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vie de labo à travers les conseils scientifiques et nos permanentes discussions avec l’équipe
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sagesse, ambition et bonne humeur et je les en remercie chaleureusement. Gwendal m’a

appris la physique méso bien au delà des rudiments, m’a fait confiance et nous a permis

d’avancer toujours avec le sourire. Il a donné beaucoup de ses nuits et week-ends et je
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Julien, Takis, Audrey, Matt, Jérém, Dora, Subha, Laure, Nico, Manu, Philippe, JD,

Ben, François, Mickael, ainsi que Cécile et Clara. Que soient remerciés aussi les autres

membres du LPA et du département avec qui les échanges furent toujours enrichissants,

autour d’une table optique, d’un ballon de foot, d’un verre, ou au jardin du Luxembourg
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Chevallier, Claire Wahl, Markus Büttiker, Christian Flindt, et Matthias Albert. Au
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2 Chapter 1 Introduction

The purpose of this thesis is the study of quantum-coherent electronic transport in

mesoscopic structures by implementing analogs of quantum optics experiments. Fol-

lowing the development of nano-fabrication and cryogenic techniques, new mesoscale

and nanoscale systems have been investigated, in which conduction properties are gov-

erned by quantum mechanics. In particular, high mobility two-dimensional electron

gases (2DEG), that exhibit large phase coherence length and elastic mean free path,

can be obtained in semi-conductor hetero-junctions. In such structures, several building

blocks of optics setups can be recreated, and quantum optics experiments can thus be

mimicked. First, the beamsplitter is provided by a set of two voltage-biased metallic

gates controlling the transmission of a tunnel barrier in the 2DEG. Then ballistic phase

coherent propagation is ensured in chiral one-dimensional edge channels of quantum

Hall effect. Major achievements are, for example, the realizations of a double slit ex-

periment [1], a Mach-Zehnder interferometer [2], or a Hanbury-Brown & Twiss intensity

correlation experiment [3]. Thus, experimental and theoretical tools of quantum optics

can be transposed: ballistic quantum conductors can be used to study electronic trans-

port following the point of view of quantum optics, and coherence theory, in analogy

with Glauber’s theory of light [4], enables to extract very clear information on electronic

properties by the means of current and current correlations. Beside these analogies, elec-

tron optics experiments are deeply enriched by Coulomb interactions between electrons,

that are in particular responsible for relaxation and decoherence mechanisms that alter

the visibility of interference effects. Such electron quantum optics experiments provide

benchmark setups to address the problem of interactions.

However, as of yet, these experiments have mostly been performed with DC sources,

that emit a continuous flow of electrons without any accurate control on energy and

emission times of the charge carriers [5]. Recently developed sources enable to trigger

the emission of on-demand single charges [6], paving the way from electron optics toward

electron quantum optics. In this manuscript, we present two realizations of such electron

quantum optics experiments. The first one is a new implementation of a Hanbury-

Brown & Twiss experiment in which single quasiparticles are partitioned one by one on

an electronic beamsplitter (chapter 3). The second example is the first realization of a

Hong-Ou-Mandel experiment where two (partially) indistinguishable excitations emitted

by independent sources are made to interfere on a beamsplitter (chapter 5).

Moreover, these experiments allow to tackle the topic of interactions at a very fundamen-

tal level by studying the propagation of a single electron amidst excitations of the Fermi

sea. To shed light on such phenomena, we propose in addition a frequency-resolved

analysis of capacitive coupling between two edge channels, that enables in particular to

observe and characterize a neutral propagation eigenmode (chapter 4).
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In this introduction chapter, we present the general framework of electron quantum

optics in quantum Hall edge channels, by describing the main building blocks that enable

to mimic optical setups. Then, we review milestones of electron optics experiments as

well as single charge emitters that enable to study the physics of quantum Hall edge

channels at the single charge scale. Finally, we introduce the tool of coherence functions

that provides the general theoretical framework of this work and recall the main results

obtained so far in the study of interactions between co-propagating edge channels.

1.1 Electron optics in two dimensional electron gases

Several analogies can be drawn between the propagation of electrons in integer quantum

Hall edge channels and photons in vacuum. As a consequence, a whole set of experiments

realized in quantum Hall devices are directly inspired by their optical equivalents. We

here briefly recall the main analogies on which electron quantum optics relies before

reviewing major experiments that have been realized in electronic devices.

1.1.1 Building up a quantum optics experiment in a 2DEG

1.1.1.1 Coherence in a 2DEG

The first ingredient to implement a quantum optics experiment is a medium in which

ballistic propagation is ensured on a large scale so that phase coherence is conserved over

the whole system. In condensed matter, this is provided by two-dimensional electron

gases: these semi-conductor hetero-structures (in our case and most frequently GaAs-

AlGaAs) are grown by molecular beam epitaxy, which supplies crystalline structures

with an extreme degree of purity. Thus mobilities up to about 10− 30 106 cm2/Vs have

been reported [7–10], and mean-free path le can be on the order of 10 − 20µm. These

properties enable to pattern samples with e-beam lithography in such a way that the

phase coherence of the wavefunction is preserved over the whole structure, thus fulfilling

a first requirement to build an electron optics experiment in a condensed matter system.

The simplest interference pattern can be produced for example in Young’s double-slit

experiment (Fig.1.1), which was realized for example by Schuster et al. [1]. Defining

two paths by electrostatic gates, they can modify the phase difference between paths

by tuning the enclosed Aharonov-Bohm flux1 and observe an interference pattern in the

current with a periodicity of h/eS where S = 0.4µm2 is the surface of the loop.

1using moderate fields B < 20 mT that do not compare with the ones involved in section 1.1.1.2
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Figure 1.1: Young’s double slit experiment – In GaAs-AlGaAs 2DEG of high
mobility µ = 1.6 106cm2/Vs, two interference paths (red arrows) are defined by
electrostatic gates, enclosing a flux φB = BS. The phase difference, proportional to
φB being tuned via the field B, interference in the output current is recorded (the
graphs correspond to different values of a plunger gate in the right arm that adds

an extra contribution to the phase difference). Adapted from [1].

1.1.1.2 Quantum Hall edge channels

Besides, electrons have to be guided from emission and detection through all the op-

tical elements. A powerful implementation of phase coherent quantum rails is pro-

vided by (integer) quantum Hall effect. Under a strong perpendicular magnetic field,

electronic transport in the 2DEG is governed by chiral one-dimensional conduction

channels appearing on the edges while the bulk remains insulating. Then, the con-

ductance of the 2DEG is quantized in units of the inverse of the Klitzing resistance

e2/h = R−1
K = 1/25.8 kΩ.

The quantized value of the conductance can be explained by considering the energy

spectrum of electrons in the 2DEG: electrons in the bulk are distributed on Landau

levels with an energy En = ~ωc(n + 1/2), n ∈ N, where ωc = |eB/m∗| is the cyclotron

pulsation (the effective mass m∗ of electrons in 2DEGs is equal to 0.067me) [11]. These

Landau levels are bent near the potential barriers constituting the edges of the sample,

see Fig.1.2. Besides, at such high magnetic field, spin-degeneracy in the Landau levels

is removed by Zeeman splitting2 ~ωZ . The finite number of electrons in the 2DEG

defines the Fermi energy εF , which, for an integer number ν filled levels, only crosses the

Zeeman-split Landau levels near the edges x = xL,R. Thus a finite number of chiral edge

channels appear at energy εF . Importantly, they are chiral: electrons flow with opposite

velocities on opposite edges. This number ν, called the filling factor, depends on the

magnetic field: as B increases, the Landau levels are shifted upward with respect to

the Fermi energy, so that the number of Zeeman-split Landau levels crossing the Fermi

2In our samples, typical values are ~ωZ/k ' 5 K at ν = 2, while ~ωc/k ' 60 K
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Figure 1.2: Quantum Hall edge channels – a) Energy spectrum as a function
of position: in the bulk, Landau levels En = ~ωc(n+ 1/2) appear. Due to confining
potential, levels are bent on the edges (x = xL,R). At sufficiently high magnetic
fields, spin-degeneracy is lifted by Zeeman splitting ~ωZ and each level is spin-
polarized. When an integer number ν (ν = 2 on this graph) of Landau levels
are filled, the Fermi level εF crosses the energy levels close to the edges, so that
transport properties are governed by ν edge channels. b) Schematic representation
of edge channels: for ν = 2, two spin-polarized chiral edge channels appear on each
side. Backscattering mechanism (blue curled arrow), that necessitates to travel from
one edge to another due to chirality, is strongly reduced and a ballistic behavior is

demonstrated on several hundreds of microns.

level (that is, the number of filled Landau levels, called filling factor ν) decreases. In

particular, at filling factor ν = 2 (pictured on Fig.1.1.1.2), electronic transport occurs on

two edge channels, which are spin-polarized (the first Landau level is completely filled,

spin up and spin down), corresponding to two Zeeman-split levels [11].

Finally, the mean free path of electrons is considerably increased, up to le ∼ 100µm:

the chirality imposed by the magnetic field makes backscattering difficult, as an electron

has to scatter from one edge to the counter-propagating one to backscatter, which can

only be done when Landau levels are partially filled in the bulk. Beside the absence of

backscattering in the edge channels [12], large phase coherence lengths have also been

measured (lφ ∼ 20µm at 20 mK [13]).

In the quantum Hall effect regime, electrons thus propagate along one-dimensional, phase

coherent, chiral edge channels without backscattering, that can be used as quantum rails

in the realization of electron quantum optics experiments. In this respect, many studies

(experimental as well as theoretical) have been performed in order to fully characterize

the properties of electronic transport in edge channels. An important result, among

others, is the noiseless character of transport in edge channels [14, 15]: a continuous

stream of electrons, generated by a bias voltage V appears naturally regularly ordered,

with an average time h/eV between charges [5]. The origin of this behavior is Pauli’s
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exclusion principle, that prevents the presence of two electrons at the same position in

the electron beam.

1.1.1.3 Quantum point contact

The electronic analog of a beam splitter can be implemented in a two-dimensional elec-

tron gas in the form of a quantum point contact (QPC) which consists of a pair of

electrostatic gates deposited on the surface of the sample. The typical geometry of QPC

gates is shown in Fig.1.3 a): when a negative gate voltage is applied on the gates, a

constriction is created in the 2DEG between the gates because of electrostatic repulsion.

This constriction gives rise to a potential barrier (plotted in color scale), the shape of

which can be determined from the geometry of the gates [16].'
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Figure 1.3: Quantum point contact as an electronic beamsplitter – a)
Geometry of a split gate quantum point contact (QPC): When polarized with a
negative gate voltage VG, the gates define a tunable potential barrier represented
in color scale (negative potentials in red toward zero potentials in blue). In the
integer quantum Hall regime, edge channels follow equipotentials and can either be
reflected (upper image) or transmitted (outer edge state labeled 1 of lower image).
b) Conductance of a QPC: the conductance of a QPC is presented as a function
of gate voltage and exhibits steps of value 2e2/h corresponding to the progressive
transmission of spin-degenerate edge states. As magnetic field B is increased, the
number ν of edge states decreases. For high fields, steps at e2/h starts to appear as
the spin-degeneracy of Landau levels is progressively lifted. Data taken from [17].

At high magnetic field, the transmission through the QPC is described in terms of

edge channels following equipotential lines, which are reflected one by one as the QPC
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gate voltage is swept towards large negative values. This effect was first experimentally

demonstrated in [17]: the conductance at magnetic fields below B = 1 T presents steps

in units of 2e2/h (see Fig.1.3 b). At high magnetic field, the height of the conductance

steps is equal to e2/h, reflecting the removal of spin-degeneracy, while the number of

conductance steps n decreases with the magnetic field, and corresponds to the number

of edge channels (given by the filling factor ν). Between two conductance plateaus, the

conductance G of the QPC is proportional to the transmission probability T : G = T e2

h ,

and can be generalized for finite number of edge channels ν: G =
∑ν

i=1 Ti
e2

h , where Ti

is the transmission of the i-th edge channel. Fig.1.3 b) therefore demonstrates that one

can tune the transmission of a QPC by changing its gate voltage. In particular, when set

at the exact half of the opening of the first conductance plateau, the outer edge channel

is partially transmitted with a probability T = 0.5, while all other edge channels are

fully reflected. The quantum point contact therefore acts as a tunable, channel-selective

beamsplitter.

1.1.2 Milestones of optics

1.1.2.1 Mach-Zehnder interferometers

Besides double-slit interferences, an other very striking demonstration of the phase co-

herence in 2DEG is the realization of Mach-Zehnder interferometers implemented this

time in the integer quantum Hall regime [2, 13, 18, 19] (Fig. 1.4). Using two quantum

point contacts (Fig.1.4 b), Y. Ji et al. [2] have defined two paths of different lengths

in a geometry that mimics the optical setup (sketched in Fig.1.4 a). Varying the path

length by electrostatic influence of an additional gate3 VG, they have obtained a sinu-

soidal interference pattern in the output current of the interferometer. It is important to

notice that this experiment probes the wave properties of the source (electronic or light

waves), and interference patterns arise from a collection of many single-particle events.

For light, classical analysis in terms of wave physics have been proposed during the 17th

century (by Hooke, Huyghens and Young) and is associated with first order coherence

function G(1)(r, t; r′, t′) = 〈E(r, t)E(r′, t′)〉, that encodes the coherence properties of the

electric field E(r, t) at position r and time t.

3as in the double-slit experiment, phase differences can also be controlled by the magnetic flux
enclosed in the closed loop of the interferometer.
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Figure 1.4: Mach-Zehnder interferometer – a) Sketch of a Mach-Zehnder
interferometer: Two beamsplitters define two paths with a phase difference φ, that
give rise to interference detected in the average output intensity 〈I(t)〉. b) Sketch
and SEM picture of the electronic Mach-Zehnder interferometer [2]: In the quantum
Hall regime, two QPCs are used as beamsplitters. By electrostatic influence, gate
voltage VG modifies the phase difference between both paths. c) Output intensity
〈I(t)〉 [2]: Varying gate voltage VG, interferences are observed with a visibility of

60%.

1.1.2.2 Hanbury-Brown & Twiss experiments

An other milestone in quantum optics is the implementation of an electronic analog

of the Hanbury-Brown & Twiss experiment. In this setup (Fig.1.5), a beam of pho-

tons/electrons is partitioned on an optical/electronic beamsplitter and the correlations

〈It(t)Ir(t′)〉 between both transmitted It(t) and reflected Ir(t
′) intensities are recorded.

The nature of this experiment is quite different from a wave picture, as random parti-

tioning on the beamsplitter is a discrete process at the scale of an individual particle:

an electron or a photon is either transmitted or reflected, so that the intensity correla-

tions encodes detailed information on the discrete nature of the involved particles. Once

again, a classical model in terms of corpuscles (section 3.1.3) can explain the features

observed and give information on the statistics of the source by comparing it with the

reference noise of a poissonian process.

In a setup that reproduces the seminal HBT experiment in a 2DEG, Henny et al. [3, 20]

have demonstrated the relation 〈∆ItIr〉 = −〈∆I2
t 〉 (with ∆Ir,t = Ir,t − 〈Ir,t〉). This
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Figure 1.5: Hanbury-Brown experiment – a) Sketch of the Hanbury-Brown &
Twiss experiment: A light or electron source is sent on a beamsplitter and correla-
tions between transmitted It(t) and reflected It(t

′) intensities are computed, yielding
information on the emission statistics of the source. b) Output correlations: Per-
fect anticorrelations are observed between 〈∆ItIr〉 and〈∆I2

t 〉, reflecting the absence
of noise in the electron stream created by a DC-biased contact. This property is

enforced by Pauli’s exclusion principle. Data taken from [3]

maximal anticorrelation is in fact a signature of the noiseless character of the input

source created by a DC voltage source, confirming the results obtained in [14] measuring

autocorrelations. It can be interpreted as an antibunching of electrons, also observed

for electrons in vacuum [21].

1.1.2.3 Hong-Ou-Mandel effect

As a matter of fact, only few experiments deeply rely on a quantum description that

reconciles both wave and particle physics. One important example is given by the Hong-

Ou-Mandel effect, named after an experiment carried out in 1987 [22]. In this experiment

(sketched in Fig.1.6 a), two particles are sent from two different sources (historically two

twin photons emitted simultaneously by a non-linear process in a crystal) in the two

inputs of a beamsplitter where they interfere. As a consequence of bosonic/fermionic

characters, indistinguishable particles are supposed to give only a limited number of

possible outcomes (Fig.1.6 b): two fermions should escape via two different outputs

(antibunching), while bosons get out in the same output (bunching) [23, 24]. This two-

particle interference [25] relies deeply on quantum indistinguishability and statistics, and

consequently neither wave nor particle theories can predict this effect. It is at the heart

of this thesis as it plays a key role in the interpretation of both the electronic Hanbury-

Brown & Twiss (chapter 3) and Hong-Ou-Mandel (chapter 5) experiments proposed in

this manuscript.
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Figure 1.6: Hong-Ou-Mandel effect– a) Principles of the Hong-Ou-Mandel ex-
periment: two synchronized independent wavepackets interfere on a beamsplitter.
b) Possible outcomes of the Hong-Ou-Mandel: two (indistinguishable) fermions an-
tibunch and come out in different outputs, while two bosons bunch and come out

by pair in the same output.

1.2 Electron quantum optics at the single charge scale

1.2.1 Single charge emitters

As of yet, all the mentioned electron optics experiments have been performed with DC

sources that continuously emit a large number of electrons and consequently do not offer

any precise control either on the energy or emission time of the generated excitations.

To operate at a single particle scale, it is crucial to reach ultimate control over a single

electron. Several single charge sources have been developed recently, in which an AC

signal triggers the emission of mono-electronic excitations, thus paving the way towards

electron quantum optics and to a detailed investigation of decoherence and interaction

effects at an elementary scale. Here, we briefly introduce several devices realized in

2DEGs that enable the on-demand production of single charges, including the source

developed in the Laboratoire Pierre Aigrain that is at the heart of this work.

1.2.1.1 Electrons flying on surface acoustic waves

The piezoelectric properties of the gallium arsenide substrate have been used to generate

single charge excitations at GHz repetition rates [28–31]. Applying radio-frequency

electric field on a piezo-electric transducer, a surface acoustic wave (SAW) is produced,

that in return acts as a trapping potential for electrons in the 2DEG. For sufficiently

high amplitudes, this potential creates an array of quantum dots that propagates in the
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Figure 1.7: Implementations of single charge emitters – a) Electrons on sur-
face acoustic waves: A SAW is generated by a radio-frequency piezo-electric trans-
ducer, creating an electric potential that can trap one electron in each minimum.
Single charges can then be transported on a few microns, from the electrostatically
defined quantum dot 1 to quantum dot 2 (extracted from [26]). b) Quantum turn-
stile: A set of one fast (entrance) and dc (exit) gate are used to create a moving
potential (pictured on the right panel) that can trap a single electron coming from
the left reservoir before releasing it on the right (extracted from [27]). c) Lorentzian
pulses: A lorentzian pulse V (t) (pictured on the left) applied on ohmic contact (sam-
ple on the right) generates a triggered charge pulse, accompanied with e/h pairs.
When

∫
dt V (t) = h/e, a quantized charge e is emitted and no addition e/h are

created (courtesy of CEA, Saclay).
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depleted gas at sound velocity c ' 3 103m.s−1. Each of these quantum dots can trap

exactly one electron, so that a quantized DC current I = efSAW is generated, where

fSAW is the frequency of the excited SAW. Recently, two groups [26, 32] have been able

to transfer single electrons between distant quantum dots separated by typically 3 to 5

microns (see Fig.1.7, panel a). The challenge is now to implement quantum optics or

entanglement protocols in such devices, as quantum information can be stored in the

internal states of electrons in dots.

1.2.1.2 Quantum turnstiles and charge pumps

One major challenge to realize a single charge source is the ability to isolate a single

charge from the Fermi sea, so that this charge can be quantized. In the previous example,

moving quantum dots were created by the SAW potential. On the contrary, two similar

techniques, charge pumps [33, 34] and quantum turnstiles [35, 36] allow the controlled

capture and release of single charges by the means of a set of fast gates. The latter can

be used to create confining potentials modulated at high frequencies, so that a single

charge is first trapped, and then released in the 2DEG as presented in Fig.1.7, panel

b). DC currents quantized in units of the repetition rate f can then be generated.

Recently [27], new designs of the gate drive waveform have enabled to reach an accuracy

approaching 0.01 parts per million, so that metrological applications are envisioned, such

as a quantum representation of the ampere [37].

1.2.1.3 Lorentzian pulses and modulated contacts

We have already mentioned the DC-biased contact as a source that produces a continuous

stream of electrons, pictured as ordered wavepackets (in virtue of Pauli principle) of

width h/eV . It however lacks the necessary control over the emission time due to its

DC nature. The trigger can be operated by applying a voltage pulse V (t) on an ohmic

contact. The charge emitted is then quantized if it verifies the condition
∫
dt V (t) =

h/e. In general, any pulse shape could be used. However the total number of emitted

quasiparticles is not quantized and the emission of additional electron/hole (e/h) pairs

is expected, so that quantum electron optics experiments are rendered difficult (see Fig.

1.7, panel c). Nevertheless, it was predicted [38–40] that the application of lorentzian

voltage pulses containing one elementary charge e enabled the emission of this single

charge without any spurious e/h pair. Such sources are under development in the group

of C. Glattli and first demonstrations are expected in a near future.
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1.2.1.4 Mesoscopic capacitor as a single electron source

The last implementation described relies on a driven mesoscopic capacitor, that was

developed at Laboratoire Pierre Aigrain after proposal from Büttiker et al. [41]. It is

at the core of the experiments carried out in this PhD work and a complete chapter

(chapter 2) will be dedicated to detailing the important properties of this device. Let

us briefly sketch how this source can be operated. The source consists of a submicronic

quantum dot, that presents a large level spacing ∆ coupled to the reservoir through a

quantum point contact. The potential in the dot is tuned using a capacitively coupled

top-gate deposited at the surface of the sample, controlled by excitation voltage Vexc(t).

The principle of operation of such a source is depicted in Fig.1.8, panel b): a voltage

step is applied to the top gate in order to shift the energy levels upwards with respect to

the Fermi energy εF . If the energy shift is comparable to the level spacing, only one level

is promoted above the Fermi energy. The single electron sitting on that level (provided

spin degeneracy is lifted) can then be emitted at an energy ε+ > εF in the reservoir

through the tunnel barrier formed by the QPC, with an escape time τe depending on

the transmission of the tunnel barrier D. After emission of the electron, the voltage

on the top gate is set back to its original value, so that the level previously promoted

above the Fermi energy is shifted back to its position ε− below the Fermi energy. The

dot can then absorb an electron from the reservoir, thus emitting a hole at an energy

ε− < εF with the same escape time τe as the electron (provided that the transmission

of the tunnel barrier is independent of energy). On a single cycle, the source therefore

emits one single electron, followed by a single hole, both with a controlled energy. This

cycle is repeated at GHz rates (typically, f = 1−2 GHz), thus generating an AC current

composed of alternatively emitted single electrons and single holes [42]. The top gate

and the QPC gates allow to tune the energy of the emitted charges and their escape

time. The energy and temporal widths of the emitted single-charge wavepackets are

respectively given by the width of the levels in the dot and the escape time, both of

which only depend on the level spacing ∆ and the transmission D. In this respect,

the source allows a control over the energy and emission time of the charges close to

the quantum limit. A controlled variation of the escape time over several orders of

magnitude (< 0.1 ns ↔ 10 ns) was experimentally demonstrated [42]. The mesoscopic

capacitor then appears as a promising candidate to perform single charge emission in

electron quantum optics experiments.

1.2.2 Coherence functions

As already mentioned, the propagation of electrons in the quantum Hall edge channels

bears strong analogies with the one of photons in vacuum. These analogies have proved
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Figure 1.8: Principles of single charge emission – a) schematic of the meso-
scopic capacitor. A quantum dot with a large level spacing is coupled to the reservoir
through a QPC (gate voltage Vg). The potential in the dot is tuned using the top
gate (voltage Vexc, and the emitted current is collected on contact (1). b) principle
of single charge emission with the mesoscopic capacitor. The upper graph represents
the evolution of the potential of the dot during the emission cycle. 1© The dot is at
equilibrium, for an initial value of Vexc. 2© the application of a large voltage step to
the dot top-gate shifts the energy levels upwards with respect to the Fermi energy,
promoting a single occupied level above the Fermi energy. A single electron is emit-
ted. 3© the excitation voltage is switched back to its original value: the emptied
level is shifted back below the Fermi energy, and can absorb an electron from the
reservoir. A single hole is emitted. During this cycle, only one level takes part in

the emission. The escape time τe only depends on the transmission of the QPC.

very useful to shed light on the electronic transport in quantum Hall devices. The latter

can be understood in terms of coherence properties of electronic source, so that it seems

relevant to adapt, if possible, Glauber’s theory of coherence to the case of electrons in

2DEGs.

1.2.2.1 Defining coherence functions in electronic systems

During years 1962-1963, R. J. Glauber developed a general quantum theory of light [4]

that has proved very useful to interpret quantum optics experiments. This very general

framework relies on the so-called coherence functions G. The first and second order
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coherence functions (respectively G(1) and G(2)) are defined as the following average

values [43]:

G(1)(r, t; r′, t′) = 〈E−(r, t)E+(r′, t′)〉ρ (1.1)

G(2)(r, t; r′, t′) = 〈E−(r, t)E−(r′, t′)E+(r′, t′)E+(r, t)〉ρ (1.2)

where 〈. . . 〉ρ denotes the quantum average over state ρ of the electromagnetic field,

and E−, E+ respectively the positive and negative frequency part of the field operator.

These quantities, that encode field correlations, can be connected quite directly to the

signal detected by photon counters, and are as such of great interest in quantum optics.

Grenier et al. have developed a similar theory in the case of electrons propagating in

quantum Hall edge channels of a 2DEG [44, 45]. Since there are two types of carri-

ers (electrons and holes), we will consider two coherence functions (of the first order),

denoted by respectively G(e) and G(h), defined by4:

G(e)(r, t; r′, t′) = 〈ψ†(r′, t′)ψ(r, t)〉ρ (1.3)

G(h)(r, t; r′, t′) = 〈ψ(r′, t′)ψ†(r, t)〉ρ (1.4)

where ψ(r, t) is the field operator, annihilating an electron at position r and time t while

ρ denotes the state of the field upon which the quantum average is calculated. Due to

the presence of a complex ground state (a Fermi sea) and two types of charge carriers,

several differences arise between photonic and electronic coherence functions. However,

we will see that many of our results can be simply interpreted by direct comparison with

their photonic equivalent.

1.2.2.2 Generalities on coherence functions

First, in order to simplify the following mathematical expressions, we drop the spatial

r-dependence, by assuming a propagation at constant velocity v in quantum Hall edge

channels, so that ψ(r, t) = ψ(r − vt):

G(e)(t, t′) = 〈ψ†(t′)ψ(t)〉ρ (1.5)

G(h)(t, t′) = 〈ψ(t′)ψ†(t)〉ρ (1.6)

A major difference with optics is the ground state, that now is a Fermi sea |Fµ〉 char-

acterized by its chemical potential µ and temperature T , radically different from the

4These two functions are closely connected in virtue of commutation relations of fermionic operators.
A formulary is presented in Appendix A
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vacuum of photons in quantum optics. In full generality, one can decompose coherence

functions into a sum of two contributions:

G(e/h)(t, t′) = G(e/h)
µ (t− t′) + ∆G(e/h)(t, t′) (1.7)

The first one, denoted G(e/h)
µ , is due to the Fermi sea. Indeed, the coherence functions

do not vanish for the ground state |Fµ〉 as their photonics counterparts do. One can

show that these correlators reduce to:

G(e)
µ (t− t′) =

∫
dε

h
fµ(ε)eiε(t

′−t)/~ (1.8)

G(h)
µ (t− t′) =

∫
dε

h
(1− fµ(ε))eiε(t−t

′)/~ (1.9)

where fµ is the Fermi-Dirac distribution with chemical potential µ. Please note that since

the Fermi sea |Fµ〉 is a stationary state, G(e/h)
µ only depend on the time difference τ =

t− t′. The second part ∆G(e/h) is the extra contribution representing the single-particle

coherence of the electrons and holes emitted in the edge channels by non-equilibrium

sources, which depends in full generality on the two times t, t′.

In the following paragraph, we present a simplified model of ideal one-shot emission.

Simple analytical formulas will be derived from this model in chapters 2 and 5, providing

interesting insights on the underlying physical phenomena.

1.2.2.3 Case of an ideal one-shot single electron source

The quantum state |ϕe〉 is obtained by creating the electron in wavepacket ϕe(t) above

the Fermi sea, so that the state reads:

|ϕe〉 =

∫
dt ϕe(t)ψ

†(t)|Fµ〉 (1.10)

If we consider here the case of the single-shot emission of an electronic excitation at

rather high energies, we can assume that the particle is represented by a wavepacket ϕe

such that in the energy domain ϕe(ε) =
∫
dt eiεt/~ϕe(t) is concentrated around an energy

εe � kTel. Thus, the expression of G(e)(t, t′) can be greatly simplified (see Appendix A

for details) and the coherence function of an ideal one-shot electron source finally reads:

G(e/h)(t, t′) = G(e/h)
µ (t− t′) + ϕ∗e(t

′)ϕe(t) (1.11)

∆G(e/h)(t, t′) = ϕ∗e(t
′)ϕe(t) (1.12)
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This simple example illustrates the idea that the measurement of the single-particle

coherence functions provide a direct visualization of the wavepacket in which the particle

is emitted. Developing this idea, we will show (section 3.4) that a complete tomography

of the quantum state of mono-electronic excitations can be envisioned. In particular,

a protocol for measuring ∆G(e/h) is described in [46]. It stems from optics where the

tomography of an electromagnetic field can be performed by homodyning the studied

field with a reference field (called Local Oscillator, LO).

It is important to stress here the difference between the Fermi sea and a mono-electronic

wavepacket. Due to the stationary nature of the Fermi sea, G(e)
µ depends only on the

time difference τ = t− t′. On the other hand, for a mono-electronic wavepacket, ∆G(e)

depends on both t and t′ due to its dynamical character. It reflects the fact that a

Fermi sea is a statistical object, entirely described by the populations G(e)
µ (ε) = fµ(ε)

and does not present any coherence. On the contrary, a wavepacket is a quantum object

that exhibits both populations and coherences : the two-dimensional Fourier transform

∆G(e)(ε, ε′) encodes population on the diagonal ε = ε′ but also has non-zero off-diagonal

components (coherences) for ε 6= ε′.

1.2.2.4 Current, current correlations and coherence functions

Like in quantum optics, the coherence functions are very useful as they connect simple

theoretical objects to measurable quantities, for example in a Mach-Zehnder interfer-

ometer, or in the Hanbury-Brown & Twiss geometry. First, as the average intensity of

light is related to G(1) at coincident times, 〈Î(t)〉 = G(1)(t, t), the average electric current

is directly given by 〈Î(t)〉 = eG(e)(t, t). We could also define a second order coherence

G(2,e), but (in virtue of Wick’s theorem), we will also show that it is possible to calculate

current correlations of the form 〈Î(t)Î(t′)〉 in terms of G(e) and G(h) so that a consistent

description of electron quantum optics experiment can be obtained. Moreover, Degio-

vanni et al. [47, 48] and Grenier et al. [44, 45] have shown how interactions could be

incorporated in this description in simple cases such as voltage pulses or energy resolved

excitations.

1.3 Coulomb interactions between electrons

One main difference between electron quantum optics and its photonic equivalent is

the presence of many other particles with which electrons interact whereas photons

are free from interactions. The difficulty of isolating an electron from the Fermi sea

to manipulate it can be circumvented in several manners (section 1.2.1) but the issue
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of interactions remains. On one hand, it limits the development of electron quantum

optics, as decoherence and relaxation occurs as electrons propagate in the device. On

the other hand, these devices supply a very interesting playground to probe these effects

at the single charge scale. Here, we briefly review certain aspects of these interactions

in quantum Hall edge channels in specific experiments

1.3.1 Interactions in one-dimensional conductors

In one-dimensional quantum conductors such as quantum Hall edge channels, interac-

tions play a major role that do not compare at all with conductors of higher dimensions.

For interacting 2D or 3D conductor for examples, the Fermi liquid provides a simple pic-

ture of interaction that is very similar to the non-interacting case. In this description,

free moving electrons are replaced by dressed electrons (Landau quasiparticles) that are

much alike free electrons except that they now have a finite lifetime. On the contrary,

strong differences arise in a 1D interacting system. Indeed, the motion of an electron

in a straight line strongly modifies the motion of surrounding electrons like toppling

dominoes. A reasonable description of a 1D interacting system relies consequently on

bosonic collective modes (charge density waves) rather than dressed individual electrons,

and constitutes what is known as the Luttinger liquid theory. A large success of this

theory is the possibility to take into account interactions in an exact way, by simply

renormalizing the velocity of the charge density waves. It will be used in a simple form

in chapter 4.

1.3.2 Interactions and electron optics

In chapter 4, we address in particular the case of two chiral co-propagating edge channels

at filling factor ν = 2. These two chiral Luttinger liquids are then coupled via Coulomb

interactions, allowing for energy exchanges between edge channels. These exchanges

have been investigated by Altimiras, le Sueur and co-workers [49–51]. In a sample with

variable propagation length and equipped with a quantum dot as an energy filter (Fig.

1.9 a), they have been able to perform a spectroscopy of the excitations in the outer-

most edge channel and have demonstrated that a non-equilibrium energy distribution

injected in the outer channel relaxes towards equilibrium on a scale of a few microns,

due to interaction with the inner channel. Moreover, relaxation can be frozen if a gap

is created in the excitation spectrum of idler channel in which no energy is injected (by

closing the channel on itself) so that energy exchanges are suppressed at low energies

[50]. This last result is a strong evidence that coupling between channels is responsi-

ble for relaxation. However, though very detailed information can be obtained on the
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distribution of energies in the edge channels, it does not provide a direct access to the

elementary excitations involved in the energy exchanges.'
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Figure 1.9: Interactions in quantum Hall edge channels – a) SEM picture
of the sample used in [51]. A non-equilibrium energy distribution with a double step
feature is created by the mean of a quantum point contact. Using a quantum dot as
an energy filter, the energy distribution in the excited edge channel is reconstructed,
after variable propagation length (here 10µm), exhibiting strong energy relaxation
(extracted from [51]). b) SEM picture of the Mach-Zehnder interferometer used
in [52]. Gates G1 and G2 control the two beamsplitters of the interferometer. By
changing the voltage applied on DG1, loops in the inner edge channel are created, so
that charge fluctuations are frozen and coherence length can be doubled (extracted

from [52]).

Yet, these elementary excitations can strongly differ from the non-interacting picture

of two uncoupled channels. In a strong coupling regime, two eigenmodes are expected

to appear at ν = 2: one is fast and carries charge while the other is slow and neutral

[53–56]. This mechanism is expected to give rise to decoherence in electron quantum

optics devices [57–63]. For example, it gives a very convincing explanation [59] to the

unexpected lobe structure in the visibility of Mach-Zehnder interferometers [64, 65]. A
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quantum phase transition in the structure of the visibility has in fact been identified

[66]. First attempts have been made to tune decoherence via a voltage probe [67],

increase the coherence length and freeze decoherence in Mach-Zehnder interferometers

[68], by designing closed loops for the idler channel (similarly to [50], see Fig.1.9 b) and

a doubling of the coherence has been obtained.

This separation in two very dissimilar eigenmodes bears strong analogies with spin-

charge separation in 1D quantum wires. Although this effect has been extensively in-

vestigated both experimentally and theoretically in quantum wires [69–71], no direct

observation of charge and neutral modes has been reported at ν = 2 yet. As a matter

of fact, many experimental works have so far studied charge transport in quantum Hall

edge channels and interaction effects between counterpropagating edge states via radio

frequency measurements, either in time [72–76] or frequency [77–81] domain, but none

directly addressed the separation in charge and neutral modes.

1.4 Outlook

In this manuscript, we address the topic of electron quantum optics in quantum Hall

edge channels under two different but complementary approaches. First, we aim at

demonstrating the feasibility and relevance of electron optics experiments to study at

the single electron scale the propagation of excitations in quantum Hall edge channels.

To this end, we singularize one electron (or one hole) amidst the Fermi sea, manipulate

it and characterize it via correlations measurements in geometries inspired by photonic

quantum optics. As electrons are subject to Coulomb interactions, the natural repre-

sentation of excitations is then a description in terms of bosonic collective modes in the

usual framework of Luttinger liquid theory, that can also be investigated in our devices.

The consistence between both aspects is then probed so as to offer a more general under-

standing of the underlying physics. Experiments presented in this manuscript have been

realized in very similar samples. We take advantage of the versatility of the mesoscopic

capacitor developed in the lab [6, 82–84] and used as a single electron source (SES),

which provides a wonderful and very well-controlled tool to tackle the aforementioned

topics.

In the following chapter (chapter 2), we summarize the necessary results of previous

works that allow to understand the basic functioning of the SES and its description in

terms of Floquet scattering theory and coherence functions. Far from being forsaken,

these results constitute the foundations on which the following experiments have been

built up. The SES shall be characterized by both its average properties and its fluctua-

tions. First, we discuss the average current that introduce to the general properties of the
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SES. Then we turn on to the measurements of short-time correlations that demonstrates

how quasi-ideal single charge emission can be achieved.

Then, chapter 3 is dedicated to the realization of a first electron quantum optics experi-

ment by implementing the electronic analog of the Hanbury-Brown & Twiss experiment,

where single electrons and holes are individually partitioned on a beamsplitter. We em-

phasize the difference arising from the AC nature of the partitioned current [85–87] in

comparison with previous experiments realized on a continuous flow of electrons. In our

case, the HBT correlations give access to the total number of elementary excitations

generated by the source [88, 89]. This can not be accessed in the autocorrelations (with-

out partitioning) due to the existence of neutral excitations (electron/hole pairs) that

remain undetectable. As a matter of fact, the results we obtained are consistent with

the emission of a single electron-hole pair. However, they are deeply modified by the

presence of thermal excitations, as antibunching takes place between thermal excitations

and the produced quasiparticles. It offers a way to probe the energy spectrum of the

triggered excitations, that can be tuned by modifying the operating parameters.

In chapter 4, we propose an experimental investigation of the effects of Coulomb inter-

action that couples the two co-propagating edge channels at filling factor ν = 2. Then,

the mesoscopic capacitor is used not as a SES, but as a way to generate charge density

waves selectively in the outer edge channel. Due to capacitive coupling between the two

channels, a current is induced in the inner channel that holds details on the interactions.

In particular, we have been able to demonstrate and analyze the appearance of two new

eigenmodes of propagation in the system of two coupled channels: one is fast and carries

charge, while the slow one is neutral.

Finally, chapter 5 presents results on an electronic analog of the Hong-Ou-Mandel ex-

periment: two independent sources generate mono-electronic excitations in each input

of a beamsplitter, so that two-particle interference [25] can occur if excitations are in-

distinguishable and reach simultaneously the beamsplitter. This challenging experiment

allows to verify that we can generate independent excitations produced separately that

show a certain degree of indistinguishability despite interactions and relaxation.
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Introduction to chapter 2

In this chapter, we summarize the major results obtained on the single electron source

before the beginning of this work. First, we establish both the general theoretical frame-

work of Floquet scattering theory [90, 91], that will be used throughout this study as

a basis for numerical simulations of our results. Then, we concentrate on average cur-

rent measurement that offer an overall understanding of the behavior of the SES. Both

time-resolved and homodyne measurements are broached. The latter are used daily

to calibrate the properties and determinate the best set of parameters before turning

to noise measurements. Finally, we end up by detailing the results on short-time cur-

rent autocorrelations. They provide deep insights on the emission dynamics and are

used to prove that quasi-ideal single charge emission can be achieved under appropriate

operating conditions.

2.1 Theoretical description of the single electron source

In this section, we present a theoretical description of the driven mesoscopic capacitor,

that will be used as a single electron/hole source in the following chapters. The meso-

scopic capacitor consists of a quantum dot, whose size varies from 0.8 to 1.6 µm, tunnel-

coupled to the rest of the 2DEG via a quantum point contact (QPC). The quantum

dot is capacitively coupled to a top-gate. When the electric potential of this electrode

is driven periodically, charges are periodically pumped in and out of the quantum dot,

so that an AC current is generated. The driven mesoscopic capacitor can be described

as a time-dependent scatterer, modifying the propagation of the electrons in the nearby

channel. This description, known as the Floquet scattering formalism was first intro-

duced by Moskalets and Büttiker in [90, 92]. Equivalent description in time-domain has

also been proposed [93], and complementary studies using discrete tight-binding chain

has been carried out [94]. In addition to this, electron quantum optics devices can be

depicted using the electron coherence functions. Grenier et al. have indeed developed

a theory of electronic coherence [45] particularly suitable for picturing electron optics

experiments, such as the Hanbury-Brown & Twiss one, described in chapter 3 page 62.

We present how these coherence functions can be used practically to describe our system,

and connect them to the Floquet scattering picture.
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2.1.1 Floquet scattering theory

2.1.1.1 Modeling the mesoscopic capacitor

A scheme of the source is presented in Fig.2.1. In the integer quantum Hall regime,

electron transport is provided by the quantum Hall edge channels, on the edges of the

sample. Working preferably at filling factor ν = 2 (for a perpendicular magnetic field

B ∼ 3 − 4 T [95, 96]), only two edge channels contribute. The quantum dot is tunnel

coupled only to the outer edge channel of the reservoir. As a consequence, during the

emission process, the inner edge channel does not play any role and will be ignored.

Moreover, at this filling factor, edge states are spin-polarized, so that the spin degree of

freedom is not taken into account in this description.'
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Figure 2.1: Scheme of the mesoscopic capacitor – A quantum dot is etched
in the 2DEG (in blue) and tunnel coupled to the rest of the gas via a QPC, whose
transmission is controlled via the gate voltage Vg. An electronic wavepacket in the
outer edge channel of ν = 2 (in red) is either transmitted inside the dot with a
transmission coefficient d, or reflected with a reflexion coefficient r =

√
1− |d|2. A

top gate electrode, capacitively coupled to the quantum dot, is driven with a gate
voltage Vexc at GHz frequencies to induce an AC current in the reservoir.

