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Résumé

Avec l’émergence des bâtiments à haute efficacité énergétique, il est de-
venu indispensable de pouvoir prédire de manière fiable le comportement éner-
gétique des bâtiments. Or, à l’heure actuelle, la prise en compte des effets
thermo-aérauliques dans les modèles se cantonne le plus souvent à l’utilisation
d’approches simplifiées voire empiriques qui ne sauraient atteindre la précision
requise. Le recours à la simulation numérique des écoulements semble donc
incontournable, mais il est limité par un coût calculatoire généralement pro-
hibitif. L’utilisation conjointe d’approches innovantes telle que la méthode de
Boltzmann sur gaz réseau (LBM) et d’outils de calcul massivement parallèles
comme les processeurs graphiques (GPU) pourrait permettre de s’affranchir de
ces limites. Le présent travail de recherche s’attache à en explorer les potentia-
lités.

La méthode de Boltzmann sur gaz réseau, qui repose sur une forme discré-
tisée de l’équation de Boltzmann, est une approche explicite qui jouit de nom-
breuses qualités : précision, stabilité, prise en compte de géométries complexes,
etc. Elle constitue donc une alternative intéressante à la résolution directe des
équations de Navier-Stokes par une méthode numérique classique. De par ses
caractéristiques algorithmiques, elle se révèle bien adaptée au calcul parallèle.
L’utilisation de processeurs graphiques pour mener des calculs généralistes est
de plus en plus répandue dans le domaine du calcul intensif. Ces processeurs
à l’architecture massivement parallèle offrent des performances inégalées à ce
jour pour un coût relativement modéré. Néanmoins, nombre de contraintes ma-
térielles en rendent la programmation complexe et les gains en termes de per-
formances dépendent fortement de la nature de l’algorithme considéré. Dans le
cas de la LBM, les implantations GPU affichent couramment des performances
supérieures de deux ordres de grandeur à celle d’une implantation CPU séquen-
tielle modérément optimisée.

Le présent mémoire de thèse est constitué d’un ensemble de neuf articles
de revues internationales et d’actes de conférences internationales (le dernier
étant en cours d’évaluation). Dans ces travaux sont abordés les problématiques
liées tant à l’implantation mono-GPU de la LBM et à l’optimisation des accès
en mémoire, qu’aux implantations multi-GPU et à la modélisation des commu-
nications inter-GPU et inter-nœuds. En complément, sont détaillées diverses
extensions à la LBM indispensables pour envisager une utilisation en thermo-
aéraulique des bâtiments. Les cas d’études utilisés pour la validation des codes
permettent de juger du fort potentiel de cette approche en pratique.

Mots-clefs : calcul intensif, méthode de Boltzmann sur gaz réseau, processeurs
graphiques, aéraulique des bâtiments.
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Abstract

With the advent of low-energy buildings, the need for accurate building
performance simulations has significantly increased. However, for the time be-
ing, the thermo-aeraulic effects are often taken into account through simplified
or even empirical models, which fail to provide the expected accuracy. Re-
sorting to computational fluid dynamics seems therefore unavoidable, but the
required computational effort is in general prohibitive. The joint use of inno-
vative approaches such as the lattice Boltzmann method (LBM) and massively
parallel computing devices such as graphics processing units (GPUs) could help
to overcome these limits. The present research work is devoted to explore the
potential of such a strategy.

The lattice Boltzmann method, which is based on a discretised version of
the Boltzmann equation, is an explicit approach offering numerous attractive
features: accuracy, stability, ability to handle complex geometries, etc. It is
therefore an interesting alternative to the direct solving of the Navier-Stokes
equations using classic numerical analysis. From an algorithmic standpoint,
the LBM is well-suited for parallel implementations. The use of graphics pro-
cessors to perform general purpose computations is increasingly widespread
in high performance computing. These massively parallel circuits provide up
to now unrivalled performance at a rather moderate cost. Yet, due to numer-
ous hardware induced constraints, GPU programming is quite complex and the
possible benefits in performance depend strongly on the algorithmic nature of
the targeted application. For LBM, GPU implementations currently provide per-
formance two orders of magnitude higher than a weakly optimised sequential
CPU implementation.

The present thesis consists of a collection of nine articles published in in-
ternational journals and proceedings of international conferences (the last one
being under review). These contributions address the issues related to single-
GPU implementations of the LBM and the optimisation of memory accesses, as
well as multi-GPU implementations and the modelling of inter-GPU and inter-
node communication. In addition, we outline several extensions to the LBM,
which appear essential to perform actual building thermo-aeraulic simulations.
The test cases we used to validate our codes account for the strong potential of
GPU LBM solvers in practice.

Keywords: high performance computing, lattice Boltzmann method, graphics
processing units, building aeraulics.
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Foreword

The present document is a thesis by publication consisting of a general
introduction and the nine following articles:

[ A ] A New Approach to the Lattice Boltzmann Method for Graphics Process-
ing Units. Computers and Mathematics with Applications, 12(61):3628–
3638, June 2011.

[ B ] Global Memory Access Modelling for Efficient Implementation of the Lat-
tice Boltzmann Method on Graphics Processing Units. Lecture Notes in
Computer Science 6449, High Performance Computing for Computational
Science – VECPAR 2010 Revised Selected Papers, pages 151–161, Febru-
ary 2011.

[ C ] The TheLMA project: a thermal lattice Boltzmann solver for the GPU.
Computers and Fluids, 54:118–126, January 2012.

[ D ] Multi-GPU Implementation of the Lattice Boltzmann Method. Computers
and Mathematics with Applications, published online March 17, 2011.

[ E ] The TheLMA project: Multi-GPU Implementation of the Lattice Boltz-
mann Method. International Journal of High Performance Computing Ap-
plications, 25(3):295–303, August 2011.

[ F ] Towards Urban-Scale Flow Simulations Using the Lattice Boltzmann Method.
In Proceedings of the Building Simulation 2011 Conference, pages 933–
940. IBPSA, 2011.

[ G ] Multi-GPU Implementation of a Hybrid Thermal Lattice Boltzmann Solver
using the TheLMA Framework. Computers and Fluids, published online
March 6, 2012.

[H ] Efficient GPU Implementation of the Linearly Interpolated Bounce-Back
Boundary Condition. Computers and Mathematics with Applications, pub-
lished online June 28, 2012.

[ I ] Scalable Lattice Boltzmann Solvers for CUDA GPU Cluster. Submitted to
Parallel Computing, August 22, 2012.

All the papers are authored by Christian Obrecht, Frédéric Kuznik, Bernard
Tourancheau, and Jean-Jacques Roux. They are hereinafter referred to as
Art. A, Art. B, and so forth. The page numbering is specific to each article,
e.g. B–1, B–2, etc.
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General introduction

The real problem is that programmers have spent far too
much time worrying about efficiency in the wrong places and
at the wrong times; premature optimization is the root of all
evil (or at least most of it) in programming.

D.E. Knuth — Computer Programming as an Art, 1974

IS ACCURATE building performance simulation possible? Taking into account the
tremendous computational power of modern computers, one might be tempted
to give an immediate positive answer to this question. Yet, buildings are com-
plex systems interacting in numerous ways with their environment, at various
time and length scales, and accurate simulations often appear to be of pro-
hibitive computational cost.

The design of low or zero energy buildings even increases the need for
accurate modelling of the heat and mass transfer between the outdoor or in-
door environment and the envelope of a building. The commonplace practice
regarding building aeraulics is to use simplified empirical or semi-empirical
formulae. However, as outlined in [4], such approaches only provide a crude
indication of the relevant parameters.

Regarding indoor simulations, nodal [6] and zonal [22] models are also
widespread. In the former approach, the air in a given room is represented by
a single node; in the latter, the room is divided into macroscopic cells. These
methods, which require low computational efforts but simulate large volumes
of air using single nodes, often lead to unsatisfactory results when compared
to experimental data [9].

To achieve adequate accuracy, the use of computational fluid dynamics
(CFD) in building aeraulics appears therefore to be mandatory. Yet, the com-
putational cost and memory requirements of CFD simulations are often so high
that they may not be carried out on personal computers. Since the access
to high performance computing (HPC) facilities is limited and expensive, al-
ternative approaches improving the performance of CFD solvers are of major
practical interest in numerous engineering fields.

The present work explores the potential of graphics processing units (GPUs)
to perform CFD simulations using the lattice Boltzmann method (LBM). This
method is a rather recent approach for fluid flow simulation which is well-
suited to HPC implementations as we shall see later. The investigations led to
the design and creation of a framework going by the name of TheLMA, which
stands for “Thermal LBM on Many-core Architectures”. Several LBM solvers
based on this framework were developed, ranging from single-GPU to GPU

1



General introduction

cluster implementations, and addressing issues such as thermal flow simula-
tion, turbulent flow simulation, or complex geometries representation.

The remainder of this introduction is organised as follows. Section I is
an overview of general purpose computation technologies for the GPU. In sec-
tion II, a description of the principles and algorithmic aspects of the lattice
Boltzmann method is given. Section III focuses on single-GPU implementations
of the LBM. Section IV outlines several extensions to the LBM, regarding ther-
mal simulations, high Reynolds number flows and representation of complex
geometries. Section V focuses on multi-GPU implementations of the LBM, ei-
ther single-node or multi-node. Section VI concludes, giving a summary of the
potential applications of the TheLMA framework in building simulation, and
some perspective on the remaining issues.

2



I General purpose computing on graphics processors

I General purpose computing on graphics processors

a. A brief history

Graphics accelerators are meant to alleviate the CPU’s workload in graphics ren-
dering. These specialised electronic circuits became commonplace hardware in
consumer-level computers during the 1990s. In these early years, graphics
accelerators were chiefly rasterisation devices using fixed-function logic, and
had therefore limited interest from a computing standpoint, although some
attempts were made [21]. The first electronic circuit marketed as “graphics
processing unit”, was Nvidia’s GeForce 256 released in 1999, which introduced
dedicated hardware to process transform and lighting operations, but was still
not programmable.

In 2001, Nvidia implemented a novel architecture in the GeForce 3, based
on programmable shading units. With this technology, the graphics pipeline
incorporates shaders, which are programs responsible for processing vertices
and pixels according to the properties of the scene to render. From then on,
GPUs could be regarded as single instruction multiple data (SIMD) parallel pro-
cessors. At first, shaders had to be written in hardware-specific assembly lan-
guage; nonetheless the new versatility of GPUs increased their potential for
numerical computations [41].

The two leading 3D graphics APIs both introduced a high level shading lan-
guage in 2002: HLSL for Microsoft’s Direct3D, which is also known as Nvidia
Cg [30], and GLSL for OpenGL. Both languages use a C-like syntax and a
stream-oriented programming paradigm: a series of operations (the kernel) is
applied to each element of a set of data (the stream). High level languages con-
tributed to significantly enlarge the repertoire of general purpose computing on
GPU (GPGPU) [35]. In many situations, because of their massively parallel ar-
chitecture, GPUs would outperform CPUs. Nevertheless, GPGPU development
remained cumbersome because of the graphics processing orientation of both
Cg and GLSL. It further evolved with the release of BrookGPU, which provides
a run-time environment and compiler for Brook, a general purpose stream pro-
cessing language [7].

During the last decade, because of several issues such as the “frequency
wall”, the computational power of CPUs per core grew modestly, to say the
least. Meanwhile, the improvements of the CMOS fabrication process made
possible to constantly increase the number of shading units per GPU, and there-
fore, to increase the raw computational power. This situation led the Nvidia
company to consider the HPC market as a new target and to develop a novel
technology labeled “Compute Unified Device Architecture” (CUDA) [24].

The advent of the CUDA technology in 2007 is probably the most signifi-
cant breakthrough in the GPGPU field up to now. The core concepts consist of
a set of abstract hardware specifications, together with a parallel programming
model. CUDA often refers to the “C for CUDA” language, which is an extension

3



General introduction

to the C/C++ language (with some restrictions) based on this programming
model. Compared to previous technologies, CUDA provides unprecedented
flexibility in GPGPU software development, which contributed to bring GPU
computing to the forefront of HPC.

The proprietary status of the CUDA technology is a major drawback: only
Nvidia GPUs are capable of running CUDA programs. The OpenCL frame-
work [17], first released in 2008, provides a more generic approach, since
it is designed for heterogeneous platforms. OpenCL is supported by most GPU
vendors today. It is worth noting that the OpenCL programming model and
the OpenCL language share many similarities with their CUDA counterparts.
From an HPC standpoint, OpenCL is a promising standard which might over-
ride CUDA in future.

The present work focuses on CUDA platforms, mainly because, at the time
it began, the CUDA technology was by far more mature than OpenCL. How-
ever, it should be mentioned that, since CUDA and OpenCL are closely related,
several contributions of this research work might also be valuable on OpenCL
platforms.

b. CUDA hardware and execution model

The CUDA hardware model consists of abstract specifications that apply to each
Nvidia GPU architecture since the G80. The differences in features between
GPU generations is represented by the “compute capability” which consist of
a major and a minor version number. The GT200 GPU featured in the Tesla
C1060 computing board, which was used for most of the present work, has
compute capability 1.3. The GF100 GPU, also known as “Fermi”, has compute
capability 2.0.

A CUDA capable GPU is described in the hardware model as a set of “stream-
ing multiprocessors” (SMs). An SM consists merely of an instruction unit, sev-
eral “scalar processors” (SPs) (namely 8 for the GT200 and 32 for the GF100),
a register file partitioned among SPs, and shared memory. Both register mem-
ory and shared memory are rather scarce, the later being for instance limited
to 64 KB with the GF100. In the CUDA terminology, the off-chip memory asso-
ciated to the GPU is called “device memory”. In order to reduce latency when
accessing to device memory, SMs contain several caches: textures, constants,
and—as of compute capability 2.0—data.

The CUDA execution model, coined by Nvidia as “single instruction multiple
threads” (SIMT), is rather complex because of the dual level hardware hierar-
chy. The SMs belong to the SIMD category, although they do not reduce to
pure vector processors, being e.g. able to access scattered data. At global level,
execution is better described as single program multiple data (SPMD) since SMs
are not synchronised.1 It should also be mentioned that, whereas efficient com-

1Starting with the Fermi generation, the execution at GPU level might even be described as
multiple program multiple data (MPMD) since several kernels can be run concurrently.
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I General purpose computing on graphics processors

munication within an SM is possible through on-chip shared memory, sharing
information at global level requires the use of device memory and may there-
fore suffer from high latency.

Unlike streaming languages, which are data centred, the CUDA program-
ming paradigm is task centred. An elementary process is designated as a thread,
the corresponding series of operations is named kernel. To execute a CUDA ker-
nel, it is mandatory to specify an “execution grid”. A grid is a multidimensional
array of identical blocks, which are multidimensional arrays of threads.2 This
dual level scheme is induced by the architecture: a block is to be processed by
a single SM; consequently, the number of threads a block can hold is limited by
the local resources.

Depending on the available resources, an SM may run several blocks con-
currently. For computationally intensive application, it might be of great inter-
est to tailor the dimensions of the blocks in order to achieve high arithmetic
intensity, i.e. for the SMs, to host as many active threads as possible. It is
worth mentioning that grid dimensions are less constraint than block dimen-
sions. As described in [8], blocks are processed asynchronously in batches. A
grid may therefore contain far more blocks than a GPU is actually able to run
concurrently.

Because of the SIMD nature of an SM, the threads are not run individually
but in groups named warps. Up to now, a warp contains 32 threads; yet, this
value is implementation dependent and might change for future hardware gen-
erations. The warp being an atomic unit, it is good practice to ensure that the
total number of threads in a block is a multiple of the warp size. Warps induce
several limitations such as in conditional branching, for instance: when branch
divergence occurs within a warp, the processing of the branches is serialised.
Whenever possible, branch granularity should be greater than the warp size. In
many situations, the design of an execution grid is not a trivial task, and might
be of cardinal importance to achieve satisfactory performance.

c. Memory hierarchy and data transfer

As outlined in the preceding subsection, the CUDA memory hierarchy is fairly
complex from an architectural standpoint, but it is even more intricate from a
programming standpoint. In CUDA C, a kernel is merely a void-valued function.
Grid and block dimensions as well as block and thread indices are accessible
within the kernel using built-in read-only variables. CUDA memory spaces fall
into five categories: local, shared, global, constant, and textures.

Automatic variables in a kernel, which are proper to each thread, are stored
in registers whenever possible. Arrays and structures that would consume too
much registers, as well as arrays which are accessed using unpredictable in-

2As of compute capability 2.0, grids and blocks may have up to three dimensions, prior to
this, grids were limited to two dimensions.
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General introduction

dices, are stored in local memory.3 Local memory, which is hosted in device
memory, is also used to spill registers if need be. Prior to the Fermi generation,
local memory was not cached. Greatest care had therefore to be taken in kernel
design in order to avoid register shortage.

Threads may also access to shared and global memory. The scope and
lifetime of shared memory is limited to the local block. Being on chip, it may
be as fast as registers, provided no bank conflicts occurs.4 Global memory is
visible by all threads and is persistent during the lifetime of the application.
It resides in device memory which is the only accessible by the host system.
Transferring from and to global memory is the usual way for an application
to provide data to a kernel before launch and to retrieve results once kernel
execution has completed.

Constant and shared memory are additional memory spaces hosted in de-
vice memory, which may be accessed read-only by the threads. Both are mod-
ifiable by the host. The former is useful to store parameters that remain valid
across the lifetime of the application; the later is of little use in GPGPU and
shall not be discussed further.

With devices of compute capability 1.3, global memory is not cached. Trans-
actions are carried out on aligned segments5 of either 32, 64, or 128 bytes. At
SM level, global memory requests are issued by half-warps and are serviced
in as few segment transactions as possible. Devices of compute capability 2.0
feature L1 and L2 caches for global memory. L1 is local to each SM and may
be disabled at compile time, whereas L2 is visible to all SMs. Cache lines are
mapped to 128 bytes aligned segments in device memory. Memory accesses
are serviced with 128-byte memory transactions when both caches are acti-
vated and with 32-byte memory transactions when L1 is disabled, which may
reduce over-fetch in case of scattered requests.

It is worth stressing that for both architectures, although being significantly
different, global memory bandwidth is best used when consecutive threads ac-
cess to consecutive memory locations. Data layout is therefore an important
optimisation issue when designing data-intensive application for CUDA.

3Registers being not addressable, an array may only be stored in the register file when its
addressing is known at compile time.

4The shared memory is partitioned in several memory banks. A bank conflict occurs when
several threads try to access concurrently to the same bank. To resolve the conflict, the transac-
tions must be serialised.

5An aligned segment is a block of memory whose start address is a multiple of its size.
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II Principles of the lattice Boltzmann method

a. Origins of the lattice Boltzmann method

The path followed by usual approaches in CFD may be sketched as “top-down”:
a set of non-linear partial differential equations is discretised and solved using
some numerical technique such as finite differences, finite volumes, finite ele-
ments, or spectral methods. As pointed out in [51], attention is often drawn
on truncation errors induced by the discretisation. However, from a physical
standpoint, the fact that the desired conservation properties still hold for the
discretised equations is of major importance, especially for long-term simula-
tions in which small variations may by accumulation lead to physically unsound
results. The preservation of these conservation properties is generally not guar-
anteed by the discretisation method.

Alternatives to the former methods may be described as “bottom-up” ap-
proaches, molecular dynamics (MD) being the most emblematic one. In MD,
the macroscopic behaviour of fluids is obtained by simulating as accurately as
possible the behaviour of individual molecules. Because of the tremendous
computational effort required by even small scale MD simulations, the scope of
applications is limited. Lattice-gas automata (LGA) and LBM fall into the same
bottom-up category than MD although they act at a less microscopic scale,
which is often referred to as mesoscopic.

LGA are a class of cellular automata attempting to describe hydrodynamics
through the discrete motion and collision of fictitious particles. In LGA, space
is represented by a regular lattice in which particles hop from one node to
another at each time step. Most LGA models obey to an exclusion principle,
which allows only one particle for each lattice direction to enter a node at
a time. A node may therefore only adopt a finite number of states, which
are usually represented by a bit field. The simulation process consist of an
alternation of collisions, in which the state of each node determines the local
set of out-going particles, and propagation, during which the out-going particles
are advected to the appropriate neighbour nodes.

The first two-dimensional LGA model was proposed by Hardy, Pomeau, and
de Pazzis in 1973 [18]. It is known as HPP after its inventors. HPP operates on
a square lattice with collision rules conserving mass and momentum. Yet, HPP
lacks rotational invariance and therefore cannot yield the Navier-Stokes equa-
tions in the macroscopic limit, which drastically reduces its practical interest.
In the two-dimensional case, this goal was first achieved with the FHP model
introduced in 1986 by Frisch, Hasslacher, and Pomeau [15]. Increased isotropy
is obtained by using an hexagonal grid instead of a square lattice.

In the three-dimensional case, achieving sufficient isotropy is by far more
difficult than with two dimensions, and this could only be solved by using a
four-dimensional face-centred hypercube (FCHC) lattice [12]. FCHC yields 24-
bit wide states which in turn causes the look-up tables of the collision rules to be
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very large. This issue, beside the complexity induced by the fourth dimension,
is a serious drawback for the use of 3D LGA models in practice.

Another general disease of LGA models is the statistical noise caused by
the use of Boolean variables. To address this issue, McNamara and Zanetti in
1988 [31], proposed the first lattice Boltzmann model, replacing the Boolean
fields by continuous distributions over the FHP and FCHC lattices. Later on,
in 1992, Qian, d’Humières, and Lallemand [37], replaced the Fermi-Dirac by
the Maxwell–Boltzmann equilibrium distribution and the collision operator in-
herited from the LGA models by a linearised operator based on the Bhatnagar–
Gross–Krook (BGK) approximation [2]. This model, often referred to as LBGK
(for lattice BGK), is still widely in use today.

A conclusion to this emergence period was brought by the work of He and
Luo in 1997 [20]. The lattice Boltzmann equation (LBE), i.e. the governing
equation of the LBM, may be derived directly from the continuous Boltzmann
equation. From a theoretical standpoint, the LBM is therefore a standalone
approach sharing similarities with LGA but no actual dependency.

b. Isothermal fluid flow simulation

The Boltzmann equation describes the hydrodynamic behaviour of a fluid by
the means of a one-particle distribution function f over phase space, i.e. parti-
cle position x and velocity ξ, and time:

∂t f + ξ · ∇x f +
F

m
· ∇ξ f =Ω( f ). (1)

In the former equation, m is the particle mass, F is an external force, and Ω
denotes the collision operator. In a three-dimensional space, the macroscopic
quantities describing the fluid obey:

ρ =

∫

f dξ (2)

ρu =

∫

f ξdξ (3)

ρu2+ 3ρθ =

∫

f ξ2dξ (4)

where ρ is the fluid density, u the fluid velocity, and θ = kBT/m with T the
absolute temperature and kB the Boltzmann constant.

The LBM is based on a discretised form of Eq. 1 using a constant time step
δt and a regular orthogonal lattice of mesh size δx . A finite set of velocities
{ξα |α= 0, . . . N} with ξ0 = 0, is substituted to the velocity space. The velocity
set or stencil, is chosen in accordance with the time step and mesh size: given
a lattice site x , x + δtξα is on the lattice for any α. In the three-dimensional
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case, three velocity sets are commonly considered (see Fig. 1). These stencils
are named D3Q15, D3Q19, and D3Q27, following the notation proposed by
Qian et al. in 1992.6

The discrete counterpart of the distribution function f is a set of particle
populations { fα |α = 0, . . . N} corresponding to the velocities. With T being
the transpose operator, let us denote: aα

�

=
�

a0, . . . aN
�T. In the absence of

external forces, Eq. 1 becomes:

fα(x +δtξα, t +δt)
�

− fα(x , t)
�

=Ω
�

fα(x , t)
��

. (5)

Regarding the macroscopic variables of the fluid, Eqs. 2 and 3 become:

ρ =
∑

α

fα , (6)

ρu =
∑

α

fαξα . (7)

It is possible to show, as for instance in [29], that Eqs. 6 and 7 are ex-
act quadratures. This demonstration uses Gauss-Hermite quadratures on the
low Mach number second-order expansion of the Maxwellian equilibrium dis-
tribution function, which is sufficient to derive the Navier-Stokes equation. As
a consequence, mass and momentum conservation are preserved by the nu-
merical scheme. It should be mentioned that the Gaussian quadrature method
does not yield energy conserving models and is therefore only suitable to build
isothermal models.

Besides LBGK, which is also known as single-relaxation-time LBM, numer-
ous alternative models have been proposed over the past years, e.g. multiple-
relaxation-time (MRT) [10], entropic lattice Boltzmann [23], or regularised
lattice Boltzmann [27]. The discussion of the advantages and drawbacks of the
various approaches is beyond the scope of this introduction. It should never-
theless be mentioned that MRT collision operators are implemented in all but
one solver described in the present collection of articles. MRT operators are
explicit, like LBGK operators, and provide increased stability and accuracy at
the cost of a slightly higher arithmetic complexity. An overview of MRT is to be
found e.g. in Art. D, whereas a comprehensive presentation is given in [11].

c. Algorithmic aspects

Like LGA, from an algorithmic standpoint, the LBM consists of an alternation
of collision and propagation steps. The collision step is governed by:

efα(x , t)
�

= fα(x , t)
�

+Ω
�

fα(x , t)
��

, (8)

6In the DmQn notation, m is the spatial dimension and n is the number of velocities including
the rest velocity ξ0.
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(a) D3Q15

(b) D3Q19

(c) D3Q27

Figure 1: Usual velocity sets in 3D LBM. — The D3Q27 stencil links a given
node to its 26 nearest neighbours in the lattice, D3Q15 and D3Q19 are degraded
versions of the former.
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where efα denotes the post-collision particle populations. It is worth noting that
the collision step is purely local to each node. The propagation step is described
by:

fα(x +δt ξα, t +δt)
�

= efα(x , t)
�

, (9)

which reduces to mere data transfer. This two phase process is outlined for the
two-dimensional D2Q9 stencil by Fig. 2.

(a) Pre-collision (b) Post-collision (c) Post-propagation

Figure 2: Collision and propagation. — The nine pre-collision particle popula-
tions of the central cell are drawn in black, whereas the nine post-collision pop-
ulations are drawn in blue. After collision, these populations are advected to the
neighbouring nodes in accordance with the velocity set.

The breaking of Eq. 5 makes the data-parallel nature of LBM obvious. The
LBM is therefore well-suited for massively parallel implementations, provided
the next-neighbours synchronisation constraint is taken care of. The simplest
way to address this issue is to use two instances of the lattice, one for even time
steps and the other for odd time steps. A now commonplace method, known
as grid compression [50], makes possible to save almost half of the memory by
overlaying the two lattices with a diagonal shift of one unit in each direction.
Yet, this technique requires control over the schedule of node updates in order
to enforce data dependency. It does therefore not apply in an asynchronous
execution model.

In a shared memory environment, when using non-overlaid lattices, the
data layout for 3D LBM simulations often reduces to a five-dimensional array:
three dimensions for space, one for velocity indices, and one for time. De-
pending on the target architecture and memory hierarchy, the ordering of the
array may have major impact on performance. The design of the data layout is
therefore a key optimisation phase for HPC implementations of LBM.
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III GPU implementations of the LBM

a. Early implementations

As mentioned in the previous section, data-parallel applications such as the
LBM are usually well-suited for massively parallel hardware. Attempts to im-
plement the LBM for the GPU were made in the very early days of GPGPU,
starting with the contribution of Li et al. in 2003 [28]. At that time, because
of the unavailability of a general purpose programming framework, the parti-
cle distribution had to be stored as a stack of two-dimensional texture arrays.
With this approach, the LBE needs to be translated into rendering operations
of the texturing units and the frame buffer, which is of course extremely awk-
ward and hardware dependent. Beside issues such as the rather low accuracy
of the computations, the authors of [28] had also to face the limited amount
of on-board memory which only made possible very coarse simulations.7 This
work was later extended by Fan et al. in 2004 [14], which describes the first
GPU cluster implementation of the LBM. The authors report a simulation on a
480 × 400 × 80 lattice with 30 GPUs, demonstrating the practical interest of
GPU LBM solvers.

In 2008, Tölke reported the first CUDA implementation of 2D LBM [43],
and later the same year, with Krafczyk, the first CUDA implementation of 3D
LBM [44]. The general implementation principles are the same in both works
and remain, for the most part, valid until today. The authors focus on min-
imising the cost of data transfer between GPU and global memory, since the
target architecture, i.e. the G80, like the later GF100 does not provide cache
for global memory. The following list gives an outline of these principles:

1. Fuse collision and propagation in a single kernel to avoid unnecessary
data transfer.

2. Map the CUDA execution grid to the lattice, i.e. assign one thread to
each lattice node. This approach, by creating a large number of threads,
is likely to take advantage of the massive parallelism of the GPU and to
hide the latency of the global memory.

3. Use an appropriate data layout in order for the global memory transac-
tions issued by the warps to be coalesced whenever possible.

4. Launch the collision and propagation kernel at each time step and use
two instances of the lattice in order to enforce local synchronisation.

The implementations described in [43] and [44] use one-dimensional blocks
of threads and specific two- or three-dimensional arrays for each velocity index.
It should be noted that, because of the constraints on the block size, the size

7The Nvidia GeForce4 used for the implementation has only 128 MB of memory.
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of the lattice along the blocks’ direction is better chosen to be a multiple of the
warp size. Such a set-up allows the memory accesses to be coalesced when
fetching the pre-collision distributions. Yet, special care is taken for the prop-
agation step. Propagation reduces to data shifts along the spatial directions,
including the minor dimension of the distribution arrays. Thus, directly writing
back to global memory leads to memory transactions on non-aligned segments.
With the G80, this would have a dramatic impact on performance, since in this
case memory accesses are serviced individually.

To address the former issue, Tölke proposes to store the particle distribution
within a block in shared memory and to break propagation in two steps. At first,
a partial propagation is performed along the blocks’ direction within shared
memory, then propagation is completed while storing the distribution back to
global memory. Fig. 3 outlines the method (using eight nodes wide blocks
for the sake of clarity). By suppressing shifts along the minor dimension of
the distribution arrays, this approach fully eliminates misalignments for global
memory write accesses during propagation. However, when the blocks do not
span the entire width of the domain, which may occur at least with large two-
dimensional simulations, nodes located at the borders of the blocks but not on
the domain’s boundary need special handling: the particle populations leaving
the block are temporarily stored in the unused places at the opposite border, as
illustrated in Fig. 3b. After the execution of the main kernel, a second kernel is
then needed to reorder the distribution arrays.

(a) General case

(b) Borders of the block

Figure 3: Partial propagation in shared memory. — In the general case, the
relevant particle populations are simply advected along the blocks’ direction. For
the border nodes, the populations leaving the block are stored in the unused array
cells corresponding to the populations entering the block at the opposite border.
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b. Direct propagation schemes

Implementing the LBM for CUDA devices of compute capability 1.0, as the
aforementioned G80, is quite a challenging task because of the constraints in-
duced by hardware limitations on data transfer. The work of Tölke and Krafczyk
achieves this goal in a rather efficient way since the authors report up to 61% of
the maximum sustained throughput in 3D. Transition from compute capability
1.0 to 1.3 significantly decreased the cost of misaligned memory transactions.
For 32-bit word accesses, e.g. single precision floating point numbers, a stride
of one word yields an additional 32 B transaction by half-warp, i.e. a 50%
increase of transferred data. It seems therefore reasonable to consider direct
propagation schemes as alternatives to the shared memory approach. The re-
sults of our experiments are reported in Art. A.

Basic investigations on a GeForce GTX 295 led us to the conclusion that mis-
aligned memory transactions still have noticeable influence on data transfer for
CUDA devices of compute capability 1.3, but that misaligned read accesses are
significantly less expensive than misaligned write accesses. We therefore exper-
imented two alternatives to the elementary out-of-place propagation scheme.
The first one, which we named split scheme, consist in breaking the propaga-
tion in two half-steps as illustrated in Fig. 4. After collision, the updated particle
distributions are advected in global memory in all directions except along the
minor dimension. The remainder of the propagation is carried out before colli-
sion at the next time step. With such a procedure, misalignement occurs only
when loading data.

(a) Initial state (b) Pre-collision (c) Post-collision (d) Final state

Figure 4: Split propagation scheme. — The data transfer corresponding to the
propagation along the minor dimension is represented by the transition between
(a) and (b) whereas the second propagation half-step is represented by the tran-
sition between (c) and (d).

The second alternative propagation scheme is the in-place scheme, also re-
ferred to as reversed scheme in Art. A and B. As shown in Fig. 5, the in-place
scheme consists in reversing collision and propagation. At each time step,
the kernel performs propagation while gathering the local particle distribution
with the appropriate strides. After collision, the updated particle distribution
is stored back in global memory without any shift. As for the split scheme, the
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in-place scheme avoids any misaligned memory transaction when writing data
to global memory.

(a) Initial state (b) Pre-collision (c) Post-collision

Figure 5: In-place propagation scheme. — Post-collision particle populations
from the former time step are gathered to the current node. Collision is then
carried out and the new particle distribution is written back to global memory.

In Art. A, we describe two implementations of 3D LBM; the first one is
based on the split scheme and the LBGK collision operator, and the second
one is based on the in-place scheme and the MRT collision operator. Both
solvers show similar performance with about 500 million lattice node updates
per second (MLUPS) in single precision, the data throughput being over 80% of
the maximum sustained throughput. Hence, communication appears to be the
limiting factor as for the implementation of Tölke and Krafczyk. For 3D simu-
lations, provided no auxiliary kernel is needed, the shared memory approach
is likely to provide even better performance than the split propagation or the
in-place propagation approach. However, these direct propagation schemes are
of genuine practical interest, since they lead to significantly simpler code and
exert less pressure on hardware, leaving the shared memory free for additional
computations as we shall see in the case of thermal simulations.

The performance obtained by CUDA LBM solvers (in single precision) using
a single GPU is more than one order of magnitude higher than the perfor-
mance (in double precision) reported for HPC systems such as the NEC SX6+
or the Cray X1 [49]. Considering furthermore the moderate cost of GPU based
computing devices makes obvious the great potential of GPU LBM solvers for
realistic engineering applications.

c. Global memory access modelling

CUDA implementations of the LBM tend to be communication-bound. Although
some information is given in the CUDA programming guide [33], most of the
data transfer mechanisms between GPU and device memory remain undocu-
mented. Art. B reports the investigations we undertook to gain a better un-
derstanding of these aspects. Our study aims at devising possible optimisation
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strategies for future CUDA LBM implementations, and at providing a perfor-
mance model suitable for a wide range of LBM based simulation programs.

The GT200 GPU we used for our benchmarks is divided into ten texture
processing clusters (TPCs), each containing three SMs. Within a TPC, the SMs
are synchronised and the corresponding hardware counter is accessible via the
CUDA clock() function. We implemented a program able to generate bench-
mark kernels mimicking the data transfer performed by an actual LBM kernel.
At start, the benchmark kernel loads a given number N of registers from global
memory which are afterwards stored back. Several parameters such as the
number of misaligned load or store transactions, or the number k of warps per
SM are tunable. The generated code incorporates appropriate data dependen-
cies in order to avoid aggressive compiler optimisations. The clock() func-
tion is used to measure the durations of both the loading phase and the storing
phase, making possible to evaluate the actual throughput in both directions.

The results reported in Art. B show that the behaviour of the memory in-
terface is not uniform, depending on whether N ≤ 20 or not. In the first case,
we estimate the time to process k warps per SM with T = `+ TR + TW , where
` is the launch time of the last warp, TR is the average read time, and TW is the
average write time. We show that ` only depends on k, and that, for a given
number of misalignments, TR and TW depend linearly on N . The knowledge
of T for the appropriate parameters, makes possible to evaluate the expected
performance P (in MLUPS) of an LBM kernel: P = (K/T )× F , where K is the
global number of active threads and F is the GPU frequency in MHz. Compar-
ing this performance model to actual performance values is useful to evaluate
the opportunity of additional optimisations.
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IV Extensions to the lattice Boltzmann method

a. Hybrid thermal lattice Boltzmann method

Although isothermal fluid flow solvers are of practical interest in building aer-
aulics, it is often desirable to take thermal effects into account. Art. C and G
report our endeavour to implement thermal LBM solvers for the GPU. Usual lat-
tice Boltzmann models such as the D3Q19 MRT fail to conserve energy and nu-
merous attempts to apply the LBM to thermo-hydrodynamics are to be found in
literature. Beside others, one should mention multi-speed models [36], using
larger velocity sets in order to enforce energy conservation, double-population
models [19], using an energy distribution in addition to the particle distribu-
tion, or hybrid models, in which the energy equation is solved by other means
such as finite differences. As shown in [26], both multi-speed models and
double-population models suffer from inherent numerical instabilities. More-
over, from an algorithmic standpoint, both approaches significantly increase
the requirements in global memory as well as the volume of transfered data
which has a direct impact on performance for communication-bound applica-
tions such as GPU LBM solvers.

