N

N

Quantifying Biometric Life Insurance Risks With
Non-Parametric Smoothing Methods

Julien Tomas

» To cite this version:

Julien Tomas. Quantifying Biometric Life Insurance Risks With Non-Parametric Smoothing Methods.
Methods and statistics. Universiteit van Amsterdam, 2013. English. NNT: . tel-00778755

HAL Id: tel-00778755
https://theses.hal.science/tel-00778755

Submitted on 21 Jan 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://theses.hal.science/tel-00778755
https://hal.archives-ouvertes.fr

Quantifying Biometric Life
Insurance Risks
With Non-Parametric Smoothing Methods

Julien Tomas






Quantifying Biometric Life
Insurance Risks
With Non-Parametric Smoothing Methods



X
UNIVERSITEIT VAN AMSTERDAM

Amsterdam School of Economics

© 2013, Julien Tomas

ISBN: 978 90 9027305 1

Typeset by TEX.

This work was carried out
in the Amsterdam School of
Economics Research Institute.



Quantifying Biometric Life
Insurance Risks
With Non-Parametric Smoothing Methods

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus
prof. dr. D.C. van den Boom
ten overstaan van een door het college voor promoties ingestelde
commissie, in het openbaar te verdedigen in de Agnietenkapel

op vrijdag 18 Januari 2013, te 10:00 uur

door
Julien Tomas

geboren te Valence, Frankrijk.



Promotor: Prof. dr. R. Kaas (Universiteit van Amsterdam)

Co-promotor:  Prof. dr. F. Planchet (Université Lyon 1 - ISFA)

Overige leden: Dr. K. Antonio (Universiteit van Amsterdam)
Prof. dr. A. Charpentier (Université du Québec a Montréal)
Prof. dr. M.J. Goovaerts (Universiteit van Amsterdam)
Prof. dr. A. De Schepper(Universiteit Antwerpen)
Prof. dr. M.H. Vellekoop (Universiteit van Amsterdam)

Faculteit Economie en Bedrijfskunde



To my grandfather, Antonio
To my parents, Elisabeth and Jean-Paul

Avec amour






Preface

The days of solitary research are long gone, and this research could not
have been possible without the help and support of a great number of people.
This thesis is the result of a fruitful and comprehensive cooperation with
my co-promotor Frédéric Planchet whom I would like to thank first and fore-
most. His deep multidisciplinary knowledge combined with immense energy
and enthusiasm, friendly attitude and endless patience were the main in-
gredients of my academic development. Furthermore, I would like to thank
my promotor Rok Kaas for making this project possible and encouraging my
research. Rob’s pleasant cooperation, helpful remarks and sustained preci-
sion have increased the quality of this thesis. I am also very grateful to the
committee, Katrien Antonio, Arthur Charpentier, Marc Goovaerts, Ann De
Schepper and Michel Vellekoop for inspecting my thesis.

I would like to thank in particular Pascal Schoenmaekers who introduced
me into the world of life insurance, in 2009. Thanks for making my stay at
the Financial Solutions Life and Health divisional unit in Munich Reinsur-
ance Company into an inspiring and a productive experience that laid the
basis of this thesis.

I also thank the University of Amsterdam for providing their generous
financial support.

It has been a great pleasure to work at the Amsterdam School of Eco-
nomics Research Institute. I would like to express my special gratitude to
the staff members, Ida Delponte, Kees Nieuwland and Andries Jansen for
their excellent assistance. I am grateful to all my (former) colleagues for
creating a pleasant and constructive atmosphere, in particular Willem Jan
Willemse, Roger Laeven, André Klein, Angela van Heerwaarden and Henk
Wolthuis. Thanks to my office-mates, Zhenzhen, Jan and Frank.

I would like to thank my friends, Guillaume, Jamaal, Frangois, Héléne,
Philipe, Marianne. Their encouragements have always be a source of power
and they show me that there is a lot of beauty in the world, even in just
small and simple things.

I would like also to thank Stephane and Nicolas for giving to my stay
in Amsterdam a typical French taste, especially when playing our numerous
jeux de boules along the Amstel.



vi PREFACE

I would like to gratefully thank Sun for her forbearance and for being
always close to me while I have spent the last years of this dissertation.

And the last but most important acknowledgment. I am extremely grate-
ful to my grandfather, Antonio and my mother and father, Elisabeth and
Jean-Paul. They have always been ready to show their understanding and
trust for the interests that I pursue, to the greatest extent they can have.
I am indebted to them. Their unreserved love and support for these years
far from their home is what makes this dissertation valuable. Despite the
actual distance and the separation, I have always felt them next to me.

Julien Tomas
Amsterdam, December 2012



Contents

Preface

Contents

List of Publications

1 Context and motivations

1.1

1.2

1.3

Context . . . . . . . . e
1.1.1 The origins of life tables and population dynamics
studies . . . . ...

1.1.2  Measures of mortality: Notation . . . ... ... ...
1.1.3 Portraying mortality over age and over age and time .
1.1.4 The irregularities in the progression of the observed

rates . .. o. .o L e e
Motivations . . . . . . . ..
1.2.1  Getting out of a procrustean bed of fixed parametriz-

ation . . . ...

1.2.2 Natura non agit per saltum . . . .. ... .. ... ..

1.2.3  Smoothers and parameters selection . . . . ... ...

1.2.4 Historical review of the development of smoothing ap-
proaches . . . . . . ...

Outline of the thesis . . . . . . . . . .. ... ... .. ....

2 Local regression methods

2.1

2.2

2.3

Introduction . . . . . . ... ... L L
2.1.1 Premises. . . . . . . . . ... ...
2.1.2 Transforming thedata . . . . .. ... ... ... ...
The local regression estimate . . . ... .. ... ... ....
2.2.1 Uni-dimensional case . . . . . . . .. ... ... ....
2.2.2 Two-dimensional case . . . . ... ... ... .....
The weighting system . . . . . . ... ... .. ... .....

2.3.1 The weighting system shape . . . . . . ... ... ...
2.3.2 The smooth weight diagram . . . . . . ... ... ...
2.3.3 Effective dimension fo a linear smoother . . . . . . . .

vii

vii

xi

13
14

14
15
16

18
21



viii

CONTENTS

2.3.4 Specific treatments at the boundaries . . . . ... .. 34
2.3.5  Comparison with the Whittaker-Henderson model . . 36

2.4 Statistical properties . . . . . ... ..o 40
2.4.1 Assessment of bias and variance . . ... .. ... .. 40
2.4.2  Construction of pointwise confidence intervals . . . . . 43
2.4.3 A bias and variance trade-off . . . ... ... ... .. 44

2.5 Fitting criteria and choice of the smoothing parameters . . . 49
2.5.1 Criteria based on prediction error . . . . . . . .. ... 50
2.5.2  Criteria based on estimation error . . . . . ... ... 54
2.5.3 Plug-in method and theoretical bandwidth . . . . . . 56
2.5.4 Graphical Diagnostics and heuristics . . . . . . . . .. 57

2.6 Applications . . . . . ... 60
2.6.1 Thedata ... ... ... .. .. ... . ... ..., 60
2.6.2  Choice of the constellation of the smoothing parameters 60

2.6.3 Plots of the fits on the transformed scale. . . . . . . . 62
2.6.4 Plots of the smoothers . . . . . ... ... ... .... 63
2.6.5 Plots of the graduated series and diagnostic checks . . 64

2.7 Comparisons with the Whittaker-Henderson model . . . . . . 65
2.8 Summary and outlook . . . . .. ... ... 68
Local likelihood approaches 71
3.1 Imtroduction . . . . . . ... ... ... 71
3.2 The local likelihood model . . . . . . . ... .. ... ... .. 73
3.2.1 Localizing generalized linear models . . . . . . .. .. 73
3.2.2 The choice of the link function . . ... ... .. ... 75
3.2.3 Local likelihood equations . . . . . . .. .. ... ... 76
3.2.4 Fisher’s scoring method . . . . ... ... ... .. .. 78

3.3 Statistical properties . . . . . ... L oL 81
3.3.1 Assessment of bias and variance . . .. ... ... .. 81
3.3.2 Pointwise confidence intervals . . . . . ... ... ... 84
3.3.3 Effective dimension of a non-linear smoother . . . . . 85

3.4 Diagnostics for local likelihood . . . . .. .. ... ... ... 85
3.4.1 Classical selectors . . . . ... ... ... ....... 85
3.4.2 Plug-in method and theoretical bandwidth . . . . . . 88

3.5 Model for the probabilities of death . . . . . . ... ... ... 89
3.5.1 The local likelihood binomial model . . . . . . .. .. 89
3.5.2 Estimation method . . . . . .. .. ... ... L. 90
3.5.3 Statistical Inference . . . ... ... ... ... ... 92
3.5.4 Applications . . . . ... 92

3.6 Model for the forces of mortality . . . ... ... ... .... 98
3.6.1 The local likelihood Poisson model . . . . . . . .. .. 98
3.6.2 Estimation method . . . . . . . .. ... ... ... 100
3.6.3 Statistical Inference . . . . . ... ... ... ... .. 101

3.6.4 Applications . . .. ... oo 102



CONTENTS ix

3.7 Summary and outlook . . . . ... ... L. 108
4 Adaptive local kernel-weighted log-likelihood 109
4.1 Introduction . . . . . . . . . . . ... ... 109
4.2 Motivations for an adaptive smoothing . . . . . . . ... ... 110
4.2.1 Influence of the boundaries on a global criterion . . . 110
4.2.2 The nature of therisk . . . ... ... ... ...... 114
4.3 Adaptive Methods . . . . . . ... ... ... ... ... .. 116
4.3.1 Intersection of confidence intervals . . . . ... .. .. 117
4.3.2 Local bandwidth factor methods . . . ... ... ... 118
4.4 Application . . . . ... 120
4.4.1 Analysis of the changes in mortality . . . .. ... .. 121
4.4.2 Bi-dimensional local likelihood . . . . .. ... .. .. 122
4.4.3 p-splines framework for count data . . . . .. ... .. 124
444 Thedata . ... ... ... ... ... .. ... ..., 127
4.4.5 Smoothed surfaces and fits . . . .. ... ... ... 127
4.4.6 Analysis of theresiduals . . . . . .. ... ... ... .. 131
4.5 Comparisons . . . . . . . ... 132
4.5.1 Tests to compare graduations . . . . . .. ... .. .. 132
4.5.2 Comparing figures summarizing the lifetime probab-
ility distribution . . . . . ... ..o L oL 133
4.6 Summary and Outlook . . . . . . ... ... .. ... ... .. 137
5 Entity specific prospective mortality tables 139
5.1 Introduction. . . . . . . . . ... ... ... ... ... 139
5.2 Notation, assumption, data and approach . . . .. ... ... 142
52.1 Notation. . . . .. ... ... ... ... ... ... 142
5.2.2 Piecewise constant forces of mortality . . . ... ... 142
523 Thedata .. ... ... ... .. ... . ... 143
524 Theapproach . . . . . ... ... ... . ........ 144
5.3 Extrapolative method . . . .. ... .. ... ......... 147
5.3.1 Functional principal components analysis . . . . . . . 148
5.3.2 Extrapolation of the time-varying coeflicients . . . . . 149
5.4 Construction of a global prospective table . . . . . ... ... 150
5.4.1 The aggregated data . . . . . ... ... ... ... .. 151
5.4.2 Comparisons of the fits . . ... ... ... ... ... 151
5.4.3 Tests and quantities to compare graduations . . . . . 152
5.4.4 Extrapolation of the smoothed surfaces and completed
tables . . . . . ... 155
5.4.5 Model risk and validation of the final table . . . . . . 160
5.5 Adjustment to entity specific mortality experience . . .. .. 166
5.5.1 Entity specific mortality experience . . . . . . . . . .. 166

5.5.2  Poisson GLM with age and calendar year interactions 167
5.6 Summary and outlook . . . . ... ... ... L. 170



References
Samenvatting
Summary

Résumé

CONTENTS

173
183
185

187



Xi

List of Publications

J.Tomas (2011). A local likelihood approach to univariate graduation
of mortality. Bulletin Francais d’Actuariat, 11(22), 105-153.

J.Tomas (2012a). Univariate graduation of mortality by local polyno-
mial regression. Bulletin Francais d’Actuariat, 12(23), 5-58.

J.Tomas (2012b). Essays on boundaries effects and practical considera-
tions for graduation of mortality by local likelihood models. Insurance
and Risk Management, forthcoming.

J.Tomas and F.Planchet (2012a). Multidimensional smoothing by
adaptive local kernel-weighted log-likelihood with application to long-
term care insurance. ISFA - Laboratoire SAF Working paper - 2012.8
- Submitted to Insurance: Mathematics & Economics.

J.Tomas and F.Planchet (2012b). Essays on the construction and vali-
dation of specific prospective mortality tables. ISFA - Laboratoire SAF
Working paper.



xii



Chapter

Context and motivations

1.1 Context

Outside of the world of property or liability insurance, life insurance occu-
pies a separate place that it deserves in more ways than one. It emerges as
an atypical island teeming with singularities. We can report for example a
legal environment of its own, dedicated accounting rules, a specific technical
approach, and more generally, principles of functioning that diverge from the
foundational philosophy of other branches. In a life insurance contract, the
concepts of injury, repair or compensation remain absent in the contractual
terms. The guarantees are fixed and freely consented in advance at the time
of subscription. Benefits are paid without reference to a financial damage
sustained or caused. This positioning also leads to the idea that one can
give a value to life and this heretic idea was not easy to admit.

In the following, we present the heuristic evolution of the analysis of
mortality. We discuss briefly the mathematical developments and mental
changes toward viewing death as a proper subject of human and mathemat-
ical investigation and not the concern of god alone. With few exceptions it
was mathematicians and astronomers who built the mortality table that de-
serves to be considered as one of the crowning achievements of the scientific
revolution.

1.1.1  The origins of life tables and population dynamics studies

«From these Considerations I have formed the Adjoyned Table,
whose Uses are manifold, and give a more just Idea of the State
and Condition of Manking, than nay thing yet extant that I know
of. It exhibits the Number of People in the City of Breslaw of
all Ages, from the Birth to extream Old Age, and thereby shews
the chances of mortality at all Ages, and likewise how to make
a certain Estimate of the value of Annuities for Lives, which
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hitherto has been only done by an imaginary valuation: Also the
Chances that there are that a Person of any Age proposed does
live to any other Age given; with many more, as I shall hereafter
shew.».

Halley (1693, p.600)

The idea that one can give a value to life runs up through the history

against ethical, religious and political considerations leading to prohibit this
life insurance, viewed as intrinsically immoral, malum omen non est provid-
endum.
In the late Middle Ages, the traditional christian conception of death forbids
speculation about it, and thus the idea that there may be laws - other than
god - that can explain it. This christian view of a divine order - which was
that a man died by the will of god who offered the paradise as a reward or hell
as a damnation - seemed to respond to an older belief for which death was
following physical and deterministic laws. As recalled by Charpentier (2007)
the first civilization of Mesopotamia believed in the concept of climacteric
age, meaning a critical year marked by fatal accidents in which astrologists
claim that considerable alterations appear in the body that leads to illness
and death. The climacteric ages are multiples of seven or nine where the
danger of death is much larger than the others. This idea, born from astro-
logists, is found as well in Europe and Japan, and among philosophers and
mathematicians like Gottfried Wilhem Leibniz, see Rohrbasser and Véron
(1998, p.32). Briefly, the idea that there are physical laws for the death or
accidents, although contested by the christians, is relatively old.

Insurances linked to life expectancy requires the existence of tables. How-
ever at the beginning, such tables have appeared to answer other needs.
The idea has sprouted in Rome. In the early 3rd century, the jurist Ulpian
(Dometius Ulpianus), perhaps to be considered as the father of actuaries, de-
vised a table for the legal conversion of a life annuity to an annuity certain
and identified that the values of annuities should be based on the age of the
beneficiaries. But it was much later that these tables were created. To build
a table, one needed a census to know the distribution of a population by age
(with reliable years of birth). If some brilliant mathematicians have done
much for the conceptualization of probabilities, we must remember that is a
merchant, John Grant and his friend William Petty, one of the founders of
the Royal Society in London, who first conceived the notion of a mortality
table. However, Le Bras (2000) asks who between John Grant, and William
Petty has first conceived this notion? The question would be insignificant
but for a philosophical issue about the role of demography. Le Bras (2000)
explains that John Grant represents the plebeian who works with a scientific
method away from the oligarchy. While William Petty is close to the political
power, he has succeeded in the oligarchy instead of following a modest and
detached existence such as expected from scientists. In other words, by the
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choice of its founding hero, demography is defined either as a pure science
or as an instrument at the service of a state, because we should remember
that since the 17th century, the population represents the wealth of nations
and the power of the states. William Petty understood that this new science
referred to a political project and not the converse.

The political origin of the life table is English, but the economical ori-
gin appeared in the Netherlands. Johan de Witt, in 1671, implemented
a method rather pragmatic and empirical to calculate the annuities. His
method allowed many mathematicians to address the issue by introducing
probabilities on the duration of human life.

If the notion of life expectancy has arisen for the first time in 1746 in the
work of Antoine Deparcieux, "Essai sur les probabilités de la durée de la vie
humaine" see Charpentier (2007), Véron and Rohrbasser (2000, p.11) note
that calculations done by Lodewijk Huygens appear in his mail in 1669 with
his brother Christiaan where he estimated that his brother will live until the
age of 56 and half, and him only until age 55.

At Breslau (belonging to the Habsburg empire, now in Poland and called
Wroclaw), registers of births and deaths according to gender and age had
been kept since the end of the 16th century. Hald (1990) recalls that a
prominent evangelical pastor and scientist, Caspar Neumann, used the list,
in 1687 and the following years, in his attempts to fight popular superstitions
about the influence on health of the phases of the moon and the climacteric
ages.

Neumann sent his results to Leibniz, who in 1689 informed Henry Jus-
tell, secretary of the Royal Society in London, of Neumann researches, see
Dupéaquier (1985). Justell therefore wrote to Neumann who responded by
sending his observations for each of the years 1687-1691. The Society asked
Edmond Halley to analyze the data and Halley (1693) presented a table with
the number of people living in an age group. From this material, some figures
of modern science hypothesized the first age patterns of adult mortality and
deduced the associated life tables, i.e, the corresponding survivors.

In 1740, Nicolaas Struyck pointed out that the value of annuities should
be calculated from life tables based on observations (as done by Halley) and
not from hypotheses (as done by de Witt) see Hald (1990, p.395). However,
he considered the construction of Halley’s table as unsatisfactory because
Halley had access to the number of deaths only and not to the corresponding
number of living. He wished to provide a reliable life table for annuitants.
His observations comprise 794 male and 876 female annuitants who bought
their annuities in Amsterdam in 1672-1674 and 1686-1689. For each five-
year group, he tabulates the number of annuitants entering at a given age
and the number of survivors at any later age. Assuming that mortality at
a given age did not change over time, he summed the number exposed to
risk and the number of deaths for each age group. He calculated the rates
of mortality from which he derived a table that corresponds to the form still
used today. He stressed that the mortality of females was smaller than that
of males and presented the first life tables for males and females separately.
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Perhaps the first statistical results to be taken seriously were the North-
ampton tables of 1780, devised by Richard Price. He worked from parish
registers in Northampton, and produced corresponding tables. Price’s tables
were not very conservative for the annuities. In 1808 the British government,
hard-pressed by war and inflation, decided to issue annuities based on Price’s
Tables. Hence it lost millions of pounds because people lived longer than was
implied by the table, see Hacking (1975, p113-114). But the first table that
became the usual standard of British and American insurance companies for
nearly a century is the table known as the Carlisle table, built in 1815 by
Joshua Milne on the basis of statistics from parishes in Carlisle.

This element of the panoply of the perfect actuary is so essential today
that it is sometimes hard to imagine that it has only more than two centur-
ies of existence. In fact the invention was not so simple, as we have seen.
It is the result of the meeting of two favorable events. The first is the sci-
entific invention of probabilities. The second, much more down to earth, is
the growing need for actuaries to refine their calculation of annuities. Thus,
from 1662 to 1766, from Grant and Petty to Depracieux and Milne, through
Leibniz and the Huygens brothers, Halley and Struyk, actuaries on one side
and mathematicians and astronomers on the other tackled the same ques-
tions about the duration of life, each bringing his stone to the edifice, and
finally built in 100 years, after many hesitations, the mortality table.

Figure 1.1 compares the survival functions at birth issued from the dif-
ferent tables. We note that the survival curves move towards a rectangular
shape. We use the term rectangularization to describe this feature: the more
the time passed, the more the probability of death becomes flat at younger
ages (one died rarely before 60 years), then much more brutal one the end.
The point of maximum downward slope of the survival curve progressively
moves toward the very old ages. This feature is called the expansion of the
survival function, see Pitacco et al. (2009, p.53).

Survival function (base 100)

100 1 F 100

e Graunt (1662)

. Halley (1694)

80 - % Northampton (1780) L 8o
-\\\ —-=-=- Carlisle (1815,

o T
60 - e - 60

40 | o T e T F 40

20 T T 20

Figure 1.1: Survival functions at birth issued from the different tables. Source: Hald
(1990), Halley (1693), Gompertz (1825) and Gompertz (1871)
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Around 1870, demographers particularly in Germany felt the need for a
simple chart to present population dynamics, especially in view of establish-
ing life table formulas. This chart is known as the Lexis Diagram, but it is
a misnomer according to Vandeschrick (2001).

To be useful, this chart must allow for location on one plane of three co-
ordinates used to classify deaths and survivors, namely: the date, the age
and the moment of birth.

Briefly, there were three solutions for this problem: In 1869, Gustav Zeuner
worked out a first solution. In 1870, Otto Brasche proposed a second one
with networks of parallels; his version is the most currently used now. In
1874, Karl Becker proposed a third one. In 1875, Wilhelm Lexis took back
Zeuner’s diagram and just added networks of parallels. In spite of all this,
the name Lexis Diagram is now used universally.

e

2
1

2
. , ,
< b @ )
; A 4B 3
%) @
5 5
) )
0 0 6 6
t t+1 t+2 t-

1 t t+1 t+2

1

Time Time

Figure 1.2: Left panel: Lexis diagram containing life-times for birth cohorts of t—1 and
t. Each individual is presented as a line in a time-age plane, and points denote the death
for a given individual. Right panel: Lexis diagram containing counts of events pertaining
to birth cohorts of t — 1 to t.

Figure 1.2, left panel, shows a simplified version of a Lexis diagram. In
this diagram, an individual life history is drawn as a line segment with slope
1. This line starts on the horizontal axis at the time of birth and ends at the
time of death. The value on the vertical axis is the individual’s age. Hence a
life-time starts at zero (birth) and ends at the age of death. In this way data
are properly represented according to the three demographic coordinates.
The individual life-time can be regrouped and hence the Lexis Diagram also
allows a summary of aggregated death and population data by age, period
and cohort. For instance, in Figure 1.2, right panel, from the birth cohort of
six births during period ¢: (1) death in ¢ and five survivors to the beginning
of the following period ¢ + 1; (2) deaths at age 0 in ¢t + 1 and three survivors
to age 1; (1) death to the cohort at age 1 during ¢ + 1 and two survivors to
the beginning of the period t+2. The Lexis Diagram has become a standard
tool for summarizing population dynamics.
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1.1.2 Measures of mortality: Notation
Probabilities of survival and death

This section makes precise the notation used in this dissertation to quan-
tity the biometric life insurance risks. We refer to Pitacco et al. (2009) for
more details. The age at which a person will die is obviously unknown. At
most we can evaluate, for a particular population, the risk of death in a
given time interval. Death is then viewed as an event whose occurrence is
probabilistic in nature and it is natural to resort to a mathematical frame-
work and probabilities calculus to describe the life time of individuals.

We consider a person aged x, and denote by 7T, the random variable re-
presenting his/her remaining lifetime. In actuarial notation, probabilities
like P[T,, > h] and P[h < T, < h + k] are usually involved. When a life
table is available, these probabilities can be immediately derived from the
life table itself, provided that the ages and durations are integers.
In life insurance mathematics, a specific notation is commonly used for the
probabilities of survival or death. The notation for the survival probability
is as follows,

npz = P[T, > h],where h is an integer. (1.1)

In particular ;p, is simply denoted p,. Trivially gp, = 1.
The notation for the probability of death is as follows,

hkGe = Plh < T, < h+ Kl (1.2)

If A = 0, the notation g, is used. In particular, when h = 0 and k£ = 1, the
symbol ¢, is commonly adopted. Clearly, gq, = 0.
Note that in all symbols, the right-hand side subscript denotes the age being
considered. Conversely, the left-hand side subscript refers to the duration,
whose meaning depends on the specific probability addressed. The purpose
of measuring the life span or conversely the mortality is to enable inferences
to be drawn about the likelihood of death occurring within a specific popu-
lation during a specific period of time. It is natural, therefore, for the basic
measure to be expressed in proportional terms. The denominator (of which
the numerator is the relevant number of deaths) is commonly referred to
as population at risk or exposed to risk. To be specific, let us assume that
we are given the number of deaths recorded, d,, and the number of indi-
viduals initially exposed to the risk of death, I, all aged x last birthday,
and that our experience, for simplicity, is limited to this single age x, where
x=1,2,...,n. The observed estimate of the one-year probability of death
is denoted by q.,

Gz =1— l””l“ :(lli. (1.3)

x x

In Figure 1.2, let Z4p the number of life-lines crossing segments AD and
Yapcp the number of deaths in the square ABCD, then equation (1.3) is
Yapcp/Zap. For the observed annual survival probability, we have

Pzzl—%-
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In general for the observed survival probability, we have,

o o la:+h
hPz = Pz Pz+1---Pz+h—1 = L
T
while for the observed probability of dying,
le +k

kazl_kple_

ly '
and

lx+h - lw—&—h—&-k
h|kQ$ =h Pz kQz+h = 1 .
T

Survival function

Suppose that we have to evaluate the probability of survival and of dying
when age and times are real numbers. Tools other than the life table are
then needed. We move now to an age-continuous context.

We call S(t) the survival function and define it for ¢ > 0 as follows,

S(t) = P[Ty > 1],

where Ty denotes the random lifetime for a newborn. Considering the prob-
ability (1.1), we have

PToy>x+h
]P)[Tw > h] = ]P)[TO >z + h|TO >] = M,
and thus
_ S(z+nh)
hPz = S(J?) .

For the probability (1.2), we obtain

_ S(x+h)—S(@+h+k)
hlk9r = S(x) )

and in particular,
S(z) — S(z+ k)
ke = — a7~
S5(x)

Turning back to the mortality table, we note that since [, is the expected
number of people alive at age x out of a cohort initially composed of [
individuals, we have

l, = loP[Tg > JJ],

and in terms of the survival function, I, = pS(z), provided that all indi-
viduals have the same age-pattern of mortality described by S(z). Thus,
the [,’s are proportional to the values which the survival function takes on
integer ages x, and so the mortality table can be interpreted as a tabulation
of the survival function, see Pitacco et al. (2009, p.52).
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Forces of mortality

We consider the probability of an individual age = of dying before age
z +t (with z and ¢ real numbers), namely ;q,. The force of mortality (or
mortality intensity) is defined as

PlT, <t .
(px:hmg—l tq

t—0 t t—>0

hence it represents the instantaneous rate of mortality at a given age z. In
terms of the survival function,

_d gy
Oy = ‘g(ig) = —%lnS(x),

Sta) = oxp (- [ u ).

The behavior of the force of mortality in the interval (x,x + 1) can be
summarized by the central death rate at age x,

SO

Central death rates

o folS(x+ )g@w+udu: S(x) —S(x+1) (1.4)
‘ fo (x + u)du fo (x +u)du

The integral fol S(z 4 u)du can be approximated using the trapezoidal rule.
In Figure 1.2, let Z4p and Zpc, the number of life-lines crossing segments
AD and BC respectively, and Yapcp the number of deaths in the square
ABCD, then the central death rate is approximated by Yapcp/((Zap +
ZBc)/2), and
— S(z)—S(z+1)
T (S(x) + S(x+1))/2

With the assumption of constant force of mortality - frequently adopted in

actuarial science calculations - which assumes @, = ¢, for 0 <t < 1, we
obtain, from (1.4),

My = Qg

1.1.3 Portraying mortality over age and over age and time
Portraying mortality over age

Figure 1.3 displays the one-year transformed crude probabilities of death
(year 2008), logit scale, for ages x = 0, 1, ...,98 and each gender for the dutch
population provided by the Human Mortality Database (2012). The Human
Mortality Database (HMD) was initiated by the Department of Demography
at the University of California Berkeley, USA, and the Max Planck Institute
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for Demographic Research, Rostock, Germany. This international project
provides detailed mortality and population data that can be accessed online
for research purposes.

Male Population Female P

Transformed Mortality Rate (logit scale)
A
L
A

U T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Attained age (years)

Figure 1.3: Transformed crude one-year probabilities of death, logit scale, for Dutch
Male (left panel) and Dutch females (right panel) in 2008. Source: HMD.

From Figure 1.3, we recognize the typical shape of a mortality curve.
Mortality is highest at the extremes of age. Once the newborn infant has
survived the hazard of the first days of life, the rate of mortality falls rapidly.
Most of the deaths after the first days are due to exogenous causes, mainly
infections and until recent times when this component has shrunk to very
small proportions, the rate was a sensitive index of social conditions and of
public health progress. During childhood the risk of death is very small,
being very largely confined to that of the occasional lethal infection, which
modern treatments have made extremely rare, and severe accidental injuries
to which child risk recklessness or lack of adult care sometimes leads. In
adolescence, the impact and strain of industrial and urban life bring a rise
in mortality. These and other factors, inherent in the social and economic
environment and individual ways of life, reacting upon constitutional weak-
ness, lead to a continuing increase in the risk of death as age advances. At
later ages, the wearing out of the human frame rather than inimical qualities
of the environment becomes the dominant cause of mortality, see Benjamin
and Pollard (1980).

We show in Figure 1.3 the difference in the patterns of mortality for the two
genders. The death rates for females are lower than those for males at all
ages. (Before 1890 there was an excess in the death rate of females at ad-
olescence and early adult ages mainly associated with the heavier mortality
from tuberculosis in girls). Briefly, the higher mortality of males may be
explained in medical terms as follows, see Benjamin and Pollard (1980) for
more details.

In infancy and early childhood, boys are generally more vulnerable to
some birth hazards (prematurity, malformation, birth injury), to infection
(possibly as a result of some biological factors) and to injuries (possibly as a
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result of more vigorous and venturesome activities). These are the principal
causes of death at those ages.

In early and middle adult life, the principal causes of death are acci-
dents and violence, heart diseases and cancers. The higher risk for accidents
must be regarded as occupational in the broader sense of including, as com-
pared with females, more outdoor movement in traffic for instance, as well
as greater industrial hazards.

At more advanced ages, the process of physical deterioration and lessen-
ing resistance to disease associated with general wear and tear appear to
proceed faster in men. Age for age, cerebral hemorrhages, arterial diseases,
cancers (especially of the lungs) and bronchitis take a heavier toll of males
than females. Some, at least, of this excess mortality has been self inflic-
ted by cigarette smoking. The contemporary increase in industrial countries
of mortality cancer of the lung and coronary arterial disease (especially for
men) has been exercising considerable influence on the shape of the curve of
death rates with age.

Portraying mortality over age and time

Figures 1.4 and 1.5 display the mortality surfaces and level plots for the
Dutch males and females respectively. We see that the surface is subjected
to period shocks corresponding to wars, epidemics, summer heat waves, and
so on. It is apparent that dramatic changes in mortality have occurred over
the 20th century, as illustrated by the downward trends and variations in
shape.

logit(q,)

Year

Age

Figure 1.4: Surface and level plot of the observed one-year probabilities of death, logit
scale, for Dutch males, period 1850-2008. Source: HMD.

Figures 1.6 and 1.7 depict the observed annual probabilities of death, for
some selected periods. The mortality has decreased for both sexes and all
ages without interruption, primarily due to the control of infectious diseases.
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logit(a)

Year

Figure 1.5: Surface and level plot of the observed one-year probabilities of death, logit
scale, for Dutch females, period 1850-2008. Source: HMD.

This reduction is stronger for the young ages. The decrease over time at ages
20-30 for the females reflects the rapid decline in childbearing mortality.
However, the hump in mortality around ages 18-25 has become increasingly
important especially for the young males. The increase of life expectancy
has continued to the late 20th century with the decline in mortality at the

highest ages, mainly due to the reduction of mortality from cardiovascular
diseases.

Observed mortality rates (logit scale), Dutch males

--=-=- 1880 - 1890
- 1920 - 1930

77777 1960 - 1970

\ —— 2000 - 2008

logit(ay)

0 10 20 30 40 50 60 70 80 90 100

Figure 1.6: One-year probabilities of death, logit scale, for Dutch males from period life
tables 1880-1890, 1920-1930, 1960-1970 and 2000-2008. Source: HMD.

The trend in the observed annual probabilities of death are displayed in
Figures 1.8 and 1.9, for Dutch males and females respectively. When we
examine Figure 1.8, we see different behavior for age-specific probabilities
of death affecting Dutch males. At age 20, a rapid reduction in mortality
took place after a peak in the early 1940s due the World War II. However,
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Observed mortality rates (logit scale), Dutch females

logit(q,t)
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Figure 1.7: One-year probabilities of death, logit scale, for Dutch females from period
life tables 1880 — 1890, 1920 — 1930, 1960 — 1970 and 2000 — 2008. Source: HMD.

since the 1950s, only modest improvements have occurred. This is typical for
ages around the accident hump, as explained in Pitacco et al. (2009, p.98);
male mortality has not really decreased since the 1970s. We even observe an
increase of the mortality. This unfavorable evolution is due to the increase
of traffic accidents particularly acute in the 1960s. Between 1980 and the
mid-1990s, the apparition of AIDS had a negative influence on the reduction
of mortality. At age 40, the same decrease is present after the World War 11,
followed by a much slower reduction in mortality after 1960. The decrease
after 1970 is more marked than at age 20. At age 60, the mortality rates
have declined rapidly after 1970, whereas the decreasing during 1850-1970
was more moderate. At age 80, this decrease appears after 1990.

Age 20 Age 40
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Figure 1.8: Trend in the observed probabilities of death, logit scale, for Dutch males at
ages 20, 40, 60 and 80, period 1850-2008. Source: HMD.

The analysis for the Dutch females is similar to the one for the male popula-
tion for age 20 and 40, but with several differences. At age 20, a structural



CONTEXT 13

Age 20 Age 40
P . B s
o Featne, N
. N .
© Ealil? 4 v,
"‘\.f. ® e, v,
~ 4 . N
> © T
@ -'-.‘,‘-."'\'-‘.._._,._\ . P
PR TN - B
£y ;
Age 60 Age 80
e w0 ..
a AN ST .
2 RN T o toea DL
' W e o IR
o | NG IR RS
5 S, ;
© ; ©
A oo, i
o,
° S
1 e, | S
T T T T T T T T T T T T T
S Q L ) O Q L g S Q L QS
R ARG I SRC ORI & & &

Figure 1.9: Trend in the observed probabilities of death, logit scale, for Dutch females
at ages 20, 40, 60 and 80, period 1850-2008. Source: HMD.

break seems to have occurred, with a relatively high level of mortality be-
fore the second world war and a much lower one after 1950. Then after the
mid-1950s modest improvements are visible. At age 40, the decline is more
pronounced after 1960 than for the male population. At age 60, the rate of
decrease is more regular. At age 80, after 1950, the trend in the reduction
of mortality has tended to accelerate.

Until 1980, females have benefited more from the reduction of mortality
than males, and the gap in life expectancy has widened significantly between
the genders. Nevertheless, in the last three decades, the gap has stabilized
and begun to decline. This reduction is essentially due to an acceleration
in the improvement among the males and some slowing of the improvement
among females under age 60. At the later ages, on the other hand, improve-
ment continued to be more rapid for females than males. Although cancer
mortality is falling for both men and women, cancer is now the leading
cause of death, overtaking cardiovascular diseases, for which mortality has
considerably reduced, see Meslé (2006). Future improvement will depend on
success in the control of cancer and neuron-degenerative diseases.

1.1.4 The irregularities in the progression of the observed rates

The symbol ¢, represents the one-year observed probability of death for
a particular population at age z. It lies above or below the true underlying
value. From Figures 1.4 and 1.5, the roughness of the surface indicates vola-
tility. In estimating mortality, the actuary knows that the past experience
from which the observed mortality rates and the life table have been derived
will never be exactly reproduced in the future. Thus a certain random ele-
ment of fluctuation will be inherent in the observations and the smaller the
group, the greater will be the relative random errors in the deaths and the
less reliable will be the resulting estimates.
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These deviations from the true underlying rates may be assumed to be
random and to fluctuate from age to age both in size and sign. These ir-
regularities in the progression of the observed rates of mortality could be
reduced by increasing the number [, of persons observed. If the number of
individuals in the group had been considerably larger, the set of observed
probabilities, q,, would have displayed a much more regular progression with
z. In the limit, it would have exhibited a smooth progression, as explained
in Copas and Haberman (1983).

The idea of a group of persons attaining age x and being gradually re-
duced in numbers, until they are all dead, in such a way that the rates of
mortality at successive ages form a smooth series is a purely theoretical con-
ception. It is nevertheless a very useful conception, as recalls Alistair (1989),
which forms the basis of the theory of life contingencies and has been shown
by long use to be suitable for solving most actuarial problems in life insur-
ance. This is not to suggest that measurement can be allowed to be inexact.
On the contrary, as Benjamin and Pollard (1980) mention, if judgment has
to be introduced in any final estimation, it is likely to be sounder when on
the basis of adequate analysis of past experience.

Provided these errors are random in nature, they may be reduced by
increasing the size of the sample and thereby extending the scope of the
investigation. A simpler, cheaper and more practicable alternative is often
to use graduation to partly remove these random errors. Thus, by graduat-
ing the mortality rates, we aim to concentrate on the underlying mortality
pattern (high mortality at birth, low infant mortality, accident hump, se-
nescence effect) avoiding the erratic departures from it.

Various approaches to graduation can be adopted. In particular, two broad
categories can be recognized:

i. Parametric approaches, involving the use of mortality laws; Hannerz
(2001) defines a mortality law as a mathematical expression that de-
scribes mortality as a function of age.

ii. Non-parametric approaches.

1.2 Motivations
1.2.1 Getting out of a procrustean bed of fixed parametrization: From
parametric to smooth models

Assume n pairs of observations {(z;, ;) }7_; have been collected, then the
regression relationship can be modeled as

ql:f(a:z)—&-ul, 1=1,2,...,n;

with the unknown regression function f and an error term u;, representing
random errors in the observations or variability from sources not included
in the x;.
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The aim of a regression analysis is to produce a reasonable analysis of the
unknown response function f. This task of approximating the mean func-
tion can be done essentially in two ways. The quite often used parametric
approach is to assume that the mean curve f has some pre-specified func-
tional form, for instance, a line with unknown slope and intercept. As an
alternative one could try to estimate f non-parametrically without reference
to a specific form.

