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2 Chapter 1 Introduction

The purpose of this thesis is the study of quantum-coherent electronic transport in
mesoscopic structures by implementing analogs of quantum optics experiments. Fol-
lowing the development of nano-fabrication and cryogenic techniques, new mesoscale
and nanoscale systems have been investigated, in which conduction properties are gov-
erned by quantum mechanics. In particular, high mobility two-dimensional electron
gases (2DEG), that exhibit large phase coherence length and elastic mean free path,
can be obtained in semi-conductor hetero-junctions. In such structures, several building
blocks of optics setups can be recreated, and quantum optics experiments can thus be
mimicked. First, the beamsplitter is provided by a set of two voltage-biased metallic
gates controlling the transmission of a tunnel barrier in the 2DEG. Then ballistic phase
coherent propagation is ensured in chiral one-dimensional edge channels of quantum
Hall effect. Major achievements are, for example, the realizations of a double slit ex-
periment [1], a Mach-Zehnder interferometer [2], or a Hanbury-Brown & Twiss intensity
correlation experiment [3]. Thus, experimental and theoretical tools of quantum optics
can be transposed: ballistic quantum conductors can be used to study electronic trans-
port following the point of view of quantum optics, and coherence theory, in analogy
with Glauber’s theory of light [4], enables to extract very clear information on electronic
properties by the means of current and current correlations. Beside these analogies, elec-
tron optics experiments are deeply enriched by Coulomb interactions between electrons,
that are in particular responsible for relaxation and decoherence mechanisms that alter
the visibility of interference effects. Such electron quantum optics experiments provide

benchmark setups to address the problem of interactions.

However, as of yet, these experiments have mostly been performed with DC sources,
that emit a continuous flow of electrons without any accurate control on energy and
emission times of the charge carriers [5]. Recently developed sources enable to trigger
the emission of on-demand single charges [6], paving the way from electron optics toward
electron quantum optics. In this manuscript, we present two realizations of such electron
quantum optics experiments. The first one is a new implementation of a Hanbury-
Brown & Twiss experiment in which single quasiparticles are partitioned one by one on
an electronic beamsplitter (chapter [3)). The second example is the first realization of a
Hong-Ou-Mandel experiment where two (partially) indistinguishable excitations emitted

by independent sources are made to interfere on a beamsplitter (chapter |5)).

Moreover, these experiments allow to tackle the topic of interactions at a very fundamen-
tal level by studying the propagation of a single electron amidst excitations of the Fermi
sea. To shed light on such phenomena, we propose in addition a frequency-resolved
analysis of capacitive coupling between two edge channels, that enables in particular to

observe and characterize a neutral propagation eigenmode (chapter |4]).
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In this introduction chapter, we present the general framework of electron quantum
optics in quantum Hall edge channels, by describing the main building blocks that enable
to mimic optical setups. Then, we review milestones of electron optics experiments as
well as single charge emitters that enable to study the physics of quantum Hall edge
channels at the single charge scale. Finally, we introduce the tool of coherence functions
that provides the general theoretical framework of this work and recall the main results

obtained so far in the study of interactions between co-propagating edge channels.

1.1 Electron optics in two dimensional electron gases

Several analogies can be drawn between the propagation of electrons in integer quantum
Hall edge channels and photons in vacuum. As a consequence, a whole set of experiments
realized in quantum Hall devices are directly inspired by their optical equivalents. We
here briefly recall the main analogies on which electron quantum optics relies before

reviewing major experiments that have been realized in electronic devices.

1.1.1 Building up a quantum optics experiment in a 2DEG
1.1.1.1 Coherence in a 2DEG

The first ingredient to implement a quantum optics experiment is a medium in which
ballistic propagation is ensured on a large scale so that phase coherence is conserved over
the whole system. In condensed matter, this is provided by two-dimensional electron
gases: these semi-conductor hetero-structures (in our case and most frequently GaAs-
AlGaAs) are grown by molecular beam epitaxy, which supplies crystalline structures
with an extreme degree of purity. Thus mobilities up to about 10 — 30 10% cm?/Vs have
been reported [7HI0], and mean-free path [, can be on the order of 10 — 20 um. These
properties enable to pattern samples with e-beam lithography in such a way that the
phase coherence of the wavefunction is preserved over the whole structure, thus fulfilling
a first requirement to build an electron optics experiment in a condensed matter system.
The simplest interference pattern can be produced for example in Young’s double-slit
experiment (Figl[1.1)), which was realized for example by Schuster et al. [I]. Defining
two paths by electrostatic gates, they can modify the phase difference between paths
by tuning the enclosed Aharonov-Bohm ﬂuxE] and observe an interference pattern in the

current with a periodicity of h/eS where S = 0.4 yum? is the surface of the loop.

lusing moderate fields B < 20 mT that do not compare with the ones involved in section [1.1.1.2
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-15 -10

Magnetic field B [mT]

FIGURE 1.1: Young’s double slit experiment — In GaAs-AlGaAs 2DEG of high
mobility 4 = 1.610%cm?/Vs, two interference paths (red arrows) are defined by
electrostatic gates, enclosing a flux ¢ = BS. The phase difference, proportional to
¢p being tuned via the field B, interference in the output current is recorded (the
graphs correspond to different values of a plunger gate in the right arm that adds

\ an extra contribution to the phase difference). Adapted from [IJ. J

1.1.1.2 Quantum Hall edge channels

Besides, electrons have to be guided from emission and detection through all the op-
tical elements. A powerful implementation of phase coherent quantum rails is pro-
vided by (integer) quantum Hall effect. Under a strong perpendicular magnetic field,
electronic transport in the 2DEG is governed by chiral one-dimensional conduction
channels appearing on the edges while the bulk remains insulating. Then, the con-
ductance of the 2DEG is quantized in units of the inverse of the Klitzing resistance
e?/h = R = 1/25.8kQ.

The quantized value of the conductance can be explained by considering the energy
spectrum of electrons in the 2DEG: electrons in the bulk are distributed on Landau
levels with an energy E, = hw.(n + 1/2),n € N, where w. = |eB/m*| is the cyclotron
pulsation (the effective mass m* of electrons in 2DEGs is equal to 0.067m,) [11]. These
Landau levels are bent near the potential barriers constituting the edges of the sample,
see Fig[l.2] Besides, at such high magnetic field, spin-degeneracy in the Landau levels
is removed by Zeeman splittinﬂ hwz. The finite number of electrons in the 2DEG
defines the Fermi energy er, which, for an integer number v filled levels, only crosses the
Zeeman-split Landau levels near the edges x = 2 g. Thus a finite number of chiral edge
channels appear at energy er. Importantly, they are chiral: electrons flow with opposite
velocities on opposite edges. This number v, called the filling factor, depends on the
magnetic field: as B increases, the Landau levels are shifted upward with respect to

the Fermi energy, so that the number of Zeeman-split Landau levels crossing the Fermi