We therefore chose to implement the hybrid thermal lattice Boltzmann
model described in [26]. The hydrodynamic part is solved using a slightly
modified MRT model in which a temperature coupling term is added to the
equilibrium of the internal energy moment. The temperature T is solved us-
ing a finite difference equation. In the case where the ratio of specific heats
γ= CP/CV is set to γ= 1, this equation may be written as:

∂ ∗t T = κ∆∗T − j · ∇∗T (10)

where j is the momentum, κ is the thermal diffusivity, and where ∂ ∗t , ∆∗, and
∇∗ denote the finite difference operators, the two later using the same stencil
as the associated lattice Boltzmann equation.

The single-GPU implementation of this model, which is described in Art. C,
is derived from our single-GPU D3Q19 MRT solver. We use a two-dimensional
execution grid of one-dimensional blocks spanning the simulation domain in
the x-direction. Processing Eq. 10 for a given node requires to have access
to the nineteen temperatures corresponding to the D3Q19 stencil, but leads
to only one additional store operation for the local temperature. In order to
reduce read redundancy, the kernel fetches at start the temperatures of all the
nodes neighbouring the current block into shared memory. As illustrated by
Fig. 6, each thread is responsible for reading the temperatures of the nodes
sharing the same abscissa. By reducing the amount of additional reads by more
than one half, this approach leads to rather satisfying performance with around
300 MLUPS in single precision using a single Tesla C1060 computing device.

The single-GPU solver described in Art. C and the multi-GPU solver de-
scribed in Art. G were both tested using the differentially heated cubic cavity.
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Figure 6: Read access pattern for temperature. — The nodes associated to the
current block are represented by blue dots. The white background cells stand for
the nodes whose temperature is needed to solve the finite difference equation. The
blue frame represents the zone assigned to a thread for temperature fetching.

For validation purpose, we computed the Nusselt numbers at the isothermal
walls. The obtained values are in good agreement with previously published
results [42, 46]. Using the multi-GPU version, we could perform simulations
for Rayleigh numbers up to 109.

b. Large eddy simulations

Multi-GPU LBM solvers, such as the one described in Art. D and E, make pos-
sible to perform fluid simulations on very large computation domains. When
using a Tyan B7015 server equipped with eight Tesla C1060, each providing
4 GB of memory, a cubic computation domain may be as large as 5763 in single
precision, i.e. contain more than 190 million nodes. Such a fine resolution
allows the Reynolds number of the simulation to be of the order of 103 to 104.
In external building aeraulics, however, the typical Reynolds numbers are of
the order of 106. Because of turbulence phenomena, performing direct numer-
ical simulation for such applications appears therefore to be out of reach at the
present time.

We see that, to be of practical interest in external building aeraulics, LBM
solvers need to incorporate a sub-grid scale model such as large eddy simu-
lation (LES). As a first attempt, we chose to implement the most elementary
LES model, proposed by Smagorinsky in 1963 [40]. The simulation results we
obtained using this extended version of our multi-GPU isothermal LBM solver
are reported in Art. F. In the Smagorinsky model, a turbulent viscosity νt is
added to the molecular viscosity ν0 to obtain the kinematic viscosity ν of the
simulation: ν = ν0+ νt . The turbulent viscosity is given by:

νt = |S| (CSδx)2, |S|=
p

2S : S , (11)

where CS is the Smagorinsky constant, which is usually set to CS = 0.1, and S is
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the strain rate tensor. As shown in [25], the MRT approach has the interesting
feature that the strain rate tensor can be determined directly from the moments
computed when applying the collision operator. The computations being fully
local, the impact on the performance of a communication-bound program such
as our fluid flow solver is negligible.

In Art. F, we report the simulation of the flow around a group of nine wall-
mounted cubes at Reynolds number Re= 106. In order to obtain relevant time-
averaged pressure and velocity fields, the computations were carried out for a
duration of 200T0, where T0 is turn-over time corresponding to the obstacle
size and the inflow velocity. These results could not be validated against exper-
iments, due to the lack of data. However, the overall computation time being
less than eighteen hours, this study demonstrates the feasibility of simulating
the flow around a small group of buildings in reasonable time.

The original Smagorinsky LES model is a rather simplistic turbulence mod-
elling approach with well-known defects such as the inability to fulfil the wall
boundary law [32]. More elaborate methods such as the wall-adapting local
eddy-viscosity (WALE) model proposed in [32] were reported to be suitable
for the LBM [48]. Further investigations seem therefore to be required before
considering using our LBM solver for actual building aeraulics simulations.

c. Interpolated bounce-back boundary conditions

With the LBM, fluid-solid boundaries result in unknown particle populations.
Considering a boundary node, i.e. a fluid node next to at least one solid node,
it is easily seen that the populations, which should be advected from the solid
neighbouring nodes, are undefined. A common way to address this issue is the
simple bounce-back (SBB) boundary condition, which consists in replacing the
unknown populations with the post-collision values at the former time step for
the opposite directions. Let x denote a boundary node, the SBB obeys:

fᾱ(x , t) = efα(x , t −δt) (12)

where fᾱ(x , t) is an unknown particle population and ᾱ is the direction op-
posite to α. As shown in [16], SBB is second-order accurate in space. The
fluid-solid interface is located about half-way between the boundary node and
the solid nodes.

One sees from Eq. 12 that applying SBB to a boundary node is straightfor-
ward, provided the list of solid neighbours is known. Moreover, it should be
noted that the SBB is well-suited not only for straight walls but for any station-
ary obstacle. Because of its versatility and simplicity, we chose SBB for most of
our LBM implementations. We generally use an array of bit-fields to describe
the neighbourhood of the nodes8. This array is set up at start by a specific

8In the case of an empty cavity, the neighbourhood bit-fields are simply determined from the
coordinates in order to avoid global memory accesses.
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kernel, according to the simulation layout. This approach allowed us to easily
implement new test cases, even when complex geometries are involved as in
the nine wall-mounted cubes simulation described in Art. F.

Since the fluid-solid interface has a fixed location, the use of the SBB is
convincing as long as the considered bodies have flat faces parallel to the spatial
directions. A curved boundary or an inclined straight wall leads to stepping
effects that may have an impact on the simulated flow. In order to study these
aspects, we chose to implement an extension to the SBB known as linearly
interpolated bounce-back (LIBB) which takes into account the exact location of
the fluid-solid interface [5].

As illustrated in Fig. 7, the LIBB is based on the determination of a fictitious
particle population entering the boundary node. Two different interpolation
formulae are used, depending on the location of the interface. Keeping the
same notations as in Eq. 12, let q be the number such that x + qδtξα is on the
fluid-solid interface. For q < 1/2,

fᾱ(x , t) = (1− 2q) fα(x , t) + 2q efα(x , t −δt) (13)

and for q ≥ 1/2,

fᾱ(x , t) =
�

1−
1

2q

�

efᾱ(x , t −δt) +
1

2q
efα(x , t −δt). (14)

bc bc bb
A BCDE

(a) q < 1/2

bc bc bb
A BCDE

(b) q ≥ 1/2

Figure 7: Interpolation schemes of the LIBB boundary condition. — In the first
case, the fictitious particle population leaving D and entering A is interpolated
from the post-collision values at E and A. In the second case, the particle population
leaving A ends up at D. The population entering A is interpolated from the post-
propagation values at E and D.
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The LIBB is interesting from an algorithmic standpoint since it can take
advantage from the in-place propagation scheme, thus only slightly increasing
the volume of communications. The details of our implementation strategy are
given in Art. H. This work also reports the results obtained when simulating
the flow past a sphere using either SBB or LIBB. Comparing the Strouhal num-
bers computed from our simulations to experimental results [39, 34] shows
that LIBB improves the stability as well as the accuracy of the vortex shedding
frequency. However, this conclusion does not seem to hold in general. In fur-
ther investigations, yet unpublished, we simulated the flow past an inclined flat
plate. For this test case, we could not see significant differences in the obtained
Strouhal numbers.

The process of validating our approach in the perspective of realistic engi-
neering applications is still at an early stage. Regarding LIBB, additional stud-
ies focusing on possibly more relevant parameters such as the drag coefficient
should be carried out. Moreover, a wide variety of alternative boundary condi-
tions for the LBM is to be found in literature, some of which being well-suited
for efficient GPU implementations,could also be tested. As shown in Art. F
and H, GPU LBM solvers make large scale validation studies possible, and thus
may contribute to evaluate novel modelling strategies.
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V Large scale lattice Boltzmann simulations

a. The TheLMA framework

CUDA, being a recent technology, imposes strong constraints to the program-
mer, mainly induced by hardware limitations. Although this situation has
evolved with the increasing capabilities of the different hardware generations,
as well as the progresses made in the compilation tool-chain, some of the most
acknowledged practices of software engineering, such as library-oriented de-
velopment, are still not relevant. However, our research work led us to develop
multiple versions of our LBM solver, implementing a wide variety of models
and simulation layouts, and targeted for several different hardware configura-
tions. We therefore had to devise an appropriate strategy to enforce both code
reusability and maintainability, which resulted in the design and creation of the
TheLMA framework.

A CUDA program usually consists of a set of CUDA C source files together
with some additional plain C or C++ files. Although it is possible to build a
program from sole CUDA C files, it is in general good practice to split the GPU
related functions from the remainder of the code. In addition to kernels, a
CUDA C source file may contain device functions and host functions. The first
category corresponds to functions that are run by the GPU and may only be
called by CUDA threads, i.e. from within a kernel or another device function. In
practice, most device functions are inlined at compile-time, which restricts their
use to short auxiliary functions9. The second category corresponds to functions
that are run by the CPU and may be called by external C or C++ function as
well as launch kernels using a specific syntax to stipulate the execution grid.
Host device thus provide a convenient way to launch GPU computations from
an external plain C module10.

Up to now, the most severe limitation of the CUDA compilation tool-chain
is the absence of an actual linker11. Consequently, all compilation symbols (e.g.
device functions, device constants. . . ) related to a kernel must lie in the same
compilation unit. A commonplace way to achieve some degree of modularity
consist in using inclusion directives in order to merge separate CUDA source
files into a single one before compilation.

The overall structure of the TheLMA framework is outlined in Fig. 8. It
consists in a set of data structure definitions, C and CUDA C source files. The C
files provide a collection of functions useful to process the configuration param-
eters, initialise the global data structures, post-process the simulation results,

9As of compute capability 2.0, CUDA devices are able to perform actual function calls. How-
ever, inlining is still the default behaviour.

10An alternative way to launch a kernel from an external module consist in using the CUDA
device API, which shares many similarities with the OpenCL API. This approach gives more
control over the low-level details but leads to significantly more complex codes.

11The CUDA 5.0 software development kit, still unreleased at the time of this writing, should
provide such a feature.
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param.c init.c stat.c output.c

main.c

thelma.cu

geometry.cu init.cu compute.cu results.cu

Figure 8: Structure of the TheLMA framework. — The plain arrows symbol-
ise the call dependencies, whereas the dashed arrows represent the inclusion op-
erations performed by the preprocessor in order to provide a single file to the
CUDA compiler.

export data in various formats, or produce graphical outputs. The thelma.cu
file contains some general macro definitions and device functions as well as
the directives to include the other CUDA files. Each of them contains a specific
kernel with the appropriate launching function. The TheLMA framework has
been thought to confine code modifications to definite places in the source tree
when implementing new models or new simulation layouts, thus increasing the
development efficiency.

b. Multi-GPU implementations

The memory shipped with CUDA computing devices reaches up to 6 GB on
recent hardware such as the Tesla C2075. However, this on-board memory is
not extensible. For single precision D3Q19 LBM, such an amount allows the
computation domain to contain as much as 3.7 × 107 nodes, which is fairly
large but might not be sufficient to carry out large scale simulations. To be
of practical interest in many applications, GPU LBM solvers should therefore
be able to run on multiple GPUs in parallel, which implies to address both
communication and partitioning issues.

GPUs communicate with their host system through PCI Express (PCIe) links.
Fermi based devices, for instance, may use up to 16 PCIe 2.0 links in parallel,
which yields a maximum sustained throughput exceeding 3 GB/s in each di-
rection. Although considerable, this performance is limited by non-negligible
latencies. In the case of LBM, the simple approach, which consists in perform-
ing inter-GPU communication through host driven data transfer once kernel
execution has completed, fails to give satisfactory performance [38]. A possi-
ble way to overlap communication and computations would be to process the
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interface nodes using CUDA streams, but this would lead to a rather complex
memory layout and—to our knowledge—no such attempt was ever reported in
literature.

A more convenient method to overlap communication and computations
arose with the introduction of the zero-copy feature, which enables the GPU to
access directly to host memory, but requires the use of page-locked buffers to
avoid interferences with the host operating system. As for global memory trans-
actions, zero-copy transactions are issued per warp (or half-warp, depending
on the compute capability), and should therefore be coalescent. For a multi-
GPU implementation of the LBM using the same execution configuration and
data layout as our generic single-GPU version, the former constraint implies
that efficient data exchange is possible only for nodes located at the faces of
the sub-domain parallel to the blocks’ direction. Implementations based on this
approach are thus limited to one- or two-dimensional domain partitions.

Recent motherboards may hold up to eight GPU computing devices. For
such a small number of sub-domains, the advantages of a 2D partition over a
1D partition are dubious: the volume of transferred data is yet reduced by 43%
in the best case (i.e. the cubic cavity), but the number of sub-domain interfaces
raises from 7 to 10. For single node implementations, we therefore chose to
restrict ourselves to one-dimensional partitioning which greatly simplifies the
code. The isothermal version of our single-node multi-GPU solver is presented
in Art. D and E. The thermal version, for which we had to modify our execution
pattern in order to avoid shared memory shortage, is described in Art. G.

(a) Even time steps

(b) Odd time steps

Figure 9: Inter-GPU communication scheme. — The out-going particle popula-
tions are drawn in blue whereas the in-coming populations are drawn in red. The
arrows represent the data transfer occurring between the global memory of the
two involved GPUs and the host memory.
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Our single-node solvers use POSIX threads to manage each GPU separately.
The implemented inter-GPU communication scheme is outlined in Fig. 9. Each
interface is associated to four page-locked buffers needed to load in-coming
and store out-going particle populations. At each time step, the pointers to the
buffers are swapped. For a cubic cavity, our single-node solvers currently reach
up to 2,000 MLUPS in single precision, using eight Tesla C1060. As mentioned
in Art. E, such performance is comparable to the one achieved on a Blue Gene/P
computer with 4,096 cores by an optimised double precision code. Our studies
in Art. D. and G show that the chosen approach yields good overlapping of
communication and computations, with usually more than 80% parallelisation
efficiency. In Art. E, we furthermore demonstrate that in most cases, even for
fairly small computation domains, inter-GPU communication is not a limiting
factor.

c. GPU cluster implementation

The single node implementation strategy outlined in the former section does
not directly apply to GPU cluster systems. The inability to communicate effi-
ciently using 3D partitions is the major issue. Beside providing increased flex-
ibility, 3D partitioning considerably decreases the volume of communications.
In the case of a cubic computation domain containing n3 nodes and split into
N3 balanced sub-domains, the number of interface nodes is 2(N3−1)n2 for the
1D partition and, with sufficiently large n, is approximately 6(N − 1)n2 for the
3D partition. With N = 4 for instance, the volume of communication is thus
divided by a factor of nearly 7. Moreover, with the possibility of a large number
of sub-domains arises the need for a convenient way to specify the execution
configuration. The MPI CUDA implementation proposed in Art. I attempts to
address both issues.

With our usual data layout and execution pattern, the particle popula-
tions at the interfaces perpendicular to the blocks’ direction would lie in non-
contiguous memory locations. We therefore chose to store these data in auxil-
iary arrays. In order to enable coalesced accesses to these arrays, we use one-
dimensional blocks (containing a single warp) that are not mapped any more
to a single row of nodes, but to a square tile. The execution pattern at block
level is summarised in Fig. 10. Before processing row by row the nodes of the
tile, the in-coming populations from the auxiliary arrays are copied to shared
memory. The resulting out-going populations are temporarily stored in shared
memory and written back once the processing of the node has completed. Such
a method allows the zero-copy transactions to be coalesced for all six possible
interfaces of the sub-domain.

The execution set-up is described by a configuration file in JSON12 format.
Beside providing general parameters, such as the physical parameters of the

12JavaScript Object Notation. This format has the advantage of being both human-readable
and easy to parse.
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Warp

Shared memory Shared memoryTile

Figure 10: Kernel execution pattern. — The current row of nodes is framed
in red, the bold red arrow representing the direction of processing. The in-coming
populations are drawn in red, whereas the out-going ones are drawn in blue. Once
a row has been processed, the out-going post-collision populations are written over
the outdated in-coming ones.

simulation, this file is mainly used to specify for each sub-domain to which
cluster node and GPU it is assigned and to which neighbouring sub-domains
it is linked. A set of MPI routines is responsible for inter-GPU communication.
During kernel execution, the out-going particle population located at the faces
of the sub-domain are written to page-locked buffers using zero-copy transac-
tions. The corresponding MPI process then copies the populations located at
the edges to specific buffers and proceeds with message passing. Once com-
pleted, the receive buffers for faces and edges are gathered into page-locked
read buffers, performing partial propagation at the same time.

We tested our solver on a nine-node cluster, each node hosting three Tesla
M2070 (or M2090) computing devices. Using all 27 GPUs, we recorded up to
10,280 MLUPS in single precision with about 796 million nodes. Our perfor-
mance results compare favourably with recently published works. On a 7683

cavity for instance, we manage, using only 24 GPUs, to outperform the solver
tested on the TSUBAME cluster with 96 GT200 [47]. In Art. I, our studies show
that both weak and strong scalability are quite satisfactory. However, because
of the limited number of sub-domains, further investigations on larger systems
should be carried out. Although fully functional, our code still requires compre-
hensive validation studies, and may benefit from further enhancements. Never-
theless, this GPU cluster implementation of the LBM appears to be a promising
tool to perform very large scale simulations.

26



VI Applications and perspectives

VI Applications and perspectives

The multi-GPU thermal LBM solver described in Art. G, or possibly an exten-
sion to thermal simulations of our recent GPU cluster implementation, could
be a major component for realistic indoor environment simulations as in [45].
However, the requirements in terms of spatial resolution are so high that, even
with the computational power provided by GPUs, direct numerical simulations
are beyond reach. The only practicable way for the time being seems to be
the use of grid refinement together with a turbulence model suited for thermal
LBM. Adding the grid refinement feature to our solvers is therefore of major im-
portance, although it may have a significant impact on performance. Radiative
effects should also be taken into account, especially when simulating low en-
ergy buildings, for which the direct solar contribution is usually considerable.
Several approaches to simulate radiative heat transfers with GPUs are available
and could be coupled to GPU LBM solvers.

Regarding external building aeraulics, the multi-GPU isothermal LES-LBM
solver described in Art. F appears to be a convincing tool for simulating the flow
around a building or even a group of buildings, although alternative boundary
conditions and turbulence models should be tested. It may be useful to evaluate
parameters such as pressure coefficients in various configurations or to carry
out pedestrian wind environment studies. In this perspective, the interfacing
between a geographic information system and the geometry module of the
TheLMA framework would be of great interest. For external thermo-aeraulics,
the situation is even more challenging than for indoor simulations, since at this
level of Reynolds number, the thickness of the viscous sub-layer can go down
to 100 µm [3]. The evaluation of parameters such as convective heat transfer
coefficients may thus require very large computational efforts.

The TheLMA framework has been implemented in order to be as generic
as possible despite of the limitations induced by the CUDA technology. Adapt-
ing it to solve similar schemes such as the recently introduced link-wise artifi-
cial compressibility method [1], or to solve PDEs such as the diffusion or the
Laplace equation [52], should therefore be straightforward. Alternative many-
core processors, e.g. the Intel MIC or the Kalray MPPA, share many similarities
with GPUs, especially regarding data transfer mechanisms. The extension of
our framework to such architectures, although it would probably necessitate to
rewrite large portions of the code [13], should benefit from the general opti-
misation strategies we devised for the GPU implementation of LBM.
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Résumé détaillé

EST-IL POSSIBLE de simuler avec précision le comportement énergétique d’un
bâtiment ? La puissance de calcul considérable offerte par les ordinateurs

actuels laisse à penser que la réponse à cette question est positive. Cela dit, les
bâtiments forment des systèmes complexes interagissants de nombreuses ma-
nières avec leur environnement, à différentes échelles spatiales et temporelles.
Ainsi, effectuer des simulations précises conduit souvent à des temps de calcul
prohibitifs.

La conception des bâtiments à haute efficacité énergétique accroit encore
les besoins en termes de modélisation des transferts de masse et de chaleur
entre l’enveloppe d’un bâtiment et son environnement. La pratique usuelle en
aéraulique des bâtiments est de recourir à des modèles simplifiés empiriques
ou semi-empiriques. Ces approches, néanmoins, ne sauraient fournir davantage
que des indications quant aux grandeurs étudiées.

En ce qui concerne l’aéraulique interne, les modèles nodaux et zonaux sont
également répandus. Dans la première approche, l’air contenu dans une pièce
est représenté par un nœud unique, dans la seconde, le volume correspondant
à une pièce est divisé en cellules de dimensions macroscopiques. Ces méthodes,
dont le coût calculatoire est faible mais qui simulent de larges volumes d’air à
l’aide d’un seul nœud, conduisent souvent à des résultats éloignés des données
expérimentales.

Afin d’atteindre la précision requise, le recours à la mécanique des fluides
numérique (CFD1) en aéraulique des bâtiments semble donc incontournable.
Néanmoins, la simulation numérique des écoulements a souvent un tel coût
calculatoire qu’elle ne saurait être menée à bien sur une station de travail in-
dividuelle. L’accès aux centres de calculs étant limité et coûteux, la mise au
point d’approches alternatives conduisant à des programmes de simulation des
écoulements plus performants est donc un objectif majeur, susceptible d’avoir
des retombées importantes dans de nombreux domaines de l’ingénierie.

Le travail de recherche présenté dans ces pages s’attache à explorer le po-
tentiel lié à l’utilisation de processeurs graphiques (GPU2) pour mener à bien
des simulations en mécanique des fluides numérique basées sur la méthode de
Boltzmann sur gaz réseau (LBM3). Cette méthode, qui constitue une approche
assez récente dans le domaine de la CFD, est bien adaptée au calcul intensif
(HPC4) comme il sera montré plus avant. Ce travail a conduit à la conception
et la création d’une plateforme logicielle nommée TheLMA5. Plusieurs solveurs

1Computational fluid dynamics.
2Graphics processing unit.
3Lattice Boltzmann method.
4High-performance computing.
5Thermal LBM for Many-core Architectures.
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LBM ont été développés à partir de cette plateforme, allant de l’implantation
mono-GPU à celle pour grappe de GPU, et abordant divers aspects tels que la
simulation de fluides anisothermes, la simulation d’écoulements turbulents ou
encore la simulation d’obstacles présentant des géométries complexes.

Le présent résumé est organisé de la façon suivante. La première section
donne une vue d’ensemble des technologies de calcul généraliste sur proces-
seurs graphiques. Dans la deuxième section, une description des principes et
des aspects algorithmiques de la méthode de Boltzmann sur gaz réseau est
donnée. La section III se concentre sur les implantations mono-GPU de la LBM.
La section IV décrit diverses extensions à la LBM essentielles pour envisager
une utilisation en aéraulique des bâtiments. La section V est consacrée aux im-
plantations multi-GPU de la LBM, simple nœud et multi-nœuds. La section VI
apporte une conclusion en donnant un aperçu des applications potentielles de
la plateforme TheLMA à la simulation des bâtiments ainsi que des questions
restant en suspens.

I Calcul généraliste sur processeurs graphiques

Les circuits graphiques sont destinés à soulager le travail du processeur central
en ce qui concerne le rendu graphique. Ces circuits spécialisés sont devenus
courants dans les ordinateurs grand public durant les années 1990. Dans un
premier temps, les accélérateurs graphiques étaient pour l’essentiel des outils
de rastérisation conçus pour déterminer les caractéristiques des pixels à afficher
à partir d’un schéma électronique fixé. Ces circuits étaient donc d’un intérêt
limité en termes de calcul bien que des essais aient été menés dès 1999. C’est
au cours de cette même année que le fabricant Nvidia créa la dénomination
GPU à l’occasion de la sortie de la GeForce 256.

En 2001, Nvidia a introduit une architecture innovante pour la GeForce 3,
basée sur des unités de rendu programmables. Avec cette technologie, le pipe-
line graphique incorpore des shaders, c’est-à-dire des programmes affectés à la
détermination des facettes et des pixels suivant les caractéristiques des scènes à
afficher. À partir de là, il devint possible de considérer les GPU comme des pro-
cesseurs parallèles de type SIMD6. Au départ, les shaders devaient être écrits
dans un assembleur spécifique à l’architecture cible, jusqu’à l’introduction de
langages de haut niveau : HLSL, également connu sous le nom de Cg, lié à
l’API7 graphique Direct3D de Microsoft et GLSL lié à l’API graphique OpenGL.
Ces deux langages utilisent une syntaxe dérivée du C et un paradigme de pro-
grammation centré sur la notion de flux de données : une séquence d’opérations
(le noyau) est effectuée pour chaque élément d’un ensemble de données (le
flux). Ces langages de haut niveau ont largement contribué à élargir le réper-

6Single instruction multiple data.
7Application programming interface.
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toire du calcul généraliste sur processeurs graphiques (GPGPU8). Néanmoins,
le développement d’applications généralistes en Cg ou en GLSL reste délicat de
par l’orientation principalement graphique de ces langages.

Durant la dernière décennie, la puissance de calcul par cœur des proces-
seurs généralistes n’a progressé que très modestement, alors que l’amélioration
de la finesse de gravure des circuits intégrés a permis aux fondeurs de mul-
tiplier le nombre d’unités de rendu graphique des GPU, augmentant d’autant
la puissance de calcul théorique de ces processeurs. Cette situation a conduit
le fabricant Nvidia à considérer le marché du calcul intensif comme une cible
potentielle et à développer une nouvelle technologie baptisée CUDA9. L’arri-
vée de CUDA en 2007 constitue probablement le progrès le plus significatif
dans le domaine du GPGPU à ce jour. Les concepts clefs consistent en un en-
semble de spécifications matérielles génériques liées à un modèle de program-
mation parallèle. CUDA désigne souvent le langage associé à cette technologie
qui dérive du C/C++ (avec quelques restrictions) mettant en œuvre ce mo-
dèle de programmation. Comparé aux technologies antérieures, CUDA apporte
une flexibilité sans précédent pour le développement de logiciels destinés aux
processeurs graphiques, augmentant de fait leur potentiel dans le domaine du
calcul intensif.

Le statut propriétaire de la technologie CUDA est un inconvénient majeur :
seuls les GPU produits par Nvidia sont à même d’exécuter des programmes
CUDA. Le standard OpenCL, diffusé à partir de 2008 suit une approche plus
portable dans la mesure où il se destine à tout type de plateforme. Il est à
noter que le modèle et le langage de programmation OpenCL présentent de
nombreuses similitudes avec leurs équivalents CUDA. Du point vue du calcul
intensif, OpenCL est un standard prometteur susceptible de remplacer CUDA à
l’avenir. Bien qu’énoncées dans le cadre de la technologie CUDA, les contribu-
tions du travail de recherche résumé dans ces pages devraient conserver leur
pertinence avec OpenCL.

Le modèle architectural CUDA repose sur des spécifications matérielles abs-
traites. Un GPU CUDA est décrit comme un ensemble de multiprocesseurs
(SM10), chacun d’entre eux contenant : un ordonnanceur, un groupe de pro-
cesseur scalaires (SP11) disposant de leurs propres registres, ainsi que d’une
mémoire partagée. La quantité de registres et de mémoire partagée par SM est
assez limitée, avec par exemple au plus 64 Ko de mémoire partagée par SM
sur le GF100. Les SM embarquent également de la mémoire cache destinée aux
constantes, textures et, selon les générations de GPU, aux données.

Le modèle d’exécution CUDA, nommé SIMT12 par Nvidia, est relativement
complexe de par le double niveau d’organisation matérielle. Le paradigme de

8General purpose computing on graphics processing units.
9Compute Unified Device Architecture.

10Streaming multiprocessor.
11Scalar processor.
12Single instruction multiple threads.

35



Résumé détaillé

programmation CUDA est centré sur la notion de tâche. Un processus élémen-
taire est désigné par le terme thread, que nous traduirons en fil d’exécution ou
plus simplement fil dans la suite de ce texte, la séquence d’instruction associée
étant nommée noyau. Pour exécuter un noyau, il est nécessaire de spécifier
une grille d’exécution. Une grille consiste en un tableau multidimensionnel de
blocs, qui eux-mêmes sont des tableaux multidimensionnels de fils d’exécution.
Ce schéma à deux niveaux est induit par les caractéristiques architecturales :
un bloc ne peut être traité qu’au sein d’un seul SM ; le nombre de fils figurant
dans un bloc est par conséquent relativement limité.

Les SM pris séparément sont des processeurs de type SIMD, ce qui im-
plique que les fils d’exécution ne sont pas traités de manière autonome, mais
en groupes nommés warp, que nous traduirons par trame13. Pour l’instant, une
trame contient 32 fils quelle que soit l’architecture considérée, mais cette va-
leur n’est pas fixée et est susceptible de changer pour les générations à venir.
Une trame constitue un ensemble insécable, il est donc préférable de faire en
sorte que le nombre de fils dans un bloc soit un multiple de la taille d’une
trame. Cette organisation entraîne de sévères limitations, comme par exemple
pour les branchements conditionnels : lorsqu’un chemin d’exécution diverge au
sein d’une trame, le traitement des branches est séquentiel. Dans de nombreux
cas, déterminer une grille d’exécution adéquate n’est pas trivial, mais peut se
révéler d’une importance cardinale quant aux performances de l’application
considérée.

Les variables automatiques d’un noyau, qui sont spécifiques à chaque fil,
sont stockées autant que possible dans les registres. Les tableaux en général
et les structures de taille trop importante, en revanche, résident en mémoire
locale. Cet espace mémoire, qui sert également aux déchargements de registres,
est hébergé par les circuits de mémoire de la carte de calcul. Les fils d’exécution
ont également accès à la mémoire partagée et à la mémoire globale. La portée et
la durée de vie de la mémoire partagée est limitée au bloc courant. La mémoire
globale, quant à elle, est visible par l’ensemble des fils et persiste durant toute
la durée de l’application. Comme la mémoire locale, elle est hébergée dans
la mémoire externe au GPU qui est la seule accessible au système hôte. Il est
à noter que pour les GPU des générations précédant le Fermi, ni la mémoire
locale ni la mémoire globale ne sont pas associées à un cache.

Les accès à la mémoire globale se font par segments de taille allant de 32 à
128 octets, selon l’architecture. Pour être efficaces, les opérations de lecture et
d’écriture en mémoire globale au sein d’une trame donnée doivent porter sur
des adresses consécutives. L’organisation des données en mémoire est donc un
aspect important pour l’optimisation des applications CUDA.

13Le terme warp appartient au vocabulaire du tissage. Sa traduction exacte en français est
« chaîne ».
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II Principes de la méthode de Boltzmann sur gaz réseau

Les démarches suivies en CFD peuvent dans la plupart des cas être qualifiées de
« descendantes » : un système d’équations aux dérivées partielles non linéaires
est discrétisé et résolu à l’aide d’une méthode d’analyse numérique telle les dif-
férences finies, volumes finis, éléments finis ou encore les approches spectrales.
L’attention se porte en général sur les erreurs de troncature liées à la discréti-
sation. Néanmoins, d’un point de vue physique, la préservation des propriétés
de conservation est essentielle, tout particulièrement pour les simulations de
longue durée où de légères variations peuvent, par accumulation, conduire à
des résultats totalement incorrects.

D’autres approches que l’on pourrait qualifier de « montantes » constituent
des alternatives aux méthodes précédentes. Dans cette catégorie, il convient de
citer la dynamique moléculaire, les automates sur gaz réseau et la méthode de
Boltzmann sur gaz réseau. Alors que la première tente de simuler de la manière
la plus précise possible le comportement individuel de chaque molécule, ce qui
induit un coût calculatoire extrêmement élevé, les deux autres se placent à une
échelle plus importante et sont souvent, de fait, qualifiées de mésoscopiques.

L’équation de Boltzmann décrit le comportement hydrodynamique d’un flui-
de par une fonction de distribution d’une particule dans l’espace des phases,
regroupant la position x et la vitesse particulaire ξ, et le temps :

∂t f + ξ · ∇x f +
F

m
· ∇ξ f =Ω( f ). (1)

Dans l’équation précédente, m désigne la masse de la particule, F est une
force extérieure et Ω correspond à l’opérateur de collision. En trois dimensions,
les grandeurs macroscopiques associées au fluide sont données par :

ρ =

∫

f dξ (2)

ρu =

∫

f ξdξ (3)

ρu2+ 3ρθ =

∫

f ξ2dξ (4)

où ρ désigne la densité du fluide, u sa vitesse et θ est défini par θ = kBT/m
avec T la température absolue et kB la constante de Boltzmann.

La méthode de Boltzmann sur gaz réseau est basée sur une forme discrétisée
de l’équation 1 utilisant un pas de temps constant δt et un maillage orthogonal
régulier de pas δx . Un ensemble fini de vitesses {ξα |α= 0, . . . N} avec ξ0 = 0,
tient lieu d’espace des vitesses particulaires. Cet ensemble, ou stencil, est choisi
de telle sorte que pour un nœud x donné, x + δtξα est également un nœud
quel que soit α. En trois dimensions, le stencil le plus couramment employé
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est nommé D3Q19. Il lie un nœud donné à 18 de ses plus proches voisins et
compte donc 19 éléments en tout.

L’équivalent discret de la fonction de distribution f est un ensemble de den-
sités particulaires { fα |α = 0, . . . N} associées aux vitesses. Notons T l’opéra-
teur de transposition et aα

�

=
�

a0, . . . aN
�T. En l’absence de force extérieure,

l’équation 1 devient :

fα(x +δtξα, t +δt)
�

− fα(x , t)
�

=Ω
�

fα(x , t)
��

. (5)

En ce qui concerne les grandeurs macroscopiques du fluide, les équations 2 et 3
deviennent :

ρ =
∑

α

fα , (6)

ρu =
∑

α

fαξα . (7)

Il convient de mentionner le fait que les modèles LBM les plus couramment
utilisés ne satisfont pas à la conservation de l’énergie. Ils ne sont donc appro-
priés que pour la simulation de fluides isothermes. Un composant essentiel de
ces modèles est l’opérateur de collision utilisé. De nombreuses versions ont été
proposées, parmi lesquelles le LBGK basé sur l’approximation de Bhatnagar–
Gross–Krook, le MRT14 recourant à des temps de relaxation multiples, les opé-
rateurs entropiques ou encore les opérateurs régularisés. L’ensemble des sol-
veurs LBM développés dans le cadre de ce travail de recherche, à l’exception
d’un seul, intègrent l’opérateur MRT, dont une description relativement com-
plète est donnée dans l’article D, entre autres. Par rapport au LBGK, le plus
souvent employé, le MRT apporte une précision et une stabilité plus impor-
tantes au prix d’une complexité arithmétique légèrement supérieure.

D’un point de vue algorithmique, la LBM revient à une succession d’opéra-
tions de collision et de propagation. La phase de collision est décrite par :

efα(x , t)
�

= fα(x , t)
�

+Ω
�

fα(x , t)
��

, (8)

où efα désigne les densités post-collision. Il est à noter que cette étape est pure-
ment locale. La phase de propagation obéit à :

fα(x +δt ξα, t +δt)
�

= efα(x , t)
�

, (9)

ce qui correspond à de simples transferts de données. La partition de l’équa-
tion 5 en deux relations met en lumière le parallélisme de données présent
dans la LBM. Cette approche est donc bien adaptée au calcul intensif sur ar-
chitectures massivement parallèles, le point essentiel étant de garantir la syn-
chronisation des opérations entre voisins immédiats. Le moyen le plus simple

14Multiple relaxation time.
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de gérer cette contrainte consiste à utiliser deux instances des tableaux de don-
nées, une pour les pas de temps pairs et l’autre pour les pas de temps impairs.
Une méthode à présent largement utilisée et nommée compression de grille,
permet de diminuer l’occupation mémoire presque de moitié, mais nécessite
d’avoir le contrôle sur l’ordre de traitement des nœuds. Elle ne s’applique donc
pas dans un contexte d’exécution asynchrone.

