morphology of the two specimens exhibit platelets propagating in a zigzag manner and surrounded 

by deep trenches which leads to the observed large surface roughness (around 14 nm). As the 

annealing time increased, the roughness of InN resistors are proportionally increasing upto 10 mins 

and then decreasing, which is confirmed from the Figure 3. 9 (a): the solid spheres represent the 

roughness of metal pads, while the open squares represent that of InN layer.  The roughness of the 

metal pads are also increasing with the increase of annealing time, indeed, the surface roughness of 

InN layer and the metal pads are almost identical for A1, A3 and A5, whereas for A2 and A4 the 

metal pads have much higher roughness than the InN layers, have metal pad follows the surface 

morphology of InN, which is reflected from the SEM image (Figure 3. 9 (b)) taken across the metal 

pad and the InN layer where one can see  their different morphologies. For the same annealing time, 

the samples A3 and A5 exhibited close surface roughness irrespective of technological steps. The 

other properties may throw light on these observations to come up with some conclusions or the 

reasons behind these behaviors.  
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Figure 3. 8.  AFM image of samples InN/GaN/sapphire  (a) A1 (un annealed) (b) A4 (t = 20 mins). The RMS 
roughness is (a)13.2 nm for A1 and (b)14.5 nm for A4 respectively. 
 

 

Figure 3. 9 (a) Roughness of InN resistors and the metal pads, (b) SEM image of sample A1. 

3.4.1.2 Photoluminescence characteristics  

We selected A1, A3 and A5 samples to study the influence of the annealing process of  prior 

and post metallization using photoluminescence. Specifically A3 was chosen among A2, A3 and A4, 

because A3 has the same annealing time as of A5. Photoluminescence measurements were 

conducted at 12 K. The PL signals were observed in the vicinity of 0.72 eV which is close to the 

optical absorption edge. It demonstrates that, these InN films were of good quality. The small band 
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gap corresponds to low level of residual carrier concentration, which gives the indication, that 

electrical isolation before metallization would be the better option in the fabrication steps and 

thermal annealing at the end of fabrication steps is more appreciated. 

 

Figure 3. 10. PL spectra on patterned InN layers (Sample A1 , A3 and A5). 

The PL intensity is observed as inversely proportional to the surface roughness. This may be 

accounted for the high roughness of the surface which diffuses the light emitted, as a result reduces 

the intensity of PL emission. This reveals that the fabrication steps followed and the time of thermal 

annealing have direct influence on the optical properties. From the Figure 3. 10, it is clear that 

electrically isolation after metallization will degrade the optical quality and also thermal annealing 

lowers the PL intensity. In order to better understand the layers properties further, electrical 

measurements were done. 

3.4.1.3 Electrical properties studies at room temperature 

Estimation of contact and sheet resistances using TLM patterns 

 The Current-Voltage (I-V) characteristics of all the InN films in these A series samples are 

accessed with SPA. InN TLM patterns for different geometries as shown in Figure 3.5 (b), were 

measured; we had an ohmic behaviour for both the InN material and the metallic contacts as 

reflected from the I-V plots shown in Figure 3. 11 (a). The contact and InN sheet resistance values 

were extracted from the measured resistance as a function of spacings between metallic pads as 
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described in Chapter 2, which are shown in Figure 3. 11 (b). For different TLM geometries, the 

measured sheet resistance is similar as that shown in Figure 3. 11 (c), which confirms the 

homogeneity of the InN wafer. The contact and sheet resistances for all of these layers are shown in  

 
Figure 3. 11 (a) I versus V (b) measured resistance versus contact spacing for 3 TLMS with different widths, 
(c) Inverse of slope extracted from (b) versus widths. 

Figure 3. 12. The measured contact resistances were always 102 to 103 times smaller compared to the 

measured InN resistances. Extremely low contact resistance of Ti/Al/Ni/Au metallization on InN is 

demonstrated. The samples were showing ohmic with or without annealing, as it is known the ohmic 

behaviour was proposed to be associated with an electron accumulation layer in the InN and a 

 

Figure 3. 12. Contact and sheet resistance of A samples series: (a) for each sample, (b) versus annealing time. 

Schottky barrier – height reduction mechanism. The sheet resistance is increasing with an annealing 
time upto 10 mins and then, it is decreasing as shown in Figure 3. 12. The lowest sheet resistance   
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was observed for the sample A5, which has gone metallization prior to electrical isolation. However, 

the contact resistance is not sensitive for the difference in technological steps (A3 and A5). The 

error bars were extracted from the standard deviation of contact or sheet resistance with that of the 

average resistances. 

Mapping of resistance and 1/f noise level  

First a mapping of the electrical resistivity as well as the noise level was performed at room 

temperature. Each position was referenced by the (X, Y) position on the sample as indicated in 

Figure 3. 13(corresponding to figure 3.5 a). It is to be noted that, the resistivities are calculated here  

Figure 3. 13. (a)-(e) Mapping of resistances with colour code scales, (f) Resistivity versus annealing time.  
 

as explained in chapter 2, by taking into account the nominal thickness of the InN layers. As it can 

be seen from the colour code scales in Figure 3. 13, the resistances of all of these samples are in the 

range between 280 Ω code. The dispersion in the resistances across the wafer is increased upon 

annealing and is more worsen with the metallization prior to electrical isolation as in sample A5. 

The average resistivities across the wafer are plotted with annealing time as depicted in Figure 3. 13 
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(f). The resistivity is slightly lower for A5. For all of these samples, the resistivities are in line with 

the literature30. The lower resistivity in A5 could be related as, after etching the mesas, the damage 

of InN was not cured by thermal annealing, which in turn resulted highly conductive paths along the 

side walls or the  current crowding at the side walls.  

The low-frequency voltage-noise analysis was performed at various bias currents. The spectra were 

acquired in the 10 Hz to 100 kHz frequency range. A typical frequency dependence of the spectral 

density SV of voltage fluctuation processes in the investigated thin films is shown in Figure 3. 14 (a) 

for A3. Apart from a number of peaks at definite frequencies due to external noise sources, all the  

spectral density traces are seen with two main components. The first one, at low frequencies, which 

shows 1/f dependence and the other, is a constant amplitude spectrum, corresponding to white noise.  

The noise voltage spectral density SV at 1 Hz has a quadratic dependence with the bias current. This 

 

Figure 3. 14. (a) Voltage Noise spectral density for different DC bias currents for sample A3,          
(b) 1/f noise levels of all A series samples. 

1/f noise level at 1 Hz and 1V defined as KV (for equation see page number 18) . This is a measure of 

InN layers quality. This quantity Kv is plotted for all of these samples as shown in Figure 3. 14 (b). 

We observed that there is no significant change of 1/f noise level upon annealing and the dispersion 

in case of non annealed sample is less in comparison with other annealed or technologically 

different sample as A5. The sample A2, showed to have less level of noise. 
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A few conclusions were drawn after following the surface morphology, optical and electrical 

properties: 

 The electrical isolation of InN layer has to be done before metallization, so further in these 

conclusions, we will mention only about the other samples (A1, A2, A3, A4) 

 

 The thermal annealing has not showed to reduce the damage caused by mesa, as non 

annealed sample showed to emit high PL, dispersion of resistance over the wafer was less 

and the mean resistivity obtained was same of the order of other thermally annealed samples 

(A2, A3, A4).  The 1/f noise is showed to have a small increase in comparison with A2, 

which is having the lowest 1/f noise level of all of these samples. 

 

  Although, we could not see the effect of higher values of roughness of metal pads in 

comparison to InN layers, in electrical properties. 

 
 A interesting point to be noted from PL studies that upon annealing, the band gap of InN 

layer is decreasing , which in turn reduces, the residual carriers in the InN layer. Hence a 

compromise has to be made, so it remains short time annealing should be the option. 

 
 The noise levels obtained here are among the lowest one reported ever on InN. Using Hooge 

theory as mentioned in chapter 1, we calculate Hooge parameter, αH to be about 2.4x10-3 has 

been compared with InAs which is about 1x 10-3   at room temperature31.  

3.5 In and N rich InN layers 
 

We have chosen A3, A5, B1, B2 and B3 InN epitaxial layers to study the effect of growth 

parameters on the electrical transport properties. All of these InN layers have carrier concentration 

of the order of 1018 cm-3. The details of structural studies on these layers can be found in the 

reference32. 

3.5.1 Surface morphology 

 We have first, studied the surface morphology and roughness with AFM. Figure 3. 15 shows 

representative 5×5 μm2 AFM images for the two distinct growth regimes in In-face InN.  Figure 3. 
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15(a) shows the surface morphology of 400 nm InN sample grown with excess In. The InN surface 

of Figure 3. 15 (a) exhibited a relatively smooth morphology typical. This is a morphology 

characteristic of that seen in all In-face InN films grown with excess In. As reported throughout 

various studies, all samples grown with excess In exhibited In droplet accumulation visible by 

optical microscopy. Droplets became larger and more dense as increased excess In was supplied 

during growth10. In contrast, sample (B3) exhibits a much higher roughness due to N-rich growth 

conditions. This is agreement with Gallinat et al.10 who reported that when In flux becomes lower 

than the N flux, the surface looses the step flow growth which is the characteristic of slightly indium 

rich conditions. For N-rich conditions, the differences in morphology between the two samples (A3 

and B3) can be explained by the fact that in A3, we are further away from stoichiometry compared 

with B3. 

 

Figure 3. 15. A 5 × 5 μm2 AFM micrographs of In-face InN layers grown on Ga-face GaN templates under (a) 
In-rich conditions, and (b) N-rich conditions. The growth temperature for both layers was  440° C. 

3.5.2 Electrical properties studies at room temperature 

 Resistivity versus roughness 

Figure 3. 16 shows the resistivity versus surface roughness for In rich and N rich InN layers. 

N rich samples (A3 and B3) exhibited higher roughness. The resistivity of InN layers are increasing 

with the increase of InN layers roughness. This is quite consistent with the literature33. Using Figure 

3. 3, one can derive that n ≈ c/√ݐ with c= 9.48x1018 at/cm3 to estimate mobility from the measured 
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resistivity. The estimated normalized mobility values are plotted in Figure 3. 16 (b) versus 

roughness along with silicon values from the reference 36. One can observe a clear dependency 

between charge carrier mobility and roughness as already observed in Silicon MOS devices34. 