The first approach to analyze a regression relationship is called paramet-
ric since it assumes that the functional form (for example, Thiele law, Perks
laws, Gompertz-Makeham class of models, and so on) is fully described by
a finite set of parameters. A tacit assumption of the parametric approach
though is that the curve can be represented in terms of the parametric model
or that, at least, it is believed that the approximation bias of the best para-
metric fit is a negligible quantity. Such laws simplify the calculation of mor-
tality functions and allow to extrapolate at the highest ages for instance.
But to be useful, they have to reproduce closely the data. According to
Alistair (1989) it is now thought that it is unlikely that a law can be found
that represents the mortality rate over a large range of ages, although some
complicated expressions have been used in the attempt.

By contrast, non-parametric modeling of regression relationship does not
project the observed data into a Procrustean bed of a fixed parametri-
zation. A preselected parametric model might be too restricted or too low-
dimensional to fit unexpected features, whereas the non-parametric approach
offers a flexible tool in analyzing unknown regression relationship. The term
non-parametric thus refers to the flexible functional form of the regression
curve. Like parametric methods, they too are liable to give biased estimates,
but in such a way that it is possible to balance an increase in bias with a
decrease in sampling variation.

The question of which approach should be taken in data analysis was a
key issue in a bitter fight between Pearson and Fisher in the 1920’s, as re-
calls Hardle (1990). Fisher pointed out that the non-parametric approach
gave generally poor efficiency whereas Pearson was more concerned about
the specification question. Both points of view are interesting in their own
right. Pearson pointed out that the price we have to pay for pure parametric
fitting is the possibly of gross misspecification resulting in too high model
bias. On the other hand, Fisher was concerned about a too pure considera-
tion of parameter-free models which may result in more variable estimates,
especially for small sample size.

1.2.2 Natura non agit per saltum: The basic idea of smoothing

We have previously seen that the crude rates can be seen as a sample from
a larger population of lives and thus they contain some random fluctuations.
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If we believed that the true rates were independent, then the crude rates
would be our final estimate of the true underlying mortality rates. However,
a common prior opinion about the form of the true rates is that each true
rate of mortality is closely related to its neighbors, that is the observations
g; in the neighborhood of the target point ¢; should contain information
about the value of f at z;. Gavin et al. (1993) explain that this relationship
is expressed by the belief that the true rates progress smoothly from one age
to the next.

Benjamin and Pollard (1980) recall the saying, Natura non agit per
saltum, which expresses the fact that natural forces operate gradually and
their effects become apparent continuously and not in sudden jumps. It fol-
lows that the data for several ages x; on either side of age x; can be used to
augment the basic information we have at age x;, and an improved estimate
of g; can be obtained by smoothing the individual estimates.

So the next step is to graduate the crude rates in order to remove any
random fluctuation. This procedure of approximation of the mean response
curve f() is commonly called smoothing. Hence, the mortality is not sum-
marized by a small number of parameters, but described by the n annual
probabilities of dying. It may be considered as a compromise between faith
in the data and reduced roughness caused by the noise. In the actuarial lit-
erature, the process of smoothing a mortality table was known as graduating
the data, the little hills and valleys of the rough data were to be graded into
smoothness, just as in building a road over rough terrain.

The concept of smoothness has been used in the previous paragraphs
without actually being defined. We deliberately avoid a detailed present-
ation here. The interested reader can have a look at Bizley (1958) and
Diewert and Wales (2006). We all have an intuitive idea about what we
mean by smooth, as for instance the road building analogy.

Formal mathematical analysis may state the smoothness condition as a
bound on derivatives of f. Bizley (1958) observes that smoothness is in-
timately concerned with predictability, and proposes the following definition
of smoothness: a continuous curve is smooth at the points for which the
absolute value of the rate of change of curvature with respect to distance
measured along the curve is small. For Benjamin and Pollard (1980), the
Bizley’s requirements of small change of curvature turns out to be equivalent
in the mortality context to requiring that third-order differences are small.

1.2.3 Smoothers and parameters selection

Smoothing alone, however, is not graduation. Graduated rates must be
representative of the underlying data. The two qualities, smoothness and
goodness of fit, tend to conflict, in the sense that smoothness may not be
improved beyond a certain point without some sacrifice of goodness of fit
and vice versa. Thus, a graduation will often turn out to be a compromise
between optimal fit and optimal smoothness.
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To be useful, the method should allow the graduator some latitude in choos-
ing the relative emphasis to place smoothness and fit.

Special attention has to be paid to the fact that smoothers, by definition,
average over observations with different mean values. The amount of av-
eraging is controlled by a weight sequence which is tuned by a smoothing
parameter, denoted A. This smoothing parameter regulates the size of the
neighborhood around the target point x;.

A local average over a too large neighborhood would cast away the good
with the bad. In this situation an extremely over-smooth curve would be
produced, resulting in a wrong estimate f. On the other hand, defining the
smoothing parameter so that it corresponds to a very small neighborhood
would not sift the chaff from the wheat. Only a small number of observa-

~

tions would contribute non-negligibly to the estimate f(z;) at z; making

~

it very rough and wiggly. In this case the variability of f(z;) would be in-
flated. Finding the choice of smoothing parameter that balances the trade-off
between over-smoothing and under-smoothing is called the smoothing para-
meters selection problem. To give insight into the smoothing parameters
selection problem, consider Figure 1.10 below.
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Figure 1.10: Estimated curve and transformed crude mortality rates (dots), logit scale,
for Dutch Male 2008. Source: HMD.
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The curves represent non-parametric estimates of the mortality rates. The
more wiggly curve has been computed using a local polynomials estimate
with a very small neighborhood. By contrast, the flatter curve has been
computed using a very large neighborhood. Which smoothing parameter is
correct? The question will be discussed in Section 2.5.

1.2.4 Historical review of the development of smoothing approaches

The problem of smoothing sequences of observations is relevant in many
branches of sciences. In the following, we review the development of smooth-
ing methods starting in the late 18th to the 21st centuries, leading up to the
development of the use of local polynomial regression and afterward local
likelihood methods.

Early work

Local regression is a natural extension of parametric fitting, so natural that
local regression arose independently at different points in time and in differ-
ent countries. The setting for this early work was univariate and involved
equally spaced z. It was simple enough that good-performing smoothers
could be developed and were computationally feasible by hand calculation.
Also, most of the early work arose in actuarial studies, as remark Cleveland
and Loader (1996). Mortality and sickness rates were smoothed as a function
of age.

Haberman (1996, p.40) reports that smoothing was used as early as 1765
by the Swiss mathematician and physicist Johann Lambert. He was born in
Miilhausen, now Mulhouse in Alsace, France; then an exclave of Switzerland.
Daw (1980, p.347) explains in his 1765’s work (volume 1) that he graduated
the value [, at decennial ages, which he had calculated from the deaths
recorded in the London Bills of Mortality for 1753-1758. He does not read
off the graduated values of [,, at all ages from his graph, but gives two meth-
ods of graduation and/or interpolation. The first was a graphical method
for introducing osculating parabolas between two points. The second was a
method of fitting a polynomial of fifth degree to represent a section of the
curve which was then able to hang together with the corresponding polyno-
mials for the immediately preceding and succeeding sections of the curve.
This methodology is effectively what has come to be known as osculatory
interpolation, and was re-invented more than 100 years later by Thomas
Sprague.

John Finlaison, subsequently first president of the Institute of Actuaries
in January 1823, started preparing the mortality data that were to provide
the first life table consisting of graduated observations at individual ages. His
1829 work is described by Seal (1982, p.89). His formula is based on overlap-
ping piecewise linear arcs extending over nine successive values, with eight of
the nine being used in the next arc, and thus represents the first published
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example of a graduation by the adjusted-average method. This piecewise
approach to smoothing was extended in 1866 by the Italian meteorologist
and astronomer Giovanni Schiaparelli who assumed a cubic polynomial to
extend to a stretch of consecutive observed values.

In the same year (1866), Wesley Woolhouse presented a detailed exposi-
tion of graduation of mortality rates using summation formulae, stressing the
conceptual differences between graduation and interpolation. He considered
the case where the fourth differences of the corrections v, = ¢, — ¢, to an
observed series of rates had small values and proposed to minimize 3 v2 in
terms of A%y, and thus obtain estimates of v, and hence g,. Seal (1982,
p.93) demonstrates that the equations for g, are equivalent to those which
arise from fitting piecewise cubic polynomials by least squares to equidistant
observations.

The use of symmetrical moving weighted average formulae to smooth
equally spaced observations of a function of one variable, which general-
ized Woolhouse’s summation formulae, was systematically investigated in a
series of papers by the American statistician Erastus De Forest, as reports
Haberman (1996, p.41). De Forest’s principal innovation was to introduce
optimality criteria into the problem of estimating the coefficients.

In 1887, Thomas Sprague’s paper on the graphic method of graduation
appeared. This paper rediscovered (following Lambert) osculatory interpol-
ation showing how formulae could be devised to ensure continuity of the first
derivatives of overlapping interpolation curves. Osculatory interpolation was
used as a method of graduation for the English life table in the early nine-
teenth century.

A new style of summation graduation and its testing had started with
Spencer, in 1904 and 1907, and had blossomed in Vaughan’s 1933, 1934
and 1935 articles. The method developed by Spencer in his 1904 article
had become popular because it was computationally efficient and had good
performance. We note three crucial properties. First, the smoother exactly
reproduces cubic polynomials as explained in Cleveland and Loader (1996).
Second, the smoothing coefficients are a smooth function of length of the
bandwidth, and decay smoothly to zero at the ends. Third, the smoothing
can be carried out by applying a sequence of smoothers each of which is
simple; this was done to facilitate hand computation. Achieving all three of
these properties is remarkable.

Whittaker (1923) suggested an alternative method of graduation. This
can be regarded as what would now be called a Bayesian approach to gradu-
ation, see Taylor (1992). It results in the minimization of the combination
of a measure of goodness of fit of the graduation to the observation and a
measure of smoothness.

Modern work

We have seen that the methods presented in the introduction are inherited
from a long actuarial tradition. However local regression methods received
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little attention in the statistical literature until the late 1970’s.

For Cleveland and Loader (1996), the modern view of smoothing by local
regression has origins in the 1950’s and 1960’s, with kernel methods intro-
duced in the density estimation setting (Rosenblatt (1956), Parzen (1962))
and the regression setting (Watson (1964)). Kernel methods are a special
case of local regression; it amounts to choosing the parametric family to con-
sist of constant functions. Kernel methods have found actuarial application
by Copas and Haberman (1983), followed by Gavin et al. (1993) and Gavin
et al. (1995).

However, recognizing the weaknesses of a local constant approximation,
the more general local regression enjoyed a reincarnation beginning in the
late 1970’s. It includes the mathematical development of Stone (1977), Stone
(1980), and the lowess procedure of Cleveland (1979). It provides a number
of important insights about the choices of the smoothing parameters. For
example it was nearly a given that for most applications the weight function
needed to be smooth, that local constant fitting was inadequate, and that
smoothers needed to reproduce exactly (and not just asymptotically) at least
a quadratic.

Among other features, the local regression method and linear estimation
theory trivialize problems that have proven to be major stumbling blocks for
more widely studied kernel methods. The kernel estimation literature con-
tains extensive work on bias correction methods: finding modifications that
asymptotically remove dependence of the bias on the slope, curvature, and so
on. Examples include boundary kernels, see Miiller (1987), and higher order
kernels, see Gasser et al. (1985) and Schucany (1989). Local regression meth-
ods can then be viewed as an extension of kernel methods and an attempt to
extend the theory of kernel methods. This treatment has become popular in
the 1990s, for example Hastie and Loader (1993) and to some extent Loader
(1999b). The approach has its uses: small bandwidth asymptotic properties
of local regression, such as rates of convergence and optimality theory, rely
heavily on results for kernel methods. But for practical purposes, the kernel
theory is of limited use, since it often provides poor approximations and
requires restrictive conditions.

Furthermore, while the early smoothing work was based on an assump-
tion of a near-Gaussian distribution, the modern view extended smoothing
to other distributions. Cleveland (1979) developed robust smoothers. Later,
Tibshirani and Hastie (1987) took local fitting one step further; in any situ-
ation where a dependent variable depends on independent variables, a local
likelihood procedure can be carried out. Hence they substantially extended
the domain of smoothing to many distributional settings such as logistic
regression, and developed general fitting algorithms. The extension to new
settings has continued in the 1990’s with Fan et al. (1998) and Loader (1996).
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1.3 Outline of the thesis

In Chapter 2, a non-parametric graduation method is discussed. We in-

troduce local polynomial regression. We discuss the choice of the smoothing
parameters and criteria used for models selection. We graduate the data
through the choice of the smoothing parameters. The graduation and cor-
responding confidence intervals are carried out over the entire age range.
Tests are used to compare the graduated rates obtained with those obtained
by the Whittaker-Henderson smoothing.
Our contribution Tomas (2012a) - that presents extensively local polyno-
mial technique in view of graduating experience data originating from life
insurance - can be viewed as the prolongation of the kernel estimation for
graduation proposed by Gavin et al. (1993). It is completed in this chapter
with Tomas (2012b) analyzing the influence of the boundaries on the choice
of the smoothing parameters.

In Chapter 3, our aim is to extend the local smoothing technique de-
scribed in Chapter 2 to model situations where a non Gaussian likelihood is
appropriate. We incorporate the concepts of the non-parametric regression
technique of local polynomials to localized generalized linear models and
local likelihood contexts.

Related work is in Delwarde et al. (2004) and Debon et al. (2006), but our
work examines the statistical properties of the estimators and the choice of
the smoothing parameters by classical selectors as well as the plug-in meth-
odology.

The applications cover the graduation of both the probabilities of death and
the forces of mortality over the entire age range involving historical data
from the Netherlands. In addition we provide a method for constructing
pointwise confidence intervals that are not depending on the estimates using
the variance stabilizing link. This method allows us to produce confidence
intervals in presence of zero-responses.

In Chapters 2 and 3, the weight functions have always had a fixed or global

bandwidth. Rather than restricting the smoothing parameters to a fixed
value, Chapter 4 discusses more flexible approaches allowing the smoothing
parameters to vary across the observations. An application involving indi-
viduals subscribing long-term care insurance is presented. We analyze the
incidence of mortality as a function of both the age of occurrence of the
pathology and the duration of the care. We distinguish the intersection of
confidence intervals rule and local bandwidth correction factors.
Part of our work is an extension of the adaptive kernel methods proposed
by Gavin et al. (1995) to adaptive local kernel-weighted log-likelihoods tech-
niques. We vary the amount of smoothing in a location dependent manner
and allow adjustments based on the reliability of the data. Tests and single
indices summarizing the lifetime probability distribution are used to compare
the graduated series to p-splines smoothing and local likelihood models.
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Chapter 5 illustrates the construction and validation of portfolio specific
prospective mortality tables. We are interested in the variation of mortality
with attained age and calendar year. From portfolios of several insurance
companies we construct, in a first step, a global prospective reference table
summarizing the mortality experience of these portfolios. We investigate the
divergences in the mortality surfaces generated by a number of previously
proposed models. We focus on the model risk and, to a lesser extent, on the
risk of expert judgment related to the choice of the external references used.
We use non-parametric method, namely local kernel-weighted log-likelihood
and semi-parametric relational models, to graduate and extrapolate the sur-
faces. The extrapolation of the smoothed surface, obtained by local likeli-
hood methods, is performed by identifying the mortality components and
their importance over time using functional principal component analysis.
Then time series methods are used to extrapolate the time-varying para-
meter, while semi-parametric relational models have the advantage of integ-
rated estimation and forecasting. Tests and indices summarizing the lifetime
probability distribution are used to measure the impact of model choices.
The mortality of the entire population is not specific to any subpopulation.
The second step of our approach is then to build entity specific prospective
mortality tables by adjusting the reference table validated in the first step to
the mortality of each portfolio. A Poisson generalized linear model including
interactions with age and calendar year gives a solution to this problem.
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Chapter

Local regression methods

This chapter is based on Tomas (2012a), Univariate graduation of mortality
by local polynomial regression, Bulletin Frangais d’Actuariat, 12(23), 5-58; and
on Tomas (2012b), Essays on boundaries effects and practical considerations for
univariate graduation of mortality by local likelihood models, Insurance and Risk
Management, forthcoming.

2.1 Introduction

This chapter discusses a non-parametric graduation method. We intro-
duce local polynomial regression. We discuss the choice of the smoothing
parameters and criteria used for models selection. The statistical properties
of the estimators are covered. We graduate the data through the choice
of the smoothing parameters. The graduation and corresponding confidence
intervals are carried over the entire age range. Tests are used to compare the
graduated rates obtained with those obtained by the Whittaker-Henderson
smoothing.

The motivation for local regression is that it is easy to understand and to
interpret; because of its simplicity it can be tailored to work for many differ-
ent distributional assumptions; it adapts well to bias problem at boundaries
and in regions of high curvature; it does not require smoothness and regular-
ity conditions required by other methods such as boundary kernels; and so
on, see Hastie and Loader (1993) for a detailed presentation of the strengths
of local regression. Separately, none of these provides a strong reason to fa-
vor local regression over other smoothing methods such as smoothing splines,
regression splines with knot selection, wavelets, and various modified kernel
methods. Rather, it is the combination of these issues that combine to make
local regression attractive.

This chapter begins by presenting, in Section 2.2, a general theory of local
polynomial regression, showing that this method falls into the class of linear
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smoothers. The weighting system of the smoothers is discussed in Section
2.3 including the weighting system shapes, the smooth weighted diagram
and specific treatments at the boundaries. Section 2.4 develops important
properties, including bias and variance, which allow us in Section 2.5 to de-
velop methods for statistical inference, model diagnostics and choice of the
smoothing parameters. We emphasize results that have immediate practical
consequences. To illustrate the discussion, we present an application based
on historical data from the Netherlands in Section 2.6. Section 2.7 provides
comparisons with the Whittaker-Henderson framework. Finally, Section 2.8
summarizes the conclusion drawn in this chapter.

The main merits of the material presented in this Chapter are twofold.
Firstly, we present extensively local polynomial techniques in view of gradu-
ating experience data originating from life insurance. It can be viewed as the
prolongation of the kernel estimation for graduation proposed by Gavin et al.
(1993). It is completed in this chapter with Tomas (2012b) analyzing how
the boundaries influence the choice of the smoothing parameters. Secondly,
the approach allows relatively easy implementation of the techniques as well
as different boundaries corrections in standard statistical software such as R,
R Development Core Team (2012).

2.1.1 Premises

«If nature were kind enough to make all regression surfaces well
approximated by low-order polynomials or other simple paramet-
ric functions, there would be no need for the local-fitting methodo-
logy. Unfortunately, nature is frequently not so accommodating».

William S. Cleveland in Cleveland et al. (1988, p.88)

The underlying model for local regression is
q; :f(xz)—&—uz, 1=1,2,...,n. (2.1)

The distribution of the g;, including the mean, f(z;), is unknown. However,
the u; are assumed to be independently, identically distributed normal ran-
dom variables, with zero mean and a finite variance.

In practice we must first model the data, which means making certain
assumptions about f and other aspects of the distribution of the ¢;. For ex-
ample, one common distributional assumption is that the ¢; have a constant
variance. We need to ensure that these assumptions are reflected in the data
and, if not, to make appropriate adjustments.

For f, it is supposed that the function can be well approximated locally
by a member of a parametric class, frequently taken to be polynomials of a
certain degree. We refer to this as parametric localization. Thus, in carrying
out local regression we use a parametric family just as in global parametric
fitting, but we ask only that the family fit locally and not globally. Paramet-
ric localization is the fundamental aspect that distinguishes local regression



INTRODUCTION 25

from other smoothing methods such as smoothing splines, see Silverman
(1985); or wavelets, see Donoho and Johnstone (1994); although the notion
is implicit in these methods in a variety of ways.

For clarity we distinguish the fitting point with the suffix ¢ to the data

points with suffix j. Then, the estimation of f that arises from the above
modeling is simple. For each fitting point z;, we define a neighborhood in
the design space of the independent variables. The size A of the neighbor-
hood is an adjustable parameter that determines how local the fitting is; it
is analogous to the length of the moving average in the time series case, and
as the neighborhood size increases the estimate becomes smoother.
Within this neighborhood, we assume f is approximated by some member
of the chosen parametric family. For example the family might be quadratic
polynomials. Then, estimate the parameters from observations in the neigh-
borhood; the local fit at x; is the fitted function evaluated at z;. Almost
always, we will want to incorporate a weight function, W(.), that gives more
weight to the x; close to z; and less weight to those that are further.

In short, to use local regression, we must choose the weight function,
the bandwidth, the parametric family, and the fitting criterion. The first
three choices depend on assumptions we make about the behavior of f. The
fourth choice depends on the assumptions we make about other aspects of
the distribution of the ¢;. In other words, as with parametric fitting, we are
modeling the data.

2.1.2 Transforming the data

Before model (2.1) is applied, a key part of any data analysis is to consider
transforming the data into a more tractable form that reflects the strengths
of the model or that more clearly reveals the structure of the data. In para-
metric graduation, for example, it may be easier to transform the data and
work with a linear model than to graduate the raw rates. The same philo-
sophy applies in non-parametric graduation. If the transformed crude rates
broadly follow a straight line, then this may lead to reduced bias over much
of the age range, if the data are also evenly spaced. In the following part,
we consider transforming the crude rates before graduating and then back-
transforming to obtain our estimate of the true rates. The transformation
considered satisfies the model,

glg)=qi+r;, fori=1,2,...,n,

where the function g denotes the transformation and the residuals r; are
assumed to be independent, identically distributed random variables, with
zero mean and a constant, finite variance. Hence the graduation process is
carried out on a transformed scale and model (2.1) becomes

9(@) =¢(x;) +e, fori=1,2,...,n, (2.2)
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where the ¢; are independent, identically distributed normal random vari-
ables with mean 0 and finite variance o2. Once it is completed, the trans-
formation is reversed to obtain the graduated rates on the original scale. A
commonly used transformation in binary analysis is the logit transformation.

For our applications,
qi
: = 1 .

By smoothing on a logistic scale and then back-transforming, we are guar-
anteed that the predicted values stay in an appropriate scale, 0 < ¢; < 1.
Gavin et al. (1995, p.177-178) provide the motivation that this transforma-
tion also reflects the fact that small changes, when the mortality rate is near
zero, are as important as larger changes, when the mortality rate is much
higher. Note that binary data are often assumed to be independent, but this
may not be the case for mortality data due to migration between ages during
the period of investigation. This leads to look for smooth relations between
neighboring rates by merging information from individuals with similar ages.

Many other transformations are possible (Gompertz, Weibull, sinfl(\/(ﬁ )
transformation), but their relative merits are beyond the scope of this dis-
sertation. Overall, the choice of transformation remains subjective, and the
relative success of a particular transformation seems to depend on the data
set. However as Kaas et al. (2008, p.232-233) mention it, transformations
do not always achieve normality, skewness zero and homoscedasticity at the
same time. Moreover an unbiased estimator in the new scale is no longer un-
biased when returning to the original scale, which follows from the Jensen’s
inequality.

For the remaining part, we denote the dependent variable g(g;) by y; to
ease the notation.

2.2 The local regression estimate

2.2.1 Uni-dimensional case

We assume a model of the form of (2.2),
yi=v¢(xi)+e , fori=1,...,n,

where 9 (z;) is an unknown function and ¢; is an error term. The errors
€; are assumed to be independent and identically distributed with mean 0,
E[e;] = 0, and have finite variance, E[€?] = 67 < o0.

We now turn to non-parametric estimation of . Globally, no strong
assumptions are made about 1. Locally around a point x;, we assume that
1 can be well approximated by a member of a simple class of parametric
functions. Assume that the function ¢ has continuous (p + 1)st derivative
at the point x;.
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For data points z; in a neighborhood of x;, we approximate ¥ (x;) via a
Taylor expansion by a polynomial of degree p:
P

Ylag) =Y (WP () /p) (x5 — )P

p=0

= )+ 9 @) — )+ 30 @) s — i)

(2.3)
+...+ 1%1/) P () (xj — 2i)P
P
=" Bylw:) (wj — )"
p=0

We then carry through a weighted polynomial regression:

n P 2
min ) <yj = Bipla; - fci)P> W (x’;x) : (2.4)
j=1 p=0

where W (.) denotes a non-negative weight function depending on the tar-
get value x; and the measurement points x;, and in addition, it contains a
smoothing parameter h = (A —1)/2 which determines the sizes of the neigh-
borhood of ;.

If {8, (z;)} denotes the solution to the above weighted least squares prob-
lem (2.4), then it is clear from approximation (2.3) that p! Bp(zi) estimates
P (), p = 0,1,...,P. The weighted sum of squares can be written in
matrix form as

(y—XB)"W(y—-Xp),

with
1oz —2 (21— ) (w1 —2)" n
X = 1 fL'Q - xi ("IJQ - xl)Q (:EZ - xl)P 3 y = y2 9
1 2y —2; (v, — 1) (zn — )" Yn

and W a diagonal matrix with entries {w;}"_;, such that

W(Il‘] —le/h) if |$J —.ﬁl'/h S 1,

w; =
0 otherwise.

If WX has full column rank, least squares theory gives the explicit expres-
sion for the minimizer

Bla) = (XTWX) ' XTW y, (2.5)
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and 23 = (,6’87 B:, . ,B;). Hence,
Bo(i) = d(a;) = T (XTWX) ' XTW y. (2.6)

Here and throughout, we let e, denote a column vector of length P + 1
having 1 as its vth entry and all other entries equal to zero.

It is important to note that, contrary to ordinary parametric least squares,
this estimator varies with x;, as locally around the target value a polynomial
of degree P is fitted by using the familiar technique of least-squares fitting.
Thus, local regression is conceptually quite simple. In order to get an es-
timate for the function ¢ (x;), one has to minimize (2.4) for a grid of target
values x;. For each target value one gets specific parameter estimates B(z;).

2.2.2 Two-dimensional case

Extending the the theory of local regression to multiple predictors is
straightforward. We would require a multivariate weight function and mul-
tivariate local polynomials. This idea was first considered by Shepard (1968)
who realized that a surface based on a weighted average of the values of
the data points, where the weighting was a function of the distances to
those points, satisfied the problem. However, the interpolation method de-
scribed in Shepard’s article used the weights to determine the height dir-
ectly. McLain (1974) and later Stone (1982) used a weighting technique with
weights depending on the distances of the data points where the weights were
used with a least squares fit to find coefficients of a quadratic polynomial to
act as an approximation to the surface. Statistical methodology and visual-
ization for multivariate fitting has been developed by Cleveland and Devlin
(1988) and the associated lowess procedure.

With two predictor variables, the local regression model becomes

Yi = (i1, xi2) + €,

where (+;-) is an unknown function. Again, the smooth function v can
be approximated in a neighborhood of a point x; = (z;1,%;2) by a local
polynomial of degree p.

If locally linear fitting is used, the fitting variables are just the independent
variables. If locally quadratic fitting is used, the fitting variables are the
independent variables, their squares and their cross-products. For example,
a local quadratic approximation is:

P(xj) = (zj1,x)2) = Polxi) + Bi(zi)(zj1 — zi1) + Palxi) (2,2 — xi2)
JF%@?;(%)(%‘J*fi,1)2+ﬂ4($¢)(ﬂfj,1*%‘,1)(%‘,2*xi,2)+%55(%)(%‘,2*%2)?

The weights are defined on the multivariate space. First, we define a distance
measure p(z;, ;) between the observations x; = (x;1,;2) and the fitting
point x; = (241, %;2).
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A common choice is the Euclidean distance,

plas,x;) = \/(xj,l —xi1)? + (352 — i 2)?

Secondly, a spherical weight function gives to the observation z; = (x;1,;2)
the weight

W(lp(zi, )l /h) if |p(zi25)] /h <1,
0 otherwise.

Note that the spherical weight function could be asymmetric, allowing more
smoothing in one direction than in another. As in the univariate case,
the local coeflicients (,(x;) are estimated by solving the weighted least
squares problem (2.4). Following (2.6), the local polynomial estimate is

then Bo(z;) = ¥ ().

2.3 The weighting system
2.3.1 The weighting system shape

The weighting system of local regression depends on the constellation of
smoothing parameters formed by the weight function, the bandwidth and the
degree of the polynomial. In addition, it depends on the variance function
and on the link function in case of local likelihood models, see Chapter 3.
These choices depend on assumptions we make about the behavior of the
true curve.

It is well known that between the three smoothing parameters, the weight
function has much less influence on the bias and variance trade-off. The
choice is not too crucial, at best it changes the visual quality of the regression
curve.

We consider a weight function W (u) that has the properties
i. W(u) >0 for |u| < 1;

ii. W(—u) =W(u) ;

ili. W(u) is a non increasing function for u > 0 ;

The requirements for W (u) described above are needed for the following
reasons: (i) is necessary, of course, since negative weights do not make sense;
(ii) is required since there is no reason to treat points to the left of x;
differently from those to the right; (iii) is required for it seems unreasonable
to allow a particular point to have less weight than one that is further from
2;. So W(u) is a weight function like those given in Table 2.1.
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Weight function | W(u)

Uniform or Rectangular %I(|u\ <1)
Triangular | (1 — |u])I(Ju| <1)
Epanechnikov %(1 —u)I(|lu| < 1)
Quartic (Biweight) %(1 —u?)?2I(Jul < 1)
Triweight %(1 —u?)3I(Ju| < 1)
Tricube | (1 — |u?|)3I(Jul < 1)

. 1 1.2
Gaussian T exp(5u?)

Table 2.1: Ezample of weight functions with u = |xj — x;|/h.

Figure 2.1 displays some of the weight functions presented above.

W(u)

Triweight Uniform

Epanechnikov Triangular

05

Figure 2.1: Weighting system shape of some weight functions.

For a weight function W(u), the weights decrease with increasing dis-

tance |z;

— x;|. The window-width or bandwidth A\ determines how fast the

weights decrease. For small A\, only values in the immediate neighborhood
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of z; will be influential; for large A, values more distant from z; may also
influence the estimate. One alternative is a rectangular weight function, or
uniform. With uniform weights, all observations within the window width
receive weight 1/2; those further away receive weight 0, and observations
abruptly switch in and out of the smoothing window.

In two dimensions, the weights are defined on the multivariate space. Fig-
ure 2.2 shows some of the weight functions displayed above.

(a) Epanechnikov (b) Triangular (c) Triweight

Figure 2.2: Weighting system shape in two dimensions with a radius h = 7.

2.3.2 The smooth weight diagram

The form of the local regression estimate is simple in that it is linear in y;.
Because local polynomial regressions solve a least squares problem, ¥ (x;) is
a linear estimate. That is, for each x; there exists some smoothing weights
s1(x;), $2(x4), - - -, Sn(x;) such that

n

D) =Y si(@)y;, (2.7)

Jj=1

where the smoothing weights on the observed responses are given by
P
sj(ws) = w; Y Byl — i) (28)
p=0

This is equivalent to the theorem originally from Henderson (1916) for local
cubic fitting and reformulated by Loader (1999b), which provides a char-
acterization of the smoother matrix for local polynomial regression: the
smoother matrix for a local polynomial fit of degree P has the form of least
squares weights multiplied by a polynomials of degree P. This representation
is unique, provided X7 W X is non-singular.
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Figure 2.3 presents the smooth weights, s(x;), according to the order of
polynomial, for the four weighting system shapes drawn in Figure 2.1.

Constant & Linear Quadratic & Cubic Quartic & Quintic

Weight s(x)

Figure 2.3: Smooth weights s(x;), for observation i in the central region, computed with
A = 19 for rectangular (solid line), triangular (dotted line), epanechnikov (dashed line)
and triweight (dotdashed line) weight functions.

It is obvious that the triweight weight function has the smallest dispersion
around the target point x; while the rectangular weight function implies more
smoothing. Note that the fit to a polynomial of even degree gives the same
result as that of the next odd degree for values at the central region, see
Section 2.4.3 It has also been discussed by Fan and Gijbels (1995a, p.215-
218) and Ruppert and Wand (1994).

As we can see in (2.8) the smoother weights s;(z;) depend on A and X
in a highly non-linear way. The only linearity we have in equation (2.7)
is linearity in y. This linear representation (2.7) provides a basis for the
theoretical development of local regression estimation. Likewise in a matrix
form,

12(371) Y1
¢(«:E2) _s5|%,
@(mn) Yn
where S is the smooth weight diagram, an n x n matrix
81(371) 82(.1‘1) Sn(.’L‘l)
. si(xza)  sa(x2) ... sp(x2) ’
s1(xn) s2(xn) ... sp(zn)

with rows
s(@)T = (s1(@:), s2(@i)s - su(2:)) = el (XTWX) T XTW.  (2.9)

The above distributional results are the same as those for parametric
least-squares except that for least-squares S is replaced by the so called
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hat matriz, the projection operator onto the space spanned by the fitting
variables. S shares with the hat matrix the property that if z is a vector
in this space then Sz = z. In other words, the smooth weight diagram is
constant preserving, the rows of S sum to one. The result of this partial
analogy with parametric least-squares is that, in a few aspects, distributional
results for local regression are the same as those for least-squares and, in
most other aspects, statistical quantities for local regression that are defined
in analogy with least-squares have distributions that are well-approximated
by those for least-squares, as argued in Cleveland et al. (1988). This is
good news because it means that familiar techniques can be used to make
inferences based on the local-regression estimates.

Figure 2.4 provides an illustration of the smooth weight diagram S. The
weight function associated with the i-th point is used to compute the weights
in the i-th row, s(x;). S in Figure 2.4 has been computed with A = 19,
a polynomial of degree 3 and a triweight weight function with boundary
correction type 1, see Section 2.3.4.

Weignt S,
Weignt S,
Weignt S,

7
.‘.»w“\\\\\\\\m\\“\m\»\ 7
%
Vi

il

—

(b) 4,7 =25,...,75 (c) 4, =175,...,98

Figure 2.4: Smoother S;; computed with A =19, a polynomial of degree 3, a triweight
weight function and boundary correction type 1.

The weights are shown as the height along the i-th row of the surface. For
values in the central region, the weights form a triweight kernel such as
Figure 2.3, center panel. But as the point at which we are estimating the
true curve moves towards the boundaries, the kernel overlaps the boundary
and becomes asymmetric. Also some weights are negative. Moreover, the
height of the kernel increases because fewer observations are available.

By fitting local polynomials models to series originating from life insur-
ance, we observe a relatively high curvature in the boundaries. In con-
sequence, the selection of the constellation of the smoothing parameters
may be mainly driven by minimizing the criteria in the boundaries rather
than for the whole set of data points. It may force the criteria to select a
smaller bandwidth at the boundary to reduce the bias, but this may lead to
under-smoothing in the middle of the table.
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2.3.3 Effective dimension fo a linear smoother

The effective dimension of the fitted model is an important concept in
modeling. For linear models, this concept is clear and intuitive. The number
of parameters used in the model determines its dimension. In non-parametric
settings, a different definition is needed.

In linear models, the hat matrix, H, is idempotent, tr(H H') = tr(H) =
rank(H). Hence the trace of the hat matrix is equal to the number of para-
meters in the fitted model. Given this feature of classic linear models, the
trace of the hat matrix can be used to assess the fitted degrees of freedom
and hence the effective dimension of a smoother.

The influence or leverage values, denoted infl(z;), are the diagonal ele-
ments s;(z;) of the smooth weight diagram. They measure the sensitivity of
the fitted curve to the individual data points. For local polynomial regres-
sion, we define the influence function at x; by

infl(z;) = eT (XTWX) ey

The property of influence relates to the fact that as infl(x;) approaches one,
the corresponding residual approaches zero.

Hence, in analogy with parametric least-squares, we define

n

v = Zinﬂ(a:i) = tr(.5)

i=1

vy = Z Is(z)]]* = tr(SST). (2.10)

v and vy are the fitted degrees of freedom (DF) of @(ml) For locally-
weighted regression, as the bandwidth increases or as the degree of polyno-
mial reduces, vy tends to decrease, so we are using more equivalent degrees
of freedom to explain the data. The fitted DF provide a mechanism by which
different smoothers, with different smoothing parameters, can be compared.
More extensive discussion of the degrees of freedom of a smoother can be
found in Cleveland and Devlin (1988).

2.3.4 Specific treatments at the boundaries

To understand the boundary problem in the context of graduation, we
study three specific treatments including symmetric and asymmetric weight
systems.

i. Type 1 uses an asymmetric weighting system. It always uses A ob-
servations whatever the target point is. It means, for instance, that
for a target point at the left boundary it uses all the observations s
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available at the left side, and A — 1 — k at the right side. Reciproc-
ally for the right boundary. This type of correction is found in most
smoothing software such as the loess() or locfit() functions in R, R
Development Core Team (2012).

ii. Type 2 uses a different asymmetric weighting system. For instance
at the left boundary, it uses all observations available at the left side,
and (A — 1)/2 observations at the right side. Reciprocally at the right
boundary.

iii. Type & is a combination of observed rates and an adaptive symmetric
weighting system. This correction is only applied to the left bound-
ary. From age 0 to v, the mortality rates equal the observed ones.
vp,w depends on the polynomial degree p and on the weight function
W (.) to ensure sufficiently observations to fit a polynomial of degree
p. Then from v, w + 1 to (A — 1)/2, we use an adaptive symmetric
window width with 2 x (z; — 1) 4+ 1 observations, where x; is the tar-
get point. This correction is based on an idea presented by the Dutch
Actuarieel Genootschap (the Dutch Actuarial Society), see Donselaar
et al. (2007).

We apply these corrections to the smoothers of degree 0 to 4 with four
weighting system shapes. Figure 2.5 shows the symmetric and asymmetric
weighting system s(z;) for ¢ = 5 (left boundary) of the corrections mentioned
above with A = 19. It is apparent that the symmetric weights of correction
type 3 have the smallest dispersion around the central value while correction
type 1 implies more smoothing.

As we face a fixed design model, in which we have a single observed mortal-
ity rate at equally spaced ages, the amount of smoothing applied by the local
polynomial regression is identical at the left and right boundary. Hence the
amount of smoothing is lower at the left boundary than to the right as the
number of exposures is larger. Table 2.2 presents the fitted DF for smoother
S in the left boundary, that is for observations z; for ¢ = 1,...,10. The
window width, A, is fixed to 19 observations.

The fitted DF aid interpretation in providing a measure of the amount of
smoothing applied. For instance, 1 DF represents a smooth model with very
little flexibility while 7 DF represents a noisy model showing many features.
It is obvious that the amount of smoothing decreases when increasing the
degree of polynomial. In addition we observe that the amount of smooth-
ing applied is higher when the weight function has a high dispersion around
the central value. A rectangular weighting system shape implies very little
flexibility, but a triweight weighting shape shows more features.

Note again that a least-squares fit to a polynomial of even degree gives the
same result as that of the next odd degree for a symmetric weight function.
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Constant Linear Quadratic Cubic Quartic

Rectangular

Triangular

06

Weight s(x)

04

02

Epanechnikov

00

Triweight

Figure 2.5: Smooth weights s(x;) for i = 5 (left boundary) with A\ = 19 for correction
type 1 (solid line), type 2 (dashed line) and type 3 (dotted line).

It is apparent that boundary correction type I induces more smoothing in
the boundaries than type 2 and type 3. Correction type 3, having smooth
weights showing the smallest dispersion, has the property of showing more
features.