Dans le cadre de systèmes à mémoire partagée, l’organisation des données
pour des simulations LBM en trois dimensions se réduit généralement à un
tableau à cinq dimensions : trois pour l’espace, une pour les indices de vitesses
particulaires et une pour le temps. Selon l’architecture cible et la hiérarchie
mémoire, l’ordre des dimensions dans le tableau peut avoir un impact majeur
sur les performances. La conception des structures de données est de fait une
étape essentielle pour l’optimisation des implantations HPC de la LBM.

III Implantations GPU de la LBM

Les premières tentatives d’implanter la LBM sur GPU remontent aux débuts
du calcul généraliste sur GPU en 2003. Aucune plateforme de programmation
généraliste n’étant encore disponible, les densités particulaires devaient être
stockées dans des piles de tableaux bidimensionnels de textures. Avec cette ap-
proche, les calculs associés à l’équation 5 doivent être traduits en opérations
destinées aux unités de rendu graphique, ce qui, à l’évidence, est très contrai-
gnant et dépendant du matériel. La première implantation CUDA de la LBM
en trois dimensions a été décrite par Tölke et Krafczyk en 2008. Les principes
d’implantation proposés demeurent pour l’essentiel valables aujourd’hui. On
retiendra essentiellement :

1. La fusion des étapes de collision et de propagation en un seul noyau pour
éviter les transferts de données inutiles.

2. L’identification de la grille d’exécution CUDA au maillage, c’est-à-dire l’af-
fectation d’un fil d’exécution à chaque nœud. Cette approche, créant un
grand nombre de fils, permet de profiter du parallélisme massif des GPU
et de masquer éventuellement la latence de la mémoire globale en l’ab-
sence de cache.

3. Le recours à une organisation des données permettant aux accès en mé-
moire globale effectués par les trames d’être coalescents.

4. Le lancement du noyau de collision et propagation à chaque pas de temps
et l’utilisation de deux instances des tableaux de données afin de garantir
la synchronisation locale.

Pour leur implantation de la LBM, Tölke et Krafczyk utilisent une grille bidi-
mensionnelle de blocs unidimensionnels et des tableaux de distribution spéci-
fiques à chaque vitesse particulaire. Ce dispositif permet des accès coalescents
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lors de la lecture des densités avant d’opérer la collision. Néanmoins, un soin
particulier doit être apporté à la réalisation de la propagation, qui consiste
en des déplacements de données dans toutes les directions spatiales, y com-
pris celle qui correspond à la dimension mineure des tableaux de distribution.
Ainsi, une écriture directe en mémoire globale induit nécessairement des dé-
fauts d’alignement, ce qui, avec le G80 utilisé alors, a des conséquences dé-
létères sur les performances, dans la mesure où tous les accès mémoire sont
traités individuellement. La solution proposée par Tölke et Krafczyk consiste à
utiliser la mémoire partagée pour opérer une propagation partielle le long des
blocs et d’achever la propagation lors de l’écriture en mémoire globale.

La méthode de la propagation en mémoire partagée, supprimant entière-
ment les défauts d’alignement, semble incontournable pour les implantations
destinées au G80. Pour les générations suivantes en revanche, le coût des dé-
fauts d’alignement est nettement moins conséquent, bien que toujours non né-
gligeable. En ce qui concerne le GT200, par exemple, les accès à la mémoire
globale se font par segments alignés de 32, 64 ou 128 octets, une transac-
tion non alignée étant réalisée en un minimum d’opérations. Il apparaît donc
raisonnable de considérer des approches consistant à effectuer la propagation
directement en mémoire globale. Les résultats de nos recherches à ce sujet sont
consignés dans l’article A.

Quelques investigations élémentaires sur une GeForce GTX 295 nous ont
permis de constater que les défauts d’alignement sont significativement plus
coûteux à l’écriture qu’à la lecture. Nous avons donc testé deux schémas de
propagation alternatifs. Le premier, baptisé schéma scindé, consiste à effectuer
une propagation partielle dans les directions perpendiculaires aux blocs du-
rant la phase d’écriture, puis à compléter cette propagation durant la phase
de lecture du pas de temps suivant. Le second, nommé schéma inversé, revient
à réaliser la propagation durant la phase de lecture, aucun décalage n’étant
effectué lors de l’écriture.

Les implantations de ces deux schémas obtiennent des performances com-
parables, de l’ordre de 500 millions de nœuds traités par seconde (MLUPS15)
en simple précision, soit plus de 80 % du débit maximal effectif entre GPU et
mémoire globale. La méthode de propagation en mémoire partagée est suscep-
tible de mener à des performances encore supérieures à celles obtenues avec
des approches de propagation directe en mémoire globale. Néanmoins, ces der-
nières sont d’un grand intérêt en pratique car elles conduisent à des codes plus
simples et laissent la mémoire partagée vacante, ce qui permet d’envisager une
utilisation pour mener à bien des calculs additionnels comme nous le verrons
plus avant.

Les communications entre GPU et mémoire globale tendent à être le facteur
limitant les performances des solveurs LBM pour CUDA. Bien que quelques in-
formations soient livrées dans le guide de programmation CUDA, l’essentiel des

15Million lattice node updates per second.
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mécanismes de transfert de données demeure non documenté. Afin de gagner
en compréhension dans ce domaine et affiner nos stratégies d’optimisation,
nous avons réalisé un ensemble de bancs d’essais sur l’architecture GT200 dont
les résultats sont rapportés dans l’article B. Ces études nous ont permis d’énon-
cer un modèle pour les communications entre GPU et mémoire globale prenant
en compte divers paramètres comme le nombre de défauts d’alignement éven-
tuels. Du précédent modèle, nous dérivons une estimation de l’optimum de
performance pour les implantations CUDA de la LBM, susceptible de fournir
des indications utiles dans le processus d’optimisation.

IV Extensions à la LBM

En aéraulique des bâtiments, bien que les simulations d’écoulements isothermes
ne soient pas dénuées d’intérêt, il se révèle souvent nécessaire de prendre en
compte les aspects thermiques. Les articles C et G retracent nos tentatives d’im-
plantation de solveurs LBM thermiques sur GPU. Comme nous l’avons déjà
mentionné, les modèles de Boltzmann sur gaz réseau usuels tels le D3Q19 MRT
ne satisfont pas à la conservation de l’énergie. De nombreuses voies ont été ex-
plorées pour appliquer la LBM en thermo-hydrodynamique, parmi lesquelles
il convient de citer les modèles multi-vitesses, utilisant un jeu de vitesses par-
ticulaires agrandi, les modèles à double population, utilisant une distribution
d’énergie en complément de la distribution particulaire, ou encore les modèles
hybrides, pour lesquels l’équation de la chaleur est traitée par une méthode
d’analyse numérique classique.

Notre choix s’est porté sur l’approche hybride développée par Lallemand et
Luo en 2003. Elle repose sur une version légèrement modifiée du D3Q19 MRT,
l’équation de la chaleur étant résolue par une méthode aux différences finies.
Comparée aux modèles multi-vitesses ou double population, l’approche hybride
apporte une stabilité et une précision accrues, tout en présentant un surcoût
réduit en termes de communication. En effet, une seule opération d’écriture
et dix-neuf opérations de lecture supplémentaires par nœud sont nécessaires.
Nos implantations, utilisant la mémoire partagée afin de réduire les accès re-
dondants, parvient à diminuer de plus de moitié le volume additionnel en lec-
ture. Le solveur mono-GPU décrit dans l’article C et le solveur multi-GPU décrit
dans l’article G ont tous deux été testés sur la cavité cubique différentiellement
chauffée. Les nombres de Nusselt calculés aux parois isothermes sont en bon
accord avec les données issues de la littérature. En utilisant la version multi-
GPU, nous avons pu effectuer des simulations pour des nombres de Rayleigh
allant jusqu’à 109.

Les solveurs multi-GPU tels ceux décrits dans les articles D et E permettent
d’effectuer des simulations sur des domaines de calcul de tailles considérables.
Avec un serveur Tyan B7015 équipé de huit Tesla C1060, comportant chacune
4 Go de mémoire vive, il est possible de travailler sur un domaine de calcul
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cubique contenant jusqu’à 5763 nœuds en simple précision, soit plus de 190
millions de nœuds. De telles résolutions permettent d’effectuer des simulations
à des nombres de Reynolds de l’ordre de 103 à 104, selon les cas. Néanmoins,
les valeurs typiquement atteintes en aéraulique externe des bâtiments sont plu-
tôt de l’ordre de 106. À cause des phénomènes de turbulence, réaliser des si-
mulations numériques directes pour de telles applications semble donc hors de
portée pour l’instant.

Ainsi, pour être d’un intérêt pratique en aéraulique externe des bâtiments,
les solveurs LBM doivent intégrer un modèle de sous-maille tel que, par exemple,
la simulation aux grandes échelles (LES16). Afin d’évaluer la faisabilité et la per-
tinence d’une telle démarche, nous avons choisi d’implanter la version la plus
élémentaire de la LES, à savoir le modèle originel proposé par Smagorinsky en
1963. Les résultats des simulations effectuées à l’aide d’une version étendue de
notre solveur multi-GPU isotherme sont présentés dans l’article F. Dans le mo-
dèle de Smagorinsky, une viscosité turbulente obtenue à partir du tenseur des
contraintes est ajoutée à la viscosité moléculaire afin d’obtenir la viscosité ciné-
matique. L’un des intérêts de l’opérateur MRT en l’occurrence est qu’il permet
aisément de retrouver les composantes du tenseur des contraintes. Les calculs
étant purement locaux, l’impact sur les performances est négligeable.

Dans l’article F, nous décrivons la simulation des écoulements au voisinage
d’un groupe de neuf cubes montés sur une paroi pour un nombre de Reynolds
Re = 106. Nous avons déterminé les champs de pression et de vitesse moyens
en intégrant sur un intervalle de temps suffisamment long pour être statistique-
ment pertinent. En l’absence de données expérimentales, ces résultats n’ont pu
être validés. En revanche, le temps de calcul étant inférieur à 18 h, notre étude
démontre la possibilité de simuler les écoulements au voisinage d’un groupe de
bâtiments en un temps raisonnable.

Avec la LBM, l’interface entre fluide et solide conduit à un certain nombre
de densités particulaires indéterminées. En considérant un nœud à l’interface,
c’est-à-dire un nœud fluide ayant au moins un nœud solide pour voisin immé-
diat, il est aisé de voir que les densités qui devraient être propagées depuis les
nœuds solides voisins sont indéfinis. Une manière communément employée de
régler ce problème consiste à utiliser la condition aux limites de simple rebond
(SBB17) qui consiste à remplacer les densités inconnues par les valeurs post-
collision du pas de temps précédent pour les directions opposées. Soit x un
nœud à l’interface, la SBB obéit à :

fᾱ(x , t) = efα(x , t −δt) (10)

où fᾱ(x , t) est une densité particulaire inconnue et ᾱ est la direction opposée
à α. Il est possible de montrer que la SBB est du second ordre en espace et que
la limite entre fluide et solide est située approximativement à mi-chemin entre

16Large eddy simulation.
17Simple bounce-back.
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le nœud à l’interface et le nœud solide. On constate à partir de l’équation 10
que l’application de cette condition aux limites est simple, puisqu’il suffit de
connaître la liste des voisins solides du nœud considéré. La SBB est utilisée
pour la plupart de nos solveurs, le voisinage d’un nœud étant généralement
décrit à l’aide d’un champ de bits. Cette approche nous permet de représenter
aisément des obstacles possédant une géométrie complexe, comme le groupe
de neuf cubes étudié dans l’article F.

Comme la position de l’interface entre fluide et solide est fixée, l’utilisation
de la SBB n’est convaincante que dans le cas où les solides considérés pos-
sèdent des faces planes parallèles aux directions spatiales. Une surface incur-
vée voire une paroi plane inclinée conduisent à des effets de marches d’escalier
qui peuvent avoir un impact non négligeable sur la simulation. Pour tenter de
palier ces effets, nous avons également considéré la condition aux limites de re-
bond linéairement interpolé (LIBB18) qui prend en compte la position exacte de
l’interface entre fluide et solide. Notre implantation met à profit des transferts
de données qui demeurent inexploités avec le schéma de propagation inversé.
Elle se révèle donc relativement efficace puisqu’elle n’accroit que légèrement
la quantité de données à lire. Pour le cas test de l’écoulement autour d’une
sphère, la comparaison avec des données expérimentales montre que la LIBB
apporte une précision et une stabilité supérieures à la SBB en ce qui concerne
la fréquence de détachement des vortex. Cette conclusion ne paraît cependant
pas pouvoir se généraliser ; des simulations récentes et non publiées pour l’ins-
tant, portant sur les écoulements au voisinage d’une plaque plane inclinée, ne
montrent pas de différences significatives entre les deux conditions aux limites.
Des études plus poussées portant sur des paramètres plus pertinents tels que le
coefficient de traînée, ou mettant en œuvre d’autres formes de conditions aux
limites, méritent d’être menées. Comme il est montré dans les articles F et H, les
solveurs LBM sur GPU rendent possibles des campagnes de validation à grande
échelle et peuvent donc contribuer à l’évaluation de stratégies de modélisation
innovantes.

V Simulations LBM à grande échelle

CUDA est une technologie récente qui impose des contraintes fortes au pro-
grammeur, liées principalement à des aspects matériels. Bien que la situation
ait évolué favorablement avec les capacités croissantes des générations succes-
sives de GPU, ainsi que les améliorations apportées à la chaîne de compilation,
de nombreuses pratiques issues l’ingénierie logicielle, tels que le développe-
ment de bibliothèques, ne sont pas pertinentes. Néanmoins, nos travaux nous
ont conduits à la réalisation de nombreuses versions de nos solveurs LBM, cor-
respondant à des modèles physiques et à des configurations très variés. Il en
découle la nécessité de disposer de stratégies appropriées favorisant la réuti-

18Linearly interpolated bounce-back.
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lisation et la maintenance du code existant. Cette situation nous a amenés à
la conception et la création de la plateforme logicielle TheLMA. Elle consiste
en un ensemble cohérent de définitions de structures de données et de fichiers
source C et CUDA. Les fichiers C fournissent une collection de fonctions utili-
taires destinées au traitement des paramètres de configuration, à l’initialisation
des structures de données globales, au traitement des résultats de simulation,
ou encore à la production de sorties graphiques. La partie CUDA de la plate-
forme se divise en plusieurs modules, chacun étant centré sur un noyau aux
attributions spécifiques. La plateforme TheLMA a été conçue pour confiner les
modifications à des endroits bien définis du code source lors de l’implantation
de nouveaux modèles ou la mise en place d’une nouvelle simulation, permet-
tant au développement de gagner en efficacité.

La mémoire vive disponible sur des cartes de calcul récentes comme la Tesla
C2075 atteint jusqu’à 6 Go, mais n’est pas extensible. Pour une simulation LBM
utilisant le stencil D3Q19 en simple précision, une telle quantité permet de sto-
cker des domaines de calcul contenant jusqu’à 3.7× 107 nœuds. Ce nombre,
certes conséquent, peut se révéler insuffisant pour mener à bien des simulations
à grande échelle. Pour avoir une portée pratique, un solveur LBM pour proces-
seurs graphiques doit être en mesure de recourir à plusieurs GPU en parallèle,
ce qui implique de traiter à la fois les problèmes liés à la communication et au
partitionnement. Pour assurer un bon recouvrement des calculs et des échanges
de données entre sous-domaines, nous avons choisi d’utiliser des accès directs
à la mémoire centrale initiés par les processeurs graphiques eux-mêmes durant
l’exécution du noyau. Comme pour les opérations en mémoire globale, ces ac-
cès, pour être efficaces, doivent être coalescents, ce qui n’est pas le cas pour les
faces du sous-domaine perpendiculaires aux blocs. Cette approche ne permet
donc pas d’envisager l’utilisation de partitions tridimensionnelles du domaine
de calcul.

Les cartes mères actuelles sont capables de gérer jusqu’à huit cartes de cal-
cul simultanément. Avec un nombre de sous-domaines aussi faible, les avan-
tages d’une partition bidimensionnelle sont sujets à caution. Notre implantation
multi-GPU simple nœud de la LBM isotherme, décrite dans les articles D et E
se restreint volontairement aux partitions unidimensionnelles, ce qui a pour
effet de simplifier le code. La version thermique, présentée dans l’article G, a
nécessité une refonte partielle du schéma d’exécution habituel pour éviter les
problèmes liés à la pénurie de mémoire partagée. Les performances sont de
l’ordre de 2 000 MLUPS en simple précision en utilisant huit Tesla C1060, ce
qui est comparable aux performances réalisées sur un ordinateur Blue Gene/P
équipé de 4096 cœurs par un code optimisé en double précision. Nos études
montrent que l’efficacité de parallélisation dépasse généralement les 80 % et
que dans la plupart des cas, même pour des domaines de taille modeste, la
communication inter-GPU n’est pas un facteur limitant.

Dès que le nombre de sous-domaines employés devient conséquent, l’utili-
sation d’une partition tridimensionnelle permet de réduire de façon drastique le
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volume des communications. Le procédé d’échange de données employé pour
les versions simple nœud n’est donc pas pertinent pour les implantations de
la LBM sur grappe de GPU. Dans l’article I, nous présentons une nouvelle ap-
proche permettant une communication efficace sur toutes les faces des sous-
domaines. Au lieu d’affecter un fil d’exécution à chaque nœud, nous utilisons
des blocs unidimensionnels contenant une seule trame et associés à des groupes
de nœuds formant une tuile carrée. Le recours à des tableaux auxiliaires permet
d’échanger efficacement des données quelle que soit la direction spatiale consi-
dérée. Notre implantation pour grappe de processeurs graphiques utilise un jeu
de routines MPI19 pour assurer la communication inter-GPU. L’affectation des
sous-domaines aux cartes de calcul de la grappe se fait par l’intermédiaire d’un
fichier de configuration au format JSON20.

Nous avons testé notre solveur sur une grappe de calcul regroupant neuf
nœuds, chacun contenant trois Tesla M2070 (ou M2090). En utilisant 27 GPU,
nous avons pu atteindre 10 280 MLUPS en simple précision sur environ 796
millions de nœuds. Nos résultats en termes de performances dépassent large-
ment ceux, publiés récemment, qui ont été obtenus avec le super-ordinateur
TSUBAME. Nos études montrent que la scalabilité, tant au sens fort qu’au
sens faible, est très satisfaisante, bien que des mesures additionnelles sur des
grappes plus importantes restent à effectuer. Notre solveur LBM pour grappe
de GPU paraît d’ores et déjà constituer un outil prometteur pour la réalisation
de simulations à très grande échelle.

VI Applications et perspectives

Le solveur LBM thermique multi-GPU décrit dans l’article G, ou éventuelle-
ment une extension à la thermique de notre récente implantation sur grappe
de GPU, pourrait être un composant majeur dans la mise en œuvre de simu-
lations réalistes en aéraulique interne. Néanmoins, les contraintes en termes
de résolution spatiale sont si élevées que, même avec la puissance de calcul
apportée par les processeurs graphiques, la simulation numérique directe n’est
pas envisageable. Le seul chemin actuellement praticable semble être l’utilisa-
tion de maillages raffinés couplés à un modèle de turbulence adapté à la LBM
thermique. L’ajout de la prise en charge du raffinement de maillage dans nos
solveurs est donc d’une importance cardinale, quand bien même l’impact sur les
performances pourrait être significatif. Les effets radiatifs devraient eux aussi
être pris en compte, tout particulièrement dans les simulations de bâtiments
à haute efficacité énergétique pour lesquels l’apport solaire est habituellement
considérable. Plusieurs approches permettant de simuler les transferts radiatifs
sur GPU ont été développées et devraient pouvoir être couplées à des solveurs
LBM sur GPU.

19Message Passing Interface.
20JavaScript Object Notation.
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Concernant l’aéraulique externe des bâtiments, le solveur LES-LBM iso-
therme multi-GPU décrit dans l’article F se révèle être un outil convaincant pour
la simulation des écoulements au voisinage d’un bâtiment voire d’un groupe de
bâtiments, quand bien même des conditions aux limites et des modèles de tur-
bulence alternatifs devraient être testés. Il pourrait contribuer à l’évaluation de
paramètres tels que des coefficients de pression pour diverses configurations ou
à la réalisation d’études d’environnement aéraulique urbain. Dans cette pers-
pective, le couplage entre des systèmes d’information géographique et le mo-
dule de géométrie de la plateforme TheLMA serait d’un grand intérêt. En ce
qui concerne la thermo-aéraulique externe, la situation semble d’un abord en-
core plus difficile que dans le cas de simulations internes, étant donné qu’à ce
niveau de nombres de Reynolds, l’épaisseur de la sous-couche visqueuse peut
descendre jusqu’à 100 µm. L’évaluation de paramètres tels que les coefficients
d’échanges convectifs pourrait donc nécessiter des temps de calculs très consé-
quents.

La plateforme TheLMA a été développée de façon à être la plus générique
possible en dépit des limitations induites par la technologie CUDA. Adapter
TheLMA à la résolution de schémas similaires comme la méthode de compressi-
bilité artificielle sur réseau (LW-ACM21) récemment proposée, ou à la résolution
d’équations aux dérivées partielles telles que l’équation de diffusion ou l’équa-
tion de Laplace, ne devrait pas présenter de difficultés majeures. Les architec-
tures massivement parallèles alternatives, comme le MIC d’Intel ou le MMPA
de Kalray, possèdent de nombreux points communs avec les GPU, en particu-
lier en ce qui concerne les mécanismes de transfert de données. L’extension de
notre plateforme à ces processeurs, bien que nécessitant probablement la ré-
écriture de larges parties du code, devrait bénéficier des stratégies générales
d’optimisation mises en place pour l’implantation de la LBM sur processeurs
graphiques.

21Link-wise artificial compressibility method.
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Abstract

Emerging many-core processors, like CUDA capa-
ble nVidia GPUs, are promising platforms for regu-
lar parallel algorithms such as the Lattice Boltzmann
Method (LBM). Since the global memory on graphic
devices shows high latency and LBM is data inten-
sive, the memory access pattern is an important issue
for achieving good performances. Whenever possi-
ble, global memory loads and stores should be co-
alescent and aligned, but the propagation phase in
LBM can lead to frequent misaligned memory ac-
cesses. Most previous CUDA implementations of 3D
LBM addressed this problem by using low latency on
chip shared memory. Instead of this, our CUDA im-
plementation of LBM follows carefully chosen data
transfer schemes in global memory. For the 3D lid-
driven cavity test case, we obtained up to 86% of
the global memory maximal throughput on nVidia’s
GT200. We show that as a consequence highly effi-
cient implementations of LBM on GPUs are possible,
even for complex models.

Keywords: GPU programming, CUDA, Lattice Boltz-
mann method, Parallel computing

1 Introduction

During the last decade, the computational power of
commodity graphics hardware has dramatically in-
creased, as shown in figure 1, nearing 1 GFlop/s with
nVidia’s latest GT200. Yet, one should be aware that
this performance is attainable only for single pre-
cision computations, which are not fully IEEE-754
compliant. Nonetheless, due to their low cost, GPUs

become more and more popular for scientific compu-
tations (see [4, 18] ).

Figure 1: Peak performances GPU vs CPU (source nVidia)

Lattice Boltzmann method, which originates from
the lattice gas automata methods, is an efficient al-
ternative to the numerical solving of Navier-Stokes
equations for simulations of complex fluid systems.
Besides its numerical stability and accuracy, one of
the major advantage of LBM is its data parallel na-
ture. Nevertheless, using LBM for practical purposes
requires large computational power. Thus, several
attempts to implement LBM on GPUs were made re-
cently.

In this paper, we intend to present some optimisa-
tion principles for CUDA programming. These prin-
ciples led us to a GPU implementation of 3D LBM
which appears to be more efficient than the previ-
ously published ones.
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2 CUDA

The Compute Unified Device Architecture (CUDA),
released by nVidia in early 2007, is up to now the
leading technology for general purpose GPU pro-
gramming (see [6] ). It consists of hardware speci-
fications, a specific programming model, and a pro-
gramming environment (API and SDK).

2.1 Architecture

General purpose GPU programming usually requires
to take some architectural aspects into consideration.
CUDA hardware specifications make the optimisation
process easier by providing a general model for the
nVidia GPUs architecture from the G80 generation
on.

Figure 2: CUDA hardware (source nVidia)

Figure 2 shows the main aspects of the CUDA hard-
ware specifications. A GPU consists in several Stream-
ing Multiprocessors (SMs). Each SM contains Scalar
Processors (SPs), an instruction unit, and a shared
memory, concurrently accessible by the SPs through
16 memory banks. Two cached, read-only memories
for constants and textures are also available. The de-
vice memory, usually named global memory is acces-
sible by both the GPU and the CPU. Table 1 specifies

some of the features of the GT200 processor on which
our implementations were tested.

Number of SMs 30

Number of SPs per SM 8

Registers per SM 16,384

Shared Memory 16 KB

Constant Cache 8 KB

Texture Cache 8 KB

Global Memory 896 MB or 1 GB

Table 1: Features of the GT200

SPs are only able to perform single precision com-
putations. From compute capability 1.3 on, CUDA
supports double precision. On this kind of hardware,
each SM is linked to a double precision computation
unit. Both single and double precision calculations
are mostly IEEE-754 compliant. Divergences from
the standard are mainly:

• No denormalized numbers. Numbers with null
exponent are considered as zero.

• Partial support of rounding modes.

• No floating point exception mechanism.

• Multiply-add operations with truncated interme-
diate results.

• Non compliant implementations of some opera-
tions like division or square root.

2.2 Programming

CUDA programming model (see [12] ) relies on the
concept of kernel. A kernel is a function that is exe-
cuted in concurrent threads on the GPU. Threads are
grouped into blocks which in turn form the execution
grid (see figure 3).

The CUDA technology makes use of a slightly mod-
ified version of the C (or C++) language as a pro-
gramming language. The code of a CUDA applica-
tion consists in functions which can be classified in
four categories:

1. Sequential functions run by the CPU.

2. Launching functions allowing the CPU to start a
kernel.
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Figure 3: CUDA programming model (source nVidia)

3. Kernels run by the GPU.

4. Auxiliary functions which are inlined into the
kernels at compile time.

The execution grid’s layout is specified at run time.
A grid may have one or two dimensions. The blocks
of threads within a grid must be identical and may
have up to three dimensions. A thread is identi-
fied in respect of the grid using the two structures
threadIdx and blockIdx, containing the three
fields x, y, and z.

A block may only be executed on a single SM,
which yields to an upper bound of the number of
threads within a block1. Scheduling is carried out
at hardware level and may not be adjusted. It is yet
possible to place synchronisation barriers, but their
scope is limited to blocks. The only way to ensure
global synchronisation is to use a kernel for each step.

The local variables of a kernel are stored in the reg-
isters of the SMs. Their scope is limited to threads
and they cannot be used for communication pur-
poses. Data exchanges between threads require the
use of shared memory. The management of these
exchanges is left to the programmer. It is worth
noting that no protection mechanism is available,

1As of compute capability 1.3, this maximum is 1,024.

hence concurrent writes at the same memory loca-
tion yield unpredictable results. The shared mem-
ory’s scope is limited to blocks. Communication be-
tween threads belonging to different blocks requires
the use of global memory.

3 Optimisation principles

3.1 Computational aspect

Generally speaking, the occupancy rate of the SPs,
i.e. the ratio between the number of threads run and
the maximum number of executable threads, is an
important aspect to take into consideration for the
optimisation of a CUDA kernel. Even though a block
may only be run on a single SM, it is possible however
to execute several blocks concurrently on the same
SM. Hence tuning the execution grid’s layout allows
to increase the occupancy rate. Nevertheless, reach-
ing the maximal occupancy is usually not possible:
the threads executed in parallel on one SM have to
share the available registers. On compute capability
1.3 architectures, for instance, maximal occupancy
is achieved only for kernels using at most 16 regis-
ters, that is to say only the simplest ones. It should
be noted that shared memory, which is rather scarce
too, may also be a limiting factor for the occupancy.

The rather elementary optimisation technique con-
sisting in common sub-expression elimination should
be used with care. As a matter of fact, this method
implies to store the values of these sub-expressions
in temporary variables, thence increasing the use of
registers, which in turn may lead to lower occupancy.
In some cases, this common sense technique has neg-
ative effects, and it may be better to recompute some
values than to store them. Anyway, general princi-
ples regarding this topic are not relevant. Since the
compiler performs aggressive optimisation, the num-
ber of register needed for a given kernel is scarcely
predictable.

The hardware scheduler groups threads in warps
of 32 threads. Though not mandatory, the number of
threads in a block should be a multiple of the warp
size. Whenever a warp is running, all the correspond-
ing threads are executed concurrently by the SPs, ex-
cept when conditional branching occurs. Divergent
branches are executed sequentially by the SM. Even
though serialisation only happens at warp level, con-
ditional structures should be avoided as much as pos-
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sible, being likely to have a major impact on actual
parallelism.

Regarding optimisation, the cost of arithmetic op-
erations (in clock cycles) must also be taken in con-
sideration. Table 2 displays the time needed for a
warp to perform the most common single precision
floating point operations :

Operation Cycles

Add, multiply, multiply-add 4

Reciprocal, logarithm 16

Sine, cosine, exponential 32

Divide 36

Table 2: Cost of floating point operations

It should be noted that, since addition and mul-
tiplication are merged in one single axpy operation
whenever possible, evaluating the actual algorithmic
complexity of a computation is not straightforward.
It’s also worth noting that division is rather expen-
sive and should be used parsimoniously.

3.2 Data transfer aspect

For many applications, memory transactions optimi-
sation appears to be even more important than com-
putations optimisation. Registers do not arise any
specific problem apart from their limited amount.
Shared memory is in terms of speed similar to reg-
ister but is accessed by the SPs through 16 memory
banks. For efficient accesses, each thread in a half-
warp must use a different bank. When this condition
is not met, the transaction is repeated as much as
necessary.

Global memory, being the only one accessible by
both the CPU and the GPU, is a critical path for CUDA
applications. Unlike registers and shared memory,
global memory suffers high latency ranging from 400
to 600 clock cycles. Nonetheless, this latency can be
mostly hidden by the scheduler which stalls inactive
warps until data is available. Furthermore, global
memory throughput is significantly less than register
throughput. For data intensive applications like LBM,
this aspect is generally the limiting factor.

Global memory accesses are performed by half-
warp on 32, 64, or 128 bytes segments whose start
addresses are multiple of the segment’s size. To op-

timise global memory transactions, memory accesses
should be coalesced and aligned whenever possible.
To achieve coalescence, threads within a half-warp
must access contiguous memory locations.

4 Data transfer modelling

In CUDA applications, the execution of a kernel can
generally be split into three steps:

1. Reading data from global memory.

2. Processing data using registers (and possibly
shared memory).

3. Writing processed data to global memory.

Code 1 follows this scheme in the case where the
amount of data read and written are equal. Function
launch_kernel calls function kernel with an exe-
cution grid containing L3 threads. One may notice
some syntactic specificities of the CUDA program-
ming language: the use of the tripled angle brackets
for kernel invocation, the __global__ keyword for
kernel definition, the __device__ keyword for aux-
iliary functions. The kernel performs the reading and
writing of N 32-bit words. The second step is simplis-
tic, though not suppressed in order to ensure actual
data transfer to the GPU. Global memory accesses are
optimal, provided L is set to an appropriate value. In
the present study, L = 128 was chosen.

Measuring the execution time of the
launch_kernel function enables us to esti-
mate the average time T for data transfer between
GPU and global memory relatively to the amount N
of data exchanged. Figure 4 shows the results for
one warp with T in nanoseconds and N in 32-bit
words, obtained using a GeForce GTX 295 graphics
board.

The quasi-linear aspect of these measurements re-
veals that, in ideal cases, the hardware scheduler is
able to hide the latency of global memory. Numeri-
cally, we obtain:

T ≈ 2.78× N + 0.99 (1)

The average throughput is almost constant rela-
tively to N and is about 90.7 GB/s for the GeForce
GTX 295. Reckoning the characteristics of the bench-
mark program, we consider the obtained value as the
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#define id(j, k) k + SIZE*(j)

__device__ int index(void)
{

int x = threadIdx.x;
int y = blockIdx.x;
int z = blockIdx.y;
return x + y*L + z*L2;

}

__global__ void kernel(int N, float* t)
{

int k = index();

for (int j = 0; j <= N; j++)
{

t[id(j+1, k)] = t[id(j, k)]*0.5;
}

}

extern "C" void launch_kernel(int N, float* t)
{

dim3 grid(L, L);
dim3 block(L);

kernel<<<grid, block>>>(N, t);
cudaThreadSynchronize();

}

Code 1: Data transfer benchmark kernel
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Figure 4: Average transfer time

effective maximal throughput for data transfer be-
tween GPU and global memory. This upper bound
is useful in evaluating the performances of a CUDA
application leaving aside the hardware in use. The
obtained value is about 81% of the theoretical max-

imal throughput, which is comparable to the result
found in [19].

On the same hardware, the bandwidthTest pro-
gram from the CUDA SDK gives 91.3 GB/s, which
is rather close to the value we obtained. Yet, this
program uses only memory copy functions instead of
a kernel, hence yielding less relevant results from a
practical standpoint.

5 Lattice Boltzmann Method

The lattice Boltzmann method is based on a threefold
discretisation of the Boltzmann equation: time, space
and velocity (see [10] ). Velocity space reduces to a
finite set of well chosen velocities {ei | i = 0, . . . N}
where e0 = 0. Figure 5 illustrates the D3Q19 stencil
we used.
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Figure 5: The D3Q19 stencil

Instead of reviewing the well-known Lattice
Bhatnagar-Gross-Krook (LBGK) model (see [15] ),
we will outline the Multiple Relaxation Time model
presented in [3]. The analogous of the one-particule
distribution function f is a set of N+1 mass fractions
fi . We denote:

�

� f (x, t)
�

=
�

f0(x, t), . . . fN (x, t)
�T

for given lattice node x and time t, T being the trans-
pose operator. The mass fractions can be mapped to
a set of moments {mi | i = 0, . . . N} by an invertible
matrix M as follows:
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�

� f (x, t)
�

=M−1
�

�m(x, t)
�

(2)

where
�

�m(x, t)
�

is the moment vector. With the
D3Q19 stencil, the density is ρ = m0, the momen-
tum is j = (m3, m5, m7). Higher order moments as
well as matrix M are given in detail in [3, app. A].
Using these notations, the lattice Boltzmann equation
can be written as:

�

� f (x+δtei , t +δt)
�

−
�

� f (x, t)
�

=

M−1S
��

�m(x, t)
�

−
�

�m(eq)(x, t)
�

�

(3)

where
�

�m(eq)(x, t)
�

is the equilibrium-moment vector
and:

S= diag(s0, . . . sN )

is the relaxation rates matrix. The LBGK model is a
special case of MRT where all relaxation rates si =
1/τ. In a numerical point of view, MRT should be
preferred to LBGK, being more stable and accurate.

6 Previous Work

Data organisation schemes for LBM are mainly of
two kinds. First, the Array of Structures (AoS) type,
which for D3Q19 is equivalent to a L3×19 array. Sec-
ond, the Structure of Arrays (SoA) type, which for
D3Q19 is equivalent to a 19× L3 array. For CPU im-
plementations of the LBM, the AoS is relevant insofar
as it improves the locality of mass fractions associ-
ated to a same node (see [14] ). Up to now, for all
GPU implementations of LBM, a thread is allocated to
each lattice node, which is probably the simplest way
to take advantage of the massively parallel structure
of the GPU. With this approach, ensuring coalescence
of global memory accesses requires to use a SoA kind
of organisation.

With values of L divisible by 16, every mass frac-
tions associated to a half-wrap lay in a same segment
of global memory. Yet, this is not sufficient to en-
sure optimal memory transaction. Indeed, for the
minor spatial dimension, propagation corresponds to
one unit shifts of memory addresses. In other words,
for most mass fractions, propagation phase leads to
misalignments. Getting round this problem was up to
now the main issue regarding GPU implementations
of the LBM.

The first attempt of implementing a D3Q19 model
using CUDA is due to Ryoo et al. (see [16] ). It con-
sists mainly in a port of the 470.lbm code from the
SPEC CPU2006 benchmark (see [7] ). In terms of op-
timisation, switching from AoS to SoA is the only im-
portant modification undertaken. To the best of our
knowledge, misalignment problems caused by prop-
agation are not taken into consideration. The an-
nounced speed-up factor of 12.3 is rather low com-
pared to subsequent results.

