H. Akaike, Information theory and an extension of the maximum likelihood principle, Second International Symposium on Information Theory, pp.267-281

A. Kiado, B. Breiman, L. Breiman, L. Uc-berkeley-breiman, L. Freiman et al., Bagging predictors Using adaptive bagging to Debais regressions Classification and Regression Trees Boosting with the l 2 loss: regression and classification Sparse boosting Linear smoothers and additive models, Iterative bias reduction multivariate smoothing in R: the IBR package (2011a). arXiv:1105.3605v1 Cornillon.: Recursive bias estimation for multivariate regression (2011b). arXiv:1105.3430v2 Craven, P., Wahba, G.: Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation. Numer. Math. 31, pp.123-140, 1973.

D. Marzio, M. Taylor, C. Duchon, J. Eubank, R. Fan et al., On boosting kernel regression Splines minimizing rotation-invariant semi-norms in Sobolev spaces Construction Theory of Functions of Several Variables Spline Smoothing and Nonparametric Regression Local Polynomial Modeling and Its Application, Theory and Methodologies Multivariate adaptive regression splines Greedy function approximation: A gradient boosting machine Projection pursuit regression, J. Stat. Plan. Inference Ann. Stat. Ann. Stat. J. Am. Stat. Assoc, vol.138, issue.76, pp.2483-2498, 1977.

J. Friedman, T. Hastie, and R. Tibshirani, Additive logistic regression: a statistical view of boosting, Ann. Stat, vol.28, pp.337-407, 2000.

C. Gu, L. Gyorfi, M. Kohler, A. Krzyzak, and H. Walk, Smoothing Spline ANOVA Models A Distribution-Free Theory of Nonparametric Regression, 2002.

T. J. Hastie, R. J. Tibshirani, C. Hurvich, G. Simonoff, and C. L. Tsai, Generalized Additive Models Smoothing parameter selection in nonparametric regression using and improved Akaike information criterion, J. R. Stat. Soc. B, vol.60, pp.271-294, 1995.

O. Lepski, Asymptotically minimax adaptive estimation. I: Upper bounds. Opitmally adaptive estimates. Theory Probab, Appl, vol.37, pp.682-697, 1991.

K. C. Li, C. Asymptotic-optimality-for-c-p, G. Ridgeway, and G. Schwarz, cross-validation and generalized cross-validation: discrete index set Additive logistic regression: a statistical view of boosting: discussion Estimating the dimension of a model Introduction to Nonparametric Estimation, Ann. Stat. Ann. Stat. Ann. Stat. J.S.: Smoothing Methods in Statistics, vol.15, issue.6, pp.958-975, 1978.

J. W. Tukey, S. N. Wood, and S. N. Wood, Explanatory Data Analysis Thin plate regression splines Stable and efficient multiple smoothing parameter estimation for generalized additive models, J. R. Stat. Soc. B J. Am. Stat. Assoc, vol.65, issue.99, pp.95-114, 1977.

Y. Yang, Combining different procedures for adaptive regression, J. Multivar. Anal, vol.74, pp.135-161, 2000.

H. Akaike, Information theory and an extension of the maximum likelihood principle, Second international symposium on information theory, pp.267-281, 1973.

D. Anevski and P. Soulier, Monotone spectral density estimation. The Annals of Statistics, pp.418-438, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00355215

S. Angelov, B. Harb, S. Kannan, and L. S. Wang, Weighted isotonic regression under the l 1 norm, Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm, pp.783-791, 2006.

C. F. Ansley and R. Kohn, Convergence of the backfitting algorithm for additive models, Journal of the Australian Mathematical Society (Series A), vol.57, issue.03, pp.316-329, 1994.

M. Ayer, H. D. Brunk, G. M. Ewing, W. T. Reid, and E. Silverman, An empirical distribution function for sampling with incomplete information. The annals of mathematical statistics, pp.641-647, 1955.

R. E. Barlow, D. J. Bartholomew, J. M. Bremner, and H. D. Brunk, Statistical inference under order restrictions : The theory and application of isotonic regression, 1972.

D. J. Bartholomew, A test of homogeneity for ordered alternatives, Biometrika, vol.46, issue.12, pp.36-48, 1959.

H. H. Bauschke and J. M. Borwein, Dykstra's alternating projection algorithm for two sets, Journal of Approximation Theory, vol.79, issue.3, pp.418-443, 1994.

R. E. Bellman, Adaptive control processes : A guided tour, 1961.

M. J. Best, Equivalence of some quadratic programming algorithms, Mathematical Programming, vol.30, issue.1, pp.71-87, 1984.

M. J. Best and N. Chakravarti, Active set algorithms for isotonic regression ; a unifying framework, Mathematical Programming, pp.425-439, 1990.

J. P. Boyle and R. L. Dykstra, A method for finding projections onto the intersection of convex sets in hilbert spaces, Lecture Notes in Statistics, vol.37, issue.4, pp.28-47, 1986.

L. Breiman, J. Freiman, R. Olshen, and C. Stone, Classification and regression trees, 1984.

L. Breiman and J. H. Friedman, Estimating optimal transformations for multiple regression and correlation, Journal of the American Statistical Association, pp.580-598, 1985.

L. Breiman and P. Spector, Submodel selection and evaluation in regression. the x-random case, International Statistical Review/Revue Internationale de Statistique, pp.291-319, 1992.

M. Briane and G. Pagès, Théorie de l'intégration. Vuibert, 2006.

H. D. Brunk, Maximum likelihood estimates of monotone parameters, The Annals of Mathematical Statistics, vol.26, issue.4, pp.607-616, 1955.

H. D. Brunk, On an inequality for convex functions, Proc. Amer. Math. Soc, pp.817-824, 1956.

H. D. Brunk, On the estimation of parameters restricted by inequalities. The Annals of Mathematical Statistics, pp.437-454, 1958.

H. D. Brunk, Conditional expectation given a ?-lattice and applications, The Annals of Mathematical Statistics, vol.36, issue.5, pp.1339-1350, 1965.

H. D. Brunk, Estimation of isotonic regression, Nonparametric Techniques in Statistical Inference, pp.177-195, 1970.

H. D. Brunk, G. M. Ewing, and W. R. Utz, Minimizing integrals in certain classes of monotone functions, Pacific journal of mathematics, vol.7, issue.1, pp.833-847, 1957.

P. Bühlmann and B. Yu, Boosting with the l2 loss, Journal of the American Statistical Association, issue.462, pp.98-324, 2003.

A. Buja, T. Hastie, and R. Tibshirani, Linear smoothers and additive models. The Annals of Statistics, pp.453-510, 1989.
DOI : 10.1214/aos/1176347115

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

N. Chakravarti, Isotonic median regression : a linear programming approach Mathematics of operations research, pp.303-308, 1989.

W. Cheney and A. A. Goldstein, Proximity maps for convex sets, Proc. Amer. Math. Soc, pp.448-450, 1959.

P. A. Cornillon, N. Hengartner, and E. Matzner-løber, Recursive bias estimation for multivariate regression smoothers, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00955865

P. Craven and G. Wahba, Smoothing noisy data with spline functions, Numerische Mathematik, vol.31, issue.4, pp.377-403, 1978.

J. D. Cryer, T. Robertson, F. T. Wright, and R. J. Casady, Monotone median regression. The Annals of, Mathematical Statistics, vol.43, issue.5, pp.1459-1469, 1972.
DOI : 10.1214/aoms/1177692378

D. Marzio, M. Taylor, and C. C. , On boosting kernel regression, Journal of Statistical Planning and Inference, vol.138, issue.8, pp.2483-2498, 2008.

P. Diggle, S. Morris, and T. Morton-jones, Case-control isotonic regression for investigation of elevation in risk around a point source, Statistics in medicine, vol.18, issue.13, pp.1605-1613, 1999.

C. Durot, On the lp-error of monotonicity constrained estimators. The Annals of Statistics, pp.1080-1104, 2007.

R. L. Dykstra, An isotonic regression algorithm, Journal of Statistical Planning and Inference, vol.5, issue.4, pp.355-363, 1981.

R. L. Dykstra, An algorithm for restricted least squares regression, Journal of the American Statistical Association, pp.837-842, 1983.

R. L. Dykstra and T. Robertson, An algorithm for isotonic regression for two or more independent variables. The Annals of Statistics, pp.708-716, 1982.

B. Efron, Estimating the error rate of a prediction rule : improvement on cross-validation, Journal of the American Statistical Association, pp.316-331, 1983.

B. Efron and R. Tibshirani, Improvements on cross-validation : The. 632+ bootstrap method, Journal of the American Statistical Association, pp.548-560, 1997.

J. Fan and I. Gijbels, Local polynomial modelling and its applications, 1996.

J. Fridlyand, A. M. Snijders, D. Pinkel, D. G. Albertson, and A. N. Jain, Hidden markov models approach to the analysis of array cgh data, Journal of multivariate analysis, vol.90, issue.1, pp.132-153, 2004.

J. H. Friedman and N. I. Fisher, Bump hunting in high-dimensional data, Statistics and Computing, vol.9, issue.2, pp.123-143, 1999.

J. H. Friedman and W. Stuetzle, Projection pursuit regression, Journal of the American statistical Association, pp.817-823, 1981.
DOI : 10.1080/01621459.1981.10477729

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Frisén, Unimodal regression. The Statistician, pp.479-485, 1986.

F. Gebhardt, An algorithm for monotone regression with one or more independent variables, Biometrika, vol.57, issue.2, pp.263-271, 1970.

Z. Geng and N. Z. Shi, Algorithm as 257 : isotonic regression for umbrella orderings, Journal of the Royal Statistical Society. Series C (Applied Statistics), vol.39, issue.3, pp.397-402, 1990.

J. Goldstein and J. B. Kruskal, Least square fitting for monotonic functions having integer values, Journal of the American Statistical Association, vol.71, pp.370-373, 1976.

I. Good and R. Gaskins, Density estimation and bump-hunting by the penalized likelihood method exemplified by scattering and meteorite data, Journal of the American Statistical Association, pp.42-56, 1980.

C. H. Goulden, Methods of statistical analysis, 1952.

P. J. Green and B. W. Silverman, Nonparametric regression and generalized linear models : a roughness penalty approach, 1994.

U. Grenander, On the theory of mortality measurement. part ii, Skand. Akt, vol.39, pp.125-153, 1956.

S. J. Grotzinger and C. Witzgall, Projections onto order simplexes Applied mathematics & optimization, pp.247-270, 1984.

C. Gu, Smoothing spline ANOVA models, 2002.

A. Guyader, Contributions à l'estimation non paramétrique et à la simulation d'événements rares, 2011.

L. Györfi, M. Kohler, A. Krzy?ac, and H. Walk, A Distribution-Free Theory of Nonparametric Regression, 2002.

L. A. Hageman and D. M. Young, Applied iterative methods, 1981.

P. Hall and L. S. Huang, Nonparametric kernel regression subject to monotonicity constraints, The Annals of Statistics, vol.29, issue.3, pp.624-647, 2001.

I. Halperin, The product of projection operators. The Annals of Statistics, pp.96-99, 1962.

D. L. Hanson, G. Pledger, and F. T. Wright, On consistency in monotonic regression. The Annals of Statistics, pp.401-421, 1973.

W. Härdle and P. Hall, On the backfitting algorithm for additive regression models, Statistica neerlandica, vol.47, issue.1, pp.43-57, 1993.

J. Harezlak, Bump hunting in regression revisited, Thèse de doctorat, 1998.

T. J. Hastie and R. J. Tibshirani, Generalized additive models, 1990.

N. Heckman, Bump hunting in regression analysis, Statistics & probability letters, vol.14, issue.2, pp.141-152, 1992.

W. Hoeffding, Probability inequalities for sums of bounded random variables, Journal of the American Statistical Association, pp.13-30, 1963.

L. Hörmander, Notions of Convexity, 2007.

J. Horowitz, J. Klemelä, and E. Mammen, Optimal estimation in additive regression models, Bernoulli, vol.12, issue.2, pp.271-298, 2006.

H. Hotelling, Experimental determination of the maximum of a function. The Annals of mathematical statistics, pp.20-45, 1941.

P. Hupé, N. Stransky, J. P. Thiery, F. Radvanyi, and E. Barillot, Analysis of array cgh data : from signal ration to gain and loss to dna regions, Bioinformatics, issue.18, pp.20-3413, 2004.

