P. Asinari, T. Ohwada, E. Chiavazzo, and A. F. Di-rienzo, Link-wise artificial compressibility method, Journal of Computational Physics, vol.231, issue.15, pp.5109-5143, 2012.
DOI : 10.1016/j.jcp.2012.04.027

URL : https://hal.archives-ouvertes.fr/hal-01287495

P. L. Bhatnagar, E. P. Gross, and M. Krook, A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems, Physical Review, vol.94, issue.3, pp.511-525, 1954.
DOI : 10.1103/PhysRev.94.511

B. Blocken, T. Defraeye, D. Derome, and J. Carmeliet, High-resolution CFD simulations for forced convective heat transfer coefficients at the facade of a low-rise building. Building and environment, pp.2396-2412, 2009.

B. Blocken, T. Stathopoulos, J. Carmeliet, and J. L. Hensen, Application of computational fluid dynamics in building performance simulation for the outdoor environment: an overview, Journal of Building Performance Simulation, vol.5, issue.2, pp.157-184, 2011.
DOI : 10.1016/j.jweia.2007.02.023

M. Bouzidi, M. Firdaouss, and P. Lallemand, Momentum transfer of a Boltzmann-lattice fluid with boundaries, Physics of Fluids, vol.13, issue.11, pp.3452-3459, 2001.
DOI : 10.1063/1.1399290

H. Boyer, J. Chabriat, B. Grondin-perez, C. Tourrand, and J. Brau, Thermal building simulation and computer generation of nodal models. Building and environment, pp.31207-214, 1996.
URL : https://hal.archives-ouvertes.fr/hal-00766238

I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian et al., Brook for GPUs, ACM Transactions on Graphics, vol.23, issue.3, pp.777-786, 2004.
DOI : 10.1145/1015706.1015800

S. Collange, D. Defour, and A. Tisserand, Power Consumption of GPUs from a Software Perspective, Proceedings of the 9th International Conference on Computational Science, Part I, pp.914-923, 2009.
DOI : 10.1007/978-3-642-01970-8_92

URL : https://hal.archives-ouvertes.fr/hal-00348672

B. Crouse, M. Krafczyk, S. Kühner, E. Rank, and C. Van-treeck, Indoor air flow analysis based on lattice Boltzmann methods. Energy and buildings, pp.941-949, 2002.

Y. H. Qian, Simulating thermohydrodynamics with lattice BGK models, Journal of Scientific Computing, vol.95, issue.3, pp.231-242, 1993.
DOI : 10.1007/BF01060932

Y. H. Qian, D. Humières, and P. Lallemand, Lattice BGK Models for Navier-Stokes Equation, Europhysics Letters (EPL), vol.17, issue.6, pp.479-484, 1992.
DOI : 10.1209/0295-5075/17/6/001

E. Riegel, T. Indinger, and N. A. Adams, Implementation of a??Lattice???Boltzmann method for numerical fluid mechanics using the nVIDIA CUDA technology, Computer Science - Research and Development, vol.8, issue.4, pp.241-247, 2009.
DOI : 10.1007/s00450-009-0087-3

H. Sakamoto and H. Haniu, The formation mechanism and shedding frequency of vortices from a sphere in uniform shear flow, Journal of Fluid Mechanics, vol.112, issue.-1, pp.151-172, 1995.
DOI : 10.1143/JPSJ.11.302

J. Smagorinsky, GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS, Monthly Weather Review, vol.91, issue.3, pp.99-164, 1963.
DOI : 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2

C. J. Thompson, S. Hahn, and M. Oskin, Using modern graphics architectures for general-purpose computing: a framework and analysis, 35th Annual IEEE/ACM International Symposium on Microarchitecture, 2002. (MICRO-35). Proceedings., pp.306-317, 2002.
DOI : 10.1109/MICRO.2002.1176259

E. Tric, G. Labrosse, and M. Betrouni, A first incursion into the 3D structure of natural convection of air in a differentially heated cubic cavity, from accurate numerical solutions, International Journal of Heat and Mass Transfer, vol.43, issue.21, pp.434043-4056, 2000.
DOI : 10.1016/S0017-9310(00)00037-5

J. Tölke, Implementation of a Lattice Boltzmann kernel using the Compute Unified Device Architecture developed by nVIDIA, Computing and Visualization in Science, vol.17, issue.4, pp.29-39, 2010.
DOI : 10.1007/s00791-008-0120-2

J. Tölke and M. Krafczyk, TeraFLOP computing on a desktop PC with GPUs for 3D CFD, International Journal of Computational Fluid Dynamics, vol.77, issue.7, pp.443-456, 2008.
DOI : 10.1002/cav.143

C. Van-treeck, E. Rank, M. Krafczyk, J. Tölke, and B. Nachtwey, Extension of a hybrid thermal LBE scheme for large-eddy simulations of turbulent convective flows, Computers & Fluids, vol.35, issue.8-9, pp.863-871, 2006.
DOI : 10.1016/j.compfluid.2005.03.006

S. Wakashima and T. S. Saitoh, Benchmark solutions for natural convection in a cubic cavity using the high-order time???space method, International Journal of Heat and Mass Transfer, vol.47, issue.4, pp.853-864, 2004.
DOI : 10.1016/j.ijheatmasstransfer.2003.08.008

X. Wang and T. Aoki, Multi-GPU performance of incompressible flow computation by lattice Boltzmann method on GPU cluster, Teike, O. Schmidt, and M. Sommerfeld. Investigation of the LES WALE turbulence model within the lattice Boltzmann framework, pp.521-535, 2010.