In our samples, typical values are fiwz/k ~ 5 K at v = 2, while hw./k ~ 60 K
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FIGURE 1.2: Quantum Hall edge channels — a) Energy spectrum as a function
of position: in the bulk, Landau levels F,, = hw.(n + 1/2) appear. Due to confining
potential, levels are bent on the edges (x = zp r). At sufficiently high magnetic
fields, spin-degeneracy is lifted by Zeeman splitting hwy and each level is spin-
polarized. When an integer number v (v = 2 on this graph) of Landau levels
are filled, the Fermi level er crosses the energy levels close to the edges, so that
transport properties are governed by v edge channels. b) Schematic representation
of edge channels: for v = 2, two spin-polarized chiral edge channels appear on each
side. Backscattering mechanism (blue curled arrow), that necessitates to travel from
one edge to another due to chirality, is strongly reduced and a ballistic behavior is
K demonstrated on several hundreds of microns. /

level (that is, the number of filled Landau levels, called filling factor v) decreases. In
particular, at filling factor v = 2 (pictured on Figll.1.1.2)), electronic transport occurs on
two edge channels, which are spin-polarized (the first Landau level is completely filled,

spin up and spin down), corresponding to two Zeeman-split levels [I1].

Finally, the mean free path of electrons is considerably increased, up to I, ~ 100 pum:
the chirality imposed by the magnetic field makes backscattering difficult, as an electron
has to scatter from one edge to the counter-propagating one to backscatter, which can
only be done when Landau levels are partially filled in the bulk. Beside the absence of
backscattering in the edge channels [12], large phase coherence lengths have also been

measured (ly ~ 20 um at 20 mK [13]).

In the quantum Hall effect regime, electrons thus propagate along one-dimensional, phase
coherent, chiral edge channels without backscattering, that can be used as quantum rails
in the realization of electron quantum optics experiments. In this respect, many studies
(experimental as well as theoretical) have been performed in order to fully characterize
the properties of electronic transport in edge channels. An important result, among
others, is the noiseless character of transport in edge channels [14], 15]: a continuous
stream of electrons, generated by a bias voltage V' appears naturally regularly ordered,

with an average time h/eV between charges [5]. The origin of this behavior is Pauli’s
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exclusion principle, that prevents the presence of two electrons at the same position in

the electron beam.

1.1.1.3 Quantum point contact

The electronic analog of a beam splitter can be implemented in a two-dimensional elec-
tron gas in the form of a quantum point contact (QPC) which consists of a pair of
electrostatic gates deposited on the surface of the sample. The typical geometry of QPC
gates is shown in Fig a): when a negative gate voltage is applied on the gates, a
constriction is created in the 2DEG between the gates because of electrostatic repulsion.
This constriction gives rise to a potential barrier (plotted in color scale), the shape of

which can be determined from the geometry of the gates [16].

4 )

b)

' ! T T L

—
n

CONTACT_| ~ "o~

[
o
T

[2¢% /1]

>

potential barrier

Conductance

1 1 A i [

-2 -1.8 -1.6 -1.4 -1. -1

QPC gate voltage [V]

FIGURE 1.3: Quantum point contact as an electronic beamsplitter — a)
Geometry of a split gate quantum point contact (QPC): When polarized with a
negative gate voltage Vi, the gates define a tunable potential barrier represented
in color scale (negative potentials in red toward zero potentials in blue). In the
integer quantum Hall regime, edge channels follow equipotentials and can either be
reflected (upper image) or transmitted (outer edge state labeled 1 of lower image).
b) Conductance of a QPC: the conductance of a QPC is presented as a function
of gate voltage and exhibits steps of value 2¢?/h corresponding to the progressive
transmission of spin-degenerate edge states. As magnetic field B is increased, the
number v of edge states decreases. For high fields, steps at e /h starts to appear as
K the spin-degeneracy of Landau levels is progressively lifted. Data taken from [17]. /

At high magnetic field, the transmission through the QPC is described in terms of

edge channels following equipotential lines, which are reflected one by one as the QPC
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gate voltage is swept towards large negative values. This effect was first experimentally
demonstrated in [I7]: the conductance at magnetic fields below B = 1 T presents steps
in units of 2e2/h (see Fig b). At high magnetic field, the height of the conductance
steps is equal to e?/h, reflecting the removal of spin-degeneracy, while the number of
conductance steps n decreases with the magnetic field, and corresponds to the number
of edge channels (given by the filling factor v). Between two conductance plateaus, the
conductance G of the QPC is proportional to the transmission probability T: G = T%,
and can be generalized for finite number of edge channels v: G = Y7 Ti%, where T;
is the transmission of the i-th edge channel. Fig b) therefore demonstrates that one
can tune the transmission of a QPC by changing its gate voltage. In particular, when set
at the exact half of the opening of the first conductance plateau, the outer edge channel
is partially transmitted with a probability 7' = 0.5, while all other edge channels are
fully reflected. The quantum point contact therefore acts as a tunable, channel-selective

beamsplitter.

1.1.2 Milestones of optics
1.1.2.1 Mach-Zehnder interferometers

Besides double-slit interferences, an other very striking demonstration of the phase co-
herence in 2DEG is the realization of Mach-Zehnder interferometers implemented this
time in the integer quantum Hall regime [2} 13} [I8] 19] (Fig. [1.4). Using two quantum
point contacts (Fig[l.4]b), Y. Ji et al. [2] have defined two paths of different lengths
in a geometry that mimics the optical setup (sketched in Fig a). Varying the path
length by electrostatic influence of an additional gateﬂ Vg, they have obtained a sinu-
soidal interference pattern in the output current of the interferometer. It is important to
notice that this experiment probes the wave properties of the source (electronic or light
waves), and interference patterns arise from a collection of many single-particle events.
For light, classical analysis in terms of wave physics have been proposed during the 17th
century (by Hooke, Huyghens and Young) and is associated with first order coherence
function G (r, t;r/,t') = (E(r,t)E(r’,t)), that encodes the coherence properties of the

electric field E(r,t) at position r and time ¢.

3as in the double-slit experiment, phase differences can also be controlled by the magnetic flux

enclosed in the closed loop of the interferometer.
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FIGURE 1.4: Mach-Zehnder interferometer — a) Sketch of a Mach-Zehnder
interferometer: Two beamsplitters define two paths with a phase difference ¢, that
give rise to interference detected in the average output intensity (I(t)). b) Sketch
and SEM picture of the electronic Mach-Zehnder interferometer [2]: In the quantum
Hall regime, two QPCs are used as beamsplitters. By electrostatic influence, gate
voltage Vi modifies the phase difference between both paths. c¢) Output intensity
\ (I(t)) [2]: Varying gate voltage Vi, interferences are observed with a visibility of

60%. j

1.1.2.2 Hanbury-Brown & Twiss experiments

An other milestone in quantum optics is the implementation of an electronic analog
of the Hanbury-Brown & Twiss experiment. In this setup (Fig, a beam of pho-
tons/electrons is partitioned on an optical/electronic beamsplitter and the correlations
(I(t)I.(t')) between both transmitted I;(¢) and reflected I,.(¢) intensities are recorded.
The nature of this experiment is quite different from a wave picture, as random parti-
tioning on the beamsplitter is a discrete process at the scale of an individual particle:
an electron or a photon is either transmitted or reflected, so that the intensity correla-
tions encodes detailed information on the discrete nature of the involved particles. Once
again, a classical model in terms of corpuscles (section can explain the features

observed and give information on the statistics of the source by comparing it with the

reference noise of a poissonian process.