C. M. Hurvich, J. S. Simonoff, and C. L. Tsai, Smoothing parameter selection in nonparametric regression using an improved akaike information criterion, Journal of the Royal Statistical Society : Series B (Statistical Methodology), vol.60, issue.2, pp.271-293, 1998.

G. Isac and A. B. Németh, Monotonicity of metric projections onto positive cones of ordered euclidean spaces, Archiv der Mathematik, vol.46, issue.6, pp.568-576, 1986.

G. Isac and A. B. Németh, Corrigendum to " monotonicity of metric projections onto positive cones of ordered euclidean spaces, Archiv der Mathematik, pp.367-368, 1987.

A. S. Ishkanian, C. A. Malloff, S. K. Watson, R. J. Deleew, B. Chi et al., A tiling resolution dna microarray with complete coverage of the human genome, Nature genetics, vol.36, issue.3, pp.299-303, 2004.

S. Jaillard, S. Drunat, C. Bendavid, A. Aboura, A. Etcheverry et al., Identification of gene copy number variations in patients with mental retardation using array-cgh : Novel syndromes in a large french series, European journal of medical genetics, vol.53, issue.2, pp.66-75, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00434932

K. Jong, E. Marchiori, . Van-der, A. Vaart, B. Ylstra et al., Chromosomal breakpoint detection in human cancer, pp.107-116, 2003.

R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection, Proceedings of the 14th international joint conference on Artificial intelligence- Volume, pp.1137-1143, 1995.

J. B. Kruskal, Nonmetric multidimensional scaling : a numerical method, Psychometrika, vol.29, pp.115-129, 1964.

C. I. Lee, The min-max algorithm and isotonic regression, The Annals of Statistics, vol.11, issue.2, pp.467-477, 1983.

M. H. Liu and V. A. Ubhaya, An o (n) algorithm for weighted least squares regression by integer quasi-convex and unimodal or umbrella functions, Computers & Mathematics with Applications, vol.58, issue.4, pp.776-783, 2009.

P. B. Lombard and H. D. Brunk, Evaluating the relation of juice composition of madarin oranges to percent acceptance of a taste panel, Fd. Technol, vol.17, pp.113-115, 1963.

R. Luss, S. Rosset, and M. Shahar, Isotonic recursive partitioning. Arxiv preprint arXiv, pp.1102-5496, 2011.

E. Mammen, O. Linton, and J. Nielsen, The existence and asymptotic properties of a backfitting projection algorithm under weak conditions. The Annals of Statistics, pp.1443-1490, 1999.

E. Mammen, J. S. Marron, B. A. Turlach, and M. P. Wand, A general projection framework for constrained smoothing, Statistical Science, pp.232-248, 2001.

E. Mammen and C. Thomas-agnan, Smoothing splines and shape restrictions, Scandinavian Journal of Statistics, vol.26, issue.2, pp.239-252, 1999.
DOI : 10.1111/1467-9469.00147

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

E. Mammen and K. Yu, Additive isotone regression, Asymptotics : Particles, Processes and Inverse Problems, IMS Lecture Notes-Monograph Series, pp.179-195, 2007.
DOI : 10.1214/074921707000000355

URL : http://arxiv.org/abs/0709.0888

W. L. Maxwell and J. A. Muckstadt, Establishing consistent and realistic reorder intervals in production-distribution systems, Operations Research, pp.1316-1341, 1985.

J. A. Menendez and B. Salvador, An algorithm for isotonic median regression, Computational Statistics & Data Analysis, vol.5, issue.4, pp.399-406, 1987.

M. Meyer and M. Woodroofe, On the degrees of freedom in shape-restricted regression. The annals of Statistics, pp.1083-1104, 2000.

J. J. Moreau, Décomposition orthogonale d'un espace préhilbertien selon deux cônes mutuellement polaires, C. R. Acad. Sci, vol.255, pp.238-240, 1962.
DOI : 10.24033/bsmf.1625

URL : http://archive.numdam.org/article/BSMF_1965__93__273_0.pdf

P. Moscato, On evolution, search, optimization, genetic algorithms and martial arts : Towards memetic algorithms. Caltech concurrent computation program, C3P Report, vol.826, 1989.