2.3.5 Comparison with the Whittaker-Henderson model

It is interesting to compare the local polynomials approach with clas-
sical graduation methods. Among the classical methods we can mention
the splines approach or the Whittaker-Henderson smoothing. As shown by
Taylor (1992) and Planchet and Winter (2007) both approaches lead to very
similar results. Taylor (1992, p.15) shows that natural spline graduation
can be regarded as approximately Whittaker-Henderson graduation with
statistically insignificant terms removed, concluding that the general spline
function is preferable to Whittaker-Henderson graduation due to its greater
flexibility. In this section we choose to use the Whittaker-Henderson model
which is simpler to implement.
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Local Polynomial Regression
Q N Y ) 2
Weight fct. Q// ‘Q// Q// Q// Q//

: Rectangular 0.40 1.03 1.47 2.04 2.51
,,% Triangular 0.65 1.17 1.73 2.24 2.80
g Epanechnikov 0.56 1.11 1.65 2.17 2.72
© Triweight 0.78 1.27 1.91 2.39 2.99
? Rectangular | 0.66 1.33 1.94 2.61 3.21
§> Triangular 1.03 1.95 2.87 3.67 4.37
£ | Epanechnikov | 092 | 1.81 | 272 | 355 | 425
© Triweight | 1.25 | 223 | 3.15 | 3.93 | 4.59
t Rectangular 3.11 4.77 6.08
E Triangular 422 5.75 6.94
g: Epanechnikov 4.11 5.66 6.88
© Triweight 4.40 5.90 7.02

Table 2.2: Fitted DF for local polynomial regression in the left boundary

In the following, we show that the Whittaker-Henderson model falls into
the class of linear smoothers. It will allow us to use the methodology de-
veloped in Section 2.3.3 for model comparisons and smoothing power.

The Whittaker-Henderson model is non-parametric and is a relatively
simple and natural version of Bayesian smoothing, see Taylor (1992). The
method relies on the combination of a fit and smoothness measure. The
chosen parameters minimize a linear combination of these two criteria,

M=F+hxS§S,

where F' and S denote the fit and smoothness measures respectively and h
is a parameter allowing more emphasis on the smoothness criterion. The fit
and smoothness measures are

F= Zvl(yZ — @)2 and S = Z(Azyi)Q,
i=1 i=1

where v; represents the weight for observation i, taken generally as the ratio
l;/ max(l;) where l; denotes the exposure, and z is another parameter rep-
resenting the polynomial degree.

For this optimization problem, we solve the n equations given by the partial
derivatives of M with respect to each of the y;,

oM

— =0, 1=1,...,n.
y;
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With y = (¥i)i<i<n, ¥ = (Ui)1<i<n and V' = diag(v;)1<i<n, F can be
written in matrix notation as

F=(y-9)"V(y-9).

For the smoothness criterion, writing A*y = (A®y;)1<i<n—z, leads to S =
(A%y)TA%y.

To find A%y, we introduce a matrix denoted K, of dimension (n — z) x z,
where the terms are binomial coefficients of order z and where the signs of
the coefficients alternate and start being positive for z even, A%y = K, x y.
The M criterion can finally be written as

M=(y-9"V(y-9) +hy' K] K.y
=y'Vy -2 Vy+4 Vi + hy" K K.y.
It leads to %—IZI =2Vy - 2Vy + 2hKT K,y. Solving OM/dy = 0 leads to
the expression:

y=(V+hKI'K,)"'Vy. (2.11)

We see that the form of the estimate is linear in the y;.

Moreover, the smooth weights depend on the sample size >, l;. Hence,
the amount of smoothing applied is no longer identical at the left and right
boundaries. It is lower in the left boundary than to the right as the exposure
is larger.

For ease of comparison with the Whittaker-Henderson model smoother, i
is fixed to 5 in expression (2.11) leading to approximately 19 observations
participating non-negligibly in the estimation, having weights higher than
0.01. The fitted DF in the left boundary can be found in Table 2.3.

Whittaker-Henderson smoother

Q N Vv » »
7 7 7 7 7
b b b b b

0.17 1.23 2.17 2.79 3.26

Table 2.3: Fitted DF in the left boundary for the Whittaker-Henderson model, with
h=5

The amount of smoothing in the left boundary implied by the Whittaker-
Henderson model lies between corrections type 1 and type 2, see Table 2.2.
Hence the model can be slightly more flexible at the left boundary than when
correction type 1 is applied.
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Figure 2.6 displays the influence values of the smoothers implied by the
local polynomial regression and Whittaker-Henderson models.

Constant Linear 1 Quadratic Cubic I Quartic

Rectangular

Triangular

Infi(x)

Triweight

Indice i

Figure 2.6: Influence values in the left boundary for correction type 1 (solid black line),
type 2 (dashed line), type 3 (dotted-dashed line) and Whittaker-Henderson model (dotted
line).

For correction type &, from x; to v, w, the smoothed mortality rates
equal the observed ones. In consequence, the corresponding influence values
equal 1. The parameter v, 1 depends on the degree of polynomial and on
the weighting system to ensure that a sufficient number of observations is
used to fit the corresponding polynomial.

Under a rectangular weighting system, corrections type 1 and type 2 give
similar results. Then, by using a weighting system shape inducing less dis-
persion around the central value, the differences become more apparent. The
shape of the influence functions drawn by a triangular, Epanechnikov or tri-
weight weight function is relatively similar. Note that the influence values of
the Whittaker-Henderson model lie mostly between corrections type 1 and
type 2.

By a constant fit, the influence values for corrections type 1, type 2 and
the Whittaker-Henderson model are approximatively equal to 0.1, indicat-
ing that y; constitutes about 10 % of the fitted value. But the main feature
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is the boundary effect where the influence function shows a huge increase.
This reflects the difficulty of fitting a polynomial at boundary regions. Note
also that the effect is more pronounced as we increase the order of polyno-
mial. This shows that boundaries are a main concern when choosing the
order of approximation and, more generally, the constellation of smoothing
parameters.

In the next section, we turn to the statistical properties of this smoother.
As we will see, smoothing always means a compromise between bias and
variance and the choice of the smoothing parameters will be driven by this
trade-off.

2.4 Statistical properties

2.4.1 Assessment of bias and variance

Contrary to linear model fitting, there is no exact expression for the vari-
ance in a general case, because local polynomial regression models involve
a non-linear (vector) function of the estimate k(8). On the other hand,
we can approximate the non-linear function using a first-order Taylor series
expansion about 3. Assuming first order differentiability of k(.), we have

ok(B)
a8”

k(B) = k(B) + = (B-8) +o

B-5.
Then for @(xz) =By (x;), see equation (2.6), we obtain

S oK)
(i) = P(wi) + 858“

(5-8) +o[3 -],

and,

Ok(8)
05

We obtain an approximation of the variance of the local polynomials estimate
by

E [d(es)] = (@) + %2 E B8]

o~

var [{e)] ~ B | (3w - via)) ]
(5 ¢-9) |

_ aakﬂ(?)E {(Em) —,B(xn)z} MO @y

~[E

We still need to estimate Var [ﬁ(ml)] =E [(3(%1) - ﬂ(xl))z} However,

standard weighted least squares theory provides explicit mean and variance
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expressions of the solution (2.5),
E B = (X"WX) " X"Wf =8+ (XTWX) X We, (213)

where f = ((21), ¥(w2), ..., 9(2,))" and € = {;}7_, = f — XB; and,

- - 2 - ~ T
var [Ba)] = | (Ble:) - 660) | =& | (Ba - 80 (Blar) - Bl |
—E[(X"WX) " X" We' WX (X"WX) |
— (X"WX) ' XTWE [e"| WX (XTWX) . (2.14)
From (2.2), E[eeT] = 0%(zj)I,. Using local homoscedasticity, namely that
o(z;) = o(x;) for z; in a neighborhood of z;, equation (2.14) can be approx-
imated by

-1

Var {B(xi)} = 02(2))(XTWX) T XWX (XTWX) (2.15)

Therefore,

Var [@(xi)]—fr?( Del (XTWX) ' XTW2X (XTWX) ey (2.16)

= az(xi)SST,

since 9k(B)/08L = ef. Then by (2.9) we obtain compact forms for the
mean and variance of the local regression estimate, similar to Loader (1999b,
p-288)

E[d(@)] = ism) e

Var [a)] = 0?00 3 o) = als()lP. (217)

j=1

The variance reducing factor ||s(x;)||? measures the reduction in variance
due to the local regression. It usually decreases with the bandwidth.

The bias and variance in equations (2.13) and (2.14) are not directly ac-
cessible, as they depend on unknown quantities, the residual € and o2(z;).
Finite sample estimates are needed to gain access to a smoothing parameter
selection procedure and construction of pointwise confidence intervals. We
now provide an estimate for the bias and variance of the local polynomial fit
based on an idea introduced by Fan and Gijbels (1995a, p.218-219) and Fan
and Gijbels (1995b, p.376-378).
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The bias of the estimator ,B' comes from the approximation error in the
Taylor expansion. Recall the bias vector given in (2.13) and let

P
e(xy) = (;) = Y P (@) (x5 — 2:)" /p!
p=0

denote this approximation error at the point ;. Assume that the (p+a+1)th
derivative of the function ¢ exists at the point x; for some a > 0. Then,
a further expansion of ¢(z;) gives an approximation to the approximation
error

€(z;) =~ Bpyi1(zj — )P 4+ Bptalzj — z;)Pte = T, (2.18)

where B), = 1*) (x;)/k! and a denotes the order of the approximation. The
choice of a has an effect on the performance of the estimated bias. A discus-
sion of the choice of a can be found in Fan and Gijbels (1995b, p.376), who
recommend using a = 2 for practical implementation.

The unknown parameters in 7 = (71,72,...,7,)7 can be estimated from a
local polynomial fit of order p + a with a bandwidth h*. Let B;+1, ceey A;_HI
be the resulting estimated regression coefficients and denote the weighted
residual sum of squares by

5% (2;) =

: St ()
tr(W*) . tr((X*TW*X*)*lX*TW#QX*) = J J h*
(2.19)

where the g; are the fitted values from the (p + a)th order local polynomial
fit. Moreover, X* and W™, similar to X and W, denote respectively the
design matrix and weight matrix for the local (p + a)th order polynomial
fit with bandwidth h*. Substitution of the estimates for 8,11, .., Bpt+q into
the vector 7 gives 7, leads to an estimated bias vector

bias,(z;) = (XTWX) ' XTW7 (2.20)
ﬁ;+ltp+1 oo ﬁ;+atp+a

—(7)"" : , (2.21)
ﬁ;+1t2p+1 e ﬁ;Jratngra

where T = XT"W X is a (p+ 1) x (p+ 1) matrix of which the (j, k) element
is tj+k_2 with

t = Zn:(xj —z) W (xj ;m) . (2.22)
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The variance matrix of the estimator (2.14) can be estimated by substituting
*2(x;), defined in (2.19), into (2.15). This provides an estimated variance
matrix

vaty(z;) = 52 (z) (XTWX) T XTW2X (XTWX) .

(2.23)
Expressions (2.21) and (2.23) give the estimated bias and variance not only
for 12(;102) but also for 12(1’)(961-) =l By(x;),v=0,1,..., P.

The estimated bias for 1//;(”)(:51') is the (v + 1)th element of (2.20), denoted
by lﬁa\sp,v(xi), multiplied by v!. Tts estimated variance is given by (v + 1)th
diagonal element of (2.23), denoted by Vat,, , (z;), times (v!)?. For instance,

E [J(xi)] —(z;) = L (XTWX) T XTW, (2.24)

and,

Var [J(xi)] = 52(z;) el (XTWX) ' XTW2X (XTWX) ey

=5"%(x:) ||s(x)|I*. (2.25)

Recall that the approximated bias (2.13) and variance (2.14) depend on
the quantities €1, ..., €, and o2(x;) respectively, which are unknown. These
quantities will be estimated by fitting a local polynomial of degree p + a
locally via equation (2.4), using a pilot bandwidth h*. This gives estimates
B()", Bf, e A;_HL and 5*?(z;), which are then substituted respectively into ex-
pressions (2.18), yielding estimates 71, 7o, ..., 7, of 71,72, ..., 7y, and (2.23)
leading to the estimated variance. Finally, the estimated bias is computed
by substituting the estimates 71,7, ..., 7, into (2.20).

As recommended by Fan and Gijbels (1995b, p.377) we modify the bias
estimate in expression (2.21) to improve its finite sample performance, espe-
cially in case of higher order fits (p > 2). This slight modification consists
of replacing the higher order terms tpiqt1,tptat2s---,t2pta in (2.21) by
0. Fan and Gijbels (1995b, p.377) argue that it reduces collinearity effects
among monomials {(z; — ;)" } such as {(z; —2;)*} and {(z; —x;)*}. This
operation has no effect on the asymptotic properties, since it only concerns
the higher order terms and no leading terms.

Other authors have expressed the bias and the variance in other fashions,
see Section 2.5.2 or Cleveland et al. (1988, p.100), however we do not provide
here any comparisons between the approaches.

2.4.2 Construction of pointwise confidence intervals

Having estimates of the bias and variance, we are now able to compute
pointwise confidence intervals for i (x;).
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By (2.25) a local polynomial estimate QZ(xZ) has the distribution

V(@) — ()]

o(zi)ls(zi)|

~ N(0,1).

1S

I(w;) =
(P(@) = Bw:) = e @)lls(@a)ll, D)~ bai) + 5" @) s(@)ll)

where c is the appropriate quantile of the standard normal distribution (¢ =
1.96 for 95 % confidence) and E(zz) is a bias estimate as defined in (2.24).
This approach based on a plug-in principle has been criticized in the
literature. Loader (1999b, p.168) argue that plug-in bias estimates simply
amount to increasing the order of the fit. For example, a double smoothing
bias correction converts a local constant estimate into a local quadratic. In

this case an estimated I(x;) is just a construction of an under-smoothed
interval centered around the local quadratic estimate 1 (x;) — b(x;).

2.4.3 A bias and variance trade-off

The bias measures the distance that the curve is away from the data
points. We do not want this to be too large obviously, and too small would
be an interpolation, so somewhere in between is desirable.

The variance measures how much the model depends on that one sample.
Again, it is fairly obvious that we do not want this to be too big or too small.
The compact form obtained for the bias (2.24) and variance (2.25) expres-
sions are suitable for our applications. However, they only give a limited view
of the behavior of the bias and variance functions when the design, sample
size or neighborhood change. Here we provide some simple asymptotic ap-
proximations to the bias and variance functions based on the derivations of
Loader (1999b, p.38-42) and Fan and Gijbels (1996, p.101-107). These res-
ults stated below for one independent variable are not new. Tsybakov (1986)
and Miiller (1987) were among the first to derive these for local regression, al-
though similar expressions for kernel regression and density estimation have
been known for much longer.
To state asymptotic results, we need to make assumptions about how the se-
quence of design points x1, ..., x, behaves as n increases. In case of equally
spaced points, we refer to a regular design. More generally, a regular design
generated by a density ¢(u) defines z; ,, to be the solution of

i-05 _ /w o) du.

n —inf
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Let @(xz) be a local polynomial fit of degree p. Assuming that ¢ (z;) is p+ 2
times differentiable, we can expand #(.) in a Taylor series around z;:

®) (x,

o) =plwi) + (o — 2t (w0) + .+ (5 - )w;)
a?‘—m‘p"'lw i — 1. )P W”“’( )

Flem) (p+1)! + (25— i) )

As an application of Henderson’s theorem, we know that each row sums to
1, Y s; =1, and Y7 s(2i) (¢ — ;)" = 0 for 1 <k < P. This leads
to

PP (1) &

Eﬁmﬂf¢mgfp+l 3 si(@) (@5 — ot (2.26)
J=1
fo(p”) i o
s;j(x;) x) PR
(p+2)! =

The bias has a leading term involving the (p + 1)st derivative J(p“)(xi).
We keep the 1P+2)(z;) term in (2.26) because in case the design points are
equally spaced, the rows of the smooth weight diagram are symmetric around
the fitting point x;. Then, if p is even, p + 1 is odd and Z?Zl sj(x;) (zj —
x;)P*1 = 0 by symmetry, similarly to Miiller (1987, p.234 Corollary 3) for
kernel regression. Thus the first term in the bias expansion disappears. In
that case the second term is dominant.

From expression (2.22)7 the matrix X7 W X has components ¢; of the
form Z 1 Wy (xj — xl) . Under mild conditions, in particular nh? — oo,

nhd Zw /W Lk p(z; + hv) dv + o(1). (2.27)

This result is valid for fixed h. Under the additional assumption h — 0,
(2.27) simplifies to

1~ ()
nhd dow
j=1
For regular design, the limit (2.28) follows from the theory of Riemann

sums, see Loader (1999b, p.38-39). Applying (2.27) and (2.28) to the matrix
X"wix gives

= ¢(z;) / W (v)w*dv + o(1). (2.28)

AﬁH IxXTwlx H!

_ JW()le()e()T¢(z; + hv)dv +o(1)  h fixed (2.20)
(z;) [ W) e(v)e(w)Tdv + o(1) h—0,
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where H is a diagonal matrix with elements 1,h,...,h" and c(v) is the
vector of the fitting functions, c(v) = (1,v,...,v?/p!)T.

Asymptotic approximations to quantities such as the bias and variance are
now easily derived. Under the small bandwidth limits, the variance (2.25)
has the following asymptotic approximation

0'*2($i)

= mefAflAgAflel +o((nh)™1), (2.30)

Var [f00]
where A; ' = [ W (v)le(v)e(v)Tdv. Substituting (2.29) into expression (2.6)
for the local regression estimate leads to

- 1 TA-1g7—1 T
i)~ AT"H X' W
V() nhio(z;) €1 y

1 z o [T — x4
s 5 () v

Jj=1

where

We(v) = el AT e(v)W (v). (2.31)

The weight function W°(v) is the asymptotically equivalent kernel. Its de-
pends on the degree of fit and the original weight function W (v). Often
equivalent kernels provide poor approximations but their merit is to sim-
plify theoretical computations considerably, see Loader (1999b, p.40) and
Fan and Gijbels (1996, p.101-107). The asymptotic variance (2.30) becomes

- 0*2 (.’131) o 2
Var {w(xl)} ~ W/W (v)*dv.
The first term of the bias expansion (2.26) is approximated by

ey
b(w;) = (»+ 1)

If p is even and W (v) is symmetric, [vPT'W°(v)dv = 0. The dominant bias
arises from the second term of (2.26), which has size o(h?*?). For p even,
we obtain

/’UP+IWO(U)dU + o(hPTh).

PP ()¢ (1) n PP (z;)
(p+ Dlo(z:) (p+2)!

For more details and additional assumptions see Ruppert and Wand (1994),
Loader (1999b, p.38-42) and Fan and Gijbels (1996, p.101-107) among oth-
ers.

When we look at the asymptotic bias and variance, we find interesting fea-
tures. In the leading term of the bias the smoothing parameter is found in
the numerator while for the variance it is found in the denominator. Thus,

b(zi) = hP+? ( ) / P2 (0)dv + op (W),



STATISTICAL PROPERTIES 47

for A — 0 the variance becomes large whereas the bias becomes low. As an
illustration, Figure 2.7 shows the squared bias, variance and M SE in one
graph. We see that the bias-variance trade-off is evident as well as the fact
that the minimization of the mean squared error is a compromise between
the two.

Bias and Variance trade-off

8e-04 -

6e-04 -

4e-04 |

2e-04

----- Bias squared
—— Variance
MSE

1 21 31
Bandwidth

Figure 2.7: Squared bias (thin dashed), variance (thin solid) and mse (thick solid) of a
local polynomial fit for the Dutch male population, 2008. Source: HMD.

The intuition behind this is as follows. When the local polynomial does not
fit well, i.e. the bandwidth is too large, the bias is large and hence also
the residual sum of squares. When the bandwidth is too small, the variance
term tends to be larger. So the M SE quantity protects against both extreme
choices.

In addition, there is a difference between p odd and p even, leading to the

same order of the bias for p = 0 (constant) and p = 1 (local linear), as well
as p = 2 (local quadratic) and p = 3 (local cubic), and so on. For instance,
for p = 0 as well as for p = 1, the leading term of the bias contains h?2,
whereas for p = 2 and p = 3 one obtains h*.
One last feature as is seen in the formulas, is that for p odd the bias does not
depend on the density ¢(x;); in this sense the estimate is design adaptive in
the terminology of Fahrmeir and Tutz (2001). For p even, the term contains
the density ¢(z;) in the denominator, meaning that bias is lower if the density
o(x;) is high.

To give an illustration on how the trade-off between bias and variance
works in practice, consider Figures 2.8 and 2.9.
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the Dutch male population, 2008. Source: HMD. the Dutch male population, 2008. Source: HMD.
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Figure 2.8 shows fits for Dutch Male data (year 2008) and age range from
0 to 36 where the curvature is the most pronounced. Each column contains
fits for one value of A (A =9 to 41). The rows show the fits for degrees 4 to
0. The fits have been computed using a triweight weight function.
Figure 2.9 shows the residuals for each of the 20 fits in Figure 2.8, but for the
full age range, from 0 to 98. Superimposed on each plot is a loess smooth.
For local constant fitting, p = 0, a small X is needed to capture the
dependence of the probability of death on age without introducing an un-
due distortion. Even for A = 9, the plot of residuals suggests a lack of fit
at the youngest age, that is, at the left boundary, where there is a large
curvature. Local constant fitting can neither capture a quadratic effect at
the left boundary, nor the hump around 18 years old. A similar remark can
be made for a local linear fitting, when p = 1, even for small values of .
As we increase A to get a smoother fit, the local constant and linear fits
introduce a major distortion, and miss the mortality patterns. As \ increases
the neighborhood size increases, the bias tends to increase, and the variance
tends to decrease. However, one can observe that a high polynomial degree
will usually provide a better approximation than a low polynomial degree.
Thus as we increase the polynomial degree, we reduces the bias and the
curvature at youngest ages is capture as it is illustrated in Figure 2.9.
To some extent, the effects of the polynomial degree and bandwidth are
confounded. For example, if a local quadratic and a local linear estimate is
computed using the same bandwidth, the local quadratic estimate is more
variable. But the variance increase can be compensated by increasing the
bandwidth.

For mortality data there is a pronounced dependence of the response on
the independent variable, illustrated by valleys and peak at youngest ages.
Therefore we might expect that locally, taking a small A and a quadratic or
cubic family provides a reasonable approximation. This, however, must be
done judiciously, since there must be a sufficient number of observations to
support the extra degrees of freedom.

The issue is how to choose the value of the smoothing parameters to get
the right balance of bias and variance. The answer is to try and satisfy some
optimality criteria and it is discussed in the following section.

2.5 Fitting criteria and choice of the smoothing paramet-
ers

Where do we look to make the choices of the smoothing parameters? The
answer is, as we have emphasized, to treat choices of bandwidth, polynomial
degree and weight function as modeling the data and to use formal model
selection criteria and graphical diagnostics to provide guidance.
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The development of methods of parametric regression has had a long his-
tory of using model selection criteria and diagnostic methods for parametric
models fitted to regression data, see Cleveland and Loader (1996).

From parametric regression, there are two families of criteria based on
prediction error and on estimation error, respectively.

2.5.1 Criteria based on prediction error

To evaluate the performance of the estimator we may focus on the predic-
tion problem:

e If the fitted regression curve is used to predict new observations, how
good will the prediction be?

e If a new observation is made at x; = x(, and the response yq is pre-

~

dicted by go = ¥(z¢), what is the prediction error?

One measure is
E (50— 90)°] -

The method of cross-validation (CV') can be used to estimate this quantity.
In turn, each observation (x;,y;) is omitted from the dataset, and is predicted
by smoothing the remaining n — 1 observations. This leads to the C'V score

n

cv =1 3 (y - @‘i(xi))rz . (2.32)

n-
i=1

where LZ’Z(J:,) denotes the smoothed estimate when the single data point
(24, y;) is omitted from the dataset; only the remaining n — 1 data points are
used to compute the estimate.

The leave-one-out cross validation criterion was introduced for paramet-
ric models as the PRESS procedure (prediction error sum of squares). Form-
ally computing each of the leave-one-out regression estimates 124(.) would
take a lot of computer time, and so at first sight computation of the C'V
as in (2.32) looks prohibitively expensive. But there is a remarkable sim-
plification, valid for all common linear smoothers, involving correcting the
weights computed for the full set of n data points. We can calculate all the
leave-one-out smooths from the original smooth weight diagram S.

Actually, it is not clear what leave-one-out means in the context of
smoothing. In general there is not necessarily a relationship between a
smoother for n data pairs and a smoother for n—1 data pairs. One method of
finding such a relationship is to note that any reasonable smooth weight dia-
gram is constant preserving. Thus if we want to use the same smooth weight
diagram with the i-th row and column deleted resulting in an (n—1) x (n—1)
smooth weight diagram, we must renormalize the rows to sum to one.
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Let us recall that s;(x;) denote the diagonal elements of the original n x n
smooth weight diagram S. When we delete the i-th column, then the i-th
row sums to 1 — s;(x;). So that’s what we divide by to renormalize. For
linear smoothers ) (z;) = > 8j(x:) yj, one may choose

~

O () = T ;sj )Yj, (2.33)
J#Z

where the modified weights s;(x;)/(1—s;(x;)) now sum to 1. Thus, one gets
the simple form

1 o _ Si(l‘i)

1— Si(l‘i

i () =

7

Then the essential term y; — " (2;) in (2.32) is given by

yi — ()
1—si(z;)’

and may be computed from the regular fit zZ(xl) based on n observations
and weights s;(z;). By using (2.33) one gets the criterion

1< — (s ’
CV:HZ<%_$((%))> .

=1

Yi — 154(31‘(%‘)) =

Generalized cross-validation (GCV), as introduced by Craven and Wahba
(1979), replaces s;(z;) by the average ). s;(x;)/n. The resulting criterion
is easier to compute as it is the single average squared error corrected by a
factor.

~ 2
7& - Y(x:)
acv n;( }LZJsj(x)
1n
_nlz<1—tr
v 2
- (1—tr ( )

- 22(% 1)2’

In this form, the criterion is very sensitive to the design space. Table 2.4
presents the proportion of the residuals sum of squares (RSS) in the bound-
aries given by the local polynomial regression targeting the mortality rates g;

<
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Male pop. Female pop.

Target p | Left Right Left Right
Qi 0 0.03 98.79 0.02 99.03

1 0.19 88.91 0.25 86.29

2 0.17 94.83 0.49 92.02

3 0.11 94.73 0.31 91.49

4 0.07 94.32 0.20 90.61

logit(g;) | 0 | 82.91 7.82 83.52 9.14
1 | 82.98 0.83 86.24 0.28

2 | 76.86 1.44 72.41 0.60

3 | 72.32 1.67 60.63 0.80

4 | 69.74 1.90 58.71 0.85

Table 2.4: Proportion of the RSS in the boundaries (in %) by the local polynomial
regression, computed with boundary correction type 1 and a triweight weight function and
A =19, for the Dutch male and female population, 2008. Source: HMD.

on the original scale and on the logit scale by fixing arbitrarily the bandwidth
A to 19 observations. The proportion of the RSS varies with the underlying
structure of the data as well as the degree of polynomial p chosen. A con-
stant fit leads to the highest disturbing nuisance. The performance in the
boundaries increases with the degree of polynomial. By targeting the mor-
tality rates ¢; on the logit scale, most of the curvature appears in the right
boundary. The proportion of the RSS in the right boundary represents at
least 88.91 % and 86.29 %, for the male and female population respectively.
It is apparent that the selection of the parameters is driven by minimizing
the RSS in the left boundary rather than the whole data.

However, the generalized cross validation can be seen as a special case of
minimizing

log (%) + ¢(S),

where ¢(.) is a penalty function that decreases with increasing smoothness
of ¢ and 2 = (1/n) >y — ¥(x;))? is the average squared residuals, see
Hurvich et al. (1998, p.273). Table 2.5 presents the proportion of the natural
logarithm of RSS in the boundaries.

By taking the natural logarithm of the average square errors, the variability
is reduced and the criterion less affected by the boundaries.

The choice ¢(S) = —2log (1 — tr(S/n)) yields the GCV criterion, while
p(S) = 2tr(S/n) yields the AIC criterion

log(5?) + 2 tr(S)/n. (2.34)
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Male pop. Female pop.

Target p | Left Right | Left | Right
qi 0 | 10.58 4.70 10.4 4.46

1 | 10.07 5.65 9.92 5.87

2 | 10.08 5.67 9.73 6.38

3 | 10.01 5.72 9.71 6.26

4 | 10.15 5.66 9.92 5.97

logit(g;) | O 4.07 6.72 3.59 6.88
1 2.92 10.37 | 2.39 | 13.67

2 3.76 10.28 | 5.56 | 12.08

3 3.13 10.43 | 4.56 | 12.50

4 3.48 10.44 | 4.86 | 11.08

Table 2.5: Proportion of the log(RSS) in the boundaries (in %) by the local polynomial
regression, computed with boundary correction type 1 and a triweight weight function and
A =19, for the Dutch male and female population, 2008. Source: HMD.

The usual form of the AIC criterion is given by AIC = —2{log(L) — p},
where log(L) is the maximal log-likelihood and p stands for the number of
parameters. Under the assumption of normally distributed responses y; ~
N(u;,0?), one obtains, apart from additive constants,

AIC =n (log(az) + 2 p> .
n

In (2.34) the trace tr(.S) plays the role of the effective number of parameters
used in the smoothing fit, see Loader (1999b). Thus, replacing p by tr(S)
leads to (2.34). If ¢(S) = —log{l — 2tr(S)/n} is chosen, one obtains the
criterion suggested by Rice (1984).

A last alternative can be mentioned. Hurvich et al. (1998, p.277) pro-
posed to use the criterion AICC, a corrected version of the AIC,

Letr(S)/n 2(tx(S) + 1)
= (8 +2/n BT e =

AICC = log(6?)+ (2.35)

The first term in (2.35) measures the quality of the adjustment while the
second term evaluates the model complexity.

It follows from Hérdle et al. (1988, p.88) that all the so-called classical se-
lectors considered here are asymptotically equivalent. Given this, we might
wonder why they might exhibit noticeably different performances in practice.
The reason, exposed in Hurvich et al. (1998, p.277) is that the asymptotic
theory assumes tr(S) — 0, a situation that is not consistent with a small
smoothing parameter A.



54 CHAPTER 2. LOCAL REGRESSION METHODS

Penalties for various selectors
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Figure 2.10: ¢(.) penalties for various selectors as a function of tr(S) /n.

Figure 2.10 makes this distinction clear. It gives the penalty functions ¢(S)
as a function of tr(S) for GCV, Rice’s T statistic, the AIC and AICC — 1
(subtracting 1 from AICC makes it comparable with the other selectors,
and does not affect its smoothing parameter choices; since AICC depends
on n, its curve is given for n = 100).

All four functions become indistinguishable at the left-hand end of the
plot, which corresponds to tr(.S)/n — 0 and the usual asymptotics. The cri-
teria differ markedly for a small smoothing parameter (large tr(S)/n), how-
ever, with a sharper rise corresponding to a heavier penalty against under-
smoothing. The AIC and GC'V have relatively weak penalties; this accounts
for their tendencies to lead to under-smoothing. Rice’s T statistic, in con-
trast, has a very strong penalty, as it is effectively infinite for tr(S)/n > 0.5.
This means that Rice’s T' must lead to over-smoothing when a very small
smoothing parameter is appropriate. AICC occupies a position between
these two extremes, being less susceptible to both the under-smoothing of
the AIC and GCV and the over-smoothing of Rice’s T statistic.

In consequence, we would use the AIC or the GCV selector when the
data present a smooth pattern, as we are more likely to look for an under-
smoothed fit. While Rice’s T statistic and AIC'C would be used alternat-
ively, as they lead to an over-smoothed fit which is satisfactory when the
data are volatile.

2.5.2 Criteria based on estimation error

Alternatively, one can consider methods motivated by estimation error:
how well does ¢ (z) estimate the true mean ¥ (z)? A risk function meas-
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ures the distance between the true regression function and the estimate; for
example,

R, ) = 25 [ (Fe) - via) ] (230

Ideally, a good estimate would be one with low risk. But since ¢ is unknown,
R(v, 1) cannot be evaluated directly. Instead, the risk must be estimated.
Focusing on the squared-error risk, we have the bias-variance decomposition

ot RO ) = Y Var [0 + 3 (B[] - i)

Cleveland et al. (1988, p.100) compute the expected value of the residual
sum of squares of ¥(x;) as

n

T

=1 =1

E

Likewise, in matrix notation, knowing that
Var {y f{b\} =Var[(I - S)y]
—o?(I-S)(I-8)"
pe (I—S—S’+SST),

where y is the vector of the response values and I is the identity matrix, we
have

E [Hy—ﬂﬂ :aQtr<I—S—ST+SST) +b7b
=% (n—2tx(S) + tx(SS7)) +b7b
=0%(n—2v; +vy) + bb,

with b the bias vector. Hence Cleveland et al. (1988, p.100) estimate of the
bias term b’ b as

E [Hy—'t/p\‘ﬂ —02(n —2v; + o). (2.37)

With (2.25) and (2.37), and making the proper rearrangements, an unbiased
estimate of (2.36) is

}Ai(i/%@ = % Z (yz - 1;(3%))2 —n+2v;.
=1

This statistic is known as the Cp criterion, and has been introduced by
Mallows (1973) for parametric regressions. It provides an unbiased estimate



56 CHAPTER 2. LOCAL REGRESSION METHODS

~

of R(1,1). This statistic was extended to local regression by Cleveland and
Devlin (1988). To implement the Cp criterion (or unbiased risk estimate)
one needs to know an estimate of ¢2. The recommendation of Cleveland
et al. (1988) is to replace it by an estimate from a local fit for which it seems
reasonable to suppose the bias is small. This means estimating 52, where \

is small, by

0% = m Z (yz - 12(351))2

2.5.3 Plug-in method and theoretical bandwidth

Since the choice of the smoothing parameters is of crucial importance to
the performance of the estimator, this has been a topic of extensive research.
The work has been most predominantly in the setting of kernel density estim-
ation, see Loader (1999a). The bandwidth selection methods can be divided
into two broad classes, the classical and plug-in methods.

Classical methods are C'p, CV; GCV and AIC and variations, introduced

in Section 2.5.1 and 2.5.2. We have seen these are more or less natural ex-
tensions of methods used in parametric modeling.
On the other hand, plug-in methods rely on an approximation of the bias via
Taylor series expansions. The bias of an estimate 1 is written as a function
of the unknown 1, and is approximated through Taylor series expansions.
A pilot estimate of v is then plugged in to derive an estimate of the bias
and hence an estimate of the mean squared error. The optimal bandwidth
minimizes this estimated measure of fit:

MSE,.(z:,h) = (v])? (E\as;v(xi) ¥y () ) (2.38)

With the estimated M SE, Fan and Gijbels (1995b, p.378) formulate a band-
width selection rule as follows: Fit a polynomial of order p + a (choosing
a = 2) and find the pilot bandwidth 2* that minimizes the integrated resid-
ual squares criterion,

[RSC(h) = / RSC(t, h) dt,

[Tmin,Tmaz]

with the RSC defined as
RSC(zi,h) = 6% (x;) 1+ (p+1)/N), (2.39)
where N1 is the first diagonal element of the matrix
(XTwXx) ' XWX (XTWX) T,

and 5*2(z;) is the normalized weighted residual sum of squares after fit-
ting locally a (p 4+ a)th order polynomial defined as expression (2.19). Note

that N reflects the effective number of local data points since Var {,@(wl)} =
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o?(x;)/N by equation (2.15). The criterion is not suffering from the bound-
ary effects as the RSS component is weighted by the variance term N.
Because the variance is larger at the boundaries, the resulting contributions
of the observations are lower.

The intuition behind statistic (2.39) is that when the local polynomial
does not fit well (the bandwidth is too large), the bias is large and hence also
the residual sum of squares 5*?(z;). When the bandwidth is too small, the
variance term N tends to be larger. So the RSC quantity protects against
both extreme choices.

Thus, having the optimal bandwidth h* for estimating 3,41, obtain es-

timates B;H(a:,»), B;H(a:,») and 0*?(x;). With these estimated parameters,

compute the estimated bias b/igsp,v (x;) and variance vary, (z;) of By, which
are the (v + 1)st element of vector (2.20) and the (v + 1)st diagonal element
of the estimated expression (2.23), respectively. Combining these estimates
yields (2.38) as the estimated M SE. This leads to the bandwidth selector

hp = arg mhin {/[

MSE, ,(t,h) dt} .

Tmin, Tmaz]

The key problem here is the bias estimation. The current approach makes
it possible to assess the bias without going into deep asymptotics. It differs
from the usual plug-in procedure (see for instance Park and Marron (1990),
Sheather and Jones (1991), and Gasser et al. (1991)) in the sense that the ¢,
defined by expression (2.22), are not further replaced by their asymptotic
counterparts. The quantities ¢, are already known, and Fan and Gijbels
(1995b, p.377) argue that replacing them by their corresponding asymptotic
quantities introduces not only some extra approximation but also extra un-
known parameters such as the marginal density 1 x (z;).

However, for higher order fits (p > 2) such as local quadratic or cubic
fits, bias estimation essentially amounts to estimating fourth order derivat-
ives about which the data contains little or no information, see Cleveland
and Loader (1996, p.33). Hence plug-in bandwidth selection alone does not
solve the bandwidth problem, but replaces the problem with the problem of
choosing pilot bandwidths.

2.5.4 Graphical Diagnostics and heuristics

In practice one needs to choose A and the fitting variables to balance

the trade-off between bias and variance. To find such constellation, we can
compute the criteria presented in Section 2.5.1 and 2.5.2 for different fits
and select the fit with the lowest score.
However, as argued strongly by Cleveland and Devlin (1988), this discards
much of the information about the trade-off between the contributions of
variance and bias to the mean-square-error. Cleveland and Devlin then
introduced graphical tools for displaying these statistics.
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As an illustration, Figure 2.11 displays the AIC scores against the fitted
degrees of freedom tr(SS™). We use the fitted degrees of freedom, rather
than the smoothing parameter, as the horizontal axis. This aids interpreta-
tion: 10 degrees of freedom represents a smooth model with very little flex-
ibility while 30 degrees of freedom represents a noisy model showing many
features. It also aids comparability as we can compute criteria scores for

other polynomial degrees or for other smoothing methods and added to the
plot.

AIC scores for various polynomial degrees

AIC

2
Uami ¢ 33 4234 4

0 10 20 30 40 50 60
Fitted DF

Figure 2.11: AIC scores for various polynomial degrees and triweight weight function
for Dutch Male population, 2008. Source: HMD.

From Figure 2.11, the lowest score corresponds to a quartic fit with vy =
47.41, leading to a smoothing window of 11 points. Following Loader (1999b,
p-33), any model with a score near the minimum is likely to have a sim-
ilar predictive power. The flatness of the plot reflects the uncertainty in
the data, and the resulting difficulty in choosing the smoothing parameters.
Hence Cleveland and Devlin (1988) elect to use a larger A and recommend
to choose the smoothing parameters at the point when the criterion reaches
a plateau after a steep descent. In consequence, we would select a cubic fit
with vy = 18.46, corresponding to a bandwidth of 19 observations.