The quantum point contact then acts as a tunnel barrier of transmission d and reflexion

r (in amplitude) for the electronic waves. The quantum dot can thus be seen as a Pérot-

Fabry interferometer: an electron wavepacket incoming on the dot can either be reflected

with probability |r|2 of tunnel into the dot with probability |d|2 = D = 1− |r|2. Inside

the dot, the electron performs a certain number of turns, and the wavefunction acquires

a phase factor that depends on the electric potential in the dot. Finally the electron

escapes the dot. The coherent sum of all the outgoing electronic waves thus constitutes

the outgoing wavepacket, related to the incoming wavepacket via the Floquet scattering

matrix.
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2.1.1.2 Case of a static potential and density of states

These considerations can now be translated in a mathematical language. We assume

that the dot, seen as a time-dependent scatterer, is lumped at point x = 0, and denote

â(t), b̂(t) the annihilation operators at time t respectively for the incoming/outgoing

modes. Let us consider an electron entering the dot at time t1, performing q ∈ N turns

in the dot, each in a finite time τ0, and escaping at time t2. If q = 0, the electron

is in fact directly reflected, so that t1 = t2. In that case, the phase acquired by the

wavepacket is φ0 = 0, whereas the amplitude of the wavepacket takes a factor r. If

q 6= 0, t2 − t1 = qτ0, and the phase acquired then depends on the potential inside the

dot. The electron, when inside the dot, is indeed submitted to a potential V0, where V0

is a DC voltage, used to control the potential inside the dot. The phase after q turns

can then be written φq = e
~V0(t2 − t1) = qeV0τ0

~ . The amplitude of the wavepacket takes

a factor −d2rq−1. Summing over the number of turns q then yields :

b̂(t2) = râ(t2)−
∞∑

q=1

d2rq−1e−iφq â(t2 − qτ0) (2.1)

=

∫
dt1 U(t2, t1)â(t1) (2.2)

where U(t2, t1), relating the incoming state at time t1 to the outgoing state at time t2

is the so-called Floquet scattering matrix, written in the time domain:

U(t2, t1) = rδ(t2 − t1)− d2
∞∑

q=1

rq−1δ(t2 − t1 − qτ0)e−i
qeV0τ0

~ (2.3)
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Figure 2.2: Scheme of the mesoscopic capacitor modeled as a time-
dependent scatterer – The electron in input mode â enters the dot at time t1,
performs q circles, and escapes in output mode b̂ at time t2. Only the outer edge
channel (depicted in red) of the reservoir is coupled to the internal edge channel

with a transmission d, while the inner one does not play any role.
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Though the interpretation of the previous relation is quite clear, working in the energy

domain enables faster and easier numerical computation of the quantities of interest

(such as the current generated by the source, or the current correlations in different

geometries), that we will derive later in this manuscript. We consequently introduce the

expression of the scattering matrix U(ε, ε′) defined by the relations :

U(ε′, ε) =

∫
dt′dtU(t′, t)e

i
~ (ε′t′−εt) (2.4)

b̂(ε′) =

∫
dε U(ε′, ε)â(ε) (2.5)

b̂(ε) =

∫
dt√
h
eiεt/~b̂(t) (2.6)

In the case of a static potential envisioned in this section, Eq.(2.5) in fact reduces to

b̂(ε) = S(ε)â(ε) where S(ε) is the stationary scattering matrix, given by :

S(ε) =
r − eiτ0(ε−ε0)/~

1− reiτ0(ε−ε0)/~ (2.7)

where ε0 = eV0. The density of states in the dot can then be computed from the static

scattering matrix S [97]:

N (ε) =
1

2πi
S∗(ε)dS

dε
(ε) (2.8)

=
1

∆

1− r2

1− 2r cos
(2π(ε−ε0)

∆

)
+ r2

(2.9)

For perfect transmission (r = 0), the density of states is constant, N (ε) = 1/∆ (see

Fig.2.3). The quantum dot is completely open, so that no internal structure appears

in the density of states. For r 6= 0, N (ε) exhibits a series of equally spaced peaks,

corresponding to the discrete levels in the dots. The level spacing ∆ = h
τ0

is on the

order of a few Kelvins. The tunnel coupling (with transmission D) to the electron gas

broadens the levels, with a width given by ~γ = D∆
2π . In the limit D → 0, the peaks are

lorentzian:

N (ε) =
∑

n

2

π~γ
1

1 +
(
ε−ε0−n∆

~γ/2

)2 (2.10)

The static potential V0 can then be used to modify the position of the levels at equilib-

rium, with respect to the Fermi level of the leads εF , which we will set to zero throughout

this manuscript. Introducing the phase shift φ0 = ε0τ0/~, two configurations are of par-

ticular interest. When φ0 = 0, (ε0 = 0), the Fermi level of the reservoir is at resonance

with the highest occupied level in the dot. When φ0 = π, (ε0 = ∆/2), at equilibrium,



28 Chapter 2 Implementation of a single electron/hole source

'

&

$

%

Energy ✏ [�]

D
en

si
ty

o
f
st

a
te

s
N

(✏
)

[1
/
�

]

Figure 2.3: Simulations of the density of states N (ε) in the dot, for dif-
ferent transmissions D – For low transmissions, N (ε) exhibits equally spaced
lorentzian peaks, with a spacing ∆, and a width ~γ = D∆

2π . For D = 1, N (ε) = 1/∆
is constant: no structure appears in the density of states.

the Fermi level of the reservoir lies midway between the highest occupied level and the

lowest unoccupied level.'
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Figure 2.4: Scheme of the position of levels in the dot – A voltage of
amplitude Vexc = ∆/2e is applied on the top-gate, shifting the energy levels. a) For
φ0 = 0, levels are driven far from the Fermi level εF = 0. b) For φ0 = π, levels come

very close to the Fermi level when driven.

We present these two positions in Fig.2.4. Anticipating on the next section, and ac-

cordingly with section 1.2.1.4, we examine the motion of the levels when driven with an

excitation voltage Vexc verifying 2eVexc ∼ ∆. If φ0 = 0 (panel a), the level lies at the

Fermi level εF in the absence of drive. When excitation is turned on, the level is driven

symmetrically with respect to Fermi level, and at rather high energies (on the order of

∆/2). On the contrary, if φ0 = π (panel b), two levels contribute: they oscillate between
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very high energies (±∆), and energies close to the Fermi level. We will see later that

in this situation, the properties of the source are quite sensitive to the characteristics of

the Fermi sea and of the excitation signal.

In previous discussion, we have related the density of states to the trajectory of
electrons visiting the dot: as this trajectoire is closed, an orbital level spacing
arises ∆o = h/τ0. However, we have not taken into account the charging energy
Ec = e2/Cg, where Cg is the geometrical capacitance. The sample has been
designed to maximise Cg, and G. Fève and F.D. Parmentier have given [6, 84]
serious experimental evidence that both contributions are of the same order of
magnitude Ec ' ∆o ' 1 K for dots of micron perimeters. In this regime of
relatively low contribution of interactions (unlike metallic dots), we describe our
results by non-interacting models, but simply take into account a renormalization
of ∆o → ∆ = ∆o + Ec. Please note that our calibration of the dot in fact gives
direct access to the renormalized level spacing ∆. This approach has been vali-
dated by several articles [98, 99]. However, though we do not observe these effects
in our case (spin-degeneracy lifted and strong orbital level spacing), interaction-
induced effects have been widely investigated [100–105] in similar geometries but
with stronger interactions, metallic dots, or spin-degenerated dots.

Quantum and geometrical capacitances, issue of interactions

2.1.1.3 Case of a periodic drive

In order to induce a current in the outgoing edge channel, one can now add an ac

component Vexc(t) on the top-gate electrode, so as to modulate the potential in the

quantum dot and thus trigger the pumping of electrons in and out of the quantum dot.

The Floquet scattering theory that we develop in this paragraph deals with any type of

modulation as long as it is periodic. We denote by Ω = 2π
T = 2πf the pulsation of the

drive, also defining f the drive frequency and T the period of modulation.

In this manuscript, two cases are envisioned. The first one is the case of a square drive,

that appears to be the best choice to produce single electrons and holes at high energies,

i.e. well-separated from the thermal excitations already present in the gas. The second

case envisioned is the sine drive, that allows analytical treatment in the adiabatic limit

Ω→ 0 [24, 90, 92], and provides an harmonic excitation that we will put to good use in

the study of interaction between edge channels (chapter 4 page 108).

An electron entering the dot at time t1, performing q round trips and escaping at time

t2 then acquires an additional phase ∆φq = e
~
∫ t2
t1
Vexc(t)dt. Since the drive Vexc is

T -periodic, this phase can be expressed in terms of the Fourier coefficients cn of the

function ξ : t 7→ exp(−i e~
∫ t

0 Vexc(t
′)dt′). Here we will specify that the potential Vexc is
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an even function of time t. This can be obtained by an appropriate choice of the time

reference for a square and sine voltage. Under this assumption, the Fourier coefficients

cn are real, and we obtain:

ξ(t) = e−i
e
~
∫ t
0 Vexc(t

′)dt′ =
∑

n

cne
−inΩt

e−i∆φq =
∑

n,n′

cncn′e
−iΩ(nt2−n′t1) (2.11)

No compact formula was found for the Floquet scattering matrix U in the time domain,

but rather in the energy domain. Because of the T -periodicity of the driving excitation,

U can be decomposed in the following way:

U(t′, t) =
[
rδ(t′ − t)− d2

∞∑

q=1

rq−1δ(t′ − t− qτ0)
]
e−i

e
~
∫ t′
t (V0+Vexc(t̃)) dt̃

=
∑

m

Um(τ)e−imΩt (2.12)

with1 τ = t− t′, t = t+t′

2 . A double Fourier transform then yields:

U(ε′, ε) =
∑

m

Um(ε′ − m

2
~Ω)δ(ε′ − ε−m~Ω) (2.13)

Um(ε) =
∑

n

cncn+mS
(
ε− (n+

p

2
)~Ω

)
(2.14)

b̂(ε′) =
∑

m

Um(ε′ − m

2
~Ω)â(ε′ −m~Ω) (2.15)

where S is the static scattering matrix given by Eq.(2.7). Equation (2.15) clearly demon-

strates that scattering occurs through the emission or absorption of a certain number m

of energy quanta ~ω. Um is indeed the scattering amplitude associated with the transfer

(absorption if m > 0, emission if m < 0) of m energy quanta, from the driving signal to

the scattered electron. These relations are consistent with the static case developed in

section 2.1.1.2 : when the excitation drive is turned off, we recover Um(ε) = S(ε), and

only elastic processes occur.

2.1.2 Coherence functions in the Floquet formalism

Floquet scattering theory provides the main framework for analyzing our experimental

results. In this paragraph, we express the coherence functions of the single electron/hole

1Due to the underlying periodicity of the drive, this type of decomposition will appear for several
quantities of interest throughout the manuscript. The notations employed here are detailed in Appendix
A and will be thoroughly kept in every calculation
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In the previous paragraph, the quantum dot is seen as a time-dependent scatterer,
whereas the incoming mode â(ε) is assumed to be at equilibrium. This derivation
of the scattering matrix U [91] is somewhat different from the calculation pre-
sented in previous works [6, 83] where the quantum dot was supposed to be at a
fixed potential whereas the leads were driven via the excitation voltage Vexc(t).
These two descriptions are in fact equivalent up to the gauge transformation
â(ε) →∑

q cqâ(ε− q~Ω). However, only the derivation presented previously can
be adapted to the case where two (or more) unsynchronized excitation drives are
used in the same experiment (see for example the two-particle Hong-Ou-Mandel
experiment described in chapter 5 page 146). Consequently, we will concentrate
on the gauge adopted in 2.1.1.3. More details can be found in appendix A.3 of
reference [84]

Gauge transformation

source in terms of Floquet scattering matrix, thus connecting the previous paragraphs

to Floquet scattering theory.

Following the notation of section 2.1.1, and denoting b̂ the mode at the output of the

quantum dot, the electronic coherence function at the output of the time dependent

scatterer is:

G(e)(t, t′) = 〈b̂†(t′)b̂(t)〉ρ (2.16)

The main difficulty to compute G(e/h) lies in the quantum average 〈. . . 〉ρ over the non-

equilibrium state in mode b̂. This difficulty is circumvented by relating b̂(t) to â(t) using

Eq.(2.1). The quantum average is then calculated on the field operator â of the lead

(supposed in state |Fµ〉), yielding the results:

G(e)(t, t′) =

∫
dt1dt

′
1 U
∗(t′, t′1)U(t, t1)〈â†(t′1)â(t1)〉µ

=

∫
dt1dt

′
1 U(t′, t′1)U∗(t, t1)G(e)

µ (t1 − t′1) (2.17)

This formula shows how Floquet scattering matrix acts on the coherence functions to

propagate from the state of equilibrium in the lead to the periodically driven state after

the quantum dot. Once again, we translate these results in energy domain. As the

source is T -periodic, the coherence function is periodic in t = t+t′

2 . Consequently, G(e)

can be written a Fourier transform with respect to t and τ = t− t′:

G(e)(t, t′) =
∑

n

e−iΩntG(e)
n (τ) (2.18)



32 Chapter 2 Implementation of a single electron/hole source

Each G(e)
n (τ) can then be expressed as a Fourier transform:

G(e)
n (τ) =

∫
dε

h
e−iετ/~G(e)

n (ε) (2.19)

A rather lengthy calculation then yields the following result :

G(e)
n (ε) =

∑

m

U∗m(ε)Um+n(ε+
n

2
~Ω)fµ(ε− m

2
~Ω)) (2.20)

The contribution of the Fermi sea can be easily isolated. It is obtained by taking Um(ε) =

δm,0, representing the physical situation where no scattering occurs. Then, G(e)
n (ε) =

fµ(ε)δn,0. Using the unitarity relation on Floquet matrix elements (see appendix A),

G(e)(t, t′) decomposes as:

G(e)(t, t′) = G(e)
µ (t− t′) + ∆G(e)(t, t′) (2.21)

∆G(e)(t, t′) =
∑

n

e−iΩnt∆G(e)
n (τ) (2.22)

∆G(e)
n (ε) =

∑

m

U∗m(ε)Um+n(ε+
n

2
~Ω)

(
fµ(ε− m

2
~Ω)− fµ(ε)

)
(2.23)

To give a clear meaning to the previous formula is not a simple task. Indeed, the

coherence function builds up from the sum of an infinite number of contributions, indexed

by the integers m,n. The contribution indexed by integers m,n involve processes in

which m+n photons are absorbed and m photons emitted. However, these developments

facilitate calculations of quantities such as the average current or the current correlations.

They can be expressed simply as a function of G(e/h), with clearer physical interpretation,

and then linked to Floquet matrices for numerical computations.

2.2 Average current

The next paragraphs deal with the first quantity of interest, namely the average current.

It summarizes some aspects of the work of Julien Gabelli, Gwendal Fève and Adrien

Mahé [6, 82, 83]. Besides, it now constitutes the first diagnosis we establish on new

samples before setting up new experiments.
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2.2.1 Measuring and simulating the average current

2.2.1.1 Theoretical derivation of the average current

In this paragraph, we derive the average AC current measured in contact 1 when the

mesoscopic capacitor is driven. This current is the difference between the average current

flowing out of the lead and the current flowing from the source towards the lead.'

&

$

%

exc

Vg

Vg

(1)

(2)
â

ĉ
b

Î(t)

Figure 2.5: Scheme of the source embedded in a 3-terminal geometry–
The input mode is labeled â, the output mode b̂, both modes are related via Floquet
scattering matrix. A third mode labeled ĉ describes the outer edge channel from
contact 1 to 2. Contact 1 is connected to the ground so that â is at equilibrium.
Contact 2 is connected to the RF amplification and detection scheme (see 4.2.3).

On one hand, the average electric current produced by our single electron source is, as

explained in chapter 1:

〈Îb(t)〉 = e〈b̂†(t)b̂(t)〉 (2.24)

= eG(e)(t, t) (2.25)

On the other hand, since the lead is in state |Fµ〉, the equilibrium current flowing out

of it reads:

〈Îc(t)〉 = e〈ĉ†(t)ĉ(t)〉 (2.26)

= eG(e)
µ (t, t) (2.27)

The net current in contact 2 is then computed by subtracting the equilibrium contribu-

tion, and, as expected, has the same T -periodicity as the drive Vexc(t).

〈Î(t)〉 = e
(
〈b̂†(t)b̂(t)〉 − 〈ĉ†(t)ĉ(t)〉

)
(2.28)

= e∆G(e)(t, t) (2.29)
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Introducing the harmonics Ik of order k, one can then identify:

〈Î(t)〉 =
∑

k

Ike
−ikΩt (2.30)

Ik = e∆G(e)
k (0) (2.31)

=
e

h

∑

m

∫
dεU∗m(ε)Um+k(ε+

k

2
~Ω)

(
fµ(ε− m

2
~Ω)− fµ(ε)

)
(2.32)

In particular, the first harmonic Ik=1 = IΩ is given by:

IΩ =
e

h

∑

m

∫
dεU∗m(ε)Um+1(ε+

~Ω

2
)
(
fµ(ε− m

2
~Ω)− fµ(ε)

)
(2.33)

2.2.1.2 Measuring the average current

Time domain measurements The harmonics of the average current can be com-

puted using Eq.2.32 for example to reconstruct in time domain 〈Î(t)〉. It corresponds

to a first strategy of measurement of 〈Î(t)〉 consisting in the time-resolved acquisition of

the current [106]. An ultrafast acquisition card Acqiris AP240 records the current and

averages it over a large number of periods. The results are discussed in 2.2.2.2

Frequency domain measurements Though the results obtained corroborates our

theory, the acquisition process takes a lot of time, and an other type of measurement

is more commonly used. An homemade/custom GHz homodyne detection enables to

measure quickly the first harmonic of the current IΩ. Both real and imaginary parts are

accessed [6, 42]. The setup is quite standard, and will be presented in chapter 4, section

4.2.3 while the results are detailed in section 2.2.3.

2.2.2 Average current in time domain

2.2.2.1 Response to a square drive

When a square voltage is applied, the discrete level in the dot that is promoted above

the Fermi level will then relax toward the continuum of states provided by the Fermi sea,

during each half-period. This Markovian process gives exponentially decaying probabil-

ity for the electron to stay in the dot, and consequently exponential average currents.

The decay time of this exponential is then necessarily given by the escape time τe, itself

related to the barrier transmission D: τe ' h/D∆.
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This in fact constitutes the asymptotic expression, for low transmissions, of the following

formula, demonstrated by Nigg et al. [98]:

τe =
h

∆

( 1

D
− 1

2

)
(2.34)

This expression has revealed consistent with numerical simulations and experimental

data. In an electronic circuit, this happens to be the classical behavior of an RC circuit.

Though we do not detail these developments for the sake of conciseness, the previous

results can indeed be understood (in the correct regime of parameter) as the relaxation

time τe = RqCq of a RC circuit where Cq is the quantum capacitance, and Rq is the

series association of the Landauer resistance of the QPC and the interface resistance of

a single reservoir:

Cq =
e2

∆
(2.35)

Rq =
h

e2

1−D
D

+
h

2e2
(2.36)

More details can be found in ref. [6, 41, 82, 83, 98, 107].

The interest of time-domain measurements is the possibility to evaluate both transferred

charge Qt and escape time τe, by direct comparisons with the following formula, that

can be computed in this model of exponentially decaying currents:

Iexp(t) =
Qt
e
e−

t
τe (2.37)

Qt = e tanh
( 1

4fτe

)
(2.38)

This can be explicitly unraveled in a time-resolved measurement of the average current,

as realized by A. Mahé et al. [106] and explained in the following section.

2.2.2.2 Time-domain measurements

In this paragraph is briefly presented the time resolved measurement of the current as

realized by A. Mahé et al. [106]. An ultrafast acquisition card Acqiris AP240 records

the average current 〈Î(t)〉 with a 500 ps resolution. The driving frequency is set to 32

MHz, to reconstruct 〈Î(t)〉 with circa 16 harmonics. The recorded signal is averaged

in real time over typically 108 periods, and corrected for the filtering effects on the

measurements. This correction is calculated by measuring the response of the circuit to

the parasitic signal, modeled as a pure capacitive coupling.
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hÎ
(t

)i
[u

.a
.]

Time t [ns] Time t [ns]

2eV
e
x
c

=
�

⌧e

a) b)

Figure 2.6: Average current in time domain – In black, experimental data for
〈Î(t)〉, compared to an exponential fit (blue line) that yields the transferred charge
Qt and the escape time τ . On panel b), red dots indicates the square excitation
signal. The parameters are f = 32 MHz, with D = 0.02, τ = 0.9 ns, Qt = e for

panel a), and D = 0.002, τ = 10 ns, Qt = 0.7 e for panel b).

The experimental results are reproduced on Fig.2.6 and corroborate the simple picture

developed in 2.2.2.1. In the first panel, the transmission D = 0.02 of the QPC is such

that the decay time is quite short, and in good agreement with τe ' h
D∆ ' 0.9 ns. The

transferred charge Qt can be evaluated by integrating the current over half a period,

and is close to unity, Qt = e. The mesoscopic capacitor thus works in a regime of single

charge emission. In the second panel, the transmission D = 0.002 is lowered. Then, the

decay time is increased (τe ' 10 ns) and becomes comparable to the half-period T
2 = 16

ns. Some electrons/holes are not emitted during the devoted half-period. Consequently,

the amplitude of the exponentially decaying current is reduced, as well as evaluated

transferred charge Qt = 0.7 e < e.

Thus, in a regime where the transmission D is sufficiently large so that the escape time

τe is much smaller than the half-period T/2, we verify that the condition 2eVexc = ∆

ensures the emission of a quantized charge of 2e per period (one electron plus one hole

in a period). However, the recording of 〈Î(t)〉 is technologically limited to low excitation

frequencies and require a long time of averaging. On the opposite, the first harmonic IΩ

of the average current can be measured in a fast and accurate manner using low noise

amplifiers and a homodyne detection (detailed in section 4.2.3), giving access to both

the real and imaginary part of IΩ.
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2.2.3 Frequency domain measurements

In this section, we present the main results on the measurement IΩ, used on a daily

basis for quick diagnoses of the sample parameters prior to longer noise measurements.

2.2.3.1 First harmonic quantization

The first and most striking feature is the quantization of the first harmonic |IΩ| in units

of 2ef . It is the equivalent of the charge quantization discussed in section 2.2.2.2, this

in the frequency domain and appears as well when the excitation voltage matches the

level spacing 2eVexc = ∆. Then, exactly one level is successively promoted above/below

the Fermi level of the reservoir, allowing the emission/absorption of exactly one electron

per half-period. If the transmission D is large enough so that the escape time is smaller

than the half-period, these two charge transfers actually occur and thus give rise to a

quantized AC current |IΩ| = 2e/T = 2ef .

First harmonic quantization as a function of Vexc This property is independent

of the initial position of the levels in the dot: for 2eVexc = ∆, first harmonic quantization

is guaranteed regardless of φ0 because the density of states N is integrated exactly over

one of its period ∆.

On the opposite, when 2eVexc 6= ∆, quantization of |IΩ| crucially depends on φ0. This

can be investigated in the following way. As Vg increases, the transmission D increases,

and the dwell time of charges in the dot τe ' h/D∆ decreases. However, the gate voltage

Vg slightly couples to the gas in the dot and shifts electrostatically the position of the

levels φ0. In Fig.2.7 a), measurements for different values of Vg are presented, for which

D varies only slightly whereas φ0 describe a variation of π.

Let us concentrate first on the upper panel of Fig.2.7 a), for which the transmission

is D ' 0.47. For Vg = −334, 5 mV, we have φ0 ' 0. Then the major part of the

contribution is integrated for relatively low values of Vexc (see Fig.2.7 b). |IΩ| rises

quickly for small Vexc and exhibits a plateau around the quantified value |IΩ| = 2ef .

For Vg = −335, 75 mV, we have φ0 ' π. In that case, the opposite phenomenon occurs

(see Fig.2.7 c), so that |IΩ| stays constant around 0 for small values of Vexc, before rising

quickly when 2eVexc ' ∆. All curves join independently of φ for 2eVexc ' ∆ (that we

call the ”injection condition”) at the value |IΩ| = 2ef , but a quantization plateau is

only observed around φ0 = 0.

By comparison with lower panel of Fig.2.7 a), for D ' 0.8, one notices that this quanti-

zation gets reinforced when D decreases, as the density of states N varies more abruptly.
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Figure 2.7: Quantization of first harmonic |IΩ|: a) For two values of transmis-
sion D, first harmonic |IΩ| is measured for different gate voltages Vg, that slightly
changes the position of levels in the dot φ0. For φ0 = 0, the last occupied level is at
resonance with the Fermi level at equilibrium, and a quantization plateau |IΩ| ' 2ef
is observed for a large range of Vexc. Data taken from [84] (for sample S528-11 used
for the study of autocorrelations, see 2.3). b) For different values of Vexc, the checked
areas corresponds to the integrated part of the density of states N , for φ0 = 0. c)

Same as b), for φ0 = π.

On the contrary, for D = 1, N (ε) = 1
∆ is constant, and |IΩ| varies linearly with Vexc, as

expected for a pure capacitive coupling between the top gate electrode and the 2DEG.

2D injection plot A complete characterization of the quantization of IΩ is obtained

by representing |IΩ| in color scale as a function of both Vg (that varies both D and

φ0) and Vexc, as in Fig.2.8. The quantization plateaus appear as white diamonds. Two

dotted lines symbolize the condition of resonance φ0 = 0 and anti-resonance φ0 = π of

the levels. When operating on these plateaus, the triggered emission of one electron and

one hole per period is achieved on average. The ”injection condition” 2eVexc = ∆, for

which single charge emission is obtained regardless of φ0, is emphasized by the black

dashed line. For Vg < −0.74 V, |IΩ| as the escape time is larger than the half-period
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(τe � T
2 ). For Vg > −0.72, diamonds become blurred as the discrete levels in the dot

become broader.'
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Figure 2.8: 2D injection plot – |IΩ| is represented in colorscale as a function
of gate voltage Vg and excitation drive Vexc, revealing a diamond structure. When
on these white diamonds, quantization of the first harmonic |IΩ| = 2ef is ensured.

(exp. data from sample S434-C1L25B used for HBT experiment, see chap. 3).

2.2.3.2 Escape time and average transferred charge

We have seen how to evaluate the escape time τ as well as the average transferred charge

when recording 〈Î(t)〉 (section 2.2.2.2). These parameters can also be extracted from

the measurement of IΩ. Translating into frequency domain the exponential response of

the circuit to a square excitation, one can readily show the following results:

Re IΩ

Im IΩ
= Ωτe (2.39)

Qt = e tanh
( 1

4fτe

)
(2.40)
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Figure 2.9: Escape time and transferred charge obtained from first har-
monic measurement – Transferred charge Qt and escape time τe can be extracted
from average current measurements, via Eqs.(2.39) and (2.40) and presented as a
function of gate voltage Vg. Up to small oscillations, the data for Qt are in good
agreement with the expected value Qt = e tanh(1/4fτe). Please note that changing

the transmission via Vg enables to tune τe on two orders of magnitude.

On Fig.2.9 are presented experimental data for Qt (in blue) and τe (in red), extracted

as explained from IΩ. First, we notice that τe can be varied on two decades. Then,

up to some oscillations, the extracted transferred charge Qt is in good agreement with

prediction of Eq.(2.40) (in black dashed line).

2.3 Current correlations of a single charge emitter

In this section, we present both the theoretical and experimental results obtained con-

cerning the autocorrelations of the current emitted by the single electron/hole source.

First, we discuss the usefulness of current autocorrelations to probe irregularities in the

emission of single particles. Using the wavepacket model previously discussed, we then

derive the fundamental noise of a perfect single charge emitter and compare it with

our experimental data, thus proving single charge emission under appropriate operating

conditions [95]. Finally, we complete this study by providing two models that describe

entirely the observed features of the noise, and in particular establish the universal/non-

universal character of the observed fluctuations depending on the parameters.
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2.3.1 Limits of average measurements

In the previous section, we have characterized the triggered emission of electrons and

holes using average current measurements, either in time or frequency domain and

demonstrated that, under appropriate operating conditions, a single electron/hole is

emitted on average. The amplitude of the GHz drive has to be chosen to promote

exactly one level above the Fermi level of the reservoir, i.e. 2eVexc = ∆, and the trans-

mission has to be large enough so that the escape time τe ' h
D∆ is much smaller than

the half-period T
2 . Moreover, placing the level in the dot at resonance when the drive

is off (φ0 = 0) ensures that the quantization is quite insensitive to small inaccuracies in

the choice of Vexc.'

&
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Vexc(t)
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Figure 2.10: Series of emission events – The excitation signal (black line)
triggers the emission of single electron (blue dots) or holes (white dots) in each
half period, up to irregularities, circled in red, such as the absence of emission of a

particle, or the emission of extra particles or e/h pairs.

Nevertheless, average quantities are not, by nature, sensitive to irregularities in the

emission process. Let us consider a series of emission events as a function of time

(Fig.2.10). The triggering signal (here a square voltage) is depicted in black lines.

On average, during each half-period, an electron (blue dot) or a hole (white dot) is

emitted, giving rise to a quantized current IΩ = 2ef . However, one can imagine some

supplementary events (circled in red on Fig.2.10) such as the emission of an extra particle

or the absence of emission of a particle, in such a manner that these events do not

contribute to the current when averaged on several periods.

Such deviations from perfect single charge emission deteriorate the quality of charge

quantization. As demonstrated in a wide variety of systems [108–110], a study of the

fluctuations of the current emitted by the source sheds light on these possible discrep-

ancies, as explained in the following sections. In our system, current autocorrelations

only reveal at high frequencies due to the AC nature of the source.

2.3.2 Current autocorrelations of a T -periodic emitter

In order to characterize the statistics of the charges generated by the single electron

source, it is very relevant to take an interest in the study of the current autocorrelations,
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represented by the correlator 〈Î(t)Î(t′)〉. From a quantum optics point of view, it bears

strong similarities with the second order coherence function for electric fields defined in

1.2.2, from which we can propose a direct interpretation.

2.3.2.1 Coherence functions and fermionic antibunching

In this section, we discuss the general features of the autocorrelations 〈Îb(t′)Îb(t)〉, viewed

under the angle of the previously introduced coherence functions G(e/h). Making use of

Wick’s theorem2 (and Eq.(A.20) in appendix A) we successively find:

〈Îb(t′)Îb(t)〉 = 〈b̂†(t′)b̂(t′)b̂†(t)b̂(t)〉
= 〈b̂†(t′)b̂(t′)〉〈b̂†(t)b̂(t)〉+ 〈b̂†(t′)b̂(t)〉〈b̂(t′)b̂†(t)〉
= G(e)(t, t)G(e)(t′, t′) + G(e)(t, t′)G(h)(t, t′) (2.41)

= G(e)(t, t)δ(t′ − t) + G(e)(t, t)G(e)(t′, t′)− G(e)(t, t′)G(e)(t′, t) (2.42)

Even though Eq.(2.42) is not very explicit, an important feature can already be dis-

cussed by examining the different contributions [44, 111]. The first one is a poissonian

contribution, describing fluctuations proportional to the number of incoming particles,

as G(e)(t, t) ∝ 〈Î(t)〉. It appears identically in the Shottky formula, and is a reference

noise to which the fluctuations are compared.

The second and third terms are corrections to this poissonian noise that encodes the

statistics of the emitted electrons. The second term G(e)(t, t)G(e)(t′, t′) is then directly

the product of the average currents. The third term comes with a minus sign that stems

from the anti-commutation relation of the fermionic operators b̂/b̂†. This sign encodes

the anti-bunching of electrons, and would be replaced by a plus sign for photons that

naturally exhibit bunching. It contains the correlations between particles and yields

information on the emission statistics.

The second part of this formula can actually be written in the following form. We

introduce a second-order coherence function (with a normal ordering prescription), which

measures the joined probability of measuring two electrons at times t and t′:

G(2,e)(t, t′) = 〈b̂†(t′)b̂†(t)b̂(t)b̂(t′)〉 (2.43)

We have then shown that we had:

G(2,e)(t, t′) = G(e)(t, t)G(e)(t′, t′)− G(e)(t, t′)G(e)(t′, t) (2.44)

2usually holds in general for equilibrium state, but can be demonstrated as well here using Eq.(2.1)
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This formula is very interesting as we immediately see that G(2,e)(t, t) = 0: it is not

possible to measure two electrons at the same time, in virtue of Pauli principle and

fermionic statistics. To prove Eq.(2.44), we have used Wick’s theorem, which in general

holds only for particular states as equilibrium states, but can also be generalized here

using Floquet relations. But in Eq.(2.43), it is clear that any state verifies this statement

as (b†(t))2 = 0 in fermionic algebra. On the contrary, for photons, Wick’s theorem leads

to:

G(2)(t, t′) = G(t, t)G(t′, t′) + G(t, t′)G(t′, t) (2.45)

This holds only for a limited number of states such as equilibrium states. In that case,

G(2)(t, t) = 2, proving the well-known bunching of photons in thermal light for example.

Only non classical light can exhibit G(2)(t, t) = 0, for example in single photon sources,

whereas Pauli principle enforces this property in the case of electronic sources.

Revealing the statistics of fermions then requires an access to correlators such as 〈Î(t′)Î(t)〉.
This is possible through the measurement of current autocorrelations, namely the spec-

tral density of noise S(ω). We give details in the following sections on the link between

previous developments and actual measurements.

2.3.2.2 Correlations of a T -periodic current emitter

In the three-terminal geometry depicted in figure 2.5, the central quantity of interest is

here the correlator 〈δÎ(t′)δÎ(t)〉 (with δÎ(t) = Î(t)− 〈Î(t)〉). As previously, the current

in contact 1 is the difference between Îb and Îc. Since modes b̂ and ĉ are not correlated

it is easy to see that:

〈δÎ(t′)δÎ(t)〉 = 〈δÎb(t′)δÎb(t)〉+ 〈δÎc(t′)δÎc(t)〉 (2.46)

The second part represents the thermal equilibrium noise in mode ĉ. It is not related

to the properties of the single electron source, and will not be taken into account when

measuring the excess noise. We then focus on the first term on the right-hand side, and

define :

S(t, t′) = 〈δÎb(t′)δÎb(t)〉 (2.47)

Since the emission process is non-stationary (but periodic), usual fluctuating quantities

have to be redefined accurately. As the operator Îb(t) is itself T -periodic (but non-

stationary), the correlator 〈δÎb(t′)δÎb(t)〉 depends explicitly on both times t, t′ but is

also T -periodic. It can thus be decomposed as a Fourier series, and written in the
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frequency domain:

S(t, t′) = 〈δÎb(t′)δÎb(t)〉 (2.48)

=
∑

l

Sl(τ)e−ilΩt (2.49)

The experimental setup gives access to the power spectral density of noise, defined as3:

S(ω) = 2

∫
dτ S(t, t′)

t
eiωτ (2.50)

= 2

∫
dτ 〈δÎ(t)δÎ(t+ t′)〉

t
eiωτ (2.51)

= 2

∫
dτ S0(τ)eiωτ = 2S0(ω) (2.52)

where · · ·t denotes averaging over t.

So far, we have shown how current autocorrelations could give information on the statis-

tics of electrons/holes emitted by the single electron source by yielding information on

〈Îb(t′)Îb(t)〉. But this charges are generated among many other electrons and holes that

constitute the Fermi sea. The next section is devoted to understanding more in details

the Fermi sea contributions and the contributions that provide information our source.

This can be achieved using the wavepacket model developed in 1.2.2.3.

2.3.2.3 Effect of the Fermi sea – Wavepacket model

From Eqs.(2.53), and (1.7), it is possible to show that:

S(t, t′) = e2G(e)(t, t′)G(h)(t, t′) (2.53)

= e2
(
G(e)
µ (t, t)δ(t′ − t)− |G(e)

µ (t− t′)|2

+∆G(e)(t, t)δ(t′ − t)− |∆G(e)(t, t′)|2

−
(
G(e)
µ (t′ − t)∆G(e)(t′, t) + G(e)

µ (t− t′)∆G(e)(t, t′)
))

(2.54)

The first two lines of Eq.(2.54) encode the anti-bunching effect described in section

2.3.2.1, but now decomposed over thermal (first line) and excess quasiparticles (second

line). The second line encodes the information we are looking for: it contains exclusively

the informations on our source, that will be detailed in the next section. These two lines

are very similar with what could be obtained with photons, except that we have now two

sources of electrons, those generated by the source and the thermal excitations. The

3We adopt here and in the rest of the manuscript the ”engineering” convention, where a factor 2
is applied to account for both positive and negative frequencies. One can indeed show that the excess
noise is symmetric in ω [84].
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equilibrium part is of lower interest here and will in fact be subtracted to access the

excess noise defined as :

∆S(t, t′) = e2
(

∆G(e)(t, t)δ(t′ − t)− |∆G(e)(t, t′)|2

−
(
G(e)
µ (t′ − t)∆G(e)(t′, t) + G(e)

µ (t− t′)∆G(e)(t, t′)
))

(2.55)

More interesting are the last two terms (third line of Eq.(2.54)) that have no optical

analog since they mix the action of the Fermi sea |Fµ〉 with the emitted charges.

The case of a single mono-electronic wavepacket ϕe introduced in 1.2.2.3 gives clear

expression of this term and helps to understand the effect of the Fermi sea. Averaging

over t and performing the integrals, one finds a contribution in S(ω) proportional to:

−
∫
dε fµ(ε)|ϕe(ε± ~ω)|2 (2.56)

For a wavepacket centered on the energy ∆/2� kTel, on can see that these contributions

vanish for |~ω| < ∆/2. Simulations of ∆S(ω) as a function of the measurement frequency

ω then present the general aspect depicted on figure 2.11 (for parameters ∆ = 2 K, Tel =

50 mK, Ω = 2 GHz, D = 0.2). When plotting separately the different components in

∆S, one sees that the first two terms control the low-frequency behavior, and especially

contain the information about the bunching or anti-bunching of the electrons emitted

by the source. This term will consequently be probed in detail by our measurements.

The last two term add a frequency cut-off: the presence of the Fermi sea prevents

the emission of photons with energies higher than ∆/2. This is related to works from

Beenakker et al. [112, 113] where they show that the statistics of photons emitted by

a DC current impinging on a QPC is modified by the presence of the Fermi sea. They

moreover deduce conditions for single photon emission. In our experiments though, the

measurement frequency ω is on the order of Ω. We thus probe the regime ω � ∆
2 , that

enables to concentrate on the time distribution of the charges emitted by the source,

since the Fermi sea has no action in this regime.

2.3.2.4 Phase noise

In the regime ω � ±∆/2 where the Fermi sea does not play any role, the excess current

autocorrelations can be written:

∆S(t, t′) ' e2
(
∆G(e)(t, t)δ(t′ − t)− |∆G(e)(t, t′)|2

)
(2.57)
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Figure 2.11: General features of autocorrelations as a function of mea-
surement frequency ω – Excess current autocorrelations ∆S(ω) are plotted as a
function of measurement frequency ω, in black lines. They exhibit a low frequency
behavior that describes the antibunching properties of the emitted quasiparticles
that are well described by the first line of Eq.2.55 whose contribution is drawn in
red line. For frequencies reaching ω ' ±∆/2, the presence of the Fermi sea pre-
vents fluctuations at high energies so that ∆S(ω) → 0. This cut-off frequency is
encoded in the last two terms of Eq.2.55, and their contribution is pictured in blue
dashed lines: subtracting the blue contribution to the red one gives ∆S(ω) in black.

Parameters are ∆ = 2 K, Tel = 50 mK, Ω = 2 GHz, D = 0.2.

In agreement with exponentially decaying currents, we propose to calculate explicitly

the different contribution for an exponential wavepacket ϕe(t) = θ(t)√
τe
e−

t
2τe . The average

over t is done on a period T to simulate a repetition at frequency f of this single shot

emission4:

∆S(ω) = 2e2f

(∫
dε |ϕe(ε)|2 −

∣∣∣∣
∫
dεϕe(ε)ϕ

∗
e(ε+ ~ω)

∣∣∣∣
2
)

= 2e2f
(
1− 1

1 + ω2τ2
e

)

= 2e2f
ω2τ2

e

1 + ω2τ2
e

(2.58)

Moreover, to compare our SES that emits one electron and hole per period (instead of

one wavepacket ϕe per period), a factor 2 has to be applied, so that we finally obtain:

∆Sphase(ω) = 4e2f
ω2τ2

e

1 + ω2τ2
e

(2.59)

4This implies implicitly that the temporal width τe is small: τe � T .
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Several comments can be proposed concerning Eq.(2.59) that is at the core of the fol-

lowing study of the autocorrelations. First, we see that this noise vanishes at zero

frequency ∆Sphase(ω → 0)→ 0. This reflects the absence of charge fluctuations at zero

frequency/on long times which is a signature of perfect triggered single charge sources:

since an excitation signal triggers the emission, there is exactly one wavepacket emitted

per emission cycle. As a consequence, information on charge fluctuations can only be

obtained by measuring short time autocorrelations, or high-frequency noise.

Second, even for a non-fluctuating number of charges emitted, the emission process

is not noiseless. The remaining noise, that we call phase noise, in fact describes the

quantum uncertainty on the emission time, related only to one parameter, namely the

width of the wavepacket τe. It is the hallmark of single charge emission: when one

charge is emitted per emission cycle, its noise should fundamentally reduce to this phase

noise. This supplies a criterion to establish the ideal single charge emission of a triggered

source, and will be the starting point of the next section: by nature, our wavepacket

model describes a single particle emitter, whose current correlations will thus be related

to fluctuations on the emission time of the particles rather than fluctuations on the

number of emitted charges. Consequently, proving that the noise of the SES reduces to

the fluctuations of this heuristic model will prove that single charge emission is exactly

achieved, and not only on average.

Finally, we can just notice that this noise is ω-dependent, and that proving the ideal

single charge emission requires then to vary either ω or τe. Varying the frequency ω

is very difficult as it requires to develop a detection setup that is both wideband and

sensitive. On the opposite, τe can be modified easily by changing the transmission of

the QPC. This strategy is then followed in our measurements, and the measurement

frequency ω is set to ω ' Ω.

2.3.2.5 Noise power spectrum as a function of escape time, in the case φ0 = 0

Here we present measurements of the autocorrelations ∆S(Ω) as a function of the escape

time τe [95]. This experiment was carried out on sample S528-11, for which calibrations

have yielded a rather high level-spacing of ∆ = 4.2±0.2 K, and an electronic temperature

of Tel = 60 ± 15 mK. First, we focus on points for which the level is at resonance

when Vexc = 0, situation denoted φ0 = 0 (see Fig.2.4). Escape times τe are obtained

independently from average current measurement as detailed in 2.2.3.2, and formula

(2.59) is pictured in blue dashes.