The two-dimensional D2Q9 implementation sub-
mitted by Tölke in [19] solves the misalignment prob-
lems using one-dimensional blocks and shared mem-
ory. More precisely, propagation within one block is
split in two steps: a longitudinal shift in shared mem-
ory followed by a lateral shift in global memory. This
approach is outlined in figure 6.

Figure 6: Propagation using shared memory

Since blocks follow the minor dimension, no more
misalignment arises. Nevertheless, because of the
limited scope of shared memory, mass fractions leav-
ing or entering a block require specific handling. The
retained solution is to store out-coming mass frac-
tions in places temporarily left vacant by in coming
mass fractions (see figure 7).

A drawback of the shared memory approach is con-
sequently the need for a second kernel exchanging
data in order to place properly mass fractions located
at the blocks’ boundaries. Obviously, this further pro-
cessing has a non negligible cost.

Following the same method than Tölke, Habich
in [5] describes an implementation of a D3Q19
model. The transition from D2Q9 to D3Q19 leads
to lower performances, achieving only 51% of the
effective maximal throughput. Habich assumes this
decrease is due to the low occupancy rate. As a mat-
ter of fact, given the limited amount of registers, the
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Figure 7: Storage of out-coming mass fractions

number of threads run in parallel on a SP cannot ex-
ceed one or two warps.

This point of view is probably erroneous as we
shall see subsequently. The lower performances seem
more likely due to the increase of the execution time
of the second kernel, since there is dramatically more
data to exchange than for two-dimensional LBM. As
an example, for D2Q9 on a 2,0482 grid with 128
threads per block, there are 2,048×16×6= 196,608
mass fractions to move. For D3Q19, on a 1603 grid
with 32 threads per block, there are 1602× 5× 14=
1,792,000 mass fractions to move. Relatively to the
number of nodes, the ratio is about 9.3.

A way to obtain better performances for three-
dimensional LBM consists in using stencils contain-
ing less mass fractions, like D3Q13. This approach
was studied by Tölke and Krafczyk in [20], obtain-
ing 61% of the effective maximal throughput. The
D3Q13 stencil, which corresponds to the points of
contact in a close-packing of spheres, is the simplest
three-dimensional structure sufficiently isotropic for
LBM. Yet, due to the lesser amount of information
processed, D3Q13 is less accurate than D3Q19. Fur-
thermore, node addressing becomes quite complex.

Bailey et al. in [2] announce a 20% improvement
of maximal performances for their implementation of
D3Q19 compared to those published in [5]. The de-
scription of the tested optimisations is not very ex-
plicit, but it seems that the main intention was to
increase occupancy. One of the proposed technique
consists in imposing at compile time an upper bound
to the number of registers used by the computation
kernel. Of course this directive causes the compiler to
fall back on register spilling. Taking the cost of global
memory accesses into account, we consider this ap-
proach as not relevant.

7 Proposed Implementations

All but one CUDA implementations of LBM men-
tioned in the former section use shared memory for
propagation. As formerly outlined, this approach
imposes the use of a second kernel taking care of
the mass fractions crossing the blocks’ boundaries.
Though rather basic, the CUDA profiler allows to
gather some informations during kernel run time
(see [13] ). Concerning LBM, this tool led us to make
two assumptions:

1. The additional cost caused by misalignment has
the same order of magnitude than the one
caused by the exchange kernel.

2. The cost of a misaligned read is less than the cost
of a misaligned write.

Hence we adopted the following approach for our
implementations of D3Q19:

• SoA type of data organisation.

• One-dimensional blocks following the minor di-
mension.

• Propagation performed by global memory trans-
actions.

• Deferment of misalignment on reading.

We experimented two propagation schemes: a split
scheme and a reversed scheme. The split scheme
was tested with a LBGK model and on-grid bound-
ary conditions. The reversed scheme was tested with
a MRT model and mid-grid boundary conditions. To
ease cross platform development, we employed the
CMake build system (see [9] ). Moreover, we used
the XML based VTK format for output (see [17] ).

7.1 Split scheme

With the split scheme, propagation is parted in two
components: shifts that induce misalignment are per-
formed at reading, the others are performed at writ-
ing, as outlined in figure 8. For the sake of simplicity,
the diagram shows the two-dimensional case.

Boundary conditions are implemented using on-
grid bounce back: nodes at the cavity’s borders, ex-
cept the lid, are considered as solid and simply return
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Figure 8: Split propagation scheme

the in-coming mass fractions in the opposite direc-
tion.

To summarise, the corresponding kernel breaks up
into:

1. Reading along with propagation in minor di-
mension.

2. On-grid bounce back boundary conditions.

3. Computations using LBGK model.

4. Writing along with propagation in major dimen-
sions.

7.2 Reversed scheme

With reversed scheme, propagation is entirely per-
formed at reading, as outlined in figure 9. Again, the
diagram shows the two-dimensional case only.

Figure 9: Reversed propagation scheme

Boundary conditions are implemented using mid-
grid bounce back: nodes at the cavity’s borders, ex-
cept the lid, are considered as fluid with null velocity.
Unknown mass fractions are determined using:

fi − f eq
i = f j − f eq

j (4)

whith i and j such that ei =−e j (see [21] ). For null
velocity, f eq

i = f eq
j . Hence the former equation yields

fi = f j .
To summarise, the corresponding kernel breaks up

into:

1. Reading carrying out propagation.

2. Mid-grid bounce back boundary conditions.

3. Computations using MRT model.

4. Writing without propagation.

8 Results

8.1 Validation

Numerical validation is an important issue in GPU
computing, since most calculations are performed
using single precision. This topic being thoroughly
studied for GPU implementations of LBM in [8], we
will rather focus on physical validation. We used
the well-known lid-driven cavity test case, compar-
ing velocity coordinates with results published by Al-
bensoeder and Kuhlmann in [1]. More precisely, for
velocity u(u, v, w), we gathered u on line x = L/2
and y = L/2, as well as w on line z = L/2 and
y = L/2. For Reynolds number Re = 1,000, our
LBGK code outcomes are in quite good accordance
with the reference values. Not surprisingly, the MRT
implementation achieves almost perfect correspon-
dence as shown in figure 10.

8.2 Performances

Binaries for nVidia GPUs are generated through a two
stages process (see [11] ). First, the nvopencc pro-
gram compiles CUDA code into Parallel Thread eXe-
cution (PTX) pseudo assembly language. Second, the
ocg assembler translates the PTX code into actual
binary. Analysing PTX outputs allows to enumerate
the floating point operations in a kernel and thence
to evaluate the actual algorithmic complexity of the
computations. Table 3 assembles the obtained results
for both the LBGK and the MRT kernels (rcp stands
for reciprocal, mad for multiply-add).
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Figure 10: Validation for Re= 1,000

add sub mul div rcp mad cycles

LBGK 63 30 48 0 1 34 716

MRT 76 80 51 0 0 18 900

Table 3: Algorithmic complexity of LBGK and MRT
kernels

Though being more complex than LBGK, MRT has
almost the same computational cost. It is worth not-
ing that this cost is of the same order of magnitude
than one single global memory transaction, that is to
say 400 to 600 cycles. Thus, taking the hardware
scheduler into account, the impact of computations
on global processing time is negligible. Most of the
execution time of our kernels is consumed by data
transfer, the remaining being probably induced by
scheduling. In terms of optimisation, increasing the
occupancy rate of the SMs is not especially crucial.

The former opinion is supported by the analysis
of the performances of our implementations. Mil-
lion Lattice node Updates Per Second (MLUPS) is the
usual unit for performance measurement in LBM. For
both implementations, memory addressing is analo-
gous to the one used in code 1. Therefore, the size
of the blocks corresponds to the size of the cavity.
Tables 4 and 5 show the obtained performances on

a Debian GNU/Linux 5.0 workstation fitted with a
GeForce GTX 295 graphics card.

643 963 1283 1603

Performance (MLUPS) 471 512 481 482

Ratio to max. throughput 79% 86% 81% 81%

Occupancy rate 31% 19% 25% 16%

Table 4: Performances for LBGK

643 963 1283 1603

Performance (MLUPS) 484 513 516 503

Ratio to max. throughput 81% 86% 86% 84%

Occupancy rate 25% 19% 25% 16%

Table 5: Performances for MRT

One may notice that the data transfer rate is rather
close to maximum. Global memory throughput is
presently the limiting factor for LBM computations
on GPU. Moreover, it is worth mentioning that these
satisfactory performances are achieved with quite
low SM occupancy.

Confronting the obtained performances to pub-
lished results corroborates our approach. Depend-
ing on the size of the cavity, we observe 2× to 3×
speed-up compared to the performances mentioned
in [5, 2]. Yet these studies were led on GeForce
8800 GTX graphics cards, which belong to the pre-
vious generation though being comparable to the
hardware we used in terms of memory throughput.
Therefore, these comparisons should be considered
with care, and we additionally compared a D2Q9 ver-
sion of our code to the one published in [19] on the
GTX 295 obtaining a 15% betterment of the perfor-
mances.

9 Summary

The present study proposes a model for data transfer
on the latest generation of nVidia GPUs. Optimisa-
tion principles, leading to efficient implementations
of 3D LBM on GPUs, are drawn as well. We state the
impact of global memory transfer as the main limit-
ing factor for now. Our implementations achieved up
to 86% of the effective maximal throughput of global
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memory. On the 3D lid-driven cavity test case, we ob-
tained 2× to 3× speed-up over previously published
implementations. Moreover, we show that, compared
to LBGK, the more stable and accurate MRT, despite
its higher computational cost, yields equivalent per-
formances on GPUs. Our approach, being simpler
than the previous ones, exerts less pressure on hard-
ware. Hence, our method will allow to implement
more complex models in the near future.
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Abstract

In this work, we investigate the global memory ac-
cess mechanism on recent GPUs. For the purpose of
this study, we created specific benchmark programs,
which allowed us to explore the scheduling of global
memory transactions. Thus, we formulate a model
capable of estimating the execution time for a large
class of applications. Our main goal is to facilitate
optimisation of regular data-parallel applications on
GPUs. As an example, we finally describe our CUDA
implementations of LBM flow solvers on which our
model was able to estimate performance with less
than 5% relative error.

Keywords: GPU computing, CUDA, lattice Boltz-
mann method, CFD

Introduction

State-of-the-art graphics processing units (GPU) have
proven to be extremely efficient on regular data-
parallel algorithms [3]. For many of these applica-
tions, like lattice Boltzmann method (LBM) fluid flow
solvers, the computational cost is entirely hidden by
global memory access. The present study intends to
give some insight on the global memory access mech-
anism of the nVidia’s GT200 GPU. The obtained re-
sults led us to optimisation elements which we used
for our implementations of the LBM.

The structure of this paper is as follows. First, we
briefly review nVidia’s compute unified device archi-
tecture (CUDA) technology and the algorithmic as-
pects of the LBM. Then, we describe our measure-

ment methodology and results. To conclude, we
present our CUDA implementations of the LBM.

1 Compute Unified Device Archi-
tecture

CUDA capable GPUs, i.e. the G8x, G9x, and GT200
processors consist in a variable amount of texture
processor clusters (TPC) containing two (G8x, G9x)
or three (GT200) streaming multiprocessors (SM),
texture units and caches [6]. Each SM contains eight
scalar processors (SP), two special functions units
(SFU), a register file, and shared memory. Regis-
ters and shared memory are fast but in rather lim-
ited amount, e.g. 64 KB and 16 KB per SM for the
GT200. On the other hand, the off-chip global mem-
ory is large but suffers from high latency and low
throughput compared to registers or shared memory.

The CUDA programming language is an extension
to C/C++. Functions intended for GPU execution
are named kernels, which are invoked on an execu-
tion grid specified at runtime. The execution grid is
formed of blocks of threads. The blocks may have up
to three dimensions, the grid two. During execution,
blocks are dispatched to the SMs and split into warps
of 32 threads.

CUDA implementations of data intensive applica-
tions are usually bound by global memory through-
put. Hence, to achieve optimal efficiency, the number
of global memory transactions should be minimal.
Global memory transactions within a half-warp are
coalesced into a single memory access whenever all
the requested addresses lie in the same aligned seg-
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ment of size 32, 64, or 128 bytes. Thus, improving
the data access pattern of a CUDA application may
dramatically increase performance.

2 Lattice Boltzmann Method

The Lattice Boltzmann Method is a rather innovative
approach in computational fluid dynamics [5, 11, 2].
It is proven to be a valid alternative to the numeri-
cal integration of the Navier-Stockes equations. With
the LBM, space is usually represented by a regular
lattice. The physical behaviour of the simulated fluid
is determined by a finite set of mass fractions associ-
ated to each node. From an algorithmic standpoint,
the LBM may be summarised as:

for each time step do
for each lattice node do

if boundary node then
apply boundary conditions

end if
compute new mass fractions
propagate to neighbouring nodes

end for
end for

The propagation phase follows some specific sten-
cil. Figure 1 illustrates D3Q19, the most commonly
used three-dimensional stencil, in which each node is
linked to 18 of its 27 immediate neighbours.1

Figure 1: The D3Q19 stencil

1Taking the stationary mass fraction into account, the number
of mass fractions per node amounts to 19, hence D3Q19.

CUDA implementations of the LBM may take ad-
vantage of its inherent data parallelism by assign-
ing a thread to each node, the data being stored
in global memory. Since there is no efficient global
synchronisation barrier, a kernel has to be invoked
for each time step [12]. CPU implementations of
the LBM usually adopt an array of structures (AoS)
data layout, which improves locality of mass frac-
tions belonging to a same node [10]. On the other
hand, CUDA implementations benefit from structure
of arrays (SoA) data layouts, which allows coalesced
global memory accesses [4]. However, this approach
is not sufficient to ensure optimal memory trans-
actions, since propagation corresponds to one unit
shifts of global memory addresses for the minor spa-
tial dimension. In other words, for most mass frac-
tions, the propagation phase yields misalignments. A
way to solve this issue consists in performing prop-
agation partially in shared memory [13]. Yet, as
shown in [7], this approach is less efficient than us-
ing carefully chosen propagation schemes in global
memory.

3 Methodology

To study transactions between global memory and
registers, we used kernels performing the following
operations :

1. Store time t0 in a register.

2. Read N words from global memory, with possi-
bly L misalignments.

3. Store time t1 in a register.

4. Write N words to global memory, with possibly
M misalignments.

5. Store time t2 in a register.

6. Write t2 to global memory.

Time is accurately determined using the CUDA
clock() function which gives access to counters
that are incremented at each clock cycle. Our ob-
servations enabled us to confirm that these counters
are per TPC, as described in [8], and not per SM as
stated in [6]. Step 6 may influence the timings, but
we shall see that it can be neglected under certain
circumstances.
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The parameters of our measurements are N , L, M ,
and k, the number of warps concurrently assigned
to each SM. Number k is proportional to the occu-
pancy rate α, which is the ratio of active warps to the
maximum number of warps supported on one SM.
With the GT200, this maximum number being 32, we
have: k = 32α.

We used a one-dimensional grid and one-
dimensional blocks containing one single warp. Since
the maximum number of blocks supported on one SM
is 8, the occupancy rate is limited to 25%. Nonethe-
less, this rate is equivalent to the one obtained with
actual CUDA applications.

We chose to create a script generating the ker-
nels rather than using runtime parameters and loops,
since the layout of the obtained code is closer to the
one of actual computation kernels. We processed the
CUDA binaries using decuda [14] to check whether
the compiler had reliably translated our code. We
carried out our measurements on a GeForce GTX 295
graphics board, featuring two GT200 processors.2

4 Modelling

At kernel launch, blocks are dispatched to the TPCs
one by one up to k blocks per SM [1]. Since
the GT200 contains ten TPCs, blocks assigned to
the same TPC have identical blockIdx.x unit
digit. This enables to extract information about the
scheduling of global memory access at TPC level. In
order to compare the measurements, as the clock reg-
isters are peculiar to each TPC [8], we shifted the
origin of the time scale to the minimal t0. We no-
ticed that the obtained timings are coherent on each
of the TPCs.

For a number of words read and written N ≤ 20,
we observed that:

• Reads and writes are performed in one stage,
hence storing of t2 has no noticeable influence.

• Warps 0 to 8 are launched at once (in a deter-
mined but apparently incoherent order).

• Subsequent warps are launched one after the
other every ∼ 63 clock cycles.

2In the CUDA environment, the GPUs of the GTX 295 are con-
sidered as two distinct devices. It should be noted that our bench-
mark programs involve only one of those devices.

For N > 20, reads and writes are performed in two
stages. One can infer the following behaviour: if the
first n warps in a SM read at least 4,096 words, where
n ∈ {4, 5, 6}, then the processing of the subsequent
warps is postponed. The number of words read by
the first n warps being n×32N , this occurs whenever
n × N ≥ 128. Hence, n = 4 yields N ≥ 32, n = 5
yields N ≥ 26, and n= 6 yields N ≥ 21.

Time t0 for the first 3n warps of a TPC follow
the same pattern as in the first case. We also no-
ticed a slight overlapping of the two stages, all the
more as storing t2 should here be taken into account.
Nonetheless, the read time for the first warp in the
second stage is noticeably larger than for the next
ones. Therefore, we may consider, as a first approx-
imation, that the two stages are performed sequen-
tially.

In the targeted applications, the global amount
of threads is very large. Moreover, when a set of
blocks is assigned to the SMs, the scheduler waits
until all blocks are completed before providing new
ones. Hence, knowing the average processing time
T of k warps per SM allows to estimate the global
execution time.

For N ≤ 20, we have T = `+ TR + TW , where ` is
time t0 for the last launched warp, TR is read time,
and TW is write time. Time ` only depends on k. For
N > 20, we have T = T0+`′+T ′R+T ′W , where T0 is the
processing time of the first stage, `′(i) = `(i−3n+9)
with i = 3k− 1, T ′R and T ′W are read and write times
for the second stage.

Figure 2: Launch delay in respect of warp rank

To estimate `, we averaged t0 over a large number
of warps. Figure 2 shows, in increasing order, the
obtained times in cycles. Numerically, we have `(i)≈
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0 for i ≤ 9 and `(i)≈ 63(i− 10) + 13 otherwise.

5 Throughput

5.1 N ≤ 20

Figures 3 and 4 show the distribution of read and
write times for 96,000 warps with N = 19. The bi-
modal shape of the read time distribution is due to
translation look-aside buffer (TLB) misses [15]. This
aspect is reduced when adding misalignments, since
the number of transactions increases while the num-
ber of misses remains constant. Using the average
read time to approximate T is acceptable provided
no special care is taken to avoid TLB misses.

Figure 3: Read time for N = 19

Figure 4: Write time for N = 19

We observed that average read and write times de-
pend linearly of N . Numerically, with k = 8, we ob-
tained:

TR ≈ 317(N −4)+440 TW ≈ 562(N −4)+1,178

TR′ ≈ 575(N−4)+291 TW ′ ≈ 983(N−4)+2,030

where TR′ and TW ′ are read and write times with
L = N and M = N misalignments. Hence, we see that
writes are more expensive than reads. Likewise, mis-
alignments in writes are more expensive than mis-
alignments in reads.

5.2 21≤ N ≤ 39

As shown in figures 5 and 6, T0, T ′R, and T ′W de-
pend linearly of N in the three intervals {21, . . . 25},
{26, . . . 32}, and {33, . . . 39}. As an example, for the
third interval, we obtain:

T0 ≈ 565(N − 32) + 15,164

T ′R ≈ 112(N−32)+2,540 T ′W ≈ 126(N−32)+3,988

Figure 5: First stage duration

Figure 6: Timings in second stage
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5.3 Complementary studies

We also investigated the impact of misalignments and
occupancy rate on average read and write times. Fig-
ures 7 and 8 show obtained results for N = 19.

Figure 7: Misaligned reads

For misaligned reads, we observe that the average
write time remains approximatively constant. Read
time increases linearly with the number of misalign-
ments until some threshold is reached. From then on,
the average read time is maximal. Similar conclusion
can be drawn for misaligned writes.

Figure 8: Occupancy impact

Average read and write times seem to depend
quadratically on k. Since the amount of data trans-
ferred depends only linearly on k, this leads to think
that the scheduling cost of each warp is itself propor-
tional to k.

6 Implementations

We implemented several LBM fluid flow solvers: a
D3Q19 LBGK [11], a D3Q19 MRT [2], and a dou-
ble population thermal model requiring 39 words per
node [9]. Our global memory access study lead us to
multiple optimisations. For each implementation, we
used a SoA like data layout, and a two-dimensional
grid of one-dimensional blocks. Since misaligned
writes are more expensive than misaligned reads, we
experimented several propagation schemes in which
misalignments are deferred to the read phase of the
next time step. The most efficient appears to be
the reversed scheme where propagation is entirely
performed at reading, as outlined in figure 9. For
the sake of simplicity, the diagram shows a two-
dimensional version.

Figure 9: Reversed propagation scheme

Performance of a LBM based application is usu-
ally given in million lattice node updates per second
(MLUPS). Our global memory access model enables
us to give an estimate of the time T (in clock cycles)
required to process k warps per SM. On the GT200,
where the number of SMs is 30 and the warp size is
32, k warps per SM amounts to K = 30× k × 32 =
960k threads. Since one thread takes care of one sin-
gle node, T is therefore the number of clock cycles
needed to perform K lattice node updates. Hence,
using the global memory frequency F in MHz, the
expected performance in MLUPS is: P = (K/T )× F .

With our D3Q19 implementations, for instance,
we have N = 19 reads and writes, L = 10 mis-
aligned reads, no misaligned writes, and 25% occu-
pancy (thus k = 8). Using the estimation provided
by our measurements, we obtain: T = `+ TR+ TW =
15,594. Since K = 7,680 and F = 999 MHz, we have
P = 492 MLUPS.

To summarize, table 1 gives both the actual and
estimated performances for our implementations on
a 1283 lattice. Our estimations appear to be rather
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Model Occupancy Actual Estimated Relative error

D3Q19 LBGK 25% 481 492 2.3%

D3Q19 MRT 25% 516 492 4.6%

Thermal LBM 12.5% 195 196 1.0%

Table 1: Performance of LBM implementations (in MLUPS)

accurate, thus validating our model.

Summary and discussion

In this work, we present an extensive study of the
global memory access mechanism between global
memory and GPU for the GT200. A description of
the scheduling of global memory accesses at hard-
ware level is given. We express a model which al-
lows to estimate the global execution time of a regu-
lar data-parallel application on GPU. The cost of in-
dividual memory transactions and the impact of mis-
alignments is investigated as well.

We believe our model is applicable to other GPU
applications provided certain conditions are met:

• The application should be data-parallel and use
a regular data layout in order to ensure steady
data throughput.

• The computational cost should be negligible as
compared with the cost of global memory reads
and writes.

• The kernel should make moderate use of
branching in order to avoid branch divergence,
which can dramatically impact performance.
This would probably not be the case with an
application dealing, for instance, with complex
boundaries.

On the other hand, our model does not take pos-
sible TLB optimisation into account. Hence, some
finely tuned applications may slightly outvalue our
performance estimation.

The insight provided by our study, turned out to
be useful in our attempts to optimize CUDA imple-
mentations of the LBM. It may contribute to efficient
implementations of other applications on GPU.
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Abstract

In this paper, we consider the implementation of a
thermal flow solver based on the lattice Boltzmann
method (LBM) for graphics processing units (GPUs).
We first describe the hybrid thermal LBM model im-
plemented, and give a concise review of the CUDA
technology. The specific issues that arise with LBM
on GPUs are outlined. We propose an approach for
efficient handling of the thermal part. Performance
is close to optimum and is significantly better than
the one of comparable CPU solvers. We validate
our code by simulating the differentially heated cubic
cavity (DHC). The computed results for steady flow
patterns are in good agreement with previously pub-
lished ones. Finally, we use our solver to study the
phenomenology of transitional flows in the DHC.

Keywords: Thermal lattice Boltzmann method, GPU
programming, CUDA

1 Introduction

Originating from the lattice gas automata theory [7],
the lattice Boltzmann method (LBM) was first intro-
duced by McNamara and Zanetti in 1988 [15] and
developed later on by Qian et al. [21]. It has since
proved to be an interesting alternative to the solving
of the Navier-Stokes equations. Besides other advan-
tages over traditional methods in computational fluid
dynamics, the LBM happens to be intrinsically paral-
lel, thus easing high performance implementations.

Graphics processing units (GPUs) have nowadays
outrun CPUs in terms of raw computational power.
Their use in general-purpose computations [25], and

more specifically in CFD [5], is promising. Success-
ful attempts were made to implement LBM solvers
on the GPU [6]. Nevertheless, the wide range of po-
tential applications of the LBM on the GPU remains
mostly unexplored, especially for problems involving
heat and fluid flows.

The Compute Unified Device Architecture (CUDA),
first released by nVidia in 2007, is today’s lead-
ing technology for general-purpose computation on
graphics processing units (GPGPU). The CUDA tech-
nology is based on general hardware specifications
and a specific programming model, which allows to
state generic optimization principles.

In this contribution, we shall present our CUDA
implementation of a thermal flow solver. This pro-
gram is an extended and improved version of the
isothermal solver described in [19]. It is part of
the TheLMA project [18] which aims at providing
a comprehensive framework for implementing LBM
solvers on GPUs and other emerging many-core ar-
chitectures.

2 Hybrid thermal lattice
Boltzmann model

In contrast to isothermal simulations, solving ther-
mal fluid flows using the LBM is still a pioneer-
ing field. Up to now, adding energy-conservation
constraint to the isothermal lattice Boltzmann equa-
tion seems to be a more effective method than the
double-population approach. We chose to use a hy-
brid scheme belonging to this category. More specif-
ically, the flow simulation is accomplished by using
a D3Q19 multiple-relaxation-time (MRT) model [4],
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while the heat equation is solved by using a finite-
difference scheme. This model is a simplified version
of the one described in [11], where the heat capacity
ratio γ = CP/CV is set to γ = 1, since we were not
interested in acoustic effects.

The LBM can be seen as a threefold discretization
of the Boltzmann equation, involving time, space and
velocities. The discrete velocities {ξi | i = 0, . . . , N}
where ξ0 = 0, are chosen such as to link each lat-
tice site to some of its neighbors. Figure 1 shows the
D3Q19 stencil, where each node is connected to 18
of its nearest neighbors.

1
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16
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Figure 1: D3Q19 stencil

The equivalent of the single-particle distribution
function in the Boltzmann equation is a discrete set of
velocity distribution functions { fi | i = 0, . . . , N}. Let
us denote:

�

� fi(x , t)
�

=
�

f0(x , t), . . . , fN (x , t)
�T

for given lattice node x and time t, T being the trans-
pose operator. The lattice Boltzmann equation (LBE),
i.e. the discretized version of the Boltzmann equa-
tion, thus writes:

�

� fi(x +δtξi , t +δt)
�

−
�

� fi(x , t)
�

=Ω
��

� fi(x , t)
�

�

(1)

where Ω is the collision operator. This equation nat-
urally breaks into the elementary steps of the LBM:
the right-hand side describing collision, the left-hand
side describing propagation.

In the MRT approach, the velocity distribution is
mapped to a set of moments {mi | i = 0, . . . , N} by an

orthogonal matrix M:
�

� fi(x , t)
�

=M−1
�

�mi(x , t)
�

(2)

Matrix M for the D3Q19 stencil can be found in Ap-
pendix A of [4]. The moment vector is:

�

�mi(x , t)
�

=
�

ρ, e,ε, jx , qx , jy , qy , jz , qz , 3px x , 3πx x ,

pww ,πww , px y , pyz , pzx , mx , my , mz
�T (3)

where ρ is the mass density, e is energy, ε is en-
ergy square, j = ( jx , jy , jz) is the momentum, q =
(qx , qy , qz) is the heat flux, px x , px y , pyz , pzx are com-
ponents of the stress tensor and pww = py y−pzz , πx x ,
πww are third order moments, mx , my , mz are fourth
order moments. The mass density and the momen-
tum are the conserved moments.

The LBE becomes:

�

� fi(x +δtξi , t +δt)
�

−
�

� fi(x , t)
�

=−M−1S
h

�

�mi(x , t)
�

−
�

�m(eq)
i (x , t)

�

i

(4)

where S is a diagonal collision matrix and the m(eq)
i

are the equilibrium values of the moments. For the
sake of isotropy, S is given by:

S= diag(0, s1, s2, 0, s4, 0, s4, 0, s4,

s9, s10, s9, s10, s13, s13, s13, s16, s16, s16) (5)

We additionally set s9 = s13 and the lattice speed
of sound cs = 1/

p
3. With T denoting the tempera-

ture, the equilibrium quantities of the non-conserved
moments are given by:

e(eq) =−11ρ+ 19 j2 + T (6)

ε(eq) = 3ρ (7)

q (eq) =− 2
3

j (8)

3p(eq)
x x = 3 j2

x − j2 (9)

p(eq)
ww = j2

y − j2
z (10)

p(eq)
x y = jx jy (11)

p(eq)
yz = jy jz (12)

p(eq)
zx = jz jx (13)

3π(eq)
x x = π

(eq)
ww = 0 (14)

m(eq)
x = m(eq)

y = m(eq)
z = 0 (15)
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Since we have γ = 1, unlike [11], we chose to use
T instead of 57T in Eq. 6, which improves numeri-
cal stability. The kinematic viscosity ν and the bulk
viscosity ζ of the model are:

ν =
1

3

�

1

s9
−

1

2

�

ζ=
2

9

�

1

s1
−

1

2

�

(16)

The temperature T evolves according to the fol-
lowing finite-difference equation:

T (x , t +δt)− T (x , t) = κ∆∗T − j · ∇∗T (17)

where κ denotes the thermal diffusivity, and the
finite-difference operators are given by:

∂ ∗x f (i, j, k) = f (i+ 1, j, k)− f (i− 1, j, k)

−
1

8

�

f (i+ 1, j+ 1, k)− f (i− 1, j+ 1, k)

+ f (i+ 1, j− 1, k)− f (i− 1, j− 1, k)
+ f (i+ 1, j, k+ 1)− f (i− 1, j, k+ 1)
+ f (i+ 1, j, k− 1)− f (i− 1, j, k− 1)

�

(18)

∆∗ f (i, j, k) = 2
�

f (i+ 1, j, k) + f (i− 1, j, k)
+ f (i, j+ 1, k) + f (i, j− 1, k)
+ f (i, j, k+ 1) + f (i, j, k− 1)

�

−
1

4

�

f (i+ 1, j+ 1, k) + f (i− 1, j+ 1, k)

+ f (i+ 1, j− 1, k) + f (i− 1, j− 1, k)
+ f (i, j+ 1, k+ 1) + f (i, j− 1, k+ 1)
+ f (i, j+ 1, k− 1) + f (i, j− 1, k− 1)
+ f (i+ 1, j, k+ 1) + f (i− 1, j, k+ 1)
+ f (i+ 1, j, k− 1) + f (i− 1, j, k− 1)

�

−9 f (i, j, k)

(19)

It should be noted that these finite difference opera-
tors share the same symmetries as the D3Q19 stencil.

3 Review of the CUDA technology

In this section, we shall at first give a brief review
of the CUDA programming model [17]. Then, we
shall describe the CUDA hardware in general and the
GT200 GPU we used for our computations. Last, we
shall discuss the induced constraints which should be
taken into account to achieve optimal efficiency.

3.1 CUDA programming model

The CUDA programming model is implemented in
the CUDA C language which is an extension to
C/C++. Functions in a CUDA C program belong to
one of the three following categories:

1. Host code, i.e. functions run by the CPU.

2. Kernels, i.e. functions launched by host code
and run by the GPU.

3. Device functions, i.e. functions run by the GPU
and called by kernels or other device functions.1

A kernel is run in parallel on the GPU. The execu-
tion pattern is given at launch time by specifying a
grid. Threads are grouped in identical arrays called
blocks, which in turn are assembled to form the exe-
cution grid as shown in Fig. 2. Blocks may have up to
three dimensions, a grid is one- or two-dimensional.
The x, y, and z fields of the predefined blockIdx
and threadIdx structures identify each individual
thread within the execution grid.2

Variables local to a kernel are specific to each
thread unless declared as shared, in which case they
are accessible by all threads within a block. No mu-
tual exclusion mechanism is available for shared vari-
ables. It is up to the programmer to manage this as-
pect using block-wise synchronization primitives.

Kernels may also access to global memory space,
which is visible to each thread of the execution
grid. Again, no protection mechanism is avail-
able. Nonetheless, global memory is persistent across
kernel execution, hence a common way to ensure
global synchronization is to perform multiple kernel
launches. Global memory, being accessible to host
code, is also the usual communication path between
CPU and GPU.

Last, it is worth mentioning that threads may also
access read-only to constant and texture memory.
Constant memory is a convenient way to store pa-
rameters that will stay unchanged all along runtime.3

1Due to hardware limitations, device functions are in general
inlined at compile time.

2When a dimension is not in use, the corresponding field is
always 1.

3Since textures are mostly relevant in graphics processing, and
is of no use in our case, we shall not discuss this feature any fur-
ther.
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Figure 2: CUDA execution model

3.2 CUDA hardware

A CUDA capable GPU consists in a set of stream-
ing multiprocessors (SMs). Each of these SMs con-
tains several scalar processors (SPs), registers, shared
memory, and caches for constants and textures, as
shown in Fig. 3. Furthermore, the GPU is linked to
off-chip device memory.

Since being specific to each SM, registers and
shared memory are fast, though in rather limited
amount. Device memory, in comparison, has lim-
ited throughput, suffers from high latency, but is also
considerably larger. Table 1 summarizes the techni-
cal specifications of the GT200 processor we used for
our computations.

Number of SMs 30

Number of SPs per SM 8

Registers per SM 16,384

Shared memory per SM 16 KB

Constant cache per SM 8 KB

Texture cache per SM 8 KB

Device memory up to 4 GB

Table 1: Technical specifications of the GT200

The recently released Fermi architecture provides
in addition L1 and L2 caches for global memory. The
L1 cache is local to each SM and has configurable
size: either 16 KB with 48 KB shared memory or
48 KB with 16 KB shared memory.

Variables local to a kernel are stored in registers
except for arrays, since registers are not addressable.
Local arrays are stored in the so-called local mem-
ory, which in fact is hosted in device memory, besides

global, constant, and texture memory. Local memory
is also used to spill registers if needed.

3.3 Optimization guidelines

A block of the execution grid can only be processed
by a single SM. Yet, a SM may handle several blocks
concurrently. This leads to several constraints regard-
ing the layout of the grid which are summarized in
table 2. To take advantage of the massively paral-
lel architecture of the GPU, the number of concur-
rently active threads should be as large as possible.
It is up to the programmer to define a grid achieving
this goal, while avoiding register spilling. Neverthe-
less, the occupancy rate, i.e. the ratio of the number
of active threads to the maximum, is usually not a
reliable performance indicator. With data intensive
applications, for instance, the limiting factor is more
likely to be the global memory maximum throughput.
Nonetheless, a minimal occupancy rate is required to
hide global memory latency.4

Max. number of blocks per SM 8

Max. number of threads per SM 1,024

Max. number of threads per block 512

Maximal block dimensions 512× 512× 64

Maximal grid dimensions 65535× 65535

Table 2: Grid layout constraints for compute capabil-
ity 1.3

When run on a SM, a block of threads is sliced into

4According to nVidia, at least 192 active threads per SM are
required to completely hide global memory latency.
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Figure 3: CUDA hardware

warps of 32 threads.5 To achieve actual parallelism,
all threads in a warp must follow the same instruction
path. When branching divergence occurs, the execu-
tion of the branch paths are serialized, which may
dramatically impact performance. Whenever possi-
ble, branch granularity should be a multiple of the
warp size.

Shared memory is arranged in 32 bits wide mem-
ory banks. For the GT200, there are sixteen mem-
ory banks.6 Shared memory transactions are issued
by half-warps. Threads in a half-warp accessing to
different memory locations lying in the same bank
cause a bank conflict, which is resolved by serializ-
ing the transactions. Yet, shared memory may be
as fast as registers, provided care is taken to avoid
bank conflicts. The primary purpose of shared mem-
ory is to enable block-wise communication. Nonethe-
less, shared memory is also convenient to prefetch
data from global memory, store small local arrays,
or avoid register shortage. Such uses contribute to
curtail transactions to device memory, therefore may
have a major impact on performance.

For data-intensive applications, since global mem-
ory is not cached on the GT200, using a well designed
memory access pattern is of crucial importance. As
for shared memory, global memory transactions are
issued by half-warp. These memory accesses may be
coalesced into one single transaction of 32, 64, or

5The warp size is 32 since the first generation of CUDA capable
GPUs. Nevertheless, this value is implementation dependent and
might change in the future.

6As for the warp size, the number of shared memory banks is
implementation dependent.