In parallel, we shall use fitting and corresponding residuals plots. Figure
2.12 shows the fits and corresponding residuals plot for the constellation
picked by the lowest AIC score and the one elected using our graphical

diagnostic. Both of the fits have been computed with a triweight weight
function.
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One always has to look at residual plots in conjunction with looking at

plots of the fits. Superimposed on the residual plot is a loess smooth with
local quadratic fitting and A = 19. The smoothed curves help the search for
clusters of residuals that may indicate lack of fit. Such residual plots provide
a powerful diagnostic that nicely complements the selection criteria.
The diagnostic plots can show lack of fit locally, and we have the opportunity
to judge the lack of fit based on our knowledge of both the mechanism
generating the data and our knowledge of the performance of the smoothers
used in the fitting. Here, the process is not to judge a fit adequate if a
smooth curve on its residual plot is flat. A flat curve means simply that no
systematic, reproducible lack of fit has been detected. The fit may well be
too noisy as we can see from the fit computed with the lowest AIC' score.
It stays too close to an interpolation since trends in small parts of the data
are interpreted as more widespread trends. Then, for small datasets, the
fit is very nearly interpolating the data which results in unacceptably high
variance.

Fit (Focus) Fit (Large) Residuals

Lowest AIC score

Elected AIC

0 10 20 30 0 20 40 60 80 100 0 20 40 60 80 100
Attained age (years)

Figure 2.12: Fits and residuals plots elected by the AIC score with a triweight weight
function for Dutch Male population, 2008. Source HMD.

Loader (1999a) has emphasized the importance of not relying blindly on
any bandwidth selector to produce the right bandwidth automatically. If
one applies a bandwidth selector and plots the fit, one gets a one-sided view
of the bias-variance trade-off, seeing the variance but not the bias. It is
extremely important to use appropriate residual diagnostics to look for lack
of fit. Likewise, plotting the AIC or variations provides valuable diagnostic
information as to how difficult the bandwidth selection is; a flat plot suggests
that different features of the data may be competing for attention at different
bandwidths. Plug-in approaches discard this information.
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Plug-in approaches make substantial prior assumptions about the required
bandwidth through the specification of tuning parameters for pilot estimates.
They will fail if this information is wrong. The plug-in methods obtain much
of their information from the data through the use of higher order pilot es-
timates. If classical approaches are also allowed to consider higher order
methods, better estimates result. Loader (1999a) does not claim that clas-
sical approaches such as AIC and variations will produce the best estimates,
but rather that, used properly, the results will often be more informative than
other bandwidth selection.

To conclude, note that in practice relying exclusively on a global criterion
is unwise because a global criterion does not provide information about where
the contributions to bias and variance are coming from.

In the next section, we use two examples to graduate the mortality data
through the choices of the weight function, the bandwidth, and the para-
metric family. We use the fitting criteria and graphical diagnostics to guide
the modeling.

2.6 Applications

2.6.1 The data

In this section we present two applications of local polynomial fitting
method for graduation. The computations are carried out with the help
of the software R, R Development Core Team (2012). Figure 2.13 displays
the observed statistics of the two datasets.

i. The data for the first application are reported by the Human Mortality
Database (2012). The dependent variable is the observations in a logit
scale of the one-year probability of death for the Dutch Male population
for the year 2008 at age x; with i =1,...,99.

ii. The data for the second application are the Female counterpart.

2.6.2 Choice of the constellation of the smoothing parameters

We graduate the mortality data through the choices of the weight function,
the bandwidth and the parametric family. In practice one needs to choose A
and the fitting variables to balance the trade-off between bias and variance.
To find such a constellation, we use the criteria presented in Section 2.5 and
graphical diagnostics to guide our modeling.
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Figure 2.13: Observed statistics for Dutch Male and Female population, 2008. Source:
HMD.

Both datasets present a relatively wiggly pattern. For these applications
we picked the optimal constellation selected by Rice’s T statistic and AICC
as the final fit. Due to strong penalties on ¢r(.5)/n, these criteria tend to lead
to over-smoothing, which, considering the underlying pattern of the data, is
satisfactory. However, the selected bandwidth should not be too large to
capture the structure at the left boundary and the accident hump which we
believe as true.

Table 2.6 displays the elected optimal constellation of smoothing para-
meters for the local polynomials method together with the fitted degrees of
freedom.

A | Degree wi(.) Fitted DF

Dutch Male 19 3 Triweight 18.46
Dutch Female | 21 3 Triweight 16.76

Table 2.6: FElected optimal constellation of smoothing parameters and fitted degrees of
freedom, A\=2h+1

A local cubic fit is needed to capture the mortality patterns. The choices
differ with the bandwidth elected. The weight function has much less effect
on the bias-variance trade-off than the two other smoothing parameters.
However, it influences the visual quality of the fitted regression curve.

The mortality patterns for the Dutch female population are less pro-
nounced than for the male. A higher ) is then needed to smooth the structure
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at the left boundary and the accident hump which we believe less accentu-
ated than the Male population. The corresponding fitted degrees of freedom
for the female population are lower than the ones for the male, indicating
that we have applied more smoothing.

Table 2.7 presents the theoretical optimal bandwidth provided by the plug-
in method developed in Section 2.5.3. We fit a polynomial of degree 3 and
use the corresponding optimal weight functions elected in Table 2.6. The
values of A are reported below.

Pilot bandwidth | Optimal bandwidth

Dutch Male A=19 A=17

Dutch Female A =32 A=21

Table 2.7: Pilot and optimal bandwidths selected by the plug-in method

The optimal bandwidths confirmed our choices presented in Table 2.6, being
relatively close and agreeing with our ranking.

2.6.3 Plots of the fits on the transformed scale

Figure 2.14 presents the mortality rates (logit scale) graduated by our local
polynomials method with the optimal constellation of smoothing parameters
displayed in Table 2.6.

Fit (Focus) Fit (Large) Residuals

Dutch Male

Dutch Female

0 10 20 30 0 20 40 60 80 100 0 20 40 60 80 100
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Figure 2.14: Graduated mortality rates by local polynomaal (logit scale) with 95 % point-
wise confidence intervals and corresponding transformed residuals plots for Dutch Male

and Female population, 2008. Source: HMD.

In conjunction with the plots of the fits, we display the residuals plots.
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Superimposed on the responses residuals is a loess smooth curve which helps
for search of clusters of residuals that may indicate a lack of fit locally. This
loess smooth curve has not detected any systematic and reproducible lack
of fit. However, it shows an important lack of fit at the left boundary. Due
to the underlying structure of the mortality data - high curvature at the
youngest ages and a relatively linear trend after 30 years old - it is normal
to get higher residuals at the left boundary than in the rest of the curve.

A last feature is shown by examining the confidence intervals in Figure
2.14. The width of the interval reveals the uncertainty associated with the
graduated series. These widths are much larger for youngest ages, when the
number of deaths is relatively low compared to the highest ages, as they
depend on the variance of the estimates and hence on the volume of data
available for graduation.

2.6.4 Plots of the smoothers

The weight function associated with the i-th point is used to compute the
weights in the i-th row, s(z;), of the 99 x 99 smoother S and is shown in
Figures 2.15 and 2.16, below, with the influence values.

infiuence

Weight S,
Weight S,

Figure 2.15: Smoother S;;: left panel: i,5 = 0,...,49, center panel: i,5 = 50,...,98
and influence values for the Dutch Male population, 2008. Source: HMD.
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Weight s,

o ) “© ) 0 10
Attained age

Figure 2.16: Smoother S;;: left panel: i,j =0, ...,49, right panel: i,j = 50,...,98 and
influence values for the Dutch Female population, 2008. Source: HMD.
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The weights are shown as the height along the i-th row of the surface.
For values in the central region, the weights form a triweight kernel. But
as the point at which we are estimating the true curve moves towards the
boundaries, the kernel overlaps the boundary and becomes asymmetric, and
some weights are negative. Moreover, the height of the kernel increases
because fewer observations are available.

For our applications, the boundary correcting kernel always uses A obser-
vations wherever the target point is. For instance, for a target point at the
left boundary, we use all the observations available k at the left side, and
2 h — k at the right side of the point. Reciprocally for the right bound-
ary. This type of correction is found in most smoothing software such as
the loess () or locfit() functions in R, R Development Core Team (2012).
Note that the criteria used for model selection have been computed over a
restricted number of observations. Restricting the sum helps to reduce the
boundaries effects, see Fan et al. (1998). At the boundaries, the residual
sum of squares, RSC criterion and estimated derivatives can be too large
because of numerical instabilities and scarcity of the data, see Section 2.5.

The influence values measure the sensitivity of the fitted curves 72(3:2) to
the individual data points. It shows us the amount of smoothing applied
locally. For instance, in Figure 2.15 right panel, infl(z7) = infl(zg1) & 0.18,
indicating that the observed values constitute about 18 % of the fitted values
while the influence values for observations in the central region (&~ 0.21)
shows that the observed values constitute about 21 % of the fitted values.
It illustrates that locally we have applied more smoothing at age 7 and 91
than in the rest of the curve.

2.6.5 Plots of the graduated series and diagnostic checks

Having produced estimates on the transformed scale, we now back-transform
the graduated rates. Figure 2.17 presents the mortality rates graduated on
the original scale by our local polynomials method.

After graduating the crude rates and back transforming, one diagnostic
mentioned by Gavin et al. (1995, p.183) uses the mean and variance of the
binomial distribution to calculate the standardized deviation between the

observed and expected deaths,
di — ;i .
Aicﬁ, fori=1,...,n.
Ligi(1 — @)

Figure 2.18 displays the expected number of deaths with the statistic de-
scribed above. We notice that most values are less than two and the statistic
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Figure 2.17: Graduated mortality rates by local polynomials (original scale) with 95 %
pointwise confidence intervals and corresponding residuals plots for Dutch Male and Fe-
male population, 2008. Source: HMD.

has a mean close to zero for both populations, indicating that the assump-
tions made by the model are valid. Several other diagnostic plots and non-
parametric tests could be considered, see Gavin et al. (1995) and Cleveland
et al. (1988).
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Figure 2.18: Ezpected number of death with 95% pointwise confidence intervals and
deviation between actual and expected death for Dutch Male and Female population, 2008.
Source: HMD.

2.7 Comparisons with the Whittaker-Henderson model

Similarly to the local polynomials method, we apply the criteria presented
in Section 2.5.1 to find the optimal value of parameters h and z. We picked
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the constellation h = 5 and z = 3 for the male, and h = 20 and z = 3
for the female population, given by Rice’s T criterion, leading to 20.99 and
17.06 fitted degrees of freedom respectively. Figures 2.19 and 2.20 present
graphical comparisons of the local polynomials approach and the Whittaker-
Henderson model.

Fit (Youngest) Fit (Oldest) Standardised Residuals
2”1 00 o

0.5

1.0
a5 > 0

2.0

Dutch Male

25

Dutch Female

0 10 20 30 40 80 85 %0 95 0 20 40 60 80 100
Attained age (years)

Figure 2.19: Graphical comparisons between the local polynomials approach (full line)
and the Whittaker-Henderson smoothing (dotted line) for the Dutch Male and Female
population, 2008: Graduated series and standardized residuals. Source: HMD.

In Figure 2.19, the top left panel presents the graduated mortality rates
(logit scale) for the Dutch Male population. The series graduated by local
polynomials displays a smoother pattern. The corresponding degrees of free-
dom are lower than the ones obtained by the Whittaker-Henderson model,
illustrating that the model is showing less features.

The bottom left panel shows the graduated mortality rates (logit scale) for

the Dutch Female population. The graduated series are practically identical.
The fitted degrees of freedom are very close, illustrating that the models show
the same features.
The right panels display the standardized residuals. The circles represent
the residuals from the local polynomials approach and the crosses the ones
from the Whittaker-Henderson smoothing. The standardized residuals are
mainly in the interval [—2;2] which indicates that the models adequately
model the variability of these datasets.

In Figure 2.20, the influence values, obtained by the local polynomials
for the male population, up to age 80 are below the ones computed with
Whittaker-Henderson model, inflyy g (z;) = diag((V + hKI'K,)~1V), top
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Figure 2.20: Graphical comparisons between the local polynomials approach (full line)
and the Whittaker-Henderson smoothing (dotted line) for the Dutch Male and Female
population, 2008: Influence values and relative difference between the graduated series.
Source: HMD.

left panel. It indicates that, up to age 80, more smoothing has been ap-
plied by the local polynomials approach. For instance, infl;p(x99) = 0.21,
indicating that the observed value constitutes about 21 % of the fitted value,
while the influence value obtained by the Whittaker-Henderson model for
the same observation (inflyy pr(z29) & 0.26) shows that the observed value
constitutes about 26 % of the fitted value.

The relative difference between the two approaches for the male population
is more important at the boundaries, where the Whittaker-Henderson model
does not need special treatment.

The influence values for the female population, bottom left panel, stay close.
The relative difference is very low and, as for the male population, is larger
in the boundaries.

We end the comparisons by applying the tests proposed by Forfar et al.
(1988, p.56-58) and Debon et al. (2006, p.231). We have also obtained the
values of the mean absolute percentage error M APE and R? used in Felipe
et al. (2002). We compare the crude mortality rates to the graduated series
to see whether the two approaches lead to similar graduation. Table 2.8
presents the results.

The two approaches display favorable results making it difficult to choose
one of them. As an advantage for the Whittaker-Henderson method, we
observe that is not necessary to give a special treatment to the observations
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Local Polynomial | Whittaker-Henderson
Male Female Male Female
Degree of freedom 18,46 16,76 20,99 17,06
Computation time (sec) 0,857 0, 860 0,008 0,008
Standardized > 2 5 5 4 4
Residuals >3 2 2 2 2
Signs +(-) 54(45) 48(51) 51(48) 48(51)
Test p-value 0.4215 0.8408 0.8408 0.8408
Runs Nb of runs 59 67 59 63
Test Value 1.8152 3.3460 1.7281 2.56371
p-value 0.0695 0.0082 0.0840 0.0112
Kolmogorov Value 0.0303 0.0404 0.0303 0.0404
Smirnov test p-value 1 1 1 1
X2 Value 129.06 93.15 103.39 94.62
Test p-value 0.0194 0.6196 0.3352 0.5779
R2 Value 0.9983 0.9986 0.9985 0.9986
MAPE (%) 10.41 9.61 9.05 8.99

Table 2.8: Comparisons between the local polynomials approach and the Whittaker-
Henderson smoothing for the Dutch Male and Female population, 2008. Source: HMD.

in the boundary, and the computation time is 100 times smaller. However
we have used a prototype implementation in R to perform the the local
polynomials approach. This can be improved by at least a factor of 10, if a
lower level language such as C is used.

2.8 Summary and outlook

This chapter gives an extensive overview of local regression techniques.
Local regression is a popular form of non-parametric regression, combining
excellent theoretical properties with conceptual simplicity and flexibility to
find structure in many datasets. It is very adaptable, and it is also convenient
statistically since a lot is known about least squares theory, which is helpful
when looking at bias and variance.

We have seen how local polynomial regression can be used to model the
relation between the crude death rates and attained age with sufficient ex-
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posures. However, for the purpose of graduating series originating from life
insurance, the transformation of the data is a real problem for two reasons.
On one hand, due to the transformation, a high curvature appears in the
left boundary. As a consequence, the selection of the smoothing paramet-
ers may be mainly driven by minimizing the residual sum of squares in the
boundaries rather than for the whole set of data points. It may force the
criteria to select a smaller bandwidth at the boundary to reduce the bias,
but this may lead to under-smoothing in the middle of the table.

On the other hand when the volume of data is not sufficiently high, the
datasets might present zero response for youngest and oldest ages and hence
the logit transform can not be applied. We should point out that many
authors achieve better fits by eliminating the early ages due to their irreg-
ular profile, which they justify by arguing that actuarial operations begin
at more advanced age. We have chosen to include the young age groups to
show the applicability and relevance of the approach to find structure in the
presence of an irregular profile. Moreover, it is worth remembering that the
double exponential, which appears in Heligman and Pollard (1980) and is
related to parametric models, has been introduced to deal specifically with
the difficulty of adjusting the younger ages.

Finally, it would be desirable to model situations where a non-Gaussian like-
lihood is appropriate. In local polynomial regressions, the response variable
was assumed to be approximately Gaussian. If the response is binary or
given by counts, the technique considered there is no longer applicable, be-
cause binary or count data have an expectation-variance structure that is
different from the continuous, normally distributed responses. In the fol-
lowing chapter, the concepts of Sections 2.2 and 2.4 are incorporated and
extended within the framework of local likelihood and localized Generalized
Linear Models.
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Chapter

Local likelihood approaches

This chapter is based on Tomas (2011). A local likelihood approach to univari-
ate graduation of mortality, Bulletin Frangais d’Actuariat, 11(22), pages 105-153.

3.1 Introduction

We discusse a simple extension of the local fitting technique presented in
Chapter 2. We extend smoothing ideas to other kinds of data. In particular,
data of which the relationship can be expressed through a likelihood func-
tion. If the response is binary or given by counts, the technique considered
in the previous chapter is no longer applicable, because binary or count data
have an expectation-variance structure that is different from the continuous,
normally distributed responses.

Local kernel-weighted log-likelihood is introduced as a method of smooth-
ing by local polynomials in non-Gaussian regression models. In the follow-
ing, we incorporate and extend the concepts of the non-parametric regression
technique of local polynomials within the framework of local likelihood and
localized Generalized Linear Models.

In the last three decades, the use of Generalized Linear Models (GLMs)
in actuarial statistics has received a lot of attention, starting with the ap-
plications of McCullagh and Nelder (1989). First, regression is no longer
restricted to normal data, but extended to distribution from the exponential
family. This allows appropriate modeling for frequency counts (number of
deaths) and binary data (mortality rates). Second, a GLM models the ef-
fect of explanatory variables on a transformation of the mean instead of the
mean itself. Third, the distribution of error-terms may be non-normal and
heteroskedastic, having a variance that depends on its mean.

The chapter is organized as follows. Section 3.2 extends the theory of
GLMs to local kernel-weighted likelihood and local GLMs. The statistical
properties are covered in Section 3.3 and model diagnostics are discussed in
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Section 3.4. We cover the graduation of both the probability of death and the
force of mortality over the entire age range involving historic data from the
Netherlands. We present a local binomial likelihood model when the number
of initial policyholders exposed to the risk is available in Section 3.5, and
Section 3.6 develops a local Poisson likelihood model when the number of
central policyholders exposed to the risk is available. The initial exposed
to risk is the number of individuals alive aged x at the start of the period
of observation, while the central exposed to risk is the time exposed to risk
of dying at age x. We provide comparisons with the Whittaker-Henderson
model for the two approaches. Finally Section 3.7 summarizes the conclu-
sions drawn in this chapter.

Related work is in Delwarde et al. (2004) and Debon et al. (2006), but
our work examines the statistical properties of the estimators and the choice
of the smoothing parameters by classical selectors as well as the plug-in
methodology. In addition we provide a method for constructing pointwise
confidence intervals that are not depending on the estimates using the vari-
ance stabilizing link. This method allows us to obtain confidence intervals in
presence of zero-responses. The implementation of optimization algorithm
is straightforward in standard statistical software such as R, R Development
Core Team (2012).  The basic idea is a simple extension of the local fit-
ting technique presented in Chapter 2. We extend smoothing ideas to other
kinds of data. In particular, data of which the relationship can be expressed
through a likelihood function.

Suppose that we have n independent realizations y1, yo, . . . , ¥, of the random
variable Y with
Y ~ f(Y|0(x;)), fori=1,2,...,n,

where f(-]0(x;)) is a probability mass/density function in the exponential
dispersion family and 6(z;) is called the natural parameter in the GLMs
framework. The likelihood is given by

L(61,6s,...,6n) =[] /(i 00)-
1

A standard modeling would assume a simple parametric form for the 6(z;)’s,
for instance 6(x;) = Po + fiz;. Following the approach taken by Tib-
shirani and Hastie (1987) we enlarge this class by replacing the parsimo-
nious covariate form with an unspecified smooth function ¥ (z;): 6(z;) =
Y(x;). To estimate {¢(z1),¥(z2),...,¢¥(xn)}, we could try to maximize
L(Y(x1),¢¥(z2),...,¢¥(xy)). However, this would result in an unsatisfactory
estimate due to over-fitting. It would simply reproduce the data. As an
alternative, similarly to Section 2.2.1, we suppose that the function v has a
(p+ 1)st continuous derivative at the point x;. For data point x; in a neigh-
borhood of x; we approximate 9 (z;) via a Taylor expansion by a polynomial
of degree p:

. ¢(p) ()

] (z; —z)P =27,

Y(xj) = (x;) + 9 (x) (2 — x3) + ..
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where ¢ = (1,2 — z;,...,(z; — 2;)P)T and B8 = (B, ..., Bp)T, with 8, =
D) (z)/v!, v =0,1,...,p.

The contribution to the log-likelihood, for data points (x;,y;) in the neigh-
borhood of z;, is denoted by [ (yjm:T,B). In addition it is weighted by wy,

where 8= (B, ...,B,)", and

W(lz; — ;| /h) if |x; —a;| /b <1,

w i =
0 otherwise,

where W(.) is one of the weight functions presented in Table 2.1 and h =
(A —=1)/2, X being the window width.

It leads to the local log-likelihood, or local kernel-weighted log-likelihood
as named by Fan et al. (1998):

L(BIX, x;) Zl yjz’ B) w;. (3.1
j=1

Maximizing the local log-likelihood (3.1) with respect to B gives the vector

of estimators ﬁ (50,...,[31,) . Estimators ") (z;), v = 0,1,...,p, are
given by

DO (z;) = v1B,. (3.2)

3.2 The local likelihood model

3.2.1 Localizing generalized linear models

A special case of model (3.1) occurs when the conditional density of Y
given X belongs to the exponential dispersion family with a probability
mass function which can be written in the form:

o gty = bEm)
Py (0556300 = exp { LS00

for specific functions a(), b() and ¢() and where ¢ is called the dispersion
parameter. It is a nuisance parameter not depending on z;. If ¢ is known,
then we call it an exponential family model with canonical parameter 6. If
¢ is unknown we have a two-parameter exponential family but the estim-
ation procedure is unchanged because the local score function for 6 does
not involve a;(¢). The functions a and ¢ are such that a;(¢) = ¢/m; and
¢ = c(y;, /m;), where m; is a known weight for each observation x;. The
most important examples for our purposes are presented in Table 3.1.

+C(yja¢)}7

One of our goals throughout this chapter is to clarify and demonstrate
how the families, links and variations fit together in an understandable
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Distribution of y; 0; m;  aj(o) b(8;,m;) c(yj, )
Normal(p;;02) o 1 o? g -1 { Yo +log(2ma? )}
Poisson () log(p;) 1 1 exp(6;) —logy!
Binomial(l;;¢;) | log (13-7;21 ) l; li ljlog(1 + exp6;) log (Léjdj)

Table 3.1: Distributions of interest belonging to the Exponential Dispersion Family.

framework. A local binomial likelihood model is used when the number
of initial policyholders exposed to risk is available, and hence the graduated
probabilities of death are given by 7(x;), the linear predictor in the GLMs
framework; while for those central exposed to risk, a local Poisson model
is used and the graduated forces of mortality are derived as ji(x;)/l;. The
initial exposed to risk is the number of individuals alive aged z; at the start
of the period of observation, while the central exposed to risk is the time
exposed to risk of dying at age x;.

The unknown function p(z;) = E[Y|X = z,] is modeled in X by a link
function g(.) such as g(u(z;)/m;) = n(x;). Then E[Y;] is tied to a linear

combination,
g w;m; g Bp(zj — )P,

of the parameters 8, by a monotonous and differentiable function ¢(.), not
necessarily the identity. We proceed by forming the local likelihood as in
(3.1) and estimate the 8.

This procedure can be viewed as an extension of the family of generalized
linear models (GLMs), see Nelder and Wedderburn (1972) and McCullagh
and Nelder (1989).

Extensive experience on graduation using GLMs has been built up in the
actuarial literature with Renshaw (1991) and reviewed by Haberman and
Renshaw (1996). We invite the reader to look at Kaas et al. (2008, Chap.
9-11) for a clear presentation about the use of GLMs in actuarial science.
Local likelihood methods to graduate of mortality tables have been applied
in Delwarde et al. (2004), Debén et al. (2006) and more recently in Gschlssl
et al. (2011).

The GLMs provide a generalization of linear regression to likelihood mod-
els. Regression is no longer restricted to normal data, but extended to dis-
tributions from the exponential family. This allows appropriate modeling
for frequency counts (number of deaths) and binary data (mortality rates).
Also, a GLM models the effect of explanatory variables on a transformation
of the mean instead of the mean itself.

The role of GLMs is that of a background model which is fitted loc-
ally. In a parametric generalized linear model, n(x;) = By + B1z; for some
unknown parameter 5y and ;. In our non-parametric setting, there is no
model assumption about 7(x;). The primary goal is to estimate pu(x;)/m;,
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or equivalently n(x;), non-parametrically, that is, 8o + 812, is generalized to
¥(x;). The obvious extension of this idea is to suppose that n(z;) is a pth
degree polynomial in z;, with z; being an element of the neighborhood of
Xi.

Therefore, fitting procedures that are familiar from GLMs are needed,
but, of course, the modeling itself is smooth and no longer parametric.

3.2.2 The choice of the link function

The function g(.) is called the link function, and it is assumed to be
known. In parametric regression models, the choice of the link function is
largely dictated by the data. If the true mean is log-linear, one has to use
the log link. With local regression models, one does not assume the model is
globally correct, so the choice of the link can be driven by convenience. This
choice has a relatively small impact on the graduated series compared to the
choice of the smoothing parameters. Hence, it can be driven by practical
considerations, which could be the ease of computations or the construction
of the confidence interval in the presence of zero responses. It is also con-
ceivable to dispense with the link function and just estimate p(x;) directly.
But there are several drawbacks to having the link equal to the identity. An
identity link may lead to a non-convex likelihood, allowing for the possibility
of multiple maxima, inconsistency and computational problems. The use of
a canonical link guarantees convexity, see Fan et al. (1995). Furthermore, it
ensures that the final estimate is in the correct range. A final reason is that
the estimate fi(x;) approaches the usual parametric estimate as the band-
width becomes large.

For our purpose, we could use the canonical link. The canonical link
is @ = g(pu/m). When a local polynomial is used for 6(x;), the local log-

likelihood L(B; A\, x;) (and hence g(xl)) depends on the data only through

ijijﬁp T — ;)

This locally sufficient statistic simplifies theoretical computations. Each of
the discussed distributions has a special link function for which there exists
a sufficient statistic. Examples are presented in the Table 3.2 below.

Error Canonical link

Normal n=u
Poisson n = log(u)
Binomial | n=log((n/m)/(1 — p/m))

Table 3.2: Examples of canonical links
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However, an important result associated to the graduated series is the
construction of the corresponding confidence intervals. For likelihood mod-
els, confidence intervals should ideally take into account the underlying fam-
ily of distributions. But the theory for deriving such intervals is quite in-
tractable. Hence, following the approach taken by Loader (1999b, p.171),
we would rely on a method based on normal approximation presented in
Section 3.3.2. R

A problem that occurs with likelihood models is that Var[f(z;)] usually
depends on the unknown parameter 6(z;), and simply substituting an estim-
ate may not be satisfactory if we happen to observe y = 0. Using the logistic
link function does not help since then § = —oo and the variance is also infin-
ite. The simple solution, within the framework of normal approximations is
to use the variance stabilizing link. Under this link, the variance of 0(x;) is
independent of the true parameter 6(zx;), at least asymptotically. It leads to
confidence intervals whose widths depend only on the design points x;, see
Sections 3.5.3 and 3.6.3. Examples of variance stabilizing links are indicated
in Table 3.3 below.

Error Variance stabilizing link

Poisson g(p) = /1
Binomial | g(u/m) = sin~™1(y/u/m)

Table 3.3: Ezamples of variance stabilizing link functions

3.2.3 Local likelihood equations

In practice, the coefficients 8 = Sy, ..., 3, are unknown and have to be
estimated based on data in the neighborhood of the target point x;.
In the following, we focus on the estimation of the 8 by maximum likelihood.
It consists of maximizing the local log-likelihood

L (Bly, wj, d,my) =Y wy 1(y;10;,6,m;) (3.3)
j=1
= wjlog fy (y;10;, 6, m;)
j=1
S b(0:,
Z T ¢/mg e +Z“’J (Y5, ¢/ m;),

where E[Y;] = b'(0;,m;) = p; and g(u;/m;) = Zzzo Bp(xj — x;)P = n;,
with ¢(.) denoting the link function.
Since we want to maximize the log likelihood for Sy, 31,. .., 3, we look for
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a solution of the set of normal equations to be fulfilled by the maximum

likelihood parameter estimates (3:
A,=0 for v=0,1,...,p,

where

L(5v|vaja¢amj)
0By
" 91 0,6, m;
:ij ngy(ayjﬂ[)J ¢, m;)

o (B )y 0imy))

¢/m;

4,=2

1

a5,

n

To obtain A,, we apply the chain rule to the log likelihood

dlog fy (y;10;, ¢, my;) _ 9log fy (y;10;, ¢, m;) 065 Op; On;
DB 90; Opg On; 9B,

As p; =V (0;,m;), this leads to

dlog fy (y;105,mj,¢0)  y; =V (0;,m;)  yj —py

89j o ¢/mJ o ¢/m] ’
Ol _ 9. m.
aaj _b (0.']7m])7
and 5
Ui _ e\
aﬂv - (LII] xl) .

Hence, we obtain

dlog fy (yj10;, 0,my)  (y; — py) (x5 — 24)" Opy

9By (¢/m;) b"(0;,m;) On;
The link function 7 = g(u/m) determines
O /Onj = 99~ (n;) /Oy = 1/ (1/m;)-

So finally,
A, = — p5) (x5 — @) )
ij b"( ‘9 ma)(¢/my) "(1g/m;)

Hence,

A, o
—0°5 Zwﬁm] Y@ my)g g fmg)

(zj — i) _o

(3.4)
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Likewise, in matrix notation, the local likelihood equations can be written
as

1
SXTW VY - ) =0, (35)
where
1 o —x (x1—x)% ... (v1—a)F
X = 1 .132.—.731' (a:g—a:l)Q (3}‘2—.3%')1:. ’
1 2y —2 (v —2)% ... (zp—x)F

and V is a diagonal matrix with elements

om0y
vj; = b”(ej,mj) 8773" (3.6)

If the canonical link is chosen, the local likelihood equations become

1 « .
? D wimyy; — ) (wj — )" = 0.
j=1

3.2.4 Fisher’s scoring method

These equations are usually non-linear, and so the solution must be ob-
tained through iterative methods. One way to solve those is to use Newton-
Raphson iterations. We note A(3) the gradient vector of the log-likelihood;
from which the vth component is

9
0B,

and we denote by H(3) the Hessian matrix of I(83|y), i.e., the one of which
element (v, k) is

Av (ﬂ)

L(Bly),

82
ﬁvﬂk

For 3 close to 8%, using a linear approximation, we have

0=A(B") = A(B) + H(B)(B" - B),

L(Bly).

which leads to
A(B)+ H(B)(B" - B) =~ 0,
or
B ~p—H '(B) ADB). (3.7)
The algorithm of Nelder and Wedderburn replaces the Hessian by its expec-

ted value. It uses the information matrix. The technique that arises in this
way is called the Fisher’s scoring method:

H(B) ~E[H(B)] = -Z(B).
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Hence an alternative to (3.7) is

B~ pB+I7(B) AB). (3-8)

Note that IE[H } = fIE[AAT}. In terms of quantity of information, if H,
and hence —Z, is small, the likelihood will have a slight curvature, and the
determination of the maximum likelihood estimate will be less trivial.

The element (v, k) of the Fisher information matrix Z is given by Z,, =
E[AUAk]:

I, — E[ijalogfy Yj) Z logaJ;: yl)}

= E[i wj u /Z?((ej,mgi zb/(:”; & (?;j)

(yi — ) (z1 — 23)% (2 — ;) (O
) sz b” (01, mu) /my <3m>} (3.9)

Note that

E[(y; — 1) (w1 — )] = Cov[y;,yi] =0 for j#1,

as we supposed the observations independent. For j = [, we obtain
E [(y; — 1;)?] = Var[y].

Since Var[y;] = b"(6;,m;), we obtain

i, Vel (O e
Lok gz b”¢9 ) 5 ¢/m3) <877j) (2 = @2)"(w; = @)

1
= 5 Z g wyj (g — 20)" (2 — 2q)"

% {XTW QX}vk, (3.10)

where 2 is a diagonal matrix with elements

o j Oy
i v'(05,m;) (677) ’ (3.11)

depending on the variance and link function. Since n; = g(p;), we have
0n;/0u; = ¢'(pj), hence in using the canonical link, w;; reduces to ;.

Using those weights v;; = (w;;/m;)(0n;/0u;) the local likelihood equations
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(3.4) become

9 1< ,
a5, L(Bly) = p ;wj wjj (zj — )ijm & g' (g /m;)

J

1
= X"WQu,
¢
where u; = y”m% "(j/m;). Then by (3.8),
g =BT L(Bly)
- 8ﬁv y )

or equivalently, Z (3" — 3) = % L(Bly).
Let 7; and fi; be the vector of linear predictors and fitted values when the
parameter vector equals 3, so

n
0= Bplaj —z:) and fij = mjg~ ' (7)-

p=0
Then by (3.10),

I8 = XTWQXﬁ— ¢XTWQﬁj.
So we can rewrite the Flsher scoring iteration equation as

1
I8* = aXTW Qz

where

~ — By
zj =1+ Z—g'(li;/m;). (3.12)
m]
The elements of z are called the working dependent variables.
Hence, a maximum likelihood estimate of 3 is found by the following

iterative process:
Repeat 8* = (XTW QX) ' X"W Q z;

using (3%, update the working weights €, as well as the working de-
pendent variables z until convergence.

Estimation of 3 is performed using a Fisher’s scoring method search in each
neighborhood, going in order as ¢ runs from 1 to n.

Note that simplification occurs for the canonical links where the expected
value and the actual value of the Hessian matrix coincide. The Fisher’s
scoring method and the Newton-Raphson method thus reduce to the same
algorithm.

Since the local likelihood estimate does not have an explicit represent-
ation, statistical properties cannot be derived as easily as in the local re-
gression case. But a Taylor series expansion of the local likelihood gives an
approximate linearization of the estimate, leading to theory parallel to that
developed in Section 2.4 for local polynomial regression.
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The generalization to multiple predictors is similar to Section 2.2.2. The
derivations are presented briefly in Section 4.4.2.

3.3 Statistical properties

3.3.1 Assessment of bias and variance

We focus on how to estimate the bias and variance of the local likelihood
estimate. The estimated bias and variance will be used to construct con-
fidence intervals in Section 3.3.2. Due to the nonlinear definition of 3, it is
not possible to derive exact means and variances of 3. We now provide an
estimate for the bias and variance based on the same idea introduced in Sec-
tion 2.4.1 and extended for local likelihood in Fan et al. (1998, p.594-597).
The bias assessment relies on the difference of two maximum likelihood fits
with different accuracies. Recall the bias of the estimator 3 comes from an
approximation error in the Taylor expansion. Let

P

r(;) = v(z;) = > _ W (@) (x5 — )" /5!

v=1

denote the approximation error at the point ;. Suppose that the (p+a+1)st
derivative of 1 exists at the point x; for some a > 0. A further expansion of
¥(x;) gives then an approximation of the approximation error

T(Ij) ~ Bp—‘—l(xj — l’i)p+1 + ...+ ﬂp_;_a(l'j — xi)p+a = Tj, (313)

where a denotes the order of approximation. Again for practical implement-
ation, we have chosen a = 2.

Suppose for a moment that the quantities r; are known. Then a more precise
local log-likelihood is

L°(B) = iwjl(yj,wT,B—i—rj). (3.14)

j=1

Let ,@o denote the maximizer of the local log-likelihood L°(3). The bias of [A?

can then be estimated as 3— 3 . Let A° (B) and H°(8) denote the gradient
vector and the hessian matrix of the local log-likelihood L°(3), respectively.

~o0
Since B is the maximizer of L°(8), a linear approximation gives

~0 ~ ~

0=A°(B)~ A°(B)+ H(B)(B - B),
and we obtain the estimated bias vector

b(B) = H*(B) " A°(B)
— (X"Wox) ' XTWVr. (3.15)
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Therefore, the estimated bias of the linear predictor or equivalently of 1 (x;)
is given by
b(n,) = L (XTWOX) ' XTWVr. (3.16)

The approximated bias (3.15) depends on quantities ; that are unknown.
These quantities will be estimated by fitting locally a polynomial of degree
p + a via equation (3.3), using a pilot bandwidth h°. This gives estimates
ﬁ = (307 ... ,§p+a)T, which are substituted into expression (3.13), leading
to the estimates 7; of r;. These estimates are then substituted into (3.14),
yielding the estimated bias as in (3.15). The choice of the pilot bandwidth
h° will be discussed in Section 3.4.2.

To obtain the variance, using a linear approximation, we have

0=A(B) ~ A(B) + H(B)(B - B).

This leads to R
B-B~-H(B) A@),

and an approximation of the variance is

Var[B] ~ E[-H(8) ] ,_sE[A(B)AB)],_sE[-H(®) ]5_5

NN dlog fy (y;) 9log fy (y;) —1
=" | Y wE [ T 2 5

B = o8 op B
Filling in the expressions (3.5) of E[%YT(W)] and (3.10) of Iﬁ_l yields

Var[8] = (XTW X)) (XTWVE[y - ]’ VWX)(X"W QX) ',

where V' and Q are diagonal matrices with elements v;; and w;; defined by
(3.6) and (3.11) respectively.

Since E[y; — ,uj]z =b"(6;,m;), we get
VE[y — p]’V = Q,

therefore

1

Var[8] ~ (XTW X)) (XTW2aX)(XTW X)), (3.17)

An estimate of Var [ﬁ] is obtained similarly as in the local regression case,
see Section 2.4.1. For 7j(z;) = Bo(x;),

Ok(B)
05

(8-8) +olp-4]

(i) = n(z:) +

)

and,

Ok (B)
apg

E [if(z:)] = n(a;) + —orE [B-8].
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From this we obtain the popular sandwich estimate of the variance, see Liang
and Zeger (1986, p.15) as in equation 2.12,

a(];ﬁ(?)E {(%) - ﬂ@i)ﬂ T

Since 0k(B)/0pL = el substituting (3.17) for Var [B], we obtain

Var [fi(x,)] =

Var[fi(z;)] ~ el (X"W QX)) (XTW20X) (X"W QX) 'e;. (3.18)

We can also express the variance (3.18) in terms of s(z;), the ith rows of the
smooth weight diagram defined by equation 2.9. Rewriting the variance of
the estimate leads to

Var [7)(z;)] ~
eTQ WE[y — p]’ VO H(XTWX)TH(XTW2X) (XTWX) e,
= 'ssT, (3.19)

where S is the smooth weight diagram. Hence the variance approximation
reduces to the following compact form,

Var[ﬁ( = wn u= ZS
b//(fnme)( (i /mi)) ()| (3.20)

By the delta method and as fi; = m;g~1(7;), we obtain an estimate of the
variance of p;,

Var[fiz,)] ~ (99~ () /0n] ,_.m?Var[fi(z,)]
= [09™"(n)/0m],_b" 0nmi) (g (B fmo)) s[> (3.21)

Careful theoretical analysis of local likelihood is important. Many statist-
ical software packages include functions for fitting generalized linear models,
for instance the glm() function in R, R Development Core Team (2012). Since
these functions usually allow weights for each observation, local likelihood
models can be fitted by calling GLMs repeatedly, with a new set of weights
for each fitting point. This approach produces correct estimates but incor-
rect inferences. The problem is that glm() interprets weights as a sample
size. This appears as a multiplier for the £2 matrix in (XTWQX)A, rather
than the required W. In particular, this implies the matrix (X Tw2ax ) is
computed incorrectly, and the standard errors are not correct, even asymp-
totically.