The agreement between experimental data measured for φ0 = 0 and this model is very

good in a large transmission regime, for which τe � T
2 , with an agreement of 10%
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The order of magnitude of the current autocorrelations are here given by e2f '
4 × 10−29 A2Hz−1. Current fluctuations are converted, via a resistor R0 into
voltage fluctuations and then measured. When measuring high-frequency fluctu-
ations, R0 is set by the characteristic impedance of RF cables, R0 = 50 Ω so that
the conversion factor is small compared to low-frequency measurements where
using R0 ∼ 1 − 10 kΩ is frequent. As a consequence, the voltage fluctuations
are small and a specific measurement setup was developed by F.D. Parmentier
et al. [114]. It is mainly based on an impedance matching circuit that enables
to choose R0 = 120 Ω, and a double-balanced amplifying scheme providing high
stability for long measurement times.

Experimental setup

consistent with experimental error bars. Under these conditions, the noise spectrum

of the driven mesoscopic capacitor is identical to the one of a perfect single particle

emitter, that is fundamentally related to the uncertainty on the emission time. This is a

very strong and important result, as it is the signature of perfect single charge emission.

Thus, the measurement of fluctuations confirms on a solid basis the quantization of the

emitted charge, for which average current measurement had already given a glimpse.

However, for larger escape times, τe & T/2, our model is strongly contradicted by our

measurements. This not very surprising, as our model of perfect single charge emitter

does not take into account the fact that when τe & T/2, some charges do not escape

from the quantum dot during the devoted emission cycle and fluctuations appear not

only on the emission time but also on the number of emitted charge. The transferred

charge is then Qt < e and we in fact recover a shot noise limit (black dashes). Moreover,

we have not presented measurements for φ0 = π (level not in resonance at equilibrium)

that would in fact reveal strong discrepancies.

The previous developments have given clear insights about the general physics of

fluctuations of periodic sources. A model of perfect single charge emitter has enabled to

prove that under certain conditions, quasi-ideal single charge emission could be achieved.

However, the description is only partial yet, as several ingredients are still missing: shot

noise regime for τe & T
2 , finite temperature Tel 6= 0. in terms of Floquet matrices, remain

largely unclear.

In the next part we present two models that give further insights on current autocorrela-

tions. The first one is an heuristic toy-model that was first introduced by A. Mahé [83],

and solved analytically by M. Albert [115]. The analytical results can then be compared

with simulations using Floquet scattering framework.
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Figure 2.12: Measured noise power spectrum ∆S(Ω) as a function of
escape time τe – Experimental data for φ0 = 0 are in very good agreement with
the phase noise model (Eq. 2.59) in a regime τe � T

2 . Then, single charge emission

is achieved. For τe & T
2 , a shot noise regime is recovered. A complete description

is provided by both semi-classical and Floquet scattering models (section 2.3.3), in
good agreement with experimental data.

2.3.3 Models for current autocorrelations

2.3.3.1 Semi-classical heuristic model

First, we detail the construction of the semi-classical model of the source, based on a few

probabilistic rules. As already mentioned, it can be addressed using a master equation

approach [115], and yields an analytical formula for the noise of the modeled single

charge emitter. But it is also related to the topic of full counting statistics of charges

[116, 117]. For conciseness, we then summarize the main results. A detailed review of

this model is proposed in Appendix B.

Rules of single particle emission The emitter is described by a few simple rules:

• The charge in the dot can only take two values, 1 or 0, simulating one level only

in the dot.
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• Inside the dot, the electron performs turns, in a time τ0, which then naturally

appears as the elementary time increment. After each turn, the electron has a

probability b to escape.

• Each half-period of the square drive is divided into N turns, T/2 = Nτ0. Emissions

of electron can only occur if the charge is 1 in the dot, and only one emission process

is permitted during one half-period.

• After the end of the first of the half-period, the second half-period is described

with symmetric rules concerning the absorption of electrons: absorptions can only

take place if the dot is empty, with a limit of one absorption per half-period.

These simples rules can be simulated easily using pseudo-random number generators.

Nonetheless, it is important to understand the limits of this model beforehand, even

though most of them are quite obvious. First, this description only applies for a square

voltage, for which emission and absorption are clearly triggered by the sudden shifts of

potential. Moreover, this incompressible time increment τ0 renders this model invalid

when a time-scale reaches τ0. This can be the case for D → 1, for which τe ∼ τ0. Last,

this model does not take into account the presence of the Fermi sea: no temperature

can be simply attributed to the particle reservoir that provides electrons and holes to

empty or fill the dot.

Results on average current The successive emission/absorption of holes gives rise

to an AC current I(t), pictured on Fig.2.13. A peak (resp. a dip) occurs whenever an

electron is emitted (resp. absorbed). The emission rules ensure that every absorption is

followed by an emission and vice-versa. Averaging I(t) over a large amount of periods

yields the average current < I(t) > and these predictions can then be compared with

the experimental results of section 2.2.2.2.

In the domain of validity of the model, we have the following results:

• < I(t) > exhibit exponential decays in each half period, in agreement with exper-

imental results of 2.2.2.2

• The decay time τe is in good agreement with the formula τe = τ0(1
b − 1

2) so that

using Eq.(2.34) we can identify b = D, τ0 = h/∆.

• The transferred charge per half-period Qt can also be computed from the previous

model and corroborates the formula Qt = e tanh( 1
4fτe

).
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Figure 2.13: Current and average current, computed from the heuristic
model – Instantaneous current (6 periods) and average current (1 period, averaged
over 106 periods) are presented. In grey dashed line, an exponential fit shows a
perfect agreement with simulations. The parameters are: T = 100τ0, with b = 0.1.

Results on current correlations This heuristic model enables to generate sequences

of emission/absorption processes, with probabilistic rules that seem to reproduce accu-

rately experimental observation on the average current. Statistical studies of the gen-

erated currents I(t) can be pursued beyond average current: we here present the main

features of the current correlations of this peculiar single charge emitter.

Two well-defined asymptotic regimes can be clearly identified and are in agreement with

the discussion of section 2.3.2.5: phase and shot noise. Analytical calculation is possible

in both asymptotic and general regimes from works of A. Mahé et al. [83] and M. Albert

et al. [115].

• Shot noise regime: For small escape probabilities, the escape time τe becomes

comparable or larger than T/2, and some emission events do not occur. We obtain

the excess noise in this regime

∆Sshot(ω) =
e2

τe
= 4e2f × P (2.60)

This expression is similar to the usual shot noise S = 2eI with I = 2ef × P .

• Phase noise regime: For large probabilities b = D we recover the phase noise limit

of a perfect single charge emitter (section 2.3.2.4): if b is large enough so that

all charges escape, P = 1 and shot noise vanishes. Then, thus average current is

written < I(t) >= e/τe e
−t/τe (in the first half-period). With this expression, ∆S

is calculated:

∆Sphase(ω) = 4e2f
ω2τ2

e

1 + ω2τ2
e

(2.61)
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This expression is, as expected for a perfect single charge emitter, identical to the

one obtain in the wavepacket model 2.3.2.4

• General case: M. Albert et al. [115] have obtained an analytic formula for the

current autocorrelations, valid for all values of b = D. One then obtains the

noise power spectral density that interpolates between shot noise and phase noise

regimes:

S(ω) = 4e2f tanh
( 1

4fτe

) ω2τ2
e

1 + ω2τ2
e

(2.62)

=
Qt
e

ω2τ2
e

1 + ω2τ2
e

(2.63)

=
1

4e2f
Sshot(ω)Sphase(ω) (2.64)

Finally, the semi-classical model detailed above has enabled to recover both the phase

noise and shot noise limits, and has even been completely solved analytically. We now

briefly consider a second picture based on the Floquet framework.

2.3.3.2 Autocorrelations in Floquet scattering theory

After the general developments of 2.1.2, current autocorrelations can be readily expressed

in the Floquet formalism. Starting from Eq.(2.53), one can easily obtain:

S(ω) = 2S0(ω)

= 2e2

∫
dτ
∑

n

G(e)
n (τ)G(h)

−n(τ)eiωτ

=
2e2

h

∑

n

∫
dεG(e)

n (ε)G(h)
−n(~ω − ε) (2.65)

Knowing how G(e/h)
n is expressed in terms of Floquet matrix elements Um (see Eq.(2.20)),

we thus get the expression of the autocorrelation [84]:

S(ω) =
2e2

h

∑

p

∫
dε

∣∣∣∣∣
∑

m

U∗m(ε+
m

2
~Ω)Up−m(ε+

m

2
~Ω− ~ω)

∣∣∣∣∣

2

× fµ(ε)
(
1− fµ(ε− p

2
~Ω− ~ω)

)
(2.66)

∆S(ω) =
2e2

h

∑

p

∫
dε

∣∣∣∣∣
∑

m

U∗m(ε+
m

2
~Ω)Up−m(ε+

m

2
~Ω− ~ω)

∣∣∣∣∣

2

×
(
fµ(ε)− fµ(ε− p

2
~Ω− ~ω)

)
(2.67)
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This last expression is the starting point of numerical simulations that can be compared

with both experimental data and semi-classical model.

Now that we have introduced two models to simulate the fluctuations of the current

emitted by the source, it is useful to compare both predictions, and confront them to

experimental results.

2.3.4 Universal behavior at φ0 = 0

2.3.4.1 Comparisons between models

Now that we have introduced both models, we present and compare predictions of both

Floquet scattering and semi-classical models.

Transmission D/probability amplitude b dependence On Fig.2.14, autocorrela-

tions for ω = Ω are plotted as a function of the dot transmission D. The agreement

between the two models is excellent and confirms the identification b = D. We conse-

quently drop the notation b and only use D in both models.

For small transmissions, ∆S rises linearly with transmission D, and a shot noise regime

is observed. Then ∆S reaches a maximum for Qt ∼ e when the uncertainty on the

emission time is at its maximum, and then τe ∼ T/2. As transmission increases, this

uncertainty is smaller and smaller, and ∆S → 0. For D → 1, charges systematically

escape the dot in each emission cycle, with a very small uncertainty on the emission time

(set by τe � T/2), so that the charges are regularly ordered and the emission process

becomes noiseless.

Dependence on the measurement frequency ω We now examine the ω depen-

dence of ∆S, as computed from Floquet scattering theory and heuristic model: numerical

results are plotted on Fig.2.15. Once again, the agreement between both models is ex-

cellent, as the symbols representing scattering model fall exactly on the plain lines from

semi-classical simulations (Eq.(2.62)).

First, for a given transmission, we observe a crossover between ∆S(ω = 0) = 0 (due

to the triggering of emission) to ∆S(ω → ∞) = Cst. Accordingly with Eq.(2.62), the

transition between both asymptotic regimes occur for ωτe ∼ 1: thus, the smaller the

transmission D , the longer the escape time τe, the smaller the transition frequency ω.
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Figure 2.14: Current autocorrelations ∆S(Ω), predicted by heuristic and
Floquet scattering models, as a function of probability b/transmission
D – The excellent agreement between simulations from both models confirms the
idenfication b=D. For small D a linear increase of ∆S is observed, signature of shot
noise. For D ' 0.06, a maxima is observed. For larger transmissions, phase noise is

observed, tending toward a noiseless emission for D → 1.

Besides, the amplitude of ∆S(ω) at a fixed ω strongly depends on D, since it reproduces

the graph of Fig.2.14.

At higher frequencies (not presented here), we observe in Floquet simulations that ∆S(ω)

drops at ω = ∆/2, due to the presence of the Fermi and in accordance with section

2.3.2.3. At this point, probabilistic simulations departs from Floquet ones as, the former

does not take into account the Fermi sea.

2.3.4.2 Universality of current fluctuations

As demonstrated in 2.3.4.1, both models show a perfect agreement when plotting ∆S as

a function of transmission D or measurement frequency ω. Moreover, these simulations

are also in good agreement with experimental data, as presented in Fig.2.12 (red plain

line). This confirms that the fluctuations of the driven mesoscopic capacitor is only

governed by one parameter τe, and exhibits some universal behavior independently of

microscopic parameters such as the level spacing ∆ or electronic temperature Tel (that

have no meaning in the semi-classical model). In Fig.2.16, one can see that changing

the level spacing ∆ has no effect on the autocorrelations in the Floquet model. Similar

results are obtained when varying Tel. This illustrates the universal character of the

fluctuations of the source [83, 91, 95]: as long as quasi-particles are emitted well above
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Figure 2.15: Current autocorrelations, predicted by heuristic and Floquet
scattering models, as a function of measurement frequency ω – An excellent
agreement is demonstrated between scattering and semi-classical models. For large
ω, a white noise (reflecting shot noise) is obtained, whereas ∆S(ω)→ 0 for ω → 0.

The transition occurs for ωτe ∼ 1 and thus depends on D.

the Fermi level, i.e. as long as kTel � ∆, the effects of the presence of the Fermi sea

are negligible, and current correlations only probes the time distribution of the emitted

charges.

So far, we have thus proven that a driven mesoscopic capacitor behaves as a single

charge emitter in the suitable operating regime, especially under the condition that

the upper and lower positions of the driven level lie far from the Fermi level (situation

φ0 = 0). A first prediction from wavepacket model of perfect charge emitter has been

enriched by coinciding predictions of a semi-classical probabilistic model and Floquet

scattering theory. The global behavior is moreover universal with respect to the escape

time τe, and as such robust to variations of the experimental parameters. In the next

part, we end up the study of the current autocorrelations of the source by comparing

the previously developed models with experimental results for φ0 = π.
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Figure 2.16: Universality of current fluctuations – Predictions from the semi-
classical model (plain line) are compared with Floquet scattering theory computa-
tions, for different level spacing ∆. All curves superimpose, and agree with shot noise
(dashed line) and phase noise (dash-dotted line) asymptotic regimes. Parameters

are Tel = 100 mK, 2eVexc = ∆, with a measurement frequency ω ' Ω.

2.3.5 Non-universal behavior at φ0 = π

2.3.5.1 Noise power spectrum as a function of gate voltage Vg

In this paragraph, we show experimental data for ∆S(Ω) as a function of gate voltage Vg

(Fig.2.17), which controls transmission of the QPC coupling the quantum dot to the rest

of the 2DEG. The average transferred charge Qt as well as the escape time τe are deduced

from average current measurement, enabling a computation of the noise power spectrum

from the semi-classical model. As Vg is swept, the transmission D increases, and in the

meantime φ0 varies. A bell-shaped curve is observed, reflecting the same behavior as the

one observed in Fig.2.14, since D varies monotonously with Vg. The overall agreement

between experimental data and scattering simulations is good. For Vg < −0.347 V, the

shot noise limit is observed, whereas Vg > −0.347 V, the emitter works in a phase noise

regime. However, even though experimental points taken at φ0 = 0 are in very good

agreement with simulations, as expected from previous developments, data for φ0 = π

fall systematically above the simulations. We discuss possible reasons in the following

section.
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Figure 2.17: Noise power spectrum ∆S(Ω) as a function of gate voltage
Vg – In plain red line (with error bars) are shown the experimental data. The
scattering model (blue line) offers an overall good description of the data, whereas
the semi-classical model (here only depicted by the phase noise asymptotic, in black

dashes) systematically underestimates the noise power spectrum for φ0 = π

2.3.5.2 Non-universal behavior for φ0 = π

For points where φ0 = π, discrepancies appear between the scattering model and the

semi-classical description of the SES. Experimental data systematically fall above the

predictions of the heuristic model, and even if the overall agreement is good, deviations

are observable between data and Floquet simulations. The most plausible explanation is

that for φ0 = π, when driven with a square excitation verifying 2eVexc = ∆, levels in the

dot come in resonance with the Fermi level of the reservoir. In that situation, additional

charge transfer may occur, as schematized in Fig.2.18. In particular, the creation of

electron/hole pairs can be enhanced by imperfections in the driving signals (responsible

for ”shaking” the resonant level in the vicinity of Fermi energy) and electronic tempera-

ture in the lead, two parameters that cannot be taken into account in the semi-classical

model. In his thesis [83], A. Mahé has demonstrated that, when φ0 = π, Floquet scatter-

ing predictions become very sensitive to Tel and to the number of harmonics that build

up an imperfect square excitation. It is not possible to reach an accurate agreement

with experimental data, especially because the precise form of the drive incoming on the

top-gate electrode is not known. However, the order of magnitude of the fluctuations of

∆S is totally consistent with the ones observed in our measurements, for a number of 3

odd harmonics.
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These considerations assess the necessity to place the level in the configuration φ0 = 0

to reach a regime of quasi-ideal single charge emission. Otherwise, additional charges

are probably emitted as additional noise is detected.'

&

$

%
Figure 2.18: Scheme of the two configurations φ0 = 0 and φ0 = π – In the
case φ0 = π, levels are brought to resonance with the Fermi level of the reservoir,

and additional charge transfers may occur, symbolized by the red arrows.

Conclusion to chapter 2

In this chapter, we have introduced and summarized the main results concerning the

single electron source before the beginning of this work. In particular, we have shown

that the driven mesoscopic capacitor behaves exactly, and not only on average, as a

perfect single charge emitter.

First, we have shown that an accurate description of the source could be achieved us-

ing Floquet scattering theory and coherence functions. This model takes into account

all microscopic parameters, but ignores interactions in the quantum dot. It provides

theoretical formulas of average current as well as autocorrelations, that can be easily

simulated.

These predictions are then corroborated by experimental measurements of the average

current either in time domain of in frequency domain. Especially, the RC-circuit be-

havior as well as first harmonic quantization are experimentally demonstrated, proving

single charge emission on average for an appropriate choice of parameters: φ0 = 0,

2eVexc = ∆ and τe ≤ T/2.

Beyond average current, current autocorrelations are studied. In addition to Floquet

scattering theory, an heuristic model is developed providing deep understanding of the

underlying physics. We exhibit a fundamental noise resulting from the uncertainty on

the emission time, which constitutes a signature of perfect single charge emission. Finally

comparing experimental results, Floquet theory and probabilistic model, we demonstrate
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that quasi-perfect single charge emission is achieved. Experimental resolution limits

however the bound of 7 − 10% on the error rate. If additional electron and hole were

separated by a delay larger than the time resolution of 50 ps of the experiment, they

would be detected in short-time autocorrelations and give an extra contribution in the

noise, which is not observed, within an accuracy of less than 10%. However, electron-

hole pairs separated by less than 50 ps appear as neutral events and remain as such

invisible [91, 115, 117].

Indeed, as current autocorrelations only probe charged events, it is impossible to exactly

count the number of generated quasi-particles. It is well-known [86, 87, 118, 119] that

low-frequency noise can be recovered by partitioning the generated flow of e/h pairs. In

the next chapter, we will present the realization of an Hanbury-Brown & Twiss based

on this idea and that provides additional information on the number of elementary

electron/hole pair generation [88, 89].
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Introduction to chapter 3

The new stellar interferometer developed in 1956 by Hanbury-Brown & Twiss [120] has

shed light on the possibility to use intensity correlations to gain access to information on

the statistics of photons. This technique, confirmed by a second experiment [121], has

been extended to other systems such as fermions in 2DEG [3, 122], microwave photons

[110, 123], bosons or fermions in cold atom gases [124] or photons interacting in a non-

linear medium [125].

In this chapter, we examine an analog of the Hanbury-Brown & Twiss experiment,

realized by partitioning mono-electronic excitations on a quantum point contact acting

as a beamsplitter [96]. In a geometry that reproduces the seminal optics experiment

[121], we show that the correlations of the output currents provide a direct counting of

the total number of elementary excitations [88, 89] emitted by the single electron source

in the input arm. However, this counting is deeply modified by the presence of thermal

excitations in the Fermi sea, as antibunching effects can occur between such excitations

and the quasi-particles triggered by the SES. This phenomenon can in fact be used to

probe the energy of the latter.

3.1 Principles of the Hanbury-Brown & Twiss experiment

3.1.1 Historical HBT experiment

This work is inspired by an experiment carried out by Hanbury-Brown and Twiss [121]

to confirm the interpretation of intensity correlations in astronomical observation [120].

In their setup (Fig.3.1, panel a), a light beam is separated in two via a beamsplitter,

and two photomultipliers are placed to record the instant intensity Îk(t) in each output

k = 1, 2. Correlations between the detectors are then calculated to access the correlator

〈Î1(t)Î2(t+ τ)〉.

This experiment is considered as a milestone in quantum optics: intensity correlations

demonstrate the bunching of classical thermal photons, i.e. their tendency to arrive sev-

eral at the same time due to bosonic statistics. It relies on a corpuscular interpretation:

photons are perceived as discrete particles, partitioned randomly on the beamsplitter. As

such, it completely questions the wave picture usually associated with interferometers,

that record field correlations rather than intensity correlations. With this experiment,

Hanbury-Brown & Twiss have closed the controversy born after their first experiment

of 1956 and opened a new field of investigation.
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Figure 3.1: Sketches of photonic and electronic versions of the Hanbury-
Brown & Twiss experiment– a) A stream of photons is partitioned on a 50/50
beamsplitter, and the intensity cross-correlations are computed using one detector
in each output arm (figure extracted from [121]). b) Similarly, an electron beam
is partitioned on a central QPC playing the role of an electronic beamsplitter, and

cross-correlations can be calculated from currents emitted in contacts 3 and 4.

Implementing such an experiment has been one of the first goals to open the field of

electron optics, which was achieved by Henny et al.[3] and Oliver et al. [122] using a

continuous stream of electrons (see section 1.1.2.2). We here present a more sophisticated

experiment where single quasiparticles are partitioned.

3.1.2 Electronic HBT experiment

From the analogies described in section 1.1.1, one can directly imagine an electronic

version of this setup, implemented in a quantum Hall device. Such a device is sketched in

Fig. 3.1, panel b). The beamsplitter is provided by a quantum point contact, connecting

inputs 1 and 2 to outputs 3 and 4. In input 1, the current source can be implemented

in several ways. Henny et al. [3] and Oliver et al. [122] have investigated the case of a

DC-biased contact, and demonstrated the noiseless character of the generated electron
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beam, property that can also be demonstrated via autocorrelation measurements (see

3.1.3). In this chapter, we study the case of partitioning one by one mono-electronic

wavepackets emitted by a SES as sketched in Fig.3.1.

3.1.3 Classical partitioning

In this section we present a classical reasoning that shows how the HBT geometry

can be used to gain information on the number of quasiparticles emitted by our single

electron/hole source. First we analyse the case of a source that emits only one type of

particles. This is for example the case of a photon source, or of a DC-biased contact,

in the limit of zero temperature. Then we study the case of an AC source, emitting a

succession of electron/hole pairs. We emphasize the differences arising due to the AC

nature of the source and demonstrate that one can count the number of quasiparticles

emitted using correlations in an Hanbury-Brown & Twiss experiment.

3.1.3.1 Partitioning electrons

Let us consider a stream of electrons described classically as ”beads” that are randomly

partitioned on a beamsplitter, as shown on figure 3.2, panel a). We assume that during

the measurement time Tmeas, Ne electrons are emitted with probability P (Ne). A DC

current I1 = e
Tmeas

Ne is then produced in input 1. In the meantime, we assume that

no particle is emitted from contact 2. The quantity of interest here is the correlator

〈δQ3δQ4〉 where Qi = eNe,i is the charge transmitted toward contact i = 3, 4.

If the transmission of the beamsplitter is set to T , a particle is transmitted in output

4 with probability T and reflected in output 3 with probability 1 − T , and we have

〈Ne,4〉 = T 〈Ne〉, and 〈Ne,3〉 = (1− T )〈Ne〉, and thus:

〈δQ3δQ4〉 = e2〈δNe,3δNe,4〉 (3.1)

= e2
(
〈Ne,3Ne,4〉 − T (1− T )〈Ne〉2

)
(3.2)

The last unknown 〈Ne,3Ne,4〉 can be obtained by computing the probability P (Ne,3) of

having Ne,3 electrons transmitted toward contact 3, as follows. For a random binomial

process of partitioning, one has:

P (Ne,3) =
∑

Ne≥Ne,3

P (Ne)

(
Ne

Ne,3

)
TNe,3 (1− T )Ne−Ne,3 (3.3)
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Figure 3.2: Scheme of classical partitioning of electrons and electron/hole
pairs – a) A stream of electrons, as emitted by a DC-biased contact is represented
as a succession of classical ”beads”. It is partitioned on a central quantum point
contact acting as a 50/50 beamsplitter. b) Similarly, a succession of electron/hole
pairs, as emitted by a purely AC source (such as the driven mesoscopic capacitor)

is partitioned on a beamsplitter.

where
(
Ne
Ne,3

)
is the binomial factor counting the number of possibilities for Ne,3 electrons

out of Ne to be transmitted. One can consequently calculate the correlator 〈Ne,3Ne,4〉:

〈Ne,3Ne,4〉 =
∞∑

Ne,3=0

P (Ne,3)Ne,3

(
Ne −Ne,3

)
(3.4)

Switching summations then yields the results:

〈Q3Q4〉 = e2T (1− T )
(
〈N2

e 〉 − 〈Ne〉
)

(3.5)

〈δQ3δQ4〉 = e2T (1− T )
(
〈δN2

e 〉 − 〈Ne〉
)

(3.6)

Usually, the charge correlations are probed through the measurement of the low fre-

quency correlations S3,4(ω = 0) = S3,4 between the output currents:

S3,4 = 2

∫
dτ 〈δI3(t)δI4(t′)〉t (3.7)

where as previously · · ·t denotes the average on the absolute mean time t = (t + t′)/2

on a long measurement time Tmeas, and τ = t − t′. S3,4 is then related to the charge

correlations 〈δQ3δQ4〉 by:

S3,4 =
2

Tmeas
〈δQ3δQ4〉 (3.8)

S3,4 =
2e2

Tmeas
T (1− T )

(
〈δN2

e 〉 − 〈Ne〉
)

(3.9)
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For a poissonian random source, fluctuations are proportional to the number of incoming

carriers: 〈δN2
e 〉 = 〈Ne〉. As a consequence, no correlation is expected between outputs

3 and 4. This is the case of laser light in photon optics for example.

When plugging a noiseless source in input 1 for 〈δN2
e 〉 = 0, one gets 〈δQ3δQ4〉 =

−e2T (1−T )〈Ne〉. This is the case for a DC-biased contact; where Pauli principle forces

electrons to be regularly ordered. Thus, S3,4 reduces to:

S3,4 = − 2e2

Tmeas
T (1− T )〈Ne〉 (3.10)

= −2eI1T (1− T ) (3.11)

Follwing the same reasoning, one can show that in this case S4,4 = −S3,4: this maximal

anti-correlation between cross and auto-correlation only holds for a noiseless source. This

result was demonstrated in [3] using a DC-biased contact. A key point here is the minus

sign: it characterizes the behavior of electrons, that antibunch in virtue of Fermi-Dirac

statistics. These results can be compared with the ones predicted for photons: contrary

to thermal electrons that are naturally ordered, photons emitted by a thermal source of

light have a tendency to bunch due to their bosonic nature. In that case, one has the

following super-poissonian correlations between the number Np,k, k = 3, 4 of photons in

output k:

〈δN2
p 〉 = 2〈Np〉 (3.12)

〈δNp,3δNp,4〉 = T (1− T )〈Np〉 (3.13)

As such, we see that the HBT geometry gives access to the fluctuations 〈δN2
e 〉 and yields

results on the statistics of the incoming carriers. However, this information can also be

obtained from current auto-correlations, as 〈δI2
1 〉 ∝ 〈δN2

e 〉. In the next section, we study

the case of a purely AC-source, for which these results are strongly modified.

3.1.3.2 Partitioning electron/hole pairs

We now consider an AC current source connected to input 1 emitting e/h pairs [85, 87].

In the measurement time Tmeas, N electron/hole pairs are emitted with a probability

P (N). The number of electrons Ne equals the number of holes Nh so that no DC

current I1 = e
Tmeas

(Ne − Nh) = 0 and no low frequency noise S1,1 = 0 are produced

by the source before partitioning according to the study of autocorrelations in section

2.3.2.4. We emphasize the fact that, for an AC source, low-frequency auto-correlations

do not give any information either on the charge fluctuations or on the number of
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emitted quasiparticles. We then adapt the preceding reasoning to the case of this purely

AC source.

We assume that no particle is incident on input 2. The Ne electrons and Nh holes are

partitioned independently following a binomial law. The correlations 〈δQ3δQ4〉 between

the charges Qi = e(Ne,i − Nh,i) (i = 3, 4) transmitted at the outputs are given by the

following expression:

〈δQ3δQ4〉 = e2
(
〈δNe,3δNe,4〉+ 〈δNh,3δNh,4〉 − 〈δNh,3δNe,4〉 − 〈δNe,3δNh,4〉

)
(3.14)

It can be evaluated using the probability P (Ne,3, Nh,4) that Ne,3 electrons are transmit-

ted in output 3 and Nh,4 holes are reflected in output 4 given by:

P (Ne,3, Nh,4) =
∑

N≥max(Ne,3,Nh,4)

P (N)× N !

Ne,3!(N −Ne,3)!
TNe,3 (1− T )N−Ne,3

× N !

Nh,4!(N −Nh,4)!
TN−Nh,4 (1− T )Nh,4

(3.15)

from which we deduce:

〈δQ3δQ4〉 = −T (1− T )e2
[
〈Ne〉+ 〈Nh〉

]
(3.16)

Remarkably, for an AC source, the correlations 〈δQ3δQ4〉 between the charges transmit-

ted at the outputs do not provide any information on the fluctuations of the number

of electrons and holes. Nevertheless, they provide a direct determination of the average

number of electron-hole pairs generated by the source, as we indeed immediately get:

S3,4 =
2

Tmeas
〈δQ3δQ4〉 (3.17)

S3,4 = − 2e2

Tmeas
T (1− T )

[
〈Ne〉+ 〈Nh〉

]
(3.18)

Identifying the measurement time with the period 1/f of the voltage drive applied to

the source and 〈Ne〉, 〈Nh〉 with the average number of electrons and holes emitted by

the source in one period, we finally obtain:

S3,4 = −2e2fT (1− T )
(
〈Ne〉+ 〈Nh〉

)
(3.19)

= −4e2fT (1− T )δNHBT (3.20)

δNHBT =
〈Ne〉+ 〈Nh〉

2
(3.21)
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3.1.3.3 Counting quasiparticles through Hanbury-Brown & Twiss correla-

tions

This classical calculation already holds a lot of information. As mentioned earlier, high-

frequency current autocorrelations give access to the statistics of charge transfer. But

due to the existence of two types of carriers, of opposite charges, neutral events can occur

that can not be probed. The previous formula shows that partitioning the electron beam

on a beam splitter creates zero-frequency correlations, that directly encodes the total

number of emitted quasiparticles. Whereas autocorrelations detect charges and their

fluctuations, HBT correlations directly counts the total number of incoming particles

〈Ne〉+ 〈Nh〉 = 2 δNHBT .

This reasoning is at the core of the following study. One expects to measure the possible

additional electron-hole pairs that could be emitted in a non-controlled manner during

some of the emission cycles, atop the triggered charges. With the normalization adopted,

it is clear so far that a lower bound can be set: the total number of quasiparticles counted

via HBT correlations is necessarily larger than the number of charges emitted by the

source, i.e. δNHBT ≥ Qt. The figure of merit of a single electron-hole source would be

δNHBT = Qt = 1, corresponding to a quantized charge without any additional e/h pair

generated. However, some elements are lacking in this classical description, and espe-

cially, the Fermi sea is not described. We will see that it is a very important ingredient

in the problem, as quantum interferences appear between the triggered quasiparticles

emitted by the SES and thermal excitations of the reservoir.

The next section is then naturally devoted to developing a quantum description of

the Hanbury-Brown & Twiss experiment, to take into account Fermi-Dirac statistics,

thermal excitations and all relevant parameters.

3.1.4 Quantum theory : effect of thermal excitations

We rely once again on the coherence functions formalism, to give a simple picture of the

main physical effects before calculating and simulating results obtained from Floquet

scattering theory. We recall that interactions can not be taken into account in this

particular framework.

3.1.4.1 Partition noise

Description of the electronic beamsplitter First of all we briefly describe the

effect of the beamsplitter on incoming modes. The input field operators â, b̂ are related
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d̂
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Figure 3.3: Scheme of the sample and notations used – In the geometry that
mimics the HBT experiment described in Fig. 3.1, incoming (resp. outgoing) modes

on the splitter are labeled â, b̂ (resp. ĉ, d̂). These modes are related by Eq.3.22.
The mode â exiting the source is related to â′ at equilibrium by Floquet scattering
relation 2.15. Modes ê and f̂ that only contribute to the Hanbury-Brown correlations
via a subtracted thermal noise background, will be ignored in the following study.

to the output fields ĉ, d̂ via the following scattering matrix

(
ĉ

d̂

)
=

( √
1− T i

√
T

i
√
T

√
1− T

) (
â

b̂

)
. (3.22)

This formula is identical to the description of an optical beamsplitter, acting on modes

of the electromagnetic field.

Thus, current operators in output 3 and 4 are given by:

Î3 = e ĉ†ĉ

= (1− T )Î1 + T Î2 + ie
√
T (1− T )(â†b̂− âb̂†) (3.23)

Î4 = e d̂†d̂

= T Î1 + (1− T )Î2 − ie
√
T (1− T )(â†b̂− âb̂†) (3.24)

One immediately notices an interference effect between both inputs (in the third term of

right-hand side), that is not present in the classical theory. It reflects the fact that the

beamsplitter acts on field operators, and not current operators. It will clearly appear in

the following developments.

Fluctuations and HBT effect From previous developments, one can calculate the

current-current correlations, computed between different output contacts i, j = 3, 4.

Using Eqs.(3.23) and (3.24), the current-current correlations Si,j(t, t
′) = 〈δÎiδÎj〉 can be
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written in the following way1:

S3,4(t, t′) = T (1− T )
(
S1,1(t, t′) + S2,2(t, t′)−Q(t, t′)

)
(3.25)

S4,4(t, t′) = T 2S1,1(t, t′) + (1− T )2S2,2(t, t′) + T (1− T )Q(t, t′) (3.26)

where we identify S1,1 = 〈δÎ1δÎ1〉 and S2,2 = 〈δÎ2δÎ2〉 as current-current autocorrelations

in the input channels, as studied in 2.3. Besides, a new term Q(t, t′) also arises from

quantum interference effects, and will be at the heart of our study [45]:

Q(t, t′) = e2
(
G(e)

1 (t, t′)G(h)
2 (t, t′) + G(h)

1 (t, t′)G(e)
2 (t, t′)

)
(3.27)

This term will be studied in details in the next section, but let us first operate some

useful simplifications.

Measuring HBT correlations First, our setup (detailed in section 3.2) does not

give access directly to the cross-correlations S3,4 but to the auto-correlations after par-

titioning. However, one has the following results. First, at zero-frequency, the auto-

correlations S1,1 and S2,2 are reduced to equilibrium noise, that is subtracted in our

measurement protocol. Namely, ∆S1,1 = ∆S2,2 = 0. Second, from Eqs.(3.25) and

(3.26), one gets2:

S3,4 = −T (1− T )∆Q = −∆S4,4 (3.28)

Finally, we see that recording the auto-correlations after partitioning on the beamsplitter

is enough to gain access to the quantum interference term ∆Q. This technique enables to

keep output 3 for RF homodyne detection of the average current, necessary to establish

an accurate diagnosis of the operating parameters of the source, as explained in section

2.2.

3.1.4.2 Coherence theory of the Hanbury-Brown & Twiss experiment

In this section, we analyze the term ∆Q that encodes interferences between channels 1

and 2. Let us mention that this term is very different from what we observed in the

classical partitioning model (even if incoming particles were added in input 2). Indeed,

in a sense, classical partitioning is a matter of partitioning currents rather than field

operators whereas in a quantum theory, field operators of channels 1 and 2 interfere,

and new phenomena are unveiled.

1disregarding thermal noises from modes ê, f̂ at equilibrium
2S3,4 does not contain any equilibrium term, as a specific feature of cross-correlations in the HBT

geometry.
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Hanbury-Brown & Twiss correlations In this experiment, the second output is at

equilibrium, at chemical potential µ = 0 and temperature Tel, so that G(e/h)
2 reduces to

equilibrium coherence functions G(e/h)
2 = G(e/h)

µ=0 . In particular, the excess contribution

∆G(e/h)
2 = 0, so that we can write from Eq.(3.27) the excess contribution ∆Q as :

∆Q(t, t′) = e2
(
∆G(e)

1 (t, t′)G(h)
µ=0(t− t′) + ∆G(h)

1 (t, t′)G(e)
µ=0(t− t′)

)
(3.29)

The zero-frequency part is then written:

∆Q = 2e2

∫
dτ
∑

n

(
∆G(e)

1,n(τ)G(h)
µ=0(τ) + ∆G(h)

1,n(τ)G(e)
µ=0(τ)

)
e−inΩt

t

= 2e2

∫
dτ
(
∆G(e)

1,0(τ)G(h)
µ=0(τ) + ∆G(h)

1,0 (τ)G(e)
µ=0(τ)

)

=
2e2

h

∫
dε
(
∆G(e)

1,0(ε)G(h)
µ=0(−ε) + ∆G(h)

1,0 (−ε)G(e)
µ=0(ε)

)
(3.30)

Eqs.(1.8) and (1.9) then give the equilibrium population G(e)
µ=0(ε) = fµ=0(ε), and G(h)

µ=0(ε) =

1− fµ=0(−ε). As explained in 1.2.2.3, the harmonic n = 0 of the coherence function of

the source in input 1, G(e/h)
1,0 (ε), encodes the number of quasi-particles at a given energy

ε. Consequently, we introduce the excess energy distribution of electrons and holes δne/h

generated by the SES:

∆G(e)
1,0(ε) = δne(ε) (3.31)

∆G(h)
1,0 (ε) = δnh(ε) (3.32)

With these notations, δne/δnh are respectively the excess population of electrons/holes

at energy ε (with respect to the Fermi sea fµ(ε)) Then, one gets a very clear expression

of ∆Q:

∆Q = 4e2f δNHBT

δNHBT =
1

2

∫ ∞

0
dε
(
1− 2fµ=0(ε)

)(
δne(ε) + δnh(ε)

)
(3.33)

=
〈Ne〉+ 〈Nh〉

2
−
∫ ∞

0
dε
(
δne(ε) + δnh(ε)

)
fµ=0(ε) (3.34)

where 〈Ne/h〉 =
∫∞

0 dε δne/h(ε) is the excess number of quasiparticles (electron or hole)

emitted by the source. Eq.(3.34) then has a very simple interpretation. The first part of

δNHBT is the classical term: the HBT correlations count the number of quasiparticles

emitted by the source, as demonstrated in section 3.1.3.2. This contribution is then

corrected by the second term−
∫∞

0 dε
(
δne(ε)+δnh(ε)

)
fµ=0(ε), that measures the overlap

between the energy distribution of the electrons/holes emitted by the source and the

Fermi distribution encoding the population of thermal excitations in the reservoir.
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Antibunching with thermal excitations Consequently, the partition noise is re-

duced due to the presence of thermal excitations. This can be understood as a Hong-

Ou-Mandel two-particle interference (section 1.1.2.3, [22]) as detailed on Fig.3.4: when

a quasiparticle of energy ε emitted in input 1 finds a symmetric partner in input 2 with

same energy impinging on the QPC at the same time, their contribution to the noise

is canceled as they have to come out in different outputs to obey Fermi-Dirac statis-

tics. Thus, as pictured on Fig.3.4 the probability P1,1 of having one electron in each

output is P1,1 = 1, whereas P2,0 = P0,2 = 0. Contact 1 is populated with electrons

and holes with distribution δne/h(ε), whereas contact 2 is at thermal equilibrium with

distribution fµ=0(ε), hence the form of Eq.(3.34). This term is not totally surprising.

Indeed, the partition noise of a DC-biased contact can be written as the integral of

fµ(ε − eV )
(
1 − fµ(ε)

)
where the first factor refers to the first input contact 1 and the

second to the input 2, and the same interpretation can be given, by simply replacing

non-equilibrium distribution created by our SES δne + δnh by the thermal distribution

fµ(ε− eV ) in input 1.'

&
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Figure 3.4: Hong-Ou-Mandel effect and antibunching with thermal exci-
tations – A reduction of the HBT correlations is expected due to Hong-Ou-Mandel
effect responsible for anti-bunching with thermal excitations: when a quasiparti-
cle emitted in input 1 finds an indistinguishable partner in input 2 reaching the
QPC at the same time, they have to come out on different outputs to obey the
Fermi-Dirac statistics. Thus this only possible outcome (left panel) has unit prob-
ability (P1,1 = 1), whereas the two other possibilities (right panel) are forbidden

(P2,0 = P0,2 = 0).

3.1.4.3 Floquet scattering theory

Using the Floquet model developed in section 2.1.1, we can obtain the expression of the

HBT correlations δNHBT in terms of the Floquet matrix. In fact, it is also simple to

calculate directly the energy distribution of the quasiparticles emitted by the source.
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From Eqs.(2.20) and (2.23), one gets:

ne(ε) = 〈b̂†(ε)b̂(ε)〉 =
∑

k

∣∣Uk(ε)
∣∣2f0(ε− k

2
~Ω) (3.35)

nh(ε) = 〈b̂(ε)b̂†(ε)〉 =
∑

k

∣∣Uk(ε)
∣∣2(1− f0(ε− k

2
~Ω)

)
(3.36)

δne(ε) = −δnh(−ε) =
∑

k

∣∣Uk(ε)
∣∣2(f0(ε− k

2
~Ω)− f0(ε)

)
(3.37)

This finally yields:

δNHBT =
∑

k

∫
dε
∣∣Uk(ε)

∣∣2(f0(ε− k

2
~Ω)− f0(ε)

)(
1− 2f0(ε)

)
(3.38)

As was similarly done for the average current IΩ (section 2.2) and the autocorrelation

∆S (section 2.3), this expression can be numerically simulated using Matlab programs,

offering a way to forecast and analyze quantitatively our experimental results.

In this section, we have provided insights concerning current correlations measured

in the Hanbury-Brown & Twiss geometry. A classical reasoning shows that the HBT

correlations can be used to count the total number of quasiparticles emitted by the SES.

However, in addition, a quantum theory predicts that the HBT signal is corrected by a

factor accounting for antibunching effects between triggered quasiparticles and thermal

excitations in the gas. The next section details the setup and calibration steps that were

developed to measure these fluctuations.