128 bytes, provided the address of the corresponding
segment is aligned to its size. When the alignment
condition is not met, several transactions are issued.
As of compute capability 1.2, the hardware is able to
reduce the transaction size if possible. For instance,
when the threads of a half-warp read consecutive 32-
bit words, it yields a single 64 bytes transaction in
case of alignment, two 32 bytes transactions for a 32
bytes offset, a 32 bytes and a 64 bytes transaction
otherwise.

4 Implementation

4.1 Algorithmic aspect

As described in section 2, for a given time and lattice
node, the LBM breaks up in two elementary steps,
namely collision and propagation. The lattice Boltz-
mann equation as formulated in Eq. 4 can therefore
be split in:

�

�efi(x , t)
�

=M−1

�

�

�mi(x , t)
�

− S
h

�

�mi(x , t)
�

−
�

�m(eq)
i (x , t)

�

i�

(20)

�

� fi(x +δtξi , t +δt)
�

=
�

�efi(x , t)
�

(21)

where Eq. 20 describes the collision step and Eq. 21
the propagation step. Thus, the hybrid thermal LBM
outlined in section 2 corresponds to the following
pseudo-code:
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1. for each time step t do

2. for each lattice node x do

3. read velocity distribution fi(x , t)

4. read neighboring temperatures
T (x +δtξi , t)

5. if node x is on boundaries then

6. apply boundary conditions

7. end if

8. compute moments mi(x , t)

9. compute equilibrium values m(eq)
i (x , t)

10. compute updated distribution efi(x , t)

11. propagate to neighboring nodes x +δtξi

12. compute and store new temperature
T (x , t +δt)

13. end for

14. end for

4.2 GPU implementation of the LBM

To take advantage of the massive parallelism of the
GPU, CUDA implementations of the LBM usually as-
sign a thread to each lattice node [24, 10]. The lay-
out of the execution grid needs therefore to reflect
the geometry of the lattice. Global synchronization is
achieved by launching a kernel at each time step.

The velocity distribution functions may be stored
in either an array of structures (AoS) or a structure
of arrays (SoA). The AoS approach happens to be
optimal for sequential CPU implementations since it
improves data locality, and thus ensures efficient use
of the caches. Conversely, for GPU implementations,
threads within a warp should access to consecutive
global memory locations in order to enable coalesced
memory transactions. Therefore, a SoA data layout
(or an equivalent multi-dimensional array) is manda-
tory to achieve efficiency.

To meet alignment constraints, the least significant
dimension of the array should be a multiple of the
size of a half-warp. Nonetheless, this does not suf-
fice to avoid misalignments, since propagation leads
to one unit shifts for the minor dimension. To face
this issue, an effective way is to use shared mem-
ory to perform propagation along the minor dimen-
sion. Yet, the scope of shared memory being limited
to the current block, special care has to be taken of

distribution values crossing the block boundaries. As
described in [23], outgoing values may temporarily
be stored in locations left vacant by incoming values.
For large lattices, this approach requires therefore a
second kernel to rearrange data.

As stated in [20], misaligned read accesses are
far less expensive than misaligned write accesses.
Hence, an alternative way to handle misalignment
consists in replacing the usual out-of-place propaga-
tion by in-place propagation at the next time step.
Figures 4 and 5 outline the two propagation schemes
(in the two-dimensional case, for the sake of sim-
plicity). It was shown in [19] that the cost of mis-
aligned reads is of the same order of magnitude than
the overhead of a rearrange kernel.

Figure 4: Out-of-place propagation scheme

Figure 5: In-place propagation scheme

It should be noted that the in-place propagation
approach is simpler and exerts less pressure on hard-
ware than the shared memory approach. Yet, the
later has only been used for isothermal LBM imple-
mentations and leaves few room for possible model
enhancement. As a matter of fact, using this ap-
proach to implement on the GT200 the thermal
model we chose would lead to shared memory short-
age for blocks greater than 192, since ten floating
point numbers per node for particle distribution and
nine floating point numbers per node for temperature
are required. Handling larger cavities would require
the use of a rearrange kernel which has a significant
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impact on performance.

4.3 Proposed implementation

Our implementation is based on the isothermal flow
solver described in [19]. The lattice is a rectangu-
lar cuboid of dimensions Nx × Ny × Nz . We use one-
dimensional blocks of size Nx and a two-dimensional
grid of dimensions Ny × Nz . For better performance,
Nx should be a multiple of the warp size. Addition-
ally, when the three lattice dimensions are different,
Nx should be chosen such as to maximize the occu-
pancy rate. Though simple, such a tilling proves to
be convenient, since it ensures coalescing of global
memory transactions, sufficient occupancy rate and
straightforward retrieving of the node coordinates.

To store the velocity distribution functions, we
used a multi-dimensional array. The velocity index
may correspond to any of the dimensions but the mi-
nor one, in order to preserve coalescence. Accord-
ing to [25, 1], the SMs contain translation look-aside
buffers (TLB) for global memory. Using the least sig-
nificant dimension possible to span the velocity dis-
tribution reduces the occurrences of TLB misses. We
experimented a 13% performance improvement over
the major dimension version which is used in [19].

The main concern when implementing a finite-
difference solver for the GPU is to curtail global mem-
ory read redundancy [16]. For a given block, the re-
quired temperatures form a Nx×3×3 cuboid. Our ap-
proach is to fetch these temperatures in shared mem-
ory. To perform aligned and coalesced global mem-
ory transactions, the threads read the temperatures
of nodes sharing the same abscissa. More precisely,
thread of index i within block ( j, k) reads the tem-
peratures at nodes:

(i, j, k), (i, j+ 1, k), (i, j− 1, k),

(i, j, k+ 1), (i, j, k− 1), (i, j+ 1, k+ 1),

(i, j+ 1, k− 1), (i, j− 1, k+ 1), (i, j− 1, k− 1).

Figure 6 outlines the read access pattern we propose
for temperature (in two dimensions, for the sake of
simplicity). It should be noted that, using this ap-
proach, no read redundancy occurs at block level.

4.4 Boundary conditions

The solid boundaries are handled using the simple
bounce-back scheme. For each direction α pointing

Figure 6: Read access pattern for temperature

to a solid node:

fᾱ(x , t + 1) = efα(x , t) (22)

where ᾱ denotes the direction opposite to α. Using
such scheme, the interface between fluid and solid is
located at half distance between the grid nodes [8].
This aspect has to be taken into account when im-
posing thermal boundary conditions. In our imple-
mentation, we use halo temperatures computed by
second-order extrapolations. For imposed tempera-
ture T0, we have:

T (−1) =
8

3
T0 − 2T (0) +

1

3
T (1) (23)

For adiabatic walls, we have:

T (−1) =
21

23
T (0) +

3

23
T (1)−

1

23
T (2) (24)

In blocks containing boundary nodes, the halo
temperatures are computed and stored using the lo-
cal temperature field in shared memory. The ther-
mal boundary conditions therefore do not induce ad-
ditional memory accesses except for adiabatic walls
parallel to the block.

4.5 Performance

To evaluate performance, we carried out computa-
tions in single precision for a cubic cavity using a
Tesla C1060 computing device. As usual for GPU
implementations of the LBM, the limiting factor ap-
pears to be the global memory maximum through-
put. For the Tesla C1060, the maximum sustained
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Size of the cavity 963 1283 1603 1923 2243 2563

Performance (MLUPS) 319 247 305 335 309 301

Data throughput (GB/s) 61.2 47.4 58.6 64.3 59.3 57.8

Ratio to max. throughput 83.6% 64.7% 79.9% 87.8% 81.0% 78.9%

Table 3: Performance using a Tesla C1060

throughput, provided by the CUDA bandwidthTest
program, is about 73.3 GB/s. Table 3 gives the ob-
tained performance in million lattice node updates
per second (MLUPS) for increasing values of N , as
well as the corresponding data throughput and the
ratio to the maximum throughput.7

As shown by the rates, performance is close to opti-
mum for most sizes. It is also worth mentioning that
performance is notably higher than with state-of-the-
art CPU thermal LBM implementations. For instance,
we tested a Palabos [13] based single precision ther-
mal LBM code on a dual Xeon E5560 at 2.8 GHz. We
recorded 16.7 MLUPS with 16 OpenMPI processes on
a 2573 cavity.8

5 Differentially heated cubic
cavity

5.1 Phenomenology of the differentially
heated cavity

The hybrid LBM solver implemented on the GPU is
used to study the differentially heated cubic cavity
outlined in Fig. 7. Two opposite vertical walls have
imposed temperatures −T0 and +T0, whereas the re-
maining walls are adiabatic. This configuration has
been extensively studied in the two-dimensional con-
figuration (for example [14, 3, 9]) for laminar, tran-
sitional and fully turbulent flows.

The three-dimensional configuration has been less
studied in the literature than the two-dimensional
case because of its computational cost. The first bi-
furcation is observed for Ra1 ≈ 3.3 × 107 [22] and
the consequence is the unsteadiness of the flow pat-
tern. The flow returns to a steady state for higher

7For each node, 48 floating point numbers are transmitted per
time step: nineteen numbers are read and written for particle dis-
tribution, nine numbers are read and one number written for tem-
perature.

8We used N = 257 instead of N = 256 to avoid cache thrashing.

values of the Rayleigh number. This second transi-
tion takes place at a Rayleigh number Ra2 belonging
to the interval [6.5× 107; 7× 107] [2]. Finally, the
flow reverts to unsteadiness for Ra3 ≈ 3× 108.

5.2 Computational procedure

The fluid is supposed to be incompressible. Applying
the Boussinesq approximation, the buoyancy force F
is given by:

F =−ρβT g (25)

where β is the thermal expansion coefficient, and g
the gravity vector of magnitude g.

In order to conserve mass up to the second order,
we add δtF to the momentum j in two steps: one
half before collision, and one half after.

−T0 +T0

x

z

y

g

Figure 7: Differentially heated cavity

Setting the Prandtl number Pr = 0.71, we use the
Rayleigh number Ra and the kinematic viscosity ν as
parameters. The thermal diffusivity κ and the value
of β g are determined using the dimensionless num-
bers:

Ra=
2T0β gN3

νκ
Pr=

ν

κ
(26)

where N = Nx = Ny = Nz is the size of the cavity.
Furthermore, following [12], we set s1 = 1.19, s2 =
1.4, s4 = 1.2, s10 = 1.4, s16 = 1.98.
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Rayleigh number 104 105 106 107

Present 2.0560 4.3382 8.6457 16.4202

Wakashima et al. [26] 2.0624 4.3665 8.6973 —

Relative deviation 0.3% 0.6% 0.6% —

Tric et al. [22] 2.054 4.337 8.640 16,342

Relative deviation 0.09% 0.03% 0.06% 0.5%

Table 4: Comparison of Nusselt numbers at the isothermal wall (N = 256)

To check for convergence, the following estimator
is computed:

εn =max
x
|T (x , nδt)− T (x , nδt − kδt)| (27)

every k = 500 iterations. Convergence to steadiness
is declared when the criterion εn < 10−5 is satisfied.

The Nusselt number at the isothermal wall is com-
puted using:

Nuw =
1

2T0N2

∑

y,z

∂x T
�

�

x=wall . (28)

5.3 Numerical results for steady flow
patterns

In order to validate our approach, the flow in the
differentially heated cavity is computed for Rayleigh
numbers equal to 104, 105, 106, and 107. The results
are compared with data from the literature. Table 4
gives the obtained Nusselt numbers as well as the val-
ues published in [26] and [22]. As shown by the rel-
ative deviation, our results are in good accordance
with the reference values.

In addition, Fig. 8 shows the isosurfaces of tem-
perature in the cavity. As the Rayleigh number in-
creases, the temperature in the core of the cavity be-
comes more stratified. The flow is less influenced by
the cavity sidewalls (y = ±1) and the boundary lay-
ers at the active walls become thinner and thinner. It
is also possible to confirm the centrosymmetry of the
flow and temperature fields.

5.4 Numerical results concerning the
first and second bifurcation

To locate the bifurcations, we proceeded a to system-
atic exploration using several GPUs in parallel. Ac-
cording to our computations, the first bifurcation oc-

curs between 3.224×107 and 3.225×107. The criti-
cal Rayleigh number for the first bifurcation is there-
fore Ra1 = 3.2245± 0.0005× 107.

For Rayleigh numbers greater than the second criti-
cal Rayleigh number Ra2, the flow returns to a steady
state. The limit is located between 6.401× 107 and
6.402×107. Hence, the second critical Rayleigh num-
ber is Ra2 = 6.4015± 0.0005× 107.

In order to exemplify the flow and temperature
fields for the reversion to steadiness, the flow at
Ra = 108 is exhibited here. Figure 9a shows that
the Nusselt number reaches a constant value of Nu=
30.2027, which is in good agreement with the value
Nu=30.311 extrapolated in [22].

The isosurfaces of temperature, Fig. 9b, show that
the thermal stratification in the core of the cavity is
conserved.

The modifications of the flow field are illustrated
by the isosurfaces of the u velocity component in
the half-cavity (Fig. 10a) and in the entire cavity
(Fig. 10b). The flow field is no more centrosymmet-
ric. However, there is a symmetry with respect to the
plane y = 0. The same conclusion holds for the iso-
surfaces of v and of w (See Fig. 11).

6 Summary

In this work, we devise general optimization strate-
gies for programming data-parallel applications on
CUDA enabled GPUs. We describe an effective im-
plementation of a thermal LBM solver for the GPU.
The proposed approach for dealing with the thermal
part is likely to apply to other multiphysics coupling.
Simulation results are in good agreement with avail-
able data. Performance is nearly optimal and appears
to be significantly higher than for equivalent CPU im-
plementations.

We used a dichotomous procedure to accurately
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(a) Ra= 104 (b) Ra= 105

(c) Ra= 106 (d) Ra= 107

Figure 8: Isosurfaces of temperature
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t/t
max

N
u

0.2 0.4 0.6 0.8 1

10
1

10
2

(a) Nusselt number at the wall (b) Isosurfaces of temperature

Figure 9: Results concerning the differentially heated cavity at Ra= 108

(a) Half-cavity (b) Entire cavity

Figure 10: Isosurfaces of u for Ra= 108

C–11



Article C

(a) (b)

Figure 11: Isosurfaces of v and w for Ra= 108

study the different flow patterns in the differentially
heated cubic cavity. The flow pattern is laminar up to
the first bifurcation at Ra1 = 3.2245± 0.0005× 107.
The flow becomes unsteady until Ra2 = 6.4015 ±
0.0005 × 107 for which it returns to a steady state.
The present contribution is the first accurate determi-
nation of these critical Rayleigh numbers in the dif-
ferentially heated cubic cavity. The next step of our
work will be the study of the transition to turbulence
around Ra= 3× 108.
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Abstract

The lattice Boltzmann method (LBM) is an increas-
ingly popular approach for solving fluid flows in a
wide range of applications. The LBM yields regu-
lar, data-parallel computations; hence, it is especially
well fitted to massively parallel hardware such as
graphics processing units (GPU). Up to now, though,
single-GPU implementations of the LBM are of mod-
erate practical interest since the on-board memory of
GPU-based computing devices is too scarce for large
scale simulations.

In this paper, we present a multi-GPU LBM solver
based on the well-known D3Q19 MRT model. Using
appropriate hardware, we managed to run our pro-
gram on six Tesla C1060 computing devices in paral-
lel. We observed up to 2.15× 109 node updates per
second for the lid-driven cubic cavity test case. It is
worth mentioning that such a performance is com-
parable to the one obtained with large high perfor-
mance clusters or massively parallel supercomputers.

Our solver enabled us to perform high resolution
simulations for large Reynolds numbers without fac-
ing numerical instabilities. Though, we could ob-
serve symmetry breaking effects for long-extended
simulations of unsteady flows. We describe the dif-
ferent levels of precision we implemented, showing
that these effects are due to round off errors, and we
discuss their relative impact on performance.

Keywords: GPU programming, CUDA, Lattice Boltz-
mann method, TheLMA project

1 Introduction

Although the original Moore’s law [14], i.e. the ex-
ponential growth of transistor count on processors is
still valid nowadays, the advances in computing per-
formance are less straightforward. During the last
decade, graphics processing units (GPU) have grad-
ually outrun CPUs in terms of raw computational
power. Using nVidia’s CUDA technology [15], GPUs
have proven to be effective platforms to implement
various high performance computing applications,
ranging from linear algebra [1] to CFD [5] and PDE
solvers [13].

The lattice Boltzmann method (LBM) is a novel
approach in computational fluid dynamics. It ap-
pears to be an interesting alternative to the solving
of the Navier-Stockes equations for various applica-
tions such as multiphase flows or porous media. As
other CFD methods, the LBM is very demanding from
a computational standpoint. High performance par-
allel implementations are therefore necessary for the
LBM to be of practical interest.

Several successful implementations for the GPU
are described in literature [21, 22, 7]. Nonetheless,
single-GPU implementations are bound by the device
memory. The maximum available amount, when us-
ing GT200 GPUs, is 4 GB, which enables us to handle
at most about 2.83 × 107 nodes in single precision
using the three-dimensional D3Q19 stencil. Multi-
GPU implementations are therefore mandatory to run
large scale LBM simulations, but are still a pioneer-
ing field and performance is often below what is ex-
pected from such hardware [20].

Recently released motherboards are able to man-
age up to eight GPU based computing devices. Al-
though an MPI based multi-GPU LBM solver would be
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of great interest to run on hybrid clusters, we chose
as a first step to implement a simpler POSIX thread
based solver. The remainder of the paper is organ-
ised as follows. We first briefly review the LBM and
the CUDA technology. Then we give some general
guidelines for implementing the LBM on GPUs and
describe our multi-GPU implementation. Last, we
discuss numerical issues we could observe running
large scale simulations at high Reynolds numbers.

2 Multiple-Relaxation-Time LBM

Although originating from the lattice-gas automata
theory [6], the lattice Boltzmann method is now gen-
erally interpreted as a way to solve the linearised
Boltzmann equation [12]. In our work, we used the
multiple-relaxation-time (MRT) approach [3] instead
of the more popular Bhatnagar-Gross-Krook (BGK)
version of the LBM [19]. In this section we shall
briefly describe the MRT LBM.

With the Boltzmann equation, a fluid is described
using a single-particle distribution function f de-
pending on space and particular velocity, i.e. phase
space, and on time. In the LBM, space is usually rep-
resented by a regular orthogonal mesh of resolution
δx and time is split in constant steps δt. The discrete
counterpart of the continuous velocity space is a fi-
nite set of velocities ξi , carefully chosen in order to
ensure sufficient isotropy. Usually, vectors δtξi link
nodes to only some of their nearest neighbours. As
an example, fig. 1 shows the D3Q19 stencil we used
in our computations.
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Figure 1: D3Q19 stencil

Let us denote:
�

�ai
�

=
�

a0, . . . aN
�T, T being the

transpose operator. The lattice Boltzmann equation
(LBE) writes:

�

� fi(x +δtξi , t +δt)
�

−
�

� fi(x , t)
�

=Ω
h

�

� fi(x , t)
�

i

(1)

where { fi | i = 0, . . . N} is the discrete equivalent of
f , and Ω is the collision operator.

In the MRT approach, collision is performed in mo-
ment space. The particle distribution is mapped to a
set of moments {mi | i = 0, . . . N} by an orthogonal
matrix M:

�

� fi(x , t)
�

=M−1
�

�mi(x , t)
�

(2)

where
�

�m(x , t)
�

is the moment vector. Matrix M for
the D3Q19 stencil can be found in appendix A of [4].
The corresponding moment vector is:

�

�mi(x , t)
�

=
�

ρ, e,ε, jx , qx , jy , qy , jz , qz , 3px x ,

3πx x , pww ,πww , px y , pyz , pzx , mx , my , mz
�T (3)

where ρ is the mass density, e is energy, ε is en-
ergy square, j = ( jx , jy , jz) is the momentum, q =
(qx , qy , qz) is the heat flux, px x , px y , pyz , pzx , pww
are related to the components of the stress tensor,
πx x , πww are fourth-order moments and mx , my , mz
are third-order moments with respect to the particle
velocities. The mass density and the momentum are
the conserved moments.

The LBE may thus be written as:

�

� fi(x +δtξi , t +δt)
�

−
�

� fi(x , t)
�

=−M−1S
h

�

�mi(x , t)
�

−
�

�m(eq)
i (x , t)

�

i

(4)

where S is a diagonal collision matrix and the m(eq)
i

are the equilibrium values of the moments. For the
sake of isotropy, S obeys:

S= diag(0, s1, s2, 0, s4, 0, s4, 0, s4,

s9, s10, s9, s10, s13, s13, s13, s16, s16, s16) (5)

We additionally set s9 = s13, the initial density
ρ0 = 1, and the speed of sound cs = 1/

p
3, the unit

of speed being δx/δt. The equilibrium values of the
non-conserved moments are thus given by:

e(eq) =−11ρ+ 19 j2 (6)
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ε(eq) =−
475

63
j2 (7)

q (eq) =−
2

3
j (8)

3p(eq)
x x = 3 j2

x − j2 (9)

p(eq)
ww = j2

y − j2
z (10)

p(eq)
x y = jx jy , p(eq)

yz = jy jz , p(eq)
zx = jz jx (11)

3π(eq)
x x = π

(eq)
ww = 0 (12)

m(eq)
x = m(eq)

y = m(eq)
z = 0 (13)

The kinematic viscosity ν of the model is related to
relaxation rate s9 by:

ν =
1

3

�

1

s9
−

1

2

�

(14)

The other rates are set according to [8]. Namely:
s1 = 1.19, s2 = s10 = 1.4, s4 = 1.2, and s16 = 1.98.

3 Overview of the CUDA
Technology

The Compute Unified Device Architecture (CUDA) is
nowadays the leading technology for general purpose
computations on GPUs. Initiated in late 2007 by the
nVidia company, CUDA defines both a programming
model and general hardware specifications. CUDA
capable GPUs consist of a set of streaming multipro-
cessors (SM), each containing several scalar proces-
sors (SP) as outlined in fig. 2. The SPs within a SM
follow a single-instruction multiple-data (SIMD) ex-
ecution scheme. Yet, SMs are not globally synchro-
nised, thus the overall execution scheme may be de-
scribed as single-instruction multiple-thread (SIMT).

CUDA computing devices show a complex memory
hierarchy. The main storage consists of a rather large
off-chip device memory. This memory is not cached
except for specific read-only data (i.e. constants and
textures); hence it suffers from high latency which
has to be properly hidden. Each SM provides its SPs
with non-addressable registers and some addressable
shared memory which allows inter-SP communica-
tion.

Streaming Multiprocessor 2

Streaming Multiprocessor 1

SP SP SP SP

SP SP SP SP

Registers Shared Memory

Constant Cache Texture Cache

b

b

b

Device
Memory

Figure 2: CUDA hardware

The CUDA programming language is an extension
to C/C++ (with some restrictions). A CUDA program
basically consists of CPU code and (at least) one ker-
nel, i.e. a void returning function to be executed by
the GPU. Kernels are executed in several threads with
private local variables. Threads are grouped in iden-
tical blocks which may have up to three dimensions.
During execution, a block cannot be partitioned and
therefore must fit into a single SM. Nonetheless, an
SM may execute several blocks concurrently. Threads
within a block may be synchronised and have access
to a shared memory space. Yet, no protection mech-
anism, e.g. mutexes, is available: it is up to the pro-
grammer to manage this aspect.

Blocks are grouped into a one or two-dimensional
execution grid, specified at launch time. Blocks are
executed asynchronously and there is no efficient
dedicated mechanism to ensure global synchronisa-
tion. All threads within a grid have access to a global
memory space which is hosted in the device memory
and is persistent along the application life cycle (see
Fig. 3). Global synchronisation is therefore achieved
by performing multiple kernel launches.

Thread  Local Variables

Block
    Shared Memory

Grid
    
    

. . .
    Global Memory

Figure 3: CUDA programming model

D–3



Article D

4 GPU Implementation
Guidelines

From an algorithmic point of view, the LBM breaks
into two elementary steps: collision in which the
collision operator is applied to the particle distribu-
tion, and propagation in which updated particle pop-
ulations are propagated to the neighbouring nodes.
Equation 4 may therefore be split in :

�

� f̃i(x , t)
�

=M−1
�

�

�mi(x , t)
�

− S
h

�

�mi(x , t)
�

−
�

�m(eq)
i (x , t)

�

i

�

(15)

�

� fi(x +δtξi , t +δt)
�

=
�

� f̃i(x , t)
�

(16)

where eq. 15 describes the collision step and eq. 16
the propagation step. Thus, the LBM described in
sec. 2, may be summarised by the following pseudo-
code:

1. for each time step t do

2. for each lattice node x do

3. read velocity distribution fi(x , t)

4. if node x is on boundaries then

5. apply boundary conditions

6. end if

7. compute moments mi(x , t)

8. compute equilibrium values m(eq)
i (x , t)

9. compute updated distribution f̃i(x , t)

10. propagate to neighboring nodes x +δtξi

11. end for

12. end for

The most convenient approach to take advantage
of the massive parallelism of GPUs is to assign one
thread to each node. Threads within a block are exe-
cuted in groups of 32 threads named warps.1 Global
memory transactions are issued by half-warp. Best
performance is achieved when these operations may
be coalesced into single transactions of 32 B, 64 B,

1The size of a warp is implementation dependent and may vary
in the future.

or 128 B. Yet, segment transactions face the impor-
tant restriction that the segment’s offset has to be a
multiple of its size.

Optimised CPU implementations of the LBM gen-
erally store the particle distribution in an array of
structures, which improves data locality. In order to
allow coalescing, GPU implementations must adopt a
reverse approach. A simple and efficient solution is to
use one dimensional blocks corresponding to a given
spatial direction and to store the particle distribution
in a multi-dimensional array. The minor dimension
of the array is chosen such that contiguous threads
access contiguous memory locations.

Nonetheless, this approach is not sufficient to en-
sure optimal memory transactions. For most of the
particle populations, the propagation step leads to
one unit shifts in addresses as illustrated by fig. 4.

Figure 4: Misalignment issue

With the first generation of CUDA enabled GPUs,
i.e. for compute capability up to 1.1, alignment is
mandatory for coalescence to occur, hence misalign-
ment has a dramatic impact on performance. To
address this problem, propagation within the blocks
may be performed using shared memory as described
in [21]. As of compute capability 1.2, misaligned
memory accesses are issued in as few segment trans-
actions as possible. As thoroughly shown in [18],
misaligned reads are far less expensive than mis-
aligned writes, hence a rather efficient way to per-
form propagation is to use the out-of-place propaga-
tion scheme [17], outlined in fig. 5.
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Figure 5: Out-of-place propagation

5 Multi-GPU Implementation of
the LBM

Developing libraries is a common and acknowl-
edged practise in software engineering. The Palabos
project [10] for instance, in the case of LBM, pro-
vides a wide set of generic functions which allows to
efficiently implement a parallel CPU LBM solver with
given geometry, boundary conditions, and the lattice
Boltzmann model.

Nevertheless, the CUDA technology has some in-
herent limitations which make it difficult to follow
the same path when developing GPU LBM solvers.
The compilation tool chain, for instance, being un-
able to link GPU binaries forbids actual modular pro-
gramming. Likewise, devices of compute capability
up to 1.3 have limited support for functions. The so-
called device functions, i.e. functions to be executed
by the GPU, are mostly inlined at compile time, which
restricts their use in practise.

In order to improve code reusability, we designed
the TheLMA framework [16]. TheLMA stands for
Thermal LBM on Many-core Architectures, thermal
flow simulation being our main topic of interest. It
provides a global template for multi-GPU LBM solvers
on which we developed the present implementation.
Figure 6 outlines the structure of the framework.

The main.c file contains the main loop of the
simulation and may access to a set of commod-
ity functions in order to retrieve parameters, ini-
tialise variables, perform statistical calculations, and
output simulation results in various formats. The
thelma.cu file is a hub containing some general
macros and including the CUDA components respon-
sible for setting up the geometry, initialising, running
the simulation and extracting results. Each of these
component contains a launch function which is ac-
cessible to the C part of the program and handles the

param.c init.c stat.c output.c

main.c

thelma.cu

geometry.cu init.cu compute.cu results.cu

Figure 6: The TheLMA framework

actual kernel invocation.
At initialisation, the program creates one POSIX

thread for each requested computing device in or-
der to hold the corresponding CUDA context. A sub-
domain of the global lattice is assigned to each de-
vice. As for single-GPU implementation, synchronisa-
tion within the sub-domains is achieved by launching
a kernel for each time step. Global synchronisation
uses standard POSIX barriers. Inter-GPU communi-
cation is performed using page-locked CPU memory
and zero-copy memory transactions.

As for global memory accesses, zero-copy trans-
actions require coalescing to achieve optimal perfor-
mance. This implies that the interfaces between sub-
domains should be parallel to the direction associ-
ated with the minor dimension of the particle distri-
bution array. For the sake of simplicity, we chose to
split the lattice in rectangular cuboids along the di-
rection corresponding to the major dimension. Fig-
ure 7 outlines the inter-GPU communication scheme;
incoming populations are drawn in red, outgoing
populations are drawn in blue.

Each interface between sub-domains is associated
to four buffers: two for incoming populations and
two for outgoing. Pointers are switched after each
time step. Maximal parallelisation efficiency requires
perfect overlapping of computations and communi-
cation. The zero-copy feature enables such over-
lapping, but the overlapping ratio depends on the
scheduling of memory transactions at warp level.
The execution grid set-up is therefore an important
optimisation target.

Another problem arise when considering the con-
figuration of the execution grid, since it may only
have up to two dimensions. The simple solution of
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(a) First state

(b) Second state

Figure 7: Inter-GPU communication scheme

using one-dimensional blocks and a two-dimensional
grid to span the three spatial dimensions does not
apply to large lattices. On GT200 hardware, for in-
stance, the resource requirements of an LBM kernel
are likely to forbid the use of blocks greater than 256.

We therefore chose to use a two-dimensional
grid of size (`x × `y × `z/2

m) × (2m−n) with one-
dimensional blocks of size 2n; `x , `y , `z being the
dimensions of the lattice, m and n being free param-
eters. Retrieval of coordinates is done using the fol-
lowing code:

w = blockIdx.x<<m | blockIdx.y<<n
| threadIdx.x;

x = w % lX;
y = (w/lX) % lY;
z = w/(lX*lY);

The optimal values for m and n are m = 15 and
n = 7, which were determined empirically. To vali-
date our code, we implemented the well-known lid-
driven cubic cavity test case in which five walls have
null velocity boundary conditions and the top lid has
imposed constant velocity. In order to study the scal-
ability of the program, we chose to run performance
tests on a 1923 lattice which may be handled by one
single GPU or split in two, three, four, or six iden-
tical sub-domains as well. In addition, we also ran
performance tests on a 3843 lattice using three, four,
and six computing devices. Figures 8 and 9 show the
obtained performance in million lattice node updates
per second (MLUPS) for single precision with Tesla
C1060 computing devices on a Tyan B7015 server. It

is worth mentioning that maximum performance is of
the same order of magnitude than the one obtained
with optimised double precision code on supercom-
puters (see [9], for instance).
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Figure 8: Performance on a 1923 lattice
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Figure 9: Performance on a 3843 lattice

Scalability is excellent with no less than 90% par-
allelisation efficiency. Table 1 displays the required
throughput for incoming and outgoing data at 100%
efficiency on the 1923 lattice. With the Tyan S7015
motherboard of our server, the bandwidthTest pro-
gram that comes with the CUDA development kit
gives 2.78 GB/s host to device and 1.80 GB/s de-
vice to host maximum sustained throughput. The
data exchange being symmetric and the PCI-E inter-
face being full-duplex, we may use the lower of these
values as a rough estimate of the available through-
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put for one PCI-E 16× slot. A comprehensive study
of communications between computing devices and
main memory is beyond the scope of this work and
shall be given in future reference.

Table 1 shows that even with six GPUs, i.e. five
sub-domain interfaces, the required throughput is
comparable to the one achievable with a single PCI-E
16× slot, therefore data exchange is not likely to
overflow the capacity of the PCI-E links. Further-
more, we see that the execution grid configuration
we propose enables very satisfactory communica-
tion/computation overlapping.

According to the bandwidthTest program, the
GPU to device memory maximum sustained through-
put is 73.3 GB/s for the Tesla C1060. Performance
in single precision using one GPU is 387 MLUPS on
the 1923 lattice which correspond to a data through-
put of 80.4% of the maximum. We may therefore
conclude that our single precision solver is memory
bound and that performance is nearly optimal.

Performance for the double precision version
of our solver on the 1923 lattice ranges from
117 MLUPS using one GPU to 683 MLUPS using
six, with similar scalability than for the single preci-
sion version. Considering one GPU, the correspond-
ing data throughput is only 48.5% of the maximum,
which implies that the double precision version is not
memory bound but computation bound.

6 Numerical Issues

Although the lid-driven cubic cavity test case is well
documented at low Reynolds numbers, there are–to
the best of our knowledge–very few references for
Re ≥ 12,000 [11, 2]. Using the six available Tesla
C1060 cards, our solver is able to handle cubic lat-
tices containing as much as 4803 nodes for single
precision D3Q19 and 3843 nodes for double preci-
sion D3Q19. We could therefore run simulations for
Reynolds numbers up to 30,000 without facing nu-
merical instabilities.

According to nVidia, peak performance for the
Tesla C1060 is 933 GFlops in single precision and
78 GFlops in double precision. As a matter of fact,
GT200 GPUs are usually less efficient with double
precision computations than with single precision.
In our case, the performance ratio is about 3.2 to
one. Nevertheless, the GT200 implementation of sin-
gle precision is not fully IEEE 754 compliant. When

first running our solver at Re = 30,000 in single pre-
cision, we could see some numerical issue arise: the
flow loses symmetry at a very early stage of simula-
tion. Further investigation showed us that the aver-
age deviation from initial density decreases at a con-
stant pace instead of fluctuating around zero.

To evaluate the impact of machine accuracy on
our simulations, we experimented with three levels
of precision: single precision (SP), mixed precision
(MP), i.e. double precision computations with single
precision storage, and double precision (DP). It has
been reported that using δρ = ρ − ρ0 instead of ρ
in moment space improves accuracy [4]. Thus we
also experimented this approach for the three levels
of precision: SP∗, MP∗, DP∗.
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Figure 10: Deviation for SP and MP
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Figure 11: Deviation for DP, SP∗, MP∗, DP∗

Figures 10 and 11 show the average deviation
from initial density when running a simulation at
Re = 30,000 on a 3843 lattice for the six levels of
precision. We can see that, regarding conservation
of mass, mixed precision does not provide significant
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Number of GPUs 1 2 3 4 6

Kernel duration (ms) 18.29 9.14 6.10 4.57 3.05

Data amount (MB) 0.00 1.47 2.95 4.42 7.37

Required throughput (GB/s) 0.00 0.16 0.48 0.97 2.42

Table 1: Required throughput for data exchange at 100% efficiency

improvement over single precision, and that SP∗, MP∗,
and DP∗ perform better than DP by an order of magni-
tude. Furthermore, we may conclude that SP and MP

should not be used when simulating unsteady flows.
In order to study the loss of symmetry from a quan-

titative standpoint, we used the following estimator:

L =max
x
‖u(x , t)− ū(x̄ , t)‖ (17)

where x and x̄ , and u and ū are symmetric with re-
spect of the symmetry plane of the cavity. Figure 12
shows the evolution of L for the different precision
levels running the same simulation than for mass
conservation, i.e. Re= 30,000 on a 3843 lattice. One
can deduce from this diagram that the accumulation
of round-off errors is the cause for the loss of sym-
metry. Past a certain threshold, due to the turbulent
nature of the flow, the numerical perturbations are
steeply amplified.
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Figure 12: Evolution of L for the six precision levels

Figure 13 displays the evolution of L at different
Reynolds numbers for the DP∗ precision level on a
3843 lattice. This diagram shows that the more tur-
bulent the flow pattern is, the sooner the symmetry
breaking occurs, which corroborates the former point
of view.
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Figure 13: Evolution ofL at different Reynolds num-
bers

From a performance standpoint, SP, MP, and DP be-
have similarly than their stared counterparts, since
the difference in implementation only affects the ini-
tialisation section. Using δρ instead of ρ is there-
fore an advisable improvement. Mixed precision has
almost identical performance than double precision,
e.g. 602 MLUPS using six GPUs on a 1923 lattice. In
this case, the gain in accuracy is not worth the per-
formance trade-off.

7 Conclusion

In this contribution, we describe a multi-GPU imple-
mentation of the LBM, based on rather simple tech-
nical choices, i.e. POSIX threads and basic domain
tilling. Nevertheless, performance is nearly optimal,
rivalling the one of supercomputer or large cluster
implementations. Further investigations are needed
to improve understanding of the inter-GPU commu-
nication potential. Moreover, work has to be done
to design some execution grid layout and domain de-
composition compatible with MPI parallelisation.