 
Figure 3. 16. (a) Resistivity versus surface roughness of In and N rich InN layers at room temperature , (b) 
Normalized mobilities of InN layers and Silicon MOS devices from reference 33. 

 

It is known that in MOS devices, the voltage bias of the gate creates an inversion layer at the 

interface with the dielectric gate. Thus conduction only occurs at the surface of the Silicon layer. 

This data extracted from reference 33 were also been plotted as shown in Figure 3. 16(b) and one 

can notice the similarity in the two trends observed for these two different materials. Surface 

roughness dependence with mobility indicates the existence of a surface charge layer in these 

samples. As a conclusion these mobility values trend with surface morphology can be interpreted as 

a surface mechanism. It is to be noted that, it is difficult to estimate the absolute values in mobility 

since; we do not know the real conduction thickness in InN.   

Resistivity versus Noise 

DC and noise measurements have been performed on all devices at room temperature using 

the following conditions. From DC measurements, electrical resistivity was deduced. The noise 

measurements were performed at different bias voltage. SV at 1 Hz was deduced and then plotted 

versus voltage across the sample to deduce Kv.The noise parameter K, given by,  ܭ = .ܹ.	௏ܭ	 .ܮ  			ݐ
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(where W: width, L: length of the geometry across which noise measurements were performed and t: 

thickness of InN layer), was calculated to remove the geometry dependence of these electrical 

parameters. Then these K values are plotted versus electrical resistivity for all the devices available 

on each wafer in Figure 3. 17. 

  
Figure 3. 17. Mapping of resistivity and 1/f noise level of all available devices at room temperature for 
slightly In rich and N rich InN layers. 

It can be observed that electrical resistivity varies over less than one decade. The noise level 

dispersion is more than two decades from wafer to wafer and less than one decade within one wafer. 

No clear dependency between these two parameters can be observed. The impact on the N or In rich 

is visible only in electrical resistivity, showing that noise source are not directly connected to these 

morphology parameters. Even if these layers are MBE grown the K values obtained and TEM 

pictures reported on the same wafers in the reference 32, clearly show that multiple origins of 

fluctuation (surface, interface states or defect in the vicinity of the surface) exist. Each of them may 

contribute in different ways and different level of fluctuation. More time will be needed to achieve 

defect free layers where correlation between noise level or morphology parameters could be 
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observed. Even in silicon process where the technological steps are well controlled, this kind of 

correlation is difficult to find and were not often reported35. 

3.5.3 Electrical properties studies with temperature 

        As seen above, in N rich InN MBE layers, it is possible to estimate transport properties 

more precisely, so we have chosen A3 and B3 samples to investigate electrical resistivity and low 

frequency noise properties with temperature 77 K to 300 K. Current-Voltage (I-V) characteristics of 

InN patterned layers showed an ohmic behaviour for both the InN material and the metallic contacts 

in the whole temperature range. 

 

Figure 3. 18. The electrical resistivity of the InN layer between 77 K and 300 K. 

The measured contact resistances were always 103 to 102 times smaller compared to the measured 

InN resistance for B3 and A3 samples respectively. A decrease in the electrical resistivity with 

decreasing temperature down to approximately 130 K was observed as can be seen in Figure 3. 18. 

The temperature dependence of the resistance above 130 K exhibited a positive temperature 

coefficient of about 7.70 x 10-4 K-1 at 300 K(for instance in sample B3), which is in agreement with 

reported results in InN nanowires.36 This resistivity dependence with temperature is characteristic of 

a metal like behaviour in contrast to a non-degenerate semiconductor.36, 37 

In order to better understand the physical mechanisms behind the transport properties in these 

InN layers, noise measurements at different temperatures have been carried out. As pointed out in 

chapter 1, Low frequency noise sources and especially 1/f noise sources are related to mobility 
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fluctuations in the bulk38or number fluctuations which usually originate from the surface39. (For 

more details refer to section 1.5.6 of chapter 1 and annex I) 

The identification of this kind of fluctuation mechanisms can be used to probe electrical 

conduction. 

 

Figure 3. 19. Voltage noise spectral densities measured for different DC bias currents:  (a) and (c) at 300 K 
the curves are dominated by the 1/f noise contribution. (b) and (d) At 77 K, a Lorentzian contribution is now 
visible (shown with an arrow).  

Figure 3. 19 shows two examples for B3 and A3 of typical noise spectral densities Sv as a 

function of frequency for different bias currents. These measurements were performed on a 94 µm 

wide and 210 µm long bridge on TLM1 (see Figure 3.7 b) for sample B3. For A3 sample, we have 

conducted noise as well as resistivity studies on geometry III shown in Figure 3.5. Before each noise 

measurement at different bias currents and temperatures, the resistance of the devices was 

systematically measured to check that it did not vary in the considered bias current range as a 

consequence of self heating.  In Figure 3. 19, two different trends were observed above and below 

100 K. Above 100 K up to 300 K range, the spectra clearly consisted of following two parts: a 1/f 
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noise contribution that depends on the bias current and frequency, and the white noise part which 

remains constant Figure 3. 19 (a and c). For each temperature the measured white noise level was in 

agreement with the dc electrical resistance according to 4kBTR, where kB is the Boltzmann constant. 

The slope of the low frequency part was around -1 in the 10– 100 Hz frequency range, thus 

confirming the “1/f” behavior. We checked the quadratic dependency of Sv versus the bias current 

(0 to 7.5 mA in case of B3 and 0 to 3 mA in case of A3), as expected in homogeneous samples.  At 

lower temperatures (≤ 100 K), apart from the 1/f noise and white noise, a Lorentzian shape appears 

with a characteristic frequency fc and plateau levels that depend on the temperature (Figure 3. 19 d). 

The characteristic frequency of the Lorentzian curves did not depend on the bias current and it 

decreased when the temperature was reduced as illustrated in Figure 3. 20.  

 

Figure 3. 20. Characteristic lorentzian frequency variation with temperature (sample B3): ݂ܿ	ૠૠ௄.	݂ܿ	ଵ଴଴௄ are 
the lorentzian frequencies for sample B3. 

As described in chapter 1, this Lorentzian profile is attributed to a Generation Recombination 

process due to a trap that has a discrete energy level in the band gap. A single relationship 

f
c




2

1
   exists between the time constant τ of the trap and the characteristic frequency of the 

Lorentzian40. The Arrhenius diagram obtained by plotting ln(τ.T2) as a function of 1/(kBT) is shown 

in Figure 3. 21. For all the devices under study, the results were identical and showed a clear linear 

dependence. Using equation (1.10) in chapter 1, the energy level of the trap was deduced from the 
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slope of the linear fit, its energy position being around 52 meV for B3 and 55 meV for A3, below 

the conduction band minimum.  

 
Figure 3. 21. The Arrhenius diagram obtained for N rich InN layers by plotting ln(τ.T2) as a function of 
1/(kBT), a trap energy level of  52  meV for B3 and 55 meV for A3 respectively below the conduction band 
minimum is obtained. 

As a consequence, these results can be interpreted as a transition from non degenerated (below 

100 K) to a degenerated semiconductor. For temperature higher than 100 K, only 1/f noise is 

observed and the electrical resistivity increases with the temperature: InN acts like a metallic 

conductor and no single trap generation recombination process can be observed. Below 100 K, 

Lorentzians appear and electrical resistivity is more or less constant with the temperature (Figure 3. 

18): InN acts as a semiconductor. It was possible to probe a bulk trap thus indicating the part of the 

electrical conduction occurs in the bulk. A volume charge carrier number fluctuations was thus 

probed by the LFN measurements. 

After subtraction of the Lorentzian, the 1/f noise level from 77 K up to 300 K is observed and 

plotted the same in Figure 3. 22. All the measurements values have been normalized to 1 at room 

temperature to keep an insight on the temperature variation. Two typical trends can be observed: (i) 

an increase with temperature from 80 K for B3 device and starting upper 100 K for A3 and A5 

devices. (ii) a decrease or a constant value for the lowest temperature. In order to explain these 
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behaviors, basic models were tested in order to distinguish between number or mobility fluctuations 

with constant doping of free carriers. The concerned mathematical derivation about this model is 

given in the annex I.  

 
Figure 3. 22. The normalized 1/f noise level with versus temperature with number and mobility fluctuation 
models. The normalization of 1/ f noise levels was done at room temperature values. 

Mobility fluctuations model predicts either no or a small decrease of the 1/f noise level with 

temperature. On the other hand, number fluctuation model predicts an increase of the noise. 

Therefore, it follows that our measurements are better explained with number fluctuations which are 

probably originating at the surface, with a constant concentration of free carriers. Therefore, at 

higher temperatures (>100K), the measured 1/f noise agrees with the already reported surface charge 

accumulation of InN17.  The measurements at low temperature cannot be explained by these models. 

In this range of temperature, either the concentration of free carriers of the mobility may be effected 

by another mechanism such as carriers freezing that have already been reported in this range of 

temperature. However, this point needs further investigations with new measurements at lower 

temperature to extend the range of investigated temperature.  

In summary, LFN measurements were performed on MBE grown InN layers from 77 K up to 

300 K. The increase in the 1/f noise level with temperature may be a confirmation of the electron 



 

 

74 
 

accumulation layer at the surface which was already reported by other techniques. However, the 

Lorentzians observed at or below 100 K and the evolution of their characteristic frequencies with 

temperature are consistent with a generation-recombination mechanism due to a discrete trap level 

which has been determined at around 50 meV below the conduction band. These results show that 

with the present technique, it is possible to probe the part of the electrical conduction that takes 

place in the bulk of InN films. 

3.6 Conclusions 

DC measurements on TLM patterned InN layers, revealed an extremely low contact resistance 

of non alloyed Ti/Al/Ni/Au metallization, which is about 103 times lower than the sheet resistances. 

The effect of different fabrication steps and annealing effect draw a conclusion of: annealing 

induces dispersion in electrical resistivity over the entire wafer; however annealing time did not 

show effective differences in the measured electrical resistivities of InN layers. As dispersion 

indicates the material non homogeneity across the wafer, annealing should be avoided in order to 

achieve a good quality contacts. As the dispersion in resistivities as well as 1/ f noise levels are 

higher as compared to the wafers which have gone electrical isolation prior to metallization, 

electrical isolation after metallization has to be avoided, 

The resistivities of In rich and N rich InN layers at room temperatures showed a strong 

relation with the surface roughness, indicating the dominant electrical conduction is at the surface. 