3.2 Experimental implementation

In the first paragraph, we explain the sample design and how several experimental

parameters (magnetic field B, QPC gate voltage Vqpc) were chosen. Then the low-

frequency noise detection is described, as well as its calibration.

3.2.1 Description of the sample and choice of parameters

3.2.1.1 Sample description

On Fig.3.5 is presented a modified SEM picture of the sample used in this experiment.

A strong magnetic field B = 3.2 T is applied perpendicularly to the sample so as to enter

the integer quantum Hall regime with a filling factor ν = 2. The accurate choice of B
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must fulfil several technical constraints, and is discussed hereafter. The sample consists

of a single electron source of the type described in the preceding chapter. The size of

the quantum dot is around 1 µm, and the level spacing has been calibrated to the value

of ∆ = 2.1 ± 0.2 K. In input 1, only the outermost of the two copropagating channels'
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Figure 3.5: Modified SEM picture of the sample used in the Hanbury-
Brown & Twiss experiment – A driven mesoscopic capacitor, used as a single
electron/hole source injects quasiparticles in the first input (labeled 1) of a QPC,
acting as beamsplitter and controlled via gate voltage Vqpc. Input 2 is connected
to a biased contact with voltage Vbias. This bias is used for calibration purpose
but set to Vbias = 0 when measuring HBT correlations. Output 3 is dedicated to
RF average current measurements and cabled toward the GHz homodyne detection.
On the opposite side, low-frequency HBT autocorrelations are recorded in output 4,

connected to the noise detection scheme presented in section 3.2.2.

of ν = 2 is tunnel coupled to the dot, via the QPC of the mesoscopic capacitor (gate

voltage Vg). Consequently, up to interaction processes (discussed in chapter 4), charges

are situated only in this edge state, and only the physical phenomena in this channel will

be examined throughout this chapter. Input 2 is connected to a low-frequency generator

that delivers a voltage Vbias. During the measurement of HBT correlations, it is set to

Vbias = 0, but it is used in the calibration of the central QPC and in the choice of the

magnetic field, as explained in the following paragraphs.
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Roughly 3 µm after the dot, a second QPC (called ”central QPC”) has been lithogra-

phied to recreate the beamsplitter of the HBT geometry. Its transmission T can be

tuned via gate voltage Vqpc, and enables to split the outer edge channel into a reflected

and a transmitted electron/hole beam, so as to mimic the HBT geometry sketched in

Fig.3.1.

Please note that a second source is situated symmetrically from the first one with
respect to the central QPC. As it was not working properly on this sample, and
is of no use in this experiment, it was blackened for clarity on the SEM picture
of Fig.3.5. However a sample with both sources operating is used in Chapter 5.

Second source

One of the output (labeled 3) is wired to the RF homodyne detection, in order to measure

the first harmonic of the average current IΩ. Thus, good operating parameters of the

dot can be found to reach proximity with perfect single-charge emission: gate voltages

for which φ0 = 0, excitation voltage such that 2eVexc = ∆. The second output (labeled

4) connects to either a spectrum analyser for noise measurement (see 3.2.2) or to a low-

frequency homodyne detection. This setup is used to perform DC measurement of the

transmission of the central QPC, as a function of gate voltage Vqpc. Consequently, the

spectrum analyzer gives access to the excess autocorrelations ∆S4,4, and not directly to

cross-correlations S3,4. However, as shown in 3.1.4.1, current conservation law ensures

that ∆S4,4 = −S3,4 at low frequency.

3.2.1.2 Choosing the magnetic field

The choice of the magnetic field B = 3.2 T is in fact more complex than simply working

anywhere on the quantized plateau of ν = 2. One of the main reason lies in the fact

that the electron density in the 2DEG is not homogeneous over the whole sample. In

particular, it differs between the bulk and the neighborhood of the central QPC and the

quantum dot. Both densities can in fact be probed via DC measurements, in order to

find the most favourable configuration.

Density in the bulk – Output 4 can also be used as an input to gain access to the

impedance of the 2DEG. In that case, current is injected in the ohmic contact 4, and

the impedance between contact 4 and the contact next to it (connected to the ground)

is measured, according to Fig.3.6 a).

As a function of the field B, we observe plateaus of quantized Hall resistance (Fig. 3.7),

hallmark of the quantum Hall regime. We clearly distinguish ν = 2 to ν = 6 before
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Figure 3.6: Setup for measuring the impedance of the 2DEG – a) Config-
uration for measuring the impedance of the 2DEG: via a bias Vin current is injected
in a reverse configuration in contact 4. The voltage Vout that develops is directly
proportional to the Hall resistance of the 2DEG RH . Its measurement yields an ac-
curate determination of the filling factor in the bulk. b) Configuration for measuring
backscattering: current is injected from biased contact 2, as the QPC is completely
opened. The backscattering signal (in non-calibrated units) is recorded in output 4
that is connected to a low-frequency homodyne detection. We assume that backscat-
tering mainly occurs near the QPC (symbolized by red dashed arrows), so that this

measurement gives access to the filling factor near the QPC.

measurements become less accurate. We can then choose to work on the plateau to

reach a filling factor ν = 2.

Density near the QPC – Measuring the impedance of the gas near the QPC is not

possible in our experiment, but we can get an insight of the filling factor around the

QPC by measuring the ”backscattering” as a function of the field B. When Vbias 6= 0,

a net current flows from input 2, that can be detected in 4 (Fig.3.6 b), using the LF

homodyne detection, depending on the transmission of the central QPC. When this

transmission is set to T = 1 (usually for Vqpc ∼ 0 − 0.1 V), all the injected current is

transmitted towards contact 3 so that no current should be detected in 4. However,

this reasoning only holds if there is no backscattering in the edge channels, i.e. when

electrons can not be backscattered from one edge to the other. It is only valid for an

integer value3 of the filling factor ν. When ν /∈ N, backscattering occurs and a small but

3or any special fraction giving rise to fractional quantum Hall effect
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measurable fraction of the injected current can be measured in 4. This scattering from

one edge to the counter-propagating one is more likely to occur near the QPC where

counter-propagating edge channels are brought close to one another. Thus we attribute

the filling factor deduced from this measurements to the area that neighbours the QPC

and the quantum dot.

An example of backscattered signal is presented on Fig.3.7. Minima are clearly visible

with a backscattered signal close to 0. According to our analysis, we interpret the

suppression of backscattering signal as an evidence of an integer filling factor near the

QPC.'
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Figure 3.7: Measurements of the impedance of the 2DEG and backscat-
tering near the QPC – In black line, the impedance of the gas is plotted, clearly
exhibiting the typical plateaus of quantum Hall effect. Filling factor ν = 2 in the bulk
is identified by a resistance of RK/2 (horizontal grey dashes). In red solid line, the
backscattering signal goes to zero for integer filling factor near the QPC. A small dis-
crepancy (vertical grey dashes) is observed between both measurements attributed
to inhomogeneities in the density. Data correspond to sample S434-C16L25A used

in chapter 5

To approach a filling factor ν = 2 in the bulk as well as in the vicinity of the QPC and

the source, we can then set the magnetic field in a region where:

- the impedance of the 2DEG is around the quantized value RK/2 = 12.8 kΩ

- backscattering is suppressed.
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For the sample presented in Fig.3.7 (used for the Hong-Ou-Mandel experiment, chapter

5), these two rules would consequently lead to set B ' 4 T. For sample S434-C16L25A

used in this chapter, we found4 B = 3.65 T.

However, a third ingredient has to be considered when choosing B: the QPC itself

deviates from a linear behavior (as a function of bias voltage) when the magnetic field

becomes larger. We discuss these features in the following paragraph, as they constitute

a crucial point in this experiment.

3.2.1.3 Study of the central QPC

In this paragraph, we examine the central QPC in details. DC measurement can be

performed easily and allow an accurate diagnosis of the best working points. In the

meantime, it addresses a few problems that arose during the preparation of the experi-

ment.

Transmission and effect of the magnetic field The first study that has to be

carried out is the measurement of the transmission of the central QPC, as a function of

the corresponding gate voltage Vqpc. We here present measurements of this transmission

for a large range of magnetic fields. The measurement idea is rather obvious and the

setup is identical to the one used to measure backscattering (see Fig.3.6): a DC bias

Vbias is set on input 2, and the reflected current is measured in output 4, as a function

of Vqpc and B. the results are presented in Fig.3.8, for the sample used in this chapter.

On this graph, nice conductance quantization steps are observed. The different filling

factors can be identified, and when looking at Vqpc = 0, one recovers the measurements

presented in section 3.2.1.2. However, the transition between plateaus is not monotonous

for all samples and configurations: for fields above B = 2.5 T (corresponding to ν < 2),

the opening of the outermost channel sometimes present a rather complex structure, and

may exhibit resonance in the conductance of the QPC. In these regions, we have not been

able to calibrate or measure correctly current correlations (see section 3.2.3) with values

up to 10 times the expected noise. We have attributed this unexpected result to a non-

linear behavior of the transmission of the QPC. To find the best working points, we have

then examined these features by measuring the dependence of the QPC conductance on

the energy of the incoming electrons, by the use of the differential conductance.

4After an electrostatic shock due to power shortage in the lab, the density of 2DEG was modified
and measurements were finally done at B = 3.2 T.
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Figure 3.8: 2D plot of the transmission of central QPC, as a function of
B and Vqpc – The conductance of the central quantum point contact is presented in
color scale (conductance increasing from blue to red), as a function of magnetic field
B and gate voltage Vqpc. The progressive disappearance of the edge channels as B
increases (grey dashes) allows for a clear identification of edge channels and filling
factor ν. The area ν = 2 labels a range of magnetic fields B where exactly two edge
channels are transmitted when the QPC is opened. However non-motoneous behav-
ior of the conductance (red line) necessitates a study of the differential conductance,

either on outer or inner edge channels.

Differential conductance The idea of this series of measurement is to probe the

behavior of the central QPC at a tunable and relatively well-defined energy. For this

purpose, we study the differential conductance of the QPC. Prior to this study, Vbias

was an AC signal (sine or square, but with no DC component) whose amplitude was

arbitrary chosen. The only constraint was to obtain a measurable signal. Thus, the

incoming electrons had energies ranging from typically −Vbias to Vbias. Using typically

Vbias ' 90µV, (corresponding to a temperature of 1 K) no information could be inferred

on the energy dependence of the transmission of the QPC. In this study, we have decided

to set the AC part Vbias to the lowest measurable value (typically 1.5 µV, less than 20

mK) and to vary the DC component V 0
bias. The results obtained are strongly sample

dependent, but with a major tendency to worsen when the magnetic field B increases.

Two different configurations are presented on Fig.3.9. In the first panel (a) are presented

results obtained in a unfavorable situation (inner channel at ν = 2, for the sample used in

the HBT experiment). The transmission of the quantum point contact strongly depends

on the DC bias V 0
bias, and exhibits resonances as the gate voltage Vqpc is changed. In

this situation, the noise measurements can not be realized, as unexpected variations (on
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a scale of a factor 10 to 50) are observed and not understood. This situation inevitably

appears on the innermost channel for ν < 3, but this channel is not relevant here, so

that this problem is circumvented. More disturbingly, it sometimes also occurs when

transmitting the outer edge channel, so that it cannot be ignored in the study. In

the second panel (b), corresponding to the outer channel of ν = 2, for B = 3.65 T,

the transmission of the QPC is almost completely independent from the DC bias V 0
bias.

With this type of behavior, we have been able to calibrate the setup and measure HBT

correlations. These configurations are observed for filling factors around ν = 3 for all

samples, and up to ν = 2 in certain cases.

This analysis has revealed in fact very important for our measurements. In most

cases (though not always), the QPC behaves quite linearly for energies ranging from

typically -100 to 100 µV. On one hand, this can be sufficient for an experiment using

a DC-biased contact, where the bias is often set to values larger but comparable to the

electronic temperature. On the other hand, our source is expected to emit quasiparticles

at typical energies up to ∆ ∼ 2 K ∼ 160 µeV. The energy distribution is also expected to

depend quite importantly with the choice of the operating parameters (D for example).

A linear behavior of the QPC is then necessary in a broad range of energies. The choice

of the magnetic field B is then a trade-off between the criteria defined in section 3.2.1.2

and the constraint imposed by a good behavior of the quantum point contact. Luckily,

for this experiment, both criteria were fulfilled for filling factor ν = 2, and the magnetic

field was then set to5 B = 3.65 T. In chapter 5, we resolved to work at ν = 3 as we were

unable to find a linear behavior of the QPC at ν = 2.

3.2.2 Low-frequency noise detection

In this part, we describe the low-frequency noise detection and analyze its performance.

We also present two independent calibrations of the gain of the whole detection scheme.

The first one is an absolute calibration obtained by varying the temperature of the

mixing-chamber of the dilution fridge. The second one relies on the measurement of

low-frequency partition noise of a DC-biased contact. Both yield similar results, giving

good confidence in the quality of the measurements performed.

3.2.2.1 Noise detection setup

The measurement of current correlations at low-frequency has required the development

of a new detection setup, totally independent from the high-frequency noise setup used

5and finally brought to 3.2 T after, as already mentioned, a change in the density of the 2DEG.
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Figure 3.9: Differential conductance of the central QPC in two different
configurations – (a) QPC transition that presents a highly non-linear conductance:
B = 3.65 T, ν = 2, inner edge channel. (b) QPC transition that presents a favorable
linear conductance: B = 3.65 T, ν = 2, outer edge channel. This configuration was
the one conserved for the HBT correlation measurement, presented in this chapter.

for the study of high-frequency autocorrelations (discussed in 2.3, [83, 95]). First at-

tempts to build up a robust and accurate setup were done during the PhD of F.D.

Parmentier and are presented in his thesis [114]. Here is detailed the improved setup

that was used to obtain the results presented in section 3.3.

The noise detection setup is presented on Fig.3.11. First, the current fluctuations at low-

frequency are converted into voltage fluctuations by the use of a very stable resistor. It
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The features observed in the study of the central QPC are in fact widely spread
and can be observed in QPC conductances reported in [52]. Though it has not
been scrutinized, it is very likely that the origin of the observed resonances is the
existence of localized states trapped between the two metallic split gates. This has
been studied in detail in [126]. As this phenomenon has annoying consequences,
we will in the future try to slightly modify the gates design to reduce it.

Origins of the resonances in the QPC

Throughout the manuscript, the different gate voltages are assumed to be com-
pletely independent. In fact, due to their proximity, Vg and Vqpc are coupled,
but in a relatively weak way. For example, a variation of the dot gate voltage
∆Vg induces a variation ∆Vqpc ' 0.02 ∆Vg of the QPC gate voltage. But as
Vqpc is varied on a wide span of circa 1 V, it is necessary to correct the dot gate
voltage Vg for this parasitic coupling. On Fig.3.10, we reported the variations in
gate voltage Vqpc of three different values of the QPC transmission T when Vg is
changed. We observe that the coupling is linear which enables to correct Vg by
simple linear corrections.

Coupling between gate voltages
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Figure 3.10: Couplings between gates Vg/Vqpc – By measuring the evolution
of the gate voltages Vqpc for which T = 0.25, 0.45 and 0.81 for different values of Vg
between -0.7 and 0 V, we observe a linear coupling from Vg on Vqpc. Similarly, the
action of Vqpc on Vg is linear. This enables a simple but efficient correction of the

static couplings between gates.

is supplied by the impedance of the 2DEG itself in the quantum Hall regime. Working at

ν = 2, this conversion resistor is then R0 = RK/2 = 12.9 kΩ. The quantized value of this

resistor is very robust, as it does not change with temperature, or with the applied RF or
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Figure 3.11: Low-frequency noise detection setup – Ultra-low noise room
temperature amplification is provided by NF LI75A amplifiers, while the second
stage of amplification is made of Sonoma 310. Both arms are cabled to the two
input of an Agilent 89410A spectrum analyzer that computes averaged power in

band in the range 35− 98.125 kHz.

DC voltages. It thus guarantees that the impedance seen from the detection line (and

consequently from the amplifiers) is constant, and enhances the stability of the noise

measurements. The voltage fluctuations are then transmitted via a coaxial RF cable

from the sample to room temperature, where the signal is split using a T-connector, and

connected to two different NF LI-75A amplifiers. After a second stage of amplification

using Sonoma 310 amplifiers, both signals are connected to a spectrum analyser (Agilent

89410A) where the spectrum of the cross-correlation is computed and averaged (between

200 to 500 times). Finally, the total power in band, in the range 35 to 98.125 kHz is

computed by the spectrum analyzer and transmitted to a computer. This measurement

is then repeated during approximately ten hours, to reach a resolution of 2 10−30A2Hz−1.

This method presents several experimental advantages that are presented in the next

paragraph.

3.2.2.2 Expected performances of the noise measurement setup

In this paragraph, we analyze the performance of the noise detection scheme, and discuss

other possible configurations, by examining an electrical model of the noise detection.
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The choice of coaxial RF cables to collect the DC noise can be surprising at
first sight. It indeed has assets and drawbacks. On the one hand, it enables
the measurement of average current using room-temperature amplification. It is
especially used for cross-checking results obtained from the usual RF measure-
ment lines, that are equipped with cryo-amplifiers, but the wide bandwidth of
the RF cables is also a strong asset to access frequencies out of the range of the
cryo-amps. This will be used in chapter 4. On the other hand, it is quite difficult
to thermalize this line (especially the core), that then brings heat from the room-
temperature environement to the sample. This is responsible for an unusually
high electronic temperature Tel = 150 mK in this experiment. It has nevertheless
been improved to Tel = 90 mK for the measurements presented in chapter 5.

Assets and drawbacks of the choice of RF cables for collecting low-frequency noise

It follows a first developed by F.D. Parmentier in his thesis [84], and has been pursued

under our supervision by V. Freulon.

Model of the noise detection setup In Fig.3.12, an outline of the noise detection

setup is presented in panel a) while its model is pictured in panel b). The noise of

the sample, that contains the HBT correlation and the thermal noise of the sample, is

pictured as a current noise generator iN with < iN >= 0 and < i2N >6= 0, where < · · · >
is the ensemble average. It is converted into voltage by virtue of the quantized Hall

resistance R0 = RK/2.

As usually done, noisy amplifiers are modeled as perfect amplifiers with, on the input,

fluctuating voltage ek and intensity ik generators of zero-mean value (k = 1, 2). Besides,

we also introduce the total integrated capacitance C of the coaxial cable that will in the

end limit the bandwidth. It is given by the linear capacitance of 100 pF/m multiplied

by the length (roughly 2 m) of coaxial line, so that C ' 0.2 pF.

At point T where a T -splitter is placed, the voltage vT can be computed and:

vT = Z(i1 + i2 + iN ) with Z(ω) =
R0

1− iR0Cω
(3.39)

As the voltage in outputs 1 and 2 is given by vk = ek + vT , we may readily show that,

for k = 1, 2:

< v2
k > = < e2

k > +|Z|2
(
< i21 > + < i22 > + < i2N >

)
(3.40)

< v1v2 > = |Z|2
(
< i21 > + < i22 > + < i2N >

)
(3.41)

We immediately see one advantage of our scheme: the computation of cross-correlations

< v1v2 > between two independent amplifiers (instead of auto-correlations < v2
k > using
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Figure 3.12: Model of the noise detection setup – a) The noise detection
performances is governed by the properties of the sample (seen at ν = 2 as a resistor
of impedance R0 = RK/2), framed in blue, the coaxial cable (framed in green), and
the first stage of amplification (NF LI75A, in a red frame). b) These different parts
are modeled as an electrical circuit, a description that is valid at low frequencies.
The noise of the sample (resp. the amplifier k = 1, 2) is described as a fluctuating
generator delivering a current iN (resp. ik, k = 1, 2), while the coaxial is modeled
as a parallel capacitance C. The performances of the noise detection can then be

evaluated, by calculating the time τ necessary to reach a defined SNR.

one amplifier only) enables to get rid of the voltage noise < e2
k > of the amplifiers. This

is very interesting as this voltage noise acts as a background that can fluctuate or drift

on long time-scales during the measurements.

Prediction of the measurement time The signal we want to measure is the current

noise S4,4, converted in voltage noise |Z|2S4,4 and is encoded in the cross-correlation

Sv1v2 . For a measurement time Tm → ∞, the Wiener-Khintchine theorem then gives

Sv1v2 = limTm→∞
1
Tm

< v1v2 >. When repeating N times the acquisition of Sv1v2 , the

signal-to-noise ratio SNR is then given by:

SNR =
|Z|2S4,4

∆Sv1v2

√
N (3.42)

with ∆Sv1v2 = lim
Tm→∞

1

Tm

√
< v2

1v
2
2 > − < v1v2 >2 (3.43)
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We assume for simplicity that both amplifiers are identical (which is approximately true

using two NF LI75A), and we can obtain

∆S2
v1v2 = lim

Tm→∞

1

T 2
m

[
3|Z|2

(
2 < i22 >

2 + < i2N >2
)

+ < e2
1 >

(
< e2

1 > +2|Z|2
(
2 < i22 >

2 + < i2N >2
))]

(3.44)

In our setup as in most cases, the signal is much smaller than the noise of the amplifiers

and moreover, the noise of the amplifiers is here governed by the voltage noise of the

amplifiers. Indeed, LI75A nominal specifications are:

Sv = lim
Tm→∞

< |ek|2 >' (1.8 nV/
√

Hz)2 (3.45)

Si = lim
Tm→∞

< |ik|2 >' (15 fA/
√

Hz)2 (3.46)

One can then verify that, with |Z| ∼ R0 and S4,4 ∼ ∆Q ∼ e2f , ∆Sv1v2 ' Sv '
(1.8nV/

√
Hz)2. For a given SNR, the number of measurements N in a time τmeas is then

evaluated [83] using the integration bandwidth of the spectrum analyzer ∆f = 78.125

kHz, yielding:

N = ∆fτmeas (3.47)

τmeas =
SNR2

∆f

(
Sv

|Z|2S4,4

)2

(3.48)

A crucial point here is the bandwidth ∆f over which the signal is integrated, as compared

to the corner frequency of the coaxial line fc = 1/R0C. With |Z|2 =
R2

0

1+R2
0C

2ω2 , it appears

that the noise of the source is efficiently collected at frequencies much smaller than fc

while the white voltage noise of the amplifier is not affected by this factor, and integrated

over the full bandwidth ∆f .

Finally, the upper bound of the bandwidth is set to 98.125 kHz as the signal is nearly non-

existent above such frequencies much bigger than fc. The lower bound is unfortunately

fixed to 30 kHz due to vibrations in the 1K pot of the dilution fridge, responsible for noisy

spectra below 30 kHz. Taking into account that subtracting a background multiplies

the measurement time by a factor 2 and the standard deviation by
√

2, we can evaluate

the total measurement time to τmeas ' 8 hours per point (for SNR ' 7), which is not

very far but slightly underestimates the real measurement time, of about 10 hours.

3.2.3 Calibration of the noise detection scheme

In this section, two independent calibration of the low-frequency correlations are pre-

sented. The results obtained are compatible, within a 10% error rate.
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3.2.3.1 Absolute calibration by noise thermometry

The first method is to record the variations of the equilibrium noise (background noise

usually subtracted in the measurements) as the temperature of the mixing chamber Tmc

is varied. We observe (see results on Fig.3.13) a variation of the absolute HBT correlation

S4,4 with Tmc, that we can fit using the Johnson-Nyquist function GS4,4 = 4G 2
RK

Teff ,

where G is the gain of the detection scheme (with S4,4 expressed in A2Hz−1, and GS4,4

measured in V−2), and where Teff =
√
T 2
el + T 2

mc is an effective temperature, Tel being

as previously the residual electronic temperature, when the dilution fridge lies at its base

temperature. The conductance 2/RK corresponds here to a filling factor ν = 2. From

this measurement, we get Tel = 150 ± 10 mK. From the linear extrapolation as well as

the previous non-linear fit, we also get G = 1.3 1019 V2/A2Hz−1.'
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Figure 3.13: Absolute calibration using noise thermometry – The (ab-
solute) equilibrium Johnson-Nyquist noise of the sample is measured as a func-
tion of Tmc, temperature of the mixing chamber of the fridge. A fit S4,4 =

4G 2
RK

√
T 2
el + T 2

mc then sets the calibration of the electronic temperature Tel = 150

mK and of the gain G = 1.3 1019 V2/A2Hz−1

3.2.3.2 Relative calibration by partition noise of a DC source

The second calibration method relies on the partition noise obtained when a DC cur-

rent is impinging upon the central quantum point contact. This current is created

by biasing contact 2 (see Fig.3.5) using Vbias. Unlike in the previous calibration, only

the excess contribution is recorded, and the background noise is subtracted. Using

G = 1.3 1019 V2/A2Hz−1 and Tel = 150 mK obtained earlier, the data (Fig.3.13) are in
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excellent agreement with the theoretical predictions (black plain line):

S4,4 = 2
e2

h
T (1− T )eVbias

[
cotanh

(eVbias
2kTel

)
− 2kTel
eVbias

]
(3.49)
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Figure 3.14: Relative calibration using partition noise of a DC-biased
contact – Current created by biasing contact 2 (with voltage Vbias) is partitioned
and the resulting excess noise ∆S4,4 is recorded. The data is in excellent agreement
with the theoretical prediction of the scattering model (Eq.(3.49)), where the gain
G and electronic temperature Tel are settled by the absolute noise thermometry

calibration described in paragraph 3.2.3.1

Although this calibration was mostly performed at a transmission T = 1/2, one point

of this calibration has been obtained by verifying the T (1− T ) dependence. The graph

obtained is presented as an inset, and the fit with a parabola αT (1 − T ) of arbitrary

amplitude α then yields the point reported on the graph. This second calibration thus

confirms both the evaluation of Tel and G, and demonstrates the correct behavior of the

electronic beamsplitter when it comes to noise measurements.

The development of a robust and accurate noise detection has been examined in this

section. Two different calibrations have been proposed, that yield similar results and

thus give a good confidence in the quality of the acquired data. In the next section, we

examine the results obtained when partitioning the quasiparticles emitted on demand

by our single electron source.
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3.3 Results

As explained in section 3.1, the Hanbury-Brown & Twiss correlations provide a direct

counting of the total number of quasiparticles emitted by the single electron source, and

helps to probe the energy distribution of the emitted wavepackets by direct comparison

with the Fermi distribution.

First, we examine the effect of the beamsplitter transmission T on the HBT signal

recorded. We establish the expected T (1 − T ) dependence of the correlations (see

Eq.(3.28)) in three different configurations, which demonstrates that the signal mea-

sured is partition noise, with no visible unexpected parasitic contribution. Then, the

amplitude of the HBT correlation is carefully analyzed in these three situations: a phe-

nomenological understanding of the underlying physics is first presented, before using

Floquet scattering theory to confirm the claims. Finally, we scan a portion of the phase

space by changing the transmission of the dot D, for two types of excitation drives (sine

and square), and examine the variation of the correlations, that are found to be in good

agreement with Floquet scattering theory, and tend to prove that an engineering of the

emitted wavepackets can be achieved.

3.3.1 HBT partition noise as a function of the beamsplitter transmis-

sion T

We first investigate the T -dependence of the HBT correlations, for three choices of

typical operating conditions. The data is presented in Fig.3.15, where parameters are

summarized in a table. The three graphs are well adjusted with fits of the expected

form ∆S4,4 = T (1− T )∆Q (in plain lines). In particular, no extra noise is recorded at

T = 1 or T = 0: this demonstrates that the source in itself is not giving low-frequency

noise, and that the subtraction of background noise is not a source of problems. The

amplitude of the fits then enables to access δNHBT = ∆Q/4e2f , which is reported in

the table of Fig.3.15.

Case of a sine drive In black plain line and triangles, the parameters chosen are a

sine excitation, the dot being opened, and completely coupled to the reservoir (D = 1).

In that case, no discrete level appear in the dot (the density of states is constant, N (ε) =

1/∆), and the escape time τe is much shorter than the half-period T/2. The average

transmitted charge Qt = 1.27 > 1 (deduced from homodyne current measurement) show

that the emitted charge is not accurately quantized in this regime. On the opposite,

the HBT signal gives δNHBT = 0.51. The number of particles counted with HBT
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correlations is then smaller (by 60%!) than the number of charges counted via the

current. Since δNHBT < Qt, no extra electron/hole pairs are then clearly visible in that

case. Indeed, in a naive picture, the number of quasiparticles counted through HBT

correlations can only be larger than the total charge transferred charge. This is a first

evidence that the correcting factor coming from antibunching with thermal excitations

plays an important role in the explanation of this experiment.

In red line and dots, we report results for a sine wave with a dot transmission of D ' 0.3.

Then, the density of states in the dot has a structure of well-defined equidistant quantized

levels, and τe is larger than in the previous case. The transferred charge is then close to

unity Qt = 0.93 and in the meantime we find δNHBT = 0.63. As compared to previous

case, δNHBT has increased but remains smaller that Qt, which has decreased.

Case of a square drive In the third situation (green line and squares), we use a

square wave, with D ' 0.4. This is the generic case of quasi-perfect single charge

emission, that was demonstrated in section 2.3. Indeed, we record the transfer of a

charge unity Qt = 1. In that case, the transferred charge is comparable to the one

emitted with a sine wave at D = 0.3, but δNHBT is increased up to 80% of Qt. Still no

extra particles are detected.

In a nutshell, we see that in all cases, δNHBT < Qt. As classical partitioning (Eq.(3.19))

predicts a lower bound of δNHBT ≥ Qt, we clearly see that our results can only be

explained by the quantum theory that takes into account an antibunching effect with

thermal excitations in the reservoir. This effect, totally encoded in the second term of

Eq.(3.34), appears as an important feature to understand our results. In fact, it also

offers a way to probe the energy distribution of the emitted quasiparticles. Indeed,

as appears in Eq.(3.34), the two-particle interference with thermal excitations strongly

depends on the energy distribution δne/h and is in particular reinforced for quasiparticles

emitted at low energies.

The next section is then dedicated to explain why quasiparticles are emitted preferably

at low or high energies depending on the parameters. Qualitative arguments will first

be given, thus establishing an intuitive picture of the results described in this section.

Then, the energy distribution δne/h will be computed via Floquet scattering theory and

will confirm these findings.
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Figure 3.15: Hanbury-Brown & Twiss partition noise as a function of
the beamsplitter transmission T , in three different cases – In all cases,
∆S4,4 ∝ T (1−T ), proving that the term ∆Q is effectively captured. The amplitude
of these parabola yields δNHBT . The value of δNHBT strongly depends on the shape
of the drive and on the transmission of the dot D, and we observe values violating
the classical bound δNHBT < Qt. These features are attributed to the quantum
interference between thermal excitations and quasiparticles emitted by our source
(Eq.(3.34)), effect which strongly varies depending on the energy distribution of the

emitted quasi-particles.

3.3.2 Analysis of the results

3.3.2.1 Qualitative model

Simple and intuitive explanations can be given to understand the antibunching effect

with thermally excited electron/hole pairs. They explain remarkably well the influence

of the choice of the excitation (sine or square) and of the transmission D on the dramatic

decrease of the HBT signal. All the explanations are summarized in figure Fig.3.16, that

we comment hereafter.
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In Fig.3.16, we picture qualitatively the energy ε(t) (in red) of the highest occupied level

of the dot as a function of time. When the injection condition 2eVexc = ∆ is satisfied,

ε(t) (depicted in red) moves between −∆/2 and +∆/2 and reproduces the variations of

Vexc. The discretization of the emission time in units of τ0 = h/∆ (duration of a turn

in the dot) is schematized.'
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Figure 3.16: Sketch of the emission process – The position ε(t) of the highest
occupied level in the dot is depicted as a function of time t, for the two types of drive
(sine and square) used in this experiment. The time axis is discretized in units of
τ0 = h/∆, and emission events are symbolized by black dashed arrows. a) Sine drive:
When a sine drive is used, the highest occupied level level crosses smoothly the Fermi
level of the reservoir. Consequently, for sufficiently large transmissions D, emission
occurs at low energies that are comparable with the energy of thermal excitations,
depicted as a blue blur of energy width kTel. b) Square drive: When a square drive
is used, the highest occupied level level is shifted rapidly. Consequently, emission
occurs for energies around ±∆/2. The quasiparticles are then well separated from

thermal excitations.

Case of a sine drive When using a sine wave, ε(t) varies smoothly in time, and

consequently the crossing of the highest occupied level and the Fermi level of the reservoir

(lying at εF = 0) is also smooth. When the transmission is large (D = 1), τe is very

short (with respect to T/2) and the quasiparticles are mostly emitted in a very short-

time interval around the crossing ε(t) = εF = 0 (pictured as black curved arrows).

Consequently, most of the quasiparticles are likely to lie at low energies, that can be

comparable to kTel, so that the antibunching effect is expected to be quite large. The

energy distribution δne/h is then expected to give mainly a peak around ε = 0

When the transmission is set to a lower value (D = 0.3), the emission can be delayed by

several τ0 with respect to the instant at which the crossing ε(t) = εF = 0 occurs. In that
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case, the quasiparticles are emitted at higher energies as ε(t) is significantly different

from εF = 0 when the tunneling event takes place. This corresponds to a widely spread

energy distribution δne/h around εF = 0, with a width that can be much larger than

kTel so that we understand that the two-particle thermal interferences should be indeed

reduced, and δNHBT enhanced.

Case of a square drive This reasoning can be revisited for the use of a square drive.

For an ideal square, one can imagine that ε(t) is periodically abruptly shifted between

positions ±∆/2. Even for large transmission / short emission time (D ' 1 / τe � T/2),

quasiparticles are injected in the reservoir with an energy neighbouring ±∆/2. As a

consequence, thermal antibunching is greatly reduced with this set of parameters.

These considerations explain qualitatively the behavior observed previously. To summa-

rize, the observed variation of the antibunching effect with thermal electron/hole pairs

of the reservoir is attributed to a modification of the energy distribution δne/h, that

can be explained qualitatively to a great extent. On the one hand, a sine drive has a

tendency to produce low-energy quasiparticles, but the energy distribution seems to be

greatly modified when reducing the transmission D of the SES. On the other hand, the

HBT signal given by an ideal square drive is only poorly affected by thermal excitations,

as quasiparticles are much likely to be emitted at energies around ±∆/2. We also ex-

pect the effect of D to be less pronounced. However, one must keep in mind that the

production of an ideal square voltage can not be achieved experimentally, due to limited

bandwidths of generators as well as RF excitation lines.

3.3.2.2 Energy distribution δne/h from Floquet scattering theory

In this paragraph, we present numerical simulations of the energy distribution δne/h,

in all of the forementioned cases, that support the discussion of the previous section.

In Fig.3.17, distributions δne/h are drawn as a function of energy ε as obtained from

Eq.(3.37). According to notations adopted in section 3.1.4.3, energies are counted pos-

itively for both electrons and holes and are scaled in units of level-spacing ∆. The

electronic temperature is set to Tel = 0 in this computation. Recalling the HBT corre-

lation calculated from the quantum model (Eq.(3.33)),

δNHBT =
1

2

∫ ∞

0
dε
(
1− 2fµ=0(ε)

)(
δne(ε) + δnh(ε)

)
(3.50)

it appears relevant to plot the counting factor 1−2fµ=0(ε) that encodes the antibunching

effect with thermal excitations coming from the Fermi sea at the residual electronic

temperature Tel = 150 mK (in grey dashed line): quasiparticles lying at low energies
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are weighted with a reduced counting factor, and thus do not fully participate to the

Hanbury-Brown & Twiss correlation as could be expected from a classical binomial

partitioning process.'
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Figure 3.17: Energy distribution of emitted quasiparticles, computed via
Floquet scattering theory – In grey dashes is drawn the counting factor 1−2fµ=0

that can be compared with energy distributions calculated in the three cases studied
here. In black, a source at D = 1 and driven by sine waves produces excitations of
low energies, highly affected by anti-bunching. In red, when driven by a sine wave
at D = 0.3, the energy distribution δne(ε) spreads over a large range of energies
[−∆/2,∆/2] and is less sensitive to the presence of thermal excitations. In green, a
square wave at D = 0.4 emits quasi-ideal energy-resolved excitations around ±∆/2

only slightly affected by the electronic temperature.

Case of a sine drive Represented in black line, the energy distribution δne/h obtained

for a sine drive with opened dot D = 1 consists of a single peak around the Fermi

energy εF = 0. The step structure of the peak, with periodicity ~Ω, arises from the

multi-photon absorption/emission processes. As such, the overlap between δne/h and

the factor 1− 2fµ=0 is very large, as they both have the same typical energy width.

When the transmission is set to D ' 0.3 (red line), δne/h is broadened on the full

energy range [−∆/2,∆/2]. The step structure is not visible anymore as tunneling in

and out of the quantum dot is responsible for complex non-linear mechanisms. On

the opposite, new regularly spaced peaks appear. They in fact remarkably confirm our

simple reasoning of the previous section. Numerical investigations have indeed shown

that they stem from the finite time τ0 to perform a turn in the dot, that favours emission
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events at certain instants separated in time by τ0. As the energy ε(t) of the level in the

dot is following a sine variation, these enhanced emission instants correspond to different

energies. Consequently, the number of peaks npeaks in δne/h is globally governed by the

number of τ0 in half a period T/2: npeaks ' T/2
τ0
' ∆

2~Ω ' 11 (for Ω ' 90 mK and ∆ ' 2

K) as observed on Fig.3.17. The increased HBT signal recorded in that case can then

be reasonably attributed to the broadening of δne/h.

Case of a square drive Finally, for a square excitation at D = 0.4 (green line), we

observe mainly two peaks at ε = ±∆/2, confirming the idea of energy-resolved quasipar-

ticles, flying above the Fermi sea. Consequently, HBT correlations are less affected by

the presence of the Fermi sea. However, in this simulation, a finite number of harmonics

(3 odd harmonics) have been kept in the square voltage. This choice seems reasonable

when evaluating the bandwidths of the RF lines and has been corroborated undirectly

by noise measurement presented in section 2.3.5.2. This imperfection is responsible for

a residual weight around ε = 0 in the energy distribution. This residual contribution is

highly sensitive to thermal excitations and thus reduces the HBT signal to 80% of the

expected value.

In this section, we have studied the amplitude of the HBT correlations in three typical

cases. After having demonstrated the validity of our measurements by capturing the

T (1−T ) dependence in the beamsplitter transmission, we have shown that the amplitude

of the recorded signal could be attributed to the antibunching of the quasiparticles

emitted with thermal excitations already present in the reservoir. In good agreement

with predictions from Floquet scattering theory, this phenomenon tends to prove that the

wavepackets of electrons and holes emitted by the SES can be engineered by the choice

of the parameters such as the dot transmission D or the type of excitation (sine/square).

In the next section, we investigate the HBT correlation as a function of D, in order to

get further evidence of a possible tuning of the wavepacket.

3.3.3 Wavepacket engineering

The idea is here to scan a portion of the phase space, by changing the transmission of

the dot D for the two types of excitation (sine or square), still keeping the condition of

non-resonance φ0 = 0.
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Figure 3.18: Hanbury-Brown & Twiss partition noise as a function of the
dot transmission D for excitation signals sine or square – HBT correlations
are in good agreement with Floquet simulations at Tel = 150 mK (black dashed-
dotted line), but not at Tel = 0 mK (red dashes), confirming the primordial role
of thermal excitations. In the low transmission regime D < 0.2, the anti-bunching
effected is almost undetectable as quasiparticles are emitted at rather high energies,
for both square and sine drives. However some emission events are missed in this
regime, so that we have Qt < 1 and δNHBT < 1. In the high transmission D > 0.2,
the anti-bunching is much more pronounced, especially in the case of sine excitation,
that tends to produce quasiparticles at low energies, as compared with the square
excitation. In blue line and dashes, simulations demonstrate the equivalent role of

temperatures in contacts 1 and 2.

3.3.3.1 Description of the results

The data is presented in Fig.3.18. A first interpretation can be proposed, before turning

to the detailed analysis of the effect of temperature via Floquet scattering theory. For

this we focus on the experimental points and on two (out of four proposed) numerical

simulations: the red dashed line is the simulation of δNHBT (Eq.(3.33)) for Tel = 0 in

all the contacts of the reservoir, while the black dashed-dotted lines shows the same

quantity calculated for the calibrated Tel = 150 mK.

General features Globally, we identify (both on simulations and data) two regimes

in each graph, regardless of the type of excitation. For D < 0.2, the low transmission

regime takes place, governed by the non-unit emission probability. Since τe is large,

some quasiparticles are not emitted during the dedicated half-period. It corresponds

to the shot noise regime already observed in the average current (section 2.2) or the

autocorrelations (section 2.3). For D > 0.2, the high transmission is characterized by a

unit emission probability: all quasiparticles are emitted, but we expect strong variations

of their wavefunctions, depending on the choice of D and type of drives.
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Low transmission regime For D < 0.2 we observe that both simulations give similar

results that are in rather good agreement with our data. The effect of temperature seems

rather small in this regime, which can be understood in the following manner: since τe is

large, the SES quasiparticles are likely to be emitted at rather high energies as explained

in 3.3.2.1, and are consequently less sensitive to the presence of thermal excitations. As a

consequence, simulations and data at finite temperature resemble the zero temperature

limit. For the very same reason, the difference between the sine and square drive is

less prominent. In this regime, we approach the limit of classical partitioning, and

δNHBT ' Qt.

High transmission regime ForD > 0.2, the SES quasiparticles are emitted with unit

probability during each emission cycle. We first observe that the effect of temperature is

quite important in simulations, and that the data (for both sine and square drives) are

in good agreement with finite temperature simulations. In both panels, the simulation

at zero temperature exhibits a plateau around δNHBT = 1. In this regime, the HBT

signal reaches the limit of classical partitioning of single quasiparticles. On the other

hand, the simulation at Tel = 150 mK gives δNHBT reduced by 20 to 60% as compared

with classical results, due to the quantum antibunching effect with thermal electron/hole

pairs.

The data and simulations in this domain of transmission strongly depends on the choice

of drive type. For a sine wave, the HBT contribution at Tel 6= 0 is much smaller than

for the square drive, whereas predictions are identical for Tel = 0 mK. This confirms

once again that the overall tendency to produce low energy excitations when using a sine

drive, as compared to high energy excitations using a square drive. This interpretation is

also corroborated with the D-dependence in itself. Whereas the HBT signal only slightly

decreases when D → 1 for a square, it drops more strikingly with a sine. According to

the discussion of 3.3.2.1, the effect of D should indeed be more pronounced in the latter

case.