In a setup that reproduces the seminal HBT experiment in a 2DEG, Henny et al. 3], 20]
have demonstrated the relation (AL L) = —(AI?) (with ALy = I.; — (I.;)). This
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FIGURE 1.5: Hanbury-Brown experiment — a) Sketch of the Hanbury-Brown &
Twiss experiment: A light or electron source is sent on a beamsplitter and correla-
tions between transmitted I;(¢) and reflected I;(¢') intensities are computed, yielding
information on the emission statistics of the source. b) Output correlations: Per-
fect anticorrelations are observed between (AL I.) and(AI?), reflecting the absence
of noise in the electron stream created by a DC-biased contact. This property is
\ enforced by Pauli’s exclusion principle. Data taken from [3] j

maximal anticorrelation is in fact a signature of the noiseless character of the input
source created by a DC voltage source, confirming the results obtained in [14] measuring
autocorrelations. It can be interpreted as an antibunching of electrons, also observed

for electrons in vacuum [21].

1.1.2.3 Hong-Ou-Mandel effect

As a matter of fact, only few experiments deeply rely on a quantum description that
reconciles both wave and particle physics. One important example is given by the Hong-
Ou-Mandel effect, named after an experiment carried out in 1987 [22]. In this experiment
(sketched in Fig a), two particles are sent from two different sources (historically two
twin photons emitted simultaneously by a non-linear process in a crystal) in the two
inputs of a beamsplitter where they interfere. As a consequence of bosonic/fermionic
characters, indistinguishable particles are supposed to give only a limited number of
possible outcomes (Fig b): two fermions should escape via two different outputs
(antibunching), while bosons get out in the same output (bunching) [23, 24]. This two-
particle interference [25] relies deeply on quantum indistinguishability and statistics, and
consequently neither wave nor particle theories can predict this effect. It is at the heart
of this thesis as it plays a key role in the interpretation of both the electronic Hanbury-
Brown & Twiss (chapter [3)) and Hong-Ou-Mandel (chapter [5]) experiments proposed in

this manuscript.
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FIGURE 1.6: Hong-Ou-Mandel effect— a) Principles of the Hong-Ou-Mandel ex-
periment: two synchronized independent wavepackets interfere on a beamsplitter.
b) Possible outcomes of the Hong-Ou-Mandel: two (indistinguishable) fermions an-
tibunch and come out in different outputs, while two bosons bunch and come out

\ by pair in the same output. j

1.2 Electron quantum optics at the single charge scale

1.2.1 Single charge emitters

As of yet, all the mentioned electron optics experiments have been performed with DC
sources that continuously emit a large number of electrons and consequently do not offer
any precise control either on the energy or emission time of the generated excitations.
To operate at a single particle scale, it is crucial to reach ultimate control over a single
electron. Several single charge sources have been developed recently, in which an AC
signal triggers the emission of mono-electronic excitations, thus paving the way towards
electron quantum optics and to a detailed investigation of decoherence and interaction
effects at an elementary scale. Here, we briefly introduce several devices realized in
2DEGs that enable the on-demand production of single charges, including the source

developed in the Laboratoire Pierre Aigrain that is at the heart of this work.

1.2.1.1 Electrons flying on surface acoustic waves

The piezoelectric properties of the gallium arsenide substrate have been used to generate
single charge excitations at GHz repetition rates [28-31]. Applying radio-frequency
electric field on a piezo-electric transducer, a surface acoustic wave (SAW) is produced,
that in return acts as a trapping potential for electrons in the 2DEG. For sufficiently

high amplitudes, this potential creates an array of quantum dots that propagates in the
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FIGURE 1.7: Implementations of single charge emitters — a) Electrons on sur-
face acoustic waves: A SAW is generated by a radio-frequency piezo-electric trans-
ducer, creating an electric potential that can trap one electron in each minimum.
Single charges can then be transported on a few microns, from the electrostatically
defined quantum dot 1 to quantum dot 2 (extracted from [26]). b) Quantum turn-
stile: A set of one fast (entrance) and dc (exit) gate are used to create a moving
potential (pictured on the right panel) that can trap a single electron coming from
the left reservoir before releasing it on the right (extracted from [27]). ¢) Lorentzian
pulses: A lorentzian pulse V (¢) (pictured on the left) applied on ohmic contact (sam-
ple on the right) generates a triggered charge pulse, accompanied with e/h pairs.
When [dtV(t) = h/e, a quantized charge e is emitted and no addition e/h are
created (courtesy of CEA, Saclay).
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depleted gas at sound velocity ¢ ~ 310°m.s™!.

Each of these quantum dots can trap
exactly one electron, so that a quantized DC current I = efga is generated, where
fsaw is the frequency of the excited SAW. Recently, two groups [26], [32] have been able
to transfer single electrons between distant quantum dots separated by typically 3 to 5
microns (see Fig panel a). The challenge is now to implement quantum optics or
entanglement protocols in such devices, as quantum information can be stored in the

internal states of electrons in dots.

1.2.1.2 Quantum turnstiles and charge pumps

One major challenge to realize a single charge source is the ability to isolate a single
charge from the Fermi sea, so that this charge can be quantized. In the previous example,
moving quantum dots were created by the SAW potential. On the contrary, two similar
techniques, charge pumps [33], 34] and quantum turnstiles [35, B6] allow the controlled
capture and release of single charges by the means of a set of fast gates. The latter can
be used to create confining potentials modulated at high frequencies, so that a single
charge is first trapped, and then released in the 2DEG as presented in Figl[l.7, panel
b). DC currents quantized in units of the repetition rate f can then be generated.
Recently [27], new designs of the gate drive waveform have enabled to reach an accuracy
approaching 0.01 parts per million, so that metrological applications are envisioned, such

as a quantum representation of the ampere [37].

