Étude de cycloisomérisations énantiosélectives d’énynes catalysées par des platinacycles carbéniques

Hélène Jullien

To cite this version:

HAL Id: tel-00776100
https://tel.archives-ouvertes.fr/tel-00776100
Submitted on 15 Jan 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Université Paris-Sud
Ecole Doctorale Chimie de Paris-Sud

THÈSE DE DOCTORAT

Présentée par
Hélène JULLIEN

En vue de l’obtention du grade de
DOCTEUR EN SCIENCES DE L’UNIVERSITÉ PARIS-SUD
Spécialité Chimie Organique

ÉTUDE DE CYCLOISOMÉRISATIONS ÉNANTIOSÉLECTIVES
D’ÉNYNES CATALYSÉES PAR DES PLATINACYCLES
CARBÉNIQUES

Thèse préparée sous la direction du Dr. Angela MARINETTI

Institut de Chimie des Substances Naturelles (UPR 2301)

Soutenue le mardi 27 novembre 2012 à l’ICSN devant la commission d’examen
composée de :

Pr. Philippe BELMONT
Université Paris Descartes, Paris 5
Rapporteur

Dr. Maryse GOUYGOU
Université Paul Sabatier, Toulouse
Rapporteur

Dr. Vincent CESAR
Laboratoire de Chimie de Coordination, Toulouse
Examinateur

Pr. Vincent GANDON
Université Paris-Sud 11, Orsay
Examinateur

Dr. Angela MARINETTI
Institut de Chimie des Substances Naturelles, Gif-sur-Yvette
Directeur de thèse
« Nous sommes comme des nains juchés sur des épaules de géants. Notre regard peut ainsi embrasser plus de choses et porter plus loin que le leur. Ce n’est pas, certes, que notre vue soit plus perçante ou notre taille plus avantageuse ; c’est que nous sommes portés et surélevés par la haute stature des géants. »

Bernard de Chartres

(Humaniste et Philosophe de l’école de Chartres, XIe siècle)
Remerciements

Je souhaite tous d'abord remercier le Pr David Crich de m'avoir permis de réaliser ma thèse à l'ICSN ainsi que le Pr Max Malacria de m'avoir permis de poursuivre mes travaux dans de bonnes conditions.

Je voudrais ensuite remercier Madame Maryse Gouygou, Monsieur Philippe Belmont, Monsieur Vincent César et Monsieur Vincent Gandon de m'avoir fait l'honneur de juger mon travail et d'avoir conduit la séance de discussions dans une atmosphère chaleureuse.

Bien sur je remercie Angela Marinetti de m'avoir accueillie dans son équipe il y a presque 5 ans lors de mes stages de master 1 et 2 puis de m'avoir fait confiance pour réaliser ma thèse au laboratoire. Merci pour votre gentillesse, vos conseils et vos idées. J'ai beaucoup apprécié nos discussions sur le sujet qui m'ont permis de rester motivée même quand cela ne marchait pas très bien.

Je remercie ensuite tous les membres de l'équipe 37 que j'ai rencontré au cours de ses années.

Mes premiers mots sont pour Delphine qui m'a encadrée, formée et transmis ses connaissances sur le platine lors de mes stages de master. Merci pour ta gentillesse, ton calme, ta bonne humeur, tous tes conseils et pour les discussions.

Je remercie ensuite Myriam, Nathalie, Armen et Nicolas qui m'ont accueillie dans la bonne humeur lors de mes stages. Merci également à Jérôme avec qui j'ai passé de bons moments en master et au labo.

Je souhaite également remercier Arnaud, Jean-François et Xavier pour leur disponibilité pour répondre à mes questions. Merci à Arnaud aussi pour m'avoir initiée au golf.
Je tiens également à remercier Mathilde avec qui j’ai passé quasiment 3 ans au labo, à qui je me suis beaucoup confiée et qui a été toujours présente, y compris dans les moments difficiles.

Merci également aux « anciennes » post-doc, tout d’abord à Marie pour sa gentillesse, sa bonne humeur, ses conseils, les pauses thé et ses délicieux gâteaux ; puis à Catherine pour les discussions et son rire communicatif ; et enfin à Mélanie avec qui il a été agréable de partager « l’aventure platiné ».

Je remercie ensuite les nombreux garçons qui composent désormais l’équipe : Jérémy qui m’a beaucoup fait rire avec son humour décalé ; Keihan et ses débats qui animent les déjeunés ; et Kévin, toujours de bonne humeur avec qui cette dernière année au labo a été très agréable. Je les remercie également tous les trois pour leur présence pendant la période de rédaction et la préparation de la soutenance. Il y avait toujours l’un d’eux de disponible pour papoter, me remonter le moral ou me faire réviser.

Merci également à Yang pour son aide sur le sujet.

Je souhaite remercier aussi les « petits » nouveaux, Paul, Maxime, Valérien et Julien pour le dynamisme et la bonne humeur qu’ils apportent au labo.

Je tiens également à dire un grand merci à Rémy avec qui il a été vraiment plaisant de travailler et qui m’a beaucoup aidé lors de son stage de M2.

Je remercie également Véronique, Mathilde et Georges qui ont apporté beaucoup de joie et de rire au cours de leur stage successifs.

J’étends mes remerciements d’équipe à nos voisins du couloir : Anne-Laure (et son rire incomparable), Angélique, David et Bernard qui ont largement contribué à l’ambiance agréable de notre étage. Merci pour votre présence et votre disponibilité.

Un immense merci aux membres du CEI, Amandine, Mélanie, Min, Simon, Jérémy et au « gost » Mehdi. Les repas CEI étaient souvent pour moi comme une bouffée d’oxygène. Une petite mention spéciale à Amandine et Simon qui ont particulièrement présents ces derniers mois.
Une pensée également pour Mélanie, Anne et Stephen qui ont vogué vers d'autres horizons un peu plus tôt que nous.

Je tiens à remercier ensuite Pascal pour les structures cristallographiques, ainsi que Odile, Suzanne, Nathalie et Franck pour les moments passés en HPLC. Merci pour votre aide et votre disponibilité.

Je remercie de manière générale tous les gens sympathiques que j’ai rencontrés à l’institut et qui contribuent à la super ambiance qui y règne.

Finalement je remercie ma famille. Tout d’abord mes parents qui m’ont toujours encouragée à faire les études que je voulais et qui ont toujours été présents. Merci également à Anicette et Joël pour leur présence et leur accueil toujours chaleureux.
Et enfin, merci à Grégo qui m’a accompagnée et supportée au cours de ces 3 ans et en particulier ces derniers mois. Tu as toujours trouvé les mots pour me remotiver, merci.
Table des Matières

INTRODUCTION GENERALE

CHAPITRE I : CYCLOISOMERISATIONS D’ENYNES

I. Des premières études aux applications

1) Cycloisomérisations impliquant l’oxydation du métal
 a) Intermédiaires métallacyclopentènes
 b) Intermédiaires π-allyles
 c) Intermédiaires vinylmétaux

2) Cycloisomérisations impliquant l’activation électrophile de l’alcyne
 a) Formation de diènes par cyclisation 5-exo-dig et simple ou double coupure (voies I et II)
 b) Formation de cyclobutènes (voie III)
 c) Formation de diènes par cyclisation 6-endo (voie V)
 d) Formation de bicycloheptènes (voie IV)

3) Exemples d’applications synthétiques

II. Exemples de cycloisomérisations énantiosélectives d’énynes : la réaction d’Alder-ène

III. Conclusion

CHAPITRE II : CYCLOISOMERISATIONS ENANTIOSELECTIVES D’ENYNES-1,6 EN BICYCLO[4.1.0]HEPTENES

I. Bibliographie et travaux antérieurs réalisés au laboratoire

1) Les premières réactions

2) Mécanisme
 a) Activation de l’alcyne
 b) Cyclisation 6-endo-dig
 c) Migration d’un proton

3) Exemples de cycloisomérisation d’énynes-1,6 en bicyclo[4.1.0]heptènes
 a) Synthèse de dérivés polycycliques par catalyse à l’or
 b) Synthèse de dérivés polycycliques par catalyse au platine
 c) Autres applications

4) Réactions énantiosélectives
 a) Exemples de la littérature
• Catalyseurs à l’iridium 36
• Catalyseurs au rhodium 37
• Catalyseurs à l’or 40

b) Travaux antérieurs effectués au laboratoire : complexes de platine de première génération 41
• Présentation générale 41
• Synthèse des complexes de platine de 1ère génération 44
• Evaluation dans la réaction de cycloisomérisation 47

II. Complexes de deuxième génération 48

1) Présentation des complexes de deuxième génération 48
2) Synthèse et caractérisation 50
 a) Synthèse des sels d’imidazolium 50
 b) Synthèse des complexes (NHC)Pt(0)(dvtms) 51
 c) Synthèse des complexes de platine(II) 51
 d) Caractérisations 54
 e) Tests catalytiques 57

3) Complexes de 2ème génération de type platine/Binepine 58
 a) Tests catalytiques 58
 b) Détermination de la configuration absolue des azabicyclo[4.1.0]heptènes et hypothèse d’induction asymétrique 60
 c) Désymétrisation de diénynes prochiraux par cycloisomérisation 64
 • Synthèse des substrats diénynes 67
 • Désymétrisation de diénynes par cycloisomérisation en présence de PtCl₂ 70
 • Désymétrisation énantiosélective de diénynes par cycloisomérisation 73
 • Détermination de la configuration absolue du produit bicyclique 75
 d) Essais de catalyse par double activation 76

4) Variations autour des complexes de 2ème génération de type platine / phosphoramidite 82
 a) Synthèse de nouveaux complexes Pt/Monophos 83
 • Variations de la substitution du carbène 83
 • Introduction d’un centre stéréogène sur le platinacycle 86
 b) Complexes portant d’autres ligands phosphoramidites 90
 • Synthèse de nouveaux complexes Pt/phosphoramidite 90
 • Tests catalytiques 94

III. Conclusion 96
CHAPITRE III : CYCLOISOMERISATIONS ENANTIOSELECTIVES D’ÉNYNES-1,5.

I. Bibliographie : cycloisomérisations d’éynnes-1,5 substitués en position propargylique par un groupement oxygéné

1) Cycloisomérisations d’éynnes avec migration d’un groupement OR lors du cycle catalytique

2) Cycloisomérisations d’éynnes sans migration du groupement OR lors du cycle catalytique

II. Application des platinacycles chiraux comme catalyseurs de cycloisomérisation d’éynnes-1,5

1) Premiers essais de cycloisomérisation des dérivés du 3-hydroxy-5-méthyl-1-phényl-5-hexèn-1-yné

 a) Synthèse des substrats

 b) Etude de la cycloisomérisation

2) Cycloisomérisations d’éynnes-1,5 substitués en position propargylique par un OTBS

 a) Variation des substituants de l’éynne

 b) Evaluation de divers complexes platine/phosphoramidite

 c) Influence du centre stéréogène de l’éynne de départ sur la stéréochimie de la réaction

 • Bibliographie

 • Synthèse de substrats énantiopurs et étude de leur cycloisomérisation

3) Étude de la réaction de cycloisomérisation d’éynnes hydroxylés

III. Désymétrisation de diénynes-1,5

1) Introduction

2) Étude de la cycloisomérisation de diénynes dont la triple liaison est substituée

 a) Synthèse des diénynes

 b) Tests catalytiques

3) Étude de la cycloisomérisation de diénynes dont la triple liaison est terminale

 a) Synthèse des diénynes

 b) Tests catalytiques

IV. Conclusion

CHAPITRE IV : AUTRES PROJETS ET PERSPECTIVES

I. Design de nouveaux pré-catalyseurs potentiels

II. Étude de complexes carbéniques de platine(II) comme potentiels agents antitumoraux
Liste des Abréviations

Å : Angström
Ac : acétyle
acac : acétylacétonate
AIBN : azobisisobutyronitrile
Ar : aryle
Atm : atmosphère
APTS : acide para-tolène sulfonique
BBEDA : N,N-bis(benzylidène)éthylénédiamine
Bn : benzylique
BICPO : bis(diphénylphosphinite)-dicyclopentane
BINAP : 2,2’-bis(diphénylphosphino)-1,1’-binaphthyle
Cat : catalyseur
Cbz : carbobenzoxyloxy
CCM : chromatographie sur couche mince
COD : cyclooctadiène
Conv : conversion
Cp : cyclopentadiényle
CSA : camphorsulfonic acid
Cy : cyclohexyle
dba : trans, trans-dibenzylidène acétone
DCC : dicyclohexylcarbodiimide
DCD : Dewar-Chatt-Duncanson
DCE : dichloroéthane
DCM : dichlorométhane
DEAD : diéthylazodicarboxylate
DIAD : diisopropylazodicarboxylate
DMAP : diméthylaminopyridine
DMDA : diméthyl acétylène dicarboxylate
DMF : diméthylformamide
DPP : diphénylphosphorique
dppb : 1,2-bis(diphénylphosphino)butane
dppf : 1,1’-Bis(diphenylphosphino)ferrocène
DTBM : ditert-butylméthoxy
dvtms : divinyltétraméthyléthylsiloxane
ed : excès diastéréomérique
ee : excès énantiomérique
éq : équivalent
Et : éthyle
Et₂O : diéthyléther
h : heure
HPLC : chromatographie liquide à haute performance (High Performance Liquid Chromatography)
IBX : 2-iodoxybenzoic acid
IC₅₀ : concentration inhibitrice médiane
iPr : iso-propyle
KAPA : sel de 1,3-diaminopropane de potassium
Me : méthyle
MeCN : acétonitrile
Min : minute
MOP : 2-(diphenylphosphino)-2’-méthoxy-1,1’-binaphthyl
Ms : méthyl
Napht : naphthyle
NHC : carbène N-hétérocyclique
Ns : nosyle
PCC : chlorochromate de pyridinium
Ph : phényle
PNB : p-nitrobenzoyle
quant. : quantitatif
r.d. : rapport de diastéréomères
RMN : résonance magnétique nucléaire
sBu : sec-Butyle
SES : triméthylsilylthanesulfonyle
SFC : chromatographie en phase supercritique (Supercritical Fluid Chromatography)
t.a. : température ambiante
TBAF : tetra-butyle ammoniumfluoride
TBAI : tetra-butyle ammonium iodide
TBDPS : tert-butyl-diphenylylsilyle
TBS : tert-butylsilylé
tBu : tert-butyle
THF : tetrahydrofurane
TMS : triméthylsilyl
Ts : tosyle

Numérotation des molécules

Dans tout le manuscrit, les complexes de platine(II) synthétisés au laboratoire seront notés **C0**, les complexes de platine(0) **O0**, et les sel d’imidazolium **I0**.

Les éénynes utilisés comme substrat seront notés **S0** et les produits de cycloisomérisation **P0**.

Pour les autres molécules, une numérotation conventionnelle sera utilisée.
Introduction générale
Introduction Générale

Les cycloisomérisations d’énynnes catalysées par des métaux de transition, permettent d’accéder en une seule étape à des structures complexes cycliques ou polycycliques par isomérisation de substrats insaturés simples. De ce fait, ces réactions présentent un grand intérêt synthétique.

Au cours de ces dernières années, ces réarrangements ont été étudiés de manière intensive avec divers métaux de transition comme catalyseurs (palladium, rhodium, or, argent, platine...). Cependant, peu de cycloisomérisations énantiosélectives ont été développées. Le potentiel synthétique de ces réactions nous a conduit à nous intéresser au développement de variantes énantiosélectives à l’aide de complexes de platine chiraux.

Ce manuscrit présente notre démarche et résume les principaux résultats. Le premier chapitre est consacré à une brève revue bibliographique sur la cycloisomérisation d’énynnes. Les différents produits pouvant être obtenus, leur mécanisme de formation ainsi que quelques réactions énantiosélectives sont relatés.
Dans le second chapitre nous nous intéressons plus précisément à la cycloisomérisation d’énynnes-1,6 de type allylamine propargylique en aza-bicyclo[4.1.0]heptènes, en discutant leur mécanisme ainsi que des exemples de réactions décrites dans la littérature. Puis nous rapporterons les travaux réalisés antérieurement au laboratoire en présentant la première génération de complexes de platine chiraux développés lors de la thèse de Delphine Brissy. Enfin le développement de la seconde génération de complexes de platine sera présenté ainsi que l’utilisation de ces catalyseurs dans les cycloisomérisations d’énynnes-1,6.
Le chapitre III sera consacré aux applications de la même méthodologie à la cycloisomérisation d’énynnes-1,5 possédant un groupement oxygéné en position propargylique.
Enfin, le chapitre IV sera consacré à décrire brièvement d’autres études concernant le développement de nouveaux catalyseurs ainsi que l’utilisation de complexe de platine en chimie médicinale.
Chapitre I :
Cycloisomérisations
d'énynes
Chapitre I : Cycloisomérisations d’éénynes

Les cycloisomérisations sont des réarrangements intramoléculaires de squelettes polyinsaturés qui conduisent à la formation de molécules cycliques ou polycycliques sans perte ni gain d’atome.1,2,3 Ces réactions permettent d’accéder en une seule étape à des molécules complexes par création d’une ou plusieurs liaisons carbone-carbone. Les cycloisomérisations sont catalysées par une variété de métaux de transition comme par exemple le palladium, l’or, le platine, l’iridium, le rhodium ou l’argent. Le fort potentiel synthétique de ces réactions en fait un domaine de recherche très prisé actuellement.

Parmi les substrats utilisés lors de ces réactions on trouve les éénynes où une double liaison et une triple liaison sont reliées entre elles par des chaînes de deux à quatre atomes (Schéma 1).

\begin{center}
\includegraphics[width=0.5\textwidth]{schema1.png}
\end{center}

Schéma 1

L’atome X est soit un carbone portant des groupements électroattracteurs, soit un oxygène ou un azote protégé par un groupe attracteur.

C’est la cycloisomérisation d’éénynes qui nous a intéressés tout particulièrement au cours de ce travail.

Chapitre I : Cycloisomérisations d'énynes

I. **Des premières études aux applications.**

En 1943, Alder\(^4\) avait décrit une réaction de cycloisomérisation d'énynes-1,6 en cyclopentanes réalisée dans des conditions thermiques, sous vide, à une température de 625°C (*Schéma 2*).