3.3.3.2 Detailed study of the effect of temperature

In this section, we investigate a peculiar phenomenon. So far, our explanations refer

implicitly to an antibunching effect with particles coming from contact 2, that are inci-

dent on the central beamsplitter. They are responsible for the correction term 1 − 2fµ

in the formula (3.33). But from Eq.(3.37), we see that δne/h itself is also affected by

the effect of temperature, but this time in contact 1. This has driven us to investigate

numerically the separate influence of temperature in these contacts, labeled Tel,1 and
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Tel,2. We have then observed that both contacts played the same role in the decrease of

the HBT signal: the two blue dashed curves of Fig.3.18 are perfectly superposed.

This can be understood in the following manner. Temperature can be seen as an ad-

ditional fluctuating VT voltage bias on the contact, with < V 2
T > /RK ∼ kTel. By a

translation of potentials, one can then transfer the fluctuating voltage from contact 2

to contact 1, 3, 4 and top-gate (see Fig.3.5 page 74 for notations). By virtue of chiral-

ity, fluctuations in contact 3 and 4 do not play any role in the study. Fluctuations on

the top-gate of the dot do not play any role either due to a large impedance mismatch

between the capacitance and the channel ωRKCq � 1 at low frequencies, so that in the

end temperature on contact 1 and 2 have the same influence on the HBT correlation.

We have checked this reasoning by showing that same simulations were obtained for

Tel,1 = Tel,2 = Tel 6= 0 (same finite temperature in both contacts) than for Tel,1 = 0 and

Tel,2 =
√

2Tel.

This section has been dedicated to the detailed analysis of our experimental results

concerning current autocorrelations in an Hanbury-Brown & Twiss geometry. The two-

particle interference between mono-electronic wavepackets emitted by the on-demand

SES and thermal excitations appears as a major effect that has to be taken into ac-

count to understand the measured correlations. Besides, it gives a way of probing the

wavepacket of the single on-demand quasiparticles by direct comparison with the Fermi

distribution. In the next section, we show how this idea can be generalized to recon-

struct the complete energy distribution (spectroscopy) or even the complete wavepacket

(tomography).

3.4 Towards spectroscopy and tomography of mono-electronic

wavepackets

In the Hanbury-Brown & Twiss geometry, the anti-bunching effect between quasiparti-

cles emitted by any source and thermal excitations in the neighbouring contacts can be

used to have access to information on the energy distribution of the excitations deliv-

ered by the source, by measuring the overlap with the Fermi-distribution. But the Fermi

distribution of the contact, though very robust due to its thermodynamic equilibrium

properties, only yields partial information. To go beyond this point, one could think of

changing the temperature of the contact. But as Tel is increased, the thermal smearing

increases and information become quite inaccurate. Moreover, in our setup, it is not

possible to reach the necessary stability to perform the measurements during several

hours (cf. section 3.2.2). However, a complete tomography can be developed in a much
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more efficient manner, paving the way towards more advanced electron quantum optics

experiment: it was developed by Grenier et al. in collaboration with our group [46].

Alternatively, we here mention a complementary study by Haack et al. [127] that enables

to reconstruct the same information by placing a source in the input of a Mach-Zehnder

interferometer and measuring the current at the output the interferometer. This pro-

tocol offers the possibility to access information directly via currents (and not current

correlations), but requires a more sophisticated setup and is subject to decoherence in

the arms of the interferometer (see section 3.4.2).

3.4.1 Principles of spectroscopy and tomography

The idea behind spectroscopy and tomography is to modulate the two-particle quantum

interference between the unknown source under study and different reference sources.

As these interferences basically measure the overlap of the emitted wavepacket with

the reference states, one can gain information on the source and reconstruct the energy

distribution or the wave-function of the emitted quasiparticles.

3.4.1.1 Spectroscopy of mono-electronic excitations

Principle of spectroscopy Naturally, if changing the temperature of the Fermi sea is

not very convenient, one can easily envision to tune the electro-chemical potential of the

contact facing the source (contact 2). On this simple principle is based a spectroscopy

protocol described in Grenier et al. [46].

Indeed, if we start from Eq.(3.33), and simply modify it to take into account a shift of

the chemical potential by an energy eVbias, we simply get:

∆S4,4(eVbias) = 2e2fT (1− T )

∫
dε
(
1− 2fµ=eVbias(ε)

)(
δne(ε) + δnh(ε)

)
(3.51)

= 2e2fT (1− T )

∫
dε
(
1− 2f0(ε− eVbias)

)(
δne(ε) + δnh(ε)

)
(3.52)

so that, by taking the derivative of ∆Q with respect to eVbias, we finally obtain (taking

T = 1/2 for simplicity):

∂∆Q

∂eVbias
= e2f

∂f0(ε)

∂ε

(
δne(ε) + δnh(ε)

)∣∣
ε=eVbias

(3.53)

In the limit of zero-temperature, ∂f0(ε)
∂ε = −δ(ε):

∂∆Q

∂eVbias
= e2f

(
δne(eVbias) + δnh(eVbias)

)
(3.54)



100 Chapter 3 Hanbury-Brown & Twiss experiment with single electrons

'

&

$

%

I  (t')4

I  (t')3

Vqpc

Vg

Vqpc

Vg

single electron source

beam splitter

V    (t)exc

(1)

(2)

(4)

(3) Vbias

Figure 3.19: Sample design for spectroscopy and tomography protocols
– The sample geometry to realize spectroscopy and tomography of mono-electronic
wavepackets is very similar to the one used in the Hanbury-Brown & Twiss exper-
iment, but contact 2 is now connected to a controllable voltage source delivering
a bias voltage Vbias. Tuning Vbias enables to modulate the anti-bunching effect
between inputs 1 and 2. By scanning DC biases (Vbias = V0) or DC+AC biases
(Vbias = V0 + Vn cos(nΩt + φ), n ∈ N), one can reconstruct the energy distribution

(spectroscopy) or even the complete wavefunction (tomography).

Consequently, in the limit of zero-temperature, scanning the electro-chemical potential

of contact 2 using a bias voltage Vbias offers the possibility to access directly the energy

distribution of the quasiparticles emitted by a source. Temperature limits the accuracy

of the protocol, as a thermal smearing appears for Tel 6= 0. It is important to recall here

that such a spectroscopy can be in principle applied to different types of sources such as

lorentzian Levitov pulses [38, 39], currently under study at CEA Saclay.

Intuitive understanding An intuitive picture of the principle of spectroscopy can be

given, based on the same kind of reasoning as for the HBT experiment: it mainly relies

on the two-particle interference between the wavepacket emitted by a source and the

particles coming from the DC-biased contact (2). A sketch supporting this discussion is

presented in Fig.3.20. The anti-bunching effect can only occur between undistinguishable

particles. As a consequence, an electron with a well-defined energy ε can only anti-bunch

if a symmetric partner exist in input 2. In the limit Tel = 0, this imposes the constraint

ε < eVbias. Under this constraint, the anti-bunching effect occurs with unit probability,

otherwise, no antibunching is possible. While the HBT experiment counts the number

of electrons above εF = 0, this spectroscopy protocol aims at counting the number of

electron situated above a tunable threshold of eVbias, in order to reconstruct the energy

distribution δne/h. A finite temperature Tel 6= 0 in the reservoir then loosen the threshold

constraint: antibunching occurs with non-unit probability, in a range ε ' eVbias ± kTel.
It consequently limits the energy resolution of this spectroscopy protocol to kTel.
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Figure 3.20: Sketch of the principles of spectroscopy and tomography –
The idea behind spectroscopy and tomography is to modulate in a controlled way
the two-particle quantum interference between the unknown source under study and
a reference source. a) Spectroscopy: A scan of DC bias voltage Vbias on contact 2
enables to reconstruct the energy distribution δne/h of the quasiparticles emitted
by the source. Indeed, an energy resolved electron with energy ε only interfere with
excitations coming from contact 2 if ε < eVbias. b) Tomography: Using AC bias (at
pulsation Ωn = nΩ multiple of the trigger frequency of the source, and by tuning the

phase φ) enables to reconstruct the n-th harmonic of the coherence function G(e/h)
n .

It yields a way of imaging the complete wavefunction.

3.4.1.2 Tomography of mono-electronic excitations

So far, contact 2 has been DC-biased to obtain information: this enables to access

the 0-th harmonic G(e/h)
0 of the coherence function, namely the excess population of

quasiparticles δne/h. To go beyond this point and access G(e/h)
n , n 6= 0, it seems natural

to try to use time-dependent signals to picture the wavepacket. A reasonable idea is to

perform some Fourier-like analysis by applying sinusoidal gate voltages on contact 2 as

detailed in [44, 46].

This protocol is in fact greatly inspired by similar techniques in quantum optics, de-

nominated optical homodyne tomography. The homodyning with a reference laser is

operated on an optical beamsplitter, and can be used to reconstruct the Wigner dis-

tribution of the optical field. First results were obtained by Smithey et al. [128] on

vacuum and squeezed states of light. It has now become a standard technique to detect

for example non-classicality of exotic quantum states of light (as Fock number states

[129, 130]), and has also been recently extended to microwave fields in superconducting

resonators and waveguides [131–133].

In the electronic case, calculations are very similar to the ones performed previously

but the tomography protocol is a bit too technical to be discussed in this manuscript.

Nevertheless we briefly present the main results, that provides a graphical representation

of the emitted wavepackets.
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Quadrants in the complex planes The simplest representation of the coherence

function ∆G(e) is a two-dimensional plot of harmonics ∆G(e)
n (ε) as a function of both

n and ε, as pictured on Fig.3.22. It can be seen as the 2D Fourier transform, as n is

Fourier conjugate to t and ε to τ (Eqs.(2.18) and (2.19)). First, let us recall that the

harmonic n = 0 play a particular role as it contains the occupation number δne/h. This

very part is obtained via spectroscopy.

Then, four quadrants can be identified. The right quadrant encodes the electron density

operator: a purely electronic state that lies above the Fermi sea (such as the model

wavepacket ϕe) exhibits coherences only in this quadrant. Similarly, the left panel is the

hole density operator. Finally, upper and lower panel contain the coherences between

holes and electrons: in general, the appearance of such coherences is associated with

the presence of coherent superposition of electron/hole pairs [44]. This case can be

encountered in the low transmission regime D � 1. In that case, the Fermi sea can

remain at equilibrium in state |Fµ〉 or an electron ϕe followed by a hole ϕh in the

following half-period (or later) can be emitted creating a state schematized as:

1√
2

(
|Fµ〉+ ψ[ϕh]ψ†[ϕe]|Fµ〉

)
(3.55)

Typically, the correlation between the emission of electrons and holes generates coher-

ences in this low-transmission regime.'
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Figure 3.21: Quadrant representation of the coherence function – A to-
mography protocol, described in [46] gives access to the complete coherence function

∆G(e). In the Fourier complex plane where ∆G(e)
n are presented, one can identify

four quadrants. Left (red) and right (blue) are respectively the electron and hole
quadrants, whereas upper and lower quadrants (light grey) encodes the electron hole

coherences.
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Tomography of wavepackets Simulations using Floquet scattering theory can be

performed. For a perfect square excitation, we have selected three different set of param-

eters for which we briefly discuss the key features. For clarity, odd and even harmonics

of ∆G(e) are plotted on separate graphs as they have different parity with respect to

ε: ∆G(e)
2p is odd while ∆G(e)

2p+1 is even. First, we clearly see on these graphs the four

quadrants identified in the previous paragraph. Several other comments are proposed,

starting from D = 1 toward D = 0.

• D = 1 – Excitations lie mostly at low energy, and no correlation are recorded

between electrons and holes: the two emission events are decorrelated, showing

that electrons and holes are emitted during each of the emission cycles.

• D = 0.4 – Around the optimal transmission for single charge emission, excitations

are highly energy-resolved, around energies ±∆/2, but only weak e/h coherences

are detected as the emission probability is very close to one.

• D = 0.1 – Strong e/h coherences appear as the emission probability is much

smaller than 1. Production of holes and electrons are correlated as the emission of

an electron is subject to the emission of the preceding hole, which does not take

place in each cycle.

Realizing the tomography of the emitted wavepackets then reveals very interesting details

on the generated wavepackets. Moreover, we show in the following section that it is even

more interesting to study the effects of interactions on the generated excitations.

3.4.2 On the interest of spectroscopy (and tomography)

The major interest of spectroscopy and tomography is the possibility to access very

fundamental quantities such as energy distributions or density matrices of the generated

quantum states. As already demonstrated with photons [134], they encode information

on decoherence mechanisms, entailed by coupling to other degrees of freedom, such

as other co-propagating edge channels in our case [47, 59]. One can then imagine that

interactions have a dramatic effect for quasiparticles at high energies. Indeed, Degiovanni

et al. [47] have shown that the capacitive coupling between edge channels was responsible

for a strong modification of the energy spectrum of an energy-resolved quasiparticle.

The graphs of Fig.3.23 present results adapted from [44, 47]. An energy resolved excita-

tion, whose initial energy distribution is pictured as a Dirac function around energy ε0

(blue line), is notably affected by interactions. After a certain length l, the quasiparticle

peak sees its amplitude reduced to Z(ε) < 1, while a relaxation tail δn
(t)
e (ε) develops
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Figure 3.22: Examples of coherence function in the complex plane – For
transmissions D = 1, D = 0.4, D = 0.1, odd and even harmonics of coherence
functions ∆G(e) are plotted as a function of energy in a 2D plots. In contrast with
the case D = 1, excitations are energy resolved at rather high energies ±∆/2 for
D = 0.4 and D = 0.1. When emission probability drops (for D = 0.1), emission of
holes and electrons are correlated as the generation of an electron is subject to the

generation of the preceding hole
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and a non negligible part of the spectral weight δn
(r)
e (ε) relaxes toward lower ener-

gies. Though the general behavior of Z(ε), as a function of the propagation length l, is

known (see Fig.3.23, panel b), a certain uncertainty remains on the scale over which this

relaxation occurs, and it is not very clear how this model describing energy-resolved ex-

citations can be extended to periodically emitted wavepackets. The achievement of such

a spectroscopy experiment would then offer a quantitative way to evaluate the effects

of relaxation due to Coulomb interaction, and to test the validity of the aforementioned

work.'
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Figure 3.23: Modification of the energy spectrum of an energy-resolved
quasiparticle due to interactions between edge channels – a) Relaxation of
an energy-resolved excitation: An energy resolved excitation, initially with an energy
distribution δne(ε) = δ(n− ne) (blue line) relaxes due to Coulomb interactions: the

amplitude of the quasiparticle peak Z(ε) < 1 is reduced, a relaxation tail δn
(t)
e (ε)

and spectral weight at low energies δn
(r)
e (ε) appear, above and below the Fermi level

(red line). b) Amplitude of the quasiparticle peak: The overall behavior of Z(ε)
as a function of the length of propagation l in the interacting region is known and
pictured in green line, but the typical scale over which it occurs is still uncertain.

Conclusion to chapter 3

In this chapter, we have seen how an analog of the Hanbury-Brown & Twiss experiment

could be realized in quantum Hall devices. Contrary to the usual case of photon quantum

optics, electron quantum optics is enriched by the existence of two types of carriers.

One important consequence lies in the fact that neutral events (such as the emission

of an additional e/h pair) remain invisible in charge or current autocorrelations but

are unveiled in the HBT correlations. An other key point is the presence of a Fermi

sea replacing photons’ vacuum. Inevitably, two-particle interferences between triggered

quasiparticles emitted by a single electron source and symmetric thermal counterparts

appear and affect the Hanbury-Brown & Twiss signal, reducing its amplitude.
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By a careful analysis, and taking advantage of this anti-bunching effect, we have in fact

been able to probe the energy distribution of the emitted quasiparticles and bring to

light evidence that we can modify in a controlled manner the shape of the wavepacket of

the emitted quasiparticles. By tuning the thickness of the tunnel barrier of the quantum

dot, and modifying the type of excitation, the excitations can be produced either at

low energies comparable to the energy range kTel and or at high energies, typically

∆/2 � kTel. Our interpretation relies on an intuitive picture corroborated by Floquet

simulations, as developed in section 2.1.1.

Following the analogy with quantum optics, spectroscopy and tomography protocols

have been proposed. These simple principles would enable the measurements of new

quantities such as energy distribution of the quasiparticles emitted by any source, or the

complete image of the wavefunction.

So far, our experimental data are in good agreement with Floquet scattering theory, that

takes into account all the parameters of the source but completely ignores interactions

between co-propagating edge channels of ν = 2 in the 2DEG. The capacitive coupling

between both channels remains surprisingly invisible in this experiment, whereas strong

effects have been recorded in edge channel spectroscopy experiments, realized by Altimi-

ras et al. [49–51]. This astonishing robustness of the HBT correlations could be due to

the fact that the HBT correlations are only sensitive to partial information (namely the

integral δNHBT , see Eq.(3.33)) that remains more or less conserved in the presence of

inter-channel interaction.

One important source of motivation for the spectroscopy experiment then lies in the fact

that it would allow a measurement of the energy spectrum of initially energy-resolved

excitations, after a controlled length of interactions. As explained in 3.4, this quantities

could be significantly altered along the propagation and direct spectroscopy could offer a

quantitative comparison with existing models. But other directions can also be explored

to gather information about coupling between channels more directly, and are detailed

in the following chapter.
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Introduction to chapter 4

In one-dimensional systems such as chiral edge states of the integer Quantum Hall effect,

Coulomb interactions play a major role in the nature of elementary excitations. The

paradigm of Landau quasiparticles, relevant in two or three dimensions, is replaced by a

picture of collective excitations called here edge magneto-plasmon (EMP). When working

at filling factor ν ≥ 2, edge magneto-plasmons in the ν edge channels are coupled and

new eigenmodes of the propagation appear with different velocities.

In this section, we investigate the case of ν = 2 that is particularly enlightening: in a

limit of strong coupling the two new eigenmodes are particularly dissimilar as one is

fast and carries the charge while the other is much slower and neutral [53–55, 59, 63].

Via radio-frequency measurements, we investigate the appearance of these two new

eigenmodes. In particular, we extract the dispersion relation of the slow mode and

establish its neutrality.

4.1 Probing interactions at ν = 2

4.1.1 Heuristics of interactions in quantum Hall edge channels

In this section, we provide simple heuristics of the interactions in the quantum Hall

edge channels. As mentioned earlier, the nature of elementary excitations is considerably

modified by the presence of Coulomb interactions. When interacting particles are moving

in a one dimensional geometry, the motion of one particle strongly affects the motion

of surrounding particles. Consequently, the reasonable representation of excitations

relies on a picture of collective modes (rather than Landau quasiparticles in superior

dimensions). These collective excitations, called edge magnetoplasmons, are bosonic

modes, and can be described via a bosonic field, from which can be derived the current,

the charge density and all quantities of interest. This procedure will be detailed in

section 4.4.1, but let us for now focus on a simpler picture.

When there are several co-propagating edge channels, the charges in different channels

interact via Coulomb interaction. In this part we study the simplest case, already rich

in information: the filling factor is set to ν = 2 so that two channels co-propagate on

each edge. The outer channel is labeled k = 1, the inner k = 2. In the Fourier space

(with respect to time t), currents in channel k, at pulsation ω and position x are ik(x, ω).

When both inter and intra channel interactions are absent, currents propagate at the
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bare Fermi velocity v, ik(x, ω) = ei
ωx
v ik(0, ω). The modes ik, k = 1, 2 thus constitute

eigenmodes of the propagation, with a velocity equal1 to v.'
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Figure 4.1: Scheme of the decomposition over dipole/charge propagation
eigenmodes – The two chiral edge states are symbolized by black arrows, and
positive/negative charge density waves are pictured as blue/red wavepackets. a) An
electronic wavepacket is decomposed over a slow dipole mode of velocity vn and a
fast charge mode of velocity vρ. b) A hole wavepacket is symmetrically decomposed

over a slow dipole mode and a fast charge mode, with inverted signs.

When inter-channel interactions are turned on however, these two modes ik are coupled

and are not eigenmodes of propagation any longer. In the case of strongly coupled

channels, the eigenmodes are the symmetric and anti-symmetric combination of the ik,

pictured in Fig.4.1 [53–55]. The symmetric mode denoted iρ = i1+i2√
2

carries charge, at

a velocity vρ. On the opposite, the antisymmetric combination in = i1−i2√
2

is neutral

(but carries spin since both channels are of opposite spins) and has a velocity vn. This

mode is called indifferently neutral or dipole mode. Due to interactions, both modes

have very different velocities, leading to spectacular effect in the transport properties of

the 2DEG. Let us point out that this decomposition in symmetric/antisymmetric modes

is only valid in this strong coupling limit. First, we will provide explanations for our

results based on this assumption, before discussing its validity in details in section 4.3.3.

4.1.2 In the time domain: separation of charge and neutral modes

Bringing to light the appearance of two collective modes involving both channels is not

straightforward as it requires the ability to excite individually one of the edge channel.

Indeed, in most experiments, where DC/AC-biased ohmic contacts are used, both edge

channels are driven in the same manner. Thus, only the charge mode is excited so that

the dipolar mode doesn’t play any role. Let us put aside for now this point (detailed in

1We assume here for simplicity that both channels are identical. This hypothesis is discussed in 4.3.3.
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section 4.2.1) and assume that one of the edge channel (the outer) can be excited while

the other (the inner) remains at equilibrium.

The first idea that comes to mind is to perform a time-resolved experiment [72–74], in

which one would induce a charge pulse in one of the channel and measure how it evolves

as propagation takes place. As both eigenmodes are excited, a separation between a

charge pulse and a neutral pulse is predicted [56, 135]. This can easily be seen for non-

dispersive modes of velocity vρ/n. The initial situation where a charge pulse i1(x = 0, t)

is initially created at position x = 0 in the outer edge channel, while the inner is not

excited i2(x = 0, t) = 0 can be described in the form:

i1(x = 0, t) =
i1(0, t)

2
+
i1(0, t)

2
(4.1)

= iρ,1(0, t) + in,1(0, t) (4.2)

i2(x = 0, t) =
i1(0, t)

2
− i1(0, t)

2
(4.3)

= iρ,2(0, t) + in,2(0, t) (4.4)

where iρ/n,k(0, t), k = 1, 2 labels the projection of mode ρ/n in channel k, at position

x = 0. After propagation on a length l, the current ik(x = l, t) measured is then:

ik(x = l, t) = iρ,k(l, t) + in,k(l, t) (4.5)

= iρ,k(0, t− l/vρ) + in,k(0, t− l/vn) (4.6)

=
i1(0, t− l/vρ)

2
± i1(0, t− l/vn)

2
(4.7)

As pictured in Fig.4.2, a detection scheme measuring the current selectively in one edge

k will thus record two distinct current pulses separated by a time-delay τdel = l( 1
vn
− 1
vρ

).

Their amplitude is the half of the amplitude of the initial current pulse i1(0, t) and they

correspond to the currents transported by the fast charge mode and the slow neutral

mode.

Though this experiment is appealing, it remains technically challenging with our sample.

Indeed, observing distinctly the charge and neutral pulses requires a time delay larger

than the temporal width τwidth of the initial pulse i1(x = 0, t). The typical width of

these pulses is either determined by the sampling rate of the pulse generator or in our

case by the minimal width of a wavepacket set by the escape time τe, and is typically on

the order of τwidth ' 100 ps. With the assumption vρ � vn ∼ 5 104m.s−1, the condition

τdel ≥ 2τwidth finally gives l ≥ 10µm, when our samples usually offer l ' 3− 5µm.

Though this experiment could be implemented in the near future with dedicated samples

presenting l ≥ 10µm, an other one can be realized with our usual sample.
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Figure 4.2: Time-resolved experiment : fractionalization of charge pulses
– a) A charge pulse is injected at position x = 0 in channel 1 b) After a length
of propagation l, the charge pulse has fractionalized and the charge and neutral
components are separated by a time-delay τdel = l( 1

vn
− 1

vρ
) due to the velocity

difference between both eigenmodes

4.1.3 In the frequency domain: charge oscillations between channels

Instead of performing time-resolved experiments that are technically challenging, an

other measurement can also be implemented, which is in some way the analog in the

frequency domain [77–81]. The idea is no longer to create short wavepackets but then

to induce monochromatic charge density waves selectively in one of the edges.

We adopt a scattering approach for plasmonic modes: when currents at pulsation ω

I(x = 0, ω) = (i1(x = 0, ω), i2(x = 0, ω)) in modes k = 1, 2 are injected at position

x = 0, the currents in each channel after a length l are given by

I(l, ω) = SEMP (ω, l)I(0, ω) (4.8)

=

(
S11(ω, l) S12(ω, l)

S21(ω, l) S22(ω, l)

)
I(0, ω) (4.9)

where SEMP (ω, l) is a 2× 2 unitary scattering matrix for EMPs. In the strong coupling

regime (see section 4.3.3), one has S11 ' S22, and S12 = S21. This matrix is not diagonal,

contrary to the case of non-coupled channel, but is diagonalized in the eigenbasis of

modes ρ/n. The propagation of these modes then reduces to a phase factor Sρ/n = e
i ωl
vρ/n ,

with :

Sρ = S11 + S21 = e
i ωl
vρ (4.10)

Sn = S11 − S21 = ei
ωl
vn (4.11)
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In the rest of this chapter, we assume that the charge mode has a much larger velocity

than the dipole mode: vn � vρ, such that ωl
vρ
� 1. This assumption will be justified a

posteriori by our experimental results. From Eqs.(4.10) and (4.11), one directly gets :

S11 =
e
i ωl
vρ + ei

ωl
vn

2
' 1 + ei

ωl
vn

2
(4.12)

S21 =
e
i ωl
vρ − ei

ωl
vn

2
' 1− ei

ωl
vn

2
(4.13)

Equation (4.13) demonstrates in this model that the phase shift between both eigen-

modes along propagation is responsible for charge oscillations between edge channels: if

charges are injected injected in channel 1, they are totally transferred to channel 2 after

a length l such that S21 = 1:

ωl
( 1

vn
− 1

vρ

)
' ωl

vn
= (2k + 1)π, k ∈ Z (4.14)

This can be understood in a simple manner. Let us picture the sinusoidal EMP as

a succession of electron (e) and hole (h) charge pulses, initially injected in channel 1.

After a certain propagation length, the fast mode of a e-charge pulse will catch up the

slow neutral mode of the preceding h-charge pulse. When recombining these pulses,

one recovers an electronic wavepacket in channel 2, as cartooned in Fig.4.3. The same

reasoning holds for the fast h-charge pulse, so that in fact the charge distribution initially

created at x = 0 in channel 1 is now reconstituted in channel 2.'
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Figure 4.3: Scheme of the recombination – For a purely AC-current seen as
a succession of electron and hole wave-packets, charge oscillations between channels
can be understood as the in-phase recombination of the fast charge mode of an

electron with the slow neutral mode of the preceding hole.

Moreover, we see from Eq.(4.13) that the propagation length l and the pulsation ω play

the very same role. This feature can be understood easily on Fig.4.3, where changing

the frequency is equivalent to emitting wavepackets closer to one another. While it

is experimentally very tedious to vary the propagation length, the pulsation of the

induced EMP is easily tunable. This is one of the key point of our experiment, detailed

in section 4.2.1. Once again, let us point out that charge transfer is total only for

antisymmetric/symmetric eigenmodes, as proved in 4.3.3.
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4.1.4 Predictions for the frequency-resolved experiment

This simple model yields interesting predictions that we briefly analyse in this section

before turning on to the realisation of our experiment.

4.1.4.1 Low-frequency behavior

For low frequencies, one obtains:

S21(l, ω) ' −iωτ̃(1 + iωτ̃), τ̃ =
l

2vn
(4.15)

In this regime, S21 is mainly imaginary (with ImS21 < 0). To give a clear physical

picture of this formula, one can in fact imagine an electrical circuit of discrete elements,

with a conductance G21(ω) = S21
RK

. Then, Eq.(4.15) can be associated with an RC circuit

presented in Fig.4.4, for which one has:

S21(l, ω) =
−iωτ̃

1− iωτ̃ (4.16)

' −iωτ̃(1 + iωτ̃) (4.17)

This low-frequency behavior has already been observed and established [78]. The ca-

pacitance is then the electrochemical capacitance Cµ given by the series association of

a quantum capacitance Cq = l
RKvF

for each channel and the geometrical capacitance

between channels C, while the resistor is RK , the series combination of a charge re-

laxation resistance RK/2 for each channel. Our models, detailed in section 4.3 confirm

these results.'
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Figure 4.4: Equivalent RC-circuit at low frequencies – The low-frequency
behavior of S21 can be mimicked by an RC circuit of conductance G21(ω) = S21

RK
.

The electrochemical capacitance Cµ is given by the series combination of a quantum
capacitance Cq = l

RKvF
for each channel and the coupling capacitance between

channels C. The resistor RK stems from the series association of a charge relaxation
resistance RK/2 for each channel
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4.1.4.2 Charge oscillations

As mentioned earlier, charge oscillations are expected as a result of the progressive

phase shift between charge and neutral modes. From Eq.(4.13), one sees that S21 draws

a circle of radius 1/2, centered on the point of coordinates (1/2,0) with an angle Φ(ω) =

ωl/vn(ω) − π. The principal configurations of interest are presented in Fig.4.5. At low

frequencies, S21(ω = 0) ' 0, as charges injected in channel 1 remain as a majority

in 1, and is mainly imaginary as expected for a capacitive coupling. For increasing

frequencies, coupling effects become all the more significant and |S21| increases. Due

to propagation effects, S21 departs from its low-frequency RC-circuit asymptotics. It

then follows a circular trajectory and finally reaches S21 = 1. At this point, the charge

injected in the outer channel is totally and coherently transferred to the inner one,

for a pulsation ω such that ωl/vn = π. For higher frequencies, charges are coherently

transferred back to the first channel, and the initial situation is recovered for ωl/vn = 2π.

Consequently, we expect coherent charge oscillations as a function of pulsation ω (or'
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Figure 4.5: Predicted behavior of S21 in the complex planes, and main
configurations of interest – Starting from S21(ω = 0) = 0 (no charge transferred
in channel 2 at ω = 0), S21(ω) draws a circle of radius 1/2 and centered on point
(0,1/2). The two principal configurations of interest are recalled. When l/λn = n ∈
Z, charge injected in channel 1 is recovered in 1 whereas a total and coherent charge

transfer towards channel 2 occurs for l/λn = n+ 1/2.

equivalently length l). However, for a propagation length of a few microns such as ours,

and an estimation of vn = 5 104 m.s−1, a very wide range of frequency (up to 10 GHz)

is required to observe this direct manifestation of mode separation. These estimations
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will be confirmed in section 4.3 and show why a very wide bandwidth is required, hence

the custom homodyne detection detailed in 4.2.3.

4.1.4.3 Dispersion relation of the neutral mode

So far, no assumption was made concerning the ω-dependence of the velocity vn. These

considerations bring to light the remarkable robustness of the Nyquist diagram presented

on Fig.4.5. Inter-edge oscillations show up in the circular trajectory of S21 around the

center of coordinates (1/2, 0). Noticeably this point corresponds to an equal repartition

of the EMP. This feature does not depend on the details of the interaction. As a

matter of fact, the interaction characteristics are encoded in the ω-dependence of the

velocity vn(ω) or equivalently in the dispersion relation kn(ω) = ω
vn(ω) , relating the wave

vector kn(ω) to ω. This dispersion relation will be consequently extracted from our

experimental results presented in section4.3 and gives access to interesting details on

the interaction characteristics.

4.2 Experimental implementation

4.2.1 Principles of the experiment

As mentioned earlier, the study of interactions at ν = 2 requires the ability to address

individually each edge channel in order to excite both neutral and charge modes. This

can be achieved via the use of the single electron source (for the ”excitation” part) and

a QPC (for the ”readout” part): the idea here is to take advantage of the mesoscopic

capacitor to induce capacitively an edge-magnetoplasmon at pulsation ω in the outer

edge channel only. A selective readout of the current in each edge channel can then be

operated by changing the transmission of the quantum point contact.

The sample, presented in Fig.4.6, is identical to the one used for the Hanbury-Brown

& Twiss experiment. It is placed in a magnetic field B = 3.85 T, to work at a filling

factor ν = 2 in the bulk. The mesoscopic capacitor is set at a transmission D = 1:

the outer edge channel then enters completely the quantum dot, whereas the inner edge

channel is totally reflected. Thus, no current is produced in the inner edge channel. On

the opposite, a pure sinusoidal charge density wave is capacitively induced in the inner

edge channel, at the position x = 0 corresponding to the output of the quantum dot.

It is important to notice that no charge tunneling from the dot to the outer edge state

is involved in the process of inducing current, since the transmission is D = 1. The
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source then behaves as a linear component, and the EMP generated is a pure sine wave

of pulsation ω.'
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Figure 4.6: Modified SEM picture of the sample – The sample is placed in
perpendicular magnetic field of B = 3.85 T to reach a filling factor ν = 2. The edge
states are symbolized by blue plain lines, gates in gold, and the 2DEG is in light
blue. The transmission of the source is set to D = 1: the outer edge channel thus
enters completely the dot, in which an EMP is capacitively induced in the channel,
whereas the inner channel totally reflected and remains at equilibrium. After the
dot, both channels co-propagate on a length l = 3.2 µm before reaching the central

QPC. Average currents are measured in the reflected path (ohmic contact A).

The EMP generated at position x = 0 then propagates over a length l before reaching the

central QPC in the HBT geometry. The length l can be evaluated from SEM pictures,

with a relatively good precision: l = 3.2 ± 0.4µm. The gate voltage of the QPC can

then be tuned to work in several configurations. In configuration 1, channel 1 is reflected

and channel 2 is transmitted. The current in channel 2 resulting from the interaction,

denoted i2(l, ω), can then be measured, with i2(l, ω) = S21(l, ω)i1(0, ω). When the QPC

is closed (configuration 2), both channels are reflected so that the total collected current

in contact A is i1(l, ω)+ i2(l, ω) =
(
S11(l, ω)+S21(l, ω)

)
i1(0, ω). Consequently, the ratio
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of the currents collected in these two configurations yields the complex quantity

R(ω) =
S21(l, ω)

S11(l, ω) + S21(l, ω)
(4.18)

which encodes the effect of Coulomb interaction on the propagation along the edge

states.

At this point, it is important to emphasize two points. First, S11(l, ω)+S21(l, ω) ' 1 ac-

cording to previous assumption so that R(ω) = S21(l, ω). The complex ratio we measure

directly reflects the coupling coefficient S21. Then, Eq.(4.10) proves that propagation

between the QPC and the ohmic contact (on a length L ' 60µm) has no influence on

the current collected, up to a global phase factor eiωL/vρ so that it will be neglected

throughout this study.

In the next section, we present data that demonstrates the validity of the principles

of the proposed experiment. We focus especially on the behavior of the QPC and on

the extraction of ratio R from raw data.

4.2.2 Testing principles of the experiment

4.2.2.1 Raw data as function of gate voltage Vqpc

In this section, we comment on raw data measured as a function of the QPC for a fixed

frequency of f = 1.3 GHz . When the drive is on, a parasitic contribution in the current

is observed even when the transmission of the dot is set to D = 0. It comes from direct

coupling between the top-gate electrode and the gas or the contacts. This parasitic

current does not depend on the properties of the source and no control is possible on it.

Consequently, we are to assume that it does not depend on D, measure it for D = 0 and

subtract it. This strategy has always given excellent results in the study of the average

current [6, 83], and has thus been conserved in this study.

We present in Fig.4.7 the average current collected (with parasitic contribution sub-

tracted) as a function of Vqpc in the complex plane. We observe that IΩ basically follows

two straight lines. This has a simple explanation. When currents ik channels k = 1, 2

are reflected with reflexion coefficients Rk, the total current collected Ic(R1, R2, ω) is

then:

Ic(R1, R2, ω) = R1i1(l, ω) +R2i2(l, ω) (4.19)

=
(
R1S11(l, ω) +R2S21(l, ω)

)
i1(0, ω) (4.20)
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Figure 4.7: Current collected Ic(R1, R2, ω) as a function of Vqpc – (upper
panel) Ic(R1, R2, ω) in the complex plane: As Vqpc is swept from Vqpc = 0 toward
pinch-off at Vqpc = −1.2 V, Ic(R1, R2, ω) draws two straight lines, emphasized by
a grey arrow. For R1 = R2 = 0, Ic ' 0 up to parasitic contribution. For R1 =
0, R2 = 1, Ic ∝ S21. For R1 = R2 = 0, Ic ∝ i1(0, ω), total current injected initially.
(lower panel) DC measurement of the QPC conductance: Quantized steps in the
conductance are recorded, corresponding to the transmission of one or two edge

channels. Important configurations of interest here are recalled.

When the QPC is opened, both channels are transmitted, R1 = R2 = 0 and Ic(0, 0, ω) '
0. When Vqpc is increased, the inner channel is progressively reflected, R2 → 1, R1 =

0, and Ic(0, R2, ω) = R2S21(l, ω)i1(0, ω) follows a straight line as R2 is varied. Then

the inner channel is completely reflected and Ic(0, 1, ω) = S21(l, ω)i1(0, ω) as expected.

Then the reflexion of the outer channel is progressively increased (R1 → 1, R2 = 1)

and a second straight line is observed: Ic(R1, 1, ω) =
(
R1S11(l, ω) + S21(l, ω)

)
i1(0, ω).

Globally this simple model explains the features of Fig.4.7 and confirms our strategy

of measurement of R. However, a parasitic contribution is sometimes observed for

R1 = R2 = 0, for which a non-zero current Ic is measured. We mention that a correction

was applied to take into account coupling between Vqpc and Vg.
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4.2.2.2 Measurement of R

In Fig.4.8, we present refined data giving an overview of the actual measurement tech-

nique. As mentioned in previous discussion, collecting the current Ic(0, 1, ω) in ohmic

contact 1 for R1 = 0, R2 = 1 (configuration 1) and normalizing it by Ic(1, 1, ω) (config-

uration 2, R1 = R2 = 1) yields R in the complex plane. After testing our measurement

technique as explained in 4.2.2.1, we focus on the measurement of the two configurations

1 and 2. The results obtained for frequency f = 1.3 and 5.5 GHz are presented in Fig.4.8

respectively in black dots and red squares. After proper normalization, the grey arrow

directly represents R in the complex plane. Thus both real and imaginary parts, or

more conveniently argument and modulus are obtained.'
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Figure 4.8: Example of measurement of R for two frequencies – For f = 1.3
GHz (black dots), R, symbolized by a grey arrow is mainly imaginary, whereas for
f = 5.5 GHz (red squares), R has a large real part. (inset) DC conductance of the

QPC, recalling configurations 1 and 2 of the QPC.

One of the main advantage of measuring the ratio R lies in its independence regarding

the gain of the amplifying scheme. Indeed, the amplification factor varies considerably

with frequency, especially since we combine different RF components depending on the

frequency range under measurement, as explained in the following section.

4.2.3 Ultra-wideband homodyne detection

Here we describe the realization of a low-noise custom homodyne detection, enabling to

measure the current collected in ohmic contact A in a wide range of frequency, covering
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0.7 to 11 GHz.

4.2.3.1 General principles

Homodyne detection setups rely on a main principle: when mixing the signal at GHz

frequencies (denoted RF) with a synchronized reference signal (LO, for local oscillator),

a DC signal is recovered (usually called IF for intermediate frequency), whose ampli-

tude is directly connected to the amplitude of the sought signal RF. This technique is

widespread as it has several advantages: it enables a rapid and accurate measurement of

the first harmonic of a signal at GHz frequency that is difficult to access even with fast

digital oscilloscopes. However, most RF components work in a frequency range of an

octave. Consequently, a unique setup for the 0.7-11 GHz range remains unrealistic. We

have developed a versatile setup, where several low-noise amplifiers, mixers, filters and

modulators are combined to cover the widest possible frequency range. This homodyne

detection is operated at room temperature since it requires to replace components. The

performance are however good enough to measure average currents up to 11 GHz.

The general setup is presented in Fig.4.10, and is similar to the one presented in [6, 83].

The excitation signal consist in a GHz sine (obtained either by filtering the square

voltage of an Anritsu MT1810A Pulse generator or by using an Anritsu 3692C Sine

generator) modulated at kHz frequency (usually 2.7 kHz) using a +1/-1 RF modulator

before entering the cryostat. The RF current collected in ohmic contact 1 is amplified

by ultra-low-noise room-temperature amplifiers. An hybrid coupler then separates this

signal in two components of equal amplitude. One of the component is phase-shifted

by π/2. Then both components are mixed with a reference and filtered, and the output

signal in each arm are then proportional to the real and imaginary parts of IΩ, and

modulated at kHz frequency. This signals are then sent on two lock-in synchronized

with the kHz frequency.

4.2.3.2 Specificities and specifications of our setup

Though our setup follows the standard setup of homodyne detection, the will to access

the widest possible bandwidth brings some difficulties and specificities that are presented

here. We point out that a table summarizing all configurations is presented in appendix

D.

Parasitic third harmonic The first concern is the presence of higher harmonics in

the detection signal, and especially the third one. Indeed, the reference clock LO as
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Figure 4.9: Scheme of the ultra-wideband homodyne detection – The GHz
pulse/sine generator supplies both local oscillator (LO) and excitation towards sam-
ple. LO is itself modulated at 2.7 kHz using a +1/-1 modulator. The measured
signal (RF) is splitted in two components phase-shifted of π/2. When mixing these
components with LO, low-frequency signals (2.7 kHz) are recovered, whose ampli-

tudes are proportional to the real and imaginary part of first harmonic IΩ.

The accurate tuning of phases are essential in this setup. First, the two com-
ponents Re(IΩ)/Im(IΩ) must bear precisely a phase shift of π/2. This can be
ensured by tuning the length between the LO splitter and both mixers and max-
imize contrast between these quadratures., using a commercial phase shifter.
Secondly, in order to measure Re(IΩ)/Im(IΩ) and not any couple of quadratures,
a global phase tuning must be realized. It is detailed in [6, 83, 114]

Phase calibration

well as the excitation signal at frequency f are sometimes (for f < 6 GHz) generated

from a square pulse generator (Anritsu MT1810A) with odd harmonics at frequencies

fn = (2n+ 1)f, n ∈ Z . Since the bandwidth of the hybrid coupler is 2-18 GHz, residual

parasitic contribution of higher harmonics can be observed for f < 6 GHz, for which

f1 or f2 < 18 GHz. This occurs surprisingly even if the amplification is reduced for

harmonics due to a smaller bandwidth for amplifiers for example. We thus particularly

pay attention to supply a strong filtering of higher frequencies so as to remove these

contributions. In the range where both the square pulse and sine generators can be

used, the results obtained with both sources are identical.
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Figure 4.10: Picture of the ultra-wideband homodyne detection – The
homodyning is operated by the two mixers, between the reference signal LO entering
on the left and the amplified signal, entering on the right. All components are placed
at room temperature, on a gold-plated copper stand. A wide range of frequency is
accessed via the replacement of microwave components (such as the mixers or hybrid

coupler visible on the picture).