The assessed bias and variance have important applications in construct-
ing confidence intervals. We can use the estimated bias and variance and
rely on the asymptotic normality of the estimator to construct pointwise
confidence intervals.
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3.3.2 Pointwise confidence intervals

The confidence intervals should ideally take into account the underlying

family of distributions. However, the theory for deriving such intervals seems
quite intractable, see Loader (1999b, p.171).
Hence we must rely on methods based on normality assumptions, using the
approximate variance. The local maximum likelihood estimator is usually
asymptotically normal. This has been shown by Fan et al. (1995, p.143-145)
in the context of generalized linear models

B-B— N(0,Var[8]"?).

Within the framework of normal approximations, the simple solution is to
use the variance stabilizing link. Under this link, the variance of 7j(z;) is, at
least asymptotically, independent of the true parameter. It leads to confid-
ence intervals whose widths depend only on the design points x;.

By invoking asymptotic normality, we construct the pointwise confidence
intervals adjusted to allow for bias as follows. With approximately 1 — «
coverage probability, the unknown function n(x;) falls in the random inter-
val

A(xs) — b(n) + ¢ Var[f(a)] ",

or equivalently 7j(z;) — b(n;) + ¢ [w“];l/;Hs(xz)H, (3.22)

where ¢ is chosen as the (1 — «/2) quantile of the standard normal distribu-
tion.

Since b is unknown, a bias estimate is needed to form the estimated
confidence intervals. The most common approaches as (3.15) are based on
the plug-in principle, and plug-in bias estimates simply amount to increasing
the order of the fit. In such cases, Loader (1999b, p.168) argue that an
estimated interval is simply a construction of an under-smoothed interval
centered around the estimate 7(z;) — b(n;).

We can also compute confidence intervals for ii(x;) and for transforms of
the force of mortality or of the mortality rates by a function k(.).

With (3.21), a (1 — «)100 % confidence interval for fi(z;) is

i) = bps) + ¢ Var[fi(w:)] 7,

equivalently pi(z;) — B(,ul) +emy [69‘1(771')/87%]":77[(»%} ;i/;HS(%) II-
(3.23)

Finally, a confidence interval for k(q(x;)) is given by
k{@(x:) — bla:) } + ¢ [Ok(a:)/0gi] q:aVal“[@‘]m,
or equivalently k{q(z;) — g(ql)} + ¢ [0k(q:)/0q;] qza[ag’l(m)/é‘m]n:ﬁVaT (7] v,
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When k(.) is the logit function, we obtain

logit{@(s) — b(an)} + ¢ 1/(@(1 ~ 3)) (99~ (m)/0n],_, [wi] 218
(3.24)

3.3.3 Effective dimension of a non-linear smoother

As in the local polynomials method, the fitted degrees of freedom are
useful for assessing a single fit and comparing two fits. Similarly to the local
polynomial method, we define the influence function at x;:

infl(z;) = el (XTWQX)flel.

An interpretation of the influence function is the leave-i-out cross validation
approximation which will be used when we assess the goodness of fit,

oi(w;) = A(x;) — infl(a;)0log fy /O (x;). (3.25)

Since E (dlog fy /0 7i(x;))> = —E (0%log fy /O *(x;)), the fitted de-
grees of freedom are defined as

vy = zn:inﬂ(xi)E (—0”log fy /0 7 (w:))
i=1

i=1

where w;; is defined as in (3.11). Another definition of the fitted degrees of
freedom for a local likelihood model is the sum of the variance of the fitted
values:

vy =Y Var[f(z)] wii- (3.27)
i=1

3.4 Diagnostics for local likelihood

This section covers diagnostic and model selection issues for local like-
lihood. First, we discuss techniques similar to the ones used in parametric
generalized linear models by McCullagh and Nelder (1989). These are the
classical selectors. Second, we present a plug-in methodology to choose the
theoretical bandwidth.

3.41 Classical selectors

These techniques are natural extensions of the local regression methodo-
logy introduced in Section 2.5. In local polynomial regression we developed
diagnostics methods based on the residuals y; — fi(z;), and the residual sum
of squares. For local likelihood models, these tools are less natural. In this
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case, it is more natural to consider diagnostics based on the ratio y; /fi(x;)
rather than the difference.

The predictor of a future observation at a point z; is g~ 1(7(z;)) where
g(.) is the link function. One possible loss function is the deviance (or scaled
deviance) for a single observation (x;,y;), defined by

D(y;, 0(x;)) =2 (sgpl(yi,G(yi)) - l(yi,9(ﬂi))>
= 2/¢ mi (yi (0(y:) — () — b{0(y:)} + b{0(7)}) -
It is easily seen that D(yi,e(ﬁi)) >0, and D(yi,ﬁ(ﬁi)) =0ify; = g~ (M).
Since it is based on the likelihood, the deviance provides a measure of the

evidence an observation y; provides against 7j(x;) being the true value of
n(x;). The total deviance is defined as

ZD(yi,é(ﬂ?i))~ (3.28)

This generalizes the residual sum of squares for a regression model. Ex-
amples of the form of deviances are given in Table 3.1.

GLM Scaled Deviance

Normal 1/¢ >0, mi(ys — hi)?
Poisson | 2/¢ >, m (yilog(y:/i) — (yi — 11i))
Binomial | 2/¢ 3, m; (yilog(y:/fii) + (ni — yi)log ((n; — yi)/(ni — 1s)))

Table 3.4: Ezamples of forms of scaled deviance

We can extend the cross-validation and C'p methods introduced for local
polynomial regression. It is natural to base these methods directly on the
likelihood or the deviance functions.

The likelihood (or deviance) cross validation criterion is defined by substi-
tuting the leave-z;-out estimate 6_;(fi;) in the total deviance (3.28);

n

LCV(0(:)) = > D(yi, 0-i(fii))

i=1

- C— 22810gfy/a n—i(zs),

=1

where C' depends on the observations y;, but not on the estimate 6(f;) and
hence not on the bandwidth nor on the local polynomial degree.
The computation of the n leave-i-out estimates can be expensive. An
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alternative to deletion methods is the method of infinitesimal perturbations
developed in Cook (1977) for linear models, and Pregibon (1981) for logistic
regression models. These techniques relate the deletion estimate p_;(x;)
with the estimate fi(z;) and the influence function infl(z;).

In the likelihood setting, the simplification of C'V no longer holds. In-
stead, we have to develop some approximations. First, we identify an influ-
ence function such as (3.25). Substituting (3.25) into the deviance and using
a one-term Taylor series gives

D(yi,0-i(fis)) = D(yi, 0(fi;)) + 2infl(z;) (Dlog fy /0 fi(w:))*

Summing this over all observations gives an approximation to the likelihood
cross validation statistic. It leads to a generalization of the Akaike informa-
tion criterion to local likelihood models

n

AIC(9(fi:)) =Y D(yi, (0(:))) +2 vn,

i=1

where v; is the degrees of freedom for the local likelihood fit.

One has to keep in mind that graduation, and hence model selection,

is a very effective compromise between two objectives, the elimination of
irregularities and the achievement of a desired mathematical shape to the
progression of the mortality rates. This underlines the importance of exper-
ience, and above all, of thorough investigation of data as the prerequisites
of reliable judgment, as we must first inspect the data and take the decision
as the type of irregularity we wish to retain.
In practice, one needs to choose A and the fitting variable to balance the
trade-off between bias and variance. To find the right constellation, we use
graphical tools for displaying the whole profile of the selectors curves as
introduced in Section 2.5.4. For that, it is important to note that relying ex-
clusively in practice in a global criterion is unwise because a global criterion
does not provide information about where in the design space the contribu-
tions to bias and variance are coming from.

In conjunction with looking at the plots, one always has to look at resid-
ual plots. In the case of generalized linear models, we denote:

i. The response residual: r; = y; — [i;;

ii. The Pearson residual: r; = (y; — fi;)/(\/ Var [i1;]);

iii. The deviance residual: r; = sign(y; — ;) D (ys, 0(1i;)) /2.

Such residual plots provide a powerful diagnostic that nicely complements
the selection criteria. The diagnostic plots can show lack of fit locally and
we have the opportunity to judge the lack of fit based on our knowledge
of both the mechanism generating the data and of the performance of the
smoothers used in the fitting. Superimposed on the response and Pearson
residuals plots is a loess smooth. If a local likelihood model correctly models
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a dataset, no strong patterns should appear in the response and Pearson
residuals.

There is no deterministic method to obtain the constellation of smoothing
parameters with the classical selectors. The purpose for which the mortal-
ity table is required must be kept clearly in mind, and the final choice of
graduation is always a matter of judgment. The statistical criteria described
should be regarded as aids in the assessment of the graduation and not
interpreted too rigidly.

3.42 Plug-in method and theoretical bandwidth

With the estimated MSFE (2.38), by analogy of the local least squares
problem, Fan et al. (1998, p.599-600) formulate a bandwidth selection rule
as follows: Fit a polynomial of order p + a (choosing a = 2) and find the
pilot bandwidth A° that minimizes the integrated extended residual squares
criterion,

IERSC(h) :/ ERSC(t, h)dt,

[Tmin,Tmaz]

with the ERSC defined as
ERSC(z;,h) =52(2;) (14 (p+ 1)/N), (3.29)
where N1 is the first diagonal element of the matrix
(XTwx) XWX (XTwXx)™'

and 72(x;) is the normalized weighted residual sum of squares using the
working dependent variable z defined as expression (3.12) after fitting loc-
ally a (p+ a)th order polynomial. The justification of this is simple. Firstly,

<

the bias of 8 comes from the local polynomial approximation of ). Hence it
is the same for the local likelihood method as for the local least squares prob-
lem. Secondly, comparing equation (3.20) with equation 2.17, the asymp-
totic variance of the local likelihood problem corresponds to that of the least
squares problem with ¢* = w = ¢,. Treating 3° in equation (3.12) as fixed,
the working dependent variable z; has the same variance structure, namely

Var [z;] = 0o(z;) =~ w.

Thus, having the bandwidth A° for estimating (3,1, obtain estimates Bg ()

B\; 1o(z;) and 52 (x;). With these estimated parameters, compute the estim-

ated bias lﬁgsp,v(x,-) and variance var,, ,(z;) of B,U, which are respectively the
(v + 1)st element of vector (3.15) and the (v + 1)st diagonal element of the
estimated expression (3.17). Combining these estimates yields the estimated
MSE (2.38). This leads to the bandwidth selector

hp, = arg mhin {/[

Tmin Jx'rnaa:}

MSE,.,(t, h)dt} .
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3.5 Model for the probabilities of death

3.5.1 The local likelihood binomial model

Let us suppose that [; persons come under observation at age x; and
continue to be under observation until they survive to x;+1 or die before that
age. In this case we denote the number of policy holders initially exposed
to risk as ;. Moreover, let us suppose that the probability of death during
the year for each one of them is ¢;, and that the death or survival of one is
independent of the death or survival of the others. If we call D; the random
variable that represents the number of deaths that occur in the year, we will
use the usual model for the number of deaths,

D; ~ Binomial(l;, g;),
and the observed death rate, which is the maximum likelihood estimate of
q; is

4 =

<&

The binomial probability function is expressed as
lj d]- li—d;
foldjlyyq5) = { j )a;" (1= a;)7 .
J
In exponential family form, the binomial distribution may be written as

l:
fp(dj,1j,q5) = exp {dj log(q;) +11og(1 — ¢5) — d;log(1 — ¢j) + log (d]) }
J

. L.
= exp {dj log (1 qjq ) +1;1og(1 — g;) + log (dj) } . (3.30)
j j

The local log-likelihood at x; is then

L(gi) = > _wjlog fo(d;, 15, q;)

j=1
= Z w {dj IOg <
j=1
where the constant ¢(d;, ¢, w;) function of d; not involving ¢;, namely
Z w; log < J ),
: d
Jj=1
has been omitted. From (3.30) the canonical parameter 6 and the cumulant

functions b() are given by
95
0; =log < )

b(6;,m;) = —1; log(1 —g;).

4d;j
1—

' > + 15 log(1 - Qj)} ; (3.31)

4q;
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The mean and variance functions are calculated as the first and second de-
rivatives of the cumulant function:

ob dq;
ag; 00, U

a% o0q;\>  0b 9%q;
"0 . N — J YY1
b"(6;,m;) —aqu (89j> + — dq; 06° =1;q;(1 —gj).

v (05,m;) =

Hence, the relationship of ¢; and p; is given by p; = l;¢; and the variance
is
Var [u;] = b"(0;,m;) = p; (1 -2
ar [p;] = b"(0;,m;) = p; 1)
J

The systematic part of the model specifies the relation between the vector g
and the experimental conditions as summarized by the model matrix X of
order n X p. Using the variance stabilizing link indicated in Table 3.3, this
relationship takes the form

9(g;) = n; =sin™" (ﬁ) = éﬁp(l‘j — i)’

The inverse link can easily be derived from the above as

i =g~ " (n;) = I sin®(n;)
— I, sin? <Z Bp(z; — xi)p> . (3.32)
p=0

Since g; = sin?(n;), we have 1 — ¢; = cos?(n;). Substituting (3.32) into
(3.31) gives

L(B) =2 w,
j=1
X <dj log {sin [z”: Bp(x; — ;)P

p=0

} + (I; — dj)log {cos [Z Bp(z; — xi)p] }) .
p=0
3.5.2 Estimation method

Following the general method given in Section 3.2.4, we now derive the
local likelihood equations for the parameters 3. The derivative of the local
log-likelihood function with respect to 3 is

9 dj —pj Opj
aﬂvL ;wjm]b”(e my) In; (xj —a;)”. (3.33)

The derivative of the arcsine square root link function is

on; a . I l;

/ j 1 J J

g (nj/mj) = = = ——sin" ( ) =
T j j i 2¢/5 1y = 1)
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From expressions (3.9) and (3.11), with Var[d;] = y; (1 — ‘;—J’), the Fisher

information for 3 is

Lok = Zw]Var (b”(em])f (gﬁ:)g () — i) (25 — x3)"

- {XTWQX}vk’

where 2 is a diagonal matrix with elements w;; = 41;.

Then parameter estimates are obtained in the followmg way. Given ini-

tial estimates ﬁ we compute the vector i and 7". Using these values,
define the adjusted dependent variable z with components

dj — Jij
]+ l] ng(,u]/mj)

all quantities being computed at the initial estimate 1". Maximum likelihood
estimates satisfy the equations

XTwWaxpg=X"wQz,
which are solved iteratively. The revised estimate is
3= (X"wax) ' XxTwQz.

To compute the criteria used for model selection, we need to determine the
deviance.

Recall that the deviance is calculated as D = 2{L(d;,d;) — L(u;,d;)}. We
list the appropriate calculations of the deviance for specific observations.
Given the local log-likelihood (3.31),

D(l; > 1,0 <d; < ;) =

d. ,
2dj10g<1 Jd‘)ﬁ—ljlog(l—dj)—djlog( ujﬂ{)—l—lj(l—uj)

— Y%

D(l; > 1;d; = 1;) = 2d; log < )
Hj
d

D(lj>1;dj=0)=2djlog(d ju )
A ]

Finally, the total deviance at x; is computed as the sum of the single devi-
ances weighted by w;.
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3.5.3 Statistical Inference

Within the framework of normal approximation, the variance approxima-
tion (3.19) reduces to

Var[qﬁ-} :Var[A( )}
~wis(@)]?

= (4 1) s (xo)|I? (3.34)

Then, having the plug-in bias (772) from expression (3.16), we construct the
pointwise confidence intervals adjusted to allow for bias as follows. With
approximately (1 — «) coverage probability, the unknown function ¢(z;) falls
in the random interval

N ~ 1 _
Qi) = bla) £ e 51 ls(ai)])

where ¢ is chosen as the (1 — «/2) quantile of the standard normal distribu-
tion. We can also construct pointwise confidence intervals for u(z;), the
number of deaths, and logit(q(z;)).

A confidence interval for fi(z;) is

i) = b(yui) % ma [0g7 (0:) /0ms],_[wi] , 2 1s(0)|
or equivalently fi(z;) — B(Nz) +Teq(l—-a@) 1’ l|s(zs)]|-

And a confidence interval for logit(q(x;)) is given by
N o~ 1. =
logit (§(:) — b(a:)) & ¢ 5 (LiGi(1 = G)) "2 |[s(w:)]|

3.5.4 Applications

We now consider non-parametric logistic regression to illustrate the method.
To present the local likelihood approach, we discuss the two applications
presented in Section 2.6.

Choice of the constellation of the smoothing parameters

The pattern displayed by the crude mortality rates is relatively smooth for
both datasets. We use the AIC and LCV criteria and graphical diagnostics
presented in Section 3.4 to guide the modeling. The AIC and the LC'V
criteria are relatively close. We notice however that LCV tends to select
a smoother constellation of parameters than the AIC, which, considering
the underlying pattern of the data, is satisfactory. The selected bandwidth
should not be too large to capture the structure at the right boundary.
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Table 3.5 displays the chosen constellation of smoothing parameters for
the local likelihood binomial approach and for each dataset with the corres-
ponding fitted degrees of freedom. Recall A =2 h + 1.

A | Degree wi(.) Fitted DF

Dutch Male | 15 2 Gaussian 18.45
Dutch Female | 17 2 Gaussian 16.39

Table 3.5: Elected constellation of smoothing parameters and fitted degrees of freedom

A local quadratic fit is needed to capture the mortality patterns. The choice
differs by the chosen bandwidth. The mortality patterns for the Dutch fe-
male population are less pronounced than for the male. A higher A is then
needed to smooth the structures which we believe less accentuated than for
the Male population. The corresponding fitted degrees of freedom for the
female population are lower than the ones for the male, indicating that we
have applied more smoothing.

Table 3.6 presents the theoretical bandwidth provided by the plug-in
method developed in Section 3.4.2. We fit a polynomial of degree 2 and
use the corresponding weight functions elected in Table 3.5. The values of A
are reported below.

Pilot bandwidth | Bandwidth

Dutch Male A=7 A=13
Dutch Female A=7 A=15

Table 3.6: Pilot and bandwidths selected by the plug-in method

As the amount of curvature of the observed probability of death is relatively
similar whichever dataset is considered, the selected pilot bandwidths are
the same. The bandwidths confirmed our choices presented in Table 3.5,
being relatively close and agreeing with our ranking.

Plots of the fits and residuals plots

Figure 3.1 presents the mortality rates graduated by the local Binomial
likelihood approach with the smoothing parameters displayed in Table 3.5
above.
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Figure 3.1: Graduated mortality rates by local Binomial model with 95 % pointwise confidence intervals and corresponding residuals plots for Dutch
Male and Female population, 2008. Source: HMD.
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Next to the plots of the fits, we display the residuals plots. Superimposed
on the responses and Pearson residuals is a loess smooth curve.

This loess smooth curve shows an important lack of fit at the right bound-
ary, when the data have a large curvature. The clusters of residuals are even
more important when the dataset has a small volume of observations and
the observations are sparse. However, due to the underlying structure of
the mortality data it is normal to get higher residuals at the right boundary
than in the rest of the curve.

For both datasets, the Pearson residuals are mainly in the interval [—2, 2],

which indicates that the model adequately captures the variability of these
datasets. However, a clear lack of fit is shown by the Pearson residuals at
the left boundary, which is confirmed by the shape of the deviance residuals.
The deviance residuals present, for the youngest ages, several successive
residuals having the same sign. It illustrates that the mortality rates are
over-smoothed locally and hence we strongly overestimate the probability of
death for the youngest ages as we can see in Figure 3.2.
A smaller bandwidth or a higher polynomial degree shall be used to capture
the structure but it would be at the expense of a lack of fit in the middle of
the table. When the dataset presents a high structure in the boundaries, a
global constellation of smoothing parameters fails to provides an adequate
fit to the data. To deal with such problems, we would rather use locally
adaptive smoothing methods, which vary the amount of smoothing in a loc-
ation dependent manner, so as to obtain a satisfactory fit over the whole
range. These approaches are covered in Chapter 4.

Plots of the smoothers

Since the local likelihood estimate does not have an explicit representation,
the smooth weight diagram can not be derived as in the local regression case.
However, we can provide an illustration of the weight function associated
with the i-th point at the last iteration. The weight function associated
with the i-th point is used to compute the weights in the i-th row of the
99 x 99 smoother (X' W QX)leTW Q, and is shown in Figures 3.3 and
3.4, below, with the influence values.

For our applications we used the boundary correcting kernel type 1, see
Section 2.3.4. Note again that the criteria used for model selection have been
computed over a restricted number of observations.

The influence values measure the sensitivity of the fitted curves to the
individual data points. It shows us the amount of smoothing applied locally.
For instance, in Figure 3.3 right panel, the influence values at the boundaries
are lower than the ones in the central region. It indicates that locally we
have applied more smoothing in the boundaries than in the rest of the curve.
On the other hand, infl(z¢1) (= 0.254) is larger than the influence values for
observations in the central region (on average ~ 0.227). It illustrates that
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Figure 3.3: Smoother S;;: left panel: i,j =0,...,49, center panel: i,j = 50,...,98 and
influence values for the Dutch Male population, 2008. Source: HMD.
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Figure 3.4: Smoother S;;: left panel: i,5 =0,...,49, right panel: i,j = 50,...,98 and
influence values for the Dutch Female population, 2008. Source: HMD.

observation xg; contributes more than average to the fitted value and thus
less smoothing has been applied locally.

Comparison with Whittaker-Henderson smoothing

Similarly to the local polynomials method, we apply the criteria presented
in Section 2.5.1 to find the value of parameters h and z. We picked the con-
stellation h = 1 and z = 2 for the male, and h = 2 and z = 2 for the female
population, given by Rice’s T criterion, Rice (1984), leading to 24.18 and
20.73 fitted degrees of freedom respectively. Figure 3.5 presents graphical
comparisons of the local binomial approach and the Whittaker-Henderson
model.

The top left panel presents the graduated mortality rates for the Dutch
male population. The graduated series by the local binomial model displays
a smoother pattern. The corresponding degrees of freedom are lower than
the ones obtained by the Whittaker-Henderson model, illustrating that the
model is showing less features. The influence values obtained by the local bi-
nomial models are, up to the right boundary, below the ones computed with
the Whittaker-Henderson model, infly g (z;) = diag((V + hKI'K,)"1V),
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Figure 3.5: Graphical comparisons between the local binomial approach (full line) and
the Whittaker-Henderson smoothing (dotted line) for the Dutch Male and Female popu-
lation, 2008. Source: HMD.

top center panel. It indicates that, up to the right boundary, more smooth-
ing has been applied by the local binomial approach. The relative difference
is more important at the boundaries, where the Whittaker-Henderson model
does not need special treatment.

The bottom left panel shows the graduated mortality rates for the Dutch
female population. Similar remarks can be made. The fitted degrees of free-
dom obtained by the Whittaker-Henderson smoothing are larger, illustrating
that the model is showing more features. The influence values, bottom cen-
ter panel, are higher. As for the male population, the relative difference is
larger in the boundaries.

The graduated series are less smooth than the ones obtained by the local
binomial approach. The smoothing parameters of the Whittaker-Henderson
model have been chosen by minimizing Rice’s T statistic, one of the so-called
classical criteria. Other methods, described in Section 2.5, could have been
tried.

3.6 Model for the forces of mortality

3.6.1 The local likelihood Poisson model

Let us now suppose that I; persons enter observation under the hypothesis
that the force of mortality (instantaneous mortality rate) is a constant dur-
ing the period of observation and that the death or survival of each one is
independent. In this case I; represents those central exposed to risk, whereas
in the previous section /; denoted initial exposures.

Hence the force of mortality, ¢;, is the average risk to which the popu-
lation is subjected during its passage through the year of age =; + 1, and is
a different concept from ¢;, which represents the total effect of mortality in
terms on proportion who fail to survive the whole year of age x; 41 without
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reference to the variation of mortality risk over the course of that year.

The number of deaths that occur in the period of observation, D;, will
have a Poisson distribution with mean and variance equal to u;. We consider
the graduation of p;/1;, with

D, ~ Poisson(u;).
The Poisson probability distribution function is
foldss pg) = e =M p /dj,
or in exponential family form as
fo(dj; uj) = exp{d;log(u;) — p1; — log d;!}.

The local log-likelihood function at x; can be deduced from the exponential
form of the distribution:

L(p;) = Z w; log fp(dj; 1)
=

= > w;{d;log(y) — p; —log d;}. (3.35)
j=1

When the response d; = 0, the individual log-likelihood functions reduce to
Lj(pg;dj = 0) = —py.
The link and the cumulant function are then derived as
0; = log(1;)
b(6;,m;) = p;-

The mean and variance functions are calculated as the first and second de-
rivative with respect to 6;, so

0b Ou;
V01 = 0=
9% [ou;\> Ob 8y,
v0m) =g (5) + g o =
7 op2 \ 00, op; 062

The dependence of 11; on the covariate vector is specified by the link function.
Using the variance stabilizing link indicated in Table 3.3, we have

n
9lps) =nj = Viig = > Bplwj — )"
p=0
The inverse link is easily derived

wi=g" ) == (O Bolay — z:))’
p=0
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Using (3.35), the log-likelihood can also be parameterized in terms of ZZ:O Bp(z;
x;)P. Substituting the inverse link in place of each u; gives

L(B) = ij (2 dj IOg(Zﬁp@%‘ - Zﬁp - —log d; )
J=1 p=0

3.6.2 Estimation method

The derivative of the local Poisson log-likelihood function with respect to
B is
0 ,
L= Z “7 T8I (wj — )" (3.36)

aﬂu

The derivative of the link functlon is calculated as
on; 0 1 /2 _ 1 -1/2
1, N '
g (nj/m;) =g oy ot T2t

From expressions (3.9) and (3.11), the Fisher information for 3 is

1 (op;\°
L=t (877) (1~ )y — )t
j=1 J

Z i — i)' (2 _xi)k

- {X WQX}M,

where € is a diagonal matrix with elements w;; = 4. Again, in case of log-
linear models, i.e., using the canonical link, equation (3.36), when written
in matrix notation, reduces to

9]
9fy

Following the general Fisher scoring procedure, Section 3.2.4, we obtain the

L=X"W(y—p).

estimates. Given initial estimates B*, we may compute the vector fi* and
1n". Using these values, we define the adjusted dependent variable z with
components

zj = 0j + (dj — )9’ (115 /my)
7+ (dj — 117)
2 /it

all quantities being computed at the initial estimate 7. Maximum likelihood
estimates satisfy the equations

XTwaxp=X"wQz,
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which are solved iteratively. The revised estimate is
B=(XTwax) ' XTwQz.

Finally, given the local log-likelihood (3.35), the deviance function is derived
as

D= 2ij {d;log(d;) — d; — djlog(u;) + p1}

= Qile {djlog (Z;) — (d; —Mj)}-

Again when the response is zero, the individual deviance function reduces
to D(d] = 0) =2 uj.

3.6.3 Statistical Inference

Within the framework of normal approximation, the variance approxima-
tion (3.19) reduces to

Var[f;] = Var[g~' (7)(2;))]
2
) <5iglﬁﬂx”>> wii' stz
= fiills ()| (3.3

With the plug-in bias B(M) from expression (3.16), we construct the point-
wise confidence intervals adjusted to allow for bias as follows. From (3.23)
the unknown function u(z;) falls in the random interval with approximately
(1 — «) coverage probability,

fis) — b(us) ¢ iy 2| s ()],

where ¢ is chosen as the (1 — «/2) quantile of the standard normal distri-

bution. We can also construct pointwise confidence intervals for ¢(z;), the

force of mortality, and for logit(¢(x;)). A (1 — a)100% confidence interval

for ¢(x;) is

~ o 1/2 . _

Bles) — Blpi) + e Var ] /2
b)) L7 ()l

A confidence interval for logit(p(x;)) is given by

or equivalently @(z;) —

logit (B(w:) — b(1) £ ¢ iy (Lai(1 = 8:) "l (a)l.
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3.6.4 Applications

We now consider non-parametric Poisson regression. We revisit the pre-
vious examples to examine the efficacy of the local Poisson approach. We
graduate the mortality data through the choices of the smoothing paramet-
ers, using the AIC and LCV fitting criteria and graphical diagnostics to
guide the modeling.

Choice of the constellation of the smoothing parameters

The pattern displayed by the observed number of deaths is relatively
smooth for both datasets. The selected bandwidth should not be too large
to miss the structure in the middle of the table. Table 3.7 displays the elec-
ted constellation of smoothing parameters for the local likelihood Poisson
approach and for each dataset with the corresponding fitted degrees of free-
dom.

A | Degree w(.) Fitted DF

Dutch Male | 19 3 Gaussian 15.93
Dutch Female | 21 3 Gaussian 14.52

Table 3.7: Elected constellation of smoothing parameters and fitted degrees of freedom

Again whatever the volume of data, a local cubic fit is needed to capture
the patterns displayed by the observed number of deaths. The choice differs
by the elected bandwidth. A higher A is then needed to smooth the struc-
tures for the female population which we believe less accentuated than the
male. The corresponding fitted degrees of freedom for the female population
are lower than the ones for the male, indicating that we have applied more
smoothing.

Table 3.8 presents the theoretical bandwidth provided by the plug-in method
developed in Section 3.4.2. We fit a polynomial of degree 3 and use the corres-
ponding weight functions elected in Table 3.7. The values of A are reported
below.

Pilot bandwidth | Bandwidth

Dutch Male A=9 A=17
Dutch Female A=9 A=19

Table 3.8: Pilot and bandwidths selected by the plug-in method

As the amount of curvature of the observed number of death is more or less
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similar for both datasets, the selected pilot bandwidths are the same. The
bandwidths confirmed our choices presented in Table 3.7, being rather close
and agreeing with our ranking.

Plots of the fits and residuals plots

Figure 3.6 presents the number of deaths estimated by the local Poisson
likelihood approach, computed with the constellation of smoothing paramet-
ers displayed in Table 3.7.

Next to the plots of the fits, we present the corresponding residuals plots. Su-
perimposed on the responses and Pearson residuals is a loess smooth curve.

The Pearson residuals are mainly in the interval [—2,2], which indic-
ates that the model adequately captures the variability of these datasets.
However, a clear lack of fit is shown by the loess smooth curve on the re-
sponses and Pearson residuals at the left boundary, which is confirmed by the
deviance residuals. The deviance residuals present, for the youngest ages,
several successive residuals having the same sign. It illustrates that the ex-
pected number of deaths is over-smoothed locally. As the sign is positive,
we strongly underestimate the probability of death for the youngest ages as
we can see on Figure 3.2.

We notice as well for both datasets a peak showing an important bias
around attained age 60. This peak indicates departure of the graduated
series from the observed number of deaths, which display, based on our
knowledge, an abnormal hump certainly due to a cohort effect. This locally
over-smoothed figure can be found in the deviance residuals as well, display-
ing several successive residuals having a positive sign. It illustrates that we
underestimate the expected number of deaths around 60 years old.

For the male population the deviance residuals show, around attained age
80, several successive residuals having a negative sign. It indicates that we
overestimate locally the expected number of death. For the female pop-
ulation, the deviance residuals exhibits, around attained age 85, several
successive residuals having a positive sign. It illustrates that here we are
underestimating the expected number of deaths. A smaller bandwidth or
a higher polynomial degree could be used to capture the structure but it
would be at the expense of a lack of smoothing in the middle of the table.
The fit would be too noisy, and would stay to close to an interpolation since
trends in small parts of the data are interpreted as more widespread trends.
It would result in an unacceptably high variance.

Figure 3.7 shows the forces of mortality in the original and logit scale
with the corresponding pointwise confidence intervals. As the constellations
of smoothing parameters presented in Table 3.7 lead to relatively low fitted
degrees of freedom compared to the binomial model, the patterns displayed
by the graduated series are smoother.
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Figure 3.6: Estimated number of death by local Poisson model with 95% pointwise confidence intervals and corresponding residuals plots for Dutch
Male and Female population, 2008. Source: HMD.
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Plots of the smoothers

We provide an illustration of the amount of smoothing applied similarly
to the local binomial case. Figures 3.8 and 3.9 show the weight function
associated with the i-th point at the last iteration with the influence values.
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Figure 3.8: Smoother S;;: left panel: 1,5 = 0,...,49, center panel: i,j = 50,...,98 and
influence values for the Dutch Male population, 2008. Source: HMD.
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Figure 3.9: Smoother S;;: left panel: i,5 = 0,...,49, right panel: i,j = 50,...,98 and
influence values for the Dutch Female population, 2008. Source: HMD.

Similar remarks as for the local binomial model can apply. For values
in the central region, the weights form a Gaussian kernel. But as the point
at which we are estimating the true curve moves towards the boundaries,
the kernel overlaps the boundary, becomes asymmetric and leads to some
weights being negative. Finally, the height of the kernel increases because
fewer observations are available. In Figure 3.8 right panel, the influence
values at the boundaries are lower than the ones in the central region. It
indicates that locally we have applied more smoothing in the boundaries
than to the rest of the curve.

However, contrary to the local binomial model, we notice that the influence
values in the central region are constant. It is explained by the use of the
normal approximation and the variance stabilizing link. It leads to approx-
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imating w;; by a constant, namely 4, while for the local binomial model we
have 4 x [;.

Comparison with Whittaker-Henderson smoothing

Similarly we apply the criteria presented in Section 2.5.1 to find the value
of parameters h and z. We picked the constellation h = 146 and z = 3
for the male, and h = 82 and z = 3 for the female population, given by
Rice’s T criterion, Rice (1984), leading to 13.26 and 13.92 fitted degrees
of freedom respectively. Figure 3.10 presents graphical comparisons of the
local Poisson model and the Whittaker-Henderson method. The left pan-

Fit (Focus) Influence values Relative difference (wh/poi-1)

5'5 M
N g ol \

2000

1500

Dutch Male

1000

0.0 02

3000 104 0.2 ]

0.1

061

0.0
0.4

041
02 . g

2000

Dutch Female

1000

50 60 70 80 % 100 0 20 40 60 80 100 4 20 40 60 80 100
Attained age (years)

Figure 3.10: Graphical comparisons between the local Poisson model (full line) and the
Whittaker- Henderson smoothing (dotted line) for the Dutch Male and Female population,
2008. Source: HMD.

els present the estimated number of deaths for the two populations. The
graduated series by the local Poisson model are showing more features. The
corresponding degrees of freedom are larger than the ones obtained by the
Whittaker-Henderson model.

The influence values, obtained by the local Poisson model for the male pop-
ulation, are above the ones computed with the Whittaker-Henderson model,
top center panel. It indicates that less smoothing has been applied by the
local Poisson approach. The relative difference is more important at the
boundaries, where no special treatment is needed when using the Whittaker-
Henderson model.

For the female population, the fitted degrees of freedom are close, illustrating
that the models sensibly show the same amount of features. The influence
values, bottom center panel, stay close up to attained age 60. Then, the in-
fluence values obtained by the Whittaker-Henderson smoothing are slightly
lower, indicating that more smoothing has been applied. Finally, just as for
the male population, the relative difference is larger at the boundaries.
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3.7 Summary and outlook

We have investigated the extension of the non-parametric regression tech-
nique of local polynomials to localized generalized linear models and local
likelihood contexts. In the ordinary regression case, fitting by local polyno-
mials has been seen to have several appealing features in terms of intuitive
and mathematical simplicity. This is especially true for low odd-degree poly-
nomial fits, such as linears and cubics. These properties have been shown to
carry over to localized generalized linear models.

We have seen that the extension to local likelihood settings overcomes
the problems encountered while applying the local polynomial regression to
graduation of experience data. Local likelihood has been introduced as a
method of smoothing by local polynomials in non-Gaussian regression mod-
els. A local Binomial likelihood model has been proposed when the number
of initial policyholders exposed to risk is available, and a local Poisson like-
lihood model for those central exposed to risk. The variance stabilizing
link has been used to produce confidence intervals not depending on the es-
timates, and provide an illustration of the uncertainty involved even in the
presence of zero-responses.

An important issue that will receive further attention in the next chapter
is a locally adaptive graduation method. In graduating mortality data, we
face a situation where data have a low noise and a large amount of structure.
We have seen that is possible that no global smoothing parameter or degree
of local polynomial will provide an adequate fit to the data. In this case,
it may be desirable to use locally adaptive smoothing methods, which vary
the amount of smoothing in a location dependent manner, so as to obtain a
satisfactory fit.
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Chapter

Adaptive local kernel-weighted
log-likelihood methods

This chapter is based on Tomas and Planchet (2012), Multidimensional
smoothing by adaptive local kernel-weighted log-likelihood with application to
long-term care insurance, ISFA - Laboratoire SAF Working paper 2012.8, sub-
mitted to Insurance: Mathematics & Economics, , 1-28; and on Tomas (2012b),
Essays on boundaries effects and practical considerations for univariate graduation
of mortality by local likelihood models, Insurance and Risk Management, forth-
coming.

4.1 Introduction

Local fitting techniques combine excellent theoretical properties with con-
ceptual simplicity. They are very adaptable and also convenient statistic-
ally. In Chapter 3, we have seen the applicability of local kernel-weighted
log-likelihoods to model the relation between the forces of mortality - or the
crude death rates - and attained age.

Unfortunately, as we face situations where data have a low noise and a

large amount of structure, the simplicity of a local modeling has flaws. For
instance, at the boundary, the smoothing weights are asymmetric and the
estimate may have substantial bias. Bias can be a problem if the regression
function has a high curvature in the boundary. It may force the criteria to
select a smaller bandwidth at the boundary to reduce the bias, but this may
lead to under-smoothing in the middle of the table, see Section 4.2.
As a consequence, in some cases no global smoothing parameter or degree of
local polynomial provides an adequate fit to the data. Rather than restrict-
ing the smoothing parameters to a fixed value, a more flexible approach is
to allow the constellation of smoothing parameters to vary across the obser-
vations.
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We can restrict the observations contributing to the criteria to the central
region and apply weights according to the reliability of the data to enhance
the optimization criteria and refine the choice of the smoothing paramet-
ers. But weighting the criteria is an illustration for a need of an adaptive
smoothing procedure. Rather than weighting the criteria and restricting the
observations to the central region, we would use a more flexible approach. It
would be to vary the amount of smoothing in a location dependent manner
and to allow adjustment based on the reliability of the data. It may be
advantageous for several reasons. The estimator can adapt the reliability of
the data to take into account the nature of the risk, smoothing more when
the volume of observations is low, and less when the corresponding amount
of observations is large. We distinguish a locally adaptive smoothing point-
wise method using the intersection of confidence intervals rule, as well as a
global method using local bandwidth correction factors. Part of our work is
an extension of the adaptive kernel methods proposed by Gavin et al. (1995)
to adaptive local kernel-weighted log-likelihoods techniques. The techniques
can be implemented without difficulty in standard statistical software such
as R, R Development Core Team (2012).