![Schéma 2](image)

En 1985, Trost montre que cette même réaction, appelée réaction Alder-ène, peut-être catalysée par des métaux de transition et se faire alors dans des conditions beaucoup plus douces que celles décrites par Alder.\(^5\)

![Schéma 3](image)

En présence d'acétate de palladium dans le benzène à 66°C, il est possible de réaliser la cycloisomérisation ci-dessus avec un rendement de 80% et une sélectivité en faveur du produit 3. Le rapport d'isomères est de 17 :1 (*Schéma 3*).

Depuis ces premières études, un nombre considérable de recherches sur ces réactions ont été effectuées élargissant ainsi la variété de motifs pouvant être créés.\(^6\) Le *Schéma 4* représente quelques-uns des principaux produits pouvant être obtenus par cycloisomérisation d'énynes-1,6.

Chapitre I: Cycloisomérisations d’énynes

Différents mécanismes sont à l’origine des structures présentées ci-dessus. Ils peuvent être classés selon deux grandes catégories : les mécanismes impliquant l’oxydation du métal et les mécanismes impliquant une activation électrophile du substrat comme étapes clés.

1) Cycloisomérisations impliquant l’oxydation du métal.

Dans le cas des cycloisomérisations impliquant l’oxydation du métal, trois types d’intermédiaires réactionnels sont décrits dans la littérature\(^7\) : les métallacyclopentènes, les π-allyles et les vinylmétals. La formation de ces intermédiaires dépend de la nature de l’ényne engagé.

a) Intermédiaires métallacyclopentènes.

Les mécanismes impliquant l’oxydation du métal permettent notamment la formation des diènes-1,3 et -1,4 représentés en rouge dans le Schéma 4. Le cycle catalytique est initié ici par la coordination simultanée de l’alcyne et de l’alcène par le métal de

\(^7\) C. Aubert, O. Buisine, M. Malacria, *Chem. Rev.* **2002**, *102*, 813-834.
transition (A). Il s’ensuit un couplage oxydant qui forme le métallacyclopentène B (Schéma 5).

![Diagramme de transition (A) à métallacyclopentène B](image)

Les intermédiaires métallacyclopentènes sont proposés pour le mécanisme d’une large variété de réactions impliquant de nombreux métaux de transition et partenaires insaturés.

Après β-élimination et élimination réductrice, les diènes-1,3 ou -1,4 C sont obtenus.

Par exemple, Trost explique la formation des diènes 5 et 6 par ce type de mécanisme. En présence de Pd(OAc)₂ et de la N,N-bis(benzylidène)éthylènediamine (BBEDA), l’ényne 4 cycloisomérisé pour donner un mélange de diène-1,4 et diène-1,3 dans un rapport de 3:2 (Schéma 6).

![Diagramme de réaction de cycloisomérisation](image)

On peut noter que la même réaction réalisée dans le benzène deutéré conduit aux deux diènes mais dans des proportions inversées. L’influence des ligands sur la formation de l’un ou l’autre des diènes a été mise en évidence. Si le catalyseur est Pd(OAc)₂ sans ligand, seul le diène-1,4 est formé. En revanche, un ligand encombré comme la o-tolylphosphine, favorise la formation du diène-1,3.

Chapitre I : Cycloisomérisations d’énynes

Des complexes de ruthénium peuvent également être utilisés pour la formation de diènes et ils sont souvent complémentaires des catalyseurs à base de palladium (Schéma 7).¹⁰

![Schéma 7](image)

En effet, l’ényne 7 ci-dessus mis en réaction avec \((\text{PPh}_3)_2\text{Pd(OAc)}_2\) conduit exclusivement au diène 1,3 alors que le ruthénium forme sélectivement les diènes-1,4.

Parallèlement, Zhang a mis au point un système catalytique utilisant des complexes de rhodium pour la cycloisomérisation d’énynes en diènes-1,4 (Schéma 8).¹¹ De très bons résultats sont obtenus en termes d’activité et de sélectivité.

![Schéma 8](image)

Une grande variété de substrats a été mise en réaction avec les complexes \([\text{Rh(ligand)}\text{Cl}_2]_2\) et \(\text{AgSbF}_6\). Les ligands du rhodium sont des phosphines ou des phosphinates bidentés. Les diènes-1,4 sont formés de façon quasi exclusive avec des rendements compris entre 50 et 100%.

Chapitre I : Cycloisomérizations d'énynes

b) *Intermédiaires π-allyles.*

Lorsque l'ényne possède un groupement partant (acétate, carbonate, halogène...) en position allylique, un intermédiaire de type π-allyle se forme selon un mécanisme de substitution nucléophile du métal sur l'ényne. Cet intermédiaire peut évoluer par insertion de l'alcyne dans la liaison M-Y. L'élimination réductrice du métal conduit aux diènes *(Schéma 9).*

Schéma 9

Les cyclisations impliquant un intermédiaire π-allyle peuvent parfois se produire même si l'ényne n'est pas fonctionnalisé par un groupe partant, dans ce cas, une activation C-H se produit.

Dans l'exemple rapporté par Zhang, l'ényne 9 présente un chlore en position allylique.\(^{12}\) Le substrat mis en présence du complexe Rh(COD)Cl\(_2\) d'AgSbF\(_6\) et d'une diphosphine conduit au diène-1,4 10 avec un bon rendement *(Schéma 10).*

Schéma 10

Chapitre I : Cycloisomérisations d'énynes

Le mécanisme proposé est le suivant : le complexe de rhodium active simultanément les deux insaturations puis l'intermédiaire a réagit avec le chlorure allylique pour former le complexe \(\pi \)-allylique b. Ce dernier est en équilibre avec le complexe \(\sigma \)-allylique c qui subit l'insertion de l'alcyne dans la liaison Rh-Cl. Enfin, l'élimination réductrice du métal conduit au diène-1,4.

Trost présente une cycloisomérisation d'énynes non fonctionnalisés conduisant à la formation de cycles à sept chainons.\(^\text{13}\) Le mécanisme postulé met en jeu un intermédiaire \(\pi \)-allyle issu d'une activation C-H (Schéma 11).

![Schéma 11](image)

Là encore, le catalyseur du ruthénium coordonne les deux insaturations en même temps. Le métal s'insère alors dans la liaison C-H formant ainsi le complexe \(\pi \)-allyle b. La cyclisation conduit à l'intermédiaire c, puis après élimination réductrice le cycle à sept chainons est obtenu. Le cycloheptène est le seul produit isolé alors qu'on pourrait s'attendre à la formation d'un cycle à cinq chainons.

Selon l'hypothèse de Trost, les contraintes stériques entre le centre quaternaire en position propargylique et le groupement ester sur l'alcyne contrôle le sens d'insertion de l'alcyne dans la liaison Ru-C et empêche la formation du métallacyclopentène.

c) **Intermédiaires vinylmétalaux.**

Le dernier mécanisme impliquant l’oxydation du métal met en jeu un intermédiaire vinylmétal (**Schéma 12**).

![Schéma 12](image)

Dans ce mécanisme, l’alcyne s’insère dans la liaison M-H pour former l’intermédiaire B puis l’oléfine s’insère dans la liaison métal-carbone, conduisant à C. La β-élimination du métal conduit alors au diène D.

Par exemple, les énynes 11 conduisent sélectivement aux diènes-1,3 12 avec d’excellents rendements (**Schéma 13**).\(^\text{14}\)

![Schéma 13](image)

2) **Cycloisomérisations impliquant l’activation électrophile de l’alcyne.**

Le second type de mécanisme implique une activation électrophile de l’alcyne par le métal. Dans ce cas, le métal coordonne la triple liaison et ainsi l’active vis-à-vis de l’addition nucléophile de l’oléfine.\(^\text{8,15}\) Le schéma ci-dessous illustre ce processus dans le cas d’énynes-1,6. Ici la cycloisomérisation peut se faire selon un mode 5-*exo-dig* ou 6-*endo-dig*, pour former les complexes carbéniques X ou Y (**Schéma 14**) qui évolueront vers les produits cycliques.

Chapitre I : Cycloisomérisations d’énynes

![Diagram](image)

Schéma 14

Les différents produits pouvant être obtenus sont représentés ci-dessous (Schéma 15).

![Diagram](image)

Schéma 15

a) Formation de diènes par cyclisation 5-exo-dig et simple ou double coupure (voies I et II).

En 1996, Murai rapporte que l’utilisation de dichlorure de platine induit la formation de diènes par réarrangement de l’ényne 13. Les cycloisomérisations réalisées dans le toluène à 80°C conduisent à la formation de deux diènes isomères (Schéma 16).

Chapitre 1 : Cycloisomérisations d’énynes

Les deux diènes seraient issus de la compétition entre deux mécanismes (Schéma 16). Le diène 14 proviendrait de la coupure de la liaison C-C de l’alcène, alors que le diène 15 aurait subi à la fois la coupure des liaisons C-C de l’alcène et de l’alcyne. Des études par marquage au deutérium et au carbone 13 corroborent ces mécanismes.

Schéma 17

Le cycle catalytique est initié par l’activation de la triple liaison par le métal, suivie de la formation du carbène cyclopropanique B. Ce dernier évolue ensuite vers l’intermédiaire cyclobutanique C par migration 1,2 d’un alkyle. Le diène de type I est alors issu de la fragmentation de C en D suivie de l’élimination du métal. Le diène de type II est obtenu de la façon suivante : le cyclobutane C subit une seconde migration 1,2 d’un carbone et forme le cyclopropane F. Celui-ci se réarrange en carbène G et conduit au diène de type II après une migration 1,2 d’hydrogène et l’élimination du métal.

Trois exemples de réarrangements impliquant seulement la coupure de la liaison C-C de l’oléfine sont donnés ci-après.

Trost rapporte en 1988 la formation d’un diène de type I par catalyse au palladium (Schéma 18).

Le vinylcyclopentène est formé par cycloisomérisation de l’ényne-1,6 en présence d’un palladacyclopentadiène portant comme ligand le tri-o-tolylphosphite. La sélectivité de la réaction n’est bonne que pour des substrats dont l’alcyne est substitué par une fonction ester et dont l’alcène est de géométrie Z comme dans le schéma ci-dessus.

Murai a obtenu des diènes de type I à partir d’une variété d’énynes-1,6 en utilisant comme catalyseur [RuCl₂(CO)₃]₂ (Schéma 19).¹⁹

Les réactions sont réalisées dans le toluène à 80°C sous atmosphère de CO, donnent de très bons rendements et sont très sélectives (chimiosélectivité > 98%). En revanche, la substitution de l’alcyne par un ester entraîne la formation non sélective de différents diènes.

Pour finir, Echavarren a décrit l’utilisation de catalyseurs d’or pour des réactions similaires (Schéma 20).²⁰

En présence d’Au(PPh₃)Cl et d’AgSbF₆ dans le dichlorométhane, l’ényne-1,6 16 se réarrange en diène de type I 17. Le système catalytique montre une très bonneactivité. En effet le produit de cyclisation est obtenu quantitativement en cinq minutes à température ambiante.

La dernière partie de ce paragraphe est consacrée à trois exemples de formation de diènes de type II par double coupure des liaisons C-C.

Comme nous l’avons vu dans le Schéma 16, Murai avait obtenu à partir d’énynes-1,6 un mélange de diènes avec le diène de type I comme produit majoritaire. Son équipe a alors tenté de favoriser la formation du diène de type II en faisant varier la structure du substrat. Après de nombreux essais, il a été montré que la substitution de l’alcyne par une fonction ester conduit exclusivement au diène 19 (Schéma 21).

Le groupement électroattracteur favorise donc la formation du diène de type II cependant la sélectivité est affectée également par la nature des substituants de l’oléfine. En effet, la substitution de l’oléfine par un méthyle entraîne dans les mêmes conditions réactionnelles, la formation d’un mélange des deux diènes qui est composé majoritairement du diène de type II.

Chapitre I : Cycloisomérisations d’énynes

Echavarren a également décrit un réarrangement de type II faisant intervenir des catalyseurs d’or (Schéma 22).\(^{21}\)

\[
\text{MeO}_2C \quad \text{MeO}_2C \quad \frac{[\text{Au(PPH}_3\text{)Cl}] \quad \text{AgSbF}_6 \quad (2\% \text{mol})}{\text{DCM, 23°C, 5min} \quad 95\%} \quad \text{MeO}_2C \quad \text{MeO}_2C
\]

Schéma 22

Le système catalytique composé d’Au(PPH\(_3\))Cl et d’AgSbF\(_6\) semble très actif, il permet d’obtenir un rendement de 95\% en diène de type II en seulement cinq minutes à température ambiante. La sélectivité de la réaction est totale.

b) Formation de cyclobutènes (voie III).

La formation des cyclobutènes par cycloisomérisation est plus rare. En général, ces produits sont minoritaires mais certaines conditions peuvent les favoriser. Le mécanisme postulé fait intervenir l’intermédiaire cyclobutanique C obtenu après migration 1,2 du carbone du cyclopropane carbénique B (Schéma 23).\(^{22}\) Si le métal est éliminé sans autre réarrangement, on obtient le cyclobutène bicyclique D.

\[\text{A} \quad \text{M} \quad \text{B} \quad \text{C} \quad \text{D}\]

Schéma 23

Fürstner a observé la formation de cyclobutènes par catalyse au platine23.

![Schéma 24](image)

L’introduction d’un groupe paraméthoxyphényle sur la triple liaison de l’ényne 20 a permis la formation majoritaire du cyclobutène 21 par rapport au diène 22. En effet, le paraméthoxyphényle stabilise l’intermédiaire cyclobutanique a. En l’absence d’atmosphère de CO, la formation du cyclobutène est très lente. Le ligand CO, qui possède un fort caractère π-acide, augmente le caractère électrophile du catalyseur et de ce fait, augmente le caractère cationique de l’espèce réactive intermédiaire tout en étant suffisamment labile pour ne pas bloquer les sites de coordination du catalyseur.

Cette méthodologie a été appliquée à la synthèse de composés tricycliques qui ont pu être isolés avec de très bons rendements (Schéma 25).

![Schéma 25](image)

Des cyclobutènes ont été synthétisés par l’équipe de Malacria à partir d’énynes-1,7 comportant une fonction tosylamide (Schéma 26).24

![Schéma 26](image)

Chapitre I : Cycloisomérisations d'éénynes

Le dichlorure de platine est utilisé comme catalyseur et conduit à la formation du cyclobutène avec 71% de rendement. D'autres métaux peuvent également catalyser ces réarrangements, comme par exemple le palladium, l'or ou le gallium.22

c) Formation de diènes par cyclisation 6-endo (voie V)

Les cycloisomérisations 6-endo conduisant aux diènes V (Schéma 15) comportant une double liaison exocyclique sont assez rares. Le mécanisme proposé pour la formation de ces composés est le suivant (Schéma 27).20

![Schéma 27](image)

D'autres exemples de réactions analogues ont été décrits avec des complexes d'indium, de fer, ou de ruthénium comme catalyseurs.

d) Formation de bicycloheptènes (voie IV)

Ces réactions faisant l'objet de mes travaux de thèse, leur mécanisme et des exemples seront présentés de façon détaillée dans le chapitre II de ce manuscrit.

3) Exemples d'applications synthétiques

Comme nous avons pu le voir au travers de la présentation (non exhaustive) des différents mécanismes de cycloisomérisation, de nombreuses méthodologies ont été développées. Certaines d'entre elles ont déjà été utilisées comme étape clé dans la synthèse de molécules naturelles ou de composés biologiquement actifs. Trois exemples sont donnés ci-dessous.

Fürstner présente la synthèse formelle de la Streptorubine B, un hétérocycle aux propriétés antibiotiques (Schéma 29). Dans sa structure, on trouve un motif pyrrole intégré dans un macrocycle à dix chainons. La cycloisomérisation d'un ényné-1,6 est utilisée comme étape clé de la synthèse pour former le cycle azoté qui préfigure le motif pyrrole.

En présence de dichlorure de platine dans le toluène à 50°C, l’ényne-1,6 \textbf{28} cycloisomérise avec un bon rendement de 79% en diène \textbf{29} de type 1 via un mécanisme par activation électrophile. D’autres sels de platine (PtBr\textsubscript{2}, PtCl\textsubscript{4} et PtBr\textsubscript{4}) ainsi que des acides de Lewis (AlCl\textsubscript{3}, ZnCl\textsubscript{2} et TiCl\textsubscript{4}) permettent également la formation du bicycle mais avec une moins bonne activité catalytique.

La synthèse se poursuit par la réduction de l’énone puis de la cétone. L’alcool transformé en thiocarbamate subit alors une désoxygénation de Barton-Mc Combie. Finalement, la déprotection de l’amine par le sel de potassium du 1,3-diaminopropane (KAPA) et l’aromatisation se font en une seule étape et conduisent à l’intermédiaire \textbf{33} qui, grâce à des méthodes décrites dans la littérature, permet d’accéder à la Streptorubine B.

Le cœur de la molécule est ainsi synthétisé en neuf étapes à partir du cyclooctène avec un rendement global de 16%.
Chapitre I : Cycloisomérisations d'énynes

L'équipe de Zhai a décrit en 2011 la synthèse totale de la (−)-Nakadomarin A, un alcaloïde issu d'une éponge marine.29 Cette molécule très complexe est constituée de six cycles entrelacés. Son noyau central tetracyclique est formé à partir d'un ényne-1,6 par une cascade réactionnelle cycloisomérisation/hydroarylation (Schéma 30).

![Schéma 30](image)

Le traitement de l'ényne 34 par le dichlorure de platine entraîne une cyclisation régiospécifique 6-endo et stéréospécifique. Un seul isomère est obtenu avec un rendement de 81%.

Récemment, l'équipe de Vanderwal30 a proposé une synthèse de l’Echinopine B en treize étapes. Cette molécule est un sesquiterpène isolé de la racine de la plante Echinops Spinosus. Bien que les propriétés biologiques ne soient pas encore décrites, cette molécule a fait l'objet de nombreuses recherches visant à sa synthèse (Schéma 31).

![Schéma 31](image)

Le cœur tetracyclique de la molécule est formé par une étape de cycloisomérisation qui implique une activation électrophile et une cyclisation 5-exo-dig. L'ényne-1,6 36 réagit avec le dichlorure de platine pour former le tetracycle 37. Un rendement de 56% est obtenu. L'oxydation de l'éther d'énel en ester carboxylique par du PCC conduit à l’Echinopine B.