Synchronizing excitation and reference signals Homodyne detection necessitates

two accurately synchronized RF signals, one for the excitation, the other one as the

reference local oscillator. The Anritsu MT1810A pulse generator provides two sources

of independent amplitude synchronized on the same clock. Though it requires a proper

filtering to produce a sine wave, this situation is quite comfortable, but only operates

up to the maximum frequency of the generator (6 GHz). On the opposite, the Anritsu

3692C sine generator only has one output. We have tried to synchronize this output

with one channel of the pulse generator, via an atomic clock (lent by the Quantum

Electronics group, LPA), but the results were surprisingly not sufficient. Consequently,

we decided to use an RF splitter to split the output in two channels, one for the reference

and the other for excitation, with suitable attenuation.

Limitations in the bandwidth In fine, our setup should be operational up to fre-

quencies around 18 GHz. However, as shown in section 4.3, we have managed to run

the experiment only up to about 11 GHz. Indeed, for frequencies above this threshold,

difficulties were encountered: a general decrease of the signal-to-noise ratio was observed

with paradoxically some strong resonances for some frequencies.

We attribute these limitations to two major phenomena, that occur frequently in RF

setups. The reason for the general decrease of the signal is without any doubt due

to the increasing attenuation of coaxial cables guiding microwaves from generators to

sample and then to detection. As frequency increases, skin effect takes place, reducing



4.3. Experimental results 123

the thickness of conductor carrying effectively the current, thus increasing the overall

resistance of the cable.

However, this factor is not really limiting the bandwidth, contrary to the resonances. We

attribute this phenomena to the fact that the lines and especially the sample-holder itself

were not in the first place designed for such high frequencies. Consequently, parasitic

reflexions probably occur in the lines, responsible for Pérot-Fabry like behavior, and

thus exhibiting huge resonances. These peaks appear when f > 10 GHz, and become

all the more intense as f rises.

4.3 Experimental results

4.3.1 Nyquist diagram of R and dissipation

Experimental data for the ratio R in the complex plane are presented in Fig.4.11. As

explained previously, R is expected to draw a circle in the complex plane when pulsation

ω is varied. It directly stems from the progressive phase shift between dipole and charge

eigenmodes of the propagation.

In the low frequency regime, we observe that, as expected, R(ω) is mainly imaginary,

with a negative imaginary part. It is compatible with the asymptotic RC-circuit regime

discussed in 4.1.4.1: R(ω) ' S21(ω) ' −iωτ̃ . However, as frequency information is

lacking in this two-dimensional representation, the linear ω-dependence of R cannot be

clearly established.

Globally, R indeed winds around the point (1/2,0), confirming at first glance the simple

heuristics developed in 4.1.1. However, data for R do not reproduce the anticipated

circle (black line), but rather exhibit a spiral toward the point (1/2,0). These coordinates

correspond to a state where charges are evenly distributed in each channel. This behavior

indicates that a dissipative mechanism occurs during propagation and interaction, that

shows up as an imaginary part in the wave-vector kn(ω) and is responsible for damping

of the coherent charge oscillations. This unexpected dissipation is not naturally present

in our heuristic model, but can be included in the model developed in the next part 4.4.

The data reported in this part demonstrate unambiguously the existence of two cou-

pled modes, that resemble the charge and neutral mode, though neutrality is not clearly

established yet. We now investigate the extracted dispersion relation ω 7→ kn(ω). In-

deed, contrary to the main features of the Nyquist diagram, the dispersion relation holds

informations about the characteristic parameters governing Coulomb interactions.
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Figure 4.11: Experimental data for R in the complex plane – Experimental
data for R are presented as colored dots, the colormap giving insights on the mea-
surement frequency. For ω ' 0, R is mainly imaginary, and follows quite correctly
the circle of radius 1/2 centered on (1/2,0). For higher frequencies, data depart from

this circle, suggesting that dissipation may occur in channels.

4.3.2 Dispersion relation of the neutral mode

Here are shown the experimental data for the dispersion relation, extracted from the

formula:

R(ω) ' S21(ω) =
1− eikn(ω)l

2
(4.21)

The results obtained are remarkably clear. The graph ω 7→ Re
(
kn(ω)

)
exhibits two

non-dispersive regimes for which the dispersion relation is linear with frequency. For

low frequencies, a linear fit of the data yields a velocity vn(0) = 4.6 104 m.s−1. A blunt

shift in Re
(
kn(ω)

)
occurs around f = 6.5 GHz, and a second non-dispersive dispersion

relation reveals for f > 7 GHz, with a velocity vn(∞) = 2.3 104 m.s−1. The behavior

of ω 7→ Im
(
kn(ω)

)
is less intuitive. The abrupt shift of Re

(
kn(ω)

)
is accompanied by a

peak in Im
(
kn(ω)

)
, but the measured values are otherwise relatively low and are globally

linearly increasing with frequency. Though we are not able to predict microscopically

this dissipation effect, we propose a heuristic approach in section 4.4.1.
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Figure 4.12: Dispersion relation ω 7→ kn(ω) of the spin mode – In red
circles and black squares are represented respectively the real and imaginary parts
of the wavevector kn as a function of frequency f . Re(kn) exhibits two non-dispersive
regimes: linear fits (in grey dashes) yields the velocities vn(0) = 4.6 104 m.s−1 for low
frequencies, whereas vn(∞) = 2.3 104 m.s−1 at high frequencies. An abrupt crossover
between both domains occurs around 6 GHz. The existence of two different velocities
is attributed to the existence of a finite non-zero range of the interactions. The non-
zero imaginary part Im(kn) presents an overall linear increase, with in addition a

peak at the cross-over frequency between the two non-dispersive domains.

An interpretation can already be given to understand the physical meaning of the ap-

pearance of two different velocities in the dispersion relation of the neutral mode.

At low frequency, the wavelength of the EMP is very large: an order of magnitude is

λn = 2πvn(0)
f ' 300µm. In comparison, the range of the interaction is probably on the

order of 10 microns, as they are probably partially screened by the surrounding metallic

gates. Consequently we can consider a zero-range limit for the interaction, and a velocity

v0
n can be predicted in this regime. This simplification is frequently used in chiral edge

channels: this zero-range model is described in detail in section 4.4.2.1. Moreover, since

there’s no characteristic length introduced in this model, the behavior predicted for long

wavelength is in fact valid regardless of the wavelength which is in any case much larger

than the range of the interactions. Though this is not formally demonstrated yet, we

already understand that the absence of range in the interaction is characterized by a

non-dispersive dispersion relation, i.e. a constant velocity v0
n for the slow neutral mode,

that must coincide with vn(0). This is in strong contradiction with our observations.
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We thus attribute the appearance of two non-dispersive regimes to the existence of a

finite range in the interactions.

In this section, we have presented our experimental results on the capacitive coupling

between edge channels. These results have been analysed on the basis of the simple

heuristics presented in section 4.1.1: it only assumes the existence of two eigenmodes,

one that is neutral and slow while the other is charged and fast. The phase shift between

both modes has been observed, and the dispersion relation exhibits two non-dispersive

regimes, feature attributed to the existence of a finite range in the interactions. We

now turn to a detailed analysis of our results: first the nature of the eigenmodes is

studied and the validity of the hypothesis of antisymmetric/symmetric eigenmodes is

demonstrated. Then, both short and long range are discussed in detail.

4.3.3 Discussing the nature of eigenmodes

Our interpretation relies so far on an important hypothesis that needs to be discussed:

our model assumes that the eigenmodes are the symmetric charged and antisymmetric

neutral modes. We review this point in the following developments, and prove that this

decomposition is indeed correct, giving proofs of the neutrality of the slow mode.

4.3.3.1 Eigenmodes in the non-symmetric case

In full generality, one can consider the following eigenmodes, linear combinations2 of

i1(x, ω) and i2(x, ω):

i+(x, ω) = cos
θ

2
i1(x, ω) + sin

θ

2
i2(x, ω) (4.22)

i−(x, ω) = sin
θ

2
i1(x, ω)− cos

θ

2
i2(x, ω) (4.23)

i±(l, ω) = e
i ωl
v± i±(0, ω) (4.24)

The case θ = 0 corresponds to completely independent channels while θ = π/2 cor-

responds to the strong coupling case where the eigenmodes correspond to the charged

and neutral modes. Any other intermediate case correspond to partially charged eigen-

modes for which we can define the ratio of the total charge carried by modes − and +,

z =
sin θ

2
−cos θ

2

sin θ
2

+cos θ
2

. In this general case, the expressions for S21 and S11 + S21 and thus for

2A microscopic derivation of such eigenmodes will be proposed in section 4.4.1.
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the measured quantity R differ from Eqs.(4.12), and (4.13):

S21 = sin θ
eiωl/v+ − eiωl/v−

2
(4.25)

S11 + S21 =
eiωl/v+ + eiωl/v−

2
+ (cos θ + sin θ)

eiωl/v+ − eiωl/v−
2

(4.26)

R =
sin θ (1− eiφ)

1 + eiφ + (cos θ + sin θ) (1− eiφ)
(4.27)

φ(ω) =
ωl

v−
− ωl

v+
(4.28)

From Eq.(4.25), one can immediately see that S21 still describes coherent oscillations

from the EMP from channel 1 to channel 2, but the amplitude of these oscillations is

affected by the factor sin θ which only gets to 1 for strong coupling θ = π/2. The total

current transferred S11 + S21 is also affected and oscillates (either with frequency f or

length l) reflecting the fact that in this general case, the total charge i1 + i2 is no longer

an eigenmode (Eq.(4.26)). As a result, R still follows a circle in the complex plane but

with a θ dependent modulus and center (Eq.(4.27)). From these general expressions and

their comparison with our experimental data, one can assess that the eigenmodes are

indeed the charge and neutral ones, i+ = iρ, i− = in within an accuracy of z = 0± 0.1

for the charge ratio between the eigenmodes.

4.3.3.2 Low-frequency behavior

The first argument comes from the low frequency behavior of R where dissipation can

be safely neglected. Both the modulus |R| and the phase arg(R) follow a linear ω

dependence but with two different θ dependent slopes:

|R| = sin (θ)φ(ω)/2 (4.29)

arg(R) = −π
2

+
(

sin (θ) + cos (θ)
)
φ(ω)/2 (4.30)

By measuring the ratio of these slopes, one can directly measure the coupling angle θ.

Remarkably, in the strong coupling case, θ = π
2 , data points for |R| and arg(R) + π

2

should follow the exact same frequency dependence in the low frequency regime. Data

points in the low frequency [0.7, 4.5] GHz range and their linear fits (in the [0.9, 2] GHz

range) for |R| and arg(R) + π
2 are represented on Fig.4.13. As expected in the strong

coupling case, θ = π/2, both curves exhibit similar ω dependence and can be fitted by

very close expressions, |R| = 3.8 10−11 × ω, arg(R) + π
2 = 3.7 10−11 × ω. An estimate of

the error is given by the dashed lines. As the slope of |R| is determined with an accuracy

of 10%, one can determine two bounds for the slope of arg(R) + π
2 corresponding to the
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condition θ90 ± 11◦. The dashed lines represent two extremum values of this slope for

θ = 79◦ and 101◦. We can see that our data points fall within this uncertainty such that

we can assess θ = 90± 11◦ corresponding to z = 0± 0.1.'
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Figure 4.13: Low-frequency test of the neutrality assumption – Experi-
mental data of |R| (red circles) and arg(R) + π/2 (black circles) are presented as
a function of frequency f . Linear fits (in red and black solid lines) show that they
exhibit very similar slopes in the limit f → 0, which gives a first proof of the validity
of the neutrality assumption according to Eqs.(4.29) and (4.30). Blue dashes present

the slopes expected for arg(R) + π/2 for θ = 90± 11◦, z = 0± 0.1.

4.3.3.3 Position of the center

An other point that is scrutinized is the position of the center of the circle predicted by

Eq.(4.27). The radius rθ of the circle and the coordinates of the center Mθ are given by:

rθ =
sin θ

2(sin θ + cos θ)
(4.31)

Mθ = (rθ, 0) (4.32)

The experimental data for R enable to find an estimation of Mθ. Due to damping, R
does not follow a trajectory but in fact spirals toward the point Mθ. An evaluation of

the admissible Mθ by direct comparison of the data thus gives an admissible range for

the coupling angle θ. On Fig.4.14, we compare our data with a range of θ = 90 ± 11◦,

corresponding to z = 0 ± 0.1. The corresponding Mθ are pictured by the shaded area,

that is situated around the red dot symbolizing Mπ/2 = (1/2, 0). Meanwhile, the circle of

radius rπ/2 = 1/2 and the two circles corresponding to the extreme values of θ = 90±11◦
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are pictured respectively in red line and blue dashes. Experimental values of R have

been smoothed over 5 points for the sake of clarity. Though no rigorous criterion can be

simply implemented, this range z = 0± 0.1 seems to be in good agreement, to the eye,

with the experimental data.'
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Figure 4.14: Test of the neutrality assumption on the Nyquist diagram –
The shaded area symbolizes the position of the center Mθ of the circular trajectory
described by R for the range θ = 90± 11◦, z = 0± 0.1 (in the absence of damping).
The red dot is placed at Mπ/2 = (1/2, 0). The circles for θ = 90◦ (in red line) and
θ = 90±11◦ (blue dashes) are also drawn. Due to damping, our experimental points
seem to converge toward one of the Mθ in the shaded area so that the evaluation

z = 0± 0.1 is confirmed.

These two tests enable to claim that the slow mode is indeed neutral, carrying less

than 10% of the charge carried by the fast mode that is consequently the so-called

charge mode. This study confirms a posteriori the validity of the analysis proposed in

the previous chapter. In the next section, we introduce elements of theory based on a

Luttinger liquid model, that enables to gives a physical meaning to the coupling angle

θ in terms of strength of interactions between and inside edge channels.

4.4 Detailed analysis and modeling of interactions

In this section we establish a theoretical basis required to provide a clear interpretation

of our experimental results. We follow a Luttinger liquid approach in which the edge
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magneto-plasmons are pictured as bosonic fields.

4.4.1 Bosonic description of quantum Hall edge channels

4.4.1.1 Edge channels in the absence of interactions

The peculiarity of one-dimensional systems lies in the fact that interactions strongly

influence the nature of elementary excitations. The most adequate representation of

excitations relies on a picture of collective bosonic modes, that are consequently de-

scribed as a bosonic field φ̂(x, t). We first briefly examine the case of non-interacting

edge channels, where we describe the EMP as free bosonic fields. Then, we introduce

Coulomb interaction and explain in a simple manner the appearance of two eigenmodes.

Complements for the derivation of the following results are provided in Appendix C.

In the integer Quantum Hall regime, an edge magneto-plasmon represented by the

bosonic field φ̂(x, t) can be decomposed as:

φ̂(x, t) =
−i√
4π

∫ ∞

0

dω√
ω

(φ̂(x, ω)eiω(x
v
−t) − φ̂†(x, ω)e−iω(x

v
−t)) (4.33)

This chiral field propagates at a velocity given by the bare Fermi velocity v, in the

absence of both inter and intra channel interactions.

The current i(x, t) and charge density ρ(x, t) in the edge channel can then be defined,

and verify the charge conservation equation:

i(x, t) =
e√
π
∂tφ̂(x, t) (4.34)

ρ(x, t) =
−e√
π
∂xφ̂(x, t) (4.35)

∂tρ+ ∂xi = 0 (4.36)

For two non-coupled channels, the eigenmodes of propagation are φi for i = 1, 2, as

propagation takes place independently in each channel with possibly different velocities

vi.

4.4.1.2 Interacting edge channels

In the case of a capacitive coupling between channels, φi(x, ω) are not eigenmodes of the

propagation. As in section 4.1.3, an incoming mode at position x = 0 is related to an

output mode at position x = l via the scattering matrix SEMP (ω, l), acting on bosonic
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plasmon modes (and not fermionic electronic modes)

Φ(l, ω) = SEMP (ω, l)Φ(0, ω) (4.37)

Interactions can be modeled simply in this framework. The fields φi describing the two

edge channels of ν = 2 are labeled i = 1 for the outer channel, and i = 2 for the inner

channel. If ui(x, t) is the potential in the wire at position x and time t, the equation of

motion for φi reads, in time and Fourier space (see appendix C for details):

(∂t + vi∂x)φi(x, t) =
e√
π
ui(x, t) (4.38)

(−iω + vi∂x)φi(x, ω) =
e√
π
ui(x, ω) (4.39)

The left-hand side of these equations describe the free motion of fields φi at velocities vi

(that is here supposed to be channel dependent). Interactions are then encoded in the

right-hand side, and in particular in the relation between potentials ui and fields φi. We

now examine two different cases (zero and finite range couplings). The short range is

already known to give an incomplete understanding of our results as it does not describe

the observed dispersion relation. However, it provides the basis for a generalization to

a finite range model, thus emphasizing the differences between both viewpoints.

4.4.2 Short-range interactions at ν = 2

The most frequently used model to describe interactions in quantum Hall edge channels

is the so-called short-range model [55, 56, 79]. Interactions are then assimilated to

zero-range density-density interactions. On a theoretical point of view, this assumption

is really convenient as interactions are considered as a local phenomenon, simplifying

considerably analytical treatment. This has proven to be relevant in several cases such

as the study of the lobe structure of visibility in electronic Mach-Zehnder interferometers

[64]. Experimentally, this local interaction limit can be approached when large metallic

gates efficiently screen interactions on a very short length scale.

4.4.2.1 Zero-range model

Coulomb interactions are then depicted as zero-range density-density interaction, and

we introduce the matrix of distributed capacitances C relating charge densities ρi and

potentials ui (see appendix C for details):

(
ρ1(x, ω)

ρ2(x, ω)

)
=

(
C1 −C
−C C2

)(
u1(x, ω)

u2(x, ω)

)
(4.40)



132 Chapter 4 Interactions between edge channels at ν = 2

In this picture, charge densities ρi are coupled via capacitance per unit length Cij (see

Fig.4.15 panel a). On the diagonal, Cii = Ci thus encodes interactions inside the channels

while off-diagonal elements C12 = C21 = −C describe the coupling between both channels.'

&

$

%

l

Cdx

C

2 (inner)

1 (outer)

2 (inner)

1 (outer)

a

b

Figure 4.15: Schematics of the coupling between edge channels – Outer
and inner edge channels are pictured by black arrows, with blue dashes symbolization
the co-propagation interaction zone. a) In a zero-range picture, channels are coupled
via distributed capacitance C. b) In the long-range model, channels are coupled via

a discrete capacitance C.

Equations of motion of both fields φi are then coupled, and one needs to diagonalize the

inverse capacitance matrix C−1. If Φ = (φ1, φ2), we obtain:

V∂xΦ(x, ω) = iωΦ(x, ω) (4.41)

Vij = (viδij +
e2

h
C−1
ij ) (4.42)

where V is the velocity matrix. In the absence of inter-channel interactions (C = 0),

channels are independent but velocities are renormalized by intra-channel interactions,

Vi = vi + e2

h C−1
ii .

One can then relate the input mode at position x = 0 to an output position x = l via

Φ(l, ω) = SEMP (ω, l)Φ(0, ω) (4.43)

SEMP (ω, l) = eiωlV
−1

(4.44)
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4.4.2.2 Eigenmodes and scattering matrix elements

Due to coupling between channels, φ1 and φ2 are not eigenmodes for the propagation.

Eigenmodes are obtained by diagonalizing either C or equivalently SEMP . In full gen-

erality (C1 6= C2), two new eigenmodes appear:

φ+(x, ω) = cos
θ

2
φ1(x, ω) + sin

θ

2
φ2(x, ω) (4.45)

φ−(x, ω) = sin
θ

2
φ1(x, ω)− cos

θ

2
φ2(x, ω) (4.46)

φ±(l, ω) = e
i ωl
v± φ±(0, ω) (4.47)

where velocities v± and coupling angle θ are given by:

v± =
V11 + V22

2
±
√

(V11 − V22)2

4
+ V2

12 (4.48)

cos θ =
(V11 − V22)/2√

(V11 − V22)2/4 + V2
12

∈ [0, π] (4.49)

As a consequence from the zero range of the interaction, the velocities v± are ω-

independent. Note that the domain θ ∈ [0, π/2[ corresponds to the expected situation

where, in the absence of inter channel interaction, the outer edge channel velocity is

greater than the inner one, V1 > V2.

The charge ρ and neutral n eigenmodes are recovered for θ = π/2 with the identification

+ → ρ and − → n. This case always occurs for identical edge channels, V11 = V22 but

also for strong enough inter-channel interaction, V12 � V11−V22
2 .

Scattering matrix elements can be calculated easily from Eqs.(4.45), (4.46) and (4.47),

and yield the following expressions, used in section 4.3.3:

S21 = sin θ
eiωl/v+ − eiωl/v−

2
(4.50)

S11 =
eiωl/v+ + eiωl/v−

2
+ cos θ

eiωl/v+ − eiωl/v−
2

(4.51)

4.4.2.3 Predictions and discussions of the results

As demonstrated in section 4.3.3, the observed experimental situation corresponds to

the strong-coupling limit θ = π/2. From Eq.(4.48), one gets for the velocities v± =

v + 1
RK(C∓C) , with v = v1+v2

2 and C = C11+C22
2 . The case vρ � vn corresponds to total

influence between edge channels, C ≈ C and such that vn ≈ v + 1
2RKC . Introducing

Cq = l/RKv quantum capacitance and C = lC the total coupling capacitance, we finally

have vρ →∞ and vn = v0
n = v(1 +

Cq
2C ).
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A key point that has to be discussed is the fact that no characteristic length is intro-

duced in this model, in direct connection with the absence of range in the interactions.

Consequently, the velocity vn(ω) = v0
n is independent of the frequency ω, and the angle

Φ(ω) varies linearly with ω, or in an equivalent way the angular velocity dΦ
dω at which

the circle ω 7→ R(ω) is drawn is constant. Only one parameter governs the short range

model, namely τ̃ (or equivalently v0
n = l/2τ̃) and this parameter is settled by the low-

frequency regime. As seen in Fig.4.12, the short-range model is not able to capture

properly the dispersion relation.

As such, the short-range model is insufficient to describe accurately our experimental

results. This is not surprising as interactions may not be strongly screened as large

metallic gates are relatively far away from edges states in our sample. The issue of

dissipation was not discussed in the frame of this model, but no satisfying results has

been obtained in our attempts to do so. For completeness, this question has been treated

in section C.2.1.

A proper description of our results then requires crucially to introduce a finite non-zero

range for the interaction. We consequently turn to an other theoretical model proposed

to take into account this effect.

4.4.3 Long-range interactions at ν = 2

4.4.3.1 Describing long-range interactions

In this section, we propose a model that takes into account a finite non-zero range for

Coulomb interactions between channels. Instead of considering a local coupling between

edge channels via distributed capacitances, edge states are coupled using discrete ca-

pacitors [136, 137], as pictured on Fig.4.15, panel b). They describe the electrostatic

influence between the total charge qk in the two wires k = 1, 2 and the potentials uk,

that are this time assumed to be uniform along the whole length l. The characteristic

range for interactions is then naturally given by the propagation length l. Charges can

be defined as:

qk(ω) =

∫ l

0
dx ρk(x)dx (4.52)

=
e√
π

(
φk(0, ω)− φk(l, ω)

)
(4.53)
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Coulomb interactions are then depicted via the matrix of capacitances C relating charges

qi and uniform potentials ui:

(
q1(ω)

q2(ω)

)
=

(
C1 −C
−C C2

)(
u1(ω)

u2(ω)

)
(4.54)

Finally, the equation of motion for fields φk reads:

(−iω + vi∂x)φk(x, ω) =
e
√
π

h
ui(ω) (4.55)

This equation can be integrated easily since ui(ω) is uniform, and yields:

φk(x, ω) = e
iωx
vi φk(0, ω) +

i
√
π

eRKω
(1− ei

ωx
vi )uk(ω) (4.56)

Fixing initial conditions φ1(0, ω) 6= 0, φ2(0, ω) = 0, we immediately obtain a conservation

equation φ2(l, ω) = φ1(l, ω)−φ1(0, ω). For simplicity, and in agreement with our results

(section 4.3.3), we focus now on the strong coupling regime. Simple algebra then yields,

with τ = RKC, τq = l
v = RKCq:

φ1(l, ω) =
1 + eiωτq + i

ωτ (1− eiωτq)
2 + i

ωτ (1− eiωτq) φ1(0, ω) (4.57)

φ2(l, ω) =
1− eiωτq

2 + i
ωτ (1− eiωτq)φ1(0, ω) (4.58)

The scattering matrix SEMP (ω, l) can then be written:

SEMP (ω, l) =

(
1− S21 S21

S21 1− S21

)
(4.59)

S21 =
1− eiωτq

2 + i
ωτ (1− eiωτq) (4.60)

τ = RKC, τq =
l

v
= RKCq (4.61)

4.4.3.2 Results of the long range model

The eigenmodes are once again the antisymmetric dipole mode n and the symmetric

charge mode ρ. We find that Sρ = S11 + S21 = 1, that can be interpreted as vρ → ∞:

this infinite value of the charge velocity vρ thus ensures current conservation. On the
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other hand,

Sn = S11 − S21 (4.62)

= eiωτq
2− i

ωτ (1− e−iωτq)
2 + i

ωτ (1− eiωτq) (4.63)

= eiωl/vn (4.64)

The velocity vn thus defined is then frequency dependent, but also depends on the

propagation length l. It is not surprising since our description of interactions directly

relates the range to this length l. Two asymptotes can be obtained. When ω → 0, one

gets:

Sn = 1− S21 (4.65)

' 1 + 2iωτ̃ ' e2iωτ̃ (4.66)

Thus, we identify vn = v0
n = l

2τ̃ in the low-frequency limit. This is compatible with the

short-range description, as well as with the RC-circuit description. This compatibility

is expected, as for ω → 0 the wavelength of the EMP is very large: at some point, it

must indeed become larger that the range of the interactions, which are then correctly

described by a short-range model. On the opposite, the high-frequency domain (ωτ � 1)

then directly gives Sn = eiωτq so that vn = v. This equation will be used to extract the

velocity of edge channels in the absence of interactions.

4.4.3.3 Velocities and time scales in the long-range model

As expected, the existence of a finite range in the interaction is responsible for the

appearance of two different velocities for the low-frequency and high-frequency domain.

This is of great interest in order to obtain a good description of the measured dispersion

relation of mode n. Indeed, two time scales are involved in the model, namely τ and τq.

In the low frequency regime, these times combine to give the same asymptotic behavior

as the short-range model: S21 can be written in the form:

S21(ω) = −iωτ̃(1 + iωτ̃), τ̃ =
ττq

2τ + τq
(4.67)

The combination τ̃ =
ττq

2τ+τq
exactly corresponds to the characteristic time of the RC-

circuit discussed in 4.1.4.1: indeed τ̃ = RKCµ = RK
CCq

2C+Cq
, and allows a proper descrip-

tion of the low-frequency regime.
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Now that a long range model has been developed, we proceed to a comparison between

predictions of both short range and long range model with our data. Then we propose a

way to take into account dissipation in a satisfying heuristic way, though no microscopic

derivation is given.

4.4.4 Comparisons between data and models

4.4.4.1 Analysis of |R| and arg(R)

On Fig.4.16, graphs of |R| and arg(R) are presented as a function of frequency f = ω/2π.

The experimental data are then compared with four different simulated curves: the RC-

circuit (green small dashes, following Eq.(4.16)), the short range model (red long dashes),

the long range model without dissipation (blue dashed dotted line, Eq.(4.60)) and with

dissipation (black plain line, Eq.(4.70)). The different parameters that we extract are

then summarized in table 4.1 at the end of this section. We will come back to dissipation

in the next section.

Low-frequency regime Let us examine first the low frequency regime. For frequency

f < 3 GHz, a linear increase of |R| is observed. In the meantime, arg(R) also increases

linearly starting around arg(R) ' −π/2. This behavior is expected, and reflects the

RC-circuit asymptotic regime, with R mainly imaginary.

R(ω) ' S21(ω) ' −iωτ̃(1 + iωτ̃) (4.68)

From the dispersion relation, we have extracted vn(0) = 2.3 104 m.s−1, assimilated to v0
n

and at the same time τ̃ = 35 ps. Plugging this parameter into our simulations gives a

good agreement with experimental data in the low frequency regime.

Higher frequencies For higher frequencies f > 3 GHz, we observe that |R| reaches

a maximum |R| & 0.7 for f = 4.5 GHz, (with arg(R) ' −π/8). We interpret this

maximum value as a signature of a transfer of around 70% of the injected current (in

outer channel) toward inner channel. Due to dissipation, we dot not observe a maximum

modulus of |R| = 1 for a phase arg(R) = 0. Then |R| decreases to a minimum (around

|R| = 0.35) before increasing again while the phase has roughly the same behavior.

For very high frequencies (f > 8 GHz), we notice that oscillations of |R| are notably

damped, whereas arg(R) approaches 0.
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The RC circuit does not predict charge oscillations and is not in agreement with our

results. Moreover the short-range model is also in strong disagreement with our re-

sults. This was expected: τ̃ has been set via the low-frequency regime there is no other

free parameter in this model, and the constant velocity v0
n of the neutral mode is in

contradiction with our results on the dispersion relation.

On the contrary, the long-range model offers the possibility to obtain a good agreement

for both low-frequency and oscillation regimes by tuning independently τ̃ and τq. The

best fitting is obtained for τq = 124±5 ps, (so that τ = 81±4 ps in virtue of Eq.(4.67)).

This corresponds to a velocity v = 2.6 ± 0.2 104m.s−1, which is consistent with the

estimation vn(∞) = 2.3 ± 0.3 104m.s−1 obtained from the dispersion relation. This

tends to confirm the identification vn(∞) = v derived from the long-range model.

τ̃ (ps) τq (ps) τ (ps) τr (ps) v0
n (m.s−1) v (m.s−1)

Dispersion relation 35 4.6 104 2.3 104

Short-range 35 4.6 104

Long-range 35 124± 5 81± 4 4.1± 1 4.6 104 2.6 104

Table 4.1: Summary of times and velocities extracted from experimental
data – From the dispersion relation (Fig.4.12), we extract the velocities of two non-
dispersive regimes, identified with the neutral mode velocity v0

n at low frequencies and
with the bare Fermi velocity v at high frequencies. Eq.(4.15) then yields τ̃ that is fixed
in the short/long-range fits. In the short range model, there is no other free parameter.
On the contrary, the long-range model enables to extract independently τq for the
period of charge oscillations relaxation constant τr. From Eqs.(4.61) and (4.67), τ and
v can be extracted and is consistent with the velocity v obtained from the dispersion

relation.

The long-range model presented in this manuscript thus gives a reasonable description

of our results. At this point, we mention the fact that the velocities extracted in pre-

vious developments are relatively small. Though we are not able to obtain the charge

velocity vρ, it can be compared with measurements reported in [76] for similar samples

(densities and filling factor comparable to ours). They indeed obtain vρ ' 1.5 106m.s−1,

so that vρ � vn, justifying a posteriori our assumption. However, the damping of the

oscillations, which is clearly visible both on the Nyquist diagram (Fig.4.11) and |R| has

not been taken into account yet. We describe the procedure we followed in the next

section.

4.4.4.2 Model for dissipation

To take into account dissipation, several possibilities are envisioned. First, one can

imagine that a metallic gate, or an additional edge channel is weakly coupled to the two

interacting edge states, creating an energy leak in the two-channel system. This method
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Figure 4.16: Data for |R| and arg (R) – Experimental data for |R| and argR
are presented as a function of frequency f and compared with different models: RC
circuit (green small dashes), short range model (red long dashes), long range without
dissipation (blue dashed dotted line) and with dissipation (black plain line). With
two independent time scales, originating from the finite range of the interaction,
the long range model is able to reproduce correctly our data. Dissipation can be
added. Fixing τ̃ = 35 ps from the dispersion relation, we find that the best fitting

parameters are τq = 124± 5 ps, (so that τ = 81± 4 ps) and τr = 4.1± 1 ps.

has not proven to be sufficient to explain dissipation. A second method has proven more

relevant: we assume that dissipation occurs intrinsically as propagation takes place in

the edge channels, which modifies the equation of motions for fields φk and consequently

the resulting scattering parameters S21.
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Starting from the equation of motion in the frequency domain, we add a positive term

γ(ω), thus substituting ω + iγ(ω) to ω:

(
− iω + γ(ω) + vF∂x

)
φi(x, ω) =

e
√
π

h
ui(x, ω) (4.69)

If γ(ω) = 0, channels are not dissipative, otherwise exponentially decaying factors

e−γ(ω)τq appear. We obtain, from the very same calculation as previously, the following

result:

S21(ω) =
1− eiωτqe−γ(ω)τq

2 + i
(ω+iγ(ω))τ (1− eiωτqe−γ(ω)τq)

(4.70)

τ = RKC, τq = RKCq =
l

v

Clearly, the ω-dependence of γ will crucially modify the type of dissipation introduced.

We have decided to choose γ(ω) = ω2τr, with τr a new parameter governing the ampli-

tude of dissipative effects.

The first reason is that it gives, more or less, an overall linear behavior to Im
(
kn(ω)

)
,

as basically we have replaced ω → ω(1 + iωτr). As such, we thus obtain exponentially

decaying factor of the type e−ω
2τrτq . In the limit of high frequencies, S21 → 1/2, S11 →

1/2: dissipation in edge channels leads to a relaxation toward a state where currents

are equally distributed between inner and outer edge states. Notice that, surprisingly,

the conservation equation S21 + S11 = 1 is still guaranteed when dissipation is present.

This can be understood in the following manner. Starting from the short-range model,

where we would have S21+S11 = ei(ω+iγ(ω))/vρ (see Eq.(4.10)), one can see that the phase

factor ei(ω+iγ(ω))/vρ decays at a much slower rate than its dipole counterpart ei(ω+iγ(ω))/vn

since vρ � vn. In the limit vρ =∞, current conservation is still valid even if dissipation

occurs. This seems pathological and may question the validity of our description, but it

simply tends to prove that, due to its larger velocity, the charge mode is less sensitive

to dissipation effects.

Moreover, this choice of γ guarantees compatibility with a circuit of lumped discrete

elements at low frequencies. One can easily demonstrate for ω → 0, to second order in

ω the following results:

S21(ω) ' −iωτ̃
(
1 + iω(τ̃ + τr)

)
(4.71)

The RC-circuit description is then modified : a resistor of Rr = RK
2

τr
τ̃ is added in series

with the charge relaxation resistor RK/2, as pictured on Fig.4.17.
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Figure 4.17: Modified RC circuit when taking into account dissipation –
The observed damping of charge oscillations is modeled by dissipative edge channels.
The parameter γ(ω) = ω2τr is chosen so that the low-frequency equivalent RC is
preserved, up to adding resistors Rr � RK (in dashed lines) in series with the charge
relaxation resistors. The final lumped elements circuit is then pictured in totality.

With this description of dissipation, a quantitative agreement is found with experimental

data: the black plain line is obtained for τr = 4.1 ps. This relatively low value proves

that the low-frequency regime is only slightly affected by dissipation, as Rr � RK/2.

4.4.4.3 Possible origins for dissipation

As of yet, possible origins for dissipation have not been specified. We have mentioned the

idea that stray couplings to gates or other edge channels could lead to energy leaks, but

our models (based on the same framework as the aforementioned long and short-range

models) have not given satisfying results. An other reasonable explanation would be a

coupling to internal degrees of freedom, related to the structure of edge channels and

especially their finite width [138]. As a consequence, the motion of charged modes cou-

ples to neutral acoustic (gapless) modes [139–141] that appear as a source of dissipation

in transport experiments.

4.4.5 Effects of interactions on HBT correlations

In this paragraph, we briefly analyse the results of the Hanbury-Brown & Twiss experi-

ment with respect to the issue of interactions, investigated in this chapter. On one-hand

the effect of interaction seems indeed quite prominent, and could influence notably the

results expected in a non-interacting picture. On the other hand, the experimental data

are in good agreement with Floquet scattering theory that offers a thorough analysis

but not taking into account Coulomb interaction. How do these results reconcile into a

coherent interpretation?

It is difficult to unify both Floquet and EMP theories. From Floquet scattering model,

we have obtained the complete electronic (fermionic) N -body state emitted by our SES,

with any choice of parameters but neglecting interactions in the dot. The bosonization
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formalism then offers the possibility to exactly calculate the corresponding magneto-

plasmon (bosonic) state. Unfortunately, the computation of the quantities measured

with our detection scheme, such as average current or current correlations remains very

difficult, as quantum averages are calculated on the out-of-equilibrium emitted N -body

state. On-going efforts lead by our collaborator P. Degiovanni could provide in a near

future further interesting results, but a general computation seems out of reach.

Nonetheless, an easy calculation can be performed in the very specific case of the opened

dot D = 1. It justifies our choice to run the experiment only in this simple case prior to

any further investigation for D < 1 in the absence of adequate theoretical model.

Case D = 1 In the case D = 1, one can show [47] that the plasmonic state emitted

is a coherent state. It reveals the fact that this state is created by coupling the outer

edge channel to a classical voltage source (excitation drive Vexc) via a capacitive cou-

pling between the 2DEG and the top-gate electrode. In the monochromatic case (as

experimentally examined), the complex amplitude α(ω) of this coherent state is only

affected by the change α(ω)→ S11(l, ω)α(ω) under the effect of interactions. As a con-

sequence, the incident current on the QPC in the outer channel 1, that is partitioned

in the HBT experiment is modified by the multipliying factor I1(ω) → S11(ω)I1(ω),

and the correlations are then 〈Î1(ω)Î1(ω)〉 → |S11(ω)|2〈Î1(ω)Î1(ω)〉. Using the fact

that SEMP (ω, l) is unitary (see section 4.1.3), we obtain for ω = Ω ' 1.7 GHz,

|S11(ω)|2 = 1 − |S21(ω)|2 = 1 − 0.352 = 0.88. This variation of 12% is on the order

of magnitude of the experimental error on our measurements. As such, this slight varia-

tion is difficult to identify, and to isolate from other effects: uncertainty on the electronic

temperature, etc.

Case D 6= 1 Though the way of reasoning does not hold for any D 6= 1, it seems

reasonable to assume that the effects of Coulomb interaction is on the same order of

magnitude, and is then almost undetectable. However, in the case D 6= 1, the emitted

wavepacket is greatly modified. Whereas the quasiparticles emitted at D = 1 lie at

relatively low energies even when a square voltage is used, the quasiparticles are emitted

at energies close to half the level spacing ∆/2� kT when the dot is closed. As explained

in section 3.4.2, such an energy-resolved excitation could collapse dramatically toward

the Fermi level, and thus be considerably affected by the anti-bunching with thermal

excitations. This behavior is not observed, and though nothing enables to test this idea

yet, we can speculate on a possible reason. P. Degiovanni has observed (in numerical

simulations) that the periodic repetition could strongly modify the effect of interactions

on lorentzian Levitov pulses. When the wavepackets overlap due to a large repetition
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rate (as compared to the temporal width of the pulse), the energy distribution is strongly

modified and could become less sensitive to interaction. Pauli exclusion principle would

indeed block any relaxation toward low-energy levels, as these levels are already occupied.

This interpretation is similar to the picture of wavepackets of width h/eV emitted by a

DC-biased contact, with a bias V .

Conclusion to chapter 4

In this chapter, we have investigated the effects of Coulomb interaction on the prop-

agation of co-propagating edge channels, in the peculiar case of filling factor ν = 2.

Microwave measurements have enabled to study the spectacular effect of charge/neu-

tral mode separation occurring on the 2 coupled co-propagating edge states. Thus the

scale at which electronic transport becomes radically modified, given by the criterion

ωl/vn ∼ 1, i.e. f ∼ 1− 10 GHz for l ∼ 1− 10 µm, can be reached.

Using the driven mesoscopic capacitor in the simplest regime (sine excitation, and D =

1), we induce sinusoidal charge density waves (EMP) in the outer channel so as to excite

both neutral and charge modes. Since these eigenmodes have different velocities, a phase

shift progressively appears between the two components, that can be measured. Using a

QPC, we are able to measure the (complex) ratio R of the current in the inner channel

that results from the interaction, compared to the total current in both inner and outer

channels.

This complex ratio R directly reflects the phase shift between eigenmodes. We observe

damped oscillations of the charge in the inner channel that arise from the phase shift

between modes. Contrary to the usual model of short-range interactions, a long-range

model gives a quantitative agreement with our experimental data. In particular, we

extract the dispersion relation of the spin mode and exhibit the effect of the finite range

of interactions. Moreover, we evaluate the bare Fermi velocity (v = 2.3 104 m.s−1) as

well as the velocity of the neutral mode (vn = 4.6 104 m.s−1).

A careful analysis of additional data show that parasitic couplings can be ignored up

to a 10% error, but the issue of the effect of inter-edge coupling in the Hanbury-Brown

& Twiss has to be discussed. Though a general study is far beyond reach, we have

envisioned the case of an opened dot D = 1 to prove that this question is in fact

irrelevant considering the uncertainty of 10% on our noise measurements.

The preceding chapters have thus examined two different topics. Even though we

have in this chapter 4 demonstrated the non-negligible effects of Coulomb interaction on
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charge density waves as they propagate in quantum Hall edge channels, electron quan-

tum optics is not a born-dead concept. Chapter 3 has indeed proven that the general

concepts of quantum optics could still be used to explain quantitatively the interferences

observed between triggered quasiparticles emitted by the source and thermal excitations.

The previous simple reasoning explains the surprising coherence between these antag-

onistic ideas. Nevertheless, if interactions do not strongly modify the total amount of

charge present in one or the other channel, it should be responsible for modifications of

properties of the quasiparticles emitted by our source. The next chapter is then devoted

to exploring a new experiment of two particle-interference, that could help to discover

more about the aftermath of interactions.
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Introduction to chapter 5

The realization of the Hanbury-Brown & Twiss experiment with single electrons (as

described in chapter 3) has shed light on the anti-bunching effect between thermal ex-

citations of the Fermi sea and triggered excitations produced on demand by the SES.