Section 4.2 presents the motivation for adaptive smoothing, studying the
influence of the boundaries on the choice of the smoothing parameters and
the possibility of taking the nature of the risk into account. The adaptive
methods are introduced in Section 4.3. Section 4.4 illustrates how the meth-
ods can be applied to multidimensional smoothing. We are interested in the
variation of mortality of individuals subscribing long-term care insurance.
We analyze the incidence of mortality as a function of both the age of oc-
currence of the pathology and the duration of the care. Tests and single
indices summarizing the lifetime probability distribution are used to com-
pare the graduated series with those obtained from global non-parametric
approaches, p-splines and local likelihood, in Section 4.5. Finally, Section
4.6 summarizes the conclusions drawn in this chapter.

4.2 Motivations for an adaptive smoothing

4.2.1 Influence of the boundaries on a global criterion

Table 4.1 presents the proportion of the contribution to the AIC criterion
in the boundaries given by the local likelihood models for the Dutch male
and female data, computed with a triweight weight function and A = 19, see
Section 2.3. It is apparent that the contribution varies with the underlying
structure of the data. The mortality patterns of females are less pronounced
than those of the males, and thus the resulting contribution to the criterion
is smaller. The local Poisson model is less influenced by the boundaries than
the local Binomial model as most of the curvature appears in the central
region.
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Local Poisson model Local Binomial model
Male pop. Female pop. Male pop. Female pop.
Treatment | p Left Right All Left Right All Left Right All Left Right All

2 | 49.21 12.82 | 62.03 | 45.07 14.64 | 59.71 | 78.48 2.53 81.01 | 73.20 4.52 77.72
\)&\ 3| 45.22 | 1291 | 58.13 | 32.99 | 20.77 | 53.76 | 71.87 | 2.95 74.82 | 60.59 7.20 67.79
X

4 | 3842 | 15.15 | 53.57 | 26.54 | 25.48 | 52.02 | 63.31 3.41 66.72 | 48.74 8.77 | 57.51

2| 3545 | 16.29 | 51.74 | 29.22 | 18.86 | 48.08 | 23.99 | 8.95 32.94 | 16.67 | 14.01 | 30.68
\)Qb% 3| 27.86 | 17.00 | 44.86 | 19.37 | 24.99 | 44.36 | 14.33 8.99 23.32 | 8.80 16.65 | 25.45
X)

4 | 19.00 19.94 | 38.94 | 12.40 | 30.38 42.78 8.90 8.47 17.37 4.66 16.31 20.97

2 1.14 25.92 | 27.06 0.94 26.37 | 27.31 4.06 11.32 15.38 2.76 16.46 19.22

%

\3& 3 1.42 23.27 | 24.69 0.98 30.72 31.7 4.10 10.09 14.19 2.62 17.81 20.43
kY

4 1.56 24.31 25.87 1.14 34.30 | 35.44 4.17 8.93 13.1 2.61 16.67 19.28

Table 4.1: Contribution to the AIC in the boundaries (in %), computed with a triweight
weight function and A = 19, for the Dutch male and female population, 2008. Source:
HMD.

Correction type 1 leads to the highest contributions to the AIC. This
treatment induces the highest amount of smoothing in the boundaries and
thus leads to the highest disturbance when choosing the constellation of
smoothing parameters. When summing the contribution coming from the
left and right boundaries, we observe that the boundaries represent at least
52.02 % and 57.51 % to 62.03 % and 81.01 % of the AIC, respectively, for the
local Poisson and Binomial models. It is obvious that the selection of the
smoothing parameter is driven by minimizing the criterion in the boundaries
rather than for the whole set of data points.

The disturbance is reduced when treatment type 2 is used. However the
contribution to the AIC is still relatively high with at most 51.74 % and
32.94 %, for the local Poisson and Binomial models respectively.

Correction type & implies smooth weights having the smallest dispersion
around the central value. In consequence, it leads to the smallest disturb-
ing nuisance. The contribution to the criterion for observations in the left
boundary has strongly reduced while the contribution in the right boundary
has inflated. This type of treatment leads to under-smoothed figures in the
left boundary and its merit would depend on the underlying smoothness of
the data.

It shows the resulting difficulty of applying a global smoothing approach
when the true curve presents rapid changes in the curvature.

A solution for a homogeneous contribution of the design space to the cri-
terion would be to modify the ATC' by taking the logarithm of the deviance
or weighting the criterion by the variance of the fitted values. It would lead,
as for the criteria for linear smoothers, to a reduction in the variability, and
the criterion would be less affected by the boundaries. Further, we consider
restricting the computation of the criteria to observations in the central re-
gion and study where the contribution to these criteria are coming from in
the design space.
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ERsC ogMSE)

Contrbuton a the crteriafrom the design space
Contributon a the crteriafrom the designspace

Atained age.

Figure 4.1: Pointwise contribution to the criteria when restricting and Figure 4.3: Pointwise contribution to the criteria when restricting and
weighting the observations for the local Poisson model targeting the num- weighting the observations for the local Binomial model targeting the mor-
ber of deaths, d;, Dutch male population, 2008. Quadratic fit (dashed tality rate, q;, Dutch male population, 2008. Quadratic fit (dashed line),
line), cubic fit (full line) and quartic fit (dotted line). Source: HMD. cubic fit (full line) and quartic fit (dotted line). Source: HMD.

Figure 4.2: Pointwise contribution to Rice’s T criterion when restrict- Figure 4.4: Pointwise contribution to Rice’s T criterion when restrict-
ing and weighting the observations for the Whittaker-Henderson model ing and weighting the observations for the Whittaker-Henderson model
targeting the number of deaths, d;, Dutch male population, 2008. Quad- targeting the mortality rate, g;, Dutch male population, 2008. Quadratic
ratic fit (dashed line), cubic fit (full line) and quartic fit (dotted line). fit (dashed line), cubic fit (full line) and quartic fit (dotted line). Source:
Source: HMD. HMD.
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Restricting the observations participating in the computation of the cri-

teria helps to reduce the boundary effects, see Fan et al. (1998). At the
boundaries, the pointwise contributions are too large because of numerical
instabilities, underlying structure and scarcity of the data. Figures 4.1, 4.3
and 4.5, 4.7, first row, show the pointwise contributions to the criteria when
restricting the contribution to observations in the central region for the local
Poisson model and the local Binomial model respectively, for the Dutch male
and female population.
The pointwise contributions to the criteria differ due to the underlying struc-
ture of the data as the mortality patterns are more pronounced for the male
than the female population. We observe that observations around age 18,
corresponding to the accident hump, as well as observations around 60, cor-
responding to a cohort effect, contribute more to the criteria for the male
population when fitting both of the local likelihood models. By fitting the
local Poisson model, we notice an increase of the pointwise contribution
with the number of deaths. This is particularly visible for the ERSC and
log(MSE). On the other hand, in case of a local Binomial model, the point-
wise contribution to the ERSC and log(MSE) tends to decrease as the
curvature of the observed mortality rates increases.

These features can be also seen in the pointwise contribution to Rice’s

T criterion used for linear smoothing, shown in Figures 4.2, 4.4 and 4.6,
4.8, for the Whittaker-Henderson model targeting the number of deaths and
the mortality rates on the original scale, for the Dutch male and female
population respectively.
In graduating the mortality rates, however, the decrease of the pointwise
contribution with the increasing curvature can be a problem. It may force the
criterion to select a larger bandwidth and this may lead to over-smoothing
at the end of the table. It results in underestimating the mortality rates and
in missing the mortality pattern of the oldest ages.

4.2.2 The nature of the risk

In practice, the search for an optimal criterion depends not only on statist-
ical considerations but also on the nature of the risk considered. A smoothing
method well suited for annuities may not be suited for death benefits. In the
first case, we have to represent effectively the remaining life expectancy in
the regions where the exposure is high. In the second case, we have to repres-
ent the observed deaths well where the number of deaths is large, and these
regions may not necessarily be those where there is more exposure, such as
the female population. Therefore, the criteria can be weighted according
to the nature of the risk considered to refine the choice of the smoothing
parameters:

i. by l;/ Ej l; in case of annuities, and

ii. by di/>_;d; in case of death benefits.
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Table 4.2 presents the contribution to the criteria for observations in the
age range representing 80 % of the exposure and number of deaths for the
Dutch male and female population after weighting the criteria according to
the nature of the risk considered.

Local Poisson Local Binomial
Population | Agerange | l; | Rice’sT | AIC | ERSC | log(MSE) | AIC | ERSC | log(MSE)
Male 8-67 80 91.27 85.85 72.87 82.92 90.06 89.20 89.84
Female 8-70 80 90.38 81.86 67.98 79.54 84.74 88.36 86.40

Population | Age range | d; | Rice’sT | AIC | ERSC | log(MSE) | AIC | ERSC | log(MSE)

Male 59-90 80 89.76 90.07 93.09 89.91 86.83 85.05 83.49
Female 46-90 80 98.53 99.26 99.34 98.52 98.21 96.34 96.28

Table 4.2: Contribution to the criteria (in %) for observations in the age range rep-
resenting 80 % of the exposure and number of deaths for the Dutch male and female
population, 2008. Computed with a cubic fit and a triweight weight function. Source:
HMD.

For the male population, 80 % of the exposure appears in the age range
8 — 67. For the female population the age range corresponds to 8 — 70.
In case of annuities, by weighting by 1;/ > j l; most of the criteria applied
to the local Poisson model (force of mortality) and to the Binomial model
(probability of death) provides a good representation. The contribution to
these criteria, for observations in the age range considered, are mostly above
80 %. Only the ERSC provides a poor representation when fitting the local
Poisson model, due to the distribution of the criterion following broadly the
observed number of deaths.
For the male and female population, 80 % of the deaths appears in the age
ranges 59 — 90 and 46 — 90, respectively. In case of death benefits, by
weighting the criteria by d;/ > y d;, the proportion of the contributions from
observations in the age range are above 80 % showing a good representation
of the risk considered.
For linear smoothers, the representation of the risk given by Rice’s T and
variations of the classical criteria is satisfactory.
In consequence, weighting the criteria by the reliability of the data leads to a
better representation of the nature of the risk considered whatever the model
used for graduating the forces of mortality or the probabilities of death.

Figures 4.1, 4.3 and 4.5, 4.7, second and third row, show the pointwise
contribution to the criteria for the local Poisson model and the local Bino-
mial model respectively, for the Dutch male and female population, when
restricting the contribution to observations in the central region and weight-
ing according the reliability of the data.

We have restricted the observations contributing to the criteria to the
central region and applied weights according to the reliability of the data.
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These practical considerations enhance clearly the optimization criteria, and
the choice of the constellation of the smoothing parameters is refined, lead-
ing to a good representation of the risk considered.

It should be noted that graduating mortality data through the Whittaker-
Henderson model by selecting the parameters through the log transform of
classical criteria, see Section 2.5, performs relatively well, and taking into
account the nature of the risk improves the smoothing.

Weighting the criteria according to the reliability of the data illustrates
the need of an adaptive smoothing procedure. Rather than weighting the
criteria and restricting the observations to the central region, we would use a
more flexible approach. It would be to allow the constellation of smoothing
parameters to vary across the observations to vary the amount of smoothing
in a location dependent manner. It would allow adjustments based on the
reliability of the data and on the nature of the risk considered. It may be
advantageous for several reasons. The estimator could adapt to the reliability
of the data to take into account the nature of the risk, smoothing more when
the volume of observations is low, and less when the corresponding amount
of observations is large.

4.3 Adaptive Methods

This section presents the adaptive methods and covers model selection
issues. We treat the choices of bandwidth, polynomial degree and weight
function as modeling the data and choose the constellation of smoothing
parameters to balance the trade-off between bias and variance. We distin-
guish a locally adaptive pointwise smoothing method using the intersection
of confidence intervals rule and a global method using local bandwidth cor-
rection factors. We vary the amount of smoothing in a location dependent
manner and allow adjustments based on the reliability of the data.

It is well known that of the smoothing parameters, the weight function has
much less influence on the bias and variance trade-off than the bandwidth or
the order of approximation. The choice is not too crucial, at best it changes
the visual quality of the regression curve. For convenience, we use the Epan-
echnikov weight function in expression (4.6) throughout this chapter, as it
is computationally cheaper to use a truncated kernel. Moreover, it has been
shown that the Epanechnikov kernel is optimal in minimizing the mean
squared errors for local polynomial regression, see Fan et al. (1997). The
biweight and triweight kernel, which behave very similarly, could have also
been chosen. The choice remains subjective.

The data used for the following illustrations are presented in Section 4.4.4.
In brief, the data come from observations of individuals subscribing to Long-
Term Care (LTC) insurance policies originating from a portfolio of a French
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insurance company. We focus on measuring the forces of mortality as a
function of the age v of occurrence of the pathologies and the duration u of
the care.

4.3.1 Intersection of confidence intervals

The intersection of confidence intervals was introduced by Goldenshulger
and Nemirovski (1997) and further developed by Katkovnik (1999). Applica-
tion of the ICI rule in case of Poisson local likelihood for adaptive scale image
restoration has been studied in Katkovnik et al. (2005). Chichignoud (2010)
in his Ph.D. thesis presents a comprehensive illustration of the method. The
intersection of confidence intervals (ICI) provides an alternative method of
assessing local goodness of fit.

We start by defining a finite set of window sizes

A={\ <X <...<Ag},

and determines the optimal bandwidth by evaluating the fitting results. Let
(xi, A\x) be the estimate at x; for the window A;. To select the optimal
bandwidth, the ICI rule examines a sequence of confidence intervals of the
estimates ¥ (x;, Ag):

j\(xia /\k) = [E(xh)‘k)a U(xla)‘k) y
Ui, Ae) = $(@i, M) + €5 ()| s(zi, M),

~

L(wi, Ak) = (i, A) — c o (@) |[s(zi; Akl

where ¢ is a threshold parameter of the confidence interval. Then, from the
confidence intervals, we define

=)

(i Aw) = max [ (s, A1), Dlwss M) |
U(zi, M) = min [Q(l'i,)\k—l)a Uz, /\k)} )

=1,2,...,K and L(z;, o) = Uz, o) = 0.

ol

The largest value for these k for which U(z;, Ay) > E(I“ Ak) gives k*, and
it yields a bandwidth A}, that is the required optimal ICI bandwidth.

In other words, denoting Z; = ﬂf:k I(z;,\;) for k = 1,2,..., K, we
choose k* such that

Z; # 0, Vi =k,
Ik*,l :m

As the bandwidth )\ is increased, the standard deviation of 12(3:1-, Ak), and
hence ||s(x;, Ak)||, decreases. The confidence intervals become narrower. If

Ak is increased too far, the estimate 12(:52, Ay will become heavily biased,
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and the confidence intervals will become inconsistent in the sense that the
intervals constructed at different bandwidths have no common intersection.
The optimal bandwidth A+ is the largest k& when U(x;, \g) > L(x;, Ag) is
still satisfied, i.e. when Z; # 0.

Because the optimal bandwidth is decided by ¢, this parameter plays a cru-
cial part in the performance of the algorithm. When c is large, the segment

~

I(z;, A) becomes wide and it leads to a larger value of A}. This results

~

in over-smoothing. On the contrary, when ¢ is small, the segment I(x;, Ag)
would become narrow and it leads to a small value of A} so that the volat-
ility can not be removed effectively. In theory, we could apply the criteria
presented in Section 3.4 to determine a reasonable value c. However, because
of practical constraints, the choice of ¢ is done subjectively.

4.3.2 Local bandwidth factor methods

Instead of having a pointwise procedure, other types of adaptive ap-
proaches could be performed by using a global criterion. We could incorpor-
ate additional information into a global procedure by allowing the bandwidth
to vary according to the reliability of the data, such as the variable kernel
estimator proposed in Gavin et al. (1995, pp.190-193). We can calculate a
different bandwidth for each age at which the curve has to be estimated. The
local bandwidth at each age is simply the global bandwidth multiplied by
a local bandwidth factor to allow explicit dependence on this information.
As we already obtained the local bandwidth factors, the process of using
a global criterion decides the global value at which the bandwidth curve is
located.

The aim is to allow the bandwidth to vary according to the reliability
of the data, and to take into account the nature of the risk considered.
The local bandwidth factors could depend on the exposure or the number of
deaths per attained age, in case of annuities and death benefits, respectively.
For regions in which the exposure is large, a low value for the bandwidth
results in an estimate that more closely reflects the crude rates. On the other
hand, for regions in which the exposure is small, such as long duration, a
higher value for the bandwidth allows the estimate of the true forces of mor-
tality to progress more smoothly. This means that for long duration we
are calculating local averages over a greater number of observations, which
reduces the variance of the graduated rates but at the cost of a potentially
higher bias.

The local bandwidth at each age is the global bandwidth multiplied by
a local bandwidth factor, h; = h x 7 for ¢ = 1,...,n. The variation in
exposure or in deaths within a dataset can be enormous. To dampen the
effect of this variation we choose

650(5;3, fori=1,...,n and 0<s<1, (4.1)
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where s is a sensitivity parameter and

N E;/Y" E; fori=1,...,n in case of annuities,
&= = (4.2)
d;/ Z?:l d; fori=1,...,n in case of death benefits.

Choosing s = 0 reduces both models to the fixed parameter case, while s = 1
may result in very large smoothness variation depending on the particular
dataset. We choose the reciprocal of max{{; *; i =1,...,n} as the constant
of proportionality in (4.1), so that 0 < 67 <1, for i =1,...,n. The observed
exposure, or the observed deaths, decides the shape of the local bandwidth
factor but the sensitivity parameter s determines the magnification of that
shape, becoming more pronounced as s tends to 1. Figure 4.9a shows the
exposure for the age of occurrence 70 and Figure 4.9b displays the result-
ing smoothness tuning parameter for values of the sensitivity parameter of
0,0.05,0.1,0.15,0.25,0.5 and 1.

E,y for v=70 dyy for v=70

150 1.0

0.8

100

06 4

0.4

0.2 4

T T T T T T T T T T T T T T
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Duration (months) Duration (months)

(a) Ezposure Ey 70 (b) Local bandwidth factors dy, 70

Figure 4.9: E, 70, and values of 6y,70, for various sensitivity parameters.

For s = 0.15, the minimum smoothness tuning parameter is about 0.5, at
duration 0. This means that the bandwidth at the longest duration is about
twice that at the shortest duration.

Figure 4.10 presents the value of §,, ,, for s = 0.15 and local bandwidth values
(radius) derived. If there is a small exposure, then 4, , is large. It increases
the smoothness tuning parameter and allows to apply more smoothing. The
other way around if the amount of exposure is large.

Similarly to the global approach, we can apply the criteria presented in
Section 3.4 to select the optimal constellation of smoothing parameters. As
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Local bandwidth factors
Local Bandwidth (radius)
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(a) Local bandwidth factors 6y v (b) Local bandwidths (radius)

Figure 4.10: 64,4 for s = 0.15 and the resulting local bandwidths.

we already obtained the shape and the magnification of the local bandwidth
factors, this process decides the global value at which the bandwidth curve
is located.

4.4 Application

To illustrate the adaptive local kernel-weighted log-likelihood approaches,
we discuss an application concerning the mortality of individuals having
a long-term care (LTC) insurance contract. LTC is a mix of social and
health care provided on a daily basis, formally or informally, at home or
in institutions, to people suffering from a loss of mobility and autonomy in
their activity of daily living. Although loss of autonomy may occur at any
age, its frequency rises with age. LTC insurance contracts are individual or
collective and guarantee the payment of a fixed allowance, in the form of
monthly cash benefit, possibly proportional to the degree of dependency, see
Kessler (2008) and Courbage and Roudaut (2011) for studies on the French
LTC insurance market.

Most of the actuarial publications on this topic focus on the construc-
tion of models of projected benefits, see Gauzére et al. (1999) and Deléglise
et al. (2009). Here we are concerned about the construction of the survival
distribution of LTC insurance policyholders. The pricing and reserving as
well as the management of LTC portfolios are very sensitive to the choice of
the mortality table adopted. In addition, the construction of such table is a
difficult exercise due to the following features:

i. French LTC portfolios are relatively small and the estimation of crude
death rates is very volatile;
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ii. because of the strong link between the age at subscription of LTC in-
surance policy and the related pathology, it is usual to construct a
mortality table based on both age of occurrence of the pathologies,
which is an explanatory variable, and duration of the care (or senior-
ity), which is the duration variable. Hence, it is necessary to construct
a mortality surface;

iii. mortality rates decrease very rapidly with the duration of the care. In
consequence, the first year is often difficult to integrate into the usual
(parametric) models.

Thus practitioners often use empirical methods that rely heavily on experts
opinion. We therefore propose, in this chapter, more rigorous methods for
the graduation of mortality tables not depending on experts advice.

4.4.1 Analysis of the changes in mortality

We analyze the changes in mortality of individuals subscribing LTC in-
surance policies as a function of both the duration of the care and the age of
occurrence of the pathology. Let T, (v) be the remaining lifetime of an indi-
vidual when the pathology occurred at age v, for the duration of the care w,
with v and u being integers. We are working with two temporal dimensions
u and v, however, they do not have the same status: v is a variable denoting
the heterogeneity while u represents the variable linked with the duration.
The distribution function of T,,(v) is denoted as rq,(v) = Pr[Ty(v) < 7] =
1—;pu(v). The force of mortality at duration u+7 for the age of occurrence
v, denoted by @, (v) is defined by

. Prir<T,(v) <7+ A7T|Ty(v) > 7] 1 0
= 1 m = _—
Putr (U) A7'1—>0+ AT Tpu(U) 8TTQu(U)>

and, -py(v) = exp (— /OT Qute(v+€) d§> .

We assume that the duration-specific forces of mortality are piecewise con-
stant in each unit square, but allowed to vary from one unit square to the
next, Qut+r(v + &) = @u(v) for 0 < 7 < 1 and 0 < ¢ < 1. Under this
assumption, pu(v) = exp(—pu(v)) © @u(v) = — 0g(pu(v)).

We define the exposure-to-risk (E, ), measuring the time during which
individuals are exposed to the risk of dying. It is the total time lived by these
individuals. Assume that we have L, , individuals at duration u and age of
occurrence v. Using the notation of Gschlossl et al. (2011), we associate to
each of these L, , individuals the dummy variable

5 — 1 if individual 7 dies,
0 otherwise,
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for i = 1,2,...,L,,. We define the time lived by individual i before
(u + 1)st duration when the pathology occurred at age v by 7. We as-
sume that we have at our disposal iid observations (d;,7;) for each of the
L, individuals. The contribution of individual ¢ to the likelihood equals
exp(—Tipu(v))(¢u(v))%. Finally we define

L Luw
E Ti=Fy,, and E 0; = Dy .
i=1 i=1

Under these assumptions, the likelihood becomes

Ly v
L(pu(v)) = H exp(—Tipu (0)) (P (1))’ = exp(—Euy ¢u(v))(pu(v)) 7.
The associated log-likelihood is £(¢,(v)) = log L(¢y(v)) = —Ey.» pu(v) +

D, , log ¢, (v). Maximizing the log-likelihood £(i,,(v)) gives @ (v) = Dy v/Fu.v
which coincides with the central death rates m,(v). Then it is apparent
that the likelihood #(¢,(v)) is proportional to the Poisson likelihood based
on D, , ~ Poisson(E, ¢, (v)) and it is equivalent to work on the basis of
the true likelihood or on the basis of the Poisson likelihood, as recalled in
Gschlossl et al. (2011). Thus, under the assumption of constant forces of
mortality between non-integer values of u and v, we consider

D, , ~ Poisson(E, . (v)), (4.3)
to take advantage of the Generalized Linear Models (GLMs) framework.

4.4.2 Bi-dimensional local likelihood

We present briefly the generalization to two predictors. Suppose we have
n independent realizations y1,ys, . . ., y, of the random variable Y with

Y ~ f(Y|0(x;)), fori=1,2,...,n,

where f(-]0(x;)) is a probability mass/density function in the exponential
dispersion family and (z;), the natural parameter in the GLMs framework,
is an unspecified smooth function ¢ (z;). For simplicity, we use x; = (u;, v;)
to denote the vector of the predictor variables. The bivariate local likelihood
fits a polynomial model locally within a bivariate smoothing window. Sup-
pose that the function i has a (p + 1)st continuous derivative at the point
x; = (u;,v;). For data point z; = (u;,v;) in a neighborhood of z; = (u;,v;)
we approximate 1(x;) via a Taylor expansion by a polynomial of degree p.
If locally linear fitting is used, the fitting variables are just the independent
variables. If locally quadratic fitting is used, the fitting variables are the
independent variables, their squares and their cross-products. For example,
a local quadratic approximation is:

Y(xg) =(uj,v;) = Bo(zs) + Br(xs) (uj — ug) + Ba(xs) (vj — v;)

5 Bale) (g — w)? o Bal) (s — we)(w; = ) + 5B () (v — i)
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The local log-likelihood can be written as
LBINz:) =Y 1 (y;, =" B) w, (4.4)
j=1

where, in the case of locally quadratic fitting, « = (1, u; — w;, v; — v, (uj —

u;)?, (v; — vi)(uj —u;), (v; —v;)*)T, and B = (Bo, ..., B5) .

The weights are defined on the bivariate space. The non-negative weight
function, w; = w;(z;), depends on the distance p(z;, x;) between the obser-
vations x; = (u;,v;) and the fitting point ; = (u;,v;) and in addition, it
contains a smoothing parameter h = (A — 1)/2 which determines the radius
of the neighborhood of z;.

Maximizing the local log-likelihood (4.4) with respect to 3 gives the vector
of estimators B = (Bo, ..., 35)7. Estimator v (xz;) is given by 9 (z;) = fBo.
We proceed by forming the local likelihood as in (4.4) and estimate the
coefficients 3 based on data in the neighborhood x; = (u;,v;) of the target
point x; = (uz, v;).

Since we want to maximize the log-likelihood, we look for a solution of the
set of normal equations to be fulfilled by the maximum likelihood parameter
estimates 3. In case of locally quadratic fitting,

oL (ﬁv|ya Wy, ¢)

95, =0 forv=0,1,...,5.

These equations are usually non-linear, so the solution must be obtained
through iterative methods. One way to solve those is to use Fisher’s scoring
method.

The derivatives of the local Poisson log-likelihood function with respect to

3 are

n n
— K5 Ouy b} di — 1 Op;
Z Mo el 7L=ng'u—](uj—ui);
i=1 In; o = 1 o
6 n d_ﬂau (9 n d—uau
7L:ijgij(vj_vi); 71;:2%#4(%_%)2;
082 jt i Onj B3 = w;  om,

o - d; — pj O 1o} = dj — pj Opj
—L = wij—L—"L T (v — ) (uj —wy); =L = wj 2—L T (y; — ;)2
= 2 L s s s L= 3y U s )

The Fisher information for 3 is given, in matrix notation, by

Tor = {XTWQX} :
vk
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where Z denotes the Fisher information matrix, X is the design matrix

1 U — U; V1 — U; (ul — Ui)2 (Ul — ui)(vl — Ui) (’Ul — 01)2

¥ _ 1 ug—w; vo—v; (ug—u)? (ug —u)(vr —v;) (v1 —v;)?

1wy —u; vy =0 (Un —ui)? (ug —u)(vr — ;) (v1 —v;)?

and € is the matrix of the working weights just as in (3.11), while W is a
diagonal matrix, with entries {w;}7_;, such that

w; = ! ! (4.6)
0 otherwise.

W(.) denotes a non-negative weight function depending on the distance
p(x;,x;). A common choice is the Euclidean distance,

p(zi,xj) = \/(Uj —ui)? + (v — ;)%

In addition, it contains a smoothing parameter h = (A — 1)/2 which de-
termines the radius of the neighborhood of z;. The two components of the
Euclidean distance can be scaled in order to apply more smoothing in one
direction than the other.

Following the general Fisher scoring procedure, see Section 3.2.4, we ob-
tain the estimates.

When modeling experience data from life-insurance, we wish generally to
take into account the exposure in the setting. Specifically, we are looking
for a smooth estimate of the observed forces of mortality and from equation
(4.3) the linear predictor n; can be written as

n; = log (E[Y|X = z;]) = log(u;) = log(E;p;) = log(E;) + log(p;)

The term Ej; called the offset can be easily incorporated.

4.43 p-splines framework for count data

In this section, we present the essential background material on p-splines
methodology for count data. Descriptions of the p-splines method can be
found in the seminal paper of Eilers and Marx (1996), as well as in Marx
and Eilers (1998), Eilers and Marx (2002), and in Currie and Durban (2002).
Currie et al. (2006) present a comprehensive study of the methodology. Ap-
plications covering mortality can be found in Currie et al. (2004), Richards
et al. (2006), Kirkby and Currie (2010) and in the Ph.D. thesis of Camarda
(2008). Planchet and Winter (2007) use the same framework to discuss an
application concerning sick leave retentions.
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Again, we suppose that the data can be arranged as a column vector,
y = vec(Y) = (y1,¥2,---,Yn)’. Let B, = B(u) and B, = B(v), be re-
gression matrices, of dimensions n,, X k, and n, X k,, of B-splines based on
the duration w and age of occurrence v, respectively, with k denoting the
number of internal knots.

Specifically, B-splines are bell-shaped curves composed of smoothly joint
polynomial pieces. Polynomials of degree 3 are used in the following. The
positions on the horizontal axis where the pieces come together are called
knots. We use equally spaced knots. The numbers of columns of B, and
B, are related to the number of knots chosen for the B-splines. Details on
B-splines can be found in de Boor (2001).

The regression matrix for our two dimensional model is the Kronecker product

B=B,®B,

The matrix B has an associated vector of regression coefficients a of length
ky ky. As in the GLM framework, the linear predictors 7 is linked to the
expectation of y by a link function g(.).

n = g(E[y]) = log(n) = Ba = (B, ® B,) a, (4.7)

The elements of a can be arranged in a k,, x k, matrix A, where a = vec(A).
The columns and rows of A are then given by A = (a4,...,a,) and AT =
(a1,...,a,). Then instead of computing equation (4.7) as a vector, it can
be written as

log(E[y]) = log(M) = B, A B. (4.8)

From the definition of the Kronecker product, the linear predictor of the
columns of Y can be written as linear combinations of k, smooths in the
duration u. The linear predictors corresponding to the jth column of Y can
be expressed as

ko
k=1

where B, = bj;. We apply a roughness penalty to each of the columns of A.
The penalty is given by

ky
Y af DI D, a;=a" (Ikv ® DT Du) a,
=1

where D,, is the second order difference matrix acting on the columns of A.
Similarly by considering the linear predictor corresponding to the ith row of
Y

7

K
S al D' D, a; = a” (Df DU®Iku> a,

=1
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where D,, is the second order difference matrix acting on the rows of A.
The penalized log-likelihood to be maximized can be written as

1
0 =4{(a; B,y) — iaTPa. (4.9)
where {(a; B, y) is the usual log-likelihood for a GLM and the penalty term
P is given by

P=), (Iku ® DT Du> Y (DZ D, ® Iku> ,

where A\, and \, are the smoothing parameters used for the duration and
the age of occurrence respectively, Iy, and Iy, being identity matrices of
dimension k, and k, respectively. More details can be found in Currie et al.
(2004).

Then maximizing equation (4.9) gives the penalized likelihood equations

BT (y — M) = Pa,
which can be solved by a penalized version of the IRWLS algorithm,

(BTQB + P) a=B"0z, (4.10)

where Q is the matrix of the working weights similar to (3.11). Again in
case of Poisson errors, Q = diag(p). The working dependent variable z is
defined by

z:Ba—&—u.
u

Hence, a maximum likelihood estimate of a is found by a penalized version
of IRWLS algorithm:

Repeat a* := B(BTQ B+ P) 'BTQ z;

using a*, update the working weights €2, as well as the working de-
pendent variables z until convergence.

Again when modeling mortality data, we may take into account the exposure
in the setting. The linear predictor 7 can be written as

n = g(Ely]) = log(p) = log(e)+log(¢) = log(e)+B a = log(e)+(B.®B,) a,

where e denotes the vector of exposure. Similarly to Section 4.4.2, the offset
can be easily incorporated in the regression system (4.10).

The penalized IRWLS would be efficient only in moderate-sized problems.
For our application, the parameter vector a has length 2520 and this required
the usage of 2520 x 2520 matrices. The size is moderate, but for larger
dimensional matrices the penalized IRWLS algorithm can run into storage
and computational difficulties. Currie et al. (2006) and Eilers et al. (2006)
proposed an algorithm that takes advantage of the special structure of both
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the data as a rectangular array and the model matrix as a tensor product.
The idea of this algorithm can be seen in the computation of the mean
p = vec(M) in two dimensions, as in (4.8). This avoids having to construct
a large Kronecker product basis, saving time and space. For the presentation
of this algorithm we refer to the mentioned articles Currie et al. (2006) and
Eilers et al. (2006).

The smoothing parameters for p-splines method are chosen according the
Bayesian information criterion (BIC) which penalizes heavily the model com-
plexity particularly when n is large,

BIC = 3" D(y,, (0(i))) + log(n) v.

i=1

4.4.4 The data

The data come from observations of individuals subscribing to LTC in-

surance policies originating from a portfolio of a French insurance company.
For these applications, we focus on measuring the forces of mortality as a
function of the age v of occurrence of the pathologies and the duration u of
the care.
The range of ages of occurrence is 70 — 90 and the maximum duration of
the pathologies is 119 months. The period of observation stretches from
01/01/1998 to 31/12/2010. The data have been aggregated according to the
age of occurrence and the duration. The pathologies are composed, among
others, by dementia, neurological illness and terminal cancer. The data con-
sist for 2/3 of women and 1/3 of men. Figures 4.11a, 4.11b, and 4.11c¢ display
the observed statistics of the dataset.

Moreover, we have at our disposal the adjusted surface obtained from the
technical report Planchet (2012), Figure 4.11d. It gives an idea about the
desirable shape that we aim to retain, and the adjusted forces of mortality
will be useful when assessing the comparisons of the models. This surface
has been obtained by treating separately the first month of duration from
the others and applying a Whittaker-Henderson model to adjust the crude
surface.

4.45 Smoothed surfaces and fits

Figure 4.11e presents the smoothed surface obtained with the local likeli-
hood model with an Epanechnikov weight function, a polynomial of degree 2
and a bandwidth (radius) of 13 observations. The corresponding degrees of
freedom v are 29.25. The order of polynomial and the bandwidth have been
chosen by minimizing the AIC criterion. The surface is relatively wiggly
showing an inappropriate variance.



128 CHAPTER 4. ADAPTIVE LOCAL KERNEL-WEIGHTED LOG-LIKELIHOOD

. 80 100
Duration (months) G 70 20 40 60

Duration (months) Duration (months) Duration (months)

(a) Number of exposures to the risk,
By (b) Number of death, Dy (¢) Crude forces of mortality, pu,v (d) Pu,v, Planchet (2012)

s

o

o

Yy 4o G0 100 Y 6o 8 100 Y w0 G0 & 100 Y w0 80 100
Duration (months) Duration (months) Duration (months) Duration (months)
(€) Pu,v, local likelihood (f) Pu,v, p-splines (8) Pu,v, ICI (h) @u,v, local bandwidth factors

Figure 4.11: Observed statistics: Ey v, Dy, u,v and smoothed forces of mortality $u,» according to Planchet (2012),
local likelihood, p-splines, ICI rule and local bandwidth factors methods
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Figure 4.11f displays the smoothed surface obtained when fitting p-splines.
The smoothing parameters A\, = 31.6, A\, = 31.6, have been chosen by
minimizing the BIC criterion. It leads to k, = 24, k, = 4 for v = 18.11.
The surface seems satisfactory, though the increase in the upper right corner
(highest age of occurrence and longest duration) is not present as in the
surface adjusted from Planchet (2012).

Figures 4.11g and 4.11h present the smoothed surface obtained with the
adaptive local likelihood methods. For these applications, only the band-
width is varying. The order of polynomial is still fixed at 2 and we use an
Epanechnikov weight function. The fitted degrees of freedom v are 10.05,
10.76 and 16.16 respectively.

In general, only for the first months of the duration, the graduations are
similar. After that, we obtain very different shapes according to the mod-
els. The ICI rule and the local bandwidth factors seem the most satisfying
methods in modeling the monotone phenomenon at the extreme ages, Fig-
ures 4.11g and 4.11h. The fitted degrees of freedom for the local bandwidth
factors are larger than the ones obtained by the ICI rule indicating that the
model is slightly more flexible and shows more features. The bandwidth val-
ues depend on the amount of exposure to represent effectively the remaining
life expectancy in the regions where the amount of exposure is high. The
corresponding bandwidths, in the left region, are relatively low, and they in-
crease as the amount of exposure decreases. For regions in which the amount
of exposure is low, a large value for the bandwidth results in an estimate
that progress more smoothly. As we already obtained the shape and the
magnification of the local bandwidth factors, we used the AIC criterion to
decide the global value at which the bandwidth curve is located. The sens-
itivity parameter s for the local bandwidth factors as well as the value ¢ for
the ICI rule have been chosen arbitrarily to be 0,15 and 0.1 respectively. For
higher value of s spurious features started to appear showing unacceptable
variance, while for higher ¢, bias tends to show up.

Figures 4.12 and 4.13 present the smooth fits obtained from the different
models for various ages of occurrence and durations.

The approaches produce relatively similar graduations for regions hav-
ing a low amount of noise, Figure 4.12b. However, when the data are more
volatile the benefits of the adaptive approaches become apparent. The fit ob-
tained from global local likelihood, and not as strongly the p-splines, present
an unacceptably high variance. It shows the inapplicability to model such
datasets with global methods or to select the smoothing parameters by re-
lying explicitly on a criterion. The local bandwidth factors method has the
capability to model the forces of mortality in the first months of duration
relatively well, Figure 4.12d, and the sharp increase at the highest extremes
of the age of occurrence and duration, Figures 4.12c and 4.12f. The ICI rule
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and p-splines fail to model these features. However, all the models miss the
slow increase at the age of occurrence 70 present in the fit obtained from
Planchet (2012), Figure 4.12a.

4.4.6 Analysis of the residuals

Figure 4.14 presents the residuals of the 5 models for the age of occurrence
70 as well as the ones obtained from the adjusted surface from Planchet
(2012).
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Figure 4.14: Response, Pearson and deviance residuals for the age of occurrence 70

The pattern of the residuals displayed for each model is roughly similar.
We superimposed a loess smooth curve on the response and Pearson resid-
uals. These smooths help search for clusters of residuals that may indicate
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lack of fit. By reducing the noise, our attention may be more readily drawn
to features that have been missed or not properly modeled by the smooth.
Here the process is not to judge a fit adequate if a smooth curve on its resid-
uals plot is flat. A flat curve means simply that no systematic, reproducible
lack of fit has been detected. The fit may well be too noisy, and stays to close
to an interpolation since trends in small parts of the data are interpreted
as more widespread trends. Then for small datasets, the fit is very nearly
interpolating the data which results in unacceptably high variance. Strong
patterns appear in the response residuals in Figure 4.14. It indicates a lack
of fit in this region. However, this is not surprising as most of the deaths at
the longest durations are zero for the age of occurrence 70.