II. **Exemples de cycloisomérisations énantiosélectives d'énynes : la réaction d'Alder-ène.**

De façon assez surprenante, le nombre de cycloisomérisations énantiosélectives décrites dans la littérature est assez limité.\(^{31,32}\) Ce domaine est couvert de manière exhaustive dans une revue que nous avons publiée récemment. Une copie de cet article est donnée en annexe. Dans ce paragraphe, nous allons mentionner seulement les premières cycloisomérisations asymétriques ainsi que quelques exemples d’applications synthétiques.

Les premiers exemples de cycloisomérisations énantiosélectives datent de 1989 et se rapportent aux réactions d'Alder-ène.\(^{33}\) Trost décrit l'utilisation de Pd\(_2\)(dba)_\(3\).CHCl\(_3\) combiné à la triphénylphosphine et à un additif chiral, l'acide (S)-binaphtoïque (Schéma 32).

![Schéma 32](image)

Ce système catalytique induit le réarrangement de l'ényne-1,6 38 en produit correspondant de type Alder-ène avec un rendement de 61% et un excès énantiomérique de 33%.

Il est supposé que l'espèce catalytique active soit un hydrure de palladium produit par l'addition oxydante de l'acide carboxylique sur le palladium(0). Ce résultat, bien que Modeste en terme d'énantiosélectivité, montre la faisabilité de réactions énantiosélectives et ouvre la voie à leur développement.

Chapitre I : Cycloisomérisations d’énynes

Le premier exemple de cycloisomérisation Alder-ène hautement énantiosélective fut rapporté par Ito en 1996 (Schéma 33).³⁴

Le catalyseur est généré à partir de Pd₂dba₃.CHCl₃ et d’un ligand chiral de type TRAP (2,2”-bis-[1-(diarylphosphino)éthyl]-1,1”-bisferrocène). Le meilleur excès énantiomérique, obtenu avec l’ényne-1,6 39 portant un groupement CH₂SiMe₃ sur la double liaison, est de 95% (Schéma 33). Malheureusement, la régiosélectivité de cette réaction est assez faible et conduit à la formation des diènes 1,4 et 1,3 dans des proportions de 3,5 :1.

Par la suite, des catalyseurs au rhodium ont révélé d’excellentes propriétés et ont permis de générer de très bonnes énantiosélectivités dans des réactions de Alder-ène. Zhang a étudié la formation d’éthers cycliques en utilisant [Rh(cod)Cl]₂, BINAP et AgSbF₆ comme système catalytique.³⁵ Des énantiosélectivités supérieures à 99% ont été mesurées pour une variété d’énynes diversement substitués sur l’alcyne ainsi que sur l’oléfine.

Chapitre I : Cycloisomérisations d’énynes

Les succès obtenus dans le développement des cycloisomérisations d’énynes en version asymétrique ont conduit naturellement les chercheurs à utiliser ces méthodologies pour la synthèse de composés énantioenrichis d’intérêt. Quelques exemples sont présentés ci-après.

L’équipe de Zhang a appliqué la méthodologie à la synthèse d’α-méthylène-γ-butyrolactones énantiopures. Une synthèse formelle en quatre étapes de la (+)-pilocarpine est alors proposée. Cette molécule présente des propriétés pharmacologiques intéressantes en ophtalmologie notamment (Schéma 35).

L’ényne 42 cycloisomérise en présence de [Rh(COD)Cl]₂, de (R)-BINAP et d’un sel d’argent en moins de dix minutes en α-méthylén-γ-butyrolactone fonctionnalisée, avec un rendement de 99% et un excès énantiomérique supérieur à 99%.

Comme dernier exemple de réaction de type Alder-ène, nous citerons l’utilisation de complexe rhodium/(S)-BINAP par Nicolaou pour la formation d’une molécule spiranique, intermédiaire dans la synthèse totale de la platensimycine. Cet antibiotique naturel présente des propriétés antibactériennes prometteuses (Schéma 36).

Schéma 35

Schéma 36

Chapitre I : Cycloisomérisations d’énynes

La spirodiènone désirée est formée avec un rendement de 86% et un excès énantiomérique de 99%.

L’équipe de Toste38 a développé un système catalytique pour la cyclisation d’énynes-1,6 portant une fonction éther dénol silyle. Ces énynes cycloisomérisent en présence de [(\(R\))-DTBM-Segphos]Pd(OTf\(_2\)) dans un mélange d’éther diéthyle et d’acide acétique avec de bons rendements (67 à 93%) et des excès énantiomériques compris entre 73 et 91% (Schéma 37).

La méthodologie est ensuite appliquée à la synthèse totale du (-)-laurebiphenyl (Schéma 38).

Chapitre I : Cycloisomérisations d’énynes

L’utilisation de ((R)-DTBM-Segphos)Pd(OTf)₂ comme catalyseur permet la formation d’un cycle à cinq chaînons avec un excès énantiomérique de 95% et un rendement de 96%.

III. Conclusion

Au travers de ce chapitre, nous avons montré par quelques exemples la variété et le grand potentiel synthétique des réactions de cycloisomérisation d’énynes.

En version asymétrique, les réactions les plus étudiées sont les cyclisations de type Alder-ène. C’est pourquoi nous les avons évoquées ici à titre d’exemple. Il existe de nombreuses autres cycloisomérisations qui n’ont pas (ou peu) été développées en version énantiosélective. C’était le cas des réactions de formation de bicycles cyclopropaniques à partir d’énynes-1,6 et -1,5, lorsque notre équipe a commencé ses travaux dans le domaine.

La cycloisomérisation énantiosélective a fait l’objet de la thèse de Delphine Brissy (2006-2009) et j’ai moi-même poursuivi ces études après avoir participé aux travaux de Delphine au cours de mon stage de Master.

Les chapitres suivants présentent l’essentiel de mes travaux orientés vers le développement de catalyseurs chiraux de platine et leur utilisation dans des réactions de cycloisomérisation d’énynes-1,6 et -1,5 en dérivés bicycliques.
Chapitre II :
Cycloisomérisations énantiomérelectives d’énynes-
1,6 en bicyclo[4.1.0]heptènes
Chapitre II : Cycloisomérisations énantiosélectives d'énynes-1,6 en bicyclo[4.1.0]heptènes

I. Bibliographie et travaux antérieurs réalisés au laboratoire

1) Les premières réactions

En 1995, Blum⁹⁹ est le premier à décrire la formation de bicycloheptènes par cycloisomérisation d'énynes. Il observa la formation de 3-oxabicyclo[4.1.0]hept-4ènes par cycloréarrangement d'éthers allyliques propargyliques en présence de tetrachlorure de platine (Schéma 1).

\[
\text{O} = \begin{array}{c}
\text{PtCl}_4
\end{array}
\hline
\text{benzène, t.a.}
\end{array}
\]

La réaction, conduite à température ambiante dans le benzène sous atmosphère inerte, est stéréospécifique. Lorsque le produit de départ est utilisé sous forme d'un seul isomère (\(E\)), la cycloisomérisation donne un seul diastéréomère du bicycle. Une étude par diffraction des rayons X a pu être effectuée sur le produit bicyclique comportant des groupements R = Phényle et R’ = Naphtyle. Les groupements naphtyle et phényle sont orientés en cis l'un par rapport à l'autre.

En revanche, lorsqu'un mélange d'isomères (\(E\) et \(Z\)) est utilisé, le cycloréarrangement conduit à un mélange de deux isomères de l'oxabicycloheptène.

Par la suite, les équipes de Fürstner et Echavarren ont étudié de manière intensive cette réaction catalysée par le chlorure de platine.

Les éynes-1,6 comportant un hétéroélément dans la chaîne qui relie l’oléfine à la triple liaison, cycloisomérisent en présence de dichlore de platine dans le toluène à 80°C pour former majoritairement les bicycloheptènes correspondants (Schéma 2a). Les diènes-1,3 résultant d’une cyclisation 5-exo-dig de l’éynyde suivit d’une simple coupure, sont observés en quantité très faible (1 à 15% selon les substituants).

Le solvant semble jouer un rôle important dans ces réactions. En effet, Echavarren a effectué des réactions analogues en présence de dichlore de platine dans l’acétone (Schéma 2b). Ce solvant entraîne la formation comme produit majoritaire, d’un diène-1,4 et la formation du bicycle comme produit minoritaire.

Les éynes ne comportant pas d’hétéroéléments conduisent uniquement à la formation de diènes-1,4.

2) Mécanisme

Fürstner proposa le mécanisme ci-dessous (Schéma 3) pour expliquer la formation de bicycles par cycloisomérisation d’éynes dont les deux fonctions insaturées sont reliées par un hétéroélément. Par la suite, l’équipe de Soriano a réalisé une étude théorique de la même réaction catalysée par le dichlore de platine par calculs DFT. Cette étude valide le mécanisme proposé par Fürstner.

D'après ce mécanisme, le cycle catalytique est initié par la coordination du platine sur la triple liaison. Cette dernière est alors activée vis-à-vis de l'addition nucléophile de l'oléfine, ce qui induit la cyclopropanation de l'oléfine en formant ainsi la structure bicyclique B-2. Puis après migration d'un proton et élimination du platine, on obtient le bicycloheptène.

Dans la suite de ce paragraphe, quelques études théoriques et expérimentales décrites dans la littérature sont présentées pour chaque étape du cycle catalytique.

a) Activation de l'alcyne

Au début du cycle catalytique, le dichlorure de platine coordonne la triple liaison et l'active ainsi vis-à-vis de l'addition nucléophile de la double liaison. Le platine joue donc le rôle d'acide de Lewis. Sont considérés comme acides de Lewis, les espèces qui présentent une orbitale vacante réactive ou une orbitale moléculaire inoccupée basse en énergie. C'est pourquoi, les cations métalliques et les complexes de métaux de transition cationiques peuvent être considérés comme des acides de Lewis.

Selon la théorie HSAB (Hard and Soft Acids and Bases), les cations métalliques, de par leur grande taille et leur polarisabilité, sont des acides de Lewis mous. Cela leur confère
Chapitre II : Cycloisomérisations énantiosélectives d’éynes-1,6

certaines caractéristiques en terme de réactivité et d’affinité, comme par exemple une bonne affinité pour les alcynes. La liaison entre un métal de transition et un alcyne (ligand π) est décrite par le modèle de Dewar-Chatt-Duncanson. D’après ce modèle, une liaison σ est formée par recouvrement du système π de la triple liaison avec une orbitale vide du métal. Il y a en plus une interaction π due à la rétro-donation d’une orbitale d pleine du métal vers une orbitale antilienne π* de l’alcyne (Schéma 4).

![Schéma 4](image)

Les alcynes sont habituellement de bons σ-donneurs mais de faibles π-accepteurs bien que la rétro-donation ne soit pas tout à fait négligeable.

Le modèle de Dewar-Chatt-Duncanson prédit une élongation de la triple liaison à cause de la migration de densité électronique de l’orbitale d du métal vers l’orbitale π* de l’alcyne. Il en résulte alors un changement de géométrie de l’alcyne (coude) due à la réhybridation.

Il est connu que les complexes Pt(II)-alcyne sont très électrophiles et peuvent être facilement attaqués par différents nucléophiles.44,45 Fürstner a décrit ces complexes-π cationiques comme étant des complexes π-acides.46

De nombreuses études théoriques indiquent que lors de la complexation, un glissement du complexe métallique le long de l’axe de la triple liaison se produit (Schéma 5). Le passage d’un état de coordination η² vers un état η¹ augmente l’électrophilie de l’alcyne et facilite le transfert de charge du nucléophile vers le ligand π et le centre métallique.

![Schéma 5](image)

Fürstner a voulu confirmer la nature cationique de l’espèce réactive lors du cycle catalytique de la cycloisomérisation d’ényne (Schéma 3). Pour cela, il a testé différents acides de Lewis comme BF₃.OEt₂ ou TiCl₄ dans l’étape de cycloisomérisation de la synthèse de la stréptorubine B (cf chapitre I, Schéma 29). Catalysée par PtCl₂, cette réaction donne un rendement de 79%. En présence de BF₃.OEt₂ ou TiCl₄, le même produit est obtenu avec des rendements respectifs de 64 et 31%.

La nature carbocationique des intermédiaires explique pourquoi les catalyseurs cationiques à base de platine ou d’or sont souvent plus efficaces que les catalyseurs neutres. Les espèces cationiques sont en général générées in situ, le plus souvent par ajout d’un sel d’argent qui piège un halogénure initialement lié au métal et libère ainsi un site de coordination. Néanmoins d’autres voies existent. Par exemple, dans le cas de complexes de type LAuMe, l’espèce ionique LAu⁺ peut être obtenue par protonolyse avec un dégagement de méthane. Dans certains cas les complexes métalliques cationiques ont été isolés et caractérisés.

b) Cyclisation 6-endo-dig

Une fois l’alcyne activé (intermédiaire A), l’oléfine joue le rôle de nucléophile et son addition sur l’alcyne peut conduire à différents cations isomères (Schéma 6). Le cation B-1 résulte de la cyclisation 5-exo-dig suivie du réarrangement en cyclobutane (cf chapitre I Schéma 23). Le carbène B-2 est formé par cyclisation 6-endo-dig. L’intermédiaire B-3, où le cation homoallylique est stabilisé, provient d’une cyclisation 7-endo-dig. Des éléments, tels que la stabilisation par un hétéroélément et/ou la présence d’un système cyclique, peuvent favoriser l’un de ces intermédiaires par rapport aux autres.

L’intermédiaire **B-1** conduit au diène-1,3, produit de métathèse de l’ényne. L’intermédiaire **B-2**, quant à lui, permet la formation du bicycloheptène. L’intermédiaire **B-3** conduit potentiellement à un composé cyclique à 7 chaînons qui n’a été mis en évidence que récemment par Fürstner.\(^4^9\)

D’après les calculs de Soriano, l’intermédiaire cyclopropanique **B-2** est issu de l’attaque de l’alcène sur l’alcyne activé en *anti* du métal. La cyclisation procède de façon concertée et légèrement asynchrone. Lorsque R=H et X=NTs, cette étape de cyclisation *6-endo* est très exothermique (-34,98 kcal/mol) et l’énergie d’activation pour atteindre l’état de transition est relativement faible (7,96 kcal/mol).

La formation de bicyclo[4.1.0]heptènes par cycloisomérisation d’énynes-1,6 est possible uniquement lorsqu’un hétéroélément (N ou O) est présent dans la chaîne reliant la triple liaison à l’oléfine. En effet, il a été mis en évidence que l’hétéroatome permet la stabilisation du produit final par délocalisation du doublet libre (Schéma 7).

c) Migration d’un proton

L’intermédiaire B-2 est de type carbénoïde et va subir rapidement une migration 1,2 d’hydrogène pour conduire au cation C.

Des expériences de marquage au deutérium ont permis de confirmer l’existence de l’intermédiaire B-2 et la migration 1,2 du proton.42
Dans un premier temps l’ényne 44 gem-dideutéré en position propargylique a été mis en réaction avec du dichlorure de platine (Schéma 8).

![Schéma 8](image)

Le bicycle obtenu majoritairement comporte un atome de deutérium en position vinylique, en β de l’azote, ce qui confirme la migration d’hydrogène à partir de la forme B-2. Cependant l’incorporation du deutérium est incomplète (3:1). Fürstner explique cela par une réaction possible entre le carbène de platine et des traces d’eau. Cette hypothèse a été vérifiée en réalisant la cycloisomérisation d’un éényne analogue non deutéré en présence de dichlorure de platine dans un mélange toluène/D₂O (Schéma 9).

![Schéma 9](image)

Un atome de deutérium a été incorporé de façon minoritaire mais sélectivement en position C-3. Les proportions de produit non deutéré / produit deutéré sont les mêmes que dans l’expérience précédente (3 :1).
Les calculs DFT suggèrent que l’hydrogène qui migre est un proton, sa charge étant de +0,359.
En résumé, le mécanisme cinétiquement favorisé des cycloisomérisations d'éénynes comportant un hétéroélement, catalysées par PtCl₂, peut être décrit en quatre étapes. Tout d'abord la complexation du platine sur la triple liaison conduit à une cyclisation 6-endo-dig très exothermique. L'énergie d'activation pour atteindre l'état de transition de cette étape est assez faible (7,96kcal/mol). Le carène-platine résultant subit alors une migration d'hydrogène 1,2 (barrière énergétique : 17,62kcal/mol) puis le platine est éliminé afin de former le bicyclo[4.1.0]heptène. Ce mécanisme en deux étapes est très exothermique (-45,05kcal/mol).

![Schéma 10](image_url)

3) **Exemples de cycloisomérisation d'éénynes-1,6 en bicyclo[4.1.0]heptènes**

Quelques exemples de cycloisomérisation d'éénynes-1,6 en bicycloheptènes sont présentés dans ce paragraphe. Les complexes métalliques les plus couramment utilisés pour ces réactions comportent du platine ou de l'or. Il existe quelques exemples de formation de bicycloheptènes avec d'autres métaux que le platine comme le rhodium⁵⁰,⁵¹, l'iridium⁵²,⁵³, le galium⁵⁴ ou le manganèse⁵⁵.

Chapitre II : Cycloisomérisations énantiosélectives d’énynes-1,6

a) Synthèse de dérivés polycycliques par catalyse à l’or

Suite aux travaux initiaux de Fürstner, Chung a envisagé l’application de la cycloisomérisation d’énynes azotés à la synthèse de composés polycycliques plus complexes. La cycloisomérisation d’allylamides propargyliques en présence de catalyseurs d’or a d’abord été étudiée, puis elle a été étendue à des éénynes dont la double liaison est comprise dans un cycle (Schéma 11). Les produits tricycliques correspondants sont alors obtenus avec d’excellents rendements.

Schéma 11

Ce système catalytique a également permis d’obtenir avec un bon rendement un hétérocyle plus complexe comportant quatre cycles fusionnés (Schéma 12).

Schéma 12

Très récemment, Shi a décrit la formation de composés tricycliques originaux par catalyse à l’or à partir d’alkylidènecyclopropanes. Des rendements allant jusqu’à 99% ont été obtenus lors de la cyclisation en présence d’un complexe d’or portant comme ligand la phosphine de Buchwald (Schéma 13).