These two-particle interferences rely on the indistinguishability of two electrons with the

same energy, combined with Fermi-Dirac statistics. However, hough very robust, the

equilibrium state of the Fermi sea can not be controlled. A new step is then consequently

to demonstrate the possibility of generating undistinguishable excitations using two in-

dependent and tunable on-demand sources, and study the possible antibunching effect on

a beamsplitter, in the same geometry as previously. Besides, such an experiment probes

the coherence of the produced wavepackets, which can be altered, in particular in the

presence of interactions with neighbouring edge channels, as studied in chapter 4. The

visibility of interference effect then gives indications on the importance of decoherence

in such a system, and complements the study carried out in chapter 4.

In this chapter, we present the first results obtained by performing the Hong-Ou-Mandel

experiment with on-demand electrons, that demonstrate partial indistinguishability of

the generated wavepackets. Though our results can be understood via the theoretical

tools developed earlier in the manuscript, the finite degree of indistinguishability could

be a signature of decoherence mechanisms, that could be attributed to interactions

between edge channels.

5.1 Principles of the experiment

5.1.1 Optical realization

5.1.1.1 Experimental realization

The historical experiment by Hong, Ou & Mandel [22] consisted in two-photon inter-

ference between twin photons emitted by parametric down-conversion on a non-linear

crystal (KDP, potassium dihydrogen phosphate, in their case). When pumped with a UV

laser (wavelength λ0 = 2πc
ω0

= 351.1 nm, see Fig.5.1), a second-order non-linear order pro-

duces photon pairs with frequencies ω1, ω2 such that ω1 +ω2 = ω0 (energy conservation).

An adequate filtering enables to select twin photons with frequencies ω1 ' ω2 ' ω0/2,

that can interfere on a beamsplitter (BS). The intensity cross-correlation between both

outputs is recorded, or more exactly the coincidence counts between both channels Nc.
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Figure 5.1: Setup and results of the historical Hong-Ou-Mandel exper-
iment – Figures extracted from [22] a) Outline of the experimental setup: Twin
photons are prepared by parametric down conversion of a pumped KDP crystal.
Made indistinguishable by filtering (IF1 & IF2), they interfere on a beamsplitter
BS and coincidence counts between both outputs of the beamsplitter. b) Coinci-
dence counts: Recorded coincidence counts Nc (in a 10 minutes time window) as a
function of the time delay τ between both output arms, tuned by the position of
the beamsplitter. For τ = 0, a dip is observed and attributed to a quasi-perfect

(90%-visibility) bunching of indistinguishable twin photons.

When twin photons are sent simultaneously on the BS, they interfere due to bosonic

statistics: they bunch together so that they always end up both in the same output

1 or 2. Thus, no coincidence is recorded Nc = 0. When a time-delay τ larger than

the width of the photon wavepacket is added between both channel, the twin photons

do not see each other and do not interfere, and coincidence counts can be recorded

when integrating over several minutes. Consequently, the so-called Hong-Ou-Mandel

dip observed for τ = 0 on Fig.5.1, panel b) is attributed to a bunching effect between

indistinguishable photons.

5.1.1.2 Physical meaning

This experiment is considered as an other milestone in quantum optics. As explained

in chapter 1, one-particle interferences that takes place in Mach-Zehnder interferome-

ters can be explained with a wave theory of light, whereas Hanbury-Brown & Twiss

experiment that probes the discrete nature and the statistics of the excitations relies on

corpuscular models. The Hong-Ou-Mandel experiment can not be explained either by

wave or corpuscular models, but only by a purely quantum model. The crucial point

here is the quantum indistinguishability between the photons that interfere in virtue of

bosonic statistics. The Hong-Ou-Mandel dip is exactly a measure of the resemblance

between the two photons that impinge on the beamsplitter: the value for τ = 0 measures

in fact the maximal overlap between the two photon states, whereas the width of this

dip is then exactly the length of the photon wavepacket, or in an other language, the
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coherence time of the source. These features will appear more clearly when examining

the electronic Hong-Ou-Mandel experiment in section 5.1.3.

In their article, Hong et al. proposed an experiment based on twin photons emitted by

pairs, but let us mention that experiments have been performed more recently using two

independent sources, for example separate quantum dots [142, 143] or single photons

produced by trapped ions [144, 145].

5.1.2 Electron analog

This part is greatly inspired by above work from optics [22]. Moreover electron analogs

of this experiment have been investigated, in particular by Fève et al. [23], Olkhovskaya

et al. [24] and more recently Jonckheere et al. [146]. The sample used in the imple-

mentation of the Hong-Ou-Mandel experiment in a quantum Hall device comes from

the same batch as the ones used in chapters 3 and 4, and has consequently the same

mobility µ = 2.4 106 cm2V−1s−1. The device is placed in a magnetic field of B = 2.68 T

to reach the filling factor ν = 3 (due to a non-favourable behavior of the central QPC

at higher magnetic fields, see 5.2.1.3). The design is presented in Fig.5.2. For clarity,

only the outermost channel of ν = 3 is pictured, and the DC-bias on input 2, used only

for calibration has also been removed. First, the electrons to interfere are produced in

two identical but totally independent single electron sources. The source labeled i = 1, 2

is situated in the corresponding input arm i, and its parameters are respectively gate

voltage Vg,i and transmission Di, excitation drive Vexc,i and level spacing ∆i, calibrated

to the value ∆1 ' ∆2 ' 1.4± 0.1 K.

Such a sample design enables in principle to create interference between quasiparticles

emitted independently by two emitters situated on each side of the beamsplitter. While

photon sources are tuned mainly via their frequency spectra, the indistinguishability

between quasiparticles can be tuned via the transparency of the tunnel barrier Di, as

well as the position of the level at equilibrium φ0,i or the excitation amplitude Vexc,i.

Here we focus on sources in the ideal regime of single-particle emission φ0,i = 0, and

2eVexc,i = ∆i.

To describe the interferences, we first use the wavepacket model and the coherence

function theory, and present the main features expected in our experiments. Then, we

turn to the Floquet expression of the HOM correlations, as they confirm the previsions

of the wavepacket model and enables numerical simulations.
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Figure 5.2: SEM picture of the sample for the Hong-Ou-Mandel exper-
iment – The sample is placed in a magnetic field of B = 2.68 T to reach filling
factor ν = 3. For clarity, only the outermost edge channel is pictured. Two identical
fully independent sources are situated one on each side (input arms 1 and 2) of the
central QPC that reproduces the beamsplitter. As in chapter 3, output 3 is equipped
with a radio-frequency homodyne detection for average current measurements while

output 4 is connected to the noise detection scheme.

5.1.3 Theoretical developments

5.1.3.1 Coherence functions and HOM experiment

HOM correlations can be calculated quite straightforwardly from our previous theoret-

ical developments. Indeed, this new experiment is very similar to the HBT experiment,

except that the input 2 is not only connected to leads at equilibrium, but now also con-

tains a second mesoscopic capacitor used as a single electron source. Recalling Eq.(3.27),

Q(t, t′) = e2
(
G(e)

1 (t, t′)G(h)
2 (t, t′) + G(h)

1 (t, t′)G(e)
2 (t, t′)

)
(5.1)
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we are in a case where G(e/h)
2 6= G(e/h)

µ=0 , i.e. ∆G(e/h)
2 6= 0. The excess correlation can then

be separated in three different terms:

∆Q(t, t′) = e2
(
∆G(e)

1 (t, t′)G(h)
µ=0(t, t′) + ∆G(h)

1 (t, t′)G(e)
µ=0(t, t′)

)

+ e2
(
G(e)
µ=0(t, t′)∆G(h)

2 (t, t′) + G(h)
µ=0(t, t′)∆G(e)

2 (t, t′)
)

+ e2
(
∆G(e)

1 (t, t′)∆G(h)
2 (t, t′) + ∆G(h)

1 (t, t′)∆G(e)
2 (t, t′)

)
(5.2)

= ∆QHBT,1(t, t′) + ∆QHBT,2(t, t′) + ∆QHOM (t, t′) (5.3)

The first two lines of Eq.(5.2) are similar: they in fact encodes the HBT contributions

of both sources 1 and 2, labeled ∆QHBT,i, i = 1, 2 and are identical to Eq.(3.29). In the

first line source 1 is correlated with the opposite input 2 acting as if it was at equilibrium

at chemical potential µ = 0, while label 1 and 2 are simply exchanged in the second

line. This HBT correlation has been extensively studied in chapter 3, and the separate

contributions of both sources are simply added up.

The third line is different and new as it contains the interference ∆QHOM between the

quasiparticles emitted from both sources. In the next section, we investigate this effect

in the framework of the wavepacket model.

5.1.3.2 Wavepacket model in the zero-temperature regime

Hong-Ou-Mandel correlations First, we perform a simple analysis of the HOM

experiment that relies on the wavepacket picture introduced in 1.2.2.3. This model is

very close to the calculations performed by Hong et al. [22]. As such, it captures the

main features of this experiment though it only holds zero-temperature information.

Emitting electronic wavepackets ϕi(t) in each input i = 1, 2, and recalling ∆G(e)
i (t, t′) =

ϕ∗i (t
′)ϕi(t), ∆G(h)

i (t, t′) = −ϕ∗i (t)ϕi(t′) (Eq.(1.12)), the HOM correlation are readily

expressed as:

∆QHOM = −8e2f Re

[∫
dtdt′ ϕ1(t)ϕ∗2(t)ϕ∗1(t′)ϕ2(t′)

]
(5.4)

= −8e2f

∣∣∣∣
∫
dt ϕ1(t)ϕ∗2(t)

∣∣∣∣
2

(5.5)

= −8e2f |〈ϕ1|ϕ2〉|2 (5.6)

where 〈. . . | . . . 〉 is the usual scalar product1. This immediately shows that the HOM

correlation stems from the overlap of two wavepackets. This formula can be written as

1This somewhat unusual numerical factor 8 can be understood simply. One factor 2 stems from the
normalization adopted for correlations, see Eq.(2.51). Then, as done in section 2.3.2.4 for phase noise,
we count 2 particles per period and per source, giving in total a factor 23 = 8.
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well in the energy domain, using Parseval’s theorem:

∆QHOM = −8e2f

∣∣∣∣
∫
dεϕ1(ε)ϕ∗2(ε)

∣∣∣∣
2

(5.7)

The largest two-particle interference is then, as expected, obtained for a large overlap

of the wavepackets. This imposes to create identical and synchronized wavepackets

(i.e. arriving with a zero time-delay between them on the beamsplitter). One can then

compute the total correlation ∆Q. In the wavepacket model, exactly one quasiparticle

is counted in HBT correlations, as it describes perfect single charge emission in the limit

of zero-temperature. We then have

δNHBT,i =

∫
|ϕi|2 = 1

∆QHBT,i = 4e2fδNHBT,i = 4e2f (5.8)

Finally summing all contributions of Eq.(5.3) yields the excess noise ∆S4,4 in contact 4:

∆S4,4 = T (1− T )∆Q

= 8e2f T (1− T )
(
1− |〈ϕ1|ϕ2〉|2

)

= 2e2f
(
1− |〈ϕ1|ϕ2〉|2

)
(5.9)

for an optimal transmission T = 1/2. Thus, this shows that the lower bound ∆Q ≥ 0

can be reached for identical wavepackets. With respect to the preceding remarks, a

practical way of presenting the HOM correlations is to normalize them by the sum of

the HBT contributions of both sources (even at finite temperature Tel 6= 0). For this,

we introduce:

∆q =
∆Q

∆QHBT,1 + ∆QHBT,2
(5.10)

= 1− ∆QHOM
∆QHBT,1 + ∆QHBT,2

(5.11)

For identical wavepackets ϕ1 = ϕ2 = ϕe, emitted with a tunable delay τ , one can then

simply write

∆q(τ) = 1−
∣∣∣∣
∫
dt ϕe(t)ϕ

∗
e(t+ τ)

∣∣∣∣
2

(5.12)

A clear interpretation of this formula can then be given. When |τ | → ∞, wavepackets

arrive at different times on the beamsplitter, do not feel each other and are independently

partitioned. Thus ∆Q is given by the addition of both HBT partition noises: ∆Q =
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∆QHBT,1 + ∆QHBT,2, and ∆q = 1. On the opposite, for a zero time delay (τ = 0), anti-

bunching between both particles takes place. Since both wavefunctions are identical,

this antibunching is total and the noise is totally suppressed ∆q = 0. The width of

this dip is then related directly to the temporal overlap between ϕe(t) and ϕe(t + τ),

and consequently gives information about the length of this wavefunction. This will

appear more clearly when applying formula (5.12) to typical wave-packets, such as the

exponential one. Such a simple model will enable to extract information from our

experimental results.

Application to exponential wavepackets Time-resolved measurements (sec. 2.2.2.2)

have proven the relevance of picturing the generated wavepackets as exponential waves

emitted around energy ε0 ' ∆/2. Such a packet is then written ϕe(t) = θ(t)√
τe
e−t/2τee−iε0t/~,

where θ is the Heaviside function, while τe is as usual the escape time. With these ana-

lytical expressions, it is straightforward to show that:

∆q(τ) = 1− e−|τ |/τe (5.13)

Thus, it clearly reveals how the measurement of the HOM correlations gives access to

the temporal width of the emitted wavepackets.

In this section, we have shown how an electronic analog of the Hong-Ou-Mandel

experiment could be implemented with two independent sources, leading to similar in-

terference effects that only occur when two indistinguishable particles are colliding at the

same time on the beamsplitter. This requires to manipulate accurately the wavepackets,

and in particular to achieve an accurate synchronization of both sources. The correlation

detection is on the other hand very similar to the one used in the HBT experiment pre-

sented in chapter 3. The next part is devoted to giving details about a few modifications

done to improve the setup, and to showing how both sources can be synchronized.

5.2 Experimental realization

5.2.1 Improvements in the noise detection scheme

5.2.1.1 Amplification

In order to be able to measure a little bit more rapidly and accurately the HOM corre-

lations, the noise detection setup presented in section 3.2.2 has been slightly improved.

These modifications are briefly reviewed in this section.
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The main change consists in replacing the first stage of amplification, initially made of

NF LI75A. Better performances were obtained by using ultra-low noise amplifiers from

Celians and developed in the CNRS center for research on low temperatures of Grenoble

(Celians EPC1-B). The bandwidth is reduced to DC-130 kHz (for gain ×100) but this is

not an issue since our bandwidth is limited to 70 kHz due to the distributed capacitance

of coaxial cables. In the meantime, both current and voltage noises are in principle

diminished to respectively 4 fA/
√

Hz at 1 Hz, and 0.7 nV/
√

Hz. This should in principle

offer a strong enhancement of measurement capabilities: the same resolution of 0.05 e2f

in the Hanbury-Brown & Twiss experiment, obtained after 10 hours of measurements

should be in principle accessed in 600/24 ' 40 minutes. The measured specifications

were slightly above nominal. But these efforts were in fact partially compensated by

the fact that the QPC was not satisfying at ν = 2, so that we had to work at a filling

factor of ν = 3. Thus, the impedance for the current to voltage conversion was modified

from RK/2 to RK/3 and the measurement time (for a given signal-to-noise ratio) was

lengthened by a factor (RK/2RK/3
)3 = 27

9 ' 3.

In the meantime, the strategy of measurement due to the 1K pot issues has been changed.

We have not been able to stabilize the 1K pot on very long times (days) to perform our

measurements. Consequently, we adopted a more radical method: the 1K pot needle

valve as well as the pumping line were completely shut, assuring stability on time lapses

on about 100 minutes. This strategy forced us to work on extended hours but the

bandwidth was also enlarged downwards to 15 kHz (for a power integrated in the band

15 − 93.125 kHz). In the end, with all the discussed modifications, the measurement

time is about 4-5 hours per point for a signal to noise ratio of approximately SNR ' 8

as previously.

5.2.1.2 Performances of the modified setup

These modifications of the detection have undoubtedly improved the performances of

the noise detection scheme, while the way it is operated and calibrated has remained

identical. The calibrations proposed in 3.2.3 have given the following results. First, as

mentioned earlier, the electronic temperature is reduced and calibrated at Tel = 90± 10

mK. Second, in the condition of the experiment (ν = 3), the gain of the detection scheme

yields a resolution of 0.05 e2f = in about 3 hours, for a driving frequency of f = 2.1

GHz.
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Figure 5.3: Modified noise detection setup used for the Hong-Ou-Mandel
experiment – As compared with the setup of Fig.3.11 used in chapter3, the first
stage of amplification is changed (Celians EPC1-B) and a heat filter is added, that
reduces the electronic temperature from Tel = 150 mK to 90 mK. The sample is
also placed at a filling factor ν = 3, reducing the impedance on which the current

fluctuations are read.

5.2.1.3 Working at ν = 3

As mentioned earlier, the central QPC in this experiment was strongly non-linear even

for the outer channel at ν = 2. Test measurements of correlations have given very poor

results, with signals sometimes 10 times bigger than expected. Finally we resolved to

work at ν = 3, where a proper behavior was observed, despite the loss of sensitivity of the

correlations measurement setup. Results obtained for the differential conductance (see

section 3.2.1.3) on the outer channel are presented in Fig.5.4. A typical non favourable

situation, obtained for ν = 2, is shown on the left panel (a), whereas the adopted

configuration is described in the right panel (b).

5.2.1.4 Reduction of the electronic temperature

A simple modification of the coaxial lines has enabled to significantly decrease the elec-

tronic temperature from Tel = 150 mK to 90 mK. We found that the residual electronic

temperature was in the end limited by the heat transport from outside to inside the

cryostat via RF output lines. Indeed, so as to keep the small signals unattenuated, the
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Figure 5.4: Differential conductances for the central QPC of the HOM
experiment – a) 2D plot obtained for B = 4 T, ν = 2 exhibit strong non-linear be-
haviour, that makes the HOM correlation measurements impossible. b) Differential
conductance at the magnetic field B = 2.68 T, corresponding to ν = 3 and finally

adopted in this study.

output line on contact 4 has no attenuator. The anchoring to cold masses thermalizes

the grounded shield but not the inner core, that is only coupled via the poorly thermally

conducting dielectric.

The idea was to keep the double compatibility with low-frequency (as in chapter 3 and

5) and RF (as in chapter 4) measurements of the output line connected to contact 4

(see Fig.5.2), but to reduce in the meantime the thermal conductivity of the inner core.

The adopted trade-off was to design a 50 Ω-matched coplanar waveguide, with a CMS
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30 Ω-resistor on the inner part. The waveguide is embedded in a small box of brass

to keep a coaxial geometry. Thus, the resistance of the inner core of the coaxial line is

augmented from less than 1 Ω to about 30 Ω, and in the meantime the heat conductance

is reduced by the same factor. The low and high frequency properties are only slightly

diminished.

5.2.2 Synchronization and calibration of the time-delay

5.2.2.1 Generation and synchronization of excitation signals

The excitation are generated and synchronized in a very simple manner using the Anritsu

MT1810A pulse generator. Two pairs of independent outputs are available, and the

phase shift between these pairs can be adjusted. The amplitude of these four channels

can be tuned separately. Thus, we devoted one pair to the production of the reference

channel for the homodyne detection and the excitation line for source 1, and an output

of the other pair for the excitation of source 2. In this configuration, the relative phase-

shift between source 1 and 2 can be adjusted on a full 360◦ span. The synchronization

is here supplied on the two pairs by the same GHz clock, and no synchronization issue

has been encountered.

5.2.2.2 Calibration of the time-delay between sources

The synchronization of excitation drives is necessary but not sufficient to ensure that

both sources are emitting electrons impinging on the beamsplitter at the same time.

Indeed the excitation lines are not identical so that a constant time-delay remains even

if drives are produced with a zero degree relative phase shift. We can however use RF

measurements of the average current to achieve a synchronization with an accuracy of

about ±5◦ of two incoming wavepackets corresponding to an uncertainty ±7 ps on the

arrival times for f = 2.1 GHz.

Calibration protocol The idea is to superimpose the variation of the RF signal

obtained when driving source 1 or 2 and progressively opening the QPC. As explained

in section 4.2.2.1, when driving source k = 1, 2 and changing the transmission T of the

outermost edge channel of the central QPC, the current collected I
(k)
c in output 3 (RF

homodyne detection) can be written in the following form:

I(1)
c (T ) = I(1)

p + I(1)
r + (1− T )I(1)

o (5.14)

I(2)
c (T ) = I(2)

p + TI(2)
o (5.15)
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where I
(k)
p is a parasitic current coming from stray couplings, I

(k)
o is the current flowing

in the outer edge state, which is of interest here. I
(1)
r is an extra contribution reflecting

the current flowing in the two inner edge channels, and resulting from the interactions

between channels. It only appears when exciting source 1 as the two inner channels cou-

pled to source 2 are reflected toward output 4. If we subtract the adequate background,

we get:

δI(1)
c (T ) = I(1)

c (T )− I(1)
c (T = 1) = (1− T )I(1)

o (5.16)

δI(2)
c (T ) = I(2)

c (T )− I(2)
c (T = 0) = TI(2)

o (5.17)

As both signals are detected in the same contact via the same detection scheme, the com-

plex currents I
(1)
o and I

(2)
o should have exactly the same phase if the excitations impinge

on the beamsplitter with a zero time delay. The graphs δI
(k)
c (T ) should consequently

superimpose for synchronized sources: this can be achieved by tuning the relative phase

between both excitation signals, as seen in the following paragraph.

Results of the calibration This protocol has given very satisfying results, enabling

to synchronize both sources within a ±7 ps time resolution. On Fig.5.5, we show on a

polar plot the complex numbers δI
(1)
c (T ) when T is varied, for different choices of the

relative phase between excitations φ (colored lines). Source 2 (black bold line) is taken

as a reference: the average argument of δI
(2)
c (T ) is set to 0. We see that for the value

φ = −138.6, the red line is aligned with the reference black line: in this configuration,

a time-delay τ = 0 is expected between the excitations generated by both sources when

they reach the beamsplitter.

The accuracy of this calibration is not limited by the choice of φ (tunable by increment

of 0.18◦), but rather by the overall phase stability of the RF setup: minor modifications

of the positions of the coaxial cables, temperature fluctuations (related to the Helium

level in the cryostat) are possible reasons for observed fluctuations over a few degrees.

Consequently, we assumed error bars of circa ±5◦ (±7 ps) in the measurements. For the

same reasons, this calibration has been repeated every day, confirming fluctuations of a

few degrees from one day to the next.

On Fig.5.5, one also see that the bold solid line and red solid line have different length,

reflecting a difference in the measured current though both sources are set to emit

optimally one electron. This may be a signature of decoherence effects due to interactions

with edge channels that are reinforced at ν = 3. To compensate the difference of currents,

the excitation voltages have been slightly augmented on source 2 and decreased on source

1 in order to reach a discrepancy of less than 20%. However, so as to manipulate quasi
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Figure 5.5: Synchronization of sources – The variation of the collected cur-

rent in the outer edge channels δI
(k)
c (T ) when varying transmission T and driv-

ing source k = 1, 2 are presented in a polar plot. δI
(2)
c (T ) is taken as a phase

reference (black bold line). δI
(1)
c (T ) (colored lines) is plotted for different val-

ues of the relative phase φ between excitation of both sources: from blue to red,

φ = −180;−156.6;−149.4;−144,−141.3;−138.6◦. For the latter, δI
(1)
c and δI

(2)
c are

aligned, and the synchronization of the quasiparticles emitted by both sources is
achieved. The accuracy of the protocol is evaluated to ±5◦.

mono-electronic packets, we paid attention to set the working points on quantization

plateaus, with φ0,i, so that the charges in each wavepacket is only slightly modified.

After a few improvements, and an adequate synchronization of both sources, the setup

is now ready to perform first measurements of the electronic analog of the Hong-Ou-

Mandel experiment. Though they are not detailed in the present manuscript, calibra-

tions and tests of the noise detection scheme have been performed, in a manner similar

to what was detailed in section 3.2.3. We now turn to the results obtained in the next

section.

5.3 Results and analysis

5.3.1 Experimental results and first analysis

Hong-Ou-Mandel dips and normalization In this first series of experiments, we

focus on the most natural case of quasi-ideal single charge emission, where 2eVexc i = ∆i

and φ0, i = 0, with the additional condition D1 = D2. Two different configurations are

measured: D1 = D2 = 1 and D1 = D2 ' 0.4, for the full span τ ∈ [−T
2 ,

T
2 ]. After
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the calibration of the time-delay, we thus expect a maximum two-particle interference

around τ = 0.

Experimental data for the HOM correlations are presented in Fig.5.6: in panel a), D1 =

D2 = 1, whereas in panel b) D1 = D2 ' 0.4. The first comment that is to be done is that

a dip in the HOM correlations is actually detected in both cases around the expected

point of zero-time delay τ = 0, while a plateau appears when |τ | → T
2 .'
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Figure 5.6: Hong-Ou-Mandel correlations in two configurations – HOM
correlations as a function of time delay between sources τ , in two different config-
urations: a) opened dot D1 = D2 = 1; b) reduced transmission D1 = D2 ' 0.4.
In both cases, the HOM dip is observed for τ ' 0. Exponential (red line) fits are
used to extract the width τe and amplitude of the peak γ. The sum of the HBT
contribution of each source is pictured by the blue point at (τ = 0) and with blur
giving the standard deviation. The agreement is very good in the lower panel, and
falls at less than two times (error . 15%) of the standard deviation in the upper

graph.
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In these measurements, the normalization was obtained by dividing the experimental

data points by the value of the measured noise on the plateau. This value should be

consistent with the summed HBT contributions of both sources. It has been measured,

by simply turning off alternatively one of the two sources, and the results are presented

in blue on Fig.5.6, with a blur symbolizing the error bar on this measurement. The

agreement is very good for the lower panel (D1 = D2 = 0.4), with the HBT contributions

exactly aligned with the plateau of the HOM correlation. For the upper panel, the

agreement is not as good (. 15%), but not unrealistic due to relatively large error bars.

Wavepacket model A first analysis, based on the wavepacket model, can be pro-

posed. Since the excitation is provided by the square wave generator, the emitted

wavepackets are supposedly exponential. Besides, they should also be identical: as

they contain one electron or hole, and the escape time τe is approximately the same

(D1 = D2), so that both the amplitude and decay time of the exponential wave-packet

are similar. Under these hypotheses, we have shown that ∆q(τ) is in theory of the form:

∆q(τ) = 1− e−|τ |/τe (5.18)

Taking into account some reduced visibility γ, and a small discrepancy τ0 in the evalu-

ation of zero-time delay, a fit is realized using the function:

∆q(τ) = 1− γe−|τ−τ0|/τe (5.19)

It gives access to both the visibility γ and an estimation of the width of the wavepacket

τe. We obtain the fits pictured by red solid lines in Fig.5.6, with fitting parameters

summarized in the following table 5.1.

a) D1 = D2 = 1 b) D1 = D2 = 0.4

γ = 0.72± 0.05 γ = 0.45± 0.05
τe = 36± 6 ps τe = 62± 15 ps
τ0 = 13± 4 ps τ0 = 11± 6 ps

Table 5.1: Summary of fitting parameters – Fitting by the exponential function
of Eq.(5.19), we evaluate the visibility γ, the wavepacket width τe and the residual
discrepancy τ0 on the evaluation of time delay. For D1 = D2 = 1, we observe a rather
good visibility γ = 0.72 for a short wavepacket of τe = 36 ps, while for D1 = D2 = 0.4,

visibility is reduced to γ = 0.45 for a longer wavepacket of τe = 62 ps.

5.3.1.1 Conclusions of this analysis

Several conclusions can be drawn from the preceding remarks.



5.3. Results and analysis 161

First of all, the quality of our synchronization protocol is assessed by the values of

τ0 ' 11 ± 4 ps that are relatively small, and in agreement with the expected precision

of our calibration. However, both values are similar, and could be the result of a slight

deviation, not understood, rather than an inaccuracy in the calibration.

Then, even though the SNR of our measurements is limited, the so-called Hong-Ou-

Mandel dips are clearly observed in both cases. The visibilities of respectively γ =

0.72 ± 0.05 and γ = 0.45 ± 0.05 are correct, but not excellent. Several factors, listed

below, could be taken into account. Some of them can be easily ruled out, others will

be examined later (section 5.3.2):

• Phase noise of the generator: the RF excitation can be a first source of loss of

visibility. Indeed, some residual jitter can exist on the RF generator’s clock, so that

the amount of time between two wavepackets is not exactly T/2 and quasiparticles

are emitted by both sources with a small fluctuating time-delay. Using a fast digital

oscilloscope, we have measured the jitter, which is on the order of 1 − 2 ps. This

effect can be modeled as averaging the HOM signal on a 2 ps time-window: it

causes a loss of 2% in the visibility, which is consequently not sufficient to explain

our data.

• Fluctuations and drifts on gate voltages Vg,i: As Vg is coupled electrostatically to

the position of the levels φ0,i, a jitter or a drift on the gate voltages Vg,i could lead

to averaging over different values of φ0,i, that is supposedly set to φ0,i = 0. This

aspect is reviewed in section 5.3.2 using Floquet simulations.

• Partial indistinguishability of sources: Even though calibrations have shown that

level spacings ∆1 ' ∆2 ' 1.4 K and transmission D1 ' D2, small discrepancies

(below 10%) can still be present. The overlap of the generated wavepackets could

then be reduced. Floquet simulations (section 5.3.2) enable to probe these effects.

• Decoherence due to interactions: As seen in Chapter 4, co-propagating edge chan-

nels are coupled via Coulomb interaction, leading to decoherence of electronic

wavepackets as propagation takes place between the source and the QPC. We

briefly examine the relevance of decoherence in section 5.3.2.4

Finally, we observe a variation of τe when D1 = D2 is varied. In the first case (D1 =

D2 = 1), τe = 36± 6 ps while in the second (D1 = D2 = 0.4), we find τe = 62± 15 ps.

This variation is in qualitative agreement with the fact that decreasing the transmission

of the dots increases the escape time. Knowing ∆1 = ∆2 ' 1.4 K, predictions of τe =
h

∆i
( 1
Di
− 1

2) can be realized and yield τ1 = τ2 = 17 ps and τ1 = τ2 = 69 ps respectively.

The prediction differs quite drastically in the case of the opened D1 = D2 = 1. This
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discrepancy can be explained by the non-ideal character of the excitation square voltage.

Indeed, we have already gathered strong evidences that the square signal only contains

in fact roughly a limited number of harmonics. Concerning the HOM experiment , the

major consequence is the limited rise time τr of the drive signal that in the end limits the

temporal width of the wavepacket to τe & τr. τr can be evaluated from the specifications

of the source, τr ' 30 ps, and has been verified on a fast digital oscilloscope, thus giving

a reasonable explanation to the discrepancy between prediction and measure of τe.

This general analysis has yielded interesting results that enable to interpret the Hong-

Ou-Mandel experiment. We then complete our analysis with the help of Floquet scat-

tering theory that will in the end unveil interesting interference effect between hole and

electrons that have no optical counterpart.

5.3.2 Floquet scattering model and finite-temperature regime

Contrary to the HBT experiment, most features of HOM correlations can be simply

understood in the wavepacket model. Nevertheless, the effect of temperature Tel can

not be easily taken into account in this picture and it is known to affect strongly HBT

correlations. As a consequence, in this section, we first model our experiment as accu-

rately as possible with the help of Floquet scattering theory. In particular we explore

parameters such as the aforementioned electronic temperature Tel but also the number

of harmonics in the drives Vexc,i, or slight discrepancies between D1, D2 or ∆1,∆2.

5.3.2.1 Hong-Ou-Mandel correlations in the Floquet formalism

We have seen in Eq.(5.2) how Hong-Ou-Mandel correlations could be expressed in terms

of the coherence functions, whose translation in Floquet formalism has been obtained

in chapter 2, in Eq.(2.23). If we introduce a Floquet matrix Vm for source 2, the

combination of these equations finally yields:

∆Q =
2e2

h

∑

p

∫
dε
(
fµ(ε)− fµ(ε− p

2
~Ω)

)

×
(∣∣∣
∑

m

U∗m(ε+
m

2
~Ω)Vp−m(ε+

m

2
~Ω)

∣∣∣
2

+
∣∣∣
∑

m

V ∗m(ε+
m

2
~Ω)Up−m(ε+

m

2
~Ω)

∣∣∣
)2

(5.20)

Though Eq.(5.20) emphasizes the symmetry between roles of sources 1 and 2, the struc-

ture of Eq.(5.3) is not easily distinguished as the HBT contribution do not appear clearly.
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However, if one takes Vm(ε) = δm,0 as if source 2 was a lead at equilibrium, one recovers

the HBT expression of Eq.(3.38).

This expression predicts perfect antibunching for identical emission condition. Indeed,

if ∀m,Um = Vm, Eq.(5.20) identifies with autocorrelations of the source ∆S(ω = 0)

(Eq.(2.67)) that is known to be zero, so that ∆q = 0. It is difficult however to derive

the analytical form of ∆q(τ) when the delay τ is varied. For identical desynchronized

sources, it is possible to show that Vm(ε) = Um(ε)e−imΩτ so that one can understand

that all terms appearing in summations in Eq.(5.20) progressively get out of phase when

τ increases. We have been able to simulate the expected correlations ∆q and to compare

them with our results.

5.3.2.2 Modeling of the experiment in the Floquet scattering theory

As in the HBT experiment, average current measurement have enabled to calibrate the

electronic temperature Tel = 90 ± 10 mK, the level spacings ∆1 ' ∆2 ' 1.4 K, as well

as transmissions evaluated at D1 = D2 = 1 and D1 = D2 ' 0.4. Comparison between

simulations and results are presented in figure 5.7, and discussed below. As discussed

above, Floquet scattering theory predicts perfect anti-bunching which is not observed in

our experiment. To take into account a reduced visibility, we applied a correcting factor

γ on the HOM two-particle interferences. The plotted quantity is then:

∆q(τ) = 1− γ(1−∆qFl(τ)) (5.21)

where ∆qFl(τ) is the results from Floquet theory simulations, and γ is chosen in agree-

ment with above exponential fits. Please note that γ is the only free parameter, as

all the others have been obtained during calibration stage. We applied γ = 0.7 in the

first graph (opened dot D1 = D2 = 1) and γ = 0.5 for the second (D1 = D2 ' 0.4).

Moreover, the square wave is reproduced with a finite number of harmonics: either two

odd harmonics (red curves) or three (blue curves).

The results are quite convincing and a good agreement is obtained for a choice of 2 or 3

harmonics. In the upper panel, simulations with two harmonics give better results. In

the lower panel, three harmonics yield surprisingly longer wavepackets that are in better

agreement with our observations. As already mentioned, with a driving frequency of

f = 2.1 GHz, this corresponds to a bandwidth of at least 6.3 GHz.
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Figure 5.7: Comparison between experimental results and simulations
of Floquet scattering matrix formalism – Experimental data (black dots) are
compared to simulations from Floquet scattering theory, with a square drive con-
taining two (red curves) or three (blue curves) odd harmonics. A correcting factor γ
in agreement with the gaussian and exponential fits is applied to take into account
a reduced visibility in the HOM dip. The upper panel (D1 = D2 = 1) shows a good
agreement with a two-harmonic signal, while in the lower panel (D1 = D2 = 0.4),

better concordance is found for 3 harmonics.

5.3.2.3 Visibilities from Floquet simulations

The parameters characterizing each source can be independently chosen enabling to

probe the effects of deviations on transmissions Di, level spacings ∆i and phases φ0,i.

Numerical tests have revealed that Di, ∆i and excitation drives Vexc,i have relatively

low impacts on the visibility. For deviations of 10% of these three parameters, loss of
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visibilities are on the order of 15%, and on the order of 5% when only one parameter

exhibits a mismatch. This is in fact expected: the precise shape of wavepackets are

indeed modified, but the global properties (average energy of emission ±∆i/2, energy

width Di∆i) are only slightly modified so that the overlap is not considerably altered,

visibilities remain close to unity, γ ' 1.

The situation is a bit different when tuning the positions of the levels in the dot φ0,i.

Keeping levels in φ0,1 = 0 in source 1, we have investigated the visibilities when φ0,2 is

changed. At D1 = D2 = 1, visibility remains perfect, as the density of states in the dot

is constant (since the dot is fully opened) so that Floquet simulations are necessarily

φ0,i-independent in that case. On the contrary, for D1 = D2 = 0.4, reduction toward

γ ' 0.65 are predicted for relatively low values of φ0,2 = π/8. The fluctuations of the

voltage sources (Yokogawa 7651) that deliver Vg,i are too low to explain such large values

of φ0,2. However drifts or jumps in gate voltages have sometimes be observed, which

could lead to observing such a loss in contrast. Though the value of φ0,i is regularly

verified and adjusted if necessary, this argument could explain the reduced visibility of

the curve at D1 = D2 = 0.4, with respect to D1 = D2 = 1 where the change of φ0,i is

irrelevant.

Finally, this study may give a reasonable answer to the difference in visibilities between

both HOM dips, but does not explain the overall limited contrast of these graphs.

Though some relevant ingredients might be missing, it could also be a first sign of

decoherence of the electronic wavepackets attributed to interactions between the different

edge channels, that we briefly analyze in the next paragraph.

5.3.2.4 Decoherence effects

Though a detailed study of decoherence is out of reach, it is possible to present a very

simple model that enables to extract a characteristic time over which decoherence takes

place. Following Degiovanni et al. [47], we suppose that, due to decoherence mechanisms

that we do not describe in detail, the coherence functions ∆G(e/h) and HOM correlations

∆QHOM are modified in the following manner:

∆G(e/h)(t, t′) −→ ∆G(e/h)(t, t′)D(t− t′) (5.22)

∆QHOM = −8e2f Re

[∫
dtdt′ ϕ1(t)ϕ∗2(t)ϕ∗1(t′)ϕ2(t′)D2(t− t′)

]
(5.23)

where D(t − t′) is a decoherence factor that varies over a typical scale τc being the

coherence time. When τc � τe, D(t− t′) ' 1 so that decoherence effects are negligible.

On the contrary, when τc � τe, D(t − t′) ' τc δ(t − t′): coherences in ∆G(e/h)(t, t′) are
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suppressed and only the stationary part t = t′ subsists. Then, the electronic state is

completely determined by the occupation numbers.

In this limit, it is possible to show that for identical wavepackets ϕ1 = ϕ2, decoherence is

responsible for a loss of visibility, with to first order γ ' τc/2τe. From our measurement,

we can then extract a typical coherence time of τc ' 50− 60 ps. Further measurements

with enhanced resolution are required to understand accurately the deep origin of loss

of contrast. However, this simple model emphasizes the necessity to produce short

wavepackets (on the order of a few tens of picoseconds) to be able to observe Hong-Ou-

Mandel interferences.

In the next section, we analyze a peculiar feature of the electronic Hong-Ou-Mandel

experiment, that relies on the existence of two types of carriers and that has consequently

no counterpart in conventional quantum optics.

5.3.3 Electron-hole HOM interferometry

So far, our analysis has demonstrated a deep analogy with its optics analog. Due to

their respective statistics, bosons and fermions differ on the sign of the HBT correlations

(positive cross-correlations for bosons, negative for fermions, see 3.1.3.1). When two

particles collide on a beamsplitter, the HOM effect tends to reduce the absolute value of

the cross-correlations so that a dip is observed in both situations, and graphs of Fig.5.1

b) and Fig.5.7 look very similar.

Nevertheless, we have seen the physics of electronic devices was enriched by the presence

of both interactions and two types of charge carriers (electron/hole). In this HOM

experiment, this rises the question of the interest of electron/hole collisions. Though

our data are not fully conclusive due to limited accuracy, we discuss this new way of

investigation that has no photonic counterpart. At first sight, such an experiment can

not work: in Eq.(5.7) electron and hole wavepackets do not overlap so that no HOM

effect is expected. However, Floquet scattering theory exhibits in Fig.5.7 (upper panel)

unexpected features for τ = ±T/2 when the electronic excitations are synchronized with

holes: ∆q > 1 in strong contradiction with previsions from the wavepacket model.

As a matter of fact, this behavior originates from finite temperature effects, that were

not discussed in previous sections. In Eq.(5.7), the electronic wavepacket have non-zero

components only for positive energies (ε > 0) since there are in fact no unoccupied levels

below the Fermi level (εF = 0) when Tel = 0. On the contrary, at finite temperature,

the electron wavepacket can actually spread below the Fermi level as there are, at a
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Figure 5.8: Electron/hole interferometry– As electronic temperature is in-
creased, partial interference between electrons and hole appear when synchronizing
an electron from source 1 with a hole from source 2, i.e. for a delay τ ' ±T/2. Tem-
peratures are respectively Tel = 0 K (black curves), Tel = 90 mK (red), Tel = 200
mK (green), Tel = 500 mK (blue). Upper panel: Non-normalized correlations ∆S4,4

for T = 1/2 are plotted. The HBT contribution of both sources decreases with
temperature, so that the value of the plateau (typically for τ ' ±T/4) decreases.
However, peaks start to appear as temperature increases around τ ' ±T/2. Lower
panel: When normalizing the total correlations ∆S4,4 by the HBT contribution, we
observe that the relative part of the electron/hole interference peak increases in ∆q,

as the overlap mediated by the Fermi distribution rises.

given energy ε, a fraction 1− f(ε) of empty levels. At the same time, a hole wavepacket

can spread over positive energies, so that electron and hole wavefunctions can partially

overlap when Tel 6= 0. Quite surprisingly, the overlap is then reinforced as temperature

increases.

Moreover, this effect should be more perceptible for wavepackets emitted at low energies.
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This gives an explanation for the fact that our measurements and simulations do not

seem to exhibit any particular feature in the case of high-energy excitations obtained

for D1 = D2 = 0.4, while e/h correlations may be observed for low-energy quasiparticles

(D1 = D2 = 1).

In fact, one can actually evaluate the HOM correlations at finite temperature in the

wavepacket model (see appendix A), and find [146]:

∆QHOM = 8e2f

∣∣∣∣
∫
dεϕ1(ε)ϕ∗2(ε)fµ=0(ε)

(
1− fµ=0(ε))

∣∣∣∣
2

(5.24)

It is important here to notice that the sign of ∆QHOM has changed, so that ∆Q ≥
∆QHBT,1 + ∆QHBT,2. At first sight, this result is very surprising: the HOM noise is

larger than the noise obtaining by partitioning independently both excitations. However,

we have to take into account that these HBT contributions are crucially reduced by

antibunching with thermal excitations when Tel 6= 0. In Fig.5.8, numerical simulations of

correlations ∆Q and normalized correlations ∆q are presented for different temperatures.