Our multi-GPU LBM solvers enables the use of
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large lattices, thus allowing direct numerical simula-
tion of unsteady flows. We describe some numerical
issues that arise at high Reynolds numbers and inves-
tigate the impact of different precision levels both on
accuracy and performance.

The TheLMA framework we designed to imple-
ment our flow solver is meant to improve code
reusability. We are currently developing several ap-
plications based on TheLMA, including a hybrid ther-
mal solver and a LES solver. In the near future, we
plan to extend this framework to generic multi-GPU
parallelisation.
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Abstract

In this paper, we describe the implementation of a
multi-GPU fluid flow solver based on the lattice Boltz-
mann method (LBM). The LBM is a novel approach
in computational fluid dynamics, with numerous in-
teresting features from a computational, numerical,
and physical standpoint. Our program is based on
CUDA and uses POSIX threads to manage multiple
computation devices. Using recently released hard-
ware, our solver may therefore run eight GPUs in par-
allel, which allows to perform simulations at a rather
large scale. Performance and scalability are excellent,
the speedup over sequential implementations being
at least of two orders of magnitude. In addition, we
discuss tiling and communication issues for present
and forthcoming implementations.

Keywords: GPU Computing, CUDA, Computational
Fluid Dynamics, Lattice Boltzmann Method.

1 Introduction

First introduced by McNamara and Zanetti in
1988 [10], the lattice Boltzmann method (LBM) is an
increasingly popular alternative to classic CFD meth-
ods. From a numerical and physical standpoint, the
LBM possesses numerous convenient features, such
as explicitness or ability to deal with complex ge-
ometries. Moreover, this novel approach is especially
well-fitted for high performance CFD applications be-
cause of its inherent parallelism.

Since the advent of the CUDA technology, the use
of GPUs in scientific computing has become more and

more widespread [5, 1]. Several successful single-
GPU implementations of the LBM using CUDA were
reported during the past years [19, 8]. Nevertheless,
these works are of moderate practical impact since
memory in existing computing devices is too scarce
for large scale simulations. Multi-GPU implementa-
tions of the LBM are still at an early stage of devel-
opment and reported performance is below what is
expected from such hardware [16].

Recently released motherboards are able to handle
up to eight computing devices. We therefore chose to
develop a POSIX thread based multi-GPU LBM solver,
as a first step towards a distributed version. The
structure of the paper is as follows. We first briefly
present the LBM from an algorithmic perspective,
and summarize the principles of LBM implementa-
tion using CUDA. Then, we describe the implementa-
tion of our solver and discuss performance, scalabil-
ity, and tiling issues. To conclude, we study inter-GPU
communication and propose a performance model.

2 LBM Flow Solvers

Although considered at first as an extension to the
lattice gas automata method [7], the LBM is nowa-
days more commonly interpreted as a discrete nu-
merical procedure to solve the Boltzmann transport
equation:

∂t f + ξ · ∇x f +
F

m
· ∇ξ f = Ω( f ) (1)

where f (x ,ξ, t) describes the evolution in time t of
the distribution of one particle in phase space (i.e.

E–1



Article E

position x and particle velocity ξ), F is the exter-
nal force field, m the mass of the particle, and Ω is
the collision operator. The distribution function f is
linked to the density ρ and the velocity u of the fluid
by:

For LBM, Eq. 1 is usually discretized on a uniform
orthogonal grid of mesh size δx with constant time
steps δt. The particle velocity space is likewise re-
placed by a set of N + 1 velocities ξi with ξ0 = 0,
chosen such as vectors δt ξi link any given node to
some of its neighbors.1 Figure 1 shows the D3Q19
stencil we chose for our implementation. This stencil
is a good trade-off between geometric isotropy and
complexity of the numerical scheme for the three-
dimensional case.
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Figure 1: D3Q19 stencil

The discrete counterpart of the distribution func-
tion f is a set of N + 1 particle population functions
fi corresponding to the finite set of particle velocities.
In a null external force field, Eq. 1 writes:
�

� fi(x +δt ξi , t +δt)
�

−
�

� fi(x , t)
�

=Ω
�

�

� fi(x , t)
�

�

(2)

where
�

�ai
�

denotes the transpose of
�

a0, . . . , aN
�

.
Density and velocity of the fluid are given by:

ρ =
N
∑

i=0

fi (3)

ρu =
N
∑

i=0

fiξi (4)

1Commonly, only nearest neighbors are linked.

The description of possible collision operators is
beyond the scope of this contribution. Nonetheless,
it should be noted from a mathematical perspective
that the collision operators are usually linear in fi and
quadratic in ρ and u, as for the multiple-relaxation-
time model we chose to implement [3, 4]. Equation 2
naturally breaks in two elementary steps:

�

� f̃i(x , t)
�

=
�

� fi(x , t)
�

+Ω
�

�

� fi(x , t)
�

�

(5)

�

� fi(x +δt ξi , t +δt)
�

=
�

� f̃i(x , t)
�

(6)

Equation 5 describes the collision step in which an
updated particle distribution is computed, and Eq. 6
describes the propagation step in which the updated
particle populations are transferred to the neighbor-
ing nodes. From an algorithmic standpoint, a LBM
flow solvers is therefore outlined by the following
pseudo-code:

1. for each time step t do

2. for each lattice node x do

3. read velocity distribution fi(x , t)

4. if node x is on boundaries then

5. apply boundary conditions

6. end if

7. compute updated distribution f̃i(x , t)

8. propagate to neighboring nodes x +δt ξi

9. end for

10. end for

To conclude, it should be noted that paralleliza-
tion of the LBM is rather straightforward, ensuring
synchronization between neighbors at each time step
being the only constraint.

3 CUDA Implementation
Guidelines

When using CUDA computing devices for LBM sim-
ulations, the particle distribution has to be stored
in device memory, for obvious performance reason.
The simplest strategy to ensure global synchroniza-
tion is to launch one kernel at each time step. More-
over, due to the lack of control over memory trans-
action scheduling, two consecutive particle distribu-
tions have to be retained at once. On a Tesla C1060
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computing card, with a D3Q19 stencil in single pre-
cision, the maximum number of handleable nodes is
therefore about 2.83× 107.

The LBM being a data-parallel procedure, CUDA
implementations usually assign one thread per node.
This option allows to take advantage of the massive
parallelism of the targeted architecture. According
to [11], the execution grid has to obey the following
constraints and limitations:

• The grid may only have one or two dimensions.

• Blocks may have up to three dimensions but the
size of the blocks is limited by the amount of
available registers per streaming multiprocessor
(SM).

• The size of the blocks should be a multiple of
the warp size, i.e. 32 on existing hardware, the
warp being the minimum execution unit.

A simple and efficient execution grid layout con-
sists in a two-dimensional grid of one-dimensional
blocks. For cubic cavities, taking the previously men-
tioned device memory limitation into account, this
solution leads to blocks of size up to 256. Thus, there
are at least 64 available registers per node, which
proves to be sufficient for most three-dimensional
collision models.

As for CPU implementation of the LBM, the parti-
cle distribution is stored in a multi-dimensional ar-
ray. Global memory transactions are issued by half-
warps [11]. Hence, in order to enable coalesced data
transfer when using the former execution grid lay-
out, the minor dimension of the array should be the
spatial dimension associated to the blocks. The dis-
position of the remaining dimensions, including the
velocity index may be tuned so as to minimize TLB
misses [15]. However, this data layout does not en-
sure optimal global memory transactions. Propaga-
tion of particle populations along the blocks’ direc-
tion yields one-unit shifts in addresses and therefore
causes misaligned memory accesses. Fig. 2 sketches
this issue. The red frame represent a given block,
the blue arrows to updated particle populations to be
propagated. For the sake of clarity, the size of the
block is limited to four nodes, and the particle popu-
lations are represented as a two-dimensional stencil.

For CUDA devices of compute capability2 1.0 or
1.1, misaligned memory transactions may have dra-

2The compute capability number identifies the level of features

Figure 2: Misalignment issue

matic impact on performance, since sixteen accesses
are issued in lieu of a single one. Performing prop-
agation within the blocks using the shared memory
as described in [18] is an efficient way to avoid this
issue. For compute capability 1.2 or 1.3, however,
a misaligned memory access is carried out in as few
128 B, 64 B, or 32 B aligned transactions as possi-
ble. An alternative approach for this kind of hard-
ware consists in using in-place propagation instead
of out-of-place propagation.

The two propagation schemes are outlined in
Fig. 3. The diagrams are drawn from the standpoint
of the central node. Again, the particle populations
are represented as a two-dimensional stencil. With
out-of-place propagation (Fig. 3a), the collision step
is carried out before the propagation step, which is
performed by pushing the updated populations to
the neighboring nodes. With in-place propagation
(Fig. 3b), the collision step is carried out after the
propagation step, which is performed by pulling the
updated populations from the neighboring nodes.

With the GT200, misaligned reads are far less ex-
pensive than misaligned writes [14]. Thus, the in-
place propagation approach is only slightly less ef-
ficient than the shared memory method for simula-
tions in three dimensions [13]. In-place propagation
is simpler to implement since only global memory
transactions may be used, whereas the shared mem-

supported by CUDA hardware. The G80, first CUDA enabled GPU,
has capability 1.0 . The GT200, that powers the Tesla C1060, has
capability 1.3 . The Fermi, most recent architecture, has capability
2.0 .
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(a) Out-of-place propagation

(b) In-place propagation

Figure 3: Propagation schemes

ory method needs specific handling for the propa-
gation along the block’s direction. Furthermore, in-
place propagation exerts less pressure on hardware
since the use of shared memory is not required.

4 Multi-GPU Implementation of
the LBM

As usual in parallel computing, optimal performance
for multi-GPU applications requires efficient overlap-
ping of computation and communication. In our im-
plementation of the LBM, we used the zero-copy fea-
ture provided by the CUDA technology which allows
GPUs to directly access locked CPU memory pages.
Using CUDA streams is another possible way to per-
form inter-GPU communication. Yet, the zero-copy
feature proves to be the most convenient solution
since communication is taken care of in GPU code
instead of CPU code.

As for global memory accesses, zero-copy transac-
tions should be coalescent in order to preserve perfor-
mance. To enable coalescence, the blocks have to be
parallel to the interfaces of the sub-domains. For the
sake of simplicity, we decided to use one-dimensional
blocks for our multi-GPU implementation as in our
single-GPU implementation. Because of the targeted
hardware, our solver has to handle at most eight sub-
domains. We therefore chose to split the cavity in
balanced rectangular cuboids along one direction or-
thogonal to the blocks.

Each sub-domain is handled by a POSIX thread

which is responsible for launching the computa-
tion kernel on the associated GPU. Synchronization
within the whole domain is obtained through a dou-
ble barrier: one CUDA barrier for synchronization
at sub-domain level and one POSIX thread barrier.
Fig. 4 outlines the data flows between sub-domains.
In-coming populations are drawn in red and out-
going populations in blue. For a given interface,
at each time step, in-coming populations are read
from a couple of buffers (one for each sub-domain)
and out-going are written to an alternate couple of
buffers. The buffers exchange role at the next time
step, which is carried out by simply switching point-
ers.

(a) First state

(b) Second state

Figure 4: Inter-GPU communication scheme

The splitting direction is selected such as to min-
imize the amount of data to exchange. Neverthe-
less, for large cavities, the dimension in the direction
of the blocks may exceed the maximum block size.
Thus, the simple grid layout described in section 3
may not be used in general. We propose instead, to
use blocks of size 2n with a two-dimensional grid of
size:

(`x × `y × `z × 2−m)× (2m−n),

where `x , `y , and `z are the dimensions of the sub-
domain, n and m are adjustable parameters. The re-
trieval of the coordinates is done using a code equiv-
alent to the following:

w = blockIdx.x<<m | blockIdx.y<<n
| threadIdx.x;

x = w % lX;
y = (w/lX) % lY;
z = w/(lX*lY);
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The proposed grid layout leads to shuffle the
blocks’ schedule which tends to reduce partition
camping [17] and allows efficient communication-
computation overlapping as shown in section 5. The
optimal values for n and m, which were determined
empirically, are n= 7 and m= 15.

param.c init.c stat.c output.c

main.c

thelma.cu

geometry.cu init.cu compute.cu results.cu

Figure 5: The TheLMA framework

From a software engineering perspective, the
CUDA technology is a great improvement over the
early days of GPGPU [6]. Yet, there are still some
important limitations compared to usual software
development. The inability of the CUDA compi-
lation tool-chain to link several GPU binaries to-
gether for instance, makes difficult to follow an in-
cremental, library oriented approach. To improve
code reusability, we therefore developed the TheLMA
framework [12]. TheLMA stands for Thermal LBM on
Many-core Architectures, thermal flow simulations be-
ing our main topic of interest. Figure 5 outlines the
structure of the framework.

The TheLMA framework mainly consists of two
parts. The first part is a set of C source files which
provides various utility functions such as command
line parsing, POSIX threads setup, simulation statis-
tics, and data output in various formats. The second
part is a set of CUDA source files which are included
in the thelma.cu file at compile time. The later is
basically a container providing some general macro
definitions.

The initialization module mainly creates CUDA
contexts in order to assign a GPU to each POSIX
thread. The geometry module is responsible for set-
ting up the boundary conditions and any obstacle
that may lay inside the cavity. Permitted velocity di-
rections for each node, as well as specific boundary
conditions, are encoded using bit fields. The com-

putation module contains the core kernel of the sim-
ulation which performs both collision and propaga-
tion. Last, the result module retrieves the macro-
scopic variables of the fluid.

The source organization we describe is meant to
ease subsequent code changing. For instance, the im-
plementation of a different collision model or prop-
agation scheme would mainly require the modifica-
tion of the computation module. Likewise, the setting
up of a given simulation configuration principally in-
volves changes in the geometry module.

5 Performance and Scalability

To validate our code, we implemented the lid-driven
cubic cavity test case in which a constant velocity is
imposed at the top lid, whereas the other walls have a
null velocity boundary condition. We chose to assign
the x direction to the blocks and to split the cavity
along the z direction. Performance for LBM solvers
is usually given in MLUPS (Million Lattice node Up-
dates Per Second). We evaluated performance in sin-
gle precision for a 1923 and a 2563 lattice on a Tyan
B7015 server with 8 Tesla C1060 computing devices
running 105 time steps. The former lattice size, being
a multiple of 24, allows to run the solver using 2, 3,
4, 6, or 8 GPUs with balanced sub-domains. Figure 6
shows our measurement for both lattices.

The maximum achieved performance is about
2,150 MLUPS obtained on the 1923 lattice using
6 GPUs. To set a comparison, this maximum is
comparable to the performance obtained with the
widely used Palabos code in double precision for
a 1,0013 cavity on a Blue Gene/P computer using
4,096 cores [9]. Scalability is excellent in all cases
but one, with no less than 91% parallelization effi-
ciency. Tables 1 and 2 give the inter-GPU data ex-
change throughput required to achieve full overlap-
ping.3

With the Tyan S7015 motherboard of our server,
the bandwidthTest program that comes with the
CUDA development kit gives 5.72 GB/s host to de-
vice and 3.44 GB/s device to host maximum cumu-
lative throughput. These values are obtained using
the copy functions provided by the CUDA API with
pinned memory and not zero-copy transactions as in
our program. The communications being symmetric

3Following IEEE 1541-2002, we use MB for 106 bytes and GB
for 109 bytes.
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Number of GPUs 1 2 3 4 6 8

Kernel duration (ms) 18.29 9.14 6.10 4.57 3.05 2.29

Data amount (MB) 0.00 1.47 2.95 4.42 7.37 10.32

Required throughput (GB/s) 0.00 0.16 0.48 0.97 2.42 4.51

Table 1: Required throughput at 100% efficiency on a 1923 lattice

Number of GPUs 1 2 4 8

Kernel duration (ms) 84.31 42.15 21.08 10.54

Data amount (MB) 0 2.62 7.86 18.35

Required throughput (GB/s) 0 0.06 0.37 1.74

Table 2: Required throughput at 100% efficiency on a 2563 lattice
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(b) Performance on a 2563 lattice

Figure 6: Performance and scalability on a cubic lat-
tice

in our case and the PCI-E interface being full-duplex,
we may use the lower of these values, i.e. 3.44 GB/s,
as an estimate for sustained data exchange between
GPUs and main memory. Yet, we see that, except in
the case of 8 GPUs on a 1923 lattice, the required
throughput is definitely less than this estimate and is
not likely to overflow the capacity of the PCI-E links.
We can furthermore conclude that our data access
pattern generally enables excellent communication-
computation overlapping.

Considering the unfavorable case, we deduce that
the number of interfaces with respect to the size of
the cavity is too large to take advantage of surface to
volume effects. This naturally leads to the question
of a less simplistic tiling of the cavity than the one we
adopted. Yet, dividing a cubic cavity in eight identi-
cal cubic tiles would lead to only three interfaces, but
would yield non-coalesced, i.e. serialized, zero-copy
transactions for one of the interfaces. It is possible
with simple code modifications, like splitting the cav-
ity along the x direction instead of the z direction, to
evaluate the impact of serialized inter-GPU commu-
nication. Figure 7 displays the performance of our
code on a 1923 lattice after such a transformation.

We can see the overwhelming impact of serialized
communication on performance, which is obviously
communication bound. We may therefore conclude
that gaining flexibility in tiling would most likely re-
quire to adopt a more elaborate execution grid lay-
out.
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Figure 7: Performance for coalesced and serialized
communication

6 Inter-GPU Communication

In order to get better insight into inter-GPU com-
munication, we implemented a benchmark program
based on a stripped-down version of our LBM solver.
The purpose of this software is to evaluate the achiev-
able sustained throughput when using zero-copy
transactions over several GPUs. Data to exchange is
formed of k two-dimensional L × L arrays of 32-bit
words. The communication graph may be either cir-
cular or linear. Whereas linear graphs correspond to
our solver, circular graph are useful to simulate bal-
anced communication which is likely to occur with
multi-node implementations.

The communication graph is specified by an or-
dered list of involved devices. In our tests, the S7015
being a two-socket motherboard, we used this pa-
rameter to obtain optimal balancing between the two
northbridges. In addition, the data arrays may op-
tionally be transposed at each access which causes
serialization of the zero-copy transactions. Figure 8
shows the obtained throughput averaged over 50,000
iterations for circular graphs, linear graphs, and lin-
ear graphs with transposition. In order for our bench-
mark program to exchange an amount of data com-
parable to our solver, the values of k and L were set
to k = 5, which is the number of exchanged parti-
cle populations when using the D3Q19 stencil, and
L = 192, which is equivalent to the dimension of the
cavity in our first performance test. Yet, extensive
tests have shown that these parameters are of negli-
gible impact over the measurements.

The variations of throughput for circular and lin-
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Figure 8: Inter-GPU communication throughput

ear graphs are similar, which is natural insofar the
configurations with respect of the number of devices
are identical. The throughput in the linear case is less
than in the circular case since the links at the edges
are only used at half capacity. The values obtained for
linear communication graphs are coherent with the
conclusion drawn in section 5. The throughput for
the serialized version is more than one order of mag-
nitude below the coalesced versions, i.e. about 200
MB/s. Using the measurements, we may estimate
the performance of the solver under the assumption
of communication-boundedness. Performance P in
MLUPS obeys:

P = `3 ×
Ti

2(i− 1)D× `2 =
Ti × `

2(i− 1)D
(7)

where i is the number of devices, Ti is the corre-
sponding throughput (in MB/s), D is the amount of
out-going and in-coming data by node (in bytes), and
` is the dimension of the cavity (in nodes). In the
case of 8 GPUs on a 1923 lattice, the estimated per-
formance is 1,977 MLUPS instead of 1,870 MLUPS,
i.e. a 6% relative error. For the serialized commu-
nication version, Fig. 9 displays the comparison be-
tween the corresponding estimation and the actual
performance.

The estimation is in good accordance with the
measured values, the relative error being at most
15%, which corroborates our assumption.
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Figure 9: Performance model for serialized commu-
nication

7 Conclusion

In this contribution, we describe a multi-GPU imple-
mentation of the LBM capable of handling up to eight
CUDA enabled computing devices. Performance is
comparable with efficient parallel implementations
on up-to-date homogeneous supercomputers and is
at least two orders of magnitude higher than with
optimized sequential code. We propose an execu-
tion grid layout providing excellent computation-
communication overlapping and an efficient inter-
GPU communication scheme. Though simple, this
scheme yields excellent scalability with nearly opti-
mal parallelization efficiency in most cases.

Our solver is implemented over the TheLMA
framework, which aims at improving code reusabil-
ity. A thermal LBM solver also based on TheLMA is
currently under development. In the present version,
management of multiple CUDA contexts is based on
POSIX threads. Yet, we plan to extend our frame-
work to more generic parallelization interfaces (e.g.
MPI) in order to make possible distributed imple-
mentations. This extension requires in conjunction
more elaborate data exchange procedures so as to
gain flexibility in domain decomposition.

In addition, we study inter-GPU communication
using a specific benchmark program. The obtained
results allowed us to express a rather accurate per-
formance model for the cases where our application
is communication bound. This tool reveals more-
over that data throughput depends to a certain ex-
tent on hardware locality. An extended version, using
for instance the Portable Hardware Locality (hwloc)

API [2], would help performing further investigation
and could be a first step for adding dynamic auto-
tuning in our framework.

References

[1] E. Agullo, J. Demmel, J. Dongarra, B. Hadri,
J. Kurzak, J. Langou, H. Ltaief, P. Luszczek, and
S. Tomov. Numerical linear algebra on emerg-
ing architectures: The PLASMA and MAGMA
projects. In Journal of Physics: Conference Se-
ries, volume 180, pages 2037–2041. IOP Pub-
lishing, 2009.

[2] F. Broquedis, J. Clet-Ortega, S. Moreaud,
N. Furmento, B. Goglin, G. Mercier, S. Thibault,
and R. Namyst. hwloc: a generic framework
for managing hardware affinities in HPC appli-
cations. In 18th Euromicro International Confer-
ence on Parallel, Distributed and Network-Based
Processing (PDP), 2010, pages 180–186. IEEE,
2010.

[3] D. d’Humières. Generalized lattice-Boltzmann
equations. In Proceedings of the 18th Inter-
national Symposium on Rarefied Gas Dynamics,
pages 450–458. University of British Columbia,
Vancouver, Canada, 1994.

[4] D. d’Humières, I. Ginzburg, M. Krafczyk,
P. Lallemand, and L.S. Luo. Multiple-relaxation-
time lattice Boltzmann models in three dimen-
sions. Philosophical Transactions of the Royal So-
ciety A, 360:437–451, 2002.

[5] J. Dongarra, G. Peterson, S. Tomov, J. Allred,
V. Natoli, and D. Richie. Exploring new archi-
tectures in accelerating CFD for Air Force appli-
cations. In DoD HPCMP Users Group Conference,
pages 472–478. IEEE, 2008.

[6] Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-
Stover. GPU cluster for high performance com-
puting. In Proceedings of the 2004 ACM/IEEE
Conference on Supercomputing, pages 47–58.
IEEE, 2004.

[7] U. Frisch, B. Hasslacher, and Y. Pomeau.
Lattice-Gas Automata for the Navier-
Stokes Equation. Physical Review Letters,
56(14):1505–1508, 1986.

E–8



The TheLMA project: multi-GPU implementation of the lattice Boltzmann method

[8] F. Kuznik, C. Obrecht, G. Rusaouën, and J.-J.
Roux. LBM Based Flow Simulation Using GPU
Computing Processor. Computers and Math-
ematics with Applications, 59(7):2380–2392,
2010.

[9] J. Latt. Palabos Benchmarks (3D Lid-driven
Cavity on Blue Gene/P). Available on
www.lbmethod.org/plb_wiki:
benchmark:cavity_n1000, 2010.

[10] G. R. McNamara and G. Zanetti. Use of
the Boltzmann Equation to Simulate Lattice-
Gas Automata. Physical Review Letters,
61(20):2332–2335, 1988.

[11] NVIDIA. Compute Unified Device Architecture
Programming Guide version 3.1.1, 2010.

[12] C. Obrecht, F. Kuznik, B. Tourancheau, and J.-
J. Roux. Thermal LBM on Many-core Architec-
tures. Available on www.thelma-project.info,
2010.

[13] C. Obrecht, F. Kuznik, B. Tourancheau, and J.-
J. Roux. A new approach to the lattice Boltz-
mann method for graphics processing units.
Computers and Mathematics with Applications,
61(12):3628–3638, 2011.

[14] C. Obrecht, F. Kuznik, B. Tourancheau, and J.-
J. Roux. Global Memory Access Modelling for
Efficient Implementation of the Lattice Boltz-
mann Method on Graphics Processing Units.
In Lecture Notes in Computer Science 6449,
High Performance Computing for Computational
Science, VECPAR 2010 Revised Selected Papers,
pages 151–161. Springer, 2011.

[15] M.M. Papadopoulou, M. Sadooghi-Alvandi, and
H. Wong. Micro-benchmarking the GT200
GPU. Technical report, University of Toronto,
Canada, 2009.

[16] E. Riegel, T. Indinger, and N.A. Adams. Im-
plementation of a Lattice–Boltzmann method
for numerical fluid mechanics using the nVIDIA
CUDA technology. Computer Science – Research
and Development, 23(3):241–247, 2009.

[17] G. Ruetsch and P. Micikevicius. Optimizing ma-
trix transpose in CUDA, NVIDIA, 2009.

[18] J. Tölke. Implementation of a Lattice Boltz-
mann kernel using the Compute Unified Device
Architecture developed by nVIDIA. Comput-
ing and Visualization in Science, 13(1):29–39,
2010.

[19] J. Tölke and M. Krafczyk. TeraFLOP computing
on a desktop PC with GPUs for 3D CFD. Interna-
tional Journal of Computational Fluid Dynamics,
22(7):443–456, 2008.

E–9

http://www.lbmethod.org/plb_wiki:benchmark:cavity_n1000
http://www.lbmethod.org/plb_wiki:benchmark:cavity_n1000
http://www.thelma-project.info


E–10



Article F

Towards Urban-Scale Flow Simulations using
the Lattice Boltzmann Method

Proceedings of the Building Simulation 2011 Conference, pages 933–940. IBPSA, 2011

Accepted September 6, 2011

Abstract

The lattice Boltzmann method (LBM) is an innovative
approach in computational fluid dynamics (CFD).
Due to the underlying lattice structure, the LBM is
inherently parallel and therefore well suited for high
performance computing. Emerging many-core de-
vices, such as graphic processing units (GPUs), nowa-
days allow to run very large scale simulations on
rather inexpensive hardware. In this contribution, we
present some simulation results obtained using our
multi-GPU LBM solver. For validation purpose, we
study the flow around a wall-mounted cube and show
good agreement with previously published results.
Furthermore, we discuss larger scale flow simulations
involving nine cubes which demonstrate the practica-
bility of CFD simulations in building aeraulics.

1 Introduction

Because of the computational cost of flow simula-
tions, building aeraulics is generally taken into ac-
count using simplified models. However, this ap-
proach is not satisfactory in terms of accuracy when
modelling energy efficient buildings. Recent ad-
vances, in both computational fluid dynamics (CFD)
and high performance computing allow to consider
the practical use of explicit flow simulations in build-
ing models.

In this contribution, we shall present simulation
results obtained using the lattice Boltzmann method
(LBM). Being based on a mesoscopic point of view,
this novel CFD approach has numerous advantages
over classic macroscopic methods such as the solv-
ing of the Navier-Stokes equations. Among other

benefits, it is worth mentioning the high numerical
stability, the ability to deal with complex geometries
and the straightforwardness of various physical cou-
plings.

Although parallel implementations of the LBM may
be rather efficient, performing large scale simula-
tions on mainstream architectures still requires the
use of expensive clusters. The present simulations
were carried out using several graphics processing
units (GPUs) in parallel within a single server. Per-
formance afforded by such hardware configuration is
comparable to the one obtained using large clusters
at a fairly lower cost.

The remaining of the paper is organised as fol-
lows. The first section is a summary of the LBM,
presenting the specific model we retained together
with the subgrid-scale model we added in order to
enable simulations at high Reynolds number. Then,
we give a short description of state-of-the-art GPU im-
plementations of LBM solvers and of our multi-GPU
LBM framework. In the third section, for validation
purpose, we present the simulation of a fully devel-
oped flow over a wall-mounted cube in a flat channel.
The simulation results are compared to experimental
data. The last section reports the simulation of the
flow over nine identical wall-mounted cubes at high
Reynolds numbers.

2 Lattice Boltzmann method

2.1 Lattice Boltzmann equation

Although originating from the lattice gas automata
theory [5], the lattice Boltzmann method is nowa-
days usually interpreted as a discrete version of the
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Boltzmann transport equation [9]:

∂t f + ξ · ∇x f +
F

m
· ∇ξ f =Ω ( f ), (1)

where f (x ,ξ, t) describes the evolution in time of the
distribution of one particle in phase space, F is the
external force field, m the mass of the particle, and Ω
the collision operator.

Discretisation occurs both in time, with constant
time steps δt, and phase space, generally using a reg-
ular orthogonal grid of mesh size δx and a finite set
of N+1 particle velocities ξα with ξ0 = 0. The later is
commonly a subset of the velocities linking a node to
its nearest neighbours as the D3Q19 stencil we used
for our simulations (see Fig. 1).
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Figure 1: The D3Q19 stencil

The discrete counterpart of the distribution func-
tion f is a finite set of functions fα(x , t) associated
to the particle velocities ξα. Let us denote:

�

�aα
�

=
�

a0, . . . aN
�T ,

T being the transpose operator. The lattice Boltz-
mann equation (LBE) writes:

�

� fα(x +δtξα, t +δt)
�

−
�

� fα(x , t)
�

=Ω
h

�

� fα(x , t)
�

i

. (2)

The mass density ρ and the velocity u of the fluid
are given by:

ρ =
∑

α

fα , u =
1

ρ

∑

α

fαξα . (3)

2.2 Multiple-relaxation-time LBM

The simplest (and most commonly used) way to ex-
press the collision operator is the LBGK approach
[17], which uses the Bhatnagar-Gross-Krook approx-
imation [1]. We instead chose to use the multiple-
relaxation-time (MRT) approach [2]. Although of
higher computational cost, MRT was shown of bet-
ter accuracy and numerical stability than LBGK [7].

In the MRT approach, collision is performed in mo-
ment space. The particle distribution is mapped to a
set of moments {mα | i = 0, . . . N} by an orthogonal
matrix M:

�

� fα(x , t)
�

=M−1
�

�mα(x , t)
�

(4)

where
�

�m(x , t)
�

is the moment vector. For the D3Q19
stencil, the orthogonal matrix M can be found in ap-
pendix A of [3]. The corresponding moment vector
is:
�

�mα(x , t)
�

=
�

ρ, e,ε, jx , qx , jy , qy , jz , qz , 3px x ,

3πx x , pww ,πww , px y , pyz , pzx , mx , my , mz
�T (5)

where e is energy, ε is energy square, j = ( jx , jy , jz) is
the momentum, q = (qx , qy , qz) is the heat flux, px x ,
px y , pyz , pzx , pww are related to the strain rate tensor
S, πx x , πww are fourth-order moments and mx , my ,
mz are third-order moments with respect to the par-
ticle velocities. The mass density and the momentum
are the conserved moments.

The LBE thus writes:
�

� fα(x +δtξα, t +δt)
�

−
�

� fα(x , t)
�

=−M−1Λ
h

�

�mα(x , t)
�

−
�

�m(eq)
α (x , t)

�

i

(6)

where Λ is a diagonal collision matrix and the m(eq)
α

are the equilibrium values of the moments. For the
sake of isotropy, Λ obeys:

Λ = diag(0, s1, s2, 0, s4, 0, s4, 0, s4,

s9, s10, s9, s10, s13, s13, s13, s16, s16, s16). (7)

We additionally set s9 = s13. The relaxation rate s9
is linked to the kinematic viscosity ν of the model by:

1

s9
=

1

c2
s

ν +
1

2
, (8)

where the speed of sound cs is set to:

cs =
1
p

3
×
δx

δt
. (9)
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The other rates are set according to [7], i.e. s1 =
1.19, s2 = s10 = 1.4, s4 = 1.2, and s16 = 1.98.

2.3 Large-eddy simulation

For large-eddy simulation (LES), the kinematic vis-
cosity is ν = ν0+νt where ν0 is the molecular viscos-
ity and νt is the turbulent viscosity. In the Smagorin-
sky model [20], the turbulent viscosity is given by:

νt = |S| (CSδx)2, |S|=
p

2S : S , (10)

where CS is the Smagorinsky constant. Adding eddy
viscosity to the MRT model is achieved by replacing
the relaxation rate s9 with:

s∗9 =
1

τ0 +τt
, (11)

where τ0 and τt are the molecular and turbulent re-
laxation times:

τ0 =
1

c2
s

ν0 +
1

2
, τt =

1

c2
s

νt . (12)

Following [6], the second order moments obey:

Pi j =
∑

α

ξαiξα j fα = c2
s ρδi j + ρuiu j −Qi j , (13)

with:

Q=
2c2

s ρ

s∗9
S . (14)

Thus, the strain rate tensor may be computed from
the moment vector. For the D3Q19 stencil, we obtain:

Px x =
1

57
(30ρ+ e) + px x , (15)

Py y =
1

57
(30ρ+ e) +

1

2
(pww − px x), (16)

Pzz =
1

57
(30ρ+ e)−

1

2
(px x + pww), (17)

Px y = px y , Pyz = pyz , Pzx = pzx . (18)

Finally, assuming that νt depends on S at current
time, we have:

τt =
1

2

�
Æ

τ2
0 + 18 |Q| (CSδx)2 −τ0

�

. (19)

3 Multi-GPU solver

3.1 Algorithmic aspect

From an algorithmic standpoint, the LBE (Eq. 6) nat-
urally breaks in two elementary step:

�

� f̃α(x , t)
�

=
�

� fα(x , t)
�

+Ω
h

�

� fα(x , t)
�

i

(20)

�

� fα(x +δt ξα, t +δt)
�

=
�

� f̃α(x , t)
�

(21)

Equation 20 describes the collision step in which
an updated particle distribution is computed. Equa-
tion 21 describes the propagation step in which the
updated particle populations are transferred to the
neighbouring nodes as outlined by Fig. 2 (in two di-
mensions for the sake of simplicity).

Figure 2: Propagation step

It is worth mentioning that in the first step, compu-
tations only involve informations local to each node.
Moreover, in the second step, data transfers only re-
quire proper synchronisation with the nearest neigh-
bours. As a matter of consequence, the LBM is fairly
well suited for parallel implementations.

3.2 CUDA implementations

During the last decade, the computational power of
GPUs has grown exponentially, reaching 1.35 Tflop/s
single precision peak performance with the latest
generation of NVIDIA processors [11]. Early at-
tempts to implement the LBM on such hardware [4]
were quite promising. With the introduction of the
CUDA technology by NVIDIA in 2007, general pur-
pose programming on GPUs became more practica-
ble. Several successful CUDA implementations of the
three-dimensional LBM [21, 13] were reported since.

On recent hardware, single GPU implementations
are able to handle up to about 7.7 × 108 nodes
per second, whereas multithreaded CPU implemen-
tations handle at most about 8.5 × 107 nodes per
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second using a single quad core processor [8]. It is
also worth mentioning that performance of GPU im-
plementations is communication bound [14], while
performance of CPU implementations is computation
bound. Thus, making use of a model of higher algo-
rithmic complexity (e.g. MRT instead of LBGK) has
in general little impact on performance.

3.3 TheLMA framework

GPUs provide large computational power at fairly
low cost. Yet, although growing more versatile at
each generation, CUDA enabled GPUs still have nu-
merous drawbacks. The CUDA tool chain for in-
stance, due to hardware limitations, is unable to link
several GPU binaries. In cases like LBM, this forbids
the use of library oriented development techniques.
The limited amount of on board memory may also be
problematic. Using the latest computation devices,
a single GPU implementation of the D3Q19 scheme
may handle at most about 4.2× 107 nodes in single
precision.

To address both issues, we created the TheLMA
framework [12]. TheLMA stands for Thermal LBM
on Many-core Architectures, thermal simulations be-
ing our main topic of interest. The TheLMA frame-
work is designed to improve code reusability. Set-
ting up a new simulation usually only requires minor
code modifications. Moreover, TheLMA provides na-
tive multi-GPU support [15]. For now, this support
is limited to single servers, but extension to hybrid
clusters is under active development.

4 Flow around a single cube

In order to validate our MRT-LBM solver, we chose
to simulate a fully developed flow around a wall-
mounted cube in a channel. The simulation results
are compared to experimental data from [10]. Fig-
ure 3 outlines the simulation setup.