1.2.1.3 Lorentzian pulses and modulated contacts

We have already mentioned the DC-biased contact as a source that produces a continuous
stream of electrons, pictured as ordered wavepackets (in virtue of Pauli principle) of
width h/eV. It however lacks the necessary control over the emission time due to its
DC nature. The trigger can be operated by applying a voltage pulse V(¢) on an ohmic
contact. The charge emitted is then quantized if it verifies the condition [dtV (t) =
h/e. In general, any pulse shape could be used. However the total number of emitted
quasiparticles is not quantized and the emission of additional electron/hole (e/h) pairs
is expected, so that quantum electron optics experiments are rendered difficult (see Fig.
panel c). Nevertheless, it was predicted [38-/40] that the application of lorentzian
voltage pulses containing one elementary charge e enabled the emission of this single
charge without any spurious e/h pair. Such sources are under development in the group

of C. Glattli and first demonstrations are expected in a near future.
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1.2.1.4 Mesoscopic capacitor as a single electron source

The last implementation described relies on a driven mesoscopic capacitor, that was
developed at Laboratoire Pierre Aigrain after proposal from Biittiker et al. [41]. It is
at the core of the experiments carried out in this PhD work and a complete chapter
(chapter [2)) will be dedicated to detailing the important properties of this device. Let
us briefly sketch how this source can be operated. The source consists of a submicronic
quantum dot, that presents a large level spacing A coupled to the reservoir through a
quantum point contact. The potential in the dot is tuned using a capacitively coupled
top-gate deposited at the surface of the sample, controlled by excitation voltage Vg (t).
The principle of operation of such a source is depicted in Fig panel b): a voltage
step is applied to the top gate in order to shift the energy levels upwards with respect to
the Fermi energy ep. If the energy shift is comparable to the level spacing, only one level
is promoted above the Fermi energy. The single electron sitting on that level (provided
spin degeneracy is lifted) can then be emitted at an energy e, > €p in the reservoir
through the tunnel barrier formed by the QPC, with an escape time 7. depending on
the transmission of the tunnel barrier D. After emission of the electron, the voltage
on the top gate is set back to its original value, so that the level previously promoted
above the Fermi energy is shifted back to its position e_ below the Fermi energy. The
dot can then absorb an electron from the reservoir, thus emitting a hole at an energy
€_ < er with the same escape time 7. as the electron (provided that the transmission
of the tunnel barrier is independent of energy). On a single cycle, the source therefore
emits one single electron, followed by a single hole, both with a controlled energy. This
cycle is repeated at GHz rates (typically, f = 1—2 GHz), thus generating an AC current
composed of alternatively emitted single electrons and single holes [42]. The top gate
and the QPC gates allow to tune the energy of the emitted charges and their escape
time. The energy and temporal widths of the emitted single-charge wavepackets are
respectively given by the width of the levels in the dot and the escape time, both of
which only depend on the level spacing A and the transmission D. In this respect,
the source allows a control over the energy and emission time of the charges close to
the quantum limit. A controlled variation of the escape time over several orders of
magnitude (< 0.1 ns <> 10 ns) was experimentally demonstrated [42]. The mesoscopic
capacitor then appears as a promising candidate to perform single charge emission in

electron quantum optics experiments.

1.2.2 Coherence functions

As already mentioned, the propagation of electrons in the quantum Hall edge channels

bears strong analogies with the one of photons in vacuum. These analogies have proved
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FIGURE 1.8: Principles of single charge emission — a) schematic of the meso-
scopic capacitor. A quantum dot with a large level spacing is coupled to the reservoir
through a QPC (gate voltage V;). The potential in the dot is tuned using the top
gate (voltage Ve, and the emitted current is collected on contact (1). b) principle
of single charge emission with the mesoscopic capacitor. The upper graph represents
the evolution of the potential of the dot during the emission cycle. () The dot is at
equilibrium, for an initial value of V... (@ the application of a large voltage step to
the dot top-gate shifts the energy levels upwards with respect to the Fermi energy,
promoting a single occupied level above the Fermi energy. A single electron is emit-
ted. (@ the excitation voltage is switched back to its original value: the emptied
level is shifted back below the Fermi energy, and can absorb an electron from the
reservoir. A single hole is emitted. During this cycle, only one level takes part in
the emission. The escape time 7, only depends on the transmission of the QPC.

/

very useful to shed light on the electronic transport in quantum Hall devices. The latter

can be understood in terms of coherence properties of electronic source, so that it seems

relevant to adapt, if possible, Glauber’s theory of coherence to the case of electrons in
2DEGs.

1.2.2.1 Defining coherence functions in electronic systems

During years 1962-1963, R. J. Glauber developed a general quantum theory of light [4]

that has proved very useful to interpret quantum optics experiments. This very general

framework relies on the so-called coherence functions G. The first and second order
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coherence functions (respectively ¢ and 9(2)) are defined as the following average

values [43]:

where (...), denotes the quantum average over state p of the electromagnetic field,
and E~, ET respectively the positive and negative frequency part of the field operator.
These quantities, that encode field correlations, can be connected quite directly to the

signal detected by photon counters, and are as such of great interest in quantum optics.

Grenier et al. have developed a similar theory in the case of electrons propagating in
quantum Hall edge channels of a 2DEG [44], 45]. Since there are two types of carri-
ers (electrons and holes), we will consider two coherence functions (of the first order),

denoted by respectively G € and G (h), defined b

GO, tir' ') = (@I 1)), (1.3)
W tix' ) = (@ i), (1.4)

where (r, t) is the field operator, annihilating an electron at position r and time ¢ while
p denotes the state of the field upon which the quantum average is calculated. Due to
the presence of a complex ground state (a Fermi sea) and two types of charge carriers,
several differences arise between photonic and electronic coherence functions. However,
we will see that many of our results can be simply interpreted by direct comparison with

their photonic equivalent.

1.2.2.2 Generalities on coherence functions

First, in order to simplify the following mathematical expressions, we drop the spatial
r-dependence, by assuming a propagation at constant velocity v in quantum Hall edge
channels, so that ¥ (r,t) = ¥ (r — vt):

GOt t) = @()W(), (1.5)
gt t) = WE)W(1), (1.6)

A major difference with optics is the ground state, that now is a Fermi sea |F),) char-

acterized by its chemical potential p and temperature 7', radically different from the

4These two functions are closely connected in virtue of commutation relations of fermionic operators.
A formulary is presented in Appendix E
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vacuum of photons in quantum optics. In full generality, one can decompose coherence

functions into a sum of two contributions:
GeM () = Gl (t —t') + AGM (¢, 1) (1.7)

The first one, denoted Q(e/ , is due to the Fermi sea. Indeed, the coherence functions
do not vanish for the ground state |F),) as their photonics counterparts do. One can

show that these correlators reduce to:

GOt —1t) = %f“(e)eie(t'—t)/h (1.8)
g}&h)(t_t/) _ /Cile(l—fp( )) ie(t—t')/h (19)

where f, is the Fermi-Dirac distribution with chemical potential 1. Please note that since
the Fermi sea |F),) is a stationary state, g,(f/ P only depend on the time difference 7 =
t —t'. The second part AG(¢/") is the extra contribution representing the single-particle
coherence of the electrons and holes emitted in the edge channels by non-equilibrium

sources, which depends in full generality on the two times ¢,t'.

In the following paragraph, we present a simplified model of ideal one-shot emission.
Simple analytical formulas will be derived from this model in chapters[2|and [5] providing

interesting insights on the underlying physical phenomena.