Chapitre II : Cycloisomérisations énantiomérisées d’énynes-1,6

b) Synthèse de dérivés polycycliques par catalyse au platine

Echavarren a décrit la formation de composés tricycliques à partir d’énynes-éthers où la double liaison est représentée par un éther d’énoyl cyclique (Schéma 14).58

La cyclisation se fait en présence de dichlorure de platine dans le toluène à 80°C mais elle peut être effectuée aussi à plus basse température (0-50°C) avec de bons rendements, ce qui est très intéressant car certains des substrats décrits sont instables à plus haute température. Selon les substituants les rendements vont de 52 à 97%.

c) Autres applications

Des bicycloheptènes reliés entre eux par le carbone C-1 ont été obtenus à partir de diène-dyynes symétriques par l’équipe de Lee.59 Le traitement du substrat 46 par PtCl₂ conduit uniquement au produit de double cyclisation 6-endo en bicyclo[4.1.0]heptène 47 avec un rendement de 63% (Schéma 15).

Chapitre II : Cycloisomérisations énantiosélectives d’éynes-1,6

Schéma 15

Enfin, la cycloisomérisation d’une allylamine propargylique en aza-bicycloheptène a été utilisée comme étape clé pour la synthèse d’un composé à activité biologique, le GSK1360707F (Schéma 16). Cette molécule développée par GlaxoSmithKline© est un inhibiteur de recapture de la sérotonine, de la noradrénaline et de la dopamine. Elle est potentiellement utile pour le traitement de la dépression et d’autres maladies du système nerveux central.

Schéma 16

La formation du bicycle cyclopropanique est effectuée en présence de dichlorure de platine dans le toluène à 80°C. Un rendement de 93% est obtenu. Puis l’énamine est réduite avec un mélange triéthylsilane-TFA avec un rendement de 92%. Le groupement protecteur nosyle est enlevé dans les conditions de Fukuyama modifiées et le produit final est isolé sous forme de phosphate. Le rendement global de cette synthèse en six étapes est de 58%.

4) Réactions énantiosélectives

a) Exemples de la littérature

- Catalyseurs à l’iridium

Les premiers exemples de formation énantiosélective de bicyclo[4.1.0]heptènes par cycloisomérisation furent rapportés par Shibata en 2005.\(^{61}\) Le catalyseur est un complexe d’iridium formé in situ à partir de \([\text{IrCl(cod)}]_2\), d’une diphasphine chiraïe et d’un sel d’argent. Les meilleurs résultats sont obtenus lorsque le TolBINAP est utilisé comme ligand chiral et AgOTf comme sel d’argent (Schéma 17, Tableau 1).

![Diagramme de réaction](image)

<table>
<thead>
<tr>
<th>ArSO₂</th>
<th>R</th>
<th>Rendement</th>
<th>ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Tolyl</td>
<td>Ph</td>
<td>92%</td>
<td>66%</td>
</tr>
<tr>
<td>o-Tolyl*</td>
<td>Ph</td>
<td>70%</td>
<td>78%</td>
</tr>
<tr>
<td>o-Tolyl</td>
<td>4-ClC₆H₄</td>
<td>71%</td>
<td>74%</td>
</tr>
<tr>
<td>o-Tolyl</td>
<td>4-MeOC₆H₄</td>
<td>69%</td>
<td>44%</td>
</tr>
<tr>
<td>o-Tolyl</td>
<td>2-Naphthyl</td>
<td>71%</td>
<td>35%</td>
</tr>
<tr>
<td>p-Tolyl</td>
<td>2-Naphthyl</td>
<td>57%</td>
<td>64%</td>
</tr>
</tbody>
</table>

Tableau 1

*conditions optimisées : \([\text{IrCl(cod)}]_2 (2 \text{ %mol}), \text{TolBINAP (4 \text{ %mol}), AgOTf (5 \text{ %mol})}\).

Des excès énantiomériques compris entre 35 et 78% ont été obtenus et dépendent fortement de la structure de l’ényne. En effet, l’énantiosélectivité de la réaction est influencée à la fois par le groupement protecteur de l’azote et par le substituant R de l’oléfine. Par exemple, lorsque R=2-Naphtyle, si le groupe protecteur o-Tolyl est remplacé par un p-Tolyl, l’excès énantiomérique passe de 35 à 64%. De même, lorsque ArSO₂=o-Tolyl, le substrat où R=Ph donne un excès énantiomérique de 78%, bien

supérieur à celui obtenu pour R=2-Naphtyle ou 4-MeOC₆H₄ (35% et 44% respectivement) et légèrement supérieur à celui obtenu pour R=4-ClC₆H₄ (74%).

Beaucoup plus récemment, Amouri, Aubert, Gandon et Fensterbank62 ont étudié les mêmes réactions catalysées par l’iridium mais en suivant une stratégie différente (Schéma 18). En effet, la chiralité n’est pas apportée par un ligand du métal mais pas un contre ion chiral. Le complexe de Vaska [IrCl(CO)(PPh₃)₂] est combiné avec un sel d’argent d’un acide phosphorique chiral dérivé du binaphtol 3,3-disubstitué. De très bon excès énantiosélectives (Tableau 2, 81-93%) ont été obtenus dans la cycloisomérisation d’allylsulfonamides propargyliques ne présentant pas de substituant en position terminale de l’oléfine.

![Schéma 18](image)

<table>
<thead>
<tr>
<th>ArSO₂</th>
<th>R¹</th>
<th>R²</th>
<th>Rendement</th>
<th>ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Tolyl</td>
<td>Ph</td>
<td>H</td>
<td>80%</td>
<td>81%</td>
</tr>
<tr>
<td>(2,4,6-Me)C₆H₂</td>
<td>Ph</td>
<td>H</td>
<td>77%</td>
<td>93%</td>
</tr>
<tr>
<td>p-Tolyl</td>
<td>4-ClC₆H₄</td>
<td>H</td>
<td>79%</td>
<td>89%</td>
</tr>
<tr>
<td>p-Tolyl</td>
<td>H</td>
<td>Me</td>
<td>16%</td>
<td>17%</td>
</tr>
</tbody>
</table>

Tableau 2

- Catalyseurs au rhodium

En 2010 l’équipe de Hayashi a décrit les premiers catalyseurs à base de rhodium pour les cycloisomérisations énantiosélectives d’énynes-1,6.

Chapitre II : Cycloisomérisations énantiosélectives d’énynes-1,6

Ces catalyseurs sont caractérisés par la présence d’un diène comme ligand chiral et d’une phosphine achirale. Ils sont générés in situ à partir du complexe [(diène)RhCl]₂ et d’une phosphine monodentée telle que PPh₃ après addition d’un sel de sodium (NaBAR₆₄). Ils donnent une bonne activité catalytique et de bons excès énantiosélectifs lorsque l’alcyne est substitué par un méthyle et l’oléfine par un aryle (R² = aryle) (Schéma 19). La nature du ligand phosphoré joue un rôle important dans l’activité catalytique et l’énantiosélectivité, ce qui prouve que ce ligand coordonne bien le métal dans l’étape stéréodéterminante. La configuration absolue du produit final a été déterminée par diffraction des rayons X lorsque R¹=H, R²=Ph, et que l’alcyne est substitué par un méthyle. Le produit final a alors une configuration (1S, 6R, 7R).

![Schéma 19](image)

Hayashi a émis une hypothèse quant au mécanisme d’induction asymétrique lors de cette réaction. Le système de quadrants du Schéma 20 sert à représenter l’encombrement stérique généré par le complexe de rhodium. Trois des quadrants sont encombrés par les ligands. Le dernier quadrant est relativement inoccupé. Selon l’hypothèse d’Hayashi, la cyclisation 6-endo-dig est alors dirigée par l’encombrement stérique du groupement tosyle qui aura tendance à se positionner dans l’espace le moins encombré.

Le même système catalytique a également été appliqué à la formation de 3-oxabicyclo[4.1.0]heptènes.63 Lorsque l’oléfine est comprise dans un cycle éthéré, le composé tricyclique 49 est obtenu avec un rendement de 84\% et un excès énantiomérique de 99\% (Schéma 21).

Le second complexe développé ensuite par Hayashi possède un ligand tridentate diène-phosphine (Schéma 22). Ce ligand présente l’avantage d’être fortement lié au métal et le squelette diénique est facilement accessible à partir du \((R)-\alpha\)-phellandrine naturel.64 De très bons excès énantiomériques ont été obtenus à partir d’allylamines propargyliques diversement substituées.

Chapitre II : Cycloisomérisations énantiomérisées d’éynès-1,6

Catalyseurs à l’or

Des complexes d’or formés in situ à partir de AuCl par ajout d’une diphosphine chirale et d’un sel d’argent ont été utilisés pour la formation oxabicycloheptènes par Michelet.65 Des rendements modérés et de bons excès énantiomériques ont été obtenus avec le catalyseur bimétallique Au / MeO-Biphep (Schéma 23).

Les chercheurs de GlaxoSmithKline ont envisagé une version énantiomérisque de l’étape de cycloisomérisation dans la synthèse de GSK1360707 (voir I.3.c de ce chapitre).60 Le système catalytique AuCl(SMe2) (10 mol%), AgBF4 (10 ml%), (R)-Tol-BINAP (5 mol%) dans le dichlorométhane à 25°C pendant 5h conduit à une conversion totale en bicycle et à un excès énantiomérique de 59%.

Cette même synthèse a été réalisée ensuite avec plus de succès par Fürstner.49 Des complexes d’or de type L*AuCl, où L* est un phosphoramidite dérivé du TADDOL, ont

permis d'atteindre un excellent excès énantiomérique (Schéma 24). Le rendement global de la synthèse du GSK1360707F en cinq étapes est alors de 69%.

![Schéma 24](image)

En conclusion, on peut remarquer que les exemples de formation de bicycloheptènes par cycloisomérisation énanti sélective sont assez peu nombreux. Lorsque le laboratoire a commencé à s’intéresser à ces réactions seule la méthode de Shibata21 était décrite dans la littérature. Depuis de bonnes énanti sélectivités ont été obtenues avec des complexes d’iridium, de rhodium et d’or (cf paragraphe II.4.a de ce chapitre). Bien que ces réactions catalysées par le dichlorure de platine aient été étudiées en détail, aucune réaction énanti sélective catalysée par des complexes de platine n’a été rapportée jusqu’ici, à l’exception du travail de notre équipe qui sera exposé ci-après.

**b) Travaux antérieurs effectués au laboratoire : complexes de platine de première génération**[^66]

* Présentation générale

Comme nous l’avons vu dans les paragraphes précédents, les cycloisomérisations d’éynnes sont étudiées de manière intensive que ce soit au niveau de la compréhension du mécanisme, du développement de nouveaux systèmes catalytiques ou des applications synthétiques. Cependant les réactions énanti sélectives restent rares. Des catalyseurs chiraux d’iridium, d’or et de rhodium ont été décrits pour la formation

[^66]: Thèse de Delphine Brissy, Université Paris sud 11, 2006-2009
Chapitre II : Cycloisomérisations énantiosélectives d'éénynes-1,6

eéantiosélective de bicyclo[4.1.0]heptènes mais aucun exemple n'utilise du platine, exception faite des travaux de notre équipe. Les cycloisomérisations étant très fortement substrat- et métal-dépendantes, l'utilisation d’un métal comme le platine pourrait permettre une extension du champ d’application de ces réactions.

Delphine Brissy a développé au cours de sa thèse au laboratoire une première famille de complexes de platine, dits de première génération, conçus initialement pour catalyser la réaction de cycloisomérisation d’allylamides propargyliques en 3-azabicyclo[4.1.0]heptènes (Schéma 25).

\[
\text{Ts-N} \quad \text{Ph} \quad \stackrel{[\text{Pt}]}{\longrightarrow} \quad \text{Ts-N} \quad \text{Ph}
\]

Schéma 25

Le laboratoire s’est appuyé sur les hypothèses mécanistiques de Fürstner pour imaginer des précatalyseurs appropriés. Selon le mécanisme proposé (voir I.2 de ce chapitre et Schéma 3), le métal se comporte comme un acide de Lewis et n’a besoin que d’un seul site de coordination pour catalyser la réaction (Schéma 26). Des complexes de platine(II) plan carrés comportant un ligand labile et trois ligands fortement liés au métal ont alors été imaginés en tant que précatalyseurs.

\[
\text{Schéma 26}
\]

Les complexes de première génération combinent une phosphine chirale bidentée et un carbène N-hétérocyclique (NHC), le ligand labile étant un iodure. Une espèce cationique comportant un site de coordination libre est générée in situ lors de la catalyse par ajout d’un sel d’argent qui piège l’halogénure.

\[
\text{Schéma 27}
\]
Chapitre II : Cycloisomérisations énantsiosélectives d’éynes-1,6

Des complexes de platine tri-coordonnés conçus en suivant la même stratégie avaient été décrits par Gagné (Schéma 28).

![Diagram](PPP)PtMe BF\textsubscript{4} (5 mol%), acétone, HNTf\textsubscript{2} \[\rightarrow \]

Schéma 28

Ces complexes où trois des sites de coordination sont occupés par des ligands phosphorés, ont été utilisés comme catalyseurs dans des réactions de cycloisomérisations de diènes en bicycles cyclopropaniques.\(^{67}\) Par exemple, le complexe 50 a été appliqué à la synthèse de composés terpéniques. Il a permis d’obtenir le cis-thujane à partir du β-citronellène avec une très bonne diastéréosélectivité (47 : 1 dr) et un bon rendement (67\%).\(^{68}\)

![Diagram](Schéma 29)

Le second complexe 51 qui porte le Xyl-Binap comme ligand chiral a été utilisé dans des réactions similaires. Il a permis d’obtenir des bicyclo[3.1.0]hexanes avec de bonnes énantsiosélectivités (Schéma 30).\(^{69}\)

Chapitre II : Cycloisomérisations énantiosélectives d’énynes-1,6

\[\text{[((R)-3,5-xylyl-Binap)PtI}_2 (10\%), PMe}_3 (10\%), AgBF}_4 (25\%) \rightarrow \]

\[X = \text{CH}_2 \]
\[X = \text{C(CO}_2 \text{Me)}_2 \]
\[X = \text{C(CH}_3\text{O})_2 \text{OCH}_2 \]
\[X = \text{NTs} \]

\[56\%, 92\% \text{ee} \]
\[47\%, 87\% \text{ee} \]
\[70\%, 93\% \text{ee} \]
\[50\%, 88\% \text{ee} \]

Schéma 30

- Synthèse des complexes de platine de 1\`ère génération

Les complexes de platine cationiques chiraux de 1\`ère génération développés au laboratoire combinent un ligand NHC et une diphosphine chiraux. Ils sont synthétisés en deux étapes à partir d’un sel d’imidazolium. Dans un premier temps un complexe de platine(0) NHC-Pt(divinyltetraméthylsiloxane) est synthétisé dans les conditions décrites par Markó (Schéma 31).

\[\text{Schéma 31} \]

Du tert-butoxyde de potassium est utilisé pour déprotoner un sel d’imidazolium afin de générer in situ le ligand carbène. Ce dernier réagit alors avec le dimère de platine connu sous le nom de catalyseur de Karstedt70 formant ainsi le complexe de platine(0). Des complexes de cette famille avaient été utilisés par Marko notamment dans des réactions d’hydrosilylation d’alcènes et d’alcynes.71,72

Lors de la seconde étape, une addition oxydante d’iode suivie de la coordination d’une phosphine sont réalisées afin d’obtenir des complexes de platine(II). Si la phosphine est bidentée la réaction conduit à un complexe cationique. Cette méthode de synthèse de complexes de platine(II) de type (NHC)PtI\textsubscript{2}(ligand) à partir de Pt(0) et de diiode avait été mise au point par Myriem Skander dans le cadre d’une collaboration avec Sanofi-

Aventis.73 Cette méthode a été appliquée initialement à la synthèse de complexes de type (NHC)Pt(I\textsubscript{2})(amine) en vue d’application en chimie médicinale et ensuite de complexes (NHC)Pt(I)(diphosphine)+(I-) en vue d’application en catalyse asymétrique (Schéma 32).74,75

\begin{center}
\textbf{Schéma 32}
\end{center}

Différents complexes de platine(II) comportant un NHC et une diphosphine chirale ont été synthétisés par cette méthode. Si les NHC sont dissymétriques, chaque complexe est isolé sous forme d’un mélange de deux diastéréomères. Ce phénomène est dû à leur chiralité intrinsèque. En effet, les complexes possédant un carbène dissymétrique présentent un nouvel élément de chiralité qui est une chiralité axiale.

La chiralité axiale est une stéréoisomérie résultant de l’arrangement non plan de quatre groupes disposés par paires autour d’un axe. Le cas le plus connu est celui de l’atropoisomérie des biphenyles ortho-substitués.

\begin{center}
\textbf{Schéma 33}
\end{center}

Les complexes synthétisés au laboratoire présentent un carbène dissymétrique qui se place de manière approximativement perpendiculaire au plan de coordination du complexe. De part et d’autre de l’axe Pt-C on trouve ainsi les deux groupes NR1 et NR2 et en décalé, les deux ligands « P » et « I - ». Si la barrière de rotation autour de la liaison carbène-Pt est élevée, le complexe présente alors une chiralité axiale. Les complexes A et

74 D. Brissy, M. Skander, P. Retailleau, A. Marinetti, Organometallics 2007, 26, 5782-5785.
B, image l’un par rapport à l’autre dans un miroir, ne sont pas superposables. Si la phosphine est achirale, A et B sont des énantiomères. Dans notre cas, la diphosphine est chirale donc A et B sont des diastéréomères.

Une gamme de complexes sous la forme de paires de diastéréomères a été synthétisée par Delphine Brissy. Quelques exemples sont donnés dans le tableau suivant.

<table>
<thead>
<tr>
<th>R¹, R² (complexe)</th>
<th>Rendement</th>
<th>Ratio A/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me, Ph (C0a)</td>
<td>84%</td>
<td>1 : 1</td>
</tr>
<tr>
<td>Me, CH₂Ph (C0b)</td>
<td>90%</td>
<td>1 : 1</td>
</tr>
<tr>
<td>CH₂Ph, t-Bu (C0c)</td>
<td>80%</td>
<td>91 : 9</td>
</tr>
<tr>
<td>CH₂Ph, Cy (C0d)</td>
<td>56%</td>
<td>1 : 1</td>
</tr>
<tr>
<td>NaphCH₂, Cy (C0e)</td>
<td>75%</td>
<td>1 : 1</td>
</tr>
</tbody>
</table>

Tableau 3

Ces mélanges de diastéréomères ont été utilisés comme précurseurs en générant l’espèce active tricoordonnée par addition d’un sel d’argent.