The channel is represented by a cavity containing
1,024×768×192≈ 1.51×108 nodes. Solid walls are
simulated using half-way bounce-back boundary con-
dition [see for instance 16]. The inlet velocity is im-
posed by adding the corresponding equilibrium val-
ues to the distribution functions and the outlet con-
dition is obtained by imposing null velocity gradient.
The size of the cube is set to H = 58δx in order to
have h/H ≈ 3.3 as in our reference, and the position

O

Inflow

x

z

H

h

(a) Side view

O x

y

(b) Top view

Figure 3: Simulation setup for a single cube

of the cube is such as x0 = 4H. It should be men-
tioned that, in order to save memory, y0 is less in
our setup than in the experimental one. This allows
to improve the resolution of the obstacle, with little
impact on the flow since we have y0 > 6H.

In their work, Meinders et al. [10] give the time-
averaged streamwise velocity of the flow in the verti-
cal symmetry plane, obtained through laser Doppler
anemometry (LDA). The measurements were con-
ducted at Reynolds number Re= 4,440 where:

Re=
uBH

ν
(22)

and uB is the bulk velocity of the inflow. In our simu-
lation, we averaged the streamwise velocity over time
from 50T0 to 200T0, where T0 = H/u0 is the turn-
over time and u0 is the maximum inlet velocity. The
overall computation time was less than six hours us-
ing a Tyan B7015 server with eight Tesla C1060 com-
puting devices.

Figures 4 and 5 show upstream and downstream
normalised velocity profiles with respect of x/H for
both simulation and measurements.

Agreement of simulation data with experimental
data is rather satisfying since uncertainties on both
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Figure 4: Upstream normalised velocity profiles with respect of x/H for several values of z/H
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Figure 5: Downstream normalised velocity profiles with respect of x/H for several values of z/H
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position and value of measurements should be taken
into account. Unfortunately, our reference does not
provide such informations, nor does it give detailed
data regarding the inlet velocity profile. Although
not perfect, agreement with measurements is by far
better than in previously published work [see Fig. 9
in 22]. The most important flow features are also
well predicted by our model.

5 Flow around nine cubes

To illustrate the possible use of multi-GPU LBM
solvers in building aeraulics, we chose to simulate
the flow around nine identical wall-mounted cubes.
Figure 6 outlines the simulation setup.

O

Inflow

x

z

H

h

(a) Side view

O

x

y

(b) Top view

Figure 6: Simulation setup for nine cubes

The simulation domain is again represented using
a 1,024×768×192 mesh. The size of the cubes is set
to H = 48δx , and the position is such as x0 = 3H and
x1 = H/2. Thus, we have y0 = 6H and h = 4H. We
impose logarithmic velocity profile for the inflow and
constant streamwise velocity on the top lid. In this
configuration, we define the Reynolds number as:

Re=
u1H

ν
(23)

where u1 is the inflow velocity at obstacle height.
Furthermore, to reduce the impact of lateral faces on
the flow, we apply the same boundary condition as
for the outlet, i.e. null velocity gradient in the direc-
tion normal to the face.

We chose to run simulations at Reynolds numbers
Re1 = 40,000 and Re2 = 1,000,000. Smagorinsky
subgrid-scale models were reported satisfactory in
similar situations, for Reynolds numbers up to at least
Re1 with LBM flow solvers [6], and at least Re2 for
Navier-Stockes solvers [19]. Although the LBM part
in our implementation differs from the former, we
may be rather confident in the results at Re = Re1.
The simulation at Re= Re2 is more relevant at build-
ing scale, however the results should be considered
with greater care.

As in the single cube simulation, we averaged den-
sity and velocity over time from 50T0 to 200T0, the
turn-over time being set to T0 = 4H/u0. The overall
computation time was about 17 h 19 min for 106 time
steps. The corresponding performance is 2.4 × 109

node updates per second, which is at least a 28×
speedup over optimised multithreaded CPU imple-
mentations.

Figures 7 and 8 display the averaged pressure rel-
ative variation r and velocity streamlines in the ver-
tical symmetry plane near the obstacle, with:

r =
p− p∞

p∞
(24)

and p∞ is the freestream pressure near the inflow.
Both simulations lead to rather similar mean flow

patterns. The flow in the gaps between the cubes
is structured in two independent cells. This specific
flow feature is due to the three-dimensional effects of
the flow.

The simulations also show quite similar pressure
fields. At the walls, r equals to the pressure coeffi-
cient. The obtained values are within the range of
coefficients used in practice and seem therefore rea-
sonable.

6 Conclusion

In the present work, we provide building scale flow
simulation results obtained using our multi-GPU im-
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Figure 7: Time averaged streamlines and pressure relative variation at Re= 40,000
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Figure 8: Time averaged streamlines and pressure relative variation at Re= 1,000,000
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plementation of the LBM. We show that the required
computation times remain below reasonable limits.
Thus, we believe this contribution is a significant step
towards the use of effective CFD simulations in build-
ing models. Moreover, it is worth mentioning that the
LBM applies to a wide range of situations and there-
fore may be useful in other fields of building simula-
tion than external aeraulics.

Several improvements to our approach, regard-
ing both performance and accuracy are within reach.
From a physical standpoint, the use of more elabo-
rate subgrid-scale models than the static Smagorin-
sky model we implemented would be desirable. On-
going research founded on the same mesoscopic
point of view as the LBM might provide advances on
this issue [18]. From a computational standpoint,
porting grid refinement techniques to the GPU would
be of highest practical interest and we plan to add
such a feature to our framework in near future.
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Abstract

In this contribution, a single-node multi-GPU thermal
lattice Boltzmann solver is presented. The program
is based on the TheLMA framework which was de-
veloped for that purpose. The chosen implementa-
tion and optimisation strategies are described, both
for inter-GPU communication and for coupling with
the thermal component of the model. Validation and
performance results are provided as well.

Keywords: Thermal lattice Boltzmann method, GPU
computing, CUDA

1 Introduction

Since its introduction in the late eighties, the lat-
tice Boltzmann method (LBM) has proven to be an
effective approach in computational fluid dynamics
(CFD). It has been successfully applied to a wide
range of engineering issues such as multiphase flows,
porous media, or free surface flows. Despite of these
achievements, the use of the LBM for thermal flow
simulation is not very widespread yet. A possible rea-
son for this situation is the relatively high computa-
tional cost of most thermal LBM models.

The use of emerging many-core architectures such
as graphics processing units (GPUs) in CFD is fairly
promising [2]. Being a regular data-parallel algo-
rithm, the LBM is especially well adapted to such
hardware. Nevertheless, implementing the lattice
Boltzmann method for the GPU is still a pioneer-
ing task. Several important issues, such as multi-
physics applications and efficient multi-GPU imple-
mentations, remain to be addressed. The present

work, presenting a multi-GPU thermal LBM solver,
faces both challenges.

The remaining of the paper is organised as follows.
In the first section, we briefly present the thermal lat-
tice Boltzmann model we chose to implement. Next,
we give an overview of the TheLMA framework on
which our program is based. In the third section,
we describe our implementation and our optimisa-
tion strategies. Last, we provide some simulation re-
sults for validation purpose and discuss performance
issues.

2 Hybrid thermal lattice
Boltzmann model

The lattice Boltzmann equation (LBE), i.e. the gov-
erning equation of the LBM is interpreted as a dis-
crete version of the Boltzmann equation [7]. In the
LBM, as for the Boltzmann equation, a fluid is rep-
resented through the distribution of a single particle
in phase space (i.e. position x and particle velocity
ξ). Space is commonly discretised using a uniform
orthogonal lattice of mesh size δx and time using
constant time steps δt. Moreover, the particle ve-
locity space is discretised into a finite set of particle
velocities ξα. The LBM counterpart of the distribu-
tion function f (x ,ξ, t) is a finite set fα(x , t) of par-
ticle distribution functions associated to the particle
velocities ξα. The LBE writes:

�

� fα(x +δtξα, t +δt)
�

−
�

� fα(x , t)
�

=Ω
h

�

� fα(x , t)
�

i

. (1)
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where Ω is the collision operator. The mass density ρ
and the momentum j of the fluid are given by:

ρ =
∑

α

fα , j =
∑

α

fαξα . (2)

The particle velocity set is usually chosen such as
to link the nodes to some of their nearest neighbours,
as the three-dimensional D3Q19 stencil illustrated by
Fig. 1. It is well-known that such basic models are
not energy conserving. To address this issue, sev-
eral approaches such as multi-speed models [16] or
double-population models [4] have been developed.
In the former category, a larger set of particle veloci-
ties is defined allowing multiple particle speeds along
some directions. In the later category, an additional
set of energy distribution functions is used. Both
approaches suffer from inherent numerical instabili-
ties [5]. Moreover, from a computational standpoint,
both methods lead to a markedly higher memory con-
sumption.
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Figure 1: The D3Q19 stencil

Hybrid thermal lattice Boltzmann models consti-
tute an alternative approach in which the flow sim-
ulation is decoupled from the solution of the heat
equation. These models are free from the afore-
mentioned drawbacks. In the present work, we im-
plemented a simplified version of the hybrid ther-
mal lattice Boltzmann model developed in [5]. Flow
simulation is performed by multiple-relaxation-time
LBM [1], using the D3Q19 stencil. In the multiple-
relaxation-time approach, collision is performed in

moment space and the LBE writes:

�

� fα(x +δtξα, t +δt)
�

−
�

� fα(x , t)
�

=−M−1S
��

�mα(x , t)
�

−
�

�m(eq)
α (x , t)

�

�

(3)

where M is an orthogonal matrix mapping the set of
particle distributions to a set of moments mα, and S
is a diagonal matrix containing the relaxation rates.
Matrices M and S as well as the equilibria of the
moments for the D3Q19 stencil can be found in Ap-
pendix A of [1].

In our simulations, unlike Lallemand and Luo in
[5], we set the ratio of specific heats γ = CP/CV
to γ = 1, which simplifies the coupling of the tem-
perature T to the fluid momentum. Temperature
is therefore obtained by solving the following finite-
difference equation:

∂ ∗t T = κ∆∗T − j · ∇∗T (4)

where κ denotes the thermal diffusivity, which we
assume being constant. For the sake of simplicity,
we set δx = 1 and δt = 1, and define the finite-
difference operators as:

∂ ∗t T (t) = T (t + 1)− T (t) (5)

∂ ∗x T (i, j, k) = T (i+ 1, j, k)− T (i− 1, j, k)

−
1

8

�

T (i+ 1, j+ 1, k)− T (i− 1, j+ 1, k)

+T (i + 1, j− 1, k)− T (i− 1, j− 1, k)
+T (i+ 1, j, k+ 1)− T (i− 1, j, k+ 1)
+T (i+ 1, j, k− 1)− T (i− 1, j, k− 1)

�

(6)

∆∗ T (i, j, k) = 2
�

T (i+ 1, j, k) + T (i− 1, j, k)
+T (i, j+ 1, k) + T (i, j− 1, k)
+T (i, j, k+ 1) + T (i, j, k− 1)

�

−
1

4

�

T (i + 1, j+ 1, k) + T (i− 1, j+ 1, k)

+T (i+ 1, j− 1, k) + T (i− 1, j− 1, k)
+T (i, j+ 1, k+ 1) + T (i, j− 1, k+ 1)
+T (i, j+ 1, k− 1) + T (i, j− 1, k− 1)
+T (i+ 1, j, k+ 1) + T (i− 1, j, k+ 1)
+T (i+ 1, j, k− 1) + T (i− 1, j, k− 1)

�

−9T (i, j, k)

(7)
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It should be mentioned that these operators share
the same symmetries as the D3Q19 stencil. The cou-
pling of the temperature to the momentum is explicit
in Eq. 4. The coupling of the momentum to the tem-
perature is carried out in the equilibrium of the sec-
ond order moment m2 related to internal energy:

m(eq)
2 =−11ρ+ 19 j2 + T (8)

3 The TheLMA framework

Since the introduction of the CUDA technology [10]
by the Nvidia company in 2007, several successful
attempts to implement the LBM on the GPU were
reported [18, 12]. Yet, constraints induced by low-
level hardware specificities make GPU programming
fairly different from usual software engineering. Be-
side other limitations, it is worth mentioning the fact
that all symbols (e.g. device functions, device con-
stants. . . ) appearing in a kernel must be in the same
compilation unit, which is due to the inability of the
compilation tool chain to link several GPU binaries.
Moreover, with hardware of compute capability 1.3
(which is the target architecture in the present work),
device functions are of limited interest since inlining
is compulsory in most cases.1 Because of these con-
straints, library oriented development seems not rel-
evant up to now for CUDA LBM solvers.

To improve code reusability, we designed the
TheLMA framework [11], which is outlined in Fig. 2.
TheLMA stands for Thermal LBM on Many-core Ar-
chitectures, thermal flow simulations being our main
topic of interest. The framework consists in a set
of C and CUDA source files. The C files provide a
set of utility functions to retrieve simulation param-
eters, initialise computation devices, extract statis-
tical informations, and export data in various out-
put formats. The CUDA files are included at com-
pile time in the thelma.cu file which is mainly
a container, additionally providing some general-
purpose macros. Implementing a new lattice Boltz-
mann model within the framework mostly requires
to alter the compute.cu file.

1Only device functions with a short list of parameters contain-
ing no pointers are actually callable and are likely to be not inlined
by the compiler. Starting with hardware of compute capability 2.0,
i.e. the Fermi generation, it is possible to perform actual function
calls in any case, yet inlining is still the default behaviour.

param.c init.c stat.c output.c

main.c

thelma.cu

geometry.cu init.cu compute.cu results.cu

Figure 2: Overall structure of the TheLMA framework

Our framework provides native single-node multi-
GPU management based on POSIX threads [15, 14].
Each computing device is managed by a specific
thread which is responsible for creating the appro-
priate CUDA context. Communication between sub-
domains is carried out using zero-copy transactions
on pinned exchange buffers in CPU memory. Dur-
ing initialisation, one-dimensional domain decompo-
sition is performed. The interfaces between the sub-
domains are set such as to be normal to the major
dimension of the lattice in memory. The read and
store accesses to CPU memory can therefore be coa-
lesced. Moreover, the chosen configuration leads to
an excellent communication and computations over-
lapping. Figure 3 describes the inter-GPU commu-
nication scheme. For the sake of simplicity, only
one GPU associated to a single sub-domain interface
is presented. In order to address data dependency
issues, since computations at grid level are asyn-
chronous, our solver uses two instances of the lattice
to store even time step data (in red) and odd time
step data (in blue). The top line represents the GPU
computations, Lattice 0 and Lattice 1 stand for the in-
stances of the lattice stored in global memory, Read
buffer 0 and Read buffer 1 for the buffers containing
in-coming data, Store buffer 0 and Store buffer 1 for
the buffers containing out-going data.

4 Implementation

For the implementation of a hybrid thermal lattice
Boltzmann model on the GPU, there is the alterna-
tive of using a single kernel or two distinct kernels
for solving the fluid flow and the thermal part. Since
Eq. 3 and Eq. 4 are tightly coupled, the two kernels

G–3



Article G

Figure 3: Inter-GPU communication scheme

Figure 4: In-place propagation

(a) Block configuration (b) Read access pattern for temperature

Figure 5: Kernel execution pattern
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option would increase the communication needs, not
mentioning the overhead of kernel switching. As
a matter of fact, handling temperature in a sepa-
rate kernel, would require momentum to be stored
and read back at each time step, thus increasing the
amount of exchanged data by about 15%, for both
read and store accesses. Since our isothermal multi-
GPU solver is communication bound, we chose to
process both parts in the same kernel.

The fluid flow component is derived from the
one described in [12]. Beside other optimisations,
the kernel uses in-place propagation as illustrated
in Fig. 4 instead of the usual out-of-place propaga-
tion. This approach allows to minimise the cost of
misaligned memory transactions [13]. Misalignment
may have a dramatic impact on performance with
pre-Fermi hardware, since the device’s main memory
is not cached.

CUDA implementations of the LBM generally as-
sign a thread to each node in order to take ad-
vantage of the massive parallelism of the architec-
ture. This approach often leads to the use of a two-
dimensional grid of one-dimensional blocks, which
allows a straightforward determination of the coor-
dinates. The grid and block dimensions are therefore
identical to the size of the computation sub-domain.
The direction of the blocks corresponds to the slow-
est varying dimension in memory in order to enable
coalesced memory accesses.

In our case, these common sense optimisation prin-
ciples had to be altered. Since the implemented ker-
nel takes care of both the fluid flow part and the ther-
mal part, the register consumption is fairly higher
than for usual isothermal LBM kernels. For com-
pute capability 1.3, we could not achieve less than
124 registers per thread. Thus, assigning one thread
to each node and using blocks spanning the entire
cavity width causes register shortage with large cav-
ities. In order to avoid this issue, we instead use
small blocks containing one to four warps (i.e. 32,
64, 96 or 128 threads), each one associated to a one-
dimensional zone spanning the cavity width. The
kernel loops over the zone, in case of the block size
being smaller than the zone size. Figure 5a outlines
the chosen configuration (in two dimensions for the
sake of simplicity). The blue dots represent the nodes
belonging to the zone; the red frame represents the
nodes being processed by the block of threads at a
given step; the white background is used for the
nodes whose temperature is required by the finite-

difference computations in the zone.
The associated grid is two-dimensional, its size cor-

responding to the remaining dimensions of the sub-
domain. It is worth mentioning that we assign the
first rather than the second field of the blockIdx
structure to the fastest varying dimension in mem-
ory. This option appears to improve the overlapping
of computation and inter-GPU communication.

When implementing stencil computations on the
GPU, reducing read redundancy is a key optimisation
target [8]. We therefore chose to store the temper-
ature of the neighbouring nodes in shared memory.
In the case of boundary nodes, the surplus cells in
the temperature array may be used to store shadow
values determined by extrapolation. During the read
phase, each thread is responsible for gathering the
temperatures of all the nodes sharing the same ab-
scissa, as outlined in Fig. 5b.

Not taking the boundaries into account, the chosen
approach reduces the read redundancy in the D3Q19
case from 19 to at most2 9.3125. Moreover, it should
be noted that this data access pattern induces no mis-
alignement at all.

5 Results and discussion

5.1 Test case

To test our code, we simulated the well-known dif-
ferentially heated cubic cavity illustrated in Fig.6. In
this test case, two vertical opposite walls have im-
posed temperatures ±T0 whereas the four remaining
walls are adiabatic. The buoyancy force F is com-
puted using the Boussinesq approximation:

F =−ρβT g (9)

where β is the thermal expansion coefficient, and g
the gravity vector of magnitude g.

The simple bounce-back scheme is used for the
flow field boundary conditions. As shown by [3], the
solid boundary is asymptotically located half-way be-
tween the wall nodes and the fluid nodes. This aspect
must be taken into account when imposing thermal
boundary conditions. In our implementation, we use
halo temperatures computed by second-order extrap-
olations. For imposed temperature T0, we have:

2Five additional temperatures for both the first and the last
node are read, thus the worst case is for blocks of size 32 and
the read redundancy equals (32× 9+ 2× 5)/32.
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T (−1) =
8

3
T0 − 2T (0) +

1

3
T (1) (10)

For adiabatic walls, we have:

T (−1) =
21

23
T (0) +

3

23
T (1)−

1

23
T (2) (11)

The wall temperature T0 is set to T0 = 1 and the
Prandtl number is set to Pr = 0.71. The parameters
for the simulations are the Rayleigh number Ra and
the kinematic viscosity ν , which determine the ther-
mal diffusivity κ and the value of β g.

−T0 +T0

x

z

y

g

Figure 6: Differentially cubic heated cavity

We ran our program on a Tyan B7015 server fitted
with eight Tesla C1060 computing devices. We could
therefore perform computations on cavities as large
as 5123 in single precision.

5.2 Simulations

For validation purpose, we performed several simu-
lations of the differentially heated cubic cavity us-
ing a 3843 lattice and a 4483 lattice in single preci-
sion. The kinematic viscosity was set to ν = 0.05 and
the Rayleigh number ranged from 104 to 107. The
computations were carried out until convergence to
steadiness, which is assumed to be reached when:

max
x

�

�T (x , tn+1)− T (x , tn)
�

�< 10−5 (12)

where tn = n× 500δt.

The obtained Nusselt numbers at the isothermal
walls for both grid configurations are in good agree-
ment as shown in Tab. 1, thus assuring grid indepen-
dence. The simulation results are also close to pre-
viously published data [17], the maximum relative
deviation being 0.84% for the coarser grid.

Using lattices of size 5123 allowed us to run sim-
ulation for Rayleigh numbers up to 109 without fac-
ing numerical instabilities. From a phenomenological
standpoint, although unsteady, the flow rapidly leads
to a rather stable vertical stratification. We further-
more observe quasi-symmetric and quasi-periodic
flow patterns near the bottom edge of the cold wall
and the top edge of the hot wall. Figure 7 shows the
temperature field in the symmetry plane after 106

iterations. Further investigations on this simulation
are required and will be published in a future contri-
bution.

Figure 7: Symmetry plane temperature field at
Ra= 109

5.3 Performance

We recorded performance results of our solver for in-
creasing block size and cavity size (see Fig. 8). The
chosen performance metric is the million lattice node
updates per second (MLUPS). The cavity size has to
be a multiple of the block size, hence several con-
figurations are not available. Performance obtained
with a given block size appears to be correlated to
the corresponding occupancy. For compute capabil-
ity 1.3, global memory is split in eight 256 bytes wide
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Rayleigh number 104 105 106 107

Tric et al. [17] 2.054 4.337 8.640 16.342

Present (3843)

Nusselt number 2.055 4.339 8.652 16.481

Time steps 420,000 304,000 210,500 148,500

Computation time (min) 365 245 177 123

Relative deviation 0.05% 0.05% 0.14% 0.84%

Present (4483)

Nusselt number 2.050 4.335 8.645 16.432

Time steps 485,000 380,000 266,000 182,000

Computation time (min) 394 309 216 148

Relative deviation 0.19% 0.07% 0.06% 0.55%

Table 1: Comparison of Nusselt numbers at the isothermal walls

memory banks [9]. Hence, the poor performance ob-
tained for cavity size 256 and 512 is probably caused
by partition camping, since the stride between cor-
responding nodes in distinct blocks is necessarily a
multiple of the cavity size.

The maximum performance is 1,920 MLUPS,
achieved for cavity size 448 and block size 64. The
corresponding GPU to device memory data through-
put is 46.1 GB/s per GPU, which is about 62.3% of
the maximum sustained throughput.3 The multipro-
cessor occupancy, which is only 13%, appears to be
the limiting factor since it is lower than the minimum
required to properly hide the global memory latency,
i.e. 18.75% for compute capability 1.3.

To evaluate scalability, we also ran our program
on a 1923 lattice using from one to eight GPUs (see
Fig. 9). Parallelisation efficiency is very satisfac-
tory with no less than 84% for a fairly small com-
putation domain. As for our isothermal multi-GPU
LBM solver [14], our implementation allows excel-
lent overlapping of communication and computa-
tions. Moreover, the amount of data to exchange
does not exceed the capacity of the PCI-E links.

3Using the bandwidthTest program of the CUDA SDK, we es-
timate the GPU to device memory maximum sustained throughput
to 73.3 GB/s for the Tesla C1060.

6 Conclusion

In this contribution, we present a multi-GPU imple-
mentation of a thermal LBM solver, which to the best
of our knowledge was never reported before. Using
appropriate hardware, our program is able to run up
to eight GPUs in parallel. With the latest generation
of Nvidia computing devices, it is therefore possible
to perform simulations on lattices containing as much
as 3.2× 108 nodes.

Validation studies have been carried out, showing
both the accuracy and the stability of the chosen ther-
mal LBM model and the correctness of our imple-
mentation. Although slightly less efficient than the
isothermal version of our solver, our program pro-
vides unrivaled performance compared to CPU im-
plementations. Recent studies [6] have shown that
optimised multi-threaded CPU implementations of
isothermal LBM solver running on up-to-date hard-
ware achieve at most 85 MLUPS, which is 22× less
than our maximum performance.

We furthermore study the performance bottle-
necks, showing that the limiting factor is the low
occupancy. Since the multiprocessor occupancy is
bound by the amount of available registers there is
little room for improvements using the same hard-
ware. Yet, a more elaborate memory access pattern
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Figure 9: Parallelisation efficiency on a 1923 cavity
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could avoid the partition camping effects we could
observe in some cases.

We believe our work is a significant step towards
the use of GPU based LBM solvers in practice. In near
future, we intend to add specific optimisations for
compute capability 2.0 and 2.1 hardware, i.e. the lat-
est CUDA capable GPUs. We also plan to extend the
TheLMA framework on which our program is based
to multi-node implementations.
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Abstract

Interpolated bounce-back boundary conditions for
the lattice Boltzmann method (LBM) make the accu-
rate representation of complex geometries possible.
In the present work, we describe an implementation
of a linearly interpolated bounce-back (LIBB) bound-
ary condition for graphics processing units (GPUs).
To validate our code, we simulated the flow past a
sphere in a square channel. At low Reynolds num-
bers, results are in good agreement with experimen-
tal data. Moreover, we give an estimate of the crit-
ical Reynolds number for transition from steady to
periodic flow. Performance recorded on a single
node server with eight GPU based computing devices
ranged up to 2.63× 109 fluid node updates per sec-
ond. Comparison with a simple bounce-back version
of the solver shows that the impact of LIBB on per-
formance is fairly low.

Keywords: Lattice Boltzmann method, GPU pro-
gramming, CUDA, Interpolated bounce-back bound-
ary condition, TheLMA project

1 Introduction

From a computational perspective, the lattice Boltz-
mann method (LBM) can be seen as a data paral-
lel algorithm with local synchronisation constraints.
It is therefore well-suited to massively parallel ar-
chitectures such as graphics processing units (GPUs)
as shown in the pioneering work of Fan et al. in
2004 [3]. Since the advent of the CUDA technol-
ogy in 2007 [9], several efficient implementations

of the LBM for the GPU were reported [23, 7]. Re-
cent multi-GPU implementations [15] make the use
of large computation domains possible, which other-
wise would be bound by the limited amount of on-
board memory. Nevertheless, several other issues,
such as accurate representation of complex geome-
tries, remain to be addressed in order to improve
the practical interest of GPU LBM solvers. Imple-
menting a LBM boundary condition for the GPU is
quite challenging since it usually requires branching
and, in most cases, access to specific data. With
CUDA enabled GPUs, branch divergences often lead
to warp serialisation1 which alters the schedule of
global memory transactions and therefore may have
a significant impact on performance [10].

In this contribution, we describe the multi-GPU im-
plementation of an extension to the simple bounce-
back boundary condition. This approach introduced
in 2001 by Bouzidi [1], uses interpolations to take
into account the exact location of the solid bound-
aries. For validation purposes, we simulated the flow
past a sphere in a square channel and compared our
results with experimental data. The paper is or-
ganised as follows. First, we briefly introduce the
LBM and present the boundary condition we imple-
mented. Then, we outline the TheLMA framework,
on which our solver is based, and describe the pro-
posed implementation. Next, we report and discuss
our simulation results and finally we present some
performance measurements.

1CUDA threads are run concurrently in warps of 32. When
branch divergence occurs within a warp, the divergent branches
are serialised.
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2 Lattice Boltzmann method

With the continuous Boltzmann equation, fluid dy-
namics is represented through the evolution in time
of a single-particle distribution function f in phase
space. As shown by He and Luo [5], lattice Boltz-
mann models are based on discretised versions of the
Boltzmann equation in both time and phase space. In
general, the LBM uses a regular orthogonal lattice of
mesh size δx and constant time steps δt. The veloc-
ity space is replaced by a finite set of N + 1 particle
velocities {ξα |α = 0, . . . , N}. The lattice Boltzmann
analogue of the distribution function f is a set of
functions { fα |α = 0, . . . , N} associated to the parti-
cle velocities. Using the former notations, the lattice
Boltzmann equation (LBE), i.e. the governing equa-
tion of the LBM, is written:

�

� fα(x+cα, t+δt)
�

−
�

� fα(x , t)
�

=Ω
h

�

� fα(x , t)
�

i

. (1)

where Ω is the collision operator. The mass density ρ
and the momentum j of the fluid are given by:

ρ =
∑

α

fα , j =
∑

α

fαξα . (2)

From an algorithmic perspective, Eq. 1 naturally
breaks into two elementary steps:

�

� efα(x , t)
�

=
�

� fα(x , t)
�

+Ω
h

�

� fα(x , t)
�

i

(3)

�

� fα(x + cα, t +δt)
�

=
�

� efα(x , t)
�

(4)

where cα = δt ξα. Equation 3 describes the colli-
sion step in which updated particle populations efα
are computed. Equation 4 describes the propagation
step in which the updated particle populations are
transferred to the neighbouring nodes. The particle
velocity set is usually chosen such as to link the nodes
to some of their nearest neighbours, as the three-
dimensional D3Q19 stencil illustrated by Fig. 1.

For the present work, we used a D3Q19 multiple-
relaxation-time (MRT) lattice Boltzmann model. As
shown in [2], the MRT approach increases the
numerical stability of the LBM compared to the
widespread LBGK approach [19]. With MRT, colli-
sion is performed in moment space. The particle dis-
tribution is mapped to a set of moments {mα |α =
0, . . . , N} by an orthogonal matrix M:
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Figure 1: The D3Q19 stencil

�

�mα(x , t)
�

=M
�

� fα(x , t)
�

(5)

where
�

�mα(x , t)
�

is the moment vector. The LBE be-
comes:

�

� fα(x + cα, t +δt)
�

−
�

� fα(x , t)
�

=−M−1Λ
h

�

�mα(x , t)
�

−
�

�m(eq)
α (x , t)

�

i

(6)

where Λ is a diagonal collision matrix and the m(eq)
α

are the equilibrium values of the moments. The
transformation matrix M, the collision matrix Λ, and
the definition of equilibrium moments m(eq)

α we used
in our implementation can be found in Appendix A
of [2].

3 Bounce-back boundary condi-
tions

Lattice Boltzmann boundary conditions for solid
walls basically divide up into wet node conditions
and bounce-back conditions. In the former category,
the boundary nodes, i.e. the nodes on which the con-
dition is applied, are supposed to be both located
on the solid boundary and part of the fluid [6]. In
the later category, the boundary nodes are in general
the fluid nodes next to the solid nodes and the solid
boundary is located somewhere in between.

An elementary version of bounce-back is the so-
called simple bounce-back (SBB). With SBB, an un-
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known particle population fα at a boundary node
obeys the following equation:

fα(x , t) = efᾱ(x , t −δt) (7)

where ᾱ is the direction opposite to α. Algorithmic
simplicity of SSB is obvious when considering Eq. 7.
The only information required for a given node is
the list of unknown particle populations. Moreover,
it is known that (asymptotically) the solid bound-
ary is located halfway between the solid and the
fluid nodes [4]. Simple bounce-back is therefore
convenient in many situations. However, to handle
complex geometries, a more elaborate approach is
needed.

In 2001, Bouzidi et al. [1] introduced an extension
to SBB based on either linear interpolation (LIBB)
or quadratic interpolation, which allows the solid
boundary to take any desired position. In the present
work, we implemented the LIBB as formulated by Pan
et al. [18]. Let x denote a boundary node such that
x + cα is a solid node, and q be the number such that
x + qcα is on the solid boundary. For q < 1/2,

fᾱ(x , t) = (1− 2q) fα(x , t) + 2q efα(x , t −δt) (8)

and for q ≥ 1/2,

fᾱ(x , t) =
�

1−
1

2q

�

efᾱ(x , t −δt)

+
1

2q
efα(x , t −δt) (9)

It should be noted that for q = 1/2, LIBB reduces
to SBB. The interpolation schemes of LIBB are illus-
trated in Fig. 2. In the first case, i.e. q < 1/2, one
considers fictitious particles located at D, which end
up at A after bouncing back on the wall at C. The
particle population at D is constructed from the pre-
collision ones at E and A. In the second case, i.e.
q ≥ 1/2, the particles leaving A end up at D. The
unknown incoming particle population at A is con-
structed from the post-propagation ones at D and E.

4 Implementation

4.1 The TheLMA framework

The proposed implementation of the LIBB boundary
condition was carried out within the TheLMA frame-

bc bc bb
A BCDE

(q < 1/2)

bc bc bb
A BCDE

(q ≥ 1/2)

Figure 2: Interpolation schemes of LIBB

work [11]. The design of graphics processing units
is guided by their primary use which is rather differ-
ent from general purpose computations. As a con-
sequence, general purpose computing technologies
such as CUDA suffer from significant limitations. Re-
garding CUDA, it is worth mentioning the inability
of the compilation tool-chain to link several GPU bi-
naries. In other words, all symbols (e.g. device
functions, device constants. . . ) appearing in a ker-
nel must be in the same compilation unit. Such a
constraint, makes library oriented development irrel-
evant in many situations, and more specifically for
LBM solvers. We therefore decided to create a frame-
work in order to improve code reusability.

TheLMA stands for Thermal LBM on Many-core
Architectures, thermal simulations being our main
topic of interest. The framework consists of a set
of modules which are designed such as to minimise
code modifications when setting up a new simula-
tions or implementing a new model. It provides na-
tive single-node multi-GPU support based on POSIX
threads [14]. The core collision and propagation ker-
nel is derived from the single-GPU code described
in [12]. The execution grid of the core kernel is two-
dimensional with one-dimensional blocks, each node
of the lattice being associated to a thread. In order to
ensure global synchronisation, two instances of the
particle distribution are kept in global memory, cor-
responding to even and odd time steps.

For each computation sub-domain, the particle dis-
tribution is stored in a four-dimensional array. The
fastest varying dimension corresponds to the direc-
tion of the blocks which allows memory transactions
to be coalesced. The second fasted varying dimen-
sion corresponds to the velocity set index. Instead
of using the usual out-of-place propagation, our core
kernel performs in-place propagation which consists
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in carrying out propagation before collision instead
of after. This propagation scheme is illustrated by
Fig. 3. The represented case is only two-dimensional
for the sake of clarity. It was shown in [13] that this
simple optimisation minimises the cost of misaligned
memory transactions, which may have substantial ef-
fects on performance with pre-Fermi hardware.

Figure 3: In-place propagation

4.2 Proposed implementation

In the TheLMA framework, geometry is represented
using bit-fields. To process a node, the corresponding
thread first loads a 32-bit integer. The first N bits of
the integer are used to indicate whether the node in
the corresponding direction is solid. This technique
makes the implementation of SBB rather straightfor-
ward. Since we use in-place propagation, some of
the particle populations loaded for a boundary node
are invalid, but these values are discarded when ap-
plying the boundary condition. Our tests have shown
that it is of little interest to avoid loading these in-
valid populations. As a matter of fact, it may have a
positive impact to cancel invalid loads when a whole
half-warp is involved, e.g. for cavity walls parallel
to the blocks or within very large obstacles. Yet, the
overhead of branching decisions together with sur-
face to volume effects make the benefits negligible in
practice.

Our implementation of the LIBB takes advantage
of these unnecessary memory accesses. At initialisa-
tion, the distance information for the solid bound-
aries are computed and stored in the unused parti-
cle population array cells of the relevant solid nodes.
At each time step, the distance information are re-
trieved by the threads processing boundary nodes
during propagation. To perform interpolation, the
threads need in addition to fetch some of the local
updated particle populations of the former time step
(see Eqs. 8 and 9). It should be mentioned that the
additional data is accessed as if q ≥ 1/2. This yields

an unnecessary read access when q < 1/2 but re-
quires simpler code and thus leads to a smaller ker-
nel. The data access scheme is outlined by Fig. 4.
Blue is used for the particle populations involved in
collision, red for the distance information, and black
for the particle populations involved in interpolation.
Again, the displayed case is two-dimensional for the
sake of clarity.

Figure 4: Implementation of the LIBB

It is worth stressing that, in practice, because of
the chosen propagation scheme, the proposed imple-
mentation of LIBB only slightly increases the over-
all number of memory accesses compared to our im-
plementation of SBB. The implemented initialisation
and simulation kernels are summarised in Pseudo-
Codes 1 and 2.

5 Simulations

5.1 Test case

For validation purposes, we studied the vortex shed-
ding frequency for a uniform flow past a sphere in
a square channel of width `. We performed single
precision simulations with four different configura-
tions for Reynolds numbers ranging from Re = 270
to Re = 350, the Reynolds number being defined as
Re = u0D/ν where u0 is the bulk velocity at the in-
flow, D is the diameter of the sphere and ν is the
kinematic viscosity. This range was chosen in order
to compare our results with experimental data pro-
vided by Sakamoto and Haniu [21], and by Ormières
and Provansal [16].