They tend to prove that in fact ∆Q is always limited by the zero temperature HBT

contribution, so that we have the following inequalities, that hold for e/h collisions:

∑

i=1,2

∆QHBT,i(Tel) ≤ ∆Q ≤
∑

i=1,2

∆QHBT,i(Tel = 0) (5.25)

This paragraph has revealed unexpected features of the HOM correlations that can only

occur at finite temperature. Besides, they also supply arguments to discuss the issue of

Coulomb interactions that could lead to similar effects,

5.3.4 Discarding Coulomb repulsion effects

One major objection that one may rise on the presented results lies in the fact that

the zero-delay HOM dip could be explained by interactions effects. Indeed, if electrons

strongly repel each other when colliding on the central QPC, they will in most cases exit

in two different outputs, and the HOM correlations will look similar to our experimental

results.

A way to discard the effects of interactions is to take advantage of electron/hole inter-

ferences. On Fig.5.9, schematics of electron/hole two particle interference are presented,

in the non-interacting and strongly interacting cases. As mentioned earlier, statistics

and interactions have the same effect on electron/electron collisions (Fig.5.9, panel a)

and b)). The situation is different for electron/hole collisions. First, strongly interacting

electron and hole should mimic a bunching effect as they would exit in the same output,
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either 3 or 4. Interference of electron and hole are difficult to picture in full generality

as they rely on finite temperature effects, but in the limit Tel = 0 they simply do not

feel each other (the wavepackets do not overlap) and are partitioned independently.'

&

$

%

1 2

3 4

P0,2 = P2,0 = 1/2

P0,2 = P2,0 = 1/4

P1e,1h = P1h,1e = 1/4

P1,1 = 1 P1,1 = 1

Strong interactionsNo interactions

e/e

e/h

collisions

collisions

no interactions strong interactions
e/e P1,1 = 1 P1,1 = 1
e/h P1e,1h = P1h,1e = P2,0 = P0,2 = 1/4 P2,0 = P0,2 = 1/2

Figure 5.9: Effects of interactions on Hong-Ou-Mandel correlations – Col-
lisions on a beamsplitter are schematized in four different case: e/e or e/h collisions
with or without interactions. The motion of particles is symbolized by red arrows,
from inputs 1 and 2 to outputs 3 and 4. Each possible output corresponds to green
dashes (arrow or circle), and the corresponding probability is detailed, and recalled
in a table. Only e/h collisions enable to distinguish interference effects from strong

interactions.

In this simple model that disregards the presence of thermal excitations, the probabilities

of the different possible outputs can first be computed. Then, the charge correlations

can be derived, similarly to the classical partitioning model of section 3.1.3. In the HBT
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experiment, a single electron/hole has an equal probability of going out in output 3

or 4, i.e. P10 = P01 = 1/2. Additionally, the possible outcomes of the HOM collision

experiment are summarized in Fig.5.9, consistently with previous discussion.

Then, one can compute the charge correlations in one of the two outputs 3 or 4 as in

section 3.1.3. To simulate the HBT contribution of the two sources, we double the HBT

contribution of one electron being partitioned.

Q4 = e(Ne,4 −Nh,4) (5.26)

Since there is only one output possible in the case of e/e collisions (see Fig.5.9), the

process is noiseless, so that 〈δQ2
4〉 = 0. For electron and hole ”bunching” due to strong

interactions, the process is also noiseless and 〈δQ2
4〉 = 0, as the charge exiting in the

outputs is always zero. In the last case, electron and hole are partitioned independently.

The fluctuations are then obtained by doubling the HBT fluctuations of one source.

From the results of section 3.1.3, we obtain that, for a transmission T = 1/2: 〈δQ2
4〉 =

2T (1− T )e2 = e2

2 .

In the end, we can translate these charge fluctuations into spectral density of noise by

the relation S4,4 = 2f〈δQ2
4〉. This analysis shows that strong interactions and inter-

ferences can not be distinguished easily by scrutinizing only e/e collisions, but that we

can instead make use of e/h correlations. In the presence of strong interactions, our

measurement should show the appearance of three dips in τ = 0 (e/e collisions) and

τ = ±T
2 (e/h collisions). This is not observed so that we can discard the interactions in

this experiment. This analysis validates our approach in terms of ”interference” instead

of ”collisions”.

Conclusion to chapter 5

In this chapter, we have studied an electronic analog of the Hong-Ou-Mandel experiment,

in which two synchronized sources emit mono-electronic excitations that can interfere

on a beamsplitter. Varying the time-delay τ between the arrivals of both excitations,

we observe a reduction (up to 60%) of the output correlations around τ = 0, as a

signature of the two-particle Hong-Ou-Mandel interference. It demonstrates the (partial)

indistinguishability of the excitations produced by the two independent sources. The

width of the Hong-Ou-Mandel dip is controlled by the length of the emitted wavepackets,

that can be tuned by changing the transmission of the quantum dot. A detailed analysis,

combining both Floquet scattering model and a wavepacket model has been carried out,

and the possible interplay of strong interactions has been discarded.
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At the same time, our analysis has shown how the underlying physics was enriched

by the presence of two types of excitations, electrons and holes. Although the energy

distribution of these excitations do not overlap, a novel partial interference effect can

occur for a non-zero electronic temperature Tel 6= 0. Contrary to electron/electron

collisions, a peak in the HOM correlations is then observed.

After the Hanbury-Brown & Twiss experiment, this constitutes a new assessment of the

validity of the quantum optics approach in quantum Hall edge channels. It provides a

way to probe in more details the properties of the emitted wavepackets and could reveal

interesting results on the consequences of interactions as propagation takes place in the

edge channels.
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6.1 Summary and conclusion

In this manuscript, we have scrutinized the realization of single to few electrons experi-

ments in quantum Hall edge devices. By means of quantum optics language, our setups

aim at proposing benchmarks experiments to address the problem of an elementary par-

ticle among the surrounding thermal excitations of the Fermi sea. The investigation

was carried out under two angles, quite different in the approach but closely related,

and relies on the ability to trigger the emission of single charges offered by a driven

mesoscopic capacitor.

6.1.1 Electron quantum optics in quantum Hall edge channels

The first approach consists in developing analogs of quantum optics experiments by

manipulating triggered wavepackets. The analogy spreads both on the experimental

side, with devices mimicking optics elements, and on the theoretical side, with the use

of coherence functions to analyse the results. It follows pioneering experiments [1–3] by

bringing them down to the single electron scale.

In a first experiment (chapter 3), we have reproduced the seminal Hanbury-Brown &

Twiss experiment and studied the partitioning of triggered electron/hole pairs by mea-

surements of current correlations. As explained by a classical model, it offers a way

to count the total number of quasiparticles emitted by our single electron/hole source,

information that can not be accessed easily without partitioning. However, this count-

ing is profoundly modified by the presence of thermal excitations that naturally exist in

the Fermi sea of the 2DEG. Indeed, quantum two-particle interferences between emit-

ted quasiparticles and indistinguishable counterparts in the Fermi sea occur and reduce

the Hanbury-Brown & Twiss signal. This effect has been used to probe the energy

distribution of the particles produced by the source, as it actually measures the over-

lap between the wavefunction of these particles and the Fermi equilibrium distribution.

Then, we have been able to give strong evidence that the generated energy distribution

can be tuned by the choice of parameters such as the excitation (sine or square waves)

or transmission of the quantum dot. For example, a square wave in the ideal single

charge emission regime has a tendency to generate high energy quasiparticles, while a

sine wave and an opened dot produce low-energy excitations.

In a second experiment (chapter 5), we have investigated the interference between mono-

electronic excitations emitted by two independent sources, thus reproducing the Hong-

Ou-Mandel scheme. When the excitations are synchronized so that they reach the QPC

at the same time, a reduction of the Hong-Ou-Mandel correlations has been recorded,
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proving the (partial) indistinguishability of the two quasiparticles. When the time-delay

between the excitations is varied, the HOM interference is modulated and controlled

by the temporal width of the wavepacket. By measuring the HOM correlations for two

different choices of parameters, we have observed a modification of the width of the

so-called Hong-Ou-Mandel dip reflecting a change in the escape time of the source.

These two studies have provided very interesting results on our single electron/hole

source, and confirmed the validity of this ”quantum optics” approach. However, as such,

it completely ignores Coulomb interactions which are known to be quite pronounced,

and which start to appear as the accuracy of our measurements is improved.

6.1.2 Channel-resolved microwave measurements of inter-channel in-

teractions

The second approach (chapter 4) tends to correct the lack of knowledge on inter-

actions. We take advantage of our mesoscopic capacitor to induce sinusoidal edge-

magnetoplasmons in the outer channel of ν = 2. The current that appears in the inner

edge channel thus results entirely from capacitive coupling between both edge channels

and yields information on it. Using a QPC and varying the drive frequency (instead of

the propagation length), we have been able to prove that the interactions were respon-

sible for the appearance of new collective eigenmodes with different velocities. We have

established (with a 10% accuracy) that the fast one is a charge mode, while the slow one

is neutral, in agreement with a strong coupling picture. Furthermore, we have extracted

from our measurements the dispersion relation of the slow neutral mode, the velocity

of the slow spin mode (in a low-frequency limit) and the bare Fermi velocity without

inter/intra-channel interaction. A careful study has proved the existence of a finite range

in the interaction, and our data are in reasonable agreement with a long-range model,

in which the range is on the order of the propagation length.

6.1.3 Complementarity and generality of our approaches

These two approaches are actually very complementary in the study of quantum Hall

edge devices. Channel-resolved experiments in the microwave domain gives access to

properties of interactions at a very fundamental level, that can be studied in the frame-

work of (chiral) Luttinger liquid theory. They shed new light on these phenomena,

known to be responsible for decoherence and relaxation in quantum Hall edge channels

and more specifically in electron quantum optics experiments. As such they constitute

a necessary and complementary step in the understanding of electron quantum optics

experiments, which are first established by assuming that interactions play a negligible
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role. Spectacular results have been obtained by neglecting interactions. However, the

more sophisticated the correlations measurements, the more tangible interactions. In

particular, first results on the Hong-Ou-Mandel experiment tend to demonstrate that

decoherence occur and is responsible for a reduced visibility. In a near future, improved

experimental resolution in the HOM and spectroscopy/tomography experiments should

give a very accurate way of probing interactions.

Besides, the generality of these methods has to be stressed. Radio-frequency measure-

ments have already been widely used to study the propagation of edge magnetoplasmons

[72–74, 77–81]. More recently, channel-resolved spectroscopy experiments have been per-

formed [49–51]. The method detailed in this manuscript unifies those two domains and

opens the way to more advanced studies of inter-edge channel relaxation.

The quantum optics protocols detailed in this manuscript have also a relatively broad

domain of application as they can be in principles applied to any type of electron source:

lorentzian Levitov pulses [38–40], single electron pumps [27, 33–36], etc. Besides, one can

imagine in a near future the development of spin-resolved electron quantum optics. Such

experiments could naturally be implemented in quantum Hall edge channels [147, 148]

or in the recently developed helical edge channels [149, 150] of 2D topological insulators.

6.2 Future developments

To conclude, we briefly review future experiments that are under current development in

our group. They will be under the responsibility of V. Freulon, PhD student, supervised

by G. Fève, B. Plaçais and J.-M. Berroir.

Spectroscopy and tomography protocols The obvious next step is to implement

the spectroscopy protocol [46] detailed in section 3.4. In the purpose of considerably

improving the signal-to-noise ratio, the dilution fridge will be equipped with cold ampli-

fiers developed in LPN Marcoussis by our long-time collaborator Y. Jin and the group

of F. Pierre. All ingredients would then be gathered to launch this new experiment, that

should give deep insights on the effects of interactions, as propagation occurs in the edge

channels. Besides, new techniques initiated by the group of F. Pierre [50] could help to

diminish the influence of interactions while working at filling factors ν ≥ 2. The idea

is to create loops by closing the inner channel on itself along the outer edge channel’s

path: thus an energy gap appears in the inner channel, on a scale Eg ∼ v/L, so that

energy exchanges are frozen in this energy window. The effects of interactions between

channels could then be tuned, and directly probed in current correlations.
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The tomography protocol seems currently a bit further ahead. High-frequency harmon-

ics are difficult to produce and the detection scheme has to be modified. However,

this perspective could be facilitated by new theoretical developments. For example,

our collaborators in Lyon, supervised by P. Degiovanni have obtained first results on a

generalization of Wigner functions [128, 134, 151] to electronic systems, that makes the

analysis of tomography easier: non-classical behavior can for example be clearly identi-

fied. Moreover, the tomography protocol relies on a two-dimensional Fourier analysis,

that could be in fact replaced by a wavelet picture. Lorentzian pulses could then be

interesting candidates for such wavelets.

Neutral modes Aside from these experiments, the group wishes to pursue the study

of interactions in quantum Hall systems. On a dedicated sample, one can first imagine

longer propagation length. With the same bandwidth, several charge oscillations could

then be recorded. One particular goal would be to study the characteristics of neutral

modes appearing in the fractional Hall regime (ν = 4/3 for example) and that are

currently under investigation using other techniques [152–155].





Appendix A

Coherence functions:

complements and formulary

In this appendix, we review some aspects of the general theoretical framework of this

work. First we give details on the wavepacket model and derive in particular the co-

herence functions of a mono-electronic wavepacket at both zero and finite temperature.

Then we list up useful definitions and formulas related to coherence functions. Finally

we recall the links between coherence functions and Floquet scattering theory.

A.1 Wavepacket above the Fermi sea

A.1.1 Coherence function at Tel = 0

The quantum state is obtained by creating the electron above the Fermi sea, so that the

state reads:

|ϕe〉 =

∫
dt ϕe(t)ψ

†(t)|Fµ〉 (A.1)

The normalization is set by the relation:

〈ϕe|ϕe〉 =

∫
dtdt′ ϕ∗e(t)ϕe(t

′)〈ψ(t)ψ†(t′)〉µ (A.2)

=

∫
dε |ϕe(ε)|2(1− f(ε)) = 1 (A.3)

that reduces to
∫∞

0 dε |ϕe(ε)|2 = 1 at zero temperature.

The main difficulty in the calculation of G(e) lies in the quantum average over the state

|ϕe〉. The previous equation shows how to relate this to an average over |Fµ〉 where one
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can then use Wick’s theorem :

G(e)(t, t′) = 〈ϕe|ψ†(t′)ψ(t)|ϕe〉 (A.4)

=

∫
dt1 dt

′
1 ϕ
∗
e(t
′
1)ϕe(t1)〈ψ(t′1)ψ†(t′)ψ(t)ψ†(t1)〉µ

=

∫
dt1 dt

′
1 ϕ
∗
e(t
′
1)ϕe(t1)〈ψ(t′1)ψ†(t′)〉µ〈ψ(t)ψ†(t1)〉µ

+〈ψ†(t′)ψ(t)〉µ
∫
dt1 dt

′
1 ϕ
∗
e(t
′
1)ϕe(t1)〈ψ(t′1)ψ†(t′1)〉µ (A.5)

We consider here the case of the single-shot emission of an electronic excitation at rather

high energies: we assume that the particle is represented by a wavepacket ϕe such that in

the energy domain ϕe(ε) =
∫
dt eiεt/~ϕe(t) is concentrated around an energy εe � kTel.

Thus, the expression of G(e)(t, t′) can be greatly simplified. Making use of Eqs.(A.17)

and (A.18), the first term is transformed as follows:

∫
dt1 dt

′
1 ϕ
∗
e(t
′
1)ϕe(t1)〈ψ(t′1)ψ†(t′)〉µ〈ψ(t)ψ†(t1)〉µ

=

(∫
dt1dεdε1 ϕe(ε1)

(
1− fµ(ε)

)
e−iε1t1/~eiε(t1−t)/~

)

×
(∫

dt′1dε
′dε′1 ϕ

∗
e(ε
′
1)
(
1− fµ(ε′)

)
e−iε

′
1t
′
1/~eiε

′(t′1−t′)/~
)

=

(∫
dεdε1 ϕe(ε1)

(
1− fµ(ε)

)
δ(ε− ε1)e−iεt/~

)

×
(∫

dε′dε′1 ϕ
∗
e(ε
′
1)
(
1− fµ(ε′)

)
δ(ε′ − ε′1)e−iε

′t′/~
)

(A.6)

' ϕ∗e(t
′)ϕe(t) (A.7)

The keypoint is the small overlap of fµ(ε) with ϕe(ε):
∫
dεϕe(ε)fµ(ε) ' 0. The sec-

ond term can also be simplified using the normalization condition (Eq.(A.2)) and the

coherence function of an ideal one-shot electron source finally reads:

G(e/h)(t, t′) = G(e/h)
µ (t− t′) + ϕ∗e(t

′)ϕe(t) (A.8)

∆G(e/h)(t, t′) = ϕ∗e(t
′)ϕe(t) (A.9)

A.1.2 Coherence function at Tel 6= 0

Calculations can easily be performed at finite temperature as well in the wavepacket

model for a finite temperature. The results presented here justify the calculations of

section 5.3.3.

Using Wick’s theorem, the second term is here again simplified via the normalization

condition. Please note that it is now written
∫
dε |ϕe(ε)|2(1− f(ε)) = 1. The first term
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is slightly modified as
∫
dεϕe(ε)fµ(ε) 6= 0. Starting from Eq.(A.6), we see that if we

introduce ϕ̃e(ε) = ϕe(ε)
(
1− fµ(ε)

)
, we easily get:

G(e/h)(t, t′) = G(e/h)
µ (t− t′) + ϕ̃∗e(t

′)ϕ̃e(t) (A.10)

∆G(e/h)(t, t′) = ϕ̃∗e(t
′)ϕ̃e(t) (A.11)

The coherence function keeps the same form at finite temperature, though it has to be

written using a modified wavefunction ϕ̃e.

A.2 Coherence functions: formulary

Definitions

{b̂(t), b̂†(t′)} = δ(t− t′) (A.12)

G(e)(t, t′) = 〈b̂†(t′)b̂(t)〉 (A.13)

G(h)(t, t′) = 〈b̂(t′)b̂†(t)〉 (A.14)

G(e/h)(t, t′) =
∑

n

e−iΩntG(e/h)
n (τ) (A.15)

G(e/h)
n (τ) =

∫
dε eiετ/~G(e/h)

n (ε) (A.16)

Coherence functions of the Fermi sea

G(e)
µ (t− t′) =

∫
dε

h
fµ(ε)eiε(t

′−t)/~ (A.17)

G(h)
µ (t− t′) =

∫
dε

h
(1− fµ(ε))eiε(t−t

′)/~ (A.18)

e/h relations

G(e/h)(t, t′) = G(e/h)∗(t′, t) (A.19)

G(e)(t, t′) + G(h)(t′, t) = δ(τ) (A.20)

G(e)
n (τ) + G(h)

n (−τ) = δ(τ)δn,0 (A.21)

∆G(e)
n (τ) + ∆G(h)

n (−τ) = 0 (A.22)

G(e)
n (τ) = G(e)

−n
∗
(−τ) (A.23)
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G(e)
n (ε) + G(h)

n (−ε) = δn,0 (A.24)

∆G(e)
n (ε) + ∆G(h)

n (−ε) = 0 (A.25)

G(e)
n (ε) = G(e)

−n
∗
(ε) (A.26)

Useful relation

〈b̂†(ε′)b̂(ε)〉 =
1

h

∫
dtdt′ e

i
~ (εt−ε′t′)〈b̂†(t′)b̂(t)〉 (A.27)

=
∑

n

G(e)
n

(ε+ ε′

2

)
δ(ε′ − ε+ n~Ω) (A.28)

A.3 Floquet scattering theory: formulary

Definitions and unitarity

b̂(t2) =

∫
dt1 U(t2, t1)â(t1) (A.29)

U(t′, t) =
∑

m

Um(τ)e−imΩt (A.30)

U(ε′, ε) =

∫
dt′dtU(t′, t)e

i
~ (ε′t′−εt) (A.31)

b̂(ε′) =

∫
dε U(ε′, ε)â(ε) (A.32)

b̂(ε) =

∫
dt√
h
eiεt/~b̂(t) (A.33)

U(ε′, ε) =
∑

m

Um(ε′ − m

2
~Ω)δ(ε′ − ε−m~Ω) (A.34)

b̂(ε′) =
∑

m

Um(ε′ − m

2
~Ω)â(ε′ −m~Ω) (A.35)

∑

m

U∗m(ε)Um+n(ε+
n

2
~Ω) = δn,0 (Unitarity) (A.36)

Coherence functions in Floquet formalism

G(e)(t, t′) =

∫
dt1dt

′
1 U(t′, t′1)U∗(t, t1)G(e)

µ (t1 − t′1) (A.37)

G(e)
n (ε) =

∑

m

U∗m(ε)Um+n(ε+
n

2
~Ω)fµ(ε− m

2
~Ω)) (A.38)
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Semi-classical heuristic model

In this appendix, we give details on the probabilistic model of the source, first introduced

by A. Mahé in his thesis [83] before generalization and analytical treatment by Albert

et al. [115]. This model supplies a formula for the noise of a single charge emitter that

can then be compared with Floquet scattering theory and experimental data.

B.1 Rules of single particle emission

First, we detail the construction of the semi-classical model of the source, based on a

few probabilistic rules:

• One level only is considered in the dot. The charge in the dot can only take two

values, 1 or 0.

• Inside the dot, the electron performs turn in a time τ0. After each turn, the

electron has a probability b to escape.

• Each half-period of the square drive is divided into N turns, T/2 = Nτ0. Emissions

of electron can only occur if the charge is 1 in the dot, and only one emission process

is permitted during one half-period.

• After the end of the first of the half-period, the second half-period is described

with symmetric rules concerning the absorption of electrons: absorptions can only

take place if the dot is empty, with a limit of one absorption per half-period.

These simples rules can be simulated easily as demonstrated in the following section.

Nonetheless, it is important to understand the limits of this model beforehand, even

though most of them are quite obvious. First, this description only applies for a square
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voltage, for which emission and absorption are clearly triggered by the sudden shifts of

potential. Moreover, this incompressible time increment τ0 render this model null when

a time-scale reaches τ0. This can be the case for D → 1, for which τe ∼ τ0. Last, this

model does not take into account the presence of the Fermi sea: no temperature can be

simply attributed to the particle reservoir that provides electrons and holes to empty of

fill the dot.

B.2 Instantaneous current and average current

The previous probabilistic rules can be simulated easily with pseudo-random number

generators. The successive emission/absorption of holes gives rise to an AC current

I(t), pictured on Fig.B.1. A peak (resp. a dip) occur whenever an electron is emitted

(resp. absorbed). The emission rules ensure that every absorption is followed by an

emission and vice-versa, as observed on Fig.B.1 (left panels). Averaging I(t) over a

large amount of periods yields the average current < I(t) >, displaying exponentially

decaying currents (right panels of Fig.B.1).

These predictions can then be compared with the experimental results of section 2.2.2.2.

The decay time τe is in good agreement (for b < 0.3, see following remark) with the

formula τe = τ0(1
b − 1

2) so that we can identify b = D, τ0 = h/∆. The transferred charge

per half-period Qt can also be computed from the previous model and corroborates the

formula Qt = e tanh( 1
4fτe

).

For small values of b (Fig.B.1, panel a, with b = 0.025), some emission/absorption

events are missed, τe � T/2 and the computed transferred charge is Qt = 0.56 e.

For intermediate values of b, (Fig.B.1 b, b = 0.1), all charge transfers are observed

(Qt = 0.99 e), but the emission can occur at anytime in the dedicated half-period,

with τe ∼ T/2 For large values of b (Fig.B.1 c, b = 0.3), each emission/absorption occur

immediately after the beginning of the dedicated half-period, this corresponds to a short

escape time τe as compared to the half-period T/2.

B.3 Current autocorrelations

This heuristic model enables to generate sequences of emission/absorption processes,

with probabilistic rules that seem to reproduce accurately experimental observation on

the average current. Statistical studies of the generated currents I(t) can be pursued

beyond average current: following the precursory work of A. Mahé [83], we here present

the main features of the current correlations of this peculiar single charge emitter. This
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Figure B.1: Current and average current, computed from the heuristic
model – For different values of p, instantaneous current (6 periods) and average
current (1 period, averaged over 106 periods) are presented. In grey dashed line,
an exponential fit shows a perfect agreement with simulations.The parameters are:

T = 100τ0, with p = 0.025 (panel a), p = 0.1 (b), and p = 0.3 (c)

helps to reveal the physical meaning of previous Floquet calculations. Besides, M. Albert

et al. have realized a comprehensive study of fluctuations in this semi-classical, including

the computation of the full counting statistics [115], but their results are not described

in this manuscript.
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B.3.1 Computation of the noise

We compute the noise from Eq.(2.51), by replacing the quantum average 〈· · ·〉 by a

classical ensemble average < ··· >. Two contributions, defined hereinafter, are calculated

separately:

C(τ) = < δI(t′)δI(t) >
t

(B.1)

= < I(t′)I(t) >
t −< I(t′) >< I(t) >

t
(B.2)

= C1(τ)− C2(τ) (B.3)

Depending on the escape probability b = D, the correlators C1 and C2 vary, but it is

possible to understand each of these contributions and build up an interpretation of the

fluctuations of the single charge emitter. We emphasize however the fact that thermal

fluctuations are not contained in this description since the thermodynamics of the Fermi

sea is not pictured. Consequently, the noise predicted is directly equal to the excess

noise:

∆S(ω) = S(ω) =

∫
dω C(τ)eiωτ (B.4)

The correlator C1 is the average of the correlation of instantaneous currents I(t), I(t′).

Since only one charge (at most) is emitted during one half-period, for small non-zero

τ , I(t + τ) = 0 if I(t) 6= 0 (and vice-versa) so that C1(τ) is reduced to a Dirac peak

in τ = 0 for small values of τ . The amplitude of this peak is directly proportional to

the transferred charge Qt as C1(τ = 0) directly counts the average number of charges

in the current. This Dirac peak is a very important feature in this reasoning: it is the

signature of single particle emission. Any additional charge would spoil this very clear

signature in the correlations. For larger τ , close to multiples of T/2, one emitted electron

will be correlated with the preceding and following electrons/holes, giving a series of

negative contributions (e/h correlations) alternating with positive contributions (e/e

correlations). Each contribution is a peak or dip of width τe, reflecting the uncertainty

on the position of the following/preceding electron/hole.

The correlator C2 is the average over t of the product of the average currents < I(t) >

and < I(t′) >. Consequently, it consists of an alternate series of peaks and dips of

width τe and period T . In the long time regime, charges emitted by the source are not

correlated, and C1 and C2 compensate: C1(τ) = C2(τ)⇔ C(τ) = 0. The scale on which

these correlations are lost depends on the escape time τe.
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Figure B.2: Autocorrelations, computed from the heuristic model –

For different values of p, contributions C1(τ) = < I(t′)I(t) >
t

(black), C2(τ) =

< I(t′) >< I(t) >
t

(red) and C = C1 − C2 (green) are presented. In panel a),
p = 0.025, corresponding to shot noise regime. In panel b), p = 0.3, corresponding
to phase noise regime. The difference in the amplitude of the Dirac peak at τ = 0
reflects the fact that Qt � 1 in panel a) (low transmission) while Qt ' 1 in panel
b) (higher transmission). In the meantime, the escape time τe is longer in a) than

in b) so that the decay is faster in b).

B.3.2 Shot noise regime

For small escape probabilities, the escape time τe becomes comparable or larger than the

half-period T/2, and some emission events do not occur (Fig.B.1, panel a). Consequently,

for small τ , C2 presents a very wide peak, with a very small amplitude. C1 being a Dirac

peak, C(τ) ' 0 for τ 6= 0, and the noise power spectrum is white, except around ω = 0.

We thus recover a shot-noise regime. Neglecting C2, and writing C1(τ) = 2e2f Qte δ(τ),

with Qt ' e
4fτe

we get a simple expression for S in this regime:

Sshot(ω) =
e2

τe
= 4e2f × P (B.5)

where P = Qt/e is the probability of charge emission. This expression is similar to the

usual shot noise S = 2eI with I = 2ef × P .

B.3.3 Phase noise regime

For large probabilities b = D we recover the phase noise limit of a perfect single charge

emitter: if b is large enough so that all charges escape, P = 1 and shot noise vanishes.

Then, thus average current is written < I(t) >= e/τe e
−t/τe (in the first half-period).

With this expression, S is calculated:

Sphase(ω) = 4e2f2 ω2τ2
e

1 + ω2τ2
e

(B.6)



188 Appendix B Semi-classical heuristic model

As already mentioned, when all charges are emitted, a residual finite noise is still present,

stemming from the fundamental uncertainty on the emission time, here given by the

escape time τe.

B.3.4 Analytic formula

M. Albert et al. [115] have obtained an analytic formula for the current autocorrelations,

valid for all values of b. The heuristic rules detailed in section B.1 can be translated

into a master equation (on the charge in the dot) that can be solved. One then obtains

the noise power spectral density that interpolates between shot noise and phase noise

regimes:

S(ω) = 4e2f tanh
( 1

4fτe

) ω2τ2
e

1 + ω2τ2
e

(B.7)

=
Qt
e

ω2τ2
e

1 + ω2τ2
e

(B.8)

=
1

4e2f
Sshot(ω)Sphase(ω) (B.9)



Appendix C

Interactions and bosonization at

ν = 2

In this appendix, we present rudiments of bosonization theory. It enables to derive the

equations of motion of bosonic fields representing edge magneto-plasmons. Both short

and long range models can then be properly introduced.

C.1 Coulomb interactions and bosonization

C.1.1 Equation of motion of the chiral bosonic fields

Focusing on the ν = 2 case, the Hamiltonian for the two edge channels coupled through

Coulomb interaction can be written as:

H = H0 +Hint (C.1)

H0 = −i~
∑

α

vα

∫
dxΨ†α(x)∂xΨα(x) (C.2)

Hint =
1

2

∑

αβ

∫
dxdy Uαβ(x, y)ρα(x)ρβ(y) (C.3)

where Ψα(x) is the field operator in channel α = 1, 2 and ρα(x) = eΨ†α(x)Ψα(x) the

charge density. H0 is the free Hamiltonian from which we deduce the free evolution

described in section 4.4.1 and where we assumed that the velocity vα could be different

in each channel. Hint describes both the intra-channel Coulomb interaction for α = β

and the inter-channel Coulomb interaction for α 6= β.

189
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This problem can be solved by relating the density along each edge to the derivative

of a bosonic field, ρα(x) = − e√
π
∂xφα(x) [156, 157]. Using the equation of charge con-

servation, the electrical current in edge α can also be related to the bosonic field by:

iα(x, t) = e√
π
∂tφα(x, t).

The Hamiltonian can be rewritten in term of the bosonic field 1:

H = ~
∑

α

vα

∫
dx (∂xφα(x))2 +

e2

2π

∑

αβ

∫
dxdy ∂xφα(x)Uαβ(x, y)∂xφβ(y), (C.4)

giving the following equation of motion:

(∂t + vF∂x)φα(x, t) =
e
√
π

h
uα(x, t) (C.5)

uα(x, t) =
∑

β=1,2

∫
dy Uαβ(x, y)ρα(y, t) (C.6)

uα(x, t) is the potential in edge α which depends on the charge densities in each edges

through the long range potential Uαβ(x, y).

C.1.2 Short range interactions

We will consider two case, in the first one, the potential is short range, Uαβ(x, y) =

Uαβ δ(x− y). The second case will describe an heuristic long range potential, where the

potential is taken as uniform, that is Uαβ(x, y) does not depend on x and y. Both cases

can be understood by a model of capacitive coupling between the edges. In the first

case, uα(x, t) can be related to the charge densities at the same position through the

inverse capacitance matrix C−1:

uα(x, t) =
∑

β

C−1
αβ ρβ(x, t) (C.7)

C−1
αα = Uαα ≥ 0 C−1

αβ = Uαβ (C.8)

C =

(
C11 −C
−C C22

)
(C.9)

where Cαβ is the geometrical capacitance matrix per unit length describing Coulomb

interactions in edges 1 and 2, see Fig.4.15.

1This Hamiltonian only contains the energy associated with the density fluctuations and not the one
associated with the background charge (also called zero modes).
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C.1.3 Long range model

In the heuristic long range model, the potential of the edge channels is assumed to be

uniform, uα(x, t) = uα(t) and related to the total charges inside the wires, Qα(t) =
∫
dx ρα(x, t) by the total capacitance matrix Cαβ:

uα(t) =
∑

β

C−1
αβQβ(t) (C.10)

Calculations can then be performed in a similar way.

C.2 Complements

C.2.1 Dissipation in the short-range regime

As for the long-range interaction, dissipation can be added in the zero-range model

(section 4.4.2.1). Adding the term γ in the same manner in the equation of motion

directly leads to a modified scattering matrix:

SEMP (ω, l) = ei(ω+iγ(ω))lV−1

(C.11)

V = vF I +
e2

h
C−1 (C.12)

S21 =
1− exp(i ωl

v0n
(1 + iωτr))

2
(C.13)

Once again we obtain S21 → 1/2. However no quantitative agreement can be ob-

tained with this description: the additional term γ does not modify the fact that no

ω-dependence appears in the velocity.

C.2.2 Links between short and long range models

To find the link between short and long range models, it is natural to proceed as follows:

the short-range picture is seen as the succession of N copies of the long range model, on

a length δl such that δl → 0, N → ∞ keeping Nδl = l constant. Chirality suppresses

possible effects of multiples-wave interferences between all these copies, acting like single

scatterers. We thus expect a relation of the type:

Sshort
EMP (ω, l) = lim

N→∞
δl→0

[
S long
EMP (ω, δl)

]N
(C.14)
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δτ and δτ0 are both proportional to δl, so that δτ0
dτ = τ0

τ is constant and δτ̃ ∝ δl when

δl→ 0. Besides, in the limit δl→ 0,

S21 ' −iωτ̃ with δτ̃ =
δτ0

2 + δτ0/δτ
=

δτ0

2 + τ0/τ
(C.15)

S long
EMP (ω, δl) '

(
1 + iωδτ̃ −iωδτ̃
−iωδτ̃ 1 + iωδτ̃

)
(C.16)

' I + iωδτ̃(I− σx) (C.17)

where σx is the Pauli matrix. Thus, we obtain:

Sshort
EMP (ω, l) = lim

N→∞
δl→0

(I + iωδτ̃ (I− σx))N (C.18)

= eiωτ̃(I−σx) (C.19)

Sshort
EMP (ω, l) = eiωτ̃

(
cosωτ̃ −i sinωτ̃

−i sinωτ̃ cosωτ̃

)
(C.20)

We then set 2
v = 1

vn
− 1

vρ
' 1

vn
= τ̃

l so that the matrix finally writes

Sshort
EMP (ω, x) = ei

ωx
v

(
cos ωxv −i sin ωx

v

−i sin ωx
v cos ωxv

)
(C.21)

This matrix is then identical to the short-range scattering matrix obtained in chapter 4,

4.4.2.1.

C.2.3 Coupling between regions before and after the Quantum Point

Contact

One parasitic effect that may completely ruin previous analyses is the existence of a long-

range coupling between regions before and after the central QPC that isolates inner and

outer channels before readout in ohmic contact 1. Since our experimental observations

do not corroborate a picture of short-range interactions, it is of great interest to analyse

whether long-range interactions couples this two regions.

We have then try to evaluate quantitatively this coupling. To this end, a fourth mea-

surement configuration is used: the QPC is set to pinch-off, and the excitation is set on

a second source, placed symmetrically with respect to the second QPC (see Fig.C.1).

In an ideal setup, no current is to be measured in ohmic contact 1, since the QPC is

pinched. However, if regions situated before and after QPC are capacitively coupled,
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should be measured in contact (a). Recording the small non-zero current in this
contact helps to evaluate the parasitic coupling between regions placed before and

after the QPC, symbolized by red arrows.

We model the results with a law comparable to an RC-circuit : Spar ' −iωτpar. Our

measurements show that the coupling between excitation/propagation region, and the

region after the QPC are coupled with a time constant τpar = 5.5 ps, which corresponds

to circa τ̃ /6. This relatively weak parasitic effect is then ignored in our analysis.





Appendix D

Complements on experimental

setup

D.1 Summary of configurations of the custom homodyne

detection.

f (GHz) Couplers Source Filters on reference Filters on signal Amplifiers

0.7–2.2 0.5–7 GHz Pulse 0.5–2 GHz 1800+ 0.1–4 GHz

1870+ DC–850 MHz

0.9–2.2 0.5–7 GHz Pulse 0.5–2 GHz 1800+ 0.1–4 GHz

DC–850 MHz

2–4 2–18 GHz P & S 3800+ 3800+ 0.1–4 GHz

2.6–6 2–18 GHz P & S 6000+ 6000+ 0.1–4 GHz

4–9 2–18 GHz Sine 4–8 GHz

7–13 2–18 GHz Sine 8–12 GHz
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Sine : Sine wave-generator Anritsu 3692C

Pulse : Pulse wave-generator Anritsu 1810A

LNA 0.1–4 GHz : Miteq JS2-00100400-10-10A

LNA 4–8 GHz : Miteq AFS-040000800-07-10P-4

LNA 8–12 GHz : Miteq AMF-4F-12001800-13-10P

Hybrid couplers 0.5–7 GHz : Krytar 3005070

Hybrid couplers 2–18 GHz : M/A-COM 2032-6371-00

Filters DC-850 MHz : Mini-Circuits VLP-11

Filters 1800+ : Mini-Circuits VLF-6000+

Filters 3800+ : Mini-Circuits VLF-3800+

Filters 6000+ : Mini-Circuits VLF-1800+

Filters 0.5–2 GHz : Micro-Tronics BPM50604
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[6] G. Fève. Quantification du courant alternatif : la bôıte quantique comme source
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[19] E. Bieri, M. Weiss, O. Göktas, M. Hauser, C. Schönenberger, and S. Ober-

holzer. Finite-bias visibility dependence in an electronic Mach-Zehnder interfer-

ometer. Physical Review B, 79(24):245324, June 2009. URL http://prb.aps.

org/abstract/PRB/v79/i24/e245324.

[20] S. Oberholzer, M. Henny, C. Strunk, C. Schönenberger, T. Heinzel, K. Ensslin, and

M. Holland. The Hanbury Brown and Twiss experiment with fermions. Physica E:

Low-dimensional Systems and Nanostructures, 6(1-4):314–317, 2000. URL http:

//www.sciencedirect.com/science/article/pii/S1386947799001629.

[21] H. Kiesel, A. Renz, and F. Hasselbach. Observation of Hanbury Brown-Twiss

anticorrelations for free electrons. Nature, 418(6896):392–4, July 2002. ISSN

0028-0836. doi: 10.1038/nature00911. URL http://www.nature.com/nature/

journal/v418/n6896/full/nature00911.html.

[22] C. K. Hong, Z. Y. Ou, and L. Mandel. Measurement of subpicosecond time in-

tervals between two photons by interference. Physical Review Letters, 59(18):

2044–2046, November 1987. ISSN 0031-9007. doi: 10.1103/PhysRevLett.59.2044.

URL http://prl.aps.org/abstract/PRL/v59/i18/p2044_1.

[23] G. Fève, Pascal Degiovanni, and Th. Jolicoeur. Quantum detection of electronic

flying qubits in the integer quantum Hall regime. Physical Review B, 77(3):035308,

January 2008. URL http://prb.aps.org/abstract/PRB/v77/i3/e035308.

[24] S. Olkhovskaya, J. Splettstoesser, M. Moskalets, and M. Büttiker. Shot Noise of a
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Résumé : Cette thèse est consacrée à la manipulation d’excitations mono-électroniques

dans un conducteur quantique balistique, par l’implémentation d’expériences d’optique quan-

tique électronique avec la résolution d’une charge élémentaire. Une capacité mésoscopique pro-

duit à la demande des excitations monoélectroniques dans le canal de bord externe de l’effet Hall

quantique.

Nous mesurons les fluctuations de courant après partitionnement des excitations sur une lame

séparatrice électronique, dans un analogue de l’expérience de Hanbury-Brown & Twiss, afin de

révéler les excitations neutres (paires électron/trou) qui peuvent accompagner la charge pro-

duite. Les excitations thermiques dans la mer de Fermi sont alors responsables d’interférences

à deux particules qui permettent d’obtenir des informations sur la distribution en énergie des

quasiparticules émises par la source. A l’aide de deux sources indépendantes et synchronisées,

nous générons deux quasi-particules indiscernables, qui interfèrent sur une lame séparatrice dans

un analogue de l’expérience de Hong-Ou-Mandel. La visibilité de ce phénomène est possiblement

limité par la décohérence des paquets d’ondes électroniques par interaction avec l’environnement,

notamment les autres canaux de bords. En mesurant le couplage capacitif entre deux canaux

de bords co-propageant, nous caractérisons les effets de l’interaction coulombienne et met-

tons en évidence un mode neutre de propagation. Ces expériences constituent les premières

implémentations d’expériences d’optique quantique électronique avec des charges uniques, et per-

mettent d’envisager des expériences plus complexes comme la tomographie d’un paquet d’onde

mono-électronique.

Mots clés : physique mésoscopique, optique quantique électronique, effet Hall quantique,

dynamique électronique cohérente subnanoseconde, source d’électrons uniques, fluctuations de

courant.

Abstract : This thesis is devoted to the implementation of quantum optics experiments in

a ballistic quantum conductor, with single charge resolution. A mesoscopic capacitor produces

on-demand single-electron excitations in the outermost edge channel of quantum Hall effect.

We measure current fluctuations after partitioning of excitations on an electronic beamsplit-

ter, in analogy with the Hanbury-Brown & Twiss experiment, so as to unveil neutral excitations

(electron/holes pairs) that can accompany the emission of the charge. Thermal excitations in

the Fermi sea are then responsible for two-particle interferences that yield information on the

energy distribution of the generated quasiparticles. Using two independent and synchronized

sources, we generate two indistinguishable quasiparticles that interfere on a beamsplitter as in

the Hong-Ou-Mandel experiment. The visibility of this phenomenon could be limited by deco-

herence of the wavepackets due to interactions with the environment and especially with other

co-propagating edge channels. By measuring the capacitive coupling between two co-propagating

edge channels, we characterize the effects of Coulomb interaction on propagation and highlight

a neutral mode of propagation.

These experiments constitute the first implementations of electron quantum optics experi-

ments with single charges. They pave the way to more complex experiments such as the tomog-

raphy of a mono-electronic wavepacket.

Keywords : mesoscopic physics, electron quantum optics, quantum Hall effect, subnanosecond

coherent electron dynamics, single electron source, current fluctuations.
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