1.2.2.3 Case of an ideal one-shot single electron source

The quantum state |¢¢) is obtained by creating the electron in wavepacket ¢, (t) above

the Fermi sea, so that the state reads:

|pe) /dt @e(t)PT (1) Fpu) (1.10)

If we consider here the case of the single-shot emission of an electronic excitation at
rather high energies, we can assume that the particle is represented by a wavepacket ¢,
such that in the energy domain ¢, (e) = [ dt elet/ hoe(t) is concentrated around an energy
€ > kT,;. Thus, the expression of g )(t,t') can be greatly simplified (see Appendix

for details) and the coherence function of an ideal one-shot electron source finally reads:

GEM(t,t) = Gt — 1) + i () pe(t) (1.11)
AGEM(t,¢) = it pe(t) (1.12)
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This simple example illustrates the idea that the measurement of the single-particle
coherence functions provide a direct visualization of the wavepacket in which the particle
is emitted. Developing this idea, we will show (section that a complete tomography
of the quantum state of mono-electronic excitations can be envisioned. In particular,
a protocol for measuring AG/" is described in [46]. It stems from optics where the
tomography of an electromagnetic field can be performed by homodyning the studied
field with a reference field (called Local Oscillator, LO).

It is important to stress here the difference between the Fermi sea and a mono-electronic
wavepacket. Due to the stationary nature of the Fermi sea, gff) depends only on the
time difference 7 =t — . On the other hand, for a mono-electronic wavepacket, AG(®)
depends on both ¢ and t’ due to its dynamical character. It reflects the fact that a
Fermi sea is a statistical object, entirely described by the populations Ql(f)(e) = fu(e)
and does not present any coherence. On the contrary, a wavepacket is a quantum object
that exhibits both populations and coherences : the two-dimensional Fourier transform
AG (e)(e, €¢') encodes population on the diagonal € = ¢ but also has non-zero off-diagonal

components (coherences) for e # €.

1.2.2.4 Current, current correlations and coherence functions

Like in quantum optics, the coherence functions are very useful as they connect simple
theoretical objects to measurable quantities, for example in a Mach-Zehnder interfer-
ometer, or in the Hanbury-Brown & Twiss geometry. First, as the average intensity of
light is related to GV at coincident times, (I(t)) = GM(¢,t), the average electric current
is directly given by (I(t)) = eG®(¢,t). We could also define a second order coherence
G2 but (in virtue of Wick’s theorem), we will also show that it is possible to calculate
current correlations of the form (I(¢)I(¢)) in terms of G(©) and G so that a consistent
description of electron quantum optics experiment can be obtained. Moreover, Degio-
vanni et al. [47, 48] and Grenier et al. [44, 45] have shown how interactions could be
incorporated in this description in simple cases such as voltage pulses or energy resolved

excitations.

1.3 Coulomb interactions between electrons

One main difference between electron quantum optics and its photonic equivalent is
the presence of many other particles with which electrons interact whereas photons
are free from interactions. The difficulty of isolating an electron from the Fermi sea

to manipulate it can be circumvented in several manners (section [1.2.1)) but the issue
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of interactions remains. On one hand, it limits the development of electron quantum
optics, as decoherence and relaxation occurs as electrons propagate in the device. On
the other hand, these devices supply a very interesting playground to probe these effects
at the single charge scale. Here, we briefly review certain aspects of these interactions

in quantum Hall edge channels in specific experiments

1.3.1 Interactions in one-dimensional conductors

In one-dimensional quantum conductors such as quantum Hall edge channels, interac-
tions play a major role that do not compare at all with conductors of higher dimensions.
For interacting 2D or 3D conductor for examples, the Fermi liquid provides a simple pic-
ture of interaction that is very similar to the non-interacting case. In this description,
free moving electrons are replaced by dressed electrons (Landau quasiparticles) that are
much alike free electrons except that they now have a finite lifetime. On the contrary,
strong differences arise in a 1D interacting system. Indeed, the motion of an electron
in a straight line strongly modifies the motion of surrounding electrons like toppling
dominoes. A reasonable description of a 1D interacting system relies consequently on
bosonic collective modes (charge density waves) rather than dressed individual electrons,
and constitutes what is known as the Luttinger liquid theory. A large success of this
theory is the possibility to take into account interactions in an exact way, by simply
renormalizing the velocity of the charge density waves. It will be used in a simple form
in chapter

1.3.2 Interactions and electron optics

In chapter [ we address in particular the case of two chiral co-propagating edge channels
at filling factor v = 2. These two chiral Luttinger liquids are then coupled via Coulomb
interactions, allowing for energy exchanges between edge channels. These exchanges
have been investigated by Altimiras, le Sueur and co-workers [49-51]. In a sample with
variable propagation length and equipped with a quantum dot as an energy filter (Fig.
a), they have been able to perform a spectroscopy of the excitations in the outer-
most edge channel and have demonstrated that a non-equilibrium energy distribution
injected in the outer channel relaxes towards equilibrium on a scale of a few microns,
due to interaction with the inner channel. Moreover, relaxation can be frozen if a gap
is created in the excitation spectrum of idler channel in which no energy is injected (by
closing the channel on itself) so that energy exchanges are suppressed at low energies
[50]. This last result is a strong evidence that coupling between channels is responsi-

ble for relaxation. However, though very detailed information can be obtained on the
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distribution of energies in the edge channels, it does not provide a direct access to the

elementary excitations involved in the energy exchanges.

4 )

FIGURE 1.9: Interactions in quantum Hall edge channels — a) SEM picture
of the sample used in [5I]. A non-equilibrium energy distribution with a double step
feature is created by the mean of a quantum point contact. Using a quantum dot as
an energy filter, the energy distribution in the excited edge channel is reconstructed,
after variable propagation length (here 10 pm), exhibiting strong energy relaxation
(extracted from [51]). b) SEM picture of the Mach-Zehnder interferometer used
in [52). Gates G1 and G2 control the two beamsplitters of the interferometer. By
changing the voltage applied on DG1, loops in the inner edge channel are created, so
that charge fluctuations are frozen and coherence length can be doubled (extracted

\ from [52]). J

Yet, these elementary excitations can strongly differ from the non-interacting picture

of two uncoupled channels. In a strong coupling regime, two eigenmodes are expected
to appear at v = 2: one is fast and carries charge while the other is slow and neutral
[63H56]. This mechanism is expected to give rise to decoherence in electron quantum
optics devices [57H63]. For example, it gives a very convincing explanation [59] to the
unexpected lobe structure in the visibility of Mach-Zehnder interferometers [64], 65]. A
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quantum phase transition in the structure of the visibility has in fact been identified
[66]. First attempts have been made to tune decoherence via a voltage probe [67],
increase the coherence length and freeze decoherence in Mach-Zehnder interferometers
[68], by designing closed loops for the idler channel (similarly to [50], see Fig b) and

a doubling of the coherence has been obtained.

This separation in two very dissimilar eigenmodes bears strong analogies with spin-
charge separation in 1D quantum wires. Although this effect has been extensively in-
vestigated both experimentally and theoretically in quantum wires [69H71], no direct
observation of charge and neutral modes has been reported at v = 2 yet. As a matter
of fact, many experimental works have so far studied charge transport in quantum Hall
edge channels and interaction effects between counterpropagating edge states via radio
frequency measurements, either in time [72H76] or frequency [(7H81] domain, but none

directly addressed the separation in charge and neutral modes.