The estimation of Hooge parameter of these InN layers from 1/ f noise revealed that the low 

frequency noise is sensitive to the material quality as these InN layers having a high dislocation 

densities of ~ 1010 cm-2, shows the InN layers quality is comparable with that of GaAs and InAs 

devices.  

The low frequency noise versus temperature showed that there exist a number of charge 

carrier fluctuations which indicates that a part of electrical conduction takes place at the surface, 

which is coherent with the electron accumulation layer at the surface. 

Though the 1/ f noise levels variation and even levels are different for both of these samples 

A3 and B3, we noticed the located trap levels are around 50 meV. This indicates that these traps are 

intrinsic of the InN layers. The noise measurements versus temperature probed a trap level near the 

conduction band, which gives an indication of accessing bulk electrical conductivity in InN layers. 
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Chapter 4 
InGaN Quantum Wells: Transmission Electron 

Microscopy and Photoluminescence studies 
 
This chapter addresses the issue of the origin of high emission efficiency in InGaN/GaN 

quantum wells (QWs) for solid state lighting applications. In this context, we have characterized the 

structure, morphology and chemical composition of the QWs, in order to determine how they are 

affected by the growth conditions and to correlate this with the optical properties. 

 

4.1 Introduction and Motivation 

Wurtzite nitride semiconductors are under an extensive worldwide research attention as 

highest potential materials for the realization of multicolour emitting diodes and laser diodes, due to 

the wide range of emission wavelengths which extends from ultraviolet to near infrared1,2.The 

development of InGaN alloys opened the way to all solid state light sources such as blue and green 

LEDs, white LEDs3. The nitride semiconductor laser diodes are used from flat panel displays to 

compact disc players, for instance 400 nm laser diodes1 for high density optical storage. Recent 

developments confirmed InGaN system capability in photovoltaic applications4 as well. At present, 

highly efficient violet and blue-emitting diodes have been achieved5,6, but this is not yet the case for 

green LEDs6,7. For longer wavelengths LEDs, these alloys need to contain higher concentrations of 

In, this gives rise to poor crystalline quality. Additionally, a large piezoelectric field results with 

high Indium content and forms another bottleneck to achieving high emission efficiency. 

Nevertheless, a large amount of research is going on all over the world to sort out this issue. 

4.1. 1 Effect of polarization fields in InGaN/GaN QWs 

In the InGaN/GaN system, the lattice mismatch increases rapidly with the indium 

concentration and the resulting piezoelectric polarization dominates over the spontaneous 
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polarization. Fiorentini et al.8 theoretically predicted a strong bowing of the polarization properties 

upon alloying, which was referred to as ‘‘nonlinear polarization’’. 

 

Figure 4. 1. (a)Polarization field vs in-plane strain (In mole fraction), (b) Emission energy vs well width for a 

series of GaN/GaInN/GaN multiple QWs with about 22% In9. 

An experimental determination of the internal polarization field in GaInN/GaN QWs, due to 

piezoelectric and spontaneous polarization was done by Hangleiter et al9. Figure 4. 1a shows almost 

linear increase of the field with increasing In content and pseudomorphic strain which was 

determined from a series of QWs. The full line represents a quadratic fit to the data, the dashed lines 

represent the components associated to GaN and InN, respectively. The dashed-dotted line is from 

first-principles calculations6. The magnitude of the internal fields in InGaN/GaN QWs was 

estimated from PL emission energy with QW width variation. The emission energies obtained from 

a series of GaN/GaInN/GaN multiple QWs with about 22% In and different QW widths is shown in 

Figure 4. 1b. The best fit was obtained for a field of 3.1MV/cm6. 

4.1.2 Origins of high efficiency emission in InGaN Quantum Wells 

 In comparison with GaAs based devices, nitride devices exhibit a higher efficiency1 in spite 

of high defect densities ≥ 108 cm-2 which can be present inside the active layers10,11,12,13. Moreover, 

the insertion of InGaN underlying layer under InGaN QWs showed pronounced quantum efficiency 

in comparison to GaN underlayer14. In the same vein, it was recently shown that inserting delta InN 

layer in InGaN QWs or using staggered InGaN QWs, can improve the emission efficiency15,16. Up 
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to date, there is a number of models which have been proposed to explain the origin of this defect-

insensitive emission17, 18, 20, 23, 32, 34. The exhibition of high efficiency in nitride semiconductors, has 

been often attributed to the presence of In rich clusters that behave like quantum dots and limit the 

interaction of the excitons with the dislocations17,18,19, 20, 21,22. Figure 4.2 shows a TEM image of 

InGaN MQWs which exhibits many dark spots in the wells. The diameter of these dark spots ranges 

from 2 nm to 5 nm. It has been proposed by Narukawa et al14, that the dark spots originate from 

isotropic dot-like structures which were self-formed in the wells. 

 
         Figure 4. 2 Magnified TEM image showing the MQW region14. 

 
However, more recent reports have shown that such image contrast could be due to electron beam 

damage if no particular care is taken during sample analysis in the TEM 23 . Smeeton et al20  

investigated the InGaN QWs sensitivity to irradiation by the electron beam in TEM. Figure 4. 3 (a) 

and (b) shows high-resolution TEM images, acquired during the first seconds of irradiation at the 

QW region and the same area after a few minutes of exposure to electron beam. As it can be seen 

from these HRTEM images, the relatively uniform contrast of the InGaN in the first image (Figure. 

4.3a) are replaced by strong local changes in intensity in the second (Figure 4.3 b). It was concluded 

that such changes in image contrast could be related to the development of an inhomogeneous strain 

in the InGaN lattice, which may erroneously be attributed to indium clustering. Subsequently, a 

thorough analysis of the best practice for obtaining the correct information has been proposed, it 

appears that exposure times of an area below some 20 s will not be enough to introduce  alterations 

at 200 KeV24,25, 26. 
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Figure 4. 3. (0002) lattice fringe images of an In0.22Ga0.78N SQW: (a) recorded within 20 s of first 
exposing this part of the QW; (b) same area after a few minutes of exposure to a 400 kV electron beam23. 
 

There are few reports available in the literature which quote the nano scale phase separations 

an evidence for localization centres in InGaN layers as the root of high efficiency27, 28. Indeed phase 

diagram investigations have shown that GaN and InN should have a miscibility gap at temperatures 

between 600°C and 850ºC29,30. More recently, Chichibu et al31 reported that the existence of In–N–

In–N zigzag chains gives raise to localization of carriers inside InGaN alloys rather than by 2-3 nm 

In rich clusters. These widely believed concepts of gross indium fluctuations was also questioned by 

Humphreys et al32, who proposed to correlate  the high efficiency in InGaN/GaN system with the 

QW thickness fluctuation. In their work, a three dimensional atom probe analysis of InGaN QWs 

did not show any indium clustering. Figure 4. 4 shows a reconstruction of the InGaN/GaN structure 

with the indium and gallium atoms displayed. Four QWs are clearly visible, in which the bottom 

three of these QWs were chosen to analyze in detail for the indium distribution, because, the top  

 

 
 
Figure 4. 4. Three-dimensional Atom Probe Field Ion Microscope (3DAP) image ofInGaN/GaN multi 
quantum wells. Each dot represents a single atom: light blue is Gallium and orange is Indium32.  

well may have been damaged by sample preparation. As compared to the indium distribution in a 

random alloy, no significant deviations were found in the three QWs, leading the authors to 
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conclude that there was no evidence of indium clustering in their sample. However, other authors 

still believes in possible clustering in InGaN QWs which may depend on the growth conditions33, so 

the controversy is still going on.   

 On the other hand, a different process has been proposed by Hangleiter et al.34, for high 

emission efficiency of InGaN-based QW light emitting diodes, which relies on screening by defects. 

In this instance, during the growth of the QWs, hexagonal V-shaped pits which  form on top of 

threading dislocations exhibit {10-11} growth facets with a smaller growth rate than along the [0001] 

direction, leading to  smaller thicknesses for the sidewall QWs (as shown in Figure 4.5). Such QWs 

exhibit higher bandgaps and form a potential barrier around the corresponding dislocation. The 

authors proposed that such configuration keeps carriers from recombining non- radiatively at the 

defect core. The so-called V- shaped defects are one of the most common defects which are 

frequently observed in (0001) grown InGaN thick layers and InGaN/GaN MQWs35,36,37,38.  

 

Figure 4. 5 TEM image a) of an InGaN/GaN MQW structure and b) a schematic illustration of the QW 
structure in the vicinity of a TD induced V-pit34. 

In this chapter, we report on our investigation of the structure of InGaN QWs within an effort 

to correlate it with the optical properties.  To this aim, we have carried out Transmission Electron 

Microscopy by  minimizing the electron dose on carefully prepared InGaN QWs grown by Metal 

Organic Vapour Phase Epitaxy (MOVPE) and/ (or) Molecular Beam Epitaxy (MBE). The objective 

is to determine the effect of V-pits on QW widths as well as the Indium distribution inside the wells 
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versus the growth conditions. PL studies were carried out to connect the peak emission intensity and 

energy with QW thickness, In composition possible fluctuations. 

4.2 The samples 
  This chapter discusses the results obtained on three different sets of InGaN/GaN QW 

structures grown in three laboratories. The first set of samples was grown by Metal Organic Vapour 

Phase Epitaxy (MOVPE), or Molecular Beam Epitaxy (MBE) and by use of the two techniques on 

the same wafer, at EPFL, Lausanne, Switzerland. The second and third set of samples was grown by 

MOVPE technique at CRHEA Valbonne.  

 EPFL samples (Set-I): The first two samples (L210 and L212) were grown by MBE 

technique, they were made of one QW, in this case, the varying parameter has been the nominal 

thickness of the QW; the next two samples (A1809 and A1807) were grown by MOVPE and were 

either made of one QW, or two QWs of equivalent nominal thickness. The fifth sample was made of 

one QW grown by MOVPE, on top of an additional QW was deposited by MBE. All the samples 

were grown on commercial Lumilog templates (c-plane sapphire with MOVPE GaN of 4 µm 

thickness). 

 CRHEA samples (Set-II): This is a set of three samples 1386, 1389 and 1425, which were 

grown by MOVPE. The first two samples were 5 periods of InGaN QWs and the last is made of 30 

QWs with the barriers doped with Si. All the active layers were grown in temperature range: 800 - 

810 °C. The samples we investigated in this chapter are listed in Table 4.1.  