H. Mukerjee, Monotone nonparametric regression. The Annals of Statistics, pp.741-750, 1988.
DOI : 10.1214/aos/1176350832

URL : http://projecteuclid.org/download/pdf_1/euclid.aos/1176350832

E. A. Nadaraya, On estimators regression. Theory of Probability and its Applications, p.9, 1964.

A. B. Olshen, E. S. Venkatraman, R. Lucito, and M. Wigler, Circular binary segmentation for the analysis of array-based dna copy number data, Biostatistics, vol.5, issue.4, pp.557-572, 2004.

J. D. Opsomer, Asymptotic properties of backfitting estimators, Journal of Multivariate Analysis, vol.73, issue.2, pp.166-179, 2000.

J. D. Opsomer and D. Ruppert, Fitting a bivariate additive model by local polynomial regression. The Annals of Statistics, pp.186-211, 1997.

P. M. Pardalos and G. Xue, Algorithms for a class of isotonic regression problems, Algorithmica, vol.23, issue.3, pp.211-222, 1999.

P. M. Pardalos, G. L. Xue, and L. Yong, Efficient computation of an isotonic median regression, Applied Mathematics Letters, vol.8, issue.2, pp.67-70, 1995.

F. Picard, S. Robin, M. Lavielle, C. Vaisse, and J. J. Daudin, A statistical approach for array cgh data analysis, BMC bioinformatics, vol.6, issue.1, p.27, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00427846

R. R. Picard and R. D. Cook, Cross-validation of regression models, Journal of the American Statistical Association, pp.575-583, 1984.

D. Pinkel, R. Seagraves, D. Sudar, S. Clark, I. Poole et al., High resolution analysis of dna copy number variation using comparative genomic hybridization to microarrays, Nature Genetics, vol.20, issue.2, pp.207-211, 1998.
DOI : 10.1038/2524

J. Polzehl and V. G. Spokoiny, Adaptive weights smoothing with applications to image restoration, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.62, issue.2, pp.335-354, 2000.
DOI : 10.1111/1467-9868.00235

L. Reboul, Estimation of a function under shape restrictions. applications to reliability. The Annals of Statistics, pp.1330-1356, 2005.

R. Palacios, A. Bovik, and A. C. , On the statistical optimality of locally monotonic regression, IEEE Transactions on Signal Processing, vol.42, issue.6, pp.1548-1550, 1994.
DOI : 10.1109/78.286972

D. Revuz and M. Yor, Continuous Martingales and Brownian Motion de Grundlehren der matematishen Wissenshaften, 2005.

T. Robertson and P. Waltman, On Estimating Monotone Parameters, The Annals of Mathematical Statistics, vol.39, issue.3, pp.1030-1039, 1968.
DOI : 10.1214/aoms/1177698335

T. Robertson and F. T. Wright, Algorithms in order restricted statistical inference and the cauchy mean value property. The Annals of Statistics, pp.645-651, 1980.

B. A. Rosenzweig, P. S. Pine, O. E. Domon, S. M. Morris, J. J. Chen et al., Dye-Bias Correction in Dual-Labeled cDNA Microarray Gene Expression Measurements, Environmental Health Perspectives, vol.112, issue.4, p.480, 2004.
DOI : 10.1289/ehp.6694

R. Roundy, A 98%-Effective Lot-Sizing Rule for a Multi-Product, Multi-Stage Production / Inventory System, Mathematics of Operations Research, vol.11, issue.4, pp.699-727, 1986.
DOI : 10.1287/moor.11.4.699

W. Rudin, Analyse réelle et complexe, 1975.

K. D. Schmidt, Developpement of a precommercial thinning guide for black spruce, Thèse de doctorat, 1993.

A. Schrijver, Theory of Linear and Integer Programming, 1986.

G. Schwarz, Estimating the Dimension of a Model, The Annals of Statistics, vol.6, issue.2, pp.461-464, 1978.
DOI : 10.1214/aos/1176344136

B. W. Silverman, Using kernel density estimates to investigate multimodality, Journal of the Royal Statistical Society. Series B, pp.97-99, 1981.