1.4 Outlook

In this manuscript, we address the topic of electron quantum optics in quantum Hall
edge channels under two different but complementary approaches. First, we aim at
demonstrating the feasibility and relevance of electron optics experiments to study at
the single electron scale the propagation of excitations in quantum Hall edge channels.
To this end, we singularize one electron (or one hole) amidst the Fermi sea, manipulate
it and characterize it via correlations measurements in geometries inspired by photonic
quantum optics. As electrons are subject to Coulomb interactions, the natural repre-
sentation of excitations is then a description in terms of bosonic collective modes in the
usual framework of Luttinger liquid theory, that can also be investigated in our devices.
The consistence between both aspects is then probed so as to offer a more general under-
standing of the underlying physics. Experiments presented in this manuscript have been
realized in very similar samples. We take advantage of the versatility of the mesoscopic
capacitor developed in the lab [6l 82H84] and used as a single electron source (SES),
which provides a wonderful and very well-controlled tool to tackle the aforementioned

topics.

In the following chapter (chapter [2), we summarize the necessary results of previous
works that allow to understand the basic functioning of the SES and its description in
terms of Floquet scattering theory and coherence functions. Far from being forsaken,
these results constitute the foundations on which the following experiments have been
built up. The SES shall be characterized by both its average properties and its fluctua-

tions. First, we discuss the average current that introduce to the general properties of the
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SES. Then we turn on to the measurements of short-time correlations that demonstrates

how quasi-ideal single charge emission can be achieved.

Then, chapter |3|is dedicated to the realization of a first electron quantum optics experi-
ment by implementing the electronic analog of the Hanbury-Brown & Twiss experiment,
where single electrons and holes are individually partitioned on a beamsplitter. We em-
phasize the difference arising from the AC nature of the partitioned current [85H87] in
comparison with previous experiments realized on a continuous flow of electrons. In our
case, the HBT correlations give access to the total number of elementary excitations
generated by the source [88][89]. This can not be accessed in the autocorrelations (with-
out partitioning) due to the existence of neutral excitations (electron/hole pairs) that
remain undetectable. As a matter of fact, the results we obtained are consistent with
the emission of a single electron-hole pair. However, they are deeply modified by the
presence of thermal excitations, as antibunching takes place between thermal excitations
and the produced quasiparticles. It offers a way to probe the energy spectrum of the

triggered excitations, that can be tuned by modifying the operating parameters.

In chapter [, we propose an experimental investigation of the effects of Coulomb inter-
action that couples the two co-propagating edge channels at filling factor v = 2. Then,
the mesoscopic capacitor is used not as a SES, but as a way to generate charge density
waves selectively in the outer edge channel. Due to capacitive coupling between the two
channels, a current is induced in the inner channel that holds details on the interactions.
In particular, we have been able to demonstrate and analyze the appearance of two new
eigenmodes of propagation in the system of two coupled channels: one is fast and carries

charge, while the slow one is neutral.

Finally, chapter [5| presents results on an electronic analog of the Hong-Ou-Mandel ex-
periment: two independent sources generate mono-electronic excitations in each input
of a beamsplitter, so that two-particle interference [25] can occur if excitations are in-
distinguishable and reach simultaneously the beamsplitter. This challenging experiment
allows to verify that we can generate independent excitations produced separately that

show a certain degree of indistinguishability despite interactions and relaxation.
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Introduction to chapter 2

In this chapter, we summarize the major results obtained on the single electron source
before the beginning of this work. First, we establish both the general theoretical frame-
work of Floquet scattering theory [90, O1], that will be used throughout this study as
a basis for numerical simulations of our results. Then, we concentrate on average cur-
rent measurement that offer an overall understanding of the behavior of the SES. Both
time-resolved and homodyne measurements are broached. The latter are used daily
to calibrate the properties and determinate the best set of parameters before turning
to noise measurements. Finally, we end up by detailing the results on short-time cur-
rent autocorrelations. They provide deep insights on the emission dynamics and are
used to prove that quasi-ideal single charge emission can be achieved under appropriate

operating conditions.

2.1 Theoretical description of the single electron source

In this section, we present a theoretical description of the driven mesoscopic capacitor,
that will be used as a single electron/hole source in the following chapters. The meso-
scopic capacitor consists of a quantum dot, whose size varies from 0.8 to 1.6 pum, tunnel-
coupled to the rest of the 2DEG via a quantum point contact (QPC). The quantum
dot is capacitively coupled to a top-gate. When the electric potential of this electrode
is driven periodically, charges are periodically pumped in and out of the quantum dot,
so that an AC current is generated. The driven mesoscopic capacitor can be described
as a time-dependent scatterer, modifying the propagation of the electrons in the nearby
channel. This description, known as the Floquet scattering formalism was first intro-
duced by Moskalets and Biittiker in [90, 092]. Equivalent description in time-domain has
also been proposed [93], and complementary studies using discrete tight-binding chain
has been carried out [94]. In addition to this, electron quantum optics devices can be
depicted using the electron coherence functions. Grenier et al. have indeed developed
a theory of electronic coherence [45] particularly suitable for picturing electron optics
experiments, such as the Hanbury-Brown & Twiss one, described in chapter [3] page
We present how these coherence functions can be used practically to describe our system,

and connect them to the Floquet scattering picture.
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2.1.1 Floquet scattering theory
2.1.1.1 Modeling the mesoscopic capacitor

A scheme of the source is presented in Figl2.1] In the integer quantum Hall regime,
electron transport is provided by the quantum Hall edge channels, on the edges of the
sample. Working preferably at filling factor ¥ = 2 (for a perpendicular magnetic field
B ~ 3 —4 T [95, 96]), only two edge channels contribute. The quantum dot is tunnel
coupled only to the outer edge channel of the reservoir. As a consequence, during the
emission process, the inner edge channel does not play any role and will be ignored.
Moreover, at this filling factor, edge states are spin-polarized, so that the spin degree of

freedom is not taken into account in this description.

4 N

FIGURE 2.1: Scheme of the mesoscopic capacitor — A quantum dot is etched
in the 2DEG (in blue) and tunnel coupled to the rest of the gas via a QPC, whose
transmission is controlled via the gate voltage V. An electronic wavepacket in the
outer edge channel of ¥ = 2 (in red) is either transmitted inside the dot with a
transmission coefficient d, or reflected with a reflexion coefficient r = /1 — |d|2. A
top gate electrode, capacitively coupled to the quantum dot, is driven with a gate
k voltage V... at GHz frequencies to induce an AC current in the reservoir. J

The quantum point contact then acts as a tunnel barrier of transmission d and reflexion
r (in amplitude) for the electronic waves. The quantum dot can thus be seen as a Pérot-
Fabry interferometer: an electron wavepacket incoming on the dot can either be reflected
with probability |r|? of tunnel into the dot with probability |d|?> = D = 1 — |r|2. Inside
the dot, the electron performs a certain number of turns, and the wavefunction acquires
a phase factor that depends on the electric potential in the dot. Finally the electron
escapes the dot. The coherent sum of all the outgoing electronic waves thus constitutes
the outgoing wavepacket, related to the incoming wavepacket via the Floquet scattering

matrix.
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2.1.1.2 Case of a static potential and density of states