Table 4. 1. Sample nominal specification 

Source Growth technique Specimen 
 No. of QWs QW thickness 

(nm) In% Emission 
color 

EPFL 
(Set -I) 

MBE L210 1 2.5 25 Green 
L212 1 2 25 Blue 

MOVPE A1809 1 1.5 25 Blue 
A1807 2 3 25 Green 

MBE & MOVPE L248H 1 2 25 Blue 

1 3 25 Green 

CRHEA 
(Set-II) MOVPE 

1386 5 2 25 Green 
1389 5 2 21 Blue 

1425 30 2 20.8 Violet 

 



 

 

84 
 

4.3 Microstructure studies of InGaN QWs for V-pits and its 
association with PL studies 

4.3.1 Microstructure  

One of the key issues is the presence of hexagonal shaped deep-pits on the surface of the 

samples. We analyze the behavior of the Threading Dislocation(TD) attached to V-pits, as it has 

been claimed the presence of v-pits is detrimental on the device characteristics. 

EPFL sample (Set-I) 

MBE QWs : The MBE QW sample is first subjected to TEM for investigation of TDs and their 

termination in the topmost layer. Figure 4. 6, shows a weak beam cross-sectional TEM micrograph 

taken around the [10૚ഥ0] zone axis with diffraction vectors g such as g = (0002) were screw and 

mixed type of TDs are visible and the other along g = (11૛ഥ0), for the edge and mixed type TDs are 

in contrast (not shown here). The TDs are noticed as bright lines propagating in a direction normal 

to the GaN surfaces are seen in Figure 4. 6, in which some of the TDs are started inside the GaN 

buffer layer and some originated from the substrate (which is not shown in figure). From the g.b 

criteria as described in Chapter 2, we identified these TDs as edge, screw and mixed types. Among 

them, the mixed type of dislocations is dominant in number comparatively to edge type of TDs with 

an even smaller number of screw type TDs. All the TDs which are shown with solid white arrows 

exhibit a mixed type of character. These TDs propagate from GaN to the surface, a larger view is 

shown for the TD surrounded by the rectangle (Figure 4. 6) and is discussed in the next paragraph 

(Figure 4. 7). 

  

 

Figure 4. 6 Typical low magnification XTEM micrograph of MBE SQW (sample L210). 
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In this instance, the TD passes to the top of the GaN surface via InGaN QW, without being affected 

by the active layer. From Figure 4. 7, it is clear that there is no V-pit at the top of the dislocations in 

these MBE QWs. 

 

Figure 4. 7. A magnified view at the TD area which is surrounded by a rectangle shown in figure 4.6(sample 
L210). (a)Bright Field image and (b) Dark Field image taken under 2 beam condition same area and with 
g=0002. 

 MOVPE QWs: Previous reports have shown that, when V-shape defects in III-N 

materials are related to threading dislocations, they initiate at the threading dislocations, always 

extending along the growth direction in the InGaN heterostructure39. These TDs can be of edge, 

screw and mixed type of character, which has been reported earlier in this heteroepitaxial system. It 

has also been shown that the V-defects start at the onset of the first quantum well, second or third 

QWs35, 40. To obtain an insight about the V-pits association with TDs and also with QWs in MOVPE 

layers, we have observed the samples with a variation of well widths and In content inside the QWs. 

Figure 4.8 (a) and (b), shows a bright field image with single and double InGaN/GaN QWs 

containing V-pits , which originate in the GaN buffer layer, in case of SQW, and in case of DQW , 

the V-pits originate inside the GaN barrier. The two images, in Figure 4. 8, were recorded in two  

 
Figure 4. 8. Bright-field TEM image taken with g=0002 diffraction condition showing that V-defects are 
associated with mixed-component TDs; (a) MOVPE single QW (sample A1809), (b) A MOVPE double QW 
(A1807). 
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beam conditions with g=0002 near a <10-10> zone axis. By applying the diffraction contrast g.b, 

invisibility criteria, we concluded that the TD arriving from the GaN buffer layer and GaN barrier 

are mixed type of dislocations. At the vicinity of TDs, the QW remains flat and regular, showing no 

change on the QW geometry due to V-pit unlike the case reported in Hangleiter et al34.  

CRHEA samples (Set-II) 

 MOVPE QWs: In this case, we have observed MQWs which comprised of 5 and 30 

InGaN periods. In these MQW structures, irrespective of its emission wavelength and number of 

InGaN periods, we noticed V-shape defect structures which are always connected to TDs as shown 

in Figure 4. 9 and Figure 4. 10 respectively. Figure 4. 9 shows dark field images taken with g=0002 

beam condition for the two samples, one (1386 shown in the left-hand side of the image) emitting in 

blue-green and the other (1389, shown in the right hand side of the image) emitting in blue. In both 

cases, the V-pits are formed at the tip of the mixed type TDs. In case of 5 QWs, the V-pit is started  

 

 

Figure 4. 9. Cross-sectional dark-field TEM images taken under two-beam diffraction conditions with 
g=0002: (a) sample 1386 emitting in green, and (b) sample 1389 emitting in blue. Both of these samples 
constituted of 5 QWs.  

 

at the 3rd QW from the top shown in Figure 4. 9 and in case of 30 QWs, in 2nd QW. A similar result 

has been reported by Sánchez et al40. We note that MOVPE QWs form V-pits irrespective of the 

well widths, growth conditions as they came from different laboratories. In all the cases, the TD 

stops at the apex of this V-defect. In all the MOVPE single or multiple QWs samples, the QWs 

thickness is not modified by the V-pit formation unlike the case mentioned by Hangleiter et al34.  
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Figure 4. 10 Cross-sectional dark-field TEM images of sample 1425 taken under two-beam diffraction 
conditions with  g=0002. 
 

4.3.2 Optical properties of InGaN/GaN QWs 
To see the influence of V-pits on the luminescence intensity, we carried out PL. A CW He-Cd 

laser was used as an excitation source at 325 nm. Figure 4. 11 shows, PL spectra of all InGaN QWs 

 
Figure 4. 11. Room temperature PL spectra for different In content layers of MBE and MOVPE grown layers.  

400 450 500 550

300 K

 L212: MBE 1 QW: Blue emission
 L210: MBE 1 QW: Green emission
 1809: MOVPE 1 QW: Blue emission
 1807: MOVPE 2 QWs: Green emission
 L248H: MOVPE and MBE 2 QWs: Green and blue emission
 1386: MOVPE 5 QWs: Green emission
 1389: MOVPE 5 QWs: Blue emission
 1425: MOVPE 30 QWs: Violet emission
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samples taken at ambient temperature. At first glance, from the PL spectra one can notice a higher 

PL intensity for MOVPE QWs as compared with MBE grown QW. With increasing the number of 

QWs from 1 to 30, the optical emission intensity is strongly enhanced. Additionally, we can observe, 

in case of MBE QW, the PL spectrum is quite broad while in MOVPE QWs.  

 At this point, it may be stated that, the luminescence in our samples, may not be enhanced by 

the self screening of the defects as it has been reported in reference 34. In other words, the presence 

(in case of MOVPE) or absence (in case of MBE) of V-pits does not appear to have a direct 

correlation with the observed PL emission. 

 Photoluminescence studies at low temperatures: Figure 4. 12 displays low temperature PL 

spectra of single QW grown of MBE or MOVPE techniques. The PL measurement shows a peak 

centered around 492– 493 nm at 12 K for MBE QW, and as can be noticed in Figure 4.12, it is broad 

with a measured full width half maximum (FWHM) of ~300 meV, this result may be directly related 

to the QW irregular morphology as has been discussed earlier41. The corresponding PL spectrum is  

 
Figure 4. 12. PL spectra recorded at 12K for MBE Single QW (Sample L210) and MOVPE single QW 
(A1809). 

shown in Figure 4. 12. In this instance, we obtain an emission which is shifted more towards the 

blue ~ 450 nm and the corresponding FWHM is 54 meV, which is almost five times smaller than the 

previous MBE QW. This indicates that the optical quality of the QWs for MBE are severely 
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degraded when compared to MOVPE QWs, which is more clear with the PL intensity in Figure 4. 11. 

Note that the first LO phonon replica appearing on the low energy side of the PL spectra42. 

In order to have a better insight into their optical properties, we have performed the 

temperature dependence of the PL peak energy. Figure 4. 13 displays PL spectra of a MOVPE 

double QW structure. It shows a double peak emission. Firstly one can notice in these PL spectra 

that the higher energy peak emission is reduced quickly by increasing temperature than that 

compared to the lower energy peak. These results indicate that the dominant emission is from the 

QWs43. This quenching of PL intensity can be attributed to alloy and interface fluctuations44.  

 
Figure 4. 13. Photoluminescence spectra, at various temperatures, of an InGaN/GaN QW structure with 
nominal In content of 25%. (Sample A1807). Inset figure:  Semi log plot of PL versus energy. 
 

The InGaN QW peak energy exhibits an S shaped behavior, in the temperature range of 12K – 

300 K as shown in the inset of Figure 4. 13. It is believed that in InGaN alloys, the PL peak energy 

positions of InGaN, exhibits a S shaped behavior, which results from the  carrier localizations in 

potential minimums and hence connected to In composition fluctuations45.  Similar results were 

reported by Chichibu et al46 in 20% In content InGaN MQWs, who concluded on the possibility of 

excitons localized at the potential minima originating from In composition fluctuation.   
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4.4 Microstructure analysis with CTEM, HRTEM and STEM 

     As it has been mentioned in the introduction, the other most quoted key possible origins for 

the high efficiency of InGaN/GaN QWs would be the presence of In rich clusters, well width 

fluctuations etc. In our case, we have pursued the microstructure investigations by High Resolution 

TEM (HRTEM) and STEM. The HRTEM extracted data was analysed using digital phase as well as 

peak finding procedures in order to extract the local strain and In compositions47. 

4.4.1 Microstructure and chemical composition studies with 
HRTEM 

4.4.1EPFL sample (Set-I) 

 MBE QWs: For MBE grown QWs, we notice that the well width is systematically 

fluctuating, as can be seen in Figure 4. 14, the width goes from 0.5 nm to more than 2 nm, in this 

exhibited area. In lateral extension, the changes can take place at quite small scale, see arrows and 

the well morphology is changing from a quantum dot like, to more extended features. This well 

morphology can be connected to the low PL intensity in MBE QW, the corresponding PL was 

shown in Figure 4. 12 (a) and this may explain the large FWHM of 300 meV.  