Figure 5 outlines the simulation setup. For each
configuration, the distance between the inlet and the
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1. if node x is solid then
2. set flag solid for x
3. for each direction α do
4. if node x + cα is fluid then
5. compute q for x and x + cα
6. store q in fᾱ(x + cα, 0)
7. end if
8. end for
9. else
10. for each direction α do
11. if node x + cα is solid then
12. set flag α for x
13. end if
14. end for
15. end if

Pseudo-Code 1: Initialisation kernel

1. read bit-field for x
2. if node x is fluid then
3. for each direction α do
4. read efα(x − cα, t −δt)
5. end for
6. for each direction α do
7. if flag α is set then
8. set q to fᾱ(x , t)
9. read efα(x , t −δt) and efᾱ(x , t −δt)
10. interpolate fᾱ(x , t)
11. end if
12. end for
13. compute distribution efα(x , t)
14. store distribution efα(x , t)
15. end if

Pseudo-Code 2: Simulation kernel
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Figure 5: Simulation set-up

centre of the sphere is greater than 4D, and the dis-
tance between the centre of the sphere and the out-
let is greater than 13D, D being the diameter of the
sphere. The position of the sphere with respect to the
stream cross section is symmetric in the z direction,
and slightly asymmetric in the y direction,2 in order
to stabilise the flow pattern. Table 1 summarises the
specifications of each configuration (for the sake of
simplicity, we set δx = 1 and δt = 1).

For each configuration, the length of the channel
is L = 768. We use SBB for the lateral walls and,
as Yu et al. in [24], we impose the fully-developed
boundary condition at the outlet, i.e.

�

� fα(x , t)
�

=
�

� fα(x − cω, t)
�

,

where ω denotes the streamwise direction. The im-
posed velocity at the inlet is u0 = 0.05, which corre-
spond to a Mach number M ≈ 0.087, and the kine-
matic viscosity ν ranges from 2.5×10−3 to 4.3×10−3.

In order to evaluate the vortex shedding frequency
f , we recorded the flow velocity components at
points A, B, and C such that OA = 3.5D and AB =
BC = 0.5D. The position of the control points in
the streamwise direction is similar to the position of

2The deviation from the central position is about 1.3% of the
total width
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Configuration C1 C2 C3 C4

Boundary condition LIBB SBB LIBB LIBB

Width of the channel 352 352 352 480

Diameter of the sphere 35.2 35.2 42 48

Table 1: Simulation configurations

the hot-wire probes for the experimental set-up de-
scribed in [20]. The results are given in terms of
Strouhal numbers, the Strouhal number being de-
fined as St= f D/u0. We performed frequency analy-
sis using fast Fourier transform on a 219 sample, the
overall number of time steps being 106. The size
of the sample is about one hundred shedding peri-
ods considering the typical values of St reported for
the Reynolds numbers we investigated. We consid-
ered the obtained Strouhal numbers significant when
identical for the three control points and stable when
sliding the sampling window from t = 2.5× 105 on.
The results for the four configurations are gathered
in Table 2.

Re C1 C2 C3 C4

290 0.1343 0.1370 0.13779 0.1373

300 0.1370 — 0.14099 0.1392

310 0.1383 — 0.14259 0.1392

320 0.1396 — 0.14259 0.1410

330 0.1396 0.1396 0.14259 0.1410

340 0.1396 0.1396 0.14259 0.1392

350 0.1396 0.1370 0.14099 0.1373

Table 2: Strouhal numbers with respect to Reynolds
number

5.2 Discussion

In their aforementioned work [16], Ormières and
Provansal investigate the transition from steadiness
to periodicity for the flow past a sphere. The re-
ported value for the critical Reynolds number is Rec =
280± 5. Our simulations are in agreement with this
estimate. We performed simulations for configura-
tion C1 at Re= 270 and Re= 280 and computed, for
the last 5×105 time steps, the standard deviation σv
of the cross-stream component v of the velocity in the
y direction. In both cases, σv is less than 0.23% of

u0 at each tracking point and spectral analysis does
not provide any relevant frequency.

Configuration C2 is identical to configuration C1
except for the boundary condition which is SBB in-
stead of LIBB. The results for both configurations
are rather close, yet for Re = 300, Re = 310 and
Re = 320, SBB appears to cause numerical instabili-
ties. The obtained Strouhal numbers are neither sta-
ble in space, nor in time. The power spectral den-
sity diagram shows in general a low frequency peak,
which may be caused by spectrum folding.

Configuration C4 is similar to configuration C1 in
terms of blockage ratio β = D/` = 0.1, with higher
grid resolution. The obtained Strouhal numbers for
both configurations are in good agreement. The rela-
tive deviation is at most 2.2%, which assesses for the
grid independence of our results.

The measurements in the experiments we chose as
reference were carried out in wide tunnels, whereas
the blockage ratio in our simulations is not negligible.
According to Ota et al. [17], the Strouhal numbers
for an unbounded flow St∗ may be computed from
the Strouhal numbers we obtained using:

St∗ = (1− βξSt)St (10)

where ξSt is a correction factor depending on the
shape of the obstacle. To the best of our knowledge,
the value of ξSt in the case of a sphere was never
mentioned in literature. In order to determine this
value, we used the least square method with the fit
given by Ormières and Provansal:

Ro=−48.2+ 0.391×Re− 3.6× 10−4 ×Re2 (11)

where Ro = Re× St is the Roshko number. Applying
this procedure to the Roshko numbers computed for
configuration C1 and for configuration C3 leads to
ξSt = 0.990± 0.005 for C1 and ξSt = 1.000± 0.005
for C3. The blockage ratio in both configurations be-
ing different, this coincidence is in favor of the valid-
ity of our approach. As shown in Fig. 6, agreement of
the corrected values with experimental data is satis-
factory, the deviation from the fit being within 2.4%.

6 Performance results

We carried out our computations on a Tyan B7015
server with eight Tesla C1060 computing devices. For
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Figure 6: Variation of the Roshko number with the
Reynolds number

the purpose of evaluating the efficiency of our LIBB
implementation, we ran single precision simulations
of a fluid flow in a square channel of size 768× `× `
with increasing `, using three different configura-
tions. For the first configuration, we used a SBB ver-
sion our multi-GPU solver with an empty channel, to
serve as a reference. For the second configuration, we
also used the SBB version and the channel contains a
sphere located at the centre of the channel, the block-
age ratio being β = 0.5. The third configuration is
identical to the second except for the boundary con-
dition, which is LIBB instead of SBB. In addition, we
used a modified version of our initialisation kernel to
compute the number of fluid nodes, the number of
boundary nodes, and the number of required addi-
tional read accesses. Figure 7 displays the obtained
performance in million fluid lattice node updates per
second (MFLUPS), which is a usual metric for LBM.

When comparing the first and the second config-
uration, we see that the branch divergences induced
by the application of SBB have a significant impact
on performance, with at most 4.9% loss (and even a
slightly positive influence in some cases). It should be
noted that this performance loss occurs even though
no additional data is read from global memory. Per-
formance for the third configuration is in general
close to the one of the second configuration though
inferior, the loss with respect to the first configuration
being at most 14.1%. It is worth stressing that the
supplementary global memory accesses required for
LIBB are random individual transactions that break
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Figure 7: Performance comparison of SBB and LIBB
implementations

the regularity of the data access pattern. Moreover,
with the GT200 GPU of the Tesla C1060 computing
devices, i.e. with compute capability 1.3, the min-
imum data access is 32 bytes wide. Therefore the
0.13% boundary nodes corresponding to a blockage
ratio β = 0.5 yield a 0.5% increase of the amount of
data read.

With the Tesla C1060, the maximum sustained
throughput for communication between GPU and de-
vice memory is 73.3 GB/s. Except for ` = 256, the
data throughput with the LIBB version is thus above
60% of its maximum. The quite low performance ob-
tained with ` = 256 is most probably due to parti-
tion camping effects [22]. For compute capability
1.3, global memory is split in eight 256 bytes wide
memory banks [8]. With the data layout chosen for
our implementation, the stride between correspond-
ing nodes in distinct blocks is necessarily a multiple
of the cavity width. For cavity width 256, concurrent
blocks are therefore more likely to access the same
memory bank simultaneously.

In order to investigate further the influence of
our LIBB implementation on performance, we per-
formed simulations on a 768×352×352 cavity with
a sphere of increasing diameter located at the cen-
ter. We recorded performance for blockage ratios
ranging from β = 0.1 to β = 0.9 as well as for an
empty channel. Figure 8 reports the relative perfor-
mance loss with respect to the relative variation of
read data. The five leftmost points in the diagram
correspond to blockage ratios ranging from β = 0.1
to β = 0.5, whereas the four rightmost points corre-
spond to blockage ratios above β = 0.5.

For the two subsets, the relation between the two
variables seems linear, the correlation coefficient be-
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Figure 8: Performance loss with respect to increase
of read data

ing 0.986 for the first one and 0.999 for the second
one. The difference in terms of performance loss is
due to the fact that in the first case, the sphere spans
over two sub-domains whereas in the second case,
it spans over four sub-domains. Moreover, it is worth
mentioning that the slope of the second linear regres-
sion line is about one half of the slope of the first one,
and that the y-intercept of both lines are about the
same.

7 Conclusion

In the present work, we describe an implementation
of the LIBB boundary condition within a multi-GPU
LBM solver based on the TheLMA framework. When
simulating the flow past a sphere in a channel, our
solver allowed us to successfully compute a vortex
shedding frequency for Reynolds numbers belonging
to the regular mode flow pattern region. In addi-
tion, we could observe numerical instabilities occur-
ring for some values of the Reynolds number when
performing similar simulations with a SBB version of
our code. The transition from steady to periodic flow
appears to be in good agreement with the experimen-
tal value of the critical Reynolds number mentioned
in literature.

The computed Strouhal numbers seem to agree
with experimental results obtained for unbounded
flows, provided the correction formula proposed by
Ota et al. is valid in our case. To confirm this point,
additional simulations with a wider set of block-
age ratios must be carried out. The proposed ap-

proach proves to be efficient, with moderate impact
on performance taking into account the sensitivity
of CUDA enabled GPUs to irregular data access pat-
terns. We are at present working on an extension
of the TheLMA framework to multi-node multi-GPU
hardware, providing more flexible sub-domain de-
composition. This enhancement could contribute to
improve the GPU load balance, and therefore reduce
the overhead of boundary node processing.
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Scalable Lattice Boltzmann Solvers for CUDA GPU Cluster
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Abstract

The lattice Boltzmann method (LBM) is an innova-
tive and promising approach in computational fluid
dynamics. From an algorithmic standpoint it reduces
to a regular data parallel procedure and is there-
fore well-suited to high performance computations.
Numerous works report efficient implementations of
the LBM for the GPU, but very few mention multi-
GPU versions and even fewer GPU cluster implemen-
tations. Yet, to be of practical interest, GPU LBM
solvers need to be able to perform large scale simula-
tions. In the present contribution, we describe an ef-
ficient LBM implementation for CUDA GPU clusters.
Our solver consists of a set of MPI communication
routines and a CUDA kernel specifically designed to
handle three-dimensional partitioning of the compu-
tation domain. Performance measurement were car-
ried out on a small cluster. We show that the results
are satisfying, both in terms of data throughput and
parallelisation efficiency.

Keywords: GPU clusters, CUDA, lattice Boltzmann
method

1 Introduction

A single-GPU based computing device is not proper
to solve large scale problems because of the limited
amount of on-board memory. However, applications
running on multiple GPUs have to face the PCI-E bot-
tleneck, and great care has to be taken in design and
implementation to minimise inter-GPU communica-
tion. Such constraints may be rather challenging; the
well-known MAGMA [14] linear algebra library, for
instance, only added support for single-node multi-
ple GPUs with the latest version (i.e. 1.1), two years
after the first public release.

The lattice Boltzmann method (LBM) is a novel
approach in computational fluid dynamics (CFD),
which, unlike most other CFD methods, does not con-
sist in directly solving the Navier-Stokes equations
by a numerical procedure [7]. Beside many inter-
esting features, such as the ability to easily handle
complex geometries, the LBM reduces to a regular
data-parallel algorithm and therefore, is well-suited
to efficient HPC implementations. As a matter of fact,
numerous successful attempts to implement the LBM
for the GPU have been reported in the recent years,
starting with the seminal work of Li et al. in 2003 [8].

CUDA capable computation devices may at present
manage up to 6 GB of memory. This capacity allows
the GPU to process at most 8.5× 107 nodes running
a standard three-dimensional LBM solver in single-
precision. Taking architectural constraints into ac-
count, the former amount is sufficient to store a 4163

cubic lattice. Although large, such a computational
domain is likely to be too coarse to perform direct
numerical simulation of a fluid flow in many practi-
cal situations as, for instance, urban-scale building
aeraulics or thermal modeling of electronic circuit
boards.

To our knowledge, the few single-node multi-GPU
LBM solvers described in literature all use a one-
dimensional (1D) partition of the computation do-
main, which is relevant given the small number of
involved devices. This option does not require any
data reordering, provided the appropriate partition-
ing direction is chosen, thus keeping the computation
kernel fairly simple. For a GPU cluster implementa-
tion, on the contrary, a kernel able to run on a three-
dimensional (3D) partition seems preferable, since it
would both provide more flexibility for load balanc-
ing and contribute to reduce the volume of commu-
nication.

In the present contribution, we describe an imple-
mentation of a lattice Boltzmann solver for CUDA
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GPU clusters. The core computation kernel is de-
signed so as to import and export data efficiently in
each spatial direction, thus enabling the use of 3D
partitions. The inter-GPU communication is man-
aged by MPI-based routines. This work constitutes
the latest extension to the TheLMA project [10],
which aims at providing a comprehensive framework
for efficient GPU implementations of the LBM.

The remainder of the paper is structured as fol-
lows. In Section 2, we give a description of the algo-
rithmic aspects of the LBM as well as a short review
of LBM implementations for the GPU. The third sec-
tion consists of a detailed description of the imple-
mentation principles of the computation kernel and
the communication routines of our solver. In the
fourth section, we present some performance results
on a small cluster. The last section concludes and
discusses possible extensions to the present work.

2 State of the art

2.1 Lattice Boltzmann Method
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Figure 1: The D3Q19 stencil — The blue arrows rep-
resent the propagation vectors of the stencil linking a
given node to some of its nearest neighbours.

The lattice Boltzmann method is generally carried
out on a regular orthogonal mesh with a constant
time step δt. Each node of the lattice holds a set
of scalars { fα |α = 0, . . . N} representing the local
particle density distribution. Each particle density fα
is associated with a particle velocity ξα and a prop-
agation vector cα = δt ·ξα. Usually the propagation
vectors link a given node to one of its nearest neigh-

bours, except for c0 which is null. For the present
work, we implemented the D3Q19 propagation sten-
cil illustrated in Fig. 1. This stencil, which contains
19 elements, is the most commonly used in practice
for 3D LBM, being the best trade-off between size and
isotropy. The governing equation of the LBM at node
x and time t writes:

�

� fα(x+cα, t+δt)
�

−
�

� fα(x , t)
�

=Ω
�

�

� fα(x , t)
�

�

, (1)

where
�

� fα
�

denotes the distribution vector and Ω de-
notes the so-called collision operator. The mass den-
sity ρ and the momentum j of the fluid are given by:

ρ =
∑

α

fα , j =
∑

α

fαξα . (2)

In our solver, we implemented the multiple-
relaxation-time collision operator described in [3].
Further information on the physical and numerical
aspects of the method are to be found in the afore-
mentioned reference. From an algorithmic perspec-
tive, Eq. 1 naturally breaks in two elementary steps:

�

� efα(x , t)
�

=
�

� fα(x , t)
�

+Ω
�

�

� fα(x , t)
�

�

, (3)

�

� fα(x + cα, t +δt)
�

=
�

� efα(x , t)
�

. (4)

Equation 3 describes the collision step in which an up-
dated particle distribution is computed. Equation 4
describes the propagation step in which the updated
particle densities are transferred to the neighbouring
nodes. This two-step process is outlined by Fig. 2 (in
the two-dimensional case, for the sake of clarity).

2.2 GPU implementations of the LBM

Due to substantial evolution of hardware, the pio-
neering work of Fan et al. [4] reporting a GPU clus-
ter LBM implementation is only partially relevant to-
day. The GPU computations were implemented using
pre-CUDA techniques that are now obsolete. Yet, the
proposed optimisation of the communication pattern
still applies, although it was only tested on Gigabyte
Ethernet; in future work, we plan to evaluate its im-
pact using InfiniBand interconnect.

In 2008, Tölke and Krafczyk [15] described a
single-GPU 3D-LBM implementation using CUDA.
The authors mainly try to address the problem in-
duced by misaligned memory accesses. As a matter
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(a) Initial state (b) Post-collision state (c) Post-propagation state

Figure 2: Collision and propagation — The collision step is represented by the transition between (a) and (b).
The pre-collision particle distribution is drawn in black whereas the post-collision one is drawn in blue. The
transition from (b) to (c) illustrates the propagation step in which the updated particle distribution is advected
to the neighbouring nodes.

(a) Initial state (b) Pre-collision state (c) Post-collision state

Figure 3: In-place propagation — With the in-place propagation scheme, contrary to the out-of-place scheme
outlined in Fig. 2, the updated particle distribution of the former time step is advected to the current node before
collision.

of fact, with the NVIDIA G80 GPU available at this
time, only aligned and ordered memory transactions
could be coalesced. The proposed solution consists
in partially performing propagation in shared mem-
ory. With the GT200 generation, this approach is less
relevant, since misalignment has a lower—though
not negligible—impact on performance. As shown
in [11], the misalignment overhead is significantly
higher for store operations than for read operations.
We therefore suggested in [12] to use the in-place
propagation scheme outlined by Fig. 3 instead of the
ordinary out-of-place propagation scheme illustrated
in Fig. 2. The resulting computation kernel is sim-
pler and leaves the shared memory free for possible
extensions.

Further work led us to develop a single-node multi-
GPU solver, with 1D partitioning of the computa-

tion domain [13]. Each CUDA device is managed by
a specific POSIX thread. Inter-GPU communication
is carried out using zero-copy transactions to page-
locked host memory. Performance and scalability are
satisfying with up to 2,482 million lattice node up-
dates per second (MLUPS) and 90.5% parallelisation
efficiency on a 3843 lattice using eight Tesla C1060
computing devices in single-precision.

In their recent paper [16], Wang and Aoki de-
scribe an implementation of the LBM for CUDA GPU
clusters. The partition of the computation domain
may be either one-, two-, or three-dimensional. Al-
though the authors are elusive on this point, no spe-
cial care seems to be taken to optimise data transfer
between device and host memory, and as a matter
of fact, performance is quite low. For instance, on a
3843 lattice with 1D partitioning, the authors report
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about 862 MLUPS using eight GT200 GPUs in single-
precision, i.e. about one third of the performance of
our own solver on similar hardware. It should also be
noted that the given data size for communication per
rank, denoted M1D, M2D, and M3D, are at least inac-
curate. For the 1D and 2D cases, no account is taken
of the fact that for the simple bounce-back bound-
ary condition, no external data is required to process
boundary nodes. In the 3D case, the proposed for-
mula is erroneous.

3 Proposed implementation

3.1 Computation kernel

To take advantage of the massive hardware paral-
lelism, our single-GPU and our single-node multi-
GPU LBM solvers both assign one thread to each
node of the lattice. The kernel execution set-up con-
sists of a two-dimensional grid of one-dimensional
blocks, mapping the spatial coordinates. The lattice
is stored as a four-dimensional array, the direction
of the blocks corresponding to the minor dimension.
Two instances of the lattice are kept in device mem-
ory, one for even time steps and one for odd time
steps, in order to avoid local synchronisation issues.
The data layout allows the fetch and store operations
issued by the warps to be coalesced. It also makes
possible, using coalesced zero-copy transactions, to
import and export data efficiently at the four sub-
domain faces parallel to the blocks, with partial over-
lapping of communication and computations. For the
two sub-domain faces normal to the blocks, the data
is scattered across the array and needs reordering to
be efficiently exchanged.

A possible solution to extend our computation ker-
nel to support 3D partitions would be to use a specific
kernel to handle the interfaces normal to the blocks.
Not mentioning the overhead of kernel switching,
this approach does not seem satisfying since such a
kernel would only perform non-coalesced read oper-
ations. However, the minimum data access size is 32
bytes for compute capability up to 1.3, and 128 bytes
above, whereas only 4 or 8 bytes would be useful.
The cache memory available in devices of compute
capability 2.0 and 2.1 is likely to have small impact
in this case, taking into account the scattering of ac-
cessed data.

We therefore decided to design a new kernel able

to perform propagation and reordering at once. With
this new kernel, blocks are still one-dimensional but,
instead of spanning the lattice width, contain only
one warp, i.e. W = 32 threads for all existing CUDA
capable GPUs. Each block is assigned to a tile of
nodes of size W ×W × 1, which imposes for the sub-
domain dimensions to be a multiple of W in the x-
and y-direction. For the sake of clarity, let us call
lateral densities the particle densities crossing the tile
sides parallel to the y-direction. These lateral densi-
ties are stored in an auxiliary array in device memory.
At each time step, the lateral densities are first loaded
from the auxiliary array into shared memory, then the
kernel loops over the tile row by row to process the
nodes saving the updated lateral densities in shared
memory, last the updated lateral densities are written
back to device memory. This process is summarised
in Fig. 4. Note that we only drew a 8×8 tile in order
to improve readability.

Using this new kernel, the amount of 4-byte (or 8-
byte) words read or written per block and per time
step is :

QT = 2
�

19W 2 + 10W
�

= 38W 2 + 20W, (5)

and the amount of data read and written in device
memory per time step for a Sx × Sy × Sz sub-domain
is:

QS =
Sx

W
×

Sy

W
× Sz ×QT = SxSySz

38W + 20

W
. (6)

We therefore see that this approach only in-
creases the volume of device memory accesses by
less than 2%, with respect to our former implementa-
tions [12], while greatly reducing the number of mis-
aligned transactions. Yet, most important is the fact
that it makes possible to exchange data efficiently at
the interfaces normal to the blocks. The procedure
simply consists in replacing, for the relevant tiles, ac-
cesses to the auxiliary array with coalesced zero-copy
transactions to host memory. The maximum amount
of data read and written to host memory per time
step is:

QH = 2(SxSy + SySz + SzSx)× 5

= 10(SxSy + SySz + SzSx). (7)
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Warp

Shared memory Shared memoryTile

Figure 4: Processing of a tile — Each tile of nodes is processed row by row by a CUDA block composed of a single
warp. The current row is framed in red and the direction of the processing is indicated by the bold red arrow. The
in-coming lateral densities are drawn in blue whereas the out-going ones are drawn in red. During the execution
of the loop, these densities are stored temporarily in an auxiliary array hosted in shared memory.

3.2 Multi-GPU solver

To enable our kernel to run across a GPU cluster, we
wrote a set of MPI-based initialisation and commu-
nication routines. These routines as well as the new
computation kernel were designed as components of
the TheLMA framework, which was first developed
for our single-node multi-GPU LBM solver. The main
purpose of TheLMA is to improve code reusability. It
comes with a set of generic modules providing the
basic features required by a GPU LBM solver. This
approach allowed us to develop our GPU cluster im-
plementation more efficiently.

At start, the MPI process of rank 0 is responsible for
loading a configuration file in JSON format. Beside
general parameters, such as the Reynolds number for
the flow simulation or the graphical output option
flag, this configuration file mainly describes the ex-
ecution set-up. Listing 1 gives an example file for a
2×2×1 partition running on two nodes. The param-
eters for each sub-domains, such as the size or the
target node and computing device, are given in the
Subdomains array. The Faces and Edges arrays
specify to which sub-domains a given sub-domain is

linked, either through its faces or edges. These two
arrays follow the same ordering as the propagation
vector set displayed in Fig. 1. Being versatile, the
JSON format is well-suited for our application. More-
over, its simplicity makes both parsing and automatic
generation straightforward. This generic approach
brings flexibility. It allows any LBM solver based on
our framework to be tuned to the target architecture.

Once the configuration file is parsed, the MPI pro-
cesses register themselves by sending their MPI pro-
cessor name to the rank 0 process, which in turn
assigns an appropriate sub-domain to each of them
and sends back all necessary parameters. The pro-
cesses then perform local initialisation, setting the
assigned CUDA device and allocating the communi-
cation buffers, which fall into three categories: send
buffers, receive buffers and read buffers. It is worth
noting that both send buffers and read buffers con-
sist of pinned memory allocated using the CUDA API,
since they have to be made accessible by the GPU.

The steps of the main computation loop consist of a
kernel execution phase and a communication phase.
During the first phase, the out-going particle densi-
ties are written to the send buffers assigned to the
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{
"Path": "out",
"Prefix": "ldc",
"Re": 1E3,
"U0": 0.1,
"Log": true,
"Duration": 10000,
"Period": 100,
"Images": true,
"Subdomains": [

{
"Id": 0,
"Host": "node00",
"GPU": 0,
"Offset": [0, 0, 0],
"Size": [128, 128, 256],
"Faces": [ 1, null, 2, null, null, null],
"Edges": [ 3, null, null, null, null, null,

null, null, null, null, null, null]
},
{

"Id": 1,
"Host": "node00",
"GPU": 1,
"Offset": [128, 0, 0],
"Size": [128, 128, 256],
"Faces": [null, 0, 3, null, null, null],
"Edges": [null, 2, null, null, null, null,

null, null, null, null, null, null]
},
{

"Id": 2,
"Host": "node01",
"GPU": 0,
"Offset": [0, 128, 0],
"Size": [128, 128, 256],
"Faces": [ 3, null, null, 0, null, null],
"Edges": [null, null, 1, null, null, null,

null, null, null, null, null, null]
},
{

"Id": 3,
"Host": "node01",
"GPU": 1,
"Offset": [128, 128, 0],
"Size": [128, 128, 256],
"Faces": [null, 2, null, 1, null, null],
"Edges": [null, null, null, 0, null, null,

null, null, null, null, null, null]
}

]
}

Listing 1: Configuration file
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Lattice GPU 0
Faces

(send buf.)

CPU 0

Edges

(send buf.)

Interconnect

Faces

(recv. buf.)

Edges

(recv. buf.)

CPU 1

Faces

(read buf.)
Lattice GPU 1

Figure 5: Communication phase — The upper part of the graph outlines the path followed by data leaving the
sub-domain handled by GPU 0. For each face of the sub-domain, the out-going densities are written by the GPU
to pinned buffers in host memory. The associated MPI process then copies the relevant densities into the edge
buffers and sends both face and edge buffers to the corresponding MPI processes. The lower part of the graph
describes the path followed by data entering the sub-domain handled by GPU 1. Once the reception of in-coming
densities for faces and edges is completed, the associated MPI process copies the relevant data for each face of the
sub-domain into pinned host memory buffers, which are read by the GPU during kernel execution.
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faces without performing any propagation as for the
densities written in device memory. During the sec-
ond phase, the following operations are performed:

1. The relevant densities are copied to the send
buffers assigned to the edges.

2. Asynchronous send requests followed by syn-
chronous receive requests are issued.

3. Once message passing is completed, the parti-
cle densities contained in the receive buffers are
copied to the read buffers.

This communication phase is outlined in Fig. 5.
The purpose of the last operation is to perform prop-
agation for the in-coming particle densities. As a re-
sult, the data corresponding to a face and its associ-
ated edges is gathered in a single read buffer. This
approach avoids misaligned zero-copy transactions,
and most important, leads to a simpler kernel since
only six buffers at most have to be read. It should be
mentioned that the read buffers are allocated using
the write combined flag to optimise cache usage. Ac-
cording to [9, 6, 5], this setting is likely to improve
performance since the memory pages are locked.

4 Performance study

We conducted experiments on an eight-node GPU
cluster, each node being equipped with two hexa-core
X5650 Intel Xeon CPUs, 36 GB memory, and three
NVIDIA Tesla M2070 computing devices; the network
interconnect uses QDR InfiniBand. To evaluate raw
performance, we simulated a lid-driven cavity [1]
in single-precision and recorded execution times for
10,000 time steps using various configurations. Over-
all performance is good, with at most 8,928 million
lattice node updates per second (MLUPS) on a 7683

lattice using all 24 GPUs. To set a comparison, Wang
and Aoki in [16] report at most 7,537 MLUPS for the
same problem size using four time as many GPUs.
However, it should be mentioned that these results
were obtained using hardware of the preceding gen-
eration.

The solver was compiled using CUDA 4.0 and
OpenMPI 1.4.4. It is also worth mentioning that the
computing devices had ECC support enabled. From
tests we conducted on a single computing device,
we expect the overall performance to be about 20%
higher with ECC support disabled.

4.1 Performance model

Our first performance benchmark consisted in run-
ning our solver using eight GPUs on a cubic cavity
of increasing size. The computation domain is split
in a 2 × 2 × 2 regular partition, the size S of the
sub-domains ranging from 128 to 288. In addition,
we recorded the performance for a single-GPU on a
domain of size S, in order to evaluate the commu-
nication overhead and the GPU to device memory
data throughput. The results are gathered in Tables 1
and 2.

Table 1 shows that the data throughput between
GPU and device memory is stable, only slightly in-
creasing with the size of the domain. (Given the
data layout in device memory, the increase of the
domain size is likely to reduce the amount of L2
cache misses, having therefore a positive impact on
data transfer.) We may therefore conclude that the
performance of our kernel is communication bound.
The last column accounts for the ratio of the data
throughput to the maximum sustained throughput,
for which we used the value 102.7 GB/s obtained us-
ing the bandwidthTest program that comes with
the CUDA SDK. The obtained ratios are fairly satisfy-
ing taking into account the complex data access pat-
tern the kernel must follow.

In Tab. 2, the parallel efficiency and the non-
overlapped communication time were computed us-
ing the single-GPU results. The efficiency is good
with at least 87.3%. The corresponding data
throughput given in the last column is slightly in-
creasing from 8.2 GB/s to 9.9 GB/s, which implies
that the proportion of communication overhead de-
creases when the domain size increases. The effi-
ciency appears to benefit from surface-to-volume ef-
fects. Figure 6 displays the obtained performance re-
sults.

4.2 Scalability

In order to study scalability, both weak and strong,
we considered seven different partition types with in-
creasing number of sub-domains. Weak scalability
represents the ability to solve larger problems with
larger resources whereas strong scalability accounts
for the ability to solve a problem faster using more
resources. For weak scalability, we used cubic sub-
domains of size 128, and for strong scalability, we
used a computation domain of constant size 384 with
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Domain size (S) Runtime (s) Performance Device throughput Ratio to peak
(MLUPS) (GB/s) throughput

128 54.7 383.2 59.2 57.6%

160 100.6 407.2 62.9 61.2%

192 167.6 422.3 65.2 63.5%

224 260.3 431.8 66.7 64.9%

256 382.3 438.8 67.8 66.0%

288 538.7 443.4 68.5 66.7%

Table 1: Single-GPU performance

Domain size Runtime (s) Performance Parallel Data Throughput
(2S) (MLUPS) efficiency transfer (s) (GB/s)

256 62.7 2,678 87.3% 7.9 9.9

320 114.5 2,862 87.9% 13.9 8.9

384 186.9 3,030 89.7% 19.3 9.6

448 289.6 3,105 89.9% 29.3 8.2

512 418.7 3,206 91.3% 36.4 8.6

576 587.0 3,256 91.8% 48.3 8.2

Table 2: Performance for a 2× 2× 2 regular partition
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Figure 6: Performance for a 2× 2× 2 regular partition
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cuboid sub-domains. Table 3 gives all the details of
the tested configurations.

For our weak scaling test, we use fixed size sub-
domains so that the amount of processed nodes lin-
early increases with the number of GPUs. We chose
a small, although realistic, sub-domain size in order
to reduce as much as possible favourable surface-
to-volume effects. Since the workload per GPU is
fixed, perfect scaling is achieved when the runtime
remains constant. The results of the test are gathered
in Tab. 4. Efficiency was computed using the run-
time of the smallest tested configuration. Figure 7
displays the runtime with respect to the number of
GPUs. As illustrated by this diagram, the weak scal-
ability of our solver is satisfying, taking into account
that the volume of communication increases by a fac-
tor up to 11.5.

In our strong scalability test, we consider a fixed
computation domain processed using an increasing
number of computing devices. As a consequence the
volume of the communication increases by a factor
up to three, while the size of the sub-domains de-
creases, leading to less favourable configurations for
the computation kernel. The results of the strong
scaling test are given in Tab. 5. The runtime with re-
spect to the number of GPUs is represented in Fig. 8
using a log-log diagram. As shown by the trend-line,
the runtime closely obeys a power law, the correla-
tion coefficient for the log-log regression line being
below −0.999. The obtained scaling exponent is ap-
proximately −0.8, whereas perfect strong scalability
corresponds to an exponent of −1. We may conclude
that the strong scalability of our code is good, given
the fairly small size of the computation domain.

5 Conclusion

In this paper, we describe the implementation of
an efficient and scalable LBM solver for GPU clus-
ters. Our code lies upon three main components
that were developed for that purpose: a CUDA com-
putation kernel, a set of MPI initialisation routines,
and a set of MPI communication routines. The com-
putation kernel’s most important feature is the abil-
ity to efficiently exchange data in all spatial direc-
tions, making possible the use of 3D partitions of the
computation domain. The initialisation routines are
designed in order to distribute the workload across
the cluster in a flexible way, following the specifica-

tions contained in a configuration file. The commu-
nication routines manage to pass data between sub-
domains efficiently, performing reordering and par-
tial propagation. These new components were de-
vised as key parts of the TheLMA framework[10],
whose main purpose is to facilitate the development
of LBM solvers for the GPU. The obtained perfor-
mance on rather affordable hardware such as small
GPU clusters makes possible to carry out large scale
simulations in reasonable time and at moderate cost.
We believe these advances will benefit to many po-
tential applications of the LBM. Moreover, we expect
our approach to be sufficiently generic to apply to a
wide range of stencil computations, and therefore to
be suitable for numerous applications that operate on
a regular grid.

Although performance and scalability of our solver
is good, we believe there is still room for improve-
ment. Possible enhancements include better overlap-
ping between communication and computation, and
more efficient communication between sub-domains.
As for now, only transactions to the send and read
buffers may overlap kernel computations. The com-
munication phase starts once the computation phase
is completed. One possible solution to improve over-
lapping would be to split the sub-domains in seven
zones, six external zones, one for each face of the
sub-domains, and one internal zone for the remain-
der. Processing the external zones first would allow
the communication phase to start while the internal
zone is still being processed.

Regarding ameliorations to the communication
phase, we are considering three paths to explore.
First of all, we plan to reinvest the concepts presented
in [6] and [5] to improve data transfers involving
page-locked buffers. Secondly, we intend to evalu-
ate the optimisation proposed by Fan et al. in [4],
which consists in performing data exchange in sev-
eral synchronous steps, one for each face of the sub-
domains, the data corresponding to the edges being
transfered in two steps. Last, following [2], we plan
to implement a benchmark program able to search
heuristically efficient execution layouts for a given
computation domain and to generate automatically
the configuration file corresponding to the most effi-
cient one.
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Number of GPUs Nodes×GPUs Partition type Domain Sub-domains
(weak scalability) (strong scalability)

4 2× 2 1× 2× 2 128× 256× 256 384× 192× 192

6 2× 3 1× 3× 2 128× 384× 256 384× 128× 192

8 4× 2 2× 2× 2 256× 256× 256 192× 192× 192

12 4× 3 2× 3× 2 256× 384× 256 192× 128× 192

16 8× 2 2× 4× 2 256× 512× 256 192× 96 × 192

18 6× 3 2× 3× 3 256× 384× 384 192× 128× 128

24 8× 3 2× 4× 3 256× 512× 384 192× 96 × 128

Table 3: Configuration details for the scaling tests

Number of GPUs Runtime (s) Efficiency Performance Perf. per GPU
(MLUPS) (MLUPS)

4 59.8 100% 1402 350.5

6 64.2 93% 1959 326.6

8 62.7 95% 2676 334.5

12 66.8 90% 3767 313.9

16 71.1 84% 4721 295.1

18 67.0 89% 5634 313.0

24 73.2 82% 6874 286.4

Table 4: Runtime and efficiency for the weak scaling test

Number of GPUs Runtime (s) Efficiency Performance Perf. per GPU
(MLUPS) (MLUPS)

4 335.0 100% 1690 422.6

6 241.9 92% 2341 390.1

8 186.1 90% 3043 380.3

12 134.7 83% 4204 350.3

16 109.9 76% 5152 322.0

18 98.4 76% 5753 319.6

24 80.3 70% 7053 293.9

Table 5: Runtime and efficiency for the strong scaling test
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Figure 7: Runtime for the weak scaling test — Perfect weak scaling would result in an horizontal straight line.
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