The Pearson residuals are mainly in the interval [—2,2], which indicates
that the models adequately capture the variability of the dataset.

The deviance residuals present, for the longest durations, several success-
ive residuals having the same sign. It illustrates that the forces of mortality
are over-smoothed locally. As the sign is negative, from 80 to 119 months,
we strongly overestimate the forces of mortality. However, we would have
excepted such a pattern as we observe zero deaths at the highest extreme of
the duration of the care.

4.5 Comparisons

4.5.1 Tests to compare graduations

We continue the comparisons by applying the tests proposed by Forfar
et al. (1988, p.56-58) and Debon et al. (2006, p.231). We have also obtained
the values of the mean absolute percentage error M APFE and R? used in
Felipe et al. (2002). We compare the crude mortality rates to the graduated
series to see whether the approaches lead to similar graduation. Table 4.3
presents the results.

The approaches display different results. The global local likelihood ap-
proach, having the highest degrees of freedom, has the capacity to show
many features in the data. Therefore, the values of the various tests are the
best. It has the lowest deviance, lowest number of standardized residuals
exceeding the thresholds 2 and 3, highest number of runs, best mix of the
residuals between positive and negative signs, highest value for the run test.
In addition, the approach results in the minimum x? and MAPE. Con-
versely, the adaptive local likelihood using the ICI rule yields the smallest
degrees of freedom. As a consequence, the results of the various tests and
values of the x? and M APE are the worst.

The results for the p-splines and the adaptive approaches using the local
bandwidth factors are similar, even though we have seen that the adaptive
method has a better ability to model the mortality patterns (high mortality
for the first month of duration of the care and increase at the extreme highest



COMPARISONS 133

Local lik. p-splines Adapt. lik. ICT | Adapt. band. factors | Planchet (2012)
Fitted DF v 29.25 18.11 10.76 16.16 NA
Deviance 2259.91 2291.89 2440.81 2311.04 2409.99
Standardised >2 108 117 127 115 129
sesiduals >3 25 31 38 32 42
Signs +(-) 910(1610) | 907(1613) 891(1629) 900(1620) 908(1612)
test p-value < 2.2e—16 < 2.2e—16 < 2.2e — 16 < 22e—-16 < 2.2e—16
Runs Nb of runs 1028 1016 971 1019 1013
test Value —6.25 —6.71 —8.19 —6.47 —6.64
p-value 4.05¢ — 10 1.98¢ — 11 2.57e — 16 9.69¢ — 11 3.10e — 11
Kolmogorov Value 0.4401 0.5008 0.4829 0.4786 0.5167
Smirnov test p-value 0.00 0.00 0.00 0.00 0.00
x? 2433.56 2487.09 2616.08 2458.71 2644.09
R? 0.2406 0.2340 0.2433 0.2476 0.2234
MAPE (%) 46.11 46.62 48.18 46.99 47.38

Table 4.3: Comparisons between the smoothing approaches.

of the duration and age of occurrence), even though the p-splines model has
higher degrees of freedom.

452 Comparing figures summarizing the lifetime probability distri-
bution

We end these comparisons by presenting some figures summarizing the
lifetime probability distribution. Figures 4.15 and 4.16 display the life ex-
pectancy obtained from the different models for various ages of occurrence
and durations.

At age of occurrence 70, with the exception of the adaptive local likeli-
hood using the ICI rule and local bandwidth factors, the models are over-
estimating the period life expectancy for the first months of duration (until
10 months), Figure 4.15a. This is particularly visible for the p-splines and
the adjusted surface obtained in Planchet (2012). The over-estimation is
general at age of occurrence 80, Figure 4.15b. The shapes of the life ex-
pectancy differ much at age of occurrence 90, Figure 4.15¢, where the global
local likelihood tends to estimate a more rectangular shape.

The shape and trend of the life expectancies are similar when we observe
a large amount of exposure (first months of duration of the care), Figure
4.15d. The high correlation of the pathologies with the age of occurrence
can explained the concave shape observed for the life expectancies during
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the first months of the care. The lowest ages of occurrence are marked by
a relatively high mortality mainly due to the death of the individuals suf-
fering from terminal cancer, while the highest ages concern principally the
dementia. At the 60th month of the care, the life expectancy is decreas-
ing rapidly, Figure 4.15e. However, while the ICI rule and local bandwidth
factors produce similar patterns, the shapes and trends given by the other
models diverge markedly, the local likelihood predicting a rise of the life
expectancy for the highest age of occurrence. This pattern is also present,
although less markedly, in Figure 4.15f.

Figure 4.17 shows the median month at death, Figure 4.17a, standard de-
viation of the random life time, Figure 4.17b and entropy, Figure 4.17c, as
a function of the age of occurrence of the pathology.

In Figure, 4.17a displaying the median month at death as a function of
the age of occurrence of the pathology, we observe a concave shape similar to
Figure 4.15d. This phenomenon shows, once more, the correlation between
the age of occurrence and the pathologies. The adaptive local likelihood
using the ICI rule, having the lowest degrees of freedom, mostly under-
estimates the median month at death compared to the others models.

After a steady increase, the standard deviation of the random lifetime
is slowing down at age of occurrence 82, and decreases until 90 years old,
Figure 4.17b. It is explained by the fact that we observe most of the deaths
at the lowest age of occurrence and duration, while the number of deaths is
zero, and thus stable, at the highest age and duration.

Figure 4.17c shows the entropy. The values decline as the deaths become
more concentrated. We observe that the deaths predicted by the adapt-
ive local likelihood models (ICI rule and bandwidth factors) are the most
stretched. Conversely, the adjusted number of deaths obtained by Planchet
(2012) are more concentrated.

Table 4.4 summarizes the indices. For the life expectancy, o[120€70, 0j120€80,
and g|120€90, the observations suggest an increase with the age, which, based
on our knowledge, is unrealistic. We are more likely to look for a concave
shape, predicted by the models as displayed in Figure 4.15d. On average,
the models agree on the same life expectancy, around 38 months and under-
estimate slightly the observed g|120€.

The median month at death, Med(Tp), estimated by the models varies
in average slightly from 25 to 27 months. However, for a particular age of oc-
currence, such as Med(7p(70)), the difference between the models (p-splines
and ICT rule) can grow until 6 months.

All the models sensibly estimated the same average standard deviation
of the random life time, oy, which corresponds to the observed standard
deviation, around 0.22.

Finally, all the models agree on the estimated average entropy H(Tp),
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Figure 4.17: Median month at death, standard deviation of the random life time and entropy with the age of occurrence of the pathology.
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Observed | Local lik. | p-splines | Adapt. lik. ICI | Adapt. band. factors | Planchet (2012)
0/120€70 33.38 35.07 38.73 33.71 34.38 36.84
0h120€80 39.06 41.33 41.34 41.72 41.37 41.84
0]120€90 41.78 31.53 30.78 28.50 29.29 31.09
0]120€ 39.44 38.59 38.80 37.88 38.12 39.23
Med(Tp(70)) |  12.98 14.07 18.81 12.81 12.89 16.67
Med(T5(80)) 29.41 31.99 31.67 31.12 31.94 31.33
Med(T6(90)) 15.98 19.84 20.57 18.38 19.16 20.73
Med(Tp) 27.07 26.83 27.29 24.99 26.40 27.18
o0(70) 0.1846 0.1742 0.1778 0.1768 0.1751 0.1774
o0(80) 0.2421 0.2372 0.2349 0.2314 0.2361 0.2377
0(90) 0.1691 0.2274 0.2417 0.2397 0.2394 0.2347
) 0.2196 0.2231 0.2250 0.2228 0.2251 0.2250
H(Ty(70)) 0.0423 0.0377 0.0313 0.0404 0.0389 0.0346
H(Tv(80)) 0.0357 0.0307 0.0304 0.0297 0.0305 0.0296
H(Tv(90)) 0.0265 0.0503 0.0570 0.0669 0.0638 0.0552
H(To) 0.0337 0.0350 0.0353 0.0374 0.0370 0.0341

Table 4.4: Single figure indices to summarize the lifetime probability distributions

between 0.035 to 0.037. The entropy estimated from the adjusted sur-
face obtained in Planchet (2012) suggests that the estimated deaths are
less stretched than the models predictions.

4.6 Summary and Outlook

In this chapter, we illustrate how adaptive local likelihood methods can be
used to graduate mortality tables in two dimensions. Tests and single indices
summarizing the lifetime distributions are used to compare the graduated
forces of mortality obtained from adaptive local likelihood to global non-
parametric methods such as local likelihood and p-splines models.

Using locally adaptive parameters instead of a global smoothing one may
be advantageous for several reasons. The estimator can adapt to the struc-
ture of the regression function and to the reliability of the data, smoothing
more when the volume of observations is low and less when it is high.

The intersection of confidence intervals (ICI) rule has been introduced as
a locally adaptive pointwise method. The critical value controls the bias-
variance tradeoff. Because a larger class of estimators is available, it may in
turn affect the variability. Hence, the set of window sizes contains relatively
large bandwidths. The choice of the set of window sizes is done subjectively,
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based on the the mechanism generating the data and on the performance
of the smoother used in the fitting. Another drawback in applying such
methods is that they require more computer time than a global procedure.
Specifically, the computational effort is multiplied by the number of obser-
vations.

A technique closely related to the ICI rule is the Lepski method. This pro-
cedure uses the standard deviation of the difference ¥y, (z;) — ¥a(z;) for
some A < A; until a significance difference is found. Chichignoud (2010,
Section 1.5) provides an extensive discussion of the technique in his recent
Ph.D Thesis. The discussion and the implementation of the Lepski method
for graduating experience data originating from life insurance is a topic of
ongoing research.

The bandwidth correction factors method allows the estimated forces of
mortality to include explicitly the extra information provided by the chan-
ging amounts of exposure. The observed exposure decided the shape of the
smoothness parameter. The magnification of that shape has been determined
by a sensitivity parameter which we chose subjectively for practical reasons.
The global bandwidth parameter is used to control the absolute level of the
bandwidth curve. We used a global criterion instead of pointwise methods.
It appears that the procedure has the ability to model relatively well the
mortality pattern where the other models fail to model these features.

In global procedures as well as for locally adaptive procedures, there is no
deterministic method to obtain the constellation of smoothing parameters
with the classical selectors. Residual analysis and goodness of fit diagnostics
are just as important for locally adaptive procedures as they are for global
procedures. It is important to use appropriate residuals diagnostics to look
for lack of fit. The purpose for which the mortality table is required must be
kept clearly in mind, and the final choice of graduation is always a matter
of judgment.

The methodologies proposed adapt neatly to the complexity of mortality
surface, clearly because of the appropriate data-driven choice of the adapt-
ive smoothing parameters. The adaptive local likelihood method using the
bandwidth factors models well the high mortality during the first months of
duration and the increase at the extreme high duration and age of occurrence
compared to the other methods. Having 13 degrees of freedom less than the
local likelihood model, the adaptive bandwidth factors model is less flex-
ible although the tests presented in Table 4.3 show relatively good results.
Rather than treating the first months separately, having an adaptive model
can be a benefit. However, the relative merit of the procedures would de-
pend on the purpose for which the mortality table has been computed. If we
are essentially exploring the data, then additional information derived might
not justify the effort. However, the potential uses of adaptive approaches
suggest that they have much to offer as part of the actuarial toolkit.
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Chapter

Entity specific prospective
mortality tables

5.1 Introduction

It is now well documented that the human mortality has globally de-
clined over the 20th century. Life expectancy is greater than ever before
and increasing rapidly, see Pitacco et al. (2009, Ch.3). These mortality im-
provements pose a challenge for the pricing and reserving in life insurance
and for the management of public pension regimes. In a pension plan, the
longevity risk is transferred from the policyholder to the insurer. The lat-
ter has to evaluate his liability with appropriate mortality tables. It is in
this context that since 1993 the French regulatory tables for annuities have
been prospective mortality tables taking in account the increase of the life
expectancy.

Prospective mortality tables allow to determine the remaining lifetime for
a group, not according to the conditions of the moment, but given the future
developments of living conditions. However, applying exogenous tables to
the group considered may result in under-provisioning the annuities, when
the mortality of the group is lower than of the reference population. With
the international regulations Solvency II and IFRS insurers are required to
evaluate their liabilities from realistic assumptions leading to an evaluation of
the best estimate. In consequence, for pensions regimes and more generally
due to the longevity risk, insurers have to build specific mortality tables,
taking into account the expected evolution of the mortality of their insured
population, see Planchet and Kamega (2011).

Probably because it was not understood initially in which respects demo-
graphic sciences differed from natural sciences, it was believed that mortality
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laws similar to those discovered in astronomy and physics could be found.
However, none were found and it is far from certain that there are any. As
a consequence it is impossible to predict the evolution of mortality as the
expected movements of the stars, as notes Henry (1987).

Not being able to predict from laws, but being forced to forecast, Henry
(1987) suggests that it is in the experience that we should seek the best
means to do it. His view is not radically different from the one expressed by
de Laplace (1829) where ignorance is temporary and research will increase
our understanding and help formulating accurate forecasts. « Imagine [...]
an intelligence which could comprehend all the forces by which nature is an-
imated and the respective situation of the beings which compose it [...], to
it, nothing would be uncertain and the future, as the past, would be present
m its eyes ».

Laws can be replaced by assumptions about the future characteristics
of a population to deduce future perspectives, in numbers and structure, of
this population. In the absence of laws, we observe some regularities and
patterns in mortality, either permanent or specific to a certain period, from
which we can produce forecasts that most of the time are sufficient for our
needs. It is generally accepted that the demographic phenomenon of inertia
is sufficient (apart from periods of war) for extrapolation of past trends, see
Booth (2006).

In this chapter, we present a two steps approach to build entity specific
mortality tables. From portfolios of several insurance companies, the first
step consists in constructing global prospective mortality tables by gender.
For clarity, only results about the male population are presented. By reas-
oning globally, this table summarizes the male mortality experience of these
portfolios. The heterogeneity present between the portfolios is taken into
account in a second step. The male prospective table is then used to adjust
the mortality specifically to each male insured portfolio. The computations
are carried out with the help of R, R Development Core Team (2012).

When the size of the group is sufficiently large, we can construct a pro-
spective mortality table with the intention of identifying the behavior of the
insured population that would differ from the regulatory tables or more gen-
erally from the national standard. However, in practice the size of the group
may be limited and the past experience is observed over a short period.
As mentioned in Planchet and Lelieur (2007), two approaches can be pro-
posed to smooth the crude data and project the future mortality using past
observations. We distinguish

i. Endogenous approaches, which consist of exploiting the information
contained in the crude forces of mortality to obtain a smooth surface
representing the data correctly, and yield a realistic projection. In
case of a small volume of data, these techniques could lead to biased
estimations of the mortality trend.
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ii. Models using an external reference mortality table (exogenous ap-
proaches) that present a solution to overcome the difficulties associated
with having a small volume of data. The idea is to adjust a reference
table to the experience of a given set of data.

Considering the limited volume of data available, our attention, in the first
step of our methodology, is focused on the second class of models even though
comparisons with the first approach are presented.

As a part of the construction of such tables, it is necessary to describe the
risks we are facing according to their nature: poolable (hazard on different
strata of the population) or systematic (the financial impact can be poten-
tially more important for the insurer or the pension regime). More precisely
Planchet and Kamega (2011), similar to Alho (1990), classified the risks into
four different but related sources:

i. The risk that can be pooled, originating from random variations of the
empirical expectancy around the mathematical expectation due to the
sampling variations.

ii. The systematic risk of parameters estimation, originating from a wrong
estimation of the model parameters given the sampling variations.

iii. The systematic risk of errors in expert judgment when taking into
account external information.

iv. The systematic risk of model due to model misspecification or a change
in the trend over time.

The poolable risk, referring to the random character of individual deaths, is
not treated here. Extensive studies have discussed the issue of systematic risk
of parameter estimation due to the sampling fluctuations. The variance and
covariance of parameter estimates are derived either by standard estimation
or by bootstrapping, resampling from the original data to create replicate
datasets from which the variance and covariance can be estimated. See
Planchet and Kamega (2011) for an application of parametric bootstrap.

In this chapter, we focus on the model risk and, to a lesser extent, on the
risk of expert judgment related to the choice of the external references used.
There is a need for awareness of model risk when assessing longevity-related
liabilities, especially for annuities and pensions regimes. The problem is that
one can quantify uncertainty within a given model, but one cannot quantify
the uncertainty about the model itself. If recent studies, Sibberstein et al.
(2008) or Richards and Currie (2009), suggest a rather general analytical
framework for the pricing of financial derivatives, the establishment of a
standard framework for mortality and longevity models remains to be done.
The model risk is particularly difficult to measure, because we cannot meas-
ure the uncertainty on a number, as with a price. We have to measure the
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uncertainty on a much more complex object, which is the survival distribu-
tion. A pragmatic approach is to define a set of possible models and measure
the differences on variables of interest.

In our first step, we do not take into account the heterogeneity between
the different portfolios. The mortality of the entire male population is not
specific to any male subpopulation. The second step of our approach is then
to build entity specific male prospective mortality tables by adjusting the
reference table validated in the first step to the mortality of each male port-
folios. For this purpose, we use a Poisson generalized linear model including
interactions with age and calendar year.

The chapter is organized as follows. Section 5.2 specifies the notation
and assumptions used in this chapter. It also briefly describes the data and
presents our approach to construct specific prospective mortality tables. Sec-
tion 5.3 covers the extrapolation method for the surfaces obtained by local
likelihood smoothing. The extrapolation is performed by identifying the
mortality components and their importance over time using functional data
analysis. Time series methods are used to extrapolate the time-varying coef-
ficients. The construction of a global prospective reference table for the male
population is illustrated in Section 5.4 with the assessment of model risk.
Section 5.5 illustrates the construction of entity specific prospective tables.
A Poisson GLM including interactions with age and calendar year gives a
solution to this problem. Finally, Section 5.6 summarizes the conclusions
drawn in the chapter.

5.2 Notation, assumption, data and approach

5.2.1 Notation

We analyze the changes in mortality as a function of both the attained age
z and the calendar year ¢. The force of mortality at attained age x for the
calendar year t, is denoted by ¢, (t). We denote D, ; the number of deaths
recorded at attained age x during calendar year ¢ from an exposure-to-risk
E: that measures the time during individuals are exposed to the risk of
dying. It is the total time lived by these individuals during the period of
observation.

5.2.2 Piecewise constant forces of mortality

We assume that the age-specific forces of mortality are constant within
bands of time, but allowed to vary from one band to the next, @, (t+&) =
p(t) for0<7T<land 0<¢<1.
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We denote by p,(t) the probability that an individual aged x in calendar
year t reaches age z+1, and by ¢, (t) = 1—p,(¢) the corresponding probability
of death. The expected remaining lifetime of an individual reaching age x
during calendar year ¢ is denoted by e, (¢). Under the assumption of piecewise
constant forces of mortality, we have for integer age x and calendar year t,

pz(t) = exp(—px(t)) & u(t) = —log(ps (1)),
1 — exp(—ypa(t))

w0 =
k—1
oy L1 —exp(—goyi(t + k)
+ ]; }:Io exp(—@atj(t + 7)) Py

5.2.3 The data

Data are originating from 8 portfolios of various French insurance com-
panies, denoted P1, P2 ..., P8. Table 5.1 displays the observed statistics of
the male data.

Period of observation
Portfolios | Mean Age In | Mean Age Out | Mean Expo | Mean Age at death Beginning End
P1 38.36 43.42 5.06 53.47 01/01/1996 | 31/12/2007
P2 44.28 45.76 1.48 51.68 01/01/2005 | 31/12/2007
P3 43.18 45.44 2.26 76.98 01/07/2004 | 30/06/2007
P4 51.43 61.74 10.31 77.92 01/01/1996 | 31/12/2007
P5 42.48 44.60 2.12 54.42 01/01/2003 | 31/12/2007
P6 47.42 51.15 3.73 71.84 01/01/1996 | 31/12/2007
pP7 55.77 56.78 1.01 72.44 01/01/2006 | 31/12/2007
P8 53.65 55.06 1.41 62.28 01/01/2005 | 31/12/2007

Table 5.1: Observed statistics by portfolios.

The second column of Table 5.1 displays the mean age at entrance of the
period of observation for the male population while the third column is the
mean age at exit. The fourth column is the average exposure to the risk,
and the fifth presents the average age at death. The period of observation
of each portfolio is displayed in the sixth and seventh columns. It illustrates
that we are facing two difficulties. On one hand the period of observation
is small, spreading over 12 years. On the other hand, the structure of the
heterogeneity is changing over time as the portfolios are not observed during
the same period. Figure 5.1 displays the difference between the portfolios.

From Figure 5.1, the differences in structure by age between the portfolios
are apparent. Portfolios P3, P6 and P7, top left corner, are marked by a
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Figure 5.1: Comparisons of the level of the risk between the portfolios.

relative low average exposure and high average age at death, while portfolios
P1, P2 and P5 have a lower average age at death. But a low average age
at death does not necessarily mean a higher mortality because observations
are censored and truncated.

5.2.4 The approach

With the notation of Section 5.2.2 and under the assumption of a piecewise
constant force of mortality, the likelihood becomes

£(pa(t)) = exp(=Ea e 9a(t))(9a(t)) .

The associated log-likelihood is

Upz(t)) = log L(px(t)) = —Ezt pu(t) + Dy i log @u(t).

Similarly to Section 4.4.1, maximizing the log-likelihood ¢(¢..(t)) gives &, (t) =
D, +/E, . which coincides with the central death rates m(t). Then it is ap-
parent that the likelihood ¢(¢,(t)) is proportional to the Poisson likelihood
based on

D, 4 ~ Poisson(Ey +¢5(t)), (5.1)

and it is equivalent to work on the basis of the true likelihood or on the basis
of the Poisson likelihood, as recalled in Gschléssl et al. (2011). Thus, under
the assumption of constant forces of mortality between non-integer values
of  and t, we consider (5.1) to take advantage of the Generalized Linear
Models (GLMs) framework.
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Our approach to construct entity specific mortality tables is in two steps.
From our collection of portfolios originating from several insurance compan-
ies, the first step consists in constructing global prospective mortality tables
by gender. For clarity, only results about the male population are presented.
By reasoning globally, the male mortality table summarizes the mortality
experience of the male portfolios. For this purpose, following Hyndman and
Ullah (2007) and Hyndman and Booth (2008), we use principal component
analysis (PCA) of functional data combined with a preliminary smoothing,
and fit time series models to each component coefficient to obtain forecasts
of the forces of mortality. The preliminary smoothing reduces some of the
inherent randomness in the observed data. For this purpose we compare the
following models described in Table 5.2.

Estimation method
Model Formula Ref. table | Local lik. | Max. lik.
M1 Dy ¢ ~ Poisson (Ez ¢ exp(fi(z,t))) M1
M2 Dy, ~ Poisson (Ey: exp(f2(log(¢ief(t))))) INSEE M2.A
TG05 M2.B
M3 Dg,t ~ Poisson (Eg: oief(t) exp(fi(x,t))) INSEE M3.A
TG05 M3.B
M4 Dy, ~ Poisson (Ey: exp(fi(z,t)+ f2(log(ict(t))))) INSEE M4.A
TG05 M4.B
M5 logit ¢ (t) = o + B logit @=f(t) + €zt INSEE M5.A
TG05 M5.B

Table 5.2: Description of the models and estimation method used in the first step.

The functions f; and fy are unspecified smooth functions of attained age x
and calendar year ¢, and forces of mortality according to a reference table
©f(t), respectively. Model M1 is an endogenous non-parametric approach.
Model M2 is an exogenous non-parametric relational model. Models M3
and M4 are mixtures of endogenous and exogenous approaches. Model M3
includes the expected number of deaths E,.; ¢"°f(¢) according to an external
reference table. In model M4, f; targets cells for which enough exposure is
available (and fo ~ 0) whereas fy allows to borrow strength from the ref-
erence prospective table when the exposure is too limited (f; ~ 0). Finally
model M5 is a semi-parametric Brass-type relational model.

The models M1, M2, M3 and M4 are estimated by non-parametric meth-
ods. We considered local kernel-weighted log-likelihood methods presented
in Chapter 3 to estimate the smooth functions f;(x,t) and f2(log(¢:(t)))
for x € [x1,z,] and t = 1,...,m. The extrapolation, for t = m+1,...,m+h,
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relies only on the information contained in the smoothed surface. It is per-
formed by identifying the mortality components and their importance over
time using functional PCA. Then time series methods are used to extrapol-
ate the time-varying coefficients. In model M5, the logits of the crude forces
of mortality are regressed on the logits of the forces of mortality accord-
ing to a reference table. The estimation is done by minimizing a weighted
distance between the estimated and observed forces of mortality. We refer
to Planchet and Thérond (2011, Ch.7) for details. Moreover, M5 has the
advantage of integrated estimation and forecasting, as the parameters o and
[ are constant.

Finally, we consider Model (6) in Thatcher (1999, p9) to complete the
tables until age 120: logit ¢, (t) = log(a:) + Bt . It is a robust model that
has been found to give good results when fitted to data below age 100 and
then extrapolated to higher ages.

We consider two external prospective tables for the first step of our ap-
proach as references for the relational models. One is the national demo-
graphic projections for the French population over the period 2007-2060,
provided by the French National Office for Statistics, INSEE, Blanpain and
Chardon (2010). These projections are based on assumptions concerning
fertility, mortality and migrations. We choose the baseline scenario among a
total of 27 scenarios. The baseline scenario is based on the assumption that
until 2060, the total fertility rate is remaining at a very high level (1.95).
The decrease in gender-specific and age-specific mortality rates is greater for
men over 85 years old. The baseline assumption on migration consists in
projecting a constant annual net-migration balance of 100,000 inhabitants.
We complete this table by adding the years 1996-2006 from a previous IN-
SEE table. The tables being relatively wiggly, we smoothed the forces of
mortality of the completed table using local kernel weighted log-likelihood.
The second external reference table, denoted TGO05, is a market table built
for the entire French market provided by the French Institute of Actuaries,
Planchet (2006). Originally the table is generational and covers the period
1900-2005. We adapted it to our needs and to cover the period 1996-2035. It
is worth to mention that this table was constructing using mortality trends
originating from the INSEE table where a prudence has been added. As
a consequence, this table is not fully faithful to the data but incorporates
prudence in an arbitrary manner.

In our first step, we do not take into account the heterogeneity between
the different portfolios. The mortality of the entire male population is not
specific to any male subpopulation. The second step of our approach is then
to build entity specific male mortality tables by adjusting the reference table,
validated in the first step, to the mortality of each male portfolio. A Poisson
GLM including interactions with age and calendar year gives a solution to
this problem.
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5.3 Extrapolative method

Stochastic methods of mortality forecasting have received considerable at-
tention, see Booth (2006) and Booth and Tickle (2008) for recent reviews.
The most widely used are those involving some forms of extrapolation of-
ten using time series methods. Extrapolative methods assume that future
trends will essentially be a continuation of the past. In mortality forecast-
ing, this is usually a reasonable assumption because of historical regularities.
Functional data methods fall into this category, but they have only recently
been adopted in mortality forecasting, see Hyndman and Ullah (2007) and
Hyndman and Booth (2008).

Lee-Carter or its variants are now the dominant methods of mortality
forecasting in actuarial sciences. The Lee-Carter method, Lee and Carter
(1992), has a number of advantages, among them simplicity. The Lee-Carter
method involves using the first principal component of the log-mortality mat-
rix. In contrast to parametric approaches which specify the functional form
of the age pattern of mortality in advance, principal components approaches
estimate the age pattern from the data. Improvements to the Lee-Carter
estimation basis have been proposed. A Poisson log-likelihood approach
has been developed in Brouhns et al. (2002b), Brouhns et al. (2002a) and
Renshaw and Haberman (2003) to remedy to some of the drawbacks of the
Lee-Carter approach, such as for instance the assumed homoskedasticity of
the errors. Cosette et al. (2007) use a binomial maximum likelihood, and
a negative binomial version of the Lee-Carter model has been developed by
Delwarde et al. (2007) to take into account the over-dispersion phenomenon.
The methodology proposed by Hyndman and Ullah (2007) and Hyndman
and Booth (2008) can be considered as a successor to the Lee-Carter es-
timation in that it also involves a principal component decomposition of the
mortality surface. However the approach differs in that it uses the functional
data paradigm, see Ramsay and Silverman (2005).

Semi-parametric relational models such as M5 have the advantage of in-
tegrated estimation and forecasting. This section covers the extrapolation
method for the smooth surfaces obtained by local likelihood for models M1,
M2, M3 and M4. The extrapolation is performed by identifying the mortality
components and their importance over time using functional data analysis,
see Ramsay and Silverman (2005, CH.8) and Hyndman and Ullah (2007).
Time series methods are used to extrapolate the time-varying coefficients.
It can be summarized as follows:

i. Smooth the aggregated data using non-parametric local kernel-weighted
log-likelihood to estimate ¢, (t) for x € [z1,2,] and t =1,...,m.

ii. Decompose the smoothed surfaces via a basis function expansion using
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the following model:

K
ye(z) = p(x) + Z Bex ¢r(x) + ¢(x) with e(z) ~ Normal (0, v(x)),
k=1

(5.2)
where y;(z) = log @, (), ps is the mean of log @, (t) across years and
{br=} is a set of orthonormal basis functions.

iii. Fit ARIMA models to each of the coefficients {5}, k=1,..., K.

iv. Extrapolate the coefficients {5; 1}, k =1,..., K, fort = m+1,...,m+
h using the fitted time series models.

v. Use the forecast coefficients with (5.2) to obtain forecasts of y.(x),
t=m+1,...,m+ h, and hence of ¢, ().

A smoothed version of principal component analysis for functional data
is discussed in Silverman (1996). Following the approach of Ramsay and
Dalzell (1991) and Hyndman and Ullah (2007), we prefer smoothing the ob-
served data first rather than smoothing the principal component directly to
place relevant constraints on the smoothing more easily.

5.3.1 Functional principal components analysis

The decomposition using an orthonormal basis (step ii.) is obtained via

functional principal components analysis developed by Ramsay and Dalzell
(1991). In the following, we proceed similarly to Hyndman and Ullah (2007).
A more general presentation can be found in Ramsay and Silverman (2005,
Ch.8).
We want to find a set of K orthonormal functions ¢y (x) so that the expansion
of each curve in terms of the basis functions approximates the curve as closely
as possible. For a given K, the optimal orthonormal basis functions {¢y(z)}
minimize the mean integrated squared error

MISE = > /ef(rw dx
n
t=1

This basis set provides informative interpretation and coefficients {5, 1} that
are uncorrelated, simplifying the forecasting method as multivariate time
series models are not required.

The parameter p(x) is estimated as the mean of log @,.(t) across years. Then
we estimate {3} and {¢y(z)} using a principal components decomposition
of y,*(z) = ye(z)—fi(x). Our aim is to find the functions ¢y () that maximize
the variance of the scores

- / ()7 () da,
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subject to the constraints

/¢z(g:) dr =1 and /gbk(x)gbk_l(x) dr =0if k> 2.

These are defined iteratively for k = 1,..., K where k < m —1. The number
K of basis functions depends on many consideration, as explained by Ram-
say and Silverman (2005). It depends on the number of discrete points m
in the original data, whether some level of smoothing is imposed by using
K < m, on the efficiency of the basis functions in reproducing the behavior
of the original functions, and so on. For our application, 12 sampling points
are available per curve and actually for these data a value of K as small as
3 captures most of the interesting variation in the original data.

Assume that we can rewrite each smoothed function g,*(x) in an altern-

ative basis expansion
P
?) =Y ag;€()
=1

We denote A the m x p matrix of the coefficients a; ;. Let J be a p xp
matrix with (i, k)th element Jir, = [&(2)&(x) dz. We find the Choleski
decomposition J = UTU and define

oue) = (U1g) " &),

where g(®) is the kth normalized eigenvector of (U™ HTJSJTU, § =
(m —1)"TATA and &(z) = (fl(a:),...,fp(x))T. Now, if ® denotes an
n x (m — 1) matrix with (i, k)th element ¢i(x;), and Y is a m X n mat-
rix with (¢,4)th element 3,*(z), then B\t,k is the (¢, k)th element of 3 =Y ®.
This procedure is a simplified version of the approach presented in Hyndman
and Ullah (2007). In addition, the authors propose a robust method to avoid
difficulties with outlying years. For the presentation of their approach, we
refer to the mentioned article.

5.3.2 Extrapolation of the time-varying coefficients

The estimated (;’s can be extrapolated using Box-Jenkins time series
methods. The Box-Jenkins approach is one of the most powerful forecasting
techniques available and it can be tailored to analyze almost any set of data.

We need to forecast By for k=1,..., Kandt=m+1,...,m+ h. For
K > 1 this is a multivariate time series problem. However, as mentioned
previously, because of the way the basis functions ¢ (x) have been chosen,
the coefficients ,Bt , and Btl are uncorrelated for k # [. As a consequence,
univariate time series methods are adequate for forecasting each series { Bt, k)
It is expressed through the development of an ARIMA (p,d,q) model where
p, d, and q are integers, greater than or equal to zero and refer to the order
of the autoregressive, integrated and moving average parts of the model.
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Given the time series {Bt,k}; where t is an integer index, an ARIMA (p,d,q)
model is described by

(1—B)?¢(B)Brx = 0(B)Z;, and {Z;} ~ White Noise (62),  (5.3)

where B is the backshift operator, B @Jg = B\t—l,ka expressing the length of
the previous data that the model uses to provide the forecasts, and ¢() and
6() are polynomials of degrees p and ¢ respectively.

The parameter d controls the level of differencing. If d = 0, the ARIMA is
equivalent to an ARMA model. If d > 1, we can add an arbitrary polynomial
trend of degree (d — 1) to {1}, without violating the difference equation
(5.3). Therefore, ARIMA models are useful for representing data with trend.
The AR stands for autoregressive and describes a stochastic process that can
be described by a weighted sum of its previous values and a white noise error,
while MA stands for moving average and describes a stochastic process that
can be described by a weighted sum of a white noise error and the white
noise error from the previous periods.

We consider a full range of ARIMA(p,d,q) models with d = 0,1,2 and
p,q =0,1,2,3,4 as candidates for the period effects. The Bayes information
criterion (BIC) is calculated for each ARIMA model and, on the basis of this
information, the parameters p, d and ¢ are selected. We refer the reader to
Brockwell and Davis (2002) for a useful theoretical introduction to time series
methods and to Delwarde and Denuit (2003) for an exhaustive application
to the Lee-Carter model.

Then, extrapolated forces of mortality are derived using estimated p(x)
and @, the set of the basis functions, and extrapolated {ﬂt t}. Then con-
ditioning on the observed data J = {¢(x;); t = 1,. ;i =1,...,n}
and on the set of the basis function ®, we deduce h- step ahead forecasts of
Pm+h (x)

K

Gm.n(x) = Elomn(2)|T, ®] = Z Bt i

where Bm’h,k denotes the h-step ahead forecasts of 3,4 1 using the estim-
ated series 31,1@, .. .,B\m,k. Hyndman and Ullah (2007) and Hyndman and
Booth (2008) provide a procedure to approximate the forecast variance. We
refer to the mentioned articles for the presentation of their method.

5.4 Construction of a global prospective table

From our collection of portfolios originating from several insurance com-
panies presented in Section 5.2.3, the first step consists in constructing global
prospective mortality tables by gender.
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By reasoning globally, these tables summarize the mortality experience of
these portfolios. We focus on the measurements of the forces of mortality as
a function of the attained age = and the calendar year ¢.

5.4.1 The aggregated data

We aggregate the portfolios by attained age = and calendar year ¢. The
range of attained ages is 30-90 and the observations cover the period 01/01-
/1996-31/12/2007. Figures 5.2 displays the observed statistics of the aggreg-
ated datasets for the male population.
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Figure 5.2: Observed surfaces of the aggregated datasets, male population.

For years 1996 to 2002 only portfolios P1, P4 and P6 are contributing to
the surface. After the year 2002, we observe an increase of the number of
deaths and exposures due to the aggregation of the other portfolios. As a
consequence, the structure of the heterogeneity is changing over time. It
may impact the estimation of the mortality trend over the years and ideally
we should have stuck to the same structure of the heterogeneity. By ag-
gregating the portfolios, we are therefore making a trade-off between the
constitution of a relatively long history and a situation where the structure
of the heterogeneity would be stable.

5.4.2 Comparisons of the fits

We fitted the models presented in Table 5.2. Figure 5.3 displays the fits
in the log scale for the 9 models over the years for several ages. It gives
us the opportunity to visualize the similarities and differences between the
smoothed surfaces obtained by the models.

Figure 5.3a shows the smoothed fits at attained age 30. It is apparent
that the relational models using the table TGO5 as reference lead to higher
forces of mortality at this age while the models using the national population
table originating from INSEE produce smoothed fits in the neighborhood of
the endogenous model M1.

In Figure 5.3b, the decreasing trend of the forces of mortality over the
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years is sharper at age 40 for models using the national population table.
Moreover, compared to the smoothed fits at attained age 30, we observe
that the models using the national population table lead to higher forces of
mortality than the models having the table TG05 as reference. This fact
remains true for ages 50, Figure 5.3c, and 60, Figure 5.3d.

At attained age 50, Figure 5.3c, the fully exogenous non-parametric
models M2 and semi-parametric models M5 lead to similar graduation when
using the market national population table. Similar remarks can be made
with respect to the reference table used, for the models M3 and M4, being
mixtures between endogenous and exogenous modeling. Because the models
having an exogenous component rely on the general shape of the reference
table, the decreasing trend observed for models M2, M3, M4 and M5 is
mostly linear. But for the fully endogenous model M1, we observe a non-
linear trend.

In Figures 5.3d, 5.3e and 5.3f, the decreasing trend of the forces of mor-
tality is steeper for the fully exogenous models M2 and M5 than models
having an endogenous component.

We observe that the models have the following features in common. The
overall level of mortality has been declining over time and these improve-
ments have been greater at lower ages than at higher ages. However the
models diverge in the speed of the improvement. The fully exogenous mod-
els M2 and M5 estimate a steeper decrease of the forces of mortality than
models M1, M3 and M4 using an endogenous component. The models us-
ing a mixture of endogenous and exogenous modeling M3 and M4 behave
similarly with respect to the reference table used. At the extreme ages, the
models using the market table lead to higher estimated forces of mortality,
while for ages in the center, the models using the national population table
yield higher estimates. It gives us a first indication of the degree of model
risk. In the following section, these visual comparisons are supplemented
by a range of quantitative diagnostics which will increase our confidence in
some models and question the suitability of others for our purposes.

5.4.3 Tests and quantities to compare graduations

We now carry out a number of tests to assess the impact of model choice.
We apply the tests proposed by Forfar et al. (1988, p.56-58) and Debon
et al. (2006, p.231). We have also obtained the values of the mean absolute
percentage error M APE and R? used in Felipe et al. (2002). In addition,
we compute the relative difference between the observed number of deaths
and the expected number of deaths obtained by the models SMR — 1, where
the standardized mortality ratio (SMR) is defined by

E..: o.(t ».0) Da,
SMR = =tz Pet e0) 2oy Do (5.4)

> (ayt) Bt 5 (1) > (ayt) Boct el ()
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for (z,t) in the set of ages and calendar years of interest. We compare the
crude forces of mortality rates to the graduated series to see whether the
approaches lead to similar graduation. Table 5.3 presents the results.