These considerations can now be translated in a mathematical language. We assume
that the dot, seen as a time-dependent scatterer, is lumped at point x = 0, and denote
a(t),b(t) the annihilation operators at time ¢ respectively for the incoming/outgoing
modes. Let us consider an electron entering the dot at time 1, performing ¢ € N turns
in the dot, each in a finite time 7y, and escaping at time to. If ¢ = 0, the electron
is in fact directly reflected, so that ¢t; = t5. In that case, the phase acquired by the
wavepacket is @9 = 0, whereas the amplitude of the wavepacket takes a factor r. If
q # 0, to — t1 = g7, and the phase acquired then depends on the potential inside the
dot. The electron, when inside the dot, is indeed submitted to a potential Vj, where 1
is a DC voltage, used to control the potential inside the dot. The phase after ¢ turns
can then be written ¢, = £Vo(t2 —t1) = qd/f?m' The amplitude of the wavepacket takes

a factor —d?r?~!. Summing over the number of turns g then yields :

b(ta) = ralta) — Y d*r e ia(ty — qmo) (2.1)
q=1

= / dt1 U(tg,tl)d(tl) (2'2)

where U (tg,t1), relating the incoming state at time 1 to the outgoing state at time to
is the so-called Floquet scattering matrix, written in the time domain:
_;32¢VoTo

U(tQ, tl) = T(s(tg — tl) —d? qufl(s(tg — 11 — qm)e h (23)
q=1

/ V0+Vexc(t) \

alt) d b(t,)

a——) Pe—
>

FiGUrRE 2.2: Scheme of the mesoscopic capacitor modeled as a time-
dependent scatterer — The electron in input mode a enters the dot at time tq,
performs ¢ circles, and escapes in output mode b at time t,. Only the outer edge
channel (depicted in red) of the reservoir is coupled to the internal edge channel
K with a transmission d, while the inner one does not play any role. /
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Though the interpretation of the previous relation is quite clear, working in the energy
domain enables faster and easier numerical computation of the quantities of interest
(such as the current generated by the source, or the current correlations in different
geometries), that we will derive later in this manuscript. We consequently introduce the

expression of the scattering matrix Ul(e, €') defined by the relations :
U(d,e) = / ddtU (Y, t)en (=) (2.4)
b(e') = / de U(€, €)a(e) (2.5)
N dt . ~
ble) = /e“t/hb t 2.6
(€) T (t) (2.6)

In the case of a static potential envisioned in this section, Eq.(2.5) in fact reduces to
b(e) = S(e)a(e) where S(e) is the stationary scattering matrix, given by :
r— eiTo(Efﬁo)/h

Sle) = (2.7)

1— reiTg(é*EQ)/h

where ¢y = eVfy. The density of states in the dot can then be computed from the static

scattering matrix S [97]:

1 .., .dS
N(e) = %5 (6)1(6) (2.8)
1 1—r?
= — — (2.9)
A1 —2rcos (W) +r2

For perfect transmission (r = 0), the density of states is constant, N'(e) = 1/A (see
Figl2.3). The quantum dot is completely open, so that no internal structure appears
in the density of states. For r # 0, N (e) exhibits a series of equally spaced peaks,

corresponding to the discrete levels in the dots. The level spacing A = % is on the

order of a few Kelvins. The tunnel coupling (with transmission D) to the electron gas

broadens the levels, with a width given by Ay = g—f. In the limit D — 0, the peaks are

lorentzian:

N = = ! (2.10)

2
T ()

The static potential V{y can then be used to modify the position of the levels at equilib-
rium, with respect to the Fermi level of the leads e, which we will set to zero throughout
this manuscript. Introducing the phase shift ¢g = €979/h, two configurations are of par-
ticular interest. When ¢y = 0, (g = 0), the Fermi level of the reservoir is at resonance

with the highest occupied level in the dot. When ¢¢g = 7, (¢9 = A/2), at equilibrium,
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FIGURE 2.3: Simulations of the density of states N (¢) in the dot, for dif-
ferent transmissions D — For low transmissions, A (e) exhibits equally spaced
lorentzian peaks, with a spacing A, and a width Ay = %. For D=1, N(e) = 1/A

is constant: no structure appears in the density of states. j

the Fermi level of the reservoir lies midway between the highest occupied level and the

lowest unoccupied level.
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FIGURE 2.4: Scheme of the position of levels in the dot — A voltage of
amplitude V.. = A/2e is applied on the top-gate, shifting the energy levels. a) For
o = 0, levels are driven far from the Fermi level ez = 0. b) For ¢¢ = 7, levels come
\ very close to the Fermi level when driven.

We present these two positions in Fig2.4] Anticipating on the next section, and ac-
cordingly with section we examine the motion of the levels when driven with an
excitation voltage Veg. verifying 2eVe,. ~ A. If ¢g = 0 (panel a), the level lies at the
Fermi level er in the absence of drive. When excitation is turned on, the level is driven
symmetrically with respect to Fermi level, and at rather high energies (on the order of

A/2). On the contrary, if ¢g = 7 (panel b), two levels contribute: they oscillate between
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very high energies (+A), and energies close to the Fermi level. We will see later that
in this situation, the properties of the source are quite sensitive to the characteristics of

the Fermi sea and of the excitation signal.

[Quantum and geometrical capacitances, issue of interactions}

In previous discussion, we have related the density of states to the trajectory of
electrons visiting the dot: as this trajectoire is closed, an orbital level spacing
arises A, = h/7y. However, we have not taken into account the charging energy
E, = €2 /Cy, where Cj is the geometrical capacitance. The sample has been
designed to maximise Cy, and G. Feve and F.D. Parmentier have given [6} [84]
serious experimental evidence that both contributions are of the same order of
magnitude E. ~ A, ~ 1 K for dots of micron perimeters. In this regime of
relatively low contribution of interactions (unlike metallic dots), we describe our
results by non-interacting models, but simply take into account a renormalization
of A, - A = A, + E.. Please note that our calibration of the dot in fact gives
direct access to the renormalized level spacing A. This approach has been vali-
dated by several articles [98, [99]. However, though we do not observe these effects
in our case (spin-degeneracy lifted and strong orbital level spacing), interaction-
induced effects have been widely investigated [I00-105] in similar geometries but
with stronger interactions, metallic dots, or spin-degenerated dots.

2.1.1.3 Case of a periodic drive

In order to induce a current in the outgoing edge channel, one can now add an ac
component Vg,.(t) on the top-gate electrode, so as to modulate the potential in the
quantum dot and thus trigger the pumping of electrons in and out of the quantum dot.
The Floquet scattering theory that we develop in this paragraph deals with any type of
modulation as long as it is periodic. We denote by 2 = 2% = 2n f the pulsation of the

drive, also defining f the drive frequency and 7" the period of modulation.