B. W. Silverman, Some aspects of the spline smoothing approach to non-parametric regression curve fitting, Journal of the Royal Statistical Society. Series B, pp.1-52, 1985.

R. D. Snee, Validation of Regression Models: Methods and Examples, Technometrics, vol.34, issue.4, pp.415-428, 1977.
DOI : 10.2307/1268345

A. M. Snijders, N. Nowak, R. Segraves, S. Blackwood, N. Brown et al., Assembly of microarrays for genome-wide measurement of dna copy number by cgh, Nature Genetics, vol.29, issue.3, pp.263-264, 2001.
DOI : 10.1038/ng754

S. Solinas-toldo, S. Lampel, S. Stilgenbauer, J. Nickolenko, A. Benner et al., Matrix-based comparative genomic hybridization: Biochips to screen for genomic imbalances, Genes, Chromosomes and Cancer, vol.56, issue.4, pp.399-407, 1997.
DOI : 10.1002/(SICI)1098-2264(199712)20:4<399::AID-GCC12>3.0.CO;2-I

C. J. Stone, Additive regression and other nonparametric models. The annals of Statistics, pp.689-705, 1985.

Q. F. Stout, Unimodal regression via prefix isotonic regression, Computational Statistics & Data Analysis, vol.53, issue.2, pp.289-297, 2008.
DOI : 10.1016/j.csda.2008.08.005

W. A. Thompson, The Problem of Negative Estimates of Variance Components, The Annals of Mathematical Statistics, vol.33, issue.1, pp.273-289, 1962.
DOI : 10.1214/aoms/1177704731

R. J. Tibshirani, H. Hoefling, and R. Tibshirani, Nearly-Isotonic Regression, Technometrics, vol.53, issue.1, pp.54-61, 2011.
DOI : 10.1198/TECH.2010.10111

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

T. R. Turner and P. C. Wollan, Locating a maximum using isotonic regression, Computational Statistics & Data Analysis, vol.25, issue.3, pp.305-320, 1997.
DOI : 10.1016/S0167-9473(97)00009-1

V. Ubhaya, An O(n) algorithm for least squares quasi-convex approximation, Computers & Mathematics with Applications, vol.14, issue.8, pp.583-590, 1987.
DOI : 10.1016/0898-1221(87)90185-4

C. Van-eeden, Maximum likelihood estimation of ordered probabilities, Indag. Math, vol.18, pp.444-455, 1956.

C. Van-eeden, Maximum Likelihood Estimation of Partially or Completely Ordered Parameters. II, Indagationes Mathematicae (Proceedings), vol.60, pp.128-136, 1957.
DOI : 10.1016/S1385-7258(57)50027-9

V. Neumann and J. , Functional Operators. II. The Geometry of Orthogonal Spaces, Annals of Mathematics Studies, issue.22, 1950.

G. Wahba, Spline models for observational data, 1990.
DOI : 10.1137/1.9781611970128

Y. Wang and J. Huang, Limiting distribution for monotone median regression, Journal of Statistical Planning and Inference, vol.107, issue.1-2, pp.281-287, 2002.
DOI : 10.1016/S0378-3758(02)00258-6

G. S. Watson, Smooth regression analysis. Sankhy¯ a : The Indian Journal of Statistics, pp.359-372, 1964.

W. H. Wong, On the Consistency of Cross-Validation in Kernel Nonparametric Regression, The Annals of Statistics, vol.11, issue.4, pp.1136-1141, 1983.
DOI : 10.1214/aos/1176346327

F. T. Wright, Estimating Strictly Increasing Regression Functions, Journal of the American Statistical Association, vol.70, issue.363, pp.636-639, 1978.
DOI : 10.1080/01621459.1978.10480069

F. T. Wright, The Asymptotic Behavior of Monotone Regression Estimates, The Annals of Statistics, vol.9, issue.2, pp.443-448, 1981.
DOI : 10.1214/aos/1176345411

W. B. Wu, M. Woodroofe, and G. Mentz, Isotonic regression: Another look at the changepoint problem, Biometrika, vol.88, issue.3, pp.793-804, 2001.
DOI : 10.1093/biomet/88.3.793

E. H. Zarantonello, Contributions to nonlinear functional analysis : proceedings. N o 27, 1971.