M1 M2.A M2.B M3.A M3.B M4.A M4.B M5.A M5.B
Fitted DF 7.56 4.02 3.94 4.88 4.88 4 4 NA NA
Deviance 1302.53 | 1302.83 | 1328.04 | 1296.58 | 1351.66 1313.93 1366.80 1355.92 | 1417.08
Standardised >2 86 84 92 86 93 87 94 86 100
residuals >3 24 22 24 23 24 23 26 26 31
Signs +(-) 327(405) | 319(413) | 336(396) | 345(387) | 343(389) | 334(398) 337(395) | 333(399) | 368(364)
test p-value 0.0043 0.0005 0.0291 0.1296 0.0962 0.0198 0.0350 0.0162 0.9117
Runs Nb of runs 346 326 322 328 302 332 306 334 319
test Value ~1.55 —3.00 —3.46 —-3.17 —5.02 —2.77 —4.82 —2.61 —3.91
p-value 0.1188 0.0026 | 5.28¢—4 | 0.0014 | 5.25¢—7 | 0.0056 1.46¢ — 6 0.0089 | 8.86¢ —5
Kolmogorov Value 0.0327 0.0286 0.0601 0286 0.0642 0.0286 0.0614 0.0300 0.0683
Smirnov test | p-value 0.8262 0.9239 0.1419 0.9239 0.0978 0.9239 0.1257 0.8955 0.0657
X2 1400.19 | 140253 | 1418.89 | 1405.81 | 1445.53 1421.85 1466.93 1473.63 | 1545.42
R2 0.9326 0.9256 0.9325 0.9312 0.9325 0.9302 0.9306 0.9221 0.9306
MAPE (%) 25.86 26.81 26.41 25.86 26.69 26.01 26.51 26.84 26.63
SMR —1 (%) —0.79 0.29 0.21 0.11 0.30 12212 | —7.77¢ — 13 1.87 2.87

Table 5.3: Comparisons between the smoothing approaches.

The approaches display different results. Model M1, having the highest
degrees of freedom and being fully endogenous, has the capacity to reveal
many features in the data. Therefore, it has the highest number of runs, low-
est x2 and M APE and highest R?. We observe that M1 is the only model to
lead to a higher number of expected deaths than observed. Conversely, the
fully exogenous semi-parametric models M5, and to a lesser degree the non-
parametric M2, lead to higher deviance, higher x2, lower R2, higher number
of standardized residuals exceeding the thresholds 2 and 3 and higher relat-
ive difference between expected and observed number of deaths.

We observe that the fully exogenous models M2 and M5 do not behave
similarly. The non-parametric models M2, being more flexible, perform bet-
ter than the semi-parametric models M5. With respect to the reference table
used, models M2 have a lower deviance, lower number of standardized re-
siduals exceeding the thresholds 2 and 3, lower x2 and M APE, and higher
R2. Also, the expected and observed number of deaths are closer.

The mixtures of endogenous and exogenous modeling M3 and M4 have
similar results with respect to the reference table used. Nevertheless, mod-
els M3, including the expected number of deaths according to the reference
table INSEE or TGO05, perform better than models M4. Models M3 have
a better spread of the residuals between positive and negative signs, higher
value for the sign test, lower deviance, x? and M APE. However, models M4
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have the smallest relative difference between expected and observed number
of deaths.

We observe that, in general, models incorporating the national popula-
tion table originating from INSEE (models A) produce graduations that are
closer to the data than models using the market table TG05 (models B) as
reference. Using the market table leads to higher deviance, higher x2, lower
number of runs and higher number of standardized residuals exceeding the
thresholds 2 and 3 compared to models incorporating the national popula-
tion table. The market table TGO5 is derived on mortality trends originating
from the INSEE table where a prudence has been added. As a consequence,
this table is not fully faithful to the data but incorporates prudence in a
arbitrary manner.

The tests and quantities carried out in Table 5.3 show the strengths and
weaknesses of each model to adjust the observed mortality. The choice
between the models is only a matter of judgment and depends on the purpose
for which the prospective mortality table would be used. It is up to potential
users of the table to decide the weights they place on the different criteria.
However, regarding the wide ranging set of model selection criteria, we can
eliminate some models. We have seen that the non-parametric models, due
to their flexibility, ensure a good fit. Hence models M2 would be preferred
to M5. Within the mixture of endogenous and exogenous models, M3 would
be preferred to M4. Compared to the fully endogenous model and to the
fully exogenous models, relying partly on the national population table is
beneficial according to the various tests and quantities used in assessing the
adjustment of observed mortality, hence model M3.A would be preferred to
models M1 and M2.

5.4.4 Extrapolation of the smoothed surfaces and completed tables

The extrapolation of the smoothed surface of models M1, M2, M3 and
M4 is performed by identifying the mortality components and their import-
ance over time using functional principal component analysis presented in
Section 5.3.1. Then time series methods are used to extrapolate the time-
varying coefficients. Model M5 has the advantage of integrated estimation
and forecasting.

Figure 5.4 displays the basis functions and associated coeflicients using
(5.2) for the models M1, M2, M3 and M4. A decomposition of order K = 3
has been used.

The average log-mortality at attained ages is similar for the models over
time except at the extreme ages, Figure 5.4a. Models using the market
mortality table TGO5 as reference lead to higher mortality around age 30
compared to models using the national population mortality table, as ob-
served previously in Figure 5.3a.
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Figure 5.4: Basis functions and associated coefficients with K = 3, for models M1, M2, M3 and M4, male population.



CONSTRUCTION OF A GLOBAL PROSPECTIVE TABLE 157

Figure 5.4b shows the first basis function for all models. The first term
accounts for at least 99.6 % of the variation in mortality. The coefficient,
Figure 5.4e, indicates a fairly steady decline in mortality over time. The
models leads to more or less the same results except for model M2.A that
gives the steepest decrease. The models M3 and M4 using a mixture of en-
dogenous and exogenous modeling produce similar results with respect to
the reference table used. The basis function ¢4 (z) indicates that the decline
has been faster for the young adults and at ages 60 — 80 for the models using
the national population table originating from INSEE (models A) as well as
a fully endogenous model M1. But for models using the market table TG05
(models B) the decrease has been steady for ages 30 — 80. We observe that
models M3 lead to the fastest and slowest improvement of the mortality for
the young adults and individuals above 80, respectively.

The basis function ¢o(z), displayed in Figure 5.4c, models the differences
between the young adults and those over 75. The coefficients in Figure 5.4f
shows that this difference in mortality has falling from the beginning of the
period of investigation to 2002 - starting date of observation of additional
portfolios - and increasing since 2002 to the end of the period of investiga-
tion.

Similarly, Figure 5.4d displays difference between the young adults (up
to 50) and those over 80. However, the shape of associated coefficient Figure
5.4g is more irregular than 8; . Again we observed that the choice of the
reference table used leads to a different pattern of the basis functions and
associated coefficients.

The time-varying coefficients are forecast using univariate time series meth-
ods. Table 5.4 summarizes the ARIMA models, introduced in Section 5.3.2.

For each of the models M1, M2, M3 and M4, we considered a full range
of ARIMA (p,d,q) models with d =0,1,2 and p,q =0, 1,2, 3,4 as candidates
for the period effects. The Bayes information criterion (BIC) was calculated
for each ARIMA model and, on the basis of this information, the parameters
p, d and g have been selected. Figure 5.5 displays the resulting projections
for models M1, M2, M3 and M4 for h = 28, that is until year 2035. For
clarity, the confidence intervals are omitted.

We notice that the coefficients 3, »,2 and B, .3 in Figures 5.5b and 5.5¢
are rapidly constant. As a consequence, we could have performed a decom-
position using the first principal component as in the original Lee-Carter
method. However, it may not be the case for other datasets, as illustrated
in Hyndman and Ullah (2007) and Hyndman and Booth (2008). The use
of several components is the main difference between this approach and the
Lee-Carter method, which uses only the first component and also involves
an adjustment. The extra principal components allow more accurate fore-
casting of age-specific forces of mortality, though in our application at least
99.6 % of the variation is explained by the first component.
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Model & component

Model for the B 1

M1

M1

M1

M2.A & M4.A
M2.A & M4.A
M2.A & M4.A
M2.B & M4.B
M2.B & M4.B
M3.A

M3.A

M3.A

M3.B

M3.B

k=1
k=2
k=3
k=1
k=2
k=3

ARIMA(1,2,1)

ARIMA(0,0,0) with non-zero mean
ARIMA(2,0,1) with zero mean
ARIMA(0,1,0) with drift
ARIMA(1,0,0) with zero mean
ARIMA(0,0,1) with zero mean
ARIMA(1,1,0) with drift
ARIMA(0,0,0) with zero mean
ARIMA(0,2,0)
ARIMA(2,0,0) with zero mean
ARIMA(0,0,2) with zero mean
ARIMA(1,2,0)

(

ARIMA(0,0,0) with zero mean

Bt =2Pt—1—Pt—2+p+¢(Bt—1—2Pt—2+Pt—3 —p) + Ze +0 Zt—1
Bt = Zt

Bt =pu+¢1(Be—1 —p) + d2(Bt—2—u)+ Zt +0 Zi 1

Bt =PBt-1+d+2Z

Bt = pp(Br—1 — p) + Zt

Bt =Zi+0 Zy—1

Bt =Pt—1+p+d+¢(Bt—1 — Pt—2 —p) + Zt

Bt = Zt

Bt =2Pt—1— Pt—2+ Z¢

Bt =p+ dp1(Be—1 — p) + d2(Bt—2 — ) + Zt

Bt =2Zt+01 Zt—1+ 02 Zi—2

Bt =2Pt—1—Pt—2+p+¢(Bt—1—2Pt—2+ Pt—3 —p) + Zt
Br=Zi

Table 5.4: Description of the models for the time-varying coefficients, male population.
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The next step is to obtain completed tables until age 120. For this, we
apply Model (6) in Thatcher (1999, p9) to the forces of mortality to extra-
polate the data: logit ¢, (t) =~ log(a:) + B¢ =. It is a robust model that
has been found to give good results when fitted to data below age 100 and
then extrapolated to higher ages. Figures 5.5d and 5.5e show the estimated
regression parameters «; and [, respectively. All models estimate a linear
effect of time on the forces of mortality at high ages, Figure 5.5e. We ob-
serve that models using the national population table (models A) lead to
a steeper increase of the linear component §; over time, Figure 5.5e, than
models using the market table as reference (models B). As a consequence,
those models lead to a more rapid increase of the forces of mortality at the
highest ages (70-90), which in turn results in a more rapid decrease of the
forces of mortality at lower ages. The mixture of endogenous and exogenous
modeling models M4 and fully exogenous semi-parametric model M5 pro-
duce very similar results, while the fully endogenous model M1 and fully
exogenous model M2.A differ largely from the other models.

Figure 5.6 displays the fits in the log scale for the 9 models over the years
for several ages. For clarity, the confidence intervals are omitted. The fore-
casts produced here are based on the first three principal components. The
additional components may serve to incorporate relatively recent changes
in pattern. The use of smoothing prior to modeling results in forecast age
patterns that are relatively smooth.

As visualized in Figure 5.3, the overall level of mortality is declining over
time and these improvements are greater at lower ages than at higher ages.
However the models diverge in the level and speed of the improvement. At
the extreme ages, the models using the market table (models B) lead to
higher estimated forces of mortality, while for ages in the center, the models
using the national population table (models A) yield higher estimates. The
fully exogenous models M2 and M5 produce a steeper decrease of the forces
of mortality than models M3 and M4. Model M1 stands out, leading to
a non-linear decline of the forces of mortality and inducing the sharpest
decrease.

5.4.5 Model risk and validation of the final table

We have seen in Figure 5.6 that models diverge in the level and speed of

the improvement of the level of mortality across the age. It gives us a first
indication of the degree of model risk.
Figure 5.7 shows the survival indexes at several ages computed from the
completed tables obtained with the different models. It represents the sur-
vival indexes of cohorts aged 30, 40, 50, 60, 70 and 80 in 1996 over 40 years.
This measures the proportion from a group of males aged 30, 40, 50, 60, 70
or 80 at the start of 1996 who remain alive for the next 40 years.
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It can be seen that these survival indexes are affected by the choice of
the modeling, endogenous, exogenous or mixture of the two and to a lesser
degree by the choice of the reference table used. Endogenous model M1, and
exogenous models M2 and M5 with respect to the reference table used lead
to higher survival indexes for cohorts aged 30, 40 and 50 in 1996, Figures
5.7a, 5.7b and 5.7c. For a cohort aged 60, 70 and 80 in 1996, Figures 5.7d,
5.7e and 5.7f, the survival indexes are consistent within the models.

We observe substantial differences in using the market table TGO05 or the
national population table as reference in the exogenous or mixture models.
For cohort aged 30 in 1996, Figure 5.7a, the incorporation of the market
table (models B) leads to a higher survival index for the models using of the
national population table (models A). Conversely, when incorporating the
national population table for cohort aged 40 and 50 in 1996, in Figures 5.7b
and 5.7c the survival indexes are higher with respect to the models.

As a second example, we calculate some single figures summarizing the
lifetime probability distribution for cohorts at several ages in 1996. Table
5.5 displays the indices.

The mixtures of endogenous and exogenous modeling, models M3 and
M4, lead to the smallest partial life expectancies 40€30, 40€40, 40€50 and 40€60
for cohorts aged 30, 40, 50 and 60 in 1996. The fully endogenous model M1
yields the highest partial life expectancies 49e3¢ and 49e49 but leads to the
smallest for cohorts aged 80 in 1996.

The semi-parametric models M5 produce higher partial life expectancies
than the non-parametric models M2 except for 4pes50 and 49eg9. Similarly,
the mixture models M4 yield higher partial life expectancies than models
M3 incorporating the expected number of deaths according to a reference
table except for 4pegg-

We observe, once more, that the choice of the reference table affects the
quantities. Using the national population table leads to higher life expect-
ancy than incorporating the market table.

These results can be seen in the median age at death, Med(407"). The
exogenous models M2 and M5 produce close estimates, and the mixture
models M3 and M4 lead to more or less similar results.

The mixture M3 and M4 models stand out as having a much higher
standard deviation of the random life time, 490, than the exogenous model,
which would be expected. However it suggests that model risk might be an
issue. For example, the price of a financial option that has the survival index
as its underlying quantity is strongly dependent on its standard deviation;
everything else being equal, the higher the variance, the higher the value of
the option, as recalled in Cairns et al. (2009).

The entropy H(407") obtained with the exogenous models M2 and M5
is similar, also there is not much difference in H(407") for the mixture M3
and M4 models. However, we notice that using the market table leads to
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M1 M2.A M2.B M3.A M3.B M4.A M4.B M5.A M5.B

40€30 38.80 38.78 38.72 38.65 38.69 38.65 38.69 38.77 38.75
40€40 37.00 36.83 36.62 36.73 36.80 36.77 36.76 36.98 36.95
40€50 32.71 32.74 32.24 32.20 32.16 32.26 32.07 32.65 32.47
40€60 24.43 24.47 24.12 24.12 23.99 24.12 23.89 24.62 24.37
10€70 15.07 15.26 15.11 15.34 15.03 15.28 14.98 15.52 15.28
40€80 7.81 8.01 7.97 8.40 8.02 8.31 8.02 8.28 8.17

Med( 40T50) 39.64 39.04 37.89 37.74 37.61 37.83 37.43 38.62 38.17
Med(40T60) 27.03 27.39 26.81 26.77 26.65 26.80 26.48 27.41 27.02
Med(40T%0) 16.51 16.83 16.66 16.83 16.59 16.79 16.49 17.02 16.79
Med(40T80) 8.63 8.77 8.75 9.17 8.82 9.08 8.78 8.95 8.93

40030 0.0258 | 0.0260 | 0.0278 | 0.0300 | 0.0282 | 0.0297 | 0.0285 | 0.0262 | 0.0264
40040 0.0619 | 0.0604 | 0.0687 | 0.0699 | 0.0695 | 0.0688 | 0.0713 | 0.0630 | 0.0658
40050 0.1502 | 0.1519 | 0.1664 | 0.1688 | 0.1702 | 0.1676 | 0.1729 | 0.1577 | 0.1636
40060 0.2934 | 0.2978 | 0.3068 | 0.3047 | 0.3112 | 0.3053 | 0.3101 | 0.2963 | 0.3038
40070 0.3557 | 0.3549 | 0.3569 | 0.3550 | 0.3578 | 0.3554 | 0.3558 | 0.3524 | 0.3551
40080 0.3125 | 0.3117 | 0.3127 | 0.3158 | 0.3139 | 0.3150 | 0.3127 | 0.3121 | 0.3138

H( 40T30) 0.0007 | 0.0007 | 0.0008 | 0.0008 | 0.0008 | 0.0008 | 0.0008 | 0.0007 | 0.0007
H(40T40) 0.0020 | 0.0019 | 0.0021 | 0.0021 | 0.0021 | 0.0021 | 0.0021 | 0.0019 | 0.0020
H( 40T50) 0.0061 | 0.0060 | 0.0067 | 0.0067 | 0.0068 | 0.0067 | 0.0069 | 0.0061 | 0.0064
H(40T60) 0.0243 | 0.0248 | 0.0265 | 0.0263 | 0.0274 | 0.0264 | 0.0275 | 0.0242 | 0.0254
H(40T70) 0.1166 | 0.1177 | 0.1209 | 0.1136 | 0.1246 | 0.1157 | 0.1223 | 0.1079 | 0.1147
H(40T50) 0.5452 | 0.5280 | 0.5302 | 0.4685 | 0.5337 | 0.4826 | 0.5191 | 0.4680 | 0.4941

Table 5.5: Single figure indices to summarize the lifetime probability distributions for
cohorts at several ages in 1996.

less concentrated deaths, while incorporating the national population table
yields more stretched deaths.

To have a clear picture of the contribution of model risk to forecast uncer-
tainty, we can make use of the first two robust principal component scores
of quantities of interests such as the partial life expectancies of cohorts at
several ages in 1996 with the Highest Density Regions (HDR) boxplots of
Hyndman (1996). Hyndman and Shang (2010) have proposed this method
with identification of outliers in mind. Our idea is to use this graphical
method on single figure indices summarizing the lifetime probability distri-
butions, such as the partial life expectancies for cohorts at several ages in
1996, to visualize similarity between the models and outliers and thus model
risk in forecast uncertainty.
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The bivariate HDR boxplot displays the mode, the highest density point,
along with the 50 % inner and 99 % outer highest density regions. All points
excluded from the outer HDR are outliers. Figure 5.8 displays the bivariate
HDR boxplot of the first two robust principal component scores of the par-
tial life expectancies for cohorts at several ages in 1996.
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- M4B
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« M2.B

0.2
|
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PC score 2

* M4A

« M3A
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Figure 5.8: Bivariate HDR boxplot of the first two robust principal component scores of
the partial life expectancies for cohorts at several ages in 1996, male population.

The dark and light gray regions show the 50 % HDR and the outer HDR,
respectively. The points outside the outer regions are identified as out-
liers, as model M5.A. The asterisk in Figure 5.8 marks the mode of the
bivariate robust principal component scores, corresponding to model M2.B.
It shows clearly that the non-parametric models are grouped more by the
reference table used and less by the kind of modeling (non-parametric, semi-
parametric, endogenous, exogenous and so on).

We have concentrated here on the contribution of model risk in extrapol-
ating the future mortality. However, it is appropriate to allow for parameter
uncertainty to provide a more complete picture of the level of risk on the
valuations of an insurer, such as provisioning and capital requirement.

The overall model risk associated with a prospective mortality table should
ideally take into account two factors,

i. the adjustment according to the past mortality, and

ii. the extrapolation of the future mortality.
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From Section 5.4.3, we can eliminate some models, regarding the wide ran-
ging set of model selection criteria. We have seen that the non-parametric
models, due to their flexibility, ensure a good fit. Hence models M2 would be
preferred to M5. Within the mixture of endogenous and exogenous models,
M3 would be preferred to M4. Compared to the fully endogenous model
and to the fully exogenous models, relying partly on the national popula-
tion table is beneficial according to the various tests and quantities used in
assessing the adjustment of observed mortality in Table 5.3, hence model
M3.A would be preferred to models M1 and M2.

This choice could be refined by analyzing the extrapolated future mortal-

ity. We can apply the concept of biological reasonableness which was first
proposed in Cairns et al. (2006) as an aid in assessing the forecasts. This
concept is not based on hard scientific, biological or medical facts. It is
rather subjective and asks the question where the data are originating from
and based on this knowledge, what mixture of biological factors, medical
advances and environmental changes would have to happen to cause this
particular set of forecasts.
For instance, in Figure 5.6, the projections for model M1, look rather more
optimistic than the set of projections of the other models. If we cannot
think about any good reason why this might happen, then we must disqual-
ify the model on the basis of biological reasonableness. The projections of
Model M3.A seem reasonable, in accordance with the set of projections with
the other models. Hence, in the following section we adjust the entity spe-
cific portfolio experience to the baseline mortality surface obtained by the
mixture of endogenous and exogenous modeling M3.A.

5.5 Adjustment to entity specific mortality experience

5.5.1 Entity specific mortality experience

In our first step, we do not take into account the heterogeneity between
the different portfolios. The mortality of the aggregated male population is
not specific to any male portfolio. We compare the mortality experiences
of the 8 portfolios presented in Table 5.1 to the validated table constructed
in the first step. The standardized mortality ratio (SMR), as defined in
expression (5.4), appears to be a useful index. The observed deaths in a
particular portfolio are compared with those that would be expected if the
mortality validated in the first step applied. Table 5.6 displays the SMR
of the 9 portfolios with the national population reference table originating
from INSEE, the market table TG05 and the validated table obtained by
the mixture of endogenous and exogenous modeling M3.A.
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P1 P2 P3 P4 P5 P6 P7 P8 | mean(|SMR — 1|)
INSEE | —36.93 | —57.36 | —2.03 | —21.22 | —29.80 | —35.41 | —47.11 | —42.75 34.08
TGO5 | 5231 | 18.09 | 59.62 | 3447 | 8843 9.80 0.18 30.39 37.91
M3.A | 10.85 | —1867 | 3241 | 10.73 | 30.98 | —5.25 | —22.66 | —7.50 17.38

Table 5.6: Relative difference between expected and observed number of deaths by port-
folios, (SMR —1 (%)), male population.

Table 5.6 illustrates the heterogeneity between the portfolios. We observe
that the table validated in the first step under-estimates the number of deaths
for portfolios P1, P3, P4 and P5, while it over-estimates the number of deaths
for the other portfolios. It should be noted that the national population table
constantly over-estimates the number of deaths, but the market table leads
to an under-estimation. The relative difference between the observed and
expected number of deaths obtained with model M3.A is similar for portfolios
P1 and P4, P3 and P5 and P6 and P8, respectively. Relative differences are
smaller when using the national population table for P3, or using the market
table for P7. However, on average the validated table originating from M3.A
leads to the smallest difference in absolute value, illustrating the usefulness
of the first step of our approach.

5.5.2 Poisson GLM with age and calendar year interactions

In a Poisson regression, we include the portfolio dummies as a covariate
and allow interactions with age and calendar year. We assume that the
number of deaths for a portfolio ¢ at attained age x and calendar year t is
determined by

Dy i ~ Poisson(E, 1 p.(t, 1)),

with

log ¢y (t,i) = a+Blog BN (+Y v Lt G e Lty wj tLi+y Aot
j=1 j=1 j=1 j=1

(5.5)
where $°f(¢) is the baseline force of mortality derived in our first step, the
I;’s are binary variables coding the portfolios and n represents the number

of portfolios.

If we do not allow for interactions, we will observe parallel shifts of the
forces of mortality according to the baseline mortality for each dimension.
This view is certainly unrealistic and interactions need to be incorporated.
We take the first portfolio P1 as reference level. The relative mortality of
the portfolios is expressed with respect to this reference level P1.

We start by incorporating all interactions. We remove the calendar year
effect for portfolios P2, P7 and P8, having less than 4 years of observation.
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With a parsimonious principle in mind, we progressively exclude the insigni-
ficant interactions by computing the drop in deviance test (or likelihood-ratio
test) for models with and without the interaction considered.

The final model is the following

pa(t,i) = a4 Blog §,°(t)
+hhz+rt+Nat
+ 02 x Ti=2
+03 x Li=3 + ko t Li=3
+ k3t =4
+ kg t ;=5

+ 71 Lice + 64 2 Lis + k5 t Li—s

+ 72 Liz=r
+ 73 Lizg + 5 = [;—s.

The main effects and interactions included in the final model (5.6) are presen-

ted in Table 5.7.

Regression coef. | Parameter est. Std. error z value p value
136.2 21.54 6.322 2.59¢ — 10
B 1.648 9.610e — 02 17.153 < 2e—16
Y1 —36.11 9.510 —3.797 0.0001
Y2 —0.4028 3.910e — 02 | —10.301 | <2e—16
v3 0.6307 9.675e — 02 6.519 7.08e — 11
01 —1.783 0.2929 —6.088 1.14e — 09
02 —2.168e — 03 8.188e — 04 —2.648 0.008
03 —2.585e — 02 1.673e — 03 | —15.452 | <2e—16
04 —5.658e — 03 1.105e — 03 —5.122 3.03e — 07
05 —1.178e — 02 1.466e — 03 —8.034 | 9.45e — 16
K1 —6.477e — 02 1.089e — 02 —5.951 2.67e — 09
K2 1.012e — 03 6.345e — 05 15.945 < 2e—16
K3 —8.897e — 05 1.743e — 05 —5.104 | 3.33e — 07
K4 1.585e — 05 1.517e — 05 10.445 < 2e—16
K5 1.810e — 02 4.754e — 03 3.807 0.0001
A1 8.638e — 04 1.467e — 04 5.887 3.94e — 09

Table 5.7: Results from the Poisson regression model (5.5), male population.
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Model (5.5) is estimated over the observation period 1996-2007 and for
the age range 30-90. The specific prospective mortality tables are now eas-
ily derived by incorporating the entire mortality table @ °(¢) obtained in
the first step of our approach. For instance, for portfolio P1, the forces of
mortality are given by

Bo(t,1) = exp (@+ Blog 81N (0) + D v+ T t+ Ny ),
and for portfolio P6,
Pa(t,6) = exp (a + A1+ Blog BI(t) + (01 + 04) x + Ry 4+ Rs) t+ Ay @ t) .

We observe that the final model (5.6) only includes the baseline age calendar
year mixed effect, meaning that there is no significant difference of the age
calendar year mixed effect between the portfolios. Portfolio P2 differs signi-
ficantly from P1 only by the age pattern of the forces of mortality. The time
trends are then similar to P1. Conversely, Portfolios P4 and P5 have similar
age pattern but differ significantly from P1 by the time trends. P3 and P6
behave differently than P1 in age and calendar year, while the behavior of
P7 is similar and only the overall level of mortality is significantly different.
Similarly, the overall level of mortality is significantly different for portfolios
P6, and P8. In addition, the age effect is also significant for PS.

The derivation of the portfolio specific prospective tables can sometimes
lead to unrealistic estimates at the highest ages for long-term projections.
Therefore, in a similar fashion as the reference table obtained in the first
step, we apply Model (6) in Thatcher (1999, p9) to the forces of mortality
to adapt the data at the highest ages. Figure 5.9 shows the estimated re-
gression parameters oy, Figure 5.9a, and 3;, Figure 5.9b.

Comparison of estil reg. o

0.20
0.00015 I 0.00015

0.18 4

0.00010 F- 0.00010

0.14

0.00005 - 0.00005

0.00000 ¥ 0.00000

T T T T T T T T T T T T T T T T
1996 2001 2006 2011 2016 2021 2026 2031 1996 2001 2006 2011 2016 2021 2026 2031
Year Year

(a) Estimated oy (b) Estimated Bt

Figure 5.9: Estimated regression parameters of model 6 of Thatcher (1999), male pop-
ulation.
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The linear component, Figure 5.9b, is much higher for portfolio P5 indicating
that the forces of mortality increase more rapidly than the other portfolios
at the highest ages. Conversely, portfolios P3 and P8 have smaller estimated
B¢’s illustrating that those portfolios lead to a less pronounced increase.

Figure 5.10 displays the forces of mortality derived for each portfolio by age
and calendar years. Since we have incorporated interactions in the model,
we see that the portfolio specific prospective mortality tables show different
patterns with age and calendar year.

As noted in Table 5.6, P3, P5 and P1 yield the highest mortality experience,
while P7 and P2 lead to the lowest mortality experience.

5.6 Summary and outlook

In this chapter, we illustrated the construction and the validation of en-
tity specific prospective mortality tables by a two steps approach. From
portfolios of several insurance companies we constructed, in a first step,
a global prospective reference table summarizing the mortality experience
of these portfolios. We used a non-parametric method, the local kernel-
weighted log-likelihood, and semi-parametric relational models to graduate
and extrapolate the surfaces. The extrapolations of the smoothed surface,
obtained by local likelihood methods, were performed by identifying the mor-
tality components and their importance over time using functional principal
components analysis. Then time series methods were used to extrapolate
the time-varying coefficients, while semi-parametric relational models had
the advantage of integrated estimation and forecasting.

We investigated the divergences in the mortality surfaces generated by a
number of proposed models. We found that the model risk is present. The
overall model risk associated with a prospective mortality table was assessed
by taking into account two factors, the adjustment according to the past
mortality and the extrapolation of the future mortality. We have carried out
a number of tests to assess the impact of model choices on the adjustment of
the past mortality. We find that even for those models satisfying our criteria,
there are significant differences among the smoothed forces of mortality at
different ages. Moreover, selecting models purely on the basis of how well
they fit historical data is dangerous, because the model may lead to a good
fit to the historical data, and still give inadequate forecasts.

To measure the divergence in the extrapolation of the future mortality, we
used single figure indices summarizing the lifetime probability distribution
that utilize those forecasts, such as the survivor index, or partial life ex-
pectancy (which is, in turn, derived from the survivor index). We visualized
those differences by a bivariate HDR boxplot of the first two robust principal
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component scores of the partial life expectancies for cohorts at several ages
in 1996.

We found that the models have the following features in common: the
overall level of mortality has been declining over time and these improve-
ments have been greater at lower ages than at higher ages. However the
models diverge in the level and speed of the improvement.

We therefore need to weigh the strengths and weaknesses of each model
to validate the mortality table. It is up to potential users of the table to
decide the weights they place on the different criteria. The validation of the
mortality table involved many judgmental decisions. It has been driven by
the trade-off between how the model smooths the historical data and the
concept of biological reasonableness leading us to question the plausibility of
the forecasts produced.

Then, we switched our attention to the construction of a portfolio specific
prospective mortality table. The validated table is used in a second step to
adjust the mortality to each portfolios by a Poisson generalized linear model
including age and calendar year interactions. The estimated baseline forces
of mortality are used in the regression analysis as if they were known with
certainty. This approach has shown to be very simple and convenient in
practical applications.

Another approach would be to use a generalized additive model (GAM)
with p-splines to perform the mortality analysis in a one step approach. A
GAM combines both continuous and categorical model components in one
model and p-splines would have the advantage of integrated estimation and
forecasting.
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Samenvatting (Summary in
Dutch)

Overlevingstafels worden gebruikt om de eenjarige sterftekansen te be-
schrijven in een welomschreven populatie, in functie van de bereikte leeftijd
en het kalenderjaar. Zulke kansen spelen een belangrijke rol bij het bepalen
van premies en voorzieningen bij levensverzekeringen. De ruwe schattingen
waarop overlevingstafels gebaseerd zijn kunnen worden gezien als een steek-
proef uit een grotere populatie en zijn daarom onderhevig aan stochastische
fluctuaties. Meestal echter wil de actuaris deze grootheden gladmaken om
de karakteristieken van de sterfte van de beschouwde groep, waarvan hij
vermoedt dat deze redelijk regelmatig zijn, beter uit te lichten.

Dit proefschrift beoogt een uitputtende en gedetailleerde beschrijving te
geven van verdelingsvrije afrondingsmethoden van de sterfte-ervaring in levens-
verzekering. De term verdelingsvrij verwijst naar de flexibele functionele
vorm van de regressiecurve. Net als parametrische methoden neigen ook
deze methoden naar onzuivere schattingen, maar zodanig dat het mogelijk
is een grotere onzuiverheid op te laten wegen tegen een lagere steekproe-
fvariatie. De oneffenheden van de ruwe data worden afgevlakt, alsof men
een weg aanlegt over ruw terrein. Afronden is echter meer dan gladmaken.
Gladgemaakte kansen moeten de onderliggende data goed weergeven, en
afronding zal vaak uitdraaien op een compromis tussen de best mogelijke fit
en optimale gladheid.

Regressie met lokale polynomen en lokale kernel-gewogen log-likelihood ko-
men uitgebreid aan de orde. Belangrijke kwesties over de keuze van de para-
meters voor het gladmaken, statistische eigenschappen van de schatters, cri-
teria gebruikt bij modelselectie, constructie van betrouwbaarheidsintervallen
en vergelijking van de modellen worden besproken en zowel numeriek als
grafisch geillustreerd. Lokale verdelingsvrije technieken paren fraaie theor-
etische eigenschappen aan conceptuele eenvoud en flexibiliteit om structuur
aan te brengen in vele gegevensbestanden. Geruime aandacht wordt besteed
aan de invloed van de grenzen op de keuze van de bij de smoothing gebruikte
parameters. Deze beschouwingen illustreren de noodzaak van flexibeler ben-
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aderingen. Adaptieve lokale kernel-gewogen log-likelihood methoden worden
besproken. In hoeverre er gladgemaakt wordt verschilt van plaats tot plaats,
en de methoden staan aanpassingen toe gebaseerd op de betrouwbaarheid
van de data. Deze methoden passen zich netjes aan aan de complexiteit van
het sterfte-oppervlak, door geschikte, op de data stoelende, keuze van de
adaptieve gladstrijkparameters.

Ten slotte behandelt dit proefschrift een aantal onderwerpen die van belang
zijn voor de praktijk, en wel het construeren van portefeuille-specifieke pro-
spectieve overlevingstafels, het bepalen van het modelrisico en, zij het in
mindere mate, het risico van het oordeel van experts bij de keuze van de
externe data.
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Summary

Life tables are used to describe the one-year probability of death within
a well defined population as a function of attained age and calendar year.
These probabilities play an important role in the determination of premium
rates and reserves in life insurance. The crude estimates on which life tables
are based might be considered as a sample from a larger population and are,
as a result, subject to random fluctuations. Most of the time, however, the
actuary wishes to smooth these quantities to enlighten the characteristics
of the mortality of the group considered which he thinks to be relatively
regular.

This dissertation aims at providing a comprehensive and detailed descrip-

tion of non-parametric graduation methods of experience data originating
from life insurance. The term non-parametric refers to the flexible func-
tional form of the regression curve. Like parametric methods, they too are
liable to give biased estimates, but in such a way that it is possible to bal-
ance an increase in bias with a decrease in sampling variation.
In the actuarial literature, the process of smoothing a mortality table is
known as graduating the data. The little hills and valleys of the rough data
are to be graded into smoothness, just as in building a road over rough ter-
rain. Smoothing alone, however, is not graduation. Graduated rates must
be representative of the underlying data and graduation will often turn out
to be a compromise between optimal fit and optimal smoothness.

Local polynomials regression and local kernel-weighted log-likelihood are
discussed extensively. Important issues concerning the choice of the smooth-
ing parameters, statistical properties of the estimators, criteria used for mod-
els selection, construction of confidence intervals and comparisons between
the models are covered with numerical and graphical illustrations.

Local non-parametric techniques combine excellent theoretical properties
with conceptual simplicity and flexibility to find structure in many data-
sets. Considerable attention is devoted to the influence of the boundaries
on the choice of the smoothing parameters. These considerations illustrate
the need for more flexible approaches. Adaptive local kernel-weighted log-
likelihood methods are introduced. The amount of smoothing varies in a
location dependent manner and the methods allow adjustments based on
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the reliability of the data. These methodologies adapt neatly to the com-
plexity of mortality surface, clearly because of the appropriate data-driven
choice of the adaptive smoothing parameters.

Finally, this manuscript deals with some important topics for practitioners.
Those concern the construction and validation of portfolio specific prospect-
ive mortality tables, assessment of the model risk and, to a lesser extent, the
risk of expert judgment related to the choice of the external data used.
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Résumeé (Summary in French)

Les tables de mortalité sont utilisées pour décrire la probabilité annuelle de
décés d’une population en fonction de ’age atteint et de 'année calendaire.
Ces probabilités jouent un role important dans la détermination des primes
et réserves en assurance vie. Les estimations brutes, sur lesquelles se basent
les tables de mortalité, peuvent étre considérées comme un échantillon prove-
nant d’une population plus importante et sont, par conséquent, soumises &
des fluctuations aléatoires. Toutefois, 'actuaire souhaite la plupart du temps
lisser ces quantités afin de faire ressortir les caractéristiques de la mortalité
du groupe considéré qu’il pense étre relativement réguliéres.

Cette dissertation fournit une description détaillée des méthodes de gradu-

ation non-paramétrique de données d’expérience issues de ’assurance vie. Le
terme non-paramétrique renvoie & une forme fonctionnelle de la courbe de
régression. Comme les méthodes paramétriques, elles sont toutes aussi sus-
ceptibles de donner des estimations biaisées, mais de telle sorte qu’il est
possible de compenser une augmentation du biais avec une diminution de la
variation de I’échantillonnage.
Dans la littérature actuarielle, le processus de lisser une table de mortalité est
appelé graduation. Les collines et vallées des données brutes sont lissées de
facon similaire & la construction d’une route sur un terrain accidenté. Le lis-
sage seul, cependant, n’est pas la graduation. Les taux gradués doivent étre
représentatifs des données sous-jacentes et la graduation se révélera souvent
comme un compromis entre ajustement et lissage optimal.

Les régressions polynomiales locales et méthodes de vraisemblance locale
sont examinées en détail. Les questions importantes concernant le choix des
paramétres de lissage, les propriétés statistiques des estimateurs, les critéres
utilisés pour la sélection des modéles, la construction des intervalles de con-
fiance ainsi que les comparaisons entre les modéles sont couvertes avec des
illustrations numériques et graphiques. Les techniques non-paramétriques
locales combinent d’excellentes propriétés théoriques avec une simplicité et
une flexibilité conceptuelle pour trouver une structure dans de nombreuses
bases de données. Une attention particulére est consacrée a 'influence des
bordures sur le choix des paramétres de lissage. Ces considérations illustrent
le besoin d’avoir & disposition des approches plus flexibles. Des méthodes
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adaptatives de vraisemblance locale sont alors introduites. Le montant de
lissage varie en fonction de ’emplacement et ces approches permettent des
ajustements de la fenétre d’observation en fonction de la fiabilité des don-
nées. Ces méthodes s’adaptent parfaitement & la complexité de la surface de
mortalité en raison du choix adaptatif approprié des paramétres de lissage.
Enfin, ce manuscrit traite de sujets importants pour les praticiens. Ceux-ci
concernent la construction et la validation de tables de mortalité prospec-
tives pour des portefeuilles d’assurance, I’évaluation du risque de modéle, et
dans une moindre mesure, du risque d’opinion d’experts li¢ au choix de la
table de référence externe utilisée.
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