Des études expérimentales et théoriques ont montré que la chiralité axiale des complexes de première génération est perdue lors de l’ajout du sel d’argent. En effet, le sel d’argent capte le ligand iodure créant ainsi un site de coordination libre sur le platine. Le complexe tri-coordonné va alors s’épipimérer en évoluant probablement vers un complexe en forme de Y qui représente un état de transition (Schéma 35).

76 Études DFT effectuées par le Dr Gilles Frison (Ecole Polytechnique)
En solution après ajout du sel d'argent, seule la source de chiralité apportée par la diphosphine persiste. La forme tri-coordonnée du complexe étant l'espèce catalytiquement active et stéréochimiquement labile, l'utilisation de mélange de diastéréoisomères ou de complexes diastéréoisomériquement purs ne change pas la stéréochimie de la réaction. Ceci a été vérifié expérimentalement.

- Evaluation dans la réaction de cycloisomérisation

Les complexes de première génération ont été testés dans la réaction de cycloisomérisation d'allylamides propargyliques en 3-azabicyclo[4.1.0]heptènes dont un exemple représentatif est donné ci-dessous. Les complexes donnant les meilleurs résultats en cycloisomérisation énantiosélective sont des complexes portant un NHC dissymétrique (R1 ≠ R2) achiral et une diphosphine chirale, la (S, S)-Chiraphos.

Les conditions réactionnelles optimisées impliquent l'utilisation de 4% mol de catalyseur et de 12% mol d’AgBF₄ dans un mélange toluène/DCM (4,5/0,5) à 90°C pendant une nuit. Quelques résultats sont donnés dans le tableau ci-dessous.
Chapitre II : Cycloisomérisations énantiocéctives d’énynes-1,6

<table>
<thead>
<tr>
<th>R₁, R² (complexes)</th>
<th>Conversion</th>
<th>ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me, Ph (C0a)</td>
<td>90%</td>
<td>57%</td>
</tr>
<tr>
<td>Me, CH₂Ph (C0b)</td>
<td>60%</td>
<td>58%</td>
</tr>
<tr>
<td>CH₂Ph, t-Bu (C0c)</td>
<td>100%</td>
<td>73%</td>
</tr>
<tr>
<td>CH₂Ph, Cy (C0d)</td>
<td>100%</td>
<td>70%</td>
</tr>
<tr>
<td>NaphtCH₂, Cy (C0e)</td>
<td>91%</td>
<td>74%</td>
</tr>
</tbody>
</table>

Tableau 4

De bonnes conversions et des excès énantiomériques de l’ordre de 70% ont été obtenus. Il apparaît que les complexes dont le carbène comporte au moins un substituant volumineux (Cy ou t-Bu) donnent les meilleurs excès énantiomériques. Une conversion totale et un excès énantiomérique de 74% constituent les meilleurs résultats obtenus avec les complexes de première génération.

II. Complexes de deuxième génération

1) Présentation des complexes de deuxième génération

Lorsque je suis arrivée au laboratoire, une deuxième série de complexes de platine était en cours d’élaboration.

Inspirés par la même stratégie que les complexes de première génération, les complexes de deuxième génération comportent également un seul ligand labile et donc potentiellement un seul site de coordination disponible. Ils combinent comme ligands du platine un carbène N-hétérocyclique, un aryle, formant avec le platine une structure cyclique, une monophosphine chirale et un iodure (Schéma 38).
Le carbène porte un groupe benzyle lié à l’azote et forme un cycle à six chaînons avec le métal (orthométallation du phényle). Le quatrième ligand est un iodure qui pourra être piégé par un sel d’argent afin de libérer le site de coordination nécessaire à l’action catalytique.

Ces complexes sont synthétisés77 selon une stratégie analogue de celle utilisée pour les complexes de première génération. L’approche rétrosynthétique est donnée dans le Schéma 39. Le complexe de platine(II) est obtenu à partir d’un complexe de platine(0) convenablement fonctionnalisé et d’une phosphine monodentée. Le complexe de platine(0) porte une fonction ortho-iodobenzyle comme substituant de l’azote du carbène et le platine(0) subit une addition oxydante intramoléculaire de l’aryl iodé qui le convertit en platine(II). En même temps la phosphine est coordonnée au métal.

Le platine(0) est quant à lui généré à partir d’un sel d’imidazolium possédant le benzyle ortho-iodé comme substituant de l’azote. La synthèse de ces complexes est décrite en détail dans les paragraphes qui suivent.

2) Synthèse et caractérisation

a) Synthèse des sels d’imidazolium

Les sels d’imidazolium sont les précurseurs des complexes carbèniques de platine(0). Ils sont facilement accessibles. Suivant les substituants souhaités sur les azotes de l’imidazole, deux voies de synthèse ont été envisagées. La première se fait en deux étapes par double alkylation de l’imidazole.

L’imidazole qui est déprotoné par NaH, réagit avec le 2-iodobenzylméthansulfonate. Après une nuit à température ambiante, le 1-(2-iodobenzyl)-1H-imidazole est obtenu avec un rendement quantitatif. Il est alors N-alkylé par un halogénure d’alkyle. Cette méthode a été appliquée pour R’=Me, Et, CH₂Ph. Les sels d’imidazolium correspondants ont été isolés avec de bons rendements compris entre 84 et 90%.

La deuxième voie de synthèse est utilisée pour introduire sur l’azote des groupes volumineux, dont les halogénures sont de mauvais agents d’alkylation. Dans ce cas, il faut d’abord former l’imidazole substitué.
Chapitre II : Cycloisomérisations énantiosélectives d’éynes-1,6

Le 1-t-butyl-1H-imidazole est obtenu par réaction de la t-butyamine avec le glyoxal et le paraformaldéhyde en présence de H₃PO₄ et de chlorure d’ammonium. Puis il est alkylé avec le 2-iodobenzylméthanesulfonate afin d’obtenir le mésylate de 3-t-butyl-1-(2-iodobenzyl)-1H-imidazolium I₄ avec un rendement de 90%.

Ces sels d’imidazolium sont engagés dans la synthèse des complexes de platine(0).

b) Synthèse des complexes (NHC)Pt(0)(dvtms)

La synthèse des complexes de Pt(0) est réalisée dans les conditions décrites par Markó.

À une solution de sel d’imidazolium dans un mélange toluène/DCM est ajouté le complexe de Karstedt puis tBuOK à 0°C. Le carbène généré in situ par déprotonation du sel d’imidazolium se lie alors au platine en substituant un ligand oléfine. Après une nuit à température ambiante les complexes de platine(0) sont obtenus avec des rendements compris entre 56 et 77%.

c) Synthèse des complexes de platine(II)

Dans l’étape de formation du complexe de platine(II), le métal subit l’addition oxydante intramoléculaire de l’aryl iodé formant ainsi un platinacycle. Simultanément, une phosphine chirale se lie sur le platine en déplaçant le diène.

Chapitre II : Cycloisomérisations énantiosélectives d’éynys-1,6

Les complexes de platine(0) sont chauffés dans le THF pendant 5 ou 6h à 60°C en présence d’une phosphine. Les complexes de platine(II) tetra-coordonnés sont très stables, ils sont purifiés par chromatographie sur gel de silice et peuvent être conservés de nombreux mois à température ambiante. Ces complexes sont obtenus sous forme de mélange d’isomères. Ce point sera abordé en détail ultérieurement. Quelques rendements de formation des platinacycles avec différents ligands phosphorés monodentés sont donnés dans le tableau suivant.

Schéma 43

Schéma 44
Chapitre II : Cycloisomérisations énantiosélectives d’énynes-1,6

<table>
<thead>
<tr>
<th>Phosphine</th>
<th>complexe</th>
<th>R’</th>
<th>Rendement</th>
<th>Rapport de diastéréomères</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R)-MOP</td>
<td>C1</td>
<td>Me</td>
<td>17%</td>
<td>55 :45</td>
</tr>
<tr>
<td>(R)-Monophos</td>
<td>C2a</td>
<td>Me</td>
<td>65%</td>
<td>75 :25</td>
</tr>
<tr>
<td></td>
<td>C2b</td>
<td>Et</td>
<td>50%</td>
<td>75 :25</td>
</tr>
<tr>
<td>(S)-Ph-Binepine(^{79})</td>
<td>C3a</td>
<td>Me</td>
<td>63%</td>
<td>80 :20</td>
</tr>
<tr>
<td></td>
<td>C3b</td>
<td>Et</td>
<td>70%</td>
<td>80 :20</td>
</tr>
<tr>
<td></td>
<td>C3c</td>
<td>CH(_2)Ph</td>
<td>55%</td>
<td>80 :20</td>
</tr>
<tr>
<td>1,1-diphényl-N,N-bis((S)-1-phényléthyl)phosphinamine(^{80})</td>
<td>C4</td>
<td>Me</td>
<td>56%</td>
<td>63 :37</td>
</tr>
</tbody>
</table>

Tableau 5

Les quatre phosphines utilisées dans cette étude préliminaire représentent des familles de ligands monodontés bien connu pour leur efficacité en catalyse. La (R)-MOP avait été utilisée par Hayashi initialement comme ligand chiral dans des réactions d’hydroisilylation d’oléfines.\(^{81}\) Les Binepines ont montré leur efficacité dans une large variété de réactions catalysées soit par des métaux de transition (hydrogénation, additions conjuguées, hydroformylation...), soit par les phosphines elles-mêmes en tant que catalyseurs organiques (cycloadditions [3+2], [4+2] et [2+2], additions de nucléophiles sur des alcynes ou des allènes, additions de Michael intramoléculaires).\(^{82}\) Le (R)-Monophos fait partie de la famille des phosphoramidites qui ont été décrits par Feringa.\(^{83}\) La première utilisation de phosphoramidites chiraux comme ligands efficaces en catalyse énantiosélective a été rapportée en 1996. De très bons excès énantiomériques ont été obtenus avec le Monophos dans des réactions d’additions conjuguées de dialkylzinc, catalysées par le cuivre. La 1,1-diphényl-N,N-bis((S)-1-phényléthyl)phosphinamine a également permis d’obtenir de bonnes énantiosélectivités dans des réactions d’additions conjuguées catalysées par le cuivre.\(^{84}\)

\(^{79}\) Des échantillons de Ph-Binepine nous ont été fournis initialement par la société Degussa et par le Pr S. Gladiali. Ensuite la synthèse a été réalisée au laboratoire.

\(^{80}\) Des échantillons de 1,1-diphényl-N,N-bis((S)-1-phényléthyl)phosphinamine nous ont été fournis par le Pr A. Alexakis

\(^{84}\) C. Hawner, A. Alexakis, Chem. Commun. 2010, 46, 7295-7306.
Les rendements de synthèse des complexes sont bons dans l’ensemble (entre 50 et 70%) hormis avec la phosphine (R)-MOP. Pour une même phosphine, les variations de substituants sur l’azote du carbène n’influencent pas significativement le rendement en complexe.

d) Caractérisations

Les spectres RMN 13C et 31P du complexe C3a comportant la (S)-Ph-Binepine donnent des constantes de couplage caractéristiques $^{2}J_{C-P}$ de 147 Hz pour le carbone carbénique et $^{1}J_{P-Pt}$ de 2750 Hz.

En RMN du phosphore le complexe Pt/(R)-Monophos C2a présente une constante de couplage P-Pt de 4520 Hz. Ces constantes de couplage dépendent donc étroitement de la phosphine utilisée. Les constantes de couplage des complexes présentés dans le paragraphe précédent sont regroupées dans le tableau ci-dessous.

<table>
<thead>
<tr>
<th>entrée</th>
<th>Phosphine</th>
<th>R'</th>
<th>complexe</th>
<th>RMN 31P δ (ppm)</th>
<th>^{1}J (P-Pt) (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(R)-MOP</td>
<td>Me</td>
<td>C1</td>
<td>28,3 ; 2836 ; 27,3</td>
<td>2834</td>
</tr>
<tr>
<td>2</td>
<td>(R)-Monophos</td>
<td>Me</td>
<td>C2a</td>
<td>130,6 ; 4510 ; 130,2</td>
<td>4543</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Et</td>
<td>C2b</td>
<td>130,5 ; 4540 ; 129,9</td>
<td>4550</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Me</td>
<td>C3a</td>
<td>28,8 ; 2777 ; 27,4</td>
<td>2750</td>
</tr>
<tr>
<td>5</td>
<td>(S)-Ph-Binepine</td>
<td>Et</td>
<td>C3b</td>
<td>28,8 ; 2772 ; 27,3</td>
<td>2746</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>CH2Ph</td>
<td>C3c</td>
<td>29,1 ; 2790 ; 27,4</td>
<td>2764</td>
</tr>
<tr>
<td>7</td>
<td>1,1-phényl-N,N-bis((S)-1-phényléthyl)phosphinamine</td>
<td>Me</td>
<td>C4</td>
<td>81,3 ; 3054, 78,4</td>
<td>3089</td>
</tr>
</tbody>
</table>

Tableau 6
Chapitre II : Cycloisomérisations énantiosélectives d'éynnes-1,6

Pour chacun des isomères obtenus, les constantes de couplage J_{P-Pt} sont du même ordre de grandeur. La diastéréosélectivité de la synthèse des complexes ne dépend pas de l’encombrement du carbène mais plutôt de la phosphine utilisée. Les structures cristallographiques de certains complexes de platine(II) ont été obtenues par cristallisation du mélange de diastéréomères. On suppose que ces structures correspondent à l'isomère majoritaire des complexes mais ceci n’a pas été totalement démontré. Les structures des complexes C2a et C3a sont présentées ci-dessous.

Figure 1

Ces deux complexes présentent une géométrie plan carrée et une forme coudée pour le métallacycle carbénique ainsi qu’un arrangement trans de la phosphine par rapport au carbène. Cependant nous verrons par la suite que d’autres complexes peuvent présenter la phosphine en cis du carbène.

Les complexes de platine(II) décrits ci-dessus sont isolés sous forme de mélange d’isomères non interconvertibles, au moins jusqu’à une température de 80°C (étude RMN).

Dans ces complexes, la dissymétrie du carbène entraîne une chiralité axiale que nous pouvons définir également par la configuration λ ou δ du platinacycle (Schéma 45). La phosphine étant chirale également, on obtient des mélanges de diastéréomères.
Les notations λ et δ sont en général utilisées pour définir la configuration de molécule en forme d’hélice. Pour définir ces configurations, on considère l’orientation relative de deux segments non orthogonaux choisis comme référence. Lorsque le segment à l’arrière (trait pointillé) tourne dans le sens inverse des aiguilles d’une montre pour se superposer au segment avant (trait plein), la conformation est dite λ. Dans le cas contraire, la conformation est δ. Sur la base de cette définition nous avons considéré comme références l’axe C(carbène)-Pt-PR₃ et l’axe CH₂-C-CH₃ para. Les structures cristallographiques ci-dessus montrent que dans le cas du complexe Pt/(S)-Ph-Binepine C₃a l’angle dièdre entre l’imidazolylidène et le plan de coordination du platine est de 48° et le platinacycle présente une conformation δ. Pour le complexe Pt/(R)-Monophos C₂a l’angle est de 53° et le platinacycle a une conformation λ. Les axes considérés dans le complexe sont représentés en rouge sur le schéma suivant.

Les deux diastéréomères obtenus pour chacun des complexes C₂a et C₃a correspondent vraisemblablement aux deux configurations λ et δ des platinacycles.
Les catalyseurs décrits dans les paragraphes précédents ont été testés dans la réaction modèle de cycloisomérisation de l’allylpropargylamide en 3-azabicyclo[4.1.0]heptène.

La (R)-MOP conduit à un faible rendement et ne permet pas d’induire de l’énantiosélectivité dans cette réaction de cycloisomérisation. La 1,1-diphenyl-N,N-bis((S)-1-phényléthyl)phosphinamine donne des rendements et des excès énantiomérisiques moyens. En revanche l’utilisation du (R)-Monophos conduit à des résultats encourageant avec de très bons rendements de 93% et des excès énantiomérisiques de 75 et 63% lorsque le carbène est substitué respectivement par des groupements méthyle et éthyle. Les meilleurs résultats ont été obtenus avec la (S)-Ph-Binepine. Les rendements sont compris entre 81 et 90% tandis que de très hauts excès énantiomérisiques (>93%) ont été obtenus. Un excès énantiomérique de 96% est observé lorsque le carbène du catalyseur est substitué par un groupement benzyle.

A partir de ces résultats préliminaires, les deux familles de complexes platinacycliques qui donnent les meilleurs résultats ont été étudiées plus en détail. Ces complexes comportent soit une phosphine de type Binepine soit un phosphoramidite. Les deux prochains paragraphes sont consacrés à leur étude.

3) Complexes de 2ème génération de type platine/Binepine

a) Tests catalytiques.66,77

Dans le cadre de la thèse de Delphine Brissy et de mon stage de master, nous avons étudié la réaction de cycloisomérisation des allylamides propargyliques en 3-aza-bicyclo[4.1.0]heptènes catalysée par les complexes de platine de 2ème génération comportant la (S)-Ph-Binepine comme phosphine chirale (Schéma 47). Comme nous l’avons vu dans le paragraphe précédent, d’excellents résultats sont obtenus dans la réaction modèle à l’aide de ces complexes. Nous avons donc souhaité étudier plus en détail le domaine d’application de cette réaction, en faisant varier la structure du substrat. Des résultats représentatifs sont réunis dans le tableau suivant.

![Schéma 47](image-url)
Tableau 8

Les excès énantioémériques sont déterminés par HPLC :

(a) Colonne Chiracel IA, eluant :heptane/EtOH 9 :1, 1mL/min, temps de rétention :12,7 et 15,8 min.
(b) Colonne Chiracel IA, eluant :heptane/EtOH 9 :1, 1mL/min, temps de rétention :9,6 et 17,8 min.
(c) Colonne Chiracel OJ-H, eluant :heptane/iPrOH 78 :22, 1mL/min, temps de rétention :11,8 et 14 min.
(d) Colonne Chiracel IA, eluant :heptane/iPrOH 98 :2, 1mL/min, temps de rétention :41 et 43 min.

<table>
<thead>
<tr>
<th>Entrée</th>
<th>Substrat</th>
<th>Produit</th>
<th>R (Cat)</th>
<th>Rendement (%)</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>CH₂Ph (C3c)</td>
<td>90</td>
<td>96<sup>(a)</sup></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>CH₂Ph (C3c)</td>
<td>78</td>
<td>93<sup>(b)</sup></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>Et (C3b)</td>
<td>77</td>
<td>91<sup>(c)</sup></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>CH₂Ph (C3c)</td>
<td>51</td>
<td>97<sup>(d)</sup></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>CH₂Ph (C3c)</td>
<td>98</td>
<td>88<sup>(e)</sup></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>CH₂Ph (C3c)</td>
<td>98</td>
<td>94<sup>(f)</sup></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>Me (C3a)</td>
<td>71</td>
<td>19<sup>(g)</sup></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>Me (C3a)</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>CH₂Ph (C3c)</td>
<td>40</td>
<td>92<sup>(h)</sup></td>
</tr>
</tbody>
</table>
Chapitre II : Cycloisomérisations énantiosélectives d’étynes-1,6

(e) Colonne Chiracel AD-H, éluant : heptane/iPrOH 99 : 1, 1mL/min, temps de rétention : 15,9 et 17,8 min.
(f) Colonne Chiracel IA, éluant : heptane/iPrOH 98 : 2, 1mL/min, temps de rétention : 17,3 et 19,9 min.
(g) Colonne Chiracel AD-H, éluant : heptane/iPrOH 99 : 1, 1mL/min, temps de rétention : 11 et 12 min.
(h) Colonne Chiracel IC, éluant : heptane/iPrOH 8 : 2, 1mL/min, temps de rétention : 13 et 15 min.

Les complexes de 2ᵉ génération montrent une bonne activité et une grande énantiosélectivité à condition que l’alcyne porte un groupement aromatique. En revanche, le remplacement de l’aryle par un méthyle conduit à une chute dramatique de l’excès énantiomérique (entrée 7). Le catalyseur tolère la présence des groupements 4-méthoxyphenyle et 4-nitrophényle sur la triple liaison, des excès énantiomériques de 91 et 97% sont obtenus (entrées 3 et 4). En revanche la présence de ces groupements entraîne une diminution des rendements en particulier pour le 4-nitrophényle qui donne un rendement de seulement 51%. L’ajout sur l’oléfine d’un substituant méthyle est également permise (entrée 5). La cyclisation se fait avec un excellent rendement et un excès énantiomérique légèrement plus faible de 88%. Lorsque la position terminale de l’oléfine est substituée par deux méthyles, la réaction est inhibée (entrée 8). Cependant, la substitution par un seul groupement en position terminale est possible tout au moins comme dans le cas du substrat diénique de l’entrée 9 où l’oléfine fait partie d’une structure cyclique. Le composé désiré est alors obtenu avec un rendement modéré de 40% et un excès énantiomérique excellent de 92%.

b) Détermination de la configuration absolue des azabicyclo[4.1.0]heptènes et hypothèse d’induction asymétrique

Afin de déterminer la configuration absolue des bicycles formés au cours de la réaction de cycloisomérisation, nous avons synthétisé un substrat portant une copule chirale sur la triple liaison. Après mise en réaction avec l’un de nos complexes de platine, on obtiendrait des diastéréomères séparables par chromatographie ou par cristallisation. Après identification, une structure cristallographique pourrait être réalisée pour déterminer la configuration du cycle.

La réaction de cycloisomérisation tolérant la substitution de la triple liaison par des groupements aryliques portant en para une fonction méthoxy, il était raisonnable de penser que le substrat S10 cycloisomériserait en produit bicyclique. De plus, on pourrait
admettre que le groupe chiral introduit serait suffisamment éloigné du centre réactionnel pour ne pas influencer l’induction asymétrique lors de la cyclisation.

Le substrat **S10** est préparé selon la voie de synthèse suivante.

La première étape est une réaction de Mitsunobu entre le (R)-phényléthanol (97% ee) et le 4-iodophénol qui conduit à l’éther **52** avec un rendement de 60% avec inversion de configuration. L’excès énantiomérique de l’éther a été mesuré par HPLC (97% ee). Un couplage de Sonogashira est alors réalisé entre l’éther **52** et l’alcool propargylique. L’alcool propargylique **53** portant la copule chirale est formé avec un rendement de 82%. La dernière étape est également une réaction de Mitsunobu entre l’alcool **53** et l’allynosylamine. Elle conduit à l’ényne **S10** souhaité avec un rendement de 51% et un excès énantiomérique mesuré par HPLC de 97%.
Chapitre II : Cycloisomérisations énantiosélectives d’énynes-1,6

Le substrat est d’abord soumis à la réaction de cycloisomérisation en présence de PtCl₂. Un rendement de seulement 15% est obtenu et les deux diastéréomères sont isolés dans des proportions quasi-identiques de 55 : 45. Le substrat mis en réaction dans les conditions de catalyse en présence du complexe (S)-Ph-Binepine C₃c est transformé en bicycle avec un rendement de 85% et un excès diastéréomérique de 80%. Les diastéréomères n’ont pas pu être séparés par chromatographie mais, des cristaux du composé majoritaire ont pu être isolés, caractérisés par RMN et analysés par diffraction des rayons X.

La configuration du bicycle a été déterminé comme configuration relative par rapport à celle connue (S) du centre stéréogène du substituant. La configuration du bicycle est (1R, 6S).

Par la suite, la configuration absolue de l’énantiomère majoritaire du composé P₁ a pu être assignée par des études de diffraction des rayons X d’un cristal. Là encore le produit présente une configuration (1R, 6S).
Chapitre II : Cycloisomérisations énantiosélectives d'éynes-1,6

Des hypothèses d’induction asymétrique ont pu être émises en considérant la structure à l’état solide des complexes platine(II)/(S)-Ph-Binepine, la configuration absolue du produit de cycloisomérisation et le mécanisme réactionnel (Schéma 51). Nous avons représenté le catalyseur en utilisant un système de quadrants. Le quadrant orange foncé symbolise l’espace le plus encombré par la phosphine. Les quadrants orange clair sont moyennement encombrés par les substituants de la phosphine et du carbène. Le dernier espace non colorié représente un quadrant libre.

![Schéma 51](image)

Ce modèle simplifié suggère un possible contrôle stéréo chimique de la réaction. D’autres hypothèses sont possibles comme par exemple celle de Hayashi citée dans le paragraphe II.4.a. de ce chapitre où ce serait la minimisation des interactions stériques entre le groupement N-tosyle et le complexe de rhodium qui contrôlerait l’induction...
asymétrique. Une étude mécanistique plus détaillée serait nécessaire pour étayer ces hypothèses.

c) **Désymétrisation de diénynes prochiraux par cycloisomérisation**

Nous avons par la suite souhaité étendre notre méthodologie à des processus de désymétrisation énantiosélective de diénynes prochiraux catalysés par les complexes de platine de 2ème génération. Les résultats présentés dans ce paragraphe ont été obtenus en collaboration avec Rémy Sylvain dans le cadre de son stage de master 2.

Il existe peu d’exampl es de désymétrisation énantiosélective par cycloisomérisation dans la littérature. Hashmi a récemment introduit le concept de sélection énantiotop e en utilisant comme substrats des molécules comportant deux groupements alcynes identiques connectés à un carbone prochiral. Ces dièn-diynes ont alors été désymétrisés par cycloisomérisation catalysée par des complexes d’or.

![Schéma 52](image)

Le substrat composé de deux unités propargyliques ainsi que d’un groupement furane subit en présence du catalyseur d’or un processus de cycloisomérisation/extension de cycle. Le tetr hy dronaphtalène est obtenu dans le meilleur des cas avec un rendement de 99% et un excès énantiomérique de 55%.

En revanche les désymétrisations énantiosélectives de diénynes par métathèse\(^{87}\) (éq. 1, Schéma 53) ou par réaction de Pauson-Kand\(^{88}\) (éq. 2, Schéma 53) sont largement décrites.

![Schéma 53](image)

En nous inspirant des substrats utilisés en métathèse, nous avons considéré la réaction suivante pour notre étude.

![Schéma 54](image)

Les substrats ont la même structure que les énynes-1,6 \(S_1\) à \(S_{10}\) étudiées jusqu’à présent mais possèdent un groupement vinyle additionnel. Ces diénynes comportent donc deux fonctions vinyliques portées par un carbone prochiral. La réaction de cycloisomérisation permettrait de générer simultanément trois centres stéréogènes. C’est la configuration de ce troisième centre qui devra être contrôlée, en même temps que la configuration des deux carbones stéréogènes du cyclopropane. Si le mécanisme de la réaction est similaire à celui proposé par Fürstner\(^{40,42}\) et Soriano\(^{43}\), nous pouvons envisager les deux cycles catalytiques présentés dans le Schéma 55. Les notations \textit{cis} et

trans correspondent à la position relative du bras vinyle et du cyclopropane par rapport au plan formé par le cycle à six chainons.

Schéma 55

Dans un premier temps, le platine viendrait coordonner la triple liaison afin de l’activer vis-à-vis de l’addition nucléophile de l’une des deux oléfines pour former le cyclopropane. Puis la migration d’un proton suivi de l’élimination réductrice du platine conduiraient au bicycloheptène.

La phosphine chirale déterminerait l’énantiosélectivité de la réaction et la configuration absolue du bicycle (cycle de gauche ou de droite). La configuration relative du troisième centre par rapport aux deux autres peut-être contrôlée soit par le complexe de platine portant la phosphine chirale soit par la stabilité relative intrinsèque des deux isomères cis/trans.

Notre but est donc d’étudier la capacité de nos complexes chiraux d’induire à la fois de l’énantiosélectivité et de la diastéréosélectivité.
Dans un premier temps, nous avons reproduit la voie décrite par Jeong pour la synthèse du diényne S11.

La première étape est la protection de la propargylamine par un groupement tosyle qui se fait avec un rendement de 95%. La tosylamine propargylique obtenue est ensuite engagée dans une réaction de Mitsunobu avec le penta-1,4-dièn-3-ol, en présence de triphénylphosphine et de diisopropyl azodicarboxylate. Un mélange des deux isomères, linéaire et ramifié du diényne, non séparables par chromatographie est alors obtenu. Pour résoudre ce problème les isomères 54 et 55 sont chauffés dans le xylène à 160°C, le diène conjugué 55 cyclise alors par une réaction de Diels-Alder intramoléculaire. Le diène désiré 54 et le diène cyclique 56 sont alors séparables par chromatographie. Le diényne désiré est obtenu avec un rendement de 28% sur les deux étapes.

La dernière étape est un couplage de Sonogashira. Les conditions décrites dans la littérature impliquent l’utilisation de tetrakis(triphénylphosphine)palladium comme
Chapitre II : Cycloisomérisations énantiosélectives d’énynes-1,6

catalyseur. Cette réaction nous a donné un faible rendement de 35% en diényne à cause de la formation d’un produit secondaire issu d’une réaction d’homocouplage de l’alcyne.

Afin d’améliorer le rendement lors du couplage de Sonogashira, nous avons testé un autre système catalytique composé de PdCl₂(Ph₃P)₂, triéthylamine et iodure de cuivre. Un rendement de 79% a alors été obtenu.

![Schéma 58](image)

Cette voie de synthèse n’étant pas satisfaisante à cause du passage obligatoire par la réaction de Diels-Alder pour séparer les deux isomères 54 et 55 (thermolysé du mélange d’isomères, Schéma 56) qui entraîne une diminution considérable du rendement global, nous avons envisagé une nouvelle voie de synthèse.

![Schéma 59](image)

Dans un premier temps, le formimidate d’éthyle est synthétisé à partir de la tosylamine et d’orthoformate d’éthyle avec un rendement de 70%,89 Puis l’addition d’un excès de bromure de vinylemagnésium sur ce formimidate conduit à la tosylamine diénique 58.

En parallèle, le 3-bromo-1-phénylpropyne est obtenu avec un rendement de 84% par bromation de l’alcool phénylpropargylique avec PBr₃. La tosylamine diénique 58 est alors N-alkylée par le composé bromé 59 en présence de K₂CO₃ avec un rendement de 87%.

Nous avons également synthétisé un substrat diénique présentant un groupement xylyle sur l’alcyne. La voie de synthèse est la même que celle présentée ci-dessus.

Tout d’abord, l’alcool propargylique substitué par un groupement mésityle est obtenu par un couplage de Sonogashira entre l’alcool propargylique et l’iodure de mésityle. L’alcool est transformé en bromure par réaction avec PBr₃. Le composé bromé 61 permet alors la N-alkylation de l’amine diénique 58 et on obtient le substrat S12 avec 83% de rendement.

Pour obtenir des diénynes substituées par des fonctions méthoxy-phényle ou nitrophényle, nous avons suivi une stratégie analogue en changeant seulement la dernière étape. Les alcools propargyliques substitués par les groupements 4-méthoxyphényle, 3-méthoxyphényle et 4-nitrophényle sont obtenus dans les conditions de couplage de Sonogashira décrites dans le Schéma 62.
Chapitre II : Cycloisomérizations énantiosélectives d'énynes-1,6

Ces alcools n’ont pu être transformés en bromure dans les conditions du Schéma 60. Ils ont alors été engagés directement dans une réaction de Mitsunobu avec l’amine diénique 58. Les rendements pour cette étape sont assez faibles, néanmoins les substrats désirés ont été isolés en quantité suffisante pour les tests catalytiques.

\[
\begin{align*}
\text{Ts}^-\text{NH} & \quad \begin{array}{c}
\text{HO} \\
\text{THF, t.a., 20h}
\end{array} \\
\text{DIAD, PPh}_3 & \quad \begin{array}{c}
\text{Ts}^-\text{N} \\
\text{Ar}
\end{array}
\end{align*}
\]

Schéma 63

<table>
<thead>
<tr>
<th>Ar</th>
<th>Produit</th>
<th>Rendement (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{MeO}</td>
<td>S13</td>
<td>37</td>
</tr>
<tr>
<td>\text{MeO}</td>
<td>S14</td>
<td>40</td>
</tr>
<tr>
<td>\text{NO}_2</td>
<td>S15</td>
<td>16</td>
</tr>
</tbody>
</table>

Tableau 9

Un substrat substitué sur la triple liaison par un phényle et sur les doubles liaisons par des méthyles a également été synthétisé selon la méthode précédemment décrite pour le substrat S11.

\[
\begin{align*}
\text{Ts}^-\text{N} & \quad \text{Br} \\
\text{MgBr, t.a., 20h} & \quad \text{K}_2\text{CO}_3 \\
\text{CH}_3\text{CN, 60°C, 24h} & \quad \text{S16}
\end{align*}
\]

Schéma 64

Tous les substrats synthétisés ont été engagés dans les réactions de cycloisomérisation en présence de dichlorure de platine ou de complexes de platine de seconde génération.

- Désymétrisation de diénynes par cycloisomérisation en présence de PtCl₂

Chaque substrat synthétisé est engagé dans la réaction de cycloisomérisation avec comme catalyseur PtCl₂. Ces conditions nous ont permis de déterminer la
diastéréosélectivité propre de la réaction, en l’absence de catalyseur chiral et les produits bicycliques obtenus sous forme racémique nous ont permis de déterminer les conditions de dosage des excès énantiosélectifs par HPLC chirale. Les résultats de cette étude sont donnés dans le tableau ci-dessous. Les conditions de cycloisomérisation sont : 4% mol de dichlorure de platine dans le toluène à 90°C pendant une nuit.

![Schéma 65](image)

<table>
<thead>
<tr>
<th>substrat</th>
<th>produit</th>
<th>Conv. (%)</th>
<th>Rendement (%)</th>
<th>r.d.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 S11</td>
<td>P11</td>
<td>67</td>
<td>n.d.</td>
<td>>99 :1</td>
</tr>
<tr>
<td>2 S12</td>
<td>P12</td>
<td>100</td>
<td>76</td>
<td>>99 :1</td>
</tr>
<tr>
<td>3 S13</td>
<td>P13</td>
<td>100</td>
<td>93</td>
<td>>99 :1</td>
</tr>
<tr>
<td>4 S14</td>
<td>P14</td>
<td>85</td>
<td>n.d.</td>
<td>>99 :1</td>
</tr>
<tr>
<td>5 S15</td>
<td>P15</td>
<td>40</td>
<td>n.d.</td>
<td>>99 :1</td>
</tr>
<tr>
<td>6 S16</td>
<td>P16</td>
<td>100</td>
<td>90</td>
<td>87 :13</td>
</tr>
</tbody>
</table>

Tableau 10
Les rendements n’ont pas pu être déterminés pour les cycloisomérisations où la conversion n’est pas totale (entrées 1, 4 et 5) parce que les énynes de départ sont difficilement séparables des produits d’arrivée. On observe que la nature du substituant aromatique de l’alcyne influence le rendement de la réaction. La présence d’un groupement métoy, donneur, en para du phényle entraîne une amélioration de la conversion de 67 à 100% (entrées 1 et 3). Ce résultat pourrait s’expliquer par le fait que la présence du métoy rendrait la triple liaison plus riche en électrons et favoriserait sa coordination au platine. Lorsque le métoy est en meta, la conversion est encore élevée (85%, entrée 4). En revanche, la substitution du phényle par un groupement attracteur nitro en para induit une importante chute de la conversion à 40% (entrée 5). Concrètement les effets des substituants de l’oléfine, on remarque que lorsque qu’il n’y a pas de substituant sur l’oléfine (entrées 1 à 5), les rapports diastéréoisomériques sont excellents (>99 :1). Si l’oléfine porte un groupement méthyle, le rendement reste alors très bon (90%, entrée 6), en revanche la diastéréosélectivité est un peu moins bonne, avec un rapport de diastéréoisomères de 87 :13.

La diastéréosélectivité de la réaction catalysée par le dichlorure de platine est dans tous les cas élevée. Comme nous le verrons par la suite, la diastéréosélectivité est également élevée lorsque la réaction est catalysée par des complexes de platine(II) chiraux. Ce résultat nous laisse penser que le contrôle diastéréoisomérique est induit essentiellement par le substrat. Une structure cristallographique de l’isomère majoritaire du produit bicyclique **P11** a été obtenue.

On observe que le groupement vinyle est en *trans* du cyclopropane. Cet isomère devrait être l’isomère thermodynamiquement favorisé puisque l’interaction stérique du vinyl et du cyclopropane adjacent y est minimisée.
Désymétrisation énantiosélective de diénynes par cycloisomérisation

Les six substrats ont été soumis à cycloisomérisation en présence du complexe chiral Pt(II)/(S)-Ph-Binepine C3a et, à titre de comparaison en présence du complexe Pt(II)/(R)-Monophos C2a. 4% mol de pré-catalyseur, 12% mol d’AgBF₄ sont utilisés et le mélange réactionnel est chauffé dans le toluène à 60°C pendant une nuit.

Tout d’abord nous avons comparé les résultats obtenus avec le substrat éynye « modèle » (R=H) et le substrat diényn correspondant.

![Schéma 66](image)

<table>
<thead>
<tr>
<th>Entrée</th>
<th>R</th>
<th>catalyseur</th>
<th>Conversion (%)</th>
<th>Rendement (%)</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>C3a</td>
<td>100</td>
<td>88</td>
<td>93</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>C2a</td>
<td>100</td>
<td>93</td>
<td>75</td>
</tr>
<tr>
<td>3</td>
<td>CH₂=CH</td>
<td>C3a</td>
<td>71</td>
<td>52</td>
<td>87</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>C2a</td>
<td>100</td>
<td>45</td>
<td>30</td>
</tr>
</tbody>
</table>

Tableau 11

Quel que soit le catalyseur, les cyclisations de diénynes se font avec une diastéréosélectivité totale. Elles conduisent à l’isomère déjà obtenu avec PtCl₂ comme catalyseur.

On observe que la présence du groupement vinylique additionnel modifie peu l’énantiosélectivité de la réaction lorsque le catalyseur C3a est utilisé (entrées 1 et 3). En revanche avec le catalyseur C2a, l’excès énantiomérique chute fortement de 75 à 30%
Chapitre II : Cycloisomérisations énantsiosélectives d’énynes-1,6

(entrées 2 et 4). Dans le cas du catalyseur C3a, la conversion en produit bicyclique passe de totale à 71% (entrées 1 et 3). La deuxième chaine vinylique crée peut-être une gêne stérique lors de la cyclisation.

Suite à ces résultats préliminaires encourageants, nous avons étendu l’étude aux autres diénynes. Les résultats obtenus avec les substrats différemment substitués sont présentés dans le Tableau 12.

![Diagramme de réaction]

Schéma 67

<table>
<thead>
<tr>
<th>R'</th>
<th>Ar</th>
<th>[Pt]</th>
<th>Conversion (%)</th>
<th>Rendement (%)</th>
<th>ee (%)</th>
<th>r. d.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>Ph</td>
<td>C3a</td>
<td>71</td>
<td>52</td>
<td>87<sup>a</sup></td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>Ph</td>
<td>C2a</td>
<td>100</td>
<td>45</td>
<td>30<sup>a</sup></td>
</tr>
<tr>
<td>3</td>
<td>H</td>
<td>Ph</td>
<td>C3a</td>
<td>n.d.</td>
<td>66</td>
<td>80<sup>b</sup></td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>Ph</td>
<td>C2a</td>
<td>100</td>
<td>76</td>
<td>32<sup>b</sup></td>
</tr>
<tr>
<td>5</td>
<td>H</td>
<td>OMe</td>
<td>C3a</td>
<td>100</td>
<td>55</td>
<td>95<sup>c</sup></td>
</tr>
<tr>
<td>6</td>
<td>H</td>
<td>OMe</td>
<td>C2a</td>
<td>100</td>
<td>86</td>
<td>22<sup>c</sup></td>
</tr>
<tr>
<td>7</td>
<td>H</td>
<td>OMe</td>
<td>C3a</td>
<td>43</td>
<td>28</td>
<td>92<sup>d</sup></td>
</tr>
<tr>
<td>8</td>
<td>H</td>
<td>OMe</td>
<td>C3a</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>Me</td>
<td>Ph</td>
<td>C3a</td>
<td>100</td>
<td>92</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

Tableau 12

Les excès énantiomériques sont déterminés par HPLC chirale :

(a) Colonne Chiracel IC, éluant : heptane/EtOH 99 :1, 1mL/min, temps de rétention : 29 et 32 min.
(b) Colonne Chiracel IC, éluant : heptane/EtOH 99 :1, 1mL/min, temps de rétention : 28 et 30 min.
(c) Colonne Chiracel IC, éluant : heptane/EtOH 98 :2, 1mL/min, temps de rétention : 33 et 36 min.
(d) Colonne Chiracel IA, éluant : heptane/iPrOH 98 :2, 1mL/min, temps de rétention : 28 et 30 min.

De manière générale, les excès énantiomériques obtenus avec le catalyseur Pt(II)/(S)-Ph-Binepine C3a sont très bons. Les meilleurs résultats en termes d’énantsiosélectivité...
Chapitre II : Cycloisomérizations énantiosélectives d’éénynes-1,6

sont observés quand le phényle est substitué par un groupement méthoxy en \textit{meta} ou \textit{para}, les excès énantiomériques sont respectivement de 95 et 92\% (entrées 5 et 7). En revanche l’utilisation du catalyseur \textbf{C2a} où le ligand est la \textit{(R)}-Monophos, donne de faibles excès énantiomériques compris entre 22 et 32\%.

Le substrat substitué sur la triple liaison par un groupement 4-nitrophényle n’a pas réagi dans ces conditions réactionnelles (entrée 8).

Lorsque l’oléfine est substituée par un groupement méthyle (entrée 9), une conversion totale en produit cyclique est observée. On obtient cependant un mélange des deux isomères possibles en proportions égales. Ces isomères n’étant pas séparables par chromatographie, l’excès énantiomérique n’a pu être déterminé.

Hormis pour ce dernier substrat cité, les rapports diastéréoisomériques sont excellents. Le diastéréomère majoritaire est celui qui présente le vinyle et l’aryle en \textit{syn} et correspond à l’isomère thermodynamiquement favorisé. Dans le cas du substrat \textbf{S16}, on peut attribuer la perte de diastéréosélectivité au fait que la géne stérique entre le groupe vinyle et le cyclopropane est similaire à celle entre le groupe vinyle et le méthyle qui substitue le cyclopropane.

- Détermination de la configuration absolue du produit bicyclique

La configuration absolue du bicycle \textbf{P13} (ee = 95\%) issu de la réaction de cycloisomérisation en présence du complexes \textbf{C3a} a pu être déterminée par diffraction des rayons X.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure5.png}
\caption{Figure 5}
\end{figure}

Les trois centres stéréogènes de l’énantiomère majoritaire ont pour configuration absolue 1\textit{R}, 2\textit{S}, 6\textit{S}. On remarque que les cycloisomérisations de diénynes ont le même sens d’induction asymétrique que pour les éénynes « simples ». On peut raisonnablement dire que dans les deux cas, l’unité cyclopropanique est construite sur la face \textit{Si} de l’oléfine (produit 1\textit{R}, 6\textit{S} obtenu) sous le contrôle du catalyseur. La configuration absolue
du troisième centre asymétrique serait contrôlée par la stabilité relative des diastéréomères si l'on considère un état de transition géométriquement proche du produit final. On peut dès lors utiliser le même modèle d'induction asymétrique que pour les énynes « simples » et représenter l’étape de cyclisation comme dans le Schéma 68.

Là encore, le complexe est représenté sous forme d’un système de quatre quadrants, les couleurs représentant l’encombrement des espaces. L’approche de l’oléfine vers la triple liaison activée par le métal force l’arylé à basculer en cis du platine. Selon notre hypothèse, le phényle se placerait alors dans la zone de l’espace la moins encombrée (zone sans couleur), afin de diminuer l’interaction stérique avec les ligands du platine. Par ce modèle simple on comprend que le groupe vinylique additionnel sera orienté vers le complexe dans l’étape clé et que par conséquent, il pourra induire une certaine gêne stérique. Ceci peut expliquer la diminution de réactivité observée parfois.

En conclusion des études menées sur la désymétrisation de diénynes par cycloisomérisation, nos complexes de platine chiraux ont permis de générer simultanément trois centres stéréogènes avec de bons excès énanthiomériques (jusqu’à 95%) et un contrôle total de la stéréochimie relative. La double liaison exocyclique des produits formés pourrait servir à fonctionnaliser ultérieurement les bicycles.

d) Essais de catalyse par double activation

Les réactions de cycloisomérisation décrites dans ce manuscrit, nécessitent a priori l’emploi d’oléfines suffisamment riches en électrons pour être de bons nucléophiles et elles ne sont pas décrites dans la littérature à partir d’oléfines désactivées par des groupements électro-attrayants.
Il existe cependant quelques exemples dans la littérature de réactions de cycloisomérisation d'énynes comportant un groupement électro-attracteur sur la double liaison. On peut citer notamment, la synthèse de carbapenam par cycloisomérisation en présence d'un complexe de ruthénium. Le mécanisme est de type Alder-ène.

Schéma 70

Si les oléfines appauvries en électrons peuvent être utilisées comme substrats, le domaine d’application des cycloisomérisations pourrait être étendu.

Nous avons donc envisagé d'examiner le comportement d'énynes appauvris en électrons et, le cas échéant, de les activer par addition d'un nucléophile phosphoré ou azoté. Cette activation permettrait d'initier le cycle catalytique en associant organocatalyse et catalyse organométallique dans un processus de double activation, comme indiqué dans le schéma ci-dessous.

Schéma 71

Ce concept de catalyse par double activation a émergé récemment et permet d'effectuer de nouvelles réactions que la catalyse organométallique ou l'organocatalyse seules ne permettent pas.

Chapitre II : Cycloisomérisations énantiosélectives d’énynes-1,6

A notre connaissance il n’existe qu’un seul exemple de catalyse par double activation utilisant des phosphines comme organocatalyseurs. Il s’agit de travaux de Krische qui portent sur l’allylation intramoléculaire d’étones en présence de tributylphosphate et de Pd(PPh₃)₄ (Schéma 72).³³ La phosphine est supposée effectuer une activation nucléophile de la fonction énone en s’additionnant comme dans une réaction de Morita-Baylis-Hillmann, et le complexe de palladium doit générer un complexe π-allylé électrophile qui subira une réaction de type Tsuji-Trost intramoléculaire.

![Schéma 72](image)

Lorsque le substrat est un acétate allylique, en présence de 4 %mol de catalyseur au palladium et de 50 %mol de tributylphosphate, le produit de cyclisation est obtenu avec un faible rendement de 21%. Afin de promouvoir le piégeage du complexe-π-allyle, la quantité de phosphine introduite est augmentée à un équivalent, le rendement atteint alors 67%. Lorsque le groupe partant est un carbonate, le produit de cycloallylation est obtenu avec un excellent rendement de 92% en présence de 1 %mol de complexe de palladium et un équivalent de phosphine.

Cette méthodologie a été appliquée à la synthèse totale de la (±)-7-hydroxyquinine.⁴⁴

![Schéma 73](image)

Chapitre II : Cycloisomérisations énantiosélectives d’énynes-1,6

L’étape clé se fait en présence de palladium tetrakis(triphénylphosphine) et de triméthylphosphine. Le rendement en pipéridine est de 68%. La 7-hydroxyquinine est synthétisée en seize étapes avec un rendement global de 4%.

Comme nous l’avons indiqué plus haut, ces travaux représentent à notre connaissance, les seuls exemples de double catalyse organique/organométallique impliquant des phosphines. Nous avons donc voulu appliquer une stratégie analogue aux réactions de cycloisomérisation et nous avons étudié la cycloisomérisation de l’allylamide propargylique suivante.

![Schéma 74](image1)

L’oléfine appauvrie en électron pourrait être activée par l’addition d’une phosphine. On peut imaginer que le cycle catalytique se déroulerait comme dans le schéma ci-dessous.

![Schéma 75](image2)

Le substrat ényne appauvri en électrons **S17** est synthétisé de la manière suivante en trois étapes.

Lors de la première étape, on réalise une réaction de Mitsunobu entre l'alcool phénylpropargylique et le 4-t-butyltosylcarbamate en présence de DIAD et de triphénylphosphate. Le \textit{tert}-butyl (3-phénylprop-2-yn-1-yl)(tosyl)carbamate est obtenu avec un rendement de 90%. Le groupement Boc est déplacé en présence de TFA afin d'obtenir la tosylamine phénylpropargylique avec un rendement de 95%. L'ényne \textbf{S17} est obtenu par \textit{N}-alkylation de la tosylamide propargylique \textbf{63} en présence de \textit{K}_2\text{CO}_3 et de 4-bromocrotonate d'éthyle avec un rendement de 79%.

Dans un premier temps, l’ényne \textbf{S17} a été mis dans les conditions de cycloisomérisation en présence de \textit{PtCl}_2.

\begin{table}[h]
\centering
\begin{tabular}{ccc}
\hline
\textbf{PtCl}_2 & \textbf{Additif} & \textbf{Conversion (\%)} \\
\hline
1 & 4 \% mol & - \\
2 & 4 \% mol & PBu\textsubscript{3} (30 \% mol) \\
3 & 4 \% mol & PCy\textsubscript{3} (30 \% mol) \\
4 & - & PCy\textsubscript{3} (1 \text{ éq.}) \\
5 & 4 \% mol & PCy\textsubscript{3} (1 \text{ éq.}) \\
6 & 4 \% mol & DABCO (30 \% mol) \\
\hline
\end{tabular}
\caption{Tableau 13}
\end{table}

En présence de dichlorure de platine dans le toluène à 90°C, on obtient une conversion de 28\% en produit bicyclique (entrée 1). L’ényne de départ et le produit d’arrivée ne
Chapitre II : Cycloisomérisations énantiosélectives d'éénynes-1,6

donc pas séparables par chromatographie mais le produit final a été identifié par RMN dans le mélange. Cet essai démontre que même les oléines pauvres en électrons peuvent être utilisées comme substrat de cycloisomérisation. Lorsque l'on ajoute de la tributylphosphine au milieu réactionnel, la réaction est inhibée (entrée 2). Nous pouvons imaginer que la phosphine bloque le cycle catalytique en se liant au platine. Nous avons donc remplaçé la PBu₃ par la PCy₃, qui étant plus volumineuse tout en étant un bon nucléophile devrait se coordonner moins facilement au platine. Une conversion de 17% est observée (entrée 3). La phosphine seule ne donne pas de réaction et aucun produit d’addition de la phosphine sur l’éényne n’a été observé dans le milieu réactionnel. Dans la publication de Krische citée plus haut, les conditions optimales impliquent une quantité catalytique de complexe de palladium et une quantité stœchiométrique de phosphine. Nous avons donc mis en œuvre des conditions similaires (entrée 5) mais la cyclisation espérée n’a pas été observée. Finalement, du DABCO a été utilisé comme organocatalyseur en présence de dichlorure de platine (entrée 6) mais aucun produit n’a été observé.

Bien que les résultats obtenus en présence de chlorure de platine ne soient pas très encourageants, nous avons quand même décidé de tester les catalyseurs chiraux de platine **C2a** et **C3a** dans la même réaction, en espérant que les phosphines s’additionneraient moins facilement sur les platinacycles que sur le dichlorure de platine.

![Schéma 78](image-url)
A 90°C dans le toluène, le complexe Pt/(S)-Ph-Binepine **C3a** ne catalyse pas la réaction. Le complexe Pt/(R)-Monophos **C2a** a permis d’obtenir le produit bicyclique avec un faible rendement de 9%. Malheureusement, en présence de tricyclohexylphosphine (entrée 3), aucune conversion n’a été observée. Avec la tributylphosphine dans la même réaction (entrée 4), le produit bicyclique n’a pas été obtenu, mais 45% d’isomérisation de la double liaison a été observé.

Ces essais préliminaires ne donnant pas de résultats encourageant, cette étude a été abandonnée pour l’instant même si nous sommes conscients qu’une optimisation fine des conditions réactionnelles (notamment de la nature de la phosphine et du catalyseur) pourrait permettre de réaliser ces réactions.

4) Variations autour des complexes de 2ème génération de type platine / phosphoramidite

Bien que les complexes de 2ème génération portant une phosphoramidite comme ligand chiral aient donné des énantiosélectivité un peu moins élevées que les complexes analogues Pt (II) /(S)-Ph-Binepine dans la réaction modèle présenté dans le paragraphe II.2.e de ce chapitre (rdt=90%, ee=96% vs rdt=93%, ee=75%), il nous a paru intéressant d’étudier plus en détail et d’optimiser cette série de complexes. En effet, les complexes Pt/phosphoramidite donnent de meilleures activités catalytiques que les complexes de Binepine et de plus ils sont plus accessibles que les Binepines. Contairement aux Binepines, il existe de nombreux phosphoramidites commerciaux et ils sont également
plus faciles à synthétiser et à moduler, ce qui pourrait être extrêmement important lors de l’optimisation de réactions catalytiques cibles.

a) **Synthèse de nouveaux complexes Pt/Monophos**\(^{85}\)

Afin d’optimiser le catalyseur, nous avons modulé la partie carbéniqne du complexe tout en conservant le Monophos comme ligand chiral. Dans un premier temps nous avons fait varier le substituant de l’azote du carbène puis un centre stéréogène a été introduit sur le platinacycle.

- Variations de la substitution du carbène

Jusqu’ici nous avons considéré uniquement des platinacycles portant un Me ou un Et comme substituant de l’azote du carbène. Aussi, dans une nouvelle série d’expériences un ter-butylique et un benzyle ont été introduits dans cette position. La synthèse des complexes de platine(0) comportant ces deux substituants est décrite dans le paragraphe II.3.b de ce chapitre. L’étape finale de formation des complexes de platine(II) est représentée ci-dessous. Le tableau rappelle également la synthèse des deux complexes **C2a** et **C2b** où R’ = Me et R’ = Et respectivement, déjà décrites dans le paragraphe II.2.c de ce chapitre.

![Schéma 79](image)
Chapitre II : Cycloisomérizations énantiosélectives d’énynes-1,6

<table>
<thead>
<tr>
<th>R’ (complexe)</th>
<th>Rendement (%)</th>
<th>Rapport diastéréoisomérique(a)</th>
<th>δ (ppm) RMN 31P</th>
<th>1J$_{P$-Pt}$ (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me (C2a)</td>
<td>65</td>
<td>75 : 25</td>
<td>130,6 ; 130,2</td>
<td>4510 ; 4543</td>
</tr>
<tr>
<td>Et (C2b)</td>
<td>50</td>
<td>75 : 25</td>
<td>130,5 ; 129,9</td>
<td>4550 ; ≈4550</td>
</tr>
<tr>
<td>t-Bu (C2c)</td>
<td>59</td>
<td>80 : 20</td>
<td>127,1 ; 125,9</td>
<td>n.d. ; n.d.</td>
</tr>
<tr>
<td>CH$_2$Ph (C2d)</td>
<td>47</td>
<td>77 : 23</td>
<td>131 ; 129,5</td>
<td>4552</td>
</tr>
</tbody>
</table>

(a) Les deux isomères sont supposés correspondre aux deux configurations λ et δ du complexe à chiralité axiale. Cependant, nous ne pouvons pas exclure totalement la possibilité de former d’autres isomères où le ligand phosphoré serait en cis du carbène.

La structure cristallographique obtenue par diffraction des rayons X du complexe C2c comportant un t-butyle sur l’azote du carbène est présentée ci-dessous.

![Figure 6](image_url)
Chapitre II : Cycloisomérisations énantiosélectives d’énynes-1,6

La phosphine est en trans du carbène et l’angle dièdre du carbène par rapport au plan de coordination est de 60,9°. Le complexe est de configuration axiale δ, opposée à celle observée pour le complexe avec R’=Me.

![Diagramme de Conformation λ et Conformation δ](image)

Figure 7

Chaque complexe a été utilisé comme catalyseur dans la réaction modèle.

![Schéma 80](image)

<table>
<thead>
<tr>
<th>entrée</th>
<th>R’ (complexe)</th>
<th>Rendement (%)</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Me (C2a)</td>
<td>93</td>
<td>75</td>
</tr>
<tr>
<td>2</td>
<td>Et (C2b)</td>
<td>93</td>
<td>63</td>
</tr>
<tr>
<td>3</td>
<td>t-Bu (C2c)</td>
<td>96</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>CH₂Ph (C2d)</td>
<td>89</td>
<td>78</td>
</tr>
</tbody>
</table>

Quelque soit le substituant porté par l’azote du carbène, les rendements sont excellents (>89%). L’introduction d’un groupement t-butyle conduit à une diminution dramatique.
de l’excès énantiomérique (entrée 3) comparé à celui obtenu initialement lorsque R’=Me (75%). En revanche le groupement benzyle entraîne une légère augmentation de l’excès énantiomérique qui atteint 78% (entrée 4).

• Introduction d’un centre stéréogène sur le platinacycle

Nous avons envisagé la synthèse d’un complexe de platine possédant un centre stéréogène additionnel sur le carbone benzylique du platinacycle. La présence de ce centre stéréogène de configuration absolue définie (par exemple (S)) associé au (R)-Monophos ou au (S)-Monophos conduirait à la formation de deux nouveaux complexes diastéréomères. Notre but est d’observer d’éventuels effets de « coopération » entre le centre stéréogène du carbène et la phosphine chirale à la fois au niveau du rapport diastéréoisomérique lors de la synthèse et des propriétés catalytiques.

Si l’on observe la structure cristallographique du complexe C2a on remarque que le métallacycle présente une conformation de type enveloppe, le méthylène entre le carbène et l’arylé représentant la pointe. Un substituant dans cette position par exemple un groupe méthyle, se placerait soit en position axiale, soit en position équatoriale, selon la configuration du carbone stéréogène et la configuration δ ou λ du complexe.

La configuration du carbone stéréogène pourrait donc déterminer la configuration du complexe. On peut imaginer dans le cas d’une combinaison favorable entre la configuration du centre stéréogène et la phosphine chirale l’obtention du complexe sous forme d’un unique diastéréomère. En revanche, dans le cas d’une combinaison défavorable, la sélectivité devrait être moins bonne et par conséquent, la formation de deux épimères devrait être observée. Par combinaison favorable, on entend que la phosphine chirale favoriserait la configuration (δ ou λ) où le substituant occuperait la position favorisée (axiale ou équatoriale).
Nous avons donc choisi de synthétiser deux complexes où le carbène possède un pont éthylidène créé à partir de la (S)-méthylbenzylamine. Ce carbène est associé aux (R)- et (S)-Monophos respectivement.

Le sel d’imidazolium est obtenu en trois étapes à partir de la (S)-α-méthylbenzylamine.

Tout d’abord, une réaction d’ortho-iodation est réalisée dans des conditions adaptées de la littérature. Un rendement de 23% est obtenu. Puis on forme le noyau imidazole en présence de glyoxale, de paraformaldéhyde et de chlorure d’ammonium avec un rendement de 44%. L’imidazole est alors alkylé par l’iodure de méthyle. Le sel d’imidazolium désiré est obtenu avec un rendement de 95%.

\[\text{Schéma 81}\]

\[\text{Schéma 82}\]

\[\text{Schéma 83}\]

Le complexe de platine(0) est synthétisé dans les conditions décrites précédemment, à partir du catalyseur de Karstedt et de t-BuOK. Un rendement de 73% est obtenu.

Deux complexes de platine(II) sont générés par réaction du complexe de platine(0) et des Monophos de configurations absolues opposées. Lorsque le (R)-Monophos est utilisé, le complexe **C5a** est obtenu sous forme d’un mélange d’isomères en proportion 98 : 2 avec un rendement de 39%. La RMN 31P indique un déplacement chimique de 131 ppm et un couplage P-Pt de 4536 Hz pour l’isomère majoritaire. Le (S)-Monophos génère le complexe **C5b** sous forme de deux isomères en proportion 70 : 30 avec un rendement de 63%. Des déplacements chimiques de 129 ppm ($J_{P-Pt} = 4600$Hz) et de 131 ppm ($J_{P-Pt} = 4600$Hz) ont été mesurés pour l’isomère majoritaire et pour l’isomère minoritaire respectivement.

Lors de la synthèse des complexes, une « combinaison favorable » est donc observé entre le carbène avec un centre stéréogène (S) et le (R)-Monophos (r.d.=98 : 2). A titre de comparaison, le complexe de platine(II) sans chiralité sur le carbène donne un rapport d’isomères de 75 : 25.

Les deux complexes préparés ont été testés dans la réaction de cycloisomérisation modèle.
Les précatyseurs C5a (S, (R)-Monophos) et C5b ((S), (S)-Monophos) donnent dans les conditions habituelles de catalyse de très bons rendements respectivement de 95 et 98%. Ces rendements sont similaires à ceux obtenus avec le catalyseur où le platinacycle n’a pas de centre stéréogène. Le complexe portant le Monophos de configuration (R) donne un excès énantiomérique de 75%, identique à celui observé avec le complexe de référence C2a. En revanche, le complexe de (S)-Monophos permet l’obtention d’un excès énantiomérique de 82%. Jusqu’à présent, ceci constitue le meilleur résultat obtenu avec les complexes de type Pt(II)/phosphoramidite dans cette réaction de cycloisomérisation.

En conclusion, on observe un effet du centre stéréogène, introduit sur le platinacycle, sur le rapport de diastéréomères obtenus lors de la synthèse des complexes ainsi que sur l’énantiosélectivité dans la réaction de cycloisomérisation. On remarque également que le complexe, où la phosphine et le centre stéréogène conduisent à la formation du complexe sous forme d’un seul diastéréomère (géométrie favorisée), n’est pas celui qui donne la meilleure énantiosélectivité. L’introduction de groupements plus volumineux (t-Bu, i-Pr, Ph) sur le carbone stéréogène du platinacycle pourrait permettre d’accentuer l’effet et améliorer l’excès énantiomérique. Pour la synthèse des complexes correspondants, il faudrait considérer d’autres amines chirales et optimiser les premières étapes de la synthèse du carbène.
b) Complexes portant d’autres ligands phosphoramidites

L’un des principaux avantages de l’utilisation des phosphoramidites comme ligands chiraux, est l’accessibilité commerciale de plusieurs de ces dérivés phosphorés. Nous avons donc choisi de préparer une nouvelle série de catalyseurs où le platincycle serait associé à différents phosphoramidites commerciaux.

- Synthèse de nouveaux complexes Pt/phosphoramidite

Les phosphoramidites commerciaux suivants ont été engagés dans la synthèse de pré-catalyseurs chiraux.

Les phosphines P1, dérivée du TADDOL, et P2 où la chiralité se situe sur le substituant azoté du phosphore, présentent une chiralité centrale. La phosphine P3 spiranique ((R)-Siphos) possède une chiralité axiale, tout comme les phosphines P4, P5 et P6 à noyau binaphtol ou octahydrobinaphtol.
Chapitre II : Cycloisomérisations énantiosélectives d’énynes-1,6

Les résultats obtenus lors de la synthèse des platinacycles correspondants sont rapportés dans le Tableau 16, en comparaison avec la synthèse du complexe de référence C2a (entrée 1).

![Schéma 87](image)

<table>
<thead>
<tr>
<th>Entrée</th>
<th>complexes</th>
<th>Rendement (%)</th>
<th>r.d.</th>
<th>RMN 31P δ/J_{P-Pt}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>65</td>
<td>75:25</td>
<td>130,6 [4510]; 130,2 [4553]</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>64</td>
<td>100:0</td>
<td>115,0 [3107]</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>56</td>
<td>67:33</td>
<td>136,9 [3082]; 134,5 [n.d.]</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>57</td>
<td>4 isomères</td>
<td>106,9 [4585]; 104,9 [4585]; 104,0 [4648]; 103,0 [4636]</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>39</td>
<td>86:14</td>
<td>130,9 [4508]; 130,0 [n.d.]</td>
</tr>
</tbody>
</table>
Les rendements en complexe de platine(II) sont compris entre 39 et 70%. Le complexe avec la phosphine P4 est obtenu avec un rendement un peu plus faible (39%). Les structures cristallographiques des complexes C6, C7, C8 et C10 ont pu être obtenues. Le complexe contenant le phosphoramidite P1 dérivée du TADDOL est obtenu sous forme d’un seul isomère. Sa structure cristallographique montre que la phosphine se place en trans de l’aryle et donc en cis du carbène, contrairement à ce qui avait été observé jusqu’ici.

La distance entre le platine et le phosphore est de 2,285Å, celle entre le platine et le carbone carbénique de 2,001Å et celle entre le platine et l’aryle de 2,103Å. L’angle dièdre entre l’imidazolylidène et le plan de coordination du platine est de 52,6°.
Chapitre II : Cycloisomérisations énantiosélectives d’éynyes-1,6

Le complexe **C7** ayant pour ligand le (S)-BIPOL-A1 est isolé sous forme d’un mélange d’isomères dans des proportions 67 :33. Une étude par diffraction des rayons X a montré que le phosphoramidite se place en *cis* du carbène.

![Figure 9](image)

La distance entre le platine et le phosphore est de 2,286Å, celle entre le platine et le carbone carbénique de 1,709Å et celle entre le platine et l’aryl de 2,048Å. L’angle dièdre entre l’imidazolylidène et le plan de coordination du platine est de 56,9°.

La géométrie *cis* des complexes **C6** et **C7** laisse supposer que la coordination du ligand phosphoré en *cis* du carbène soit favorisé lorsque le ligand est particulièrement volumineux.

Le catalyseur Pt/(R)-SIPHOS **C8** est obtenu sous forme d’un mélange des quatre isomères, nous supposons donc que les isomères où la phosphine se place en *cis* et en *trans* du carbène sont présents dans ce mélange. Celui identifié par rayons X est l’isomère *trans*. Là encore, la présence de l’isomère *cis* peut être justifié par l’encombrement stérique de ce phosphoramidite.

![Figure 10](image)
Dans ce complexe, le platine est distant de 2,258\text{"A} du phosphore, de 2,001\text{"A} du carbène et de 2,019\text{"A} de l’aryle. L’angle dièdre entre l’imidazolylidène et le plan de coordination du platine est de 46,7°.

Pour finir, la structure cristallographique du complexe \textbf{C10} indique que le phosphamidite se place en \textit{trans} du carbène comme dans le cas de la Monophos qui a une structure semblable. En revanche, la chiralité axiale δ de ce complexe où le phosphoramidite est de configuration (S), est opposée à celle du complexe \textbf{C2a} comportant le (R)-Monophos (λ).

Les distances entre le platine et le phosphore, le carbène ou l’aryle sont respectivement de 2,255\text{"A}, 2,042\text{"A} et 2,039\text{"A}. L’angle dièdre entre l’entre l’imidazolylidène et le plan de coordination du platine est de 47,9°.

- Tests catalytiques

Les complexes de platine comportant un phosphoramidite comme ligand chiral ont été testés dans la réaction de cycloisomérisation modèle. Les résultats sont résumés dans le tableau ci-dessous.

\begin{figure}
\centering
\includegraphics{C10}
\caption{Figure 11}
\end{figure}

\begin{scheme}
\centering
\includegraphics{S1P1}
\caption{Schéma 88}
\end{scheme}
<table>
<thead>
<tr>
<th>Entrée</th>
<th>Complexe</th>
<th>Rendement (%)</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>93</td>
<td>75</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>71</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>50</td>
<td>23</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>100</td>
<td>35</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>90</td>
<td>80</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>77</td>
<td>82</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>85</td>
<td>84</td>
</tr>
</tbody>
</table>

Tableau 17

Les catalyseurs C6, C7, C8, donnent des activités catalytiques de moyenne à bonne et des excès énantiomériques faibles (entrées 2, 3 et 4). En revanche l’utilisation des complexes C9, C10 et C11 conduit à de meilleurs résultats (entrées 5, 6 et 7) que ceux obtenus avec le (R)-Monophos (entrée 1). Des excès énantiomériques de 80, 82 et 84%
Chapitre II : Cycloisomérisations énantiosélectives d'énynes-1,6

sont observés respectivement tout en conservant de bons rendements. Ces phosphoramides ont des structures similaires, toutes dérivées du binaphtol ou de l'octahydrobinaphtol. Le meilleur résultat est obtenu avec le (S)-éthyl-Monophos qui permet d'atteindre 84% d’excès énantiomérique et 85% de rendement.

Une optimisation plus fine des complexes présentés ci-dessus pourrait encore être envisagée en modifiant notamment le substituant carbénique pour atteindre des excès énantiomériques encore plus élevés. Des études supplémentaires sont conduites actuellement par Yang Zhang dans le cadre de ses travaux de thèse.

III. Conclusion

Dans ce chapitre, les complexes de platine dits de deuxième génération ont été présentés. Ces complexes possèdent une structure relativement rigide puisque le carbène forme avec le platine une structure de type métallacyclique. L’auxiliaire chiral est une monophosphine.

Deux familles de métallacycles ont été développées. L’une comporte une phosphine chirale de type Binepine et l’autre de type phosphoramidine. D’excellents résultats ont été obtenus grâce aux complexes Pt(II)/(S)-Ph-Binepine dans la réaction de cycloisomérisation d’allylamides propargyliques en azabicyclo[4.1.0]heptènes. Des excès énantiomériques jusqu’à 97% sont mesurés, pour des rendements allant jusqu’à 98%.

L’élucidation de la configuration absolue du produit bicyclique formé a permis d’émettre des hypothèses quant à l’induction asymétrique générée par nos catalyseurs.

De plus, l’utilisation des complexes de type Pt(II)/(S)-Ph-Binepine a pu être étendue avec succès à la désymétrisation de diénynes par cycloisomérisation. Ces réactions ont permis la formation simultanée de trois centres stéréogènes avec un bon contrôle de l’énantiosélectivité et de la diastéréoselectivité. Les produits bicycliques fonctionnalisés par un groupe vinyle ont été obtenus avec des excès énantiomériques allant jusqu’à 95%.
Nous avons également montré que les complexes comportant un ligand phosphoramidite peuvent être de bons catalyseurs pour la même réaction. L’optimisation de la structure des complexes a permis d’atteindre un excès énantiomérique de 84% dans la réaction modèle. Bien que les énantiosélectivités soient un peu moins bonnes qu’avec les complexes Pt(II)/(S)-Ph-Binepine, les phosphoramidites ont l’avantage d’être soit commerciaux, soit synthétiquement plus accessibles et plus modulables que les Binepines. Ils offrent plus de possibilité d’optimisation lorsque les cycloisomérisations seraient appliquées à la synthèse de composés cible spécifiques.
Chapitre III :
Cycloisomérisations énantiosélectives d’éénynes-1,5
Chapitre III : Cycloisomérisations énantiosélectives d’énynes-1,5.

Dans ce troisième chapitre, nous présenterons l’application de notre méthodologie à une réaction de cycloisomérisation d’énynes-1,5 comportant un groupement oxygéné en position propargylique. Les complexes de seconde génération comportant soit un ligand Binepine soit un ligand phosphoramidite catalysent la formation de bicyclohexanonones à partir de ces énynes. Cette réaction permet d’accéder à une large variété de structures synthétiquement intéressantes.

Dans la première partie de ce chapitre sera présentée la bibliographie concernant les cycloisomérisations d’énynes-1,n portant un groupement oxygéné en position propargylique en dérivé bicyclique. Les exemples de la littérature seront regroupés en fonction de leur mécanisme.

Nos résultats seront ensuite présentés et discutés.

I. Bibliographie: cycloisomérisations d’énynes-1,5 substitués en position propargylique par un groupement oxygéné.

Les catalyseurs métalliques sont à même d’isomériser en bicyclo[3.1.0]hexènes les énynes-1,5 portant une fonction oxygénée en position propargylique. Dans le produit final, la fonction oxygénée se retrouve soit dans sa position initiale A, soit sur la position adjacente B, en fonction de la capacité ou non du groupement oxygéné à migrer.

![Schéma 1](image-url)
1) Cycloisomérisations d’énynes avec migration d’un groupement OR lors du cycle catalytique.

Les groupements de type O-acyle sont capables de migrer au cours du cycle catalytique de la position propargylique à la position adjacente, celle qui était initialement un carbone acétylénique. D’après les calculs DFT effectués par Soriano97 le mécanisme de la réaction en présence de dichlorure de platine serait le suivant (Schéma 2).

![Schéma 2](image_url)

La coordination du dichlorure de platine sur la triple liaison active cette dernière vis-à-vis de l’attaque nucléophile de l’oléfine. Le carbène bicyclique a est alors formé \textit{via} une cyclisation \textit{endo}. L’énergie d’activation de cette étape est de 9.73 kcal.mol-1. L’étape suivante est initiée par l’attaque nucléophile intramoléculaire de l’oxