Turbulent and neoclassical toroidal momentum transport in tokamak plasmas - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2012

Turbulent and neoclassical toroidal momentum transport in tokamak plasmas

Transport turbulent et néoclassique de quantité de mouvement toroïdale dans les plasmas de tokamak

Résumé

The goal of magnetic confinement devices such as tokamaks is to produce energy from nuclear fusion reactions in plasmas at low densities and high temperatures. Experimentally, toroidal flows have been found to significantly improve the energy confinement, and therefore the performance of the machine. As extrinsic momentum sources will be limited in future fusion devices such as ITER, an understanding of the physics of toroidal momentum transport and the generation of intrinsic toroidal rotation in tokamaks would be an important step in order to predict the rotation profile in experiments. Among the mechanisms expected to contribute to the generation of toroidal rotation is the transport of momentum by electrostatic turbulence, which governs heat transport in tokamaks. Due to the low collisionality of the plasma, kinetic modeling is mandatory for the study of tokamak turbulence. In principle, this implies the modeling of a six-dimensional distribution function representing the density of particles in position and velocity phase-space, which can be reduced to five dimensions when considering only frequencies below the particle cyclotron frequency. This approximation, relevant for the study of turbulence in tokamaks, leads to the so-called gyrokinetic model and brings the computational cost of the model within the presently available numerical resources. In this work, we study the transport of toroidal momentum in tokamaks in the framework of the gyrokinetic model. First, we show that this reduced model is indeed capable of accurately modeling momentum transport by deriving a local conservation equation of toroidal momentum, and verifying it numerically with the gyrokinetic code GYSELA. Secondly, we show how electrostatic turbulence can break the axisymmetry and generate toroidal rotation, while a strong link between turbulent heat and momentum transport is identified, as both exhibit the same large-scale avalanche-like events. The dynamics of turbulent transport are then analyzed and, although the conventional gyro-Bohm scaling is recovered on average, local processes are found to be clearly non-diffusive. The impact of scrape-off layer flows on core toroidal rotation is also analyzed by modifying the boundary conditions in GYSELA. Finally, the equilibrium magnetic field in tokamaks, which is not rigorously axisymmetric, provides another means of breaking the toroidal symmetry, through purely collisional processes. This effect is found to contribute significantly to toroidal momentum transport and can compete with the turbulence-driven toroidal rotation in tokamaks.
L'objectif de la fusion par confinement magnétique, et notamment du tokamak, est de produire de l'énergie à partir des réactions de fusion nucléaire, dans un plasma à faible densité et haute température. Expérimentalement, une amélioration de la performance des tokamaks a été observée en présence de rotation toroïdale. Or, les sources extérieurs de quantité de mouvement seront très limitées dans les futurs tokamaks, et notamment ITER. Une compréhension de la physique de la génération intrinsèque de rotation toroïdale permettrait donc de prédire les profils de rotation dans les expériences futures. Parmi les mécanismes envisagés, on s'intéresse ici à la génération de rotation par la turbulence, qui domine le transport de la chaleur dans les tokamaks. Les plasmas de fusion étant faiblement collisionnels, la modélisation de cette turbulence suppose un modèle cinétique décrivant la fonction de distribution des particules dans l'espace des phases à six dimensions (position et vitesse). Cependant, ce modèle peut être réduit à cinq dimensions pour des fréquences inférieures à la fréquence cyclotronique des particules. Le modèle gyrocinétique qui découle de cette approximation est alors accessible avec les ressources numériques actuelles. Les travaux présentés portent sur l'étude du transport de quantité de mouvement toroïdale dans les plasmas de tokamak, dans le cadre du modèle gyrocinétique. Dans un premier temps, nous montrons que ce modèle réduit permet une description précise du transport de quantité de mouvement en dérivant une équation locale de conservation. Cette équation est vérifiée numériquement à l'aide du code gyrocinétique GYSELA. Ensuite, nous montrons comment la turbulence électrostatique peut briser l'axisymétrie du système, générant ainsi de la rotation toroïdale. Un lien fort entre transport de chaleur et transport de quantité de mouvement est mis en évidence, les deux présentant des avalanches à grande échelle. La dynamique du transport turbulent est analysée en détail et, bien que l'estimation standard gyro-Bohm soit vérifiée en moyenne, des phénomènes non-diffusifs sont observés. L'effet des écoulements de bord du plasma sur la rotation toroïdale dans le coeur est étudié en modifiant les conditions aux bords dans le code GYSELA. Enfin, le champ magnétique d'équilibre, qui n'est pas rigoureusement axisymétrique, peut également participer à la génération de rotation toroïdale, via des mécanismes purement collisionnels. Dans un tokamak, cet effet est suffisamment important pour entrer en compétition avec la rotation générée par la turbulence électrostatique.
Fichier principal
Vignette du fichier
JA_manuscript_20121031.pdf (3.37 Mo) Télécharger le fichier
JA_PhDdefense_20121031.pdf (4.3 Mo) Télécharger le fichier
Format : Autre

Dates et versions

tel-00777996 , version 1 (18-01-2013)

Identifiants

  • HAL Id : tel-00777996 , version 1

Citer

Jeremie Abiteboul. Turbulent and neoclassical toroidal momentum transport in tokamak plasmas. Plasma Physics [physics.plasm-ph]. Aix-Marseille Université, 2012. English. ⟨NNT : ⟩. ⟨tel-00777996⟩
338 Consultations
753 Téléchargements

Partager

Gmail Facebook X LinkedIn More