G. Wellein, T. Zeiser, G. Hager, and S. Donath, On the single processor performance of simple lattice Boltzmann kernels, Computers & Fluids, vol.35, issue.8-9, pp.910-919, 2006.
DOI : 10.1016/j.compfluid.2005.02.008

J. Wilke, T. Pohl, M. Kowarschik, and U. Rüde, Cache Performance Optimizations for Parallel Lattice Boltzmann Codes, Par 2003, pp.441-450, 2003.
DOI : 10.1007/978-3-540-45209-6_66

D. A. Wolf-gladrow, Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction, Lecture Notes in Mathematics, vol.1725, 2000.
DOI : 10.1007/b72010

Y. Zhao, Lattice Boltzmann based PDE solver on the GPU. The Visual Computer, pp.323-333, 2008.

]. S. Albensoeder and H. C. Kuhlmann, Accurate three-dimensional lid-driven cavity flow, Journal of Computational Physics, vol.206, issue.2, pp.536-558, 2005.
DOI : 10.1016/j.jcp.2004.12.024

R. , C. Whaley, A. Petitet, and J. J. Dongarra, Automated empirical optimizations of software and the ATLAS project, Parallel Computing, vol.27, issue.1, pp.3-35, 2001.

D. Humières, I. Ginzburg, M. Krafczyk, P. Lallemand, and L. S. Luo, Multiple-relaxation-time lattice Boltzmann models in three dimensions, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.360, issue.1792, pp.437-451, 2002.
DOI : 10.1098/rsta.2001.0955

Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-stover, GPU cluster for high performance computing, Proceedings of the 2004 ACM/IEEE Conference on Supercomputing, pp.47-58, 2004.

P. Geoffray, C. Pham, and B. Tourancheau, A Software Suite for High-Performance Communications on Clusters of SMPs, Cluster Computing, vol.5, issue.4, pp.353-363, 2002.
DOI : 10.1023/A:1019756120212

P. Geoffray, L. Prylli, and B. Tourancheau, BIP-SMP, Proceedings of the 1999 ACM/IEEE conference on Supercomputing (CDROM) , Supercomputing '99, pp.20-38, 1999.
DOI : 10.1145/331532.331552

X. He and L. S. Luo, Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation, Physical Review E, vol.56, issue.6, pp.6811-6817, 1997.
DOI : 10.1103/PhysRevE.56.6811

W. Li, X. Wei, and A. Kaufman, Implementing lattice Boltzmann computation on graphics hardware, The Visual Computer, vol.Techniques, issue.7-8, pp.444-456, 2003.
DOI : 10.1007/s00371-003-0210-6

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

C. Obrecht, F. Kuznik, B. Tourancheau, and J. Roux, A new approach to the lattice Boltzmann method for graphics processing units, Computers & Mathematics with Applications, vol.61, issue.12, pp.613628-3638, 2011.
DOI : 10.1016/j.camwa.2010.01.054

URL : https://hal.archives-ouvertes.fr/inria-00568674

C. Obrecht, F. Kuznik, B. Tourancheau, and J. Roux, Global Memory Access Modelling for Efficient Implementation of the Lattice Boltzmann Method on Graphics Processing Units, High Performance Computing for Computational Science, VECPAR 2010 Revised Selected Papers, pp.151-161, 2011.
DOI : 10.1016/j.jcp.2003.08.008

URL : https://hal.archives-ouvertes.fr/inria-00563159

C. Obrecht, F. Kuznik, B. Tourancheau, and J. Roux, The TheLMA project: Multi-GPU implementation of the lattice Boltzmann method, International Journal of High Performance Computing Applications, vol.25, issue.3, pp.295-303, 2011.
DOI : 10.1177/1094342011414745

URL : https://hal.archives-ouvertes.fr/hal-00731122

F. Song, S. Tomov, and J. Dongarra, Efficient Support for Matrix Computations on Heterogeneous Multi-core and Multi-GPU Architectures, 2011.

J. Tölke and M. Krafczyk, TeraFLOP computing on a desktop PC with GPUs for 3D CFD, International Journal of Computational Fluid Dynamics, vol.77, issue.7, pp.443-456, 2008.
DOI : 10.1002/cav.143

X. Wang and T. Aoki, Multi-GPU performance of incompressible flow computation by lattice Boltzmann method on GPU cluster, Parallel Computing, vol.37, issue.9, pp.521-535, 2011.

. La-méthode-de-boltzmann-sur-gaz-réseau, qui repose sur une forme discrétisée de l'équation de Boltzmann, est une approche explicite qui jouit de nombreuses qualités : précision, stabilité, prise en compte de géométries complexes, etc, Elle constitue donc une alternative intéressante à la résolution directe des équations de Navier-Stokes par une méthode numérique classique

H. Directeur-de-thèse-jean-luc, I. Christian, K. Manfred, K. Frédéric, and R. Jean, Jean-Jacques ROUX Président de jury : Christian INARD Composition du jury