 

 

Figure 4. 14  Typical XTEM micrograph of MBE QW (sample L210) 
 

 A HRTEM micrograph as recorded within optimal conditions24 is exhibited in Figure 4. 15, as 

can be noticed, from the colour coded strain map which had been superimposed, this area 

corresponds to a more or less quantum dot like feature. The well width is larger towards the middle 

of the image, where it extends up to close 2.0 nm and there is a decrease towards the borders of the 



 

 

91 
 

image. From the maximum measured strain, we extract a local indium maximum composition of 

29%. 

 

Figure 4. 15 Strain map superimposed on corresponding HRTEM image. (sample L210) 
 

MOVPE QWs: 

 Single QW: In contrast to the MBE QWs, the MOVPE ones exhibit a homogeneous well 

morphology as can be noticed in Figure 4. 16 for sample A1809: the well thickness is uniform 

throughout and in this sample; it is measured as 1.4 nm. The corresponding PL spectrum shown 

 

 

Figure 4. 16 Typical XTEM micrograph of MOVPE QW (sample A1809) 
 

 in Figure 4. 12, evidences high efficiency, which could be correlated to this homogeneous well width 

morphology as determined at this scale.   The corresponding HRTEM image is exhibited in Figure 4. 
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17, from the measured strain; we extract a local indium maximum composition of 27%, as can be 

noticed, at this smaller scale, there could some fluctuations in the local indium composition. 

 
Figure 4. 17 Strain map superimposed on corresponding HRTEM image. ( Sample A1809). 

 

Double Qws: In case of double QWs grown by MOVPE, the results of one QW are confirmed 

and the well width is always homogeneous as exhibited in Figure 4. 18 for sample A1807. The 

measured thickness for two QWs is 2.6 and 2.9 nm, respectively. 

 

 

Figure 4. 18  Typical XTEM microgrpah of MOVPE QWs (sample A1807). 

The corresponding PL spectrum recorded from 12K and room temperatures are shown in 

Figure 4. 13. In this instance we obtained a green emission at 510 nm. Considering the above two 

cases of MOVPE QWs (sample 1809 and 1807) of PL spectrum, we observed an increase in PL 

energy with the decrease in QW thickness consistently with the confinement effect48. 
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 Combined MBE and MOVPE QWs: An interesting case is shown in sample L248H 

where an MBE QW was grown on top of MOVPE one. In this case, as expected from the above 

observation the MOVPE well is easily noticed with its homogeneous thickness (see Figure 4. 19), 

whereas, the MBE one on top exhibits thickness fluctuations. 

 

 

 Figure 4. 19  Typical XTEM micrograph of MBE AND MOVPE QWs (sample L248H) 

This image is completely consistent with the PL emission as exhibited in Figure 4. 11, the 

green narrow FWHM emission of the MOPVE QW is corresponding to the 2.3 nm uniform 

thickness, whereas, the MBE peak is large and towards the blue, also in agreement with the 

fluctuations and the smaller average thickness. 

4.4.2 HAADF Investigations 

High-angle annular dark field (STEM-HAADF) was next used to have a more accurate 

measurement of the QW thicknesses. In the following we discuss the results obtained for two 

samples (L248H and 1425). As shown in Figure 4. 20, the white contrast allows to determine 

precisely the location of the QWs. In Figure 4. 20 (a), the MOVPE QW exhibits a homogeneous 

thickness (2.08 nm), and the MBE well is not only narrower, but its thickness fluctuation is also 

visible, in agreement with the conventional TEM observations. In sample 1425, from the 30 QWs, 

we show only five QWs, and as can be seen, they exhibit a very homogeneous thickness of (1.99 

nm). The High Resolution STEM image of one of these 5 QWs of sample 1425 is shown in Figure 4. 

20 (c). Although the two MOVPE samples L 248 and 1425, exhibit homogeneous thickness, a closer 

look with HRSTEM image in Figure 4. 20, reveals the interfaces of 1425 samples are abrupt than  
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Figure 4. 20: STEM images (a) A High resolution STEM image of sample L248H, (b) A STEM image of a 
part of InGaN/GaN periods in sample 1425 and (c) A High resolution STEM image of one of the QWs in 
1425. 

that of MOVPE in sample L248, which indicates the fact that Si doping of GaN barriers results 

enhanced abrupt interfaces. These cross-sectional STEM images reveal QWs with highly perfect 

interfaces as shown in Figure 4. 20 a, b and c respectively. The uniform contrast inside the QW 

regions gives an indication of no phase separation. 

In order to determine the indium composition, we chose L248H to describe here in the 

observed areas; one can use directly the image contrast.  To this end profiles are taken and the 

background is subtracted with reference to the GaN (see detail in the appendix II). The thickness 

evolution of the sample in the area of interest is extracted from the fit of the background and the In 

composition is then obtained by a comparison of the resulting final profile to the theoretical ones 

that have been obtained through simulations. The obtained values are summarized as follows: 248H 

(QW1: In= 12.5%, QW2: 19%); 1386 (23.3); 1425 (14.1%).  

4.4.3 Comparison of extracted In composition with literature 

In order to properly compare the optical emission, QW width and the extracted In composition 

of the InGaN/ GaN QWs by taking into account the quantum confined stark effect and quantum well 

effect, we have reported here the data from the literature and as well as our own results on the same 

graph. The small open circles, small open triangles represent the experimental data from references 

49 and 50 in Figure 4. 21.  



 

 

95 
 

 

Figure 4. 21. Comparison of our extracted In composition from literature(our data: blue triangles) : (a) QW 
thickness vs In concentration49, (b) Energy emission vs In concentration50. 

From reference 49, we have the plot of QW thickness versus In concentration for a blue and a green 

LED respectively. In this case, we know the emission of our QWs from PL and we know the exact 

thickness from TEM measurements, so we have over lied our results on top of these values, which 

are seen in solid triangles. In this work, almost all samples are emitting either in blue or in green 

except 1425, which is emitting in violet. In extracting indium composition, we have assumed the 

blue emitting InGaN layers corresponding to 460 nm and the green to 520 nm. From reference 50, 

we have the plot of emission wavelength versus In concentration corresponding to 2 nm and 3 nm 

InGaN QWs which is shown with open symbols in the   Figure 4. 21 (b). We have from our PL and 

TEM, the emission energies and the real QW thickness. Though, we have thickness of QWs from 

about 1 nm to 3 nm, as mentioned in Table 4.2, but we have approximated the thickness close to 

either 2 nm or 3 nm to extract the In concentration corresponding to PL emission. The solid squares 

in Figure 4. 21 (b), corresponds to this work. We notice, in some cases, small discrepancies of as 

obtained In compositions with that of our samples and of nominal In contents. This could be 

accounted primarily due to the approximations; we employed to extract In compositions from 

references 49 and 50. The extracted values are listed in Table 4.2. 
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Table 4. 2 Summary of the InGaN/GaN QWs observed data on the investigated samples: Well thickness, In 

composition % and emission colour. 

Specim
en 

name 

Growth 
Technique 

N
o. 
of 
Q
W
s 

InGaN QW 
thickness 

(nm) 

PL peak 
position 

(nm) In composition (%) 

nominal TEM nomin
al TEM From 

Ref[ 49]  
From 

Ref[ 50]  
L210 

MBE 
1 2.5 1.98 502 25 29 23.2 31 

L212 1 2 1.5 447 25 19 18.74 22.6 

A1809 
MOVPE 

1 1.5 1.4 453 25 27 19.79 23.2 

A1807 2 3 2.9 and 
2.6 

508 and 
525 25 32 17.83 

and 19.2 
24.54 
and 26 

L248H MBE & 
MOVPE 

1 2 1 and 
2.08 

473 and 
532 25 

26 & 3 0 
 

24.2 
 26.9 

1 3 19 & 
12.5 

22.4 34.7 

1386 

MOVPE 

5 2 
1.95 495 

25 18 - 21 
23.3 30.81 

1389 5 2 2.3 460 21 - 14.1 25 

1425 3
0 2 1.99 426 20.8 - * 19.2 

4.5 Conclusions  

We have systematically investigated the properties InGaN/GaN QWs by means of  TEM, 

STEM and photoluminescence measurements. The investigated InGaN QWs layers are of thickness 

in the range of 1-3 nm with single pair of QW to 30 pairs of QWs, grown either by MBE and / or 

MOVPE techniques. As for the role of V-pits, they have been noticed to decorate the threading 

dislocations in the case of MOVPE growth, but we did not see any influence of these V pits on QWs.  

The QWs did not exhibit narrow sidewall quantum wells, therefore, the emission process in our 

samples does not follow the mechanism of dislocation screening by the potential wells as reported 

by Hangleiter et al. It is to be noted that, the V pit were not observed in MBE QWs, however, in 

quantum wells of similar  thickness and nominal In content, we observed that the PL intensity for 

MOVPE QW is higher than that of MBE QW. To understand further, we carried out micro structural 

studies on these MBE and MOVPE QWs. We noticed that the MBE QWs have width fluctuations 
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from one end to the other in contrast to MOVPE QWs, which have a well width homogeneity. This 

interfacial abruptness of the MOVPE QWs became enhanced by doping of Si in the  GaN barriers 

which is consistent with the earlier reports by Keller et al51. Probably, the presence of high emission 

in MOVPE can be accounted for the homogeneous morphology of InGaN QW. We therefore have a 

consistent story that in InGaN/ GaN QW system, the well homogeneity gives higher PL 

luminescence which is illustrated in PL diagram in 4.4.  We further conducted Quantitative HRTEM 

measurements to determine the local indium compositions from strain measurements. We found that 

the local In compositions could be higher than the nominal indium content and noticed local changes, 

this is probably an indication that there are local indium fluctuations in our InGaN/GaN QWs layers. 

As pointed out also, this is consistent with the temperature behavior in PL measurements. Using the 

chemical sensitive HAADF technique, it was possible to have accurate measurements of the QWs 

thicknesses within one monolayer accuracy and using this along with the peak position in our PL 

spectra, we were able to extract the average or effective indium composition using  data from the 

literature. This procedure allowed us to obtain a consistent set of results between the various 

techniques used in this work without doing the complete calculation taking into account the strain 

and spontaneous polarization effects. We have also attempted to extract the local indium 

composition from the HAADF image contrast, in this instance, the obtained values are 

systematically smaller that that above.  These are preliminary results and the discrepancy is still 

under investigation but could probably be due to a lack of known reference and/or bad correction of 

thin film relaxation effects. 

4.6 References 
                                                           
1The Blue Laser Diode, edited by S. Nakamura and G. Fasol, Springer, Berlin (1997). 
 
2J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, Hai Lu and W. J. Schaff, “Unusual 
properties of the fundamental band gap of InN”, Appl. Phys. Lett. 80, 3967 (2002). 
 
3I. Akasaki and H. Amano, “Crystal Growth and Conductivity Control of Group III Nitride Semiconductors 
and Their Application to Short Wavelength Light Emitters”, Jap. J. Appl. Phys. 36, 5393 (1997). 
 
4O.Jani, I. Ferguson, C. Honsberg and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” 
Appl. Phys. Lett. 91, 132117 (2007). 
 
5S.Nakamura,M. Senoh, N. Iwasa and S.-I. Nagahama, “High-power InGaN single-quantum-well-structure 
blue and violet light-emitting diodes”, Appl. Phys. Lett. 67, 1868 (1995). 



 

 

98 
 

                                                                                                                                                                                                  
 
6T. Mukai, M. Yamada  and S. Nakamura, “Characteristics of InGaN-Based UV/Blue/Green/Amber/Red 
Light-Emitting Diodes”, Jpn. J. Appl. Phys., Part 1 38, 3976 (1999). 
 
7C. Wetzel, T. Salagaj, T. Detchprohm, P. Li and J. S. Nelson, “GaInN∕GaN growth optimization for high-
power green light-emitting diodes”,  Appl. Phys. Lett. 85, 866 (2004). 
 
8V. Fiorentini, F. Bernardini and O. Ambacher,  “Evidence for nonlinear macroscopic polarization in III–V 
nitride alloy heterostructures”, Appl. Phys. Lett. 80, 1204 (2002). 
 
9A. Hangleiter, F. Hitzel, S. Lahmann and U. Rossow, “Composition dependence of polarization fields in 
GaInN/GaN quantum wells”, Appl. Phys. Lett. 83, 1169 ( 2003). 
 
10F. A. Ponce, D. P. Bour, W. Götz, N. M. Johnson H. I. He lava, I. Grzegory, J. Jun, and S. Porowski, 
“Homoepitaxy of GaN on polished bulk single crystals by metalorganic chemical vapor deposition”, Appl. 
Phys. Lett. 68, 917 (1996). 
 
11V. Potin, P. Ruterana,  G. Nouet, R.C. Pond and H. Morkoç, “Mosaic growth of GaN on .0001. sapphire: A 
high-resolution electron microscopy and crystallographic study of threading dislocations from low-angle to 
high-angle grain boundaries”, Phys. Rev. B 61, 5587 (2000). 
 
12S. Nakamura, M. Senoh, N. Iwasa and S. –I. Nagahama, “High power InGaN single quantum well structure 
blue and violet light emitting Diodes”, Appl. Phys. Lett. 67, 1868 (1995). 
 
13S. Nakamura, M. Senoh, N. Iwasa, S. –I. Nagahama, T. Yamada and T. Mukai, “Superbright Green InGaN 
Single-Quantum-Well-Structure Light-Emitting Diodes”,  Jpn. J. Appl. Phys. 34, L1332 (1995). 
 
14J.K. Son, S.N. Lee, T. Sakong, H.S. Paek, O. Nam, Y. Park, J.S. Hwang, J.Y. Kim, Y.H. Cho, “Enhanced 
optical properties of InGaN MQWs with InGaN underlying layers”, Journal of Crystal Growth 287, 558 
(2006). 
 
15H. Zhao, G. Liu, and N. Tansu, “Analysis of InGaN-delta-InN quantum wells for light-emitting diodes”, 
Appl. Phys. Lett. 97, 131114 (2010). 
 
16H. Zhao, G. Liu, X. –H. Li, G. S. Huang, D. Jonathan . S. Poplawsky, . T. Penn, V. Dierolf  and  N. Tansu,  
“Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520–525 nm employing 
graded growth-temperature profile”, Appl. Phys. Lett. 95, 061104 (2009). 
 
17Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita  and S. Nakamura, “Role of self-formed InGaN 
quantum dots for exciton localization in the purple laser diode emitting at 420 nm”, Appl. Phys. Lett. 70, 
981(1997) 
 
18P. Ruterana,  S. Kret, A. Vivet, G. Maciejewski and P. Dluzewski, “Composition fluctuation in InGaN 
quantum wells made from molecular beam or metalorganic vapor phase epitaxial layers”, J. Appl. Phys. 91, 
8979 (2002). 
 
19 A. Vivet,S. Kret  and P. Ruterana , “Investigation of the InGaN Quantum Wells Compositional 
Inhomogeneity” ,  Phys. Stat. Sol (c)  0, 307 (2002). 
 



 

 

99 
 

                                                                                                                                                                                                  
20 C. Kisielowski, Z. Liliental-Weber and S. Nakamura, “Atomic Scale Indium Distribution in a 
GaN/In0.43Ga0.57N/Al0.1Ga0.9N Quantum Well Structure”, Jpn. J.  Appl. Phys.  36, 6932 (1997). 
 
21S. Kret, G. Maciejewski, P. Dlujewski, P. Ruterana, N. Grandjean and B. Damilano, “Contribution to 
quantitative measurement of the In composition in GaN/InGaN multilayers”, Mat. Chem. and Phys. 81, 273 
(2003). 
 
22C. Kisielowski, T.P. Bartel, P. Specht, F.-R. Chen and T.V. Shubina, “From extended defects and interfaces 
to point defects in three dimensions—The case of InxGa1−xN”,  Physica B 401 639 (2007). 
 
23T.M. Smeeton, M.J. Kappers, J.S. Barnard, M.E. Vickers and C.J. Humphreys, “Electron-beam-induced 
strain within InGaN quantum wells: False indium “cluster” detection in the transmission electron 
microscope”, Appl. Phys. Lett. 83, 5419  (2003). 
 
24A. Rosenauer, D. Gerthsen, and V. Potin, “Strain state analysis of InGaN/GaN – sources of error and 
optimized imaging conditions”,  Phys. Stat. Sol (a) 203, 176  (2006). 
 
25J. P. O’Neill, I. M. Ross, A. G. Cullis, T. Wang and P. J.Parbrook, “Electron-beam-induced segregation in 
InGaN/GaN multiple-quantum wells”,  Appl. Phys. Lett. 83, 1965 (2003). 
 
26 T. Li, E. Hahn, D. Gerthsen, A. Rosenauer, A. Strittmatter, L. Reissmann and D. Bimberg, “Indium 
redistribution in an InGaN quantum well induced by electron-beam irradiation in a transmission electron 
microscope”, Appl. Phys. Lett. 86, 241911 (2005). 
 
27R. Singh, D. Doppalapudi, T. D. Moustakas and L. T. Romano, “Phase separation in InGaN thick films and 
formation of InGaN/GaN double heterostructures in the entire alloy composition”, Appl. Phys. Lett. 70, 1089 
(1997). 
 
28T. P. Bartel, P. Specht, J. C. Ho and C. Kisielowski, “Phase separation in InxGa1-xN”, Philosophical 
magazine, 87, 1983 (2007). 
 
29I. Ho and G. B. Stringfellow, “Solid phase immiscibility in GaInN”, Appl. Phys. Lett. 69, 2701 (1996).  
 
30T. Matsuoka, “Calculation of unstable mixing region in wurtzite In1−x−yGaxAlyN”. Appl. Phys. Lett. 71, 105 
(1997). 
 
31S. F. Chichibu, A. Uedono, T. Onuma, B. Haskell, A. Chakraborty, T. Koyama, P. T. Fini, S. Keller,  S. P. 
Denbaars, J.S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki,  
J.Han, and T. Sota, “Origin of localized excitons in In-containing three-dimensional bulk (Al,In,Ga)N alloy 
films probed by time-resolved photoluminescence and monoenergetic positron annihilation techniques”, Phil. 
Magazine 87, No. 13,  2019 (2007). 
 
32C. J. Humphyers, “Does In form In-rich clusters in InGaN quantum wells?”, Phil. Magazine 87, 1971 
(2007). 
 
33T.P. Bartel and C. Kisielowski, “A quantitative procedure to probe for compositional inhomogeneities in 
InxGa1-xN alloys”,  Ultramicroscopy 108, 1420 (2008). 
 



 

 

100 
 

                                                                                                                                                                                                  
34A. Hangleiter,  C.  Netzel, D. Fuhrmann, F. Hitzel, L. Hoffmann, H.  Bremers, U. Rossow, G. Ade and 
Hinze, “Anti-localization suppresses non-radiative recombination in GaInN/GaN quantum well”, Phil. 
Magazine  87, 2041 (2007). 
 
35X.H. Wu, C.R. Elsass, A. Abare, M. Mack, S. Keller, P.M. Petroff, S.P. DenBaars, J.S. Speck, S.J. Rosner, 
“Structural origin of V-defects and correlation with localized excitonic centers in InGaN/GaN multiple 
quantum wells”, Appl. Phys. Lett. 72, 692 (1998). 
 
36Y. Chen, T. Takeuchi, H. Amano, I. Akasaki, N. Yamada, Y. Kaneko, S.Y. Wang, “Pit formation in GaInN 
quantum wells”,  Appl. Phys. Lett. 72, 710 (1998). 
 
37N. Sharma, P. Thomas, D. Tricker, C. Humphreys, “Chemical mapping and formation of V-defects in 
InGaN multiple quantum wells”, Appl. Phys. Lett. 77,1274 (2000). 
 
38H.K. Cho, J.Y. Lee, C.S. Kim, G.M. Yang, N. Sharma, C. Humphreys, “Microstructural characterization of 
InGaN/GaN multiple quantum wells with high indium composition”, J. Cryst. Growth 231, 466 (2001). 
 
39 M. Shiojiri, C. C. Chuo, J. T. Hsu, J. R. Yang and H. Saijo, “Structure and formation mechanism of V 
defects in multiple InGaN/GaN quantum well layers”,  J. Appl. Phys. 99, 073505 (2006). 
 
40A.M. Sánchez, M. Gass, A.J. Papworth, P.J. Goodhew, P. Singh, P. Ruterana, H.K. Cho, R.J. Choi and H.J. 
Lee, “V-defects and dislocations in InGaN/GaN heterostructures”, Thin Solid Films 479, 316 (2005). 
 
41L. Nistor and H. Bender, “Direct evidence of spontaneous quantum dot formation in a thick InGaN 
epilayer”, Appl. Phys. Lett. 77, 507 (2000). 
 
42 N. Grandjean, E. Feltin, R. Butte and J.-F. Carlin, “Growth mode induced carrier localization in 
InGaN/GaN quantum wells”, Phil. Magazine  87,  2067 (2007). 
 
43 P. Chen, S. J. Chua and Z. L. Miao, “Photoluminescence of InGaN/ GaN multiple quantum wells 
originating from complete phase separation”, J. Appl. Phys. 93, 2507 (2003). 
 
44S. W. Feng, Y. –C. Cheng, Y. –Y. Chung, C. C. Yang, Y. –S. Lin and C. Hsu, K. –J. Ma, J. -I. Chyi, 
“Impact of localized states on the recombination dynamics in InGaN/GaN quantum well structures”, J. Appl. 
Phys. 92, 4441(2002). 
  
45Y-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars “S-shaped” 
temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells”, Appl. 
Phys. Lett. 73, 1370 (1998). 
 
46S. Chichibu, T. Azuhata, T. Sota and S. Nakamura, “Luminescences from localized states in InGaN 
epilayers”,  Appl. Phys. Lett. 70, 2822 (1997). 
 
47S. Kret, P. Ruterana, A. Rosenauer and D. Gerthsen, “Extracting Quantitative Information from High 
Resolution Electron Microscopy”, Phys. Stat. Sol(b) 227, 247 (2001). 
 
48I. Aasaki and H. Amano, “Crystal growth and conductivity control of group III Nitride semiconductors and 
their application to short wavelength light emitters”, Jpn. J. Appl. Phys. 36, 5393 (1997). 
 



 

 

101 
 

                                                                                                                                                                                                  
49D. Fuhrmann, C. Netzel, U. Rossow,  A. Hangleiter, G. Ade and P. Hinze, “Optimization scheme for the 
quantum efficiency of GaInN-based green-light-emitting diodes”, Appl. Phys. Lett. 88, 071105 (2006). 
 
50H. Zhao, G. Liu and N. Tansu, “Analysis of InGaN-delta-InN quantum wells for light-emitting diodes”, 
Appl. Phys.Lett. 97, 131114 (2010). 
 
51S. Keller, S. Chichibu, M. Minsky, E. Hu, U.K. Mishra and S. DenBaars, “Effect of the Growth rate and the 
barrier doping on the morphology and the properties of InGaN/GaN quantum wells”, J. Crystal Growth 195,  
258 (1998).  



 

102 
 

Chapter 5 
Conclusions and Perspectives 

  This work had two main objectives which are critical for improving the performances of 

group III nitride semiconductor devices:  

(a) Investigation of the transport properties of InN by extensive electrical characterization of 

this member of the nitride semiconductor, whose band gap was recently re-evaluated. 

This brought about new potential important applications, from efficient photovoltaics to 

devices capable to be operated in terahertz wavelengths.  

 

(b) Determination of the structural and optical properties of InGaN/GaN QWs, which are the 

active parts of multicolour LEDs for solid state lighting applications. 

 

5.1 InN layers 
 
5.1.1 Conclusions  

               It is well known that the presence of surface electron accumulation in InN layers 

is still an important limitation to device applications. However recent reports1, stated the 

accessibility of this bulk electrical conductivity, but there exists a discrepancy between the 

estimated doping levels and real ones. In our work, we have explored this issue using low 

frequency noise measurements on PAMBE InN layers. We obtained the following results: 

 It was shown that the best optimum conditions for fabrication technology would be when 

the electrical isolation is done prior to metallization step and  then  followed by thermal 

annealing, with annealing times less than 20 min. 

 

 We observed, in all of the InN layers, the contact resistances are extremely small 102-103 

times smaller than the sheet resistances. 

 

 The estimated mobilities of InN layers are closely related to the surface roughness. These 

layers follow the same trend as in Silicon MOS devices, where the electrical conduction 
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takes place at the surface, pointing to the electrical conduction at the surface in these InN 

layers.   

 

 The as obtained normalized noise levels are close to other conventional group III devices 

such as GaAs, InAs which are presently used in high frequency devices. These results 

indicate that the present studied InN layers are promising to use in electronic devices. 

 

 In our electrical resistivity versus temperature study, we determined a transition from 

semiconducting behaviour to metal like conduction above 130 K, irrespective of In or N 

rich growth conditions. Moreover, the 1/f noise trend versus temperature indicates that 

the surface conduction is dominant above 100 K temperatures.  

 

 At  temperatures less than or equal to 100 K, a Lorentzian noise is present apart from 1/ f 

noise and white noise, this allowed us to determine the activation energy of a trap level 

about ~ 50 meV below the conduction band. These results show that, below 100 K, there 

is an additional contribution of electrical conduction apart from the surface conduction, in 

other words, we accessed bulk conductivity in our samples, which cannot be achieved 

with conventional C-V techniques in InN. 

 

5.1.2 Open questions and future work  

 Though, we have been successful in accessing the bulk electrical conductivity, it is still 

necessary to separate quantitatively this surface and bulk electrical conduction. 

 

 Using simple models, we demonstrated that mobility fluctuations are coming out from 

bulk, this is still need to be checked experimentally with Hall measurements. 

 

 It will be of interest to investigate, if the low frequency noise can be used to probe 

electrical conduction in p type doped InN layers, which is hard to access with 

conventional techniques. 
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5.2 InGaN/GaN QWs  
 
5.2.1 Conclusions  
 

For the emission in InGaN layers, we have systematically studied the structural properties 

and their correlation with photoluminescence of InGaN/GaN QWs. We have investigated the 

InGaN QWs with different characteristics such as well widths, number of QWs, nominal In 

composition, and the undoped and Si doped GaN barriers. The investigated QWs, consist of well 

thickness of 1 nm to 3 nm, with nominal indium compositions of 20 to 25%, emission 

wavelengths were from violet, blue and green.  

 It was pointed out that the GaN barriers doped with Silicon, result in abrupt interfaces, 

with 1 monolayer. 

 

 V pits have formed in MOVPE QWs, irrespective of the well thickness, however, they 

have no impact on the QWs.  

 
 PL studies confirmed higher emission in MOVPE QWs in comparison to MBE QWs. 

This could be due to the homogeneous well morphology in MOVPE QWs, whereas MBE 

QWs exhibited well width fluctuations. 

 
 We also have performed quantitative high resolution TEM, for strain mapping and 

observed local indium fluctuations.  

 
 Further, studies with HAADF-STEM, results in accurately determining the InGaN well 

thickness. Using these thicknesses and the PL peak positions, we have obtained the 

indium compositions, taking into account the effect of QCSE and quantum confinement 

effects from the literature, and this is in the range of the In content obtained from strain 

measurements if we assume that we have local In composition fluctuations.  

 

5.2.2 Open questions and future work  

 As reported by Hangleiter et al2, the V shaped defects are accounted for the high 

emission, so in order to confirm this study in our layers; it would be interesting to study 

the internal quantum efficiencies of MOVPE layers. 
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 Our STEM quantitative measurements resulted in underestimating the In compositions, 

this requires further studies to assess this technique which normally should be the most 

accurate.  

 
 
5.3 References 

                                                             
1X. Wang, S.-B. Che, Y. Ishitani and A. Yoshikawa, “Systematic study on p-type doping  control of InN 
with different Mg concentrations in both In and N polarities” Appl. Phys. Lett. 91, 242111 (2007). 
 
2A. Hangleiter, C. Netzel, D. Fuhrmann, F. Hitzel, L. Hoffmann, H. Bremers, U. Rossow, G. Ade and 
Hinze, “Anti-localization suppresses non-radiative recombination in GaInN/GaN quantum wells”, 
Philosophical Magazine, 87, 2041 (2007). 
 



 

106 
 

Annex I 
This annex provides a short description of the predicted evolution of 1/f noise level in InN 

layers according to mobility fluctuations. First the techniques used to estimate the mobility is 

described and then the model of noise is given.   

1 Estimation of mobility 

               From resistance measurements performed at different temperatures, one can estimate 

the evolution of the mobility assuming that 

                                                                 ܴெ(ܶ) = 	 ௅
ఙ(்)஺

                                                          (I.1) 

where RM is the resistance, T is the temperature, L is the length, A is the cross section of the device 

and σ is the conductivity.  

Assuming that only electrons participate in the conduction, one can write: 

(ܶ)ߪ                                                = ݊(ܶ). μ(ܶ).  (I.2)                                                         ݍ

where μ(ܶ) is the mobility of carriers at temperature T , ݊(ܶ) is the carrier concentration at T and 

  .is the charge of  the electron ݍ

Using equations (I.1) and (I.2), the ratio of resistances at 300 K and T K, is given:    

                                            
(ଷ଴଴)ܯܴ
(்)ܯܴ

= 	 ௡(்).ஜ(்)
௡(ଷ଴଴).ஜ(ଷ଴଴	)

                                             (I.3) 

In the following calculation, the numerical values have been taken for carrier concentration and 

mobity as , ݊(ܶ) = 10ଵ଼ At/cm3 (This value was taken from reference 1, in which the carrier 

concentration were extracted on these InN layers by using Raman measurements). And the 

mobility,  μ(ܶ) = 625 cm2/V.s, was extracted using equation equation (I.2).  

Two hypotheses have been considered: 

(1)  InN is considered as an intrinsic semiconductor, in this case, the carrier concentration is 

given by   ݊(ܶ) = ܶ.ݐ݊ܽݐݏ݊݋ܥ
య
మ. exp	(− ா௚

௞ಳ்
) where  ܧ௚ is the bandgap,  ݇஻ is the Boltzmann  

constant. 
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(2) InN is considered as a doped semiconductor and the carrier concentration is independent 

of the temperature in the range of the investigated temperatures (all doping atoms are ionized) 

i.e 	݊(ܶ) = ݊(300).  

      Finally µ(ܶ) can be rewritten as below by using equation (I.3), 

                                                     μ(ܶ) = 	 (ଷ଴଴)ܯܴ
(்)ܯܴ

. ௡(ଷ଴଴	).ஜ(ଷ଴଴)
௡(்)

                                   (I.4) 

2 Noise Model 
 The same kind of work has been done for the noise model in the case of mobility 

fluctuations. This section consists in very preliminary studies and should be largely discussed 

and improved. 

           As conductivity is given by, ߪ = ݊. µ.  fluctuations in current can be due to fluctuations ,ݍ

in either mobility (∆µ model) or number (∆N model) fluctuations. For more details refer to 

section 1.5.6 of chapter 1.  

 

From our experiments we have,               ݏ௩ = 		௄ೡ
௙
	  ଶ                                                          (I.5)ݒ.

∆µ model gives,                                               
ௌೡ
૛࢜

= 	 ௌµ

µమ
                                                    (I.6) 

∆N model gives,                                             
	ௌೡ
௩మ

= 		 ௌಿ
ேమ
			                                                         (I.7) 

 

2.1 ∆µ model  
 A basic description of this model can be found in reference 2. We have 

 

       
ௌµ

µమ
= 	 ఈ

௙ே
                                                             (I.8) 

where  is the N is the total number of free carriers in the sample and ߙ is related to mobility of 

the charge carriers. 

  According to Matthieussen law, one can write that the mobility in a semiconductor is due 

to lattice scattering (mobility µ௟௔௧௧) and dopant scattering (mobility µௗ௢௣), so that the effective 

mobility µ is given by 

                                                                 μ = ൤ ଵ
ஜ݈ܽݐݐ

+ ଵ
ஜ݀݌݋

൨
ିଵ

                                                    (I.9) 

In this present theory, it is assumed that only lattice scattering causes 1/f noise (see reference 3), 

so that by assuming  µௗ௢௣ = 0 and from equation (I.8), one can derive 
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ߙ                                                                  = ௟௔௧௧ߙ
ஜమ

ஜ೗ೌ೟೟మ
                                                         (I.10) 

Using these relationships, it follows that 

                                                                     
ௌೡ
૛࢜
∞	 µ2

݊
                                                                (I.11) 

In  modeling with temperature evolution, it is further assumed that  µ௟௔௧௧ and  ߙ௟௔௧௧ do not 

depend on the temperature. Then by using equations (I.5) and (I.11), we obtain 

(ܶ)ݒܭ                                                   
(300)ݒܭ = 	 μ

2(ܶ)

௡(்) . ௡(ଷ଴଴	)
μ2(300)

                                      (I.12) 

2.2 ∆N model  
 Number fluctuations model4 predicts that, 

                                                                           
	ௌಿ
ேమ

 ∞ T                                                 (I. 13) 

 

 Using equations (I.5) and (I. 13), ∆N model can be rewritten as 

                                                            

                                                            ௄ೡ(்)
௄ೡ(ଷ଴଴)

= 	 ்
ଷ଴଴

                                           (I.14) 

 

 The equations (I.12) and (I.14) were plotted with experimental results in Figure 3.22 of 

chapter 3. 
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Annex II 
This annex gives a brief description of In compositions quantitative measurements in 

HRSTEM images.  For instance, we will describe here in case of one sample, how we have 

extracted the In composition. This section of work is mainly contributed by Bertrand Lacroix, Post 

doctorate   in CIMAP, Caen. More results have been discussed in chapter 4.   
Method for evaluating composition from intensity profiles  

Figure 1, shows a low magnification STEM HAADF image of the sample (L248H) viewed in 

cross section along [11-20]. This shows a HAADF scan in which two InGaN/GaN layers QWs and 

part of thick GaN are visible. The InGaN/GaN interfaces as shown in Figure 1 (a) are relatively 

abrupt.   

The first step of the analysis consists in extracting the intensity profile (shown in Figure 1 (b) from 
the raw image (Iraw).  

 

Figure 1. STEM HAADF image of (a) Two  InGaN/GaN layers and part of thick GaN buffer layer at the 
bottom in Sample L248H, (b) Extraction of the intensity profile from the corresponding STEM HAADF 
image.(White contrast regions correspond to InGaN QW regions: thinner one corresponds to MBE and 
thicker one corresponds to MOVPE ) 

Intensity normalization is required to obtain quantitative informations (sample thickness, 

composition) from the HAADF signal. It is given by Inorm = (Iraw-Ivac)/ (Idet- Ivac), where Idet and Ivac 



 

 

110 
 

represent the average intensities of the incident electron probe in the detector region (Idet) and in the 

vacuum region (Ivac). These values are determined from a detector scan (shown in Figure 2). 

 
Figure 2 Registered intensity of the incident electron probe as a function of the position on the detector. 

 Evaluation of the sample thickness is performed by fitting a polynomial to the GaN regions 

used as references in the profile (Figure 3a) and by comparing the experimental intensities to 

simulations. The estimated thickness for this sample is approximately 50 nm (Figure 3b).

 

Figure 3. Evaluation of background intensity by fitting the reference region in the profile and the 
corresponding thickness profile 

Then, the intensity ratio profile between the reference regions (GaN) and the QW regions (InGaN) is 

determined, and the indium concentration profile is evaluated (Figure 4) from the comparison of the 

intensity variations to simulations. 
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Figure 4.  Indium concentration profile, red dotted lines gives the level of indium content. 

Method for evaluating composition in high resolution STEM-HAADF images  

 The experimental procedure for composition mapping from HRSTEM images is similar to 

the previous one. It is fully explained in reference 1.The Figure 5 shows a high resolution HAADF 

STEM image of InGaN/GaN QWs. The intensity analysis is performed in each atomic column. A  

 
Figure 5. Filtered HRSTEM image 
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Wiener filter is applied on the raw image to facilitate the detection of the atomic columns (Figure 5). 

The positions of the pixels having the highest intensities are used to estimate the positions of the 

atomic column, and a local mean intensity is computed for each column. After having specified 

reference regions for background determination (GaN barriers), the intensity is normalized in each 

column with respect to the intensity of the incident electron beam determined from the detector scan. 

The corresponding indium concentration map is given by the Figure 6. 

 
Figure 6.  In concentration map. 

The InGaN/GaN MOVPE QW interface is more abrupt than that of MBE QW. The thicknesses of 

the InGaN QWs and the GaN barriers are measured to be around 1.5 nm, 3 nm and 10 nm 

respectively. The contrast within the GaN barrier is relatively uniform, suggesting that no phase 

separation has taken place.The measured InGaN layer widths and barrier layer values agrees well 

with previous measurements with Conventional TEM.  Form the two dimensional composition map, 

it is clearly seen that inside the QW, the indium composition fluctuates (Figure 6). 

References 

1A. Rosenauer, T. Mehrtens, K. Müller , K. Gries, M. Schowalter, P. VenkataSatyam, S. Bley, C. Tessarek, D. 
Hommel, K. Sebald, M. Seyfried, J. Gutowski, A. Avramescu, K.  Engl and S. Lutgen, “Composition 
mapping in InGaN by scanning transmission electron microscopy”,  Ultramicroscopy 111, 1316 (2011). 



 



 



 



 



Propriétés structurales, optiques et électroniques des couches d'InN et hétérostructures 
riches en indium pour applications optoélectroniques 
 
Résumé : 

Les semi-conducteurs nitrures (AlN, GaN, InN) focalisent une activité de recherche intense en raison de 
nombreuses applications comme les diodes électroluminescentes, les composants de puissance ou 
hyperfréquence. Dans cette recherche, nous avons abordé le travail sous deux angles: a) la conduction électrique 
dans les couches d'InN produites par croissance épitaxiale aux jets moléculaires assistée par plasma (PAMBE) et 
une recherche sur l'origine de la forte  émission bleue dans les puits de quantiques d'InGaN/GaN. 

 
 L'accumulation d'électron en surface dans les couches d'InN constitue une limitation importante pour la 
fabrication de composants. Au cours de ce travail, nous avons exploré l'utilisation des mesures de bruit de basse 
fréquence sur les couches d'InN et pu accéder à leur conductivité électrique en volume. 
 
             L'étude des puits quantiques d'InGaN/GaN, obtenue par croissance épitaxiale aux jets moléculaires 
(MBE) ou épitaxie en phase vapeurs aux organométalliques (MOVPE) ,  a été effectuée  par analyses de la 
microstructure par microscopie électronique en transmission (MET, HRTEM et STEM) en corrélation avec les 
propriétés optiques d'un grand nombre d'échantillons provenant de conditions de croissance différentes. Ce 
travail nous a permis d'acquérir une vision plus critique du rôle des conditions de fabrication et des paramètres 
comme la morphologie, les fluctuations de composition  et la présence des défauts en V sur les explications 
actuellement avancées pour la forte efficacité d'émission dans les puits quantiques d' InGaN/GaN. 
 
Mots-clés : InN, InGaN, PAMBE, MOVPE, MET, STEM, HRSTEM, bruit basse fréquence, conduction 
électrique en volume, puits quantique, fluctuations de composition 
 
 
Structural, optical and electronic properties of InN films and In rich heterostructures 
for optoelectronic applications 
 
Abstract : 

The nitride semiconductors (AlN, GaN, InN) are subject to a large research effort due to their numerous 
applications, such as light emitting diodes, high power and high frequency components. The aim of this work has 
been twofold: to investigate the electrical conduction in InN layers and the origin of the high emission efficiency 
in InGaN/GaN Quantum Wells (QWs). 

 
 The surface electron accumulation in InN layers is still an important limitation to device applications. 
We have explored this point using low frequency noise measurements on Plasma Assisted Molecular Beam 
Epitaxy (PAMBE) InN layers and we demonstrated that the bulk electrical conductivity of InN can be accessed. 
  

The investigation of quantum wells produced by Molecular Beam Epitaxy (MBE) or Metalorganic 
Vapour Phase Epitaxy (MOVPE), has been carried out through microstructural analyses by Transmission 
Electron Microscopy techniques(TEM, HRTEM, STEM) in correlation with optical properties on a large number 
of samples grown in different growth conditions. This experimental work has allowed us to obtain a critical view 
on the role of the growth conditions and such parameters as the well morphology, composition fluctuations, as 
well as the V shaped defects on the current explanations of high emission efficiency in InGaN/GaN QWs. 
 
Keywords: InN, InGaN, GaN, PAMBE, MBE, MOVPE, TEM, HRTEM, STEM, low frequency noise, bulk 
electrical conduction, quantum wells, In compositional fluctuations  
 

 