In this manuscript, two cases are envisioned. The first one is the case of a square drive,
that appears to be the best choice to produce single electrons and holes at high energies,
i.e. well-separated from the thermal excitations already present in the gas. The second
case envisioned is the sine drive, that allows analytical treatment in the adiabatic limit
2 — 0 [24, 90, O2], and provides an harmonic excitation that we will put to good use in

the study of interaction between edge channels (chapter [4] page |108]).

An electron entering the dot at time t;, performing ¢ round trips and escaping at time
to then acquires an additional phase A¢, = f ttf Vewe(t)dt. Since the drive Vg is
T-periodic, this phase can be expressed in terms of the Fourier coefficients ¢, of the

function ¢ : ¢ — exp(—if fot Veze(t')dt'). Here we will specify that the potential V.. is
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an even function of time ¢. This can be obtained by an appropriate choice of the time
reference for a square and sine voltage. Under this assumption, the Fourier coefficients

¢, are real, and we obtain:
- e t .
‘S(t) — e iR Jo Vewe(t')dt! _ E cne—znﬂt

n
I N (2.11)
n,n

No compact formula was found for the Floquet scattering matrix U in the time domain,
but rather in the energy domain. Because of the T-periodicity of the driving excitation,

U can be decomposed in the following way:

Ut t) = [ro(t' —t) —d>> r7'6(¢ —t — qro)]e i Je (VortVewe®) df
q=1

= Y Un(r)e ™™ (2.12)

wit T=t—t, t= tiztl A double Fourier transform then yields:

U(e,e) = Z U (€ — %hﬁ)é(e' — e —mhQ) (2.13)
Un(©) = > eacnsmS(e— (n+ g)m) (2.14)
be) = > Unle — %ﬁﬁ)&(el — mhQ) (2.15)

where § is the static scattering matrix given by Eq.. Equation clearly demon-
strates that scattering occurs through the emission or absorption of a certain number m
of energy quanta Aw. U, is indeed the scattering amplitude associated with the transfer
(absorption if m > 0, emission if m < 0) of m energy quanta, from the driving signal to
the scattered electron. These relations are consistent with the static case developed in
section : when the excitation drive is turned off, we recover Up,(¢) = S(€), and

only elastic processes occur.

2.1.2 Coherence functions in the Floquet formalism

Floquet scattering theory provides the main framework for analyzing our experimental

results. In this paragraph, we express the coherence functions of the single electron/hole

Due to the underlying periodicity of the drive, this type of decomposition will appear for several
quantities of interest throughout the manuscript. The notations employed here are detailed in Appendix
E| and will be thoroughly kept in every calculation
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[Gauge transformation}

In the previous paragraph, the quantum dot is seen as a time-dependent scatterer,
whereas the incoming mode a(e) is assumed to be at equilibrium. This derivation
of the scattering matrix U [91] is somewhat different from the calculation pre-
sented in previous works [6 83] where the quantum dot was supposed to be at a
fixed potential whereas the leads were driven via the excitation voltage Vey.(t).
These two descriptions are in fact equivalent up to the gauge transformation
ae) — >_, cqa(e — qhS2). However, only the derivation presented previously can
be adapted to the case where two (or more) unsynchronized excitation drives are
used in the same experiment (see for example the two-particle Hong-Ou-Mandel
experiment described in chapter |5 page . Consequently, we will concentrate
on the gauge adopted in More details can be found in appendix A.3 of
reference [84]

source in terms of Floquet scattering matrix, thus connecting the previous paragraphs

to Floquet scattering theory.

Following the notation of section and denoting b the mode at the output of the
quantum dot, the electronic coherence function at the output of the time dependent

scatterer is:
GO 1) = B)b(0), (2.16)

The main difficulty to compute G¢/?) lies in the quantum average (...)p over the non-
equilibrium state in mode b. This difficulty is circumvented by relating b(t) to a(t) using
Eq.. The quantum average is then calculated on the field operator a of the lead
(supposed in state |F),)), yielding the results:

GOt t')

[ e, U@ 80 )@ i),

= /dtldt’l U 4)U*(t,41)G (t1 — 1)) (2.17)

This formula shows how Floquet scattering matrix acts on the coherence functions to
propagate from the state of equilibrium in the lead to the periodically driven state after
the quantum dot. Once again, we translate these results in energy domain. As the
i+t
2

source is T-periodic, the coherence function is periodic in ¢ = . Consequently, G

can be written a Fourier transform with respect to ¢t and 7 =t — t':

GOt t) = Y e Mgl(r) (2.18)

n
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Each g% (1) can then be expressed as a Fourier transform:

G\(r) = / %e‘i”/hgff)(e) (2.19)

A rather lengthy calculation then yields the following result :
G (e - hQ - Zh0 2.2
ZU Unin(€+ 5 h) fule — - h82) (2.20)

The contribution of the Fermi sea can be easily isolated. It is obtained by taking U,,(€) =
Om,0, representing the physical situation where no scattering occurs. Then, fo)(e) =
fu(€)0npo. Using the unitarity relation on Floquet matrix elements (see appendix ,
G©)(t,t') decomposes as:

GOtt) = Gt —t)+ A6t 1) (2.21)
Ag(e)(t,t/) — Z —iQnZAg(e)( ) (222)

AGY(e) = ZU* JUnenle+ 5 (Fule = ShY) = ful9))  (223)

To give a clear meaning to the previous formula is not a simple task. Indeed, the
coherence function builds up from the sum of an infinite number of contributions, indexed
by the integers m,n. The contribution indexed by integers m,n involve processes in
which m-+n photons are absorbed and m photons emitted. However, these developments
facilitate calculations of quantities such as the average current or the current correlations.
They can be expressed simply as a function of G (e/h) | with clearer physical interpretation,

and then linked to Floquet matrices for numerical computations.

2.2 Average current

The next paragraphs deal with the first quantity of interest, namely the average current.
It summarizes some aspects of the work of Julien Gabelli, Gwendal Féve and Adrien
Mahé [6, 82, R3]. Besides, it now constitutes the first diagnosis we establish on new

samples before setting up new experiments.
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2.2.1 Measuring and simulating the average current
2.2.1.1 Theoretical derivation of the average current
In this paragraph, we derive the average AC current measured in contact 1 when the

mesoscopic capacitor is driven. This current is the difference between the average current

flowing out of the lead and the current flowing from the source towards the lead.

4 N

FIGURE 2.5: Scheme of the source embedded in a 3-terminal geometry—
The input mode is labeled a, the output mode 13, both modes are related via Floquet
scattering matrix. A third mode labeled ¢ describes the outer edge channel from
contact 1 to 2. Contact 1 is connected to the ground so that a is at equilibrium.
K Contact 2 is connected to the RF amplification and detection scheme (see . j

On one hand, the average electric current produced by our single electron source is, as

explained in chapter

(L)) = e ()b()) (2.24)
= eG(t,t) (2.25)

On the other hand, since the lead is in state |F),), the equilibrium current flowing out

of it reads:

(L(t)) = ele(@)e()) (2.26)
= G (t,1) (2.27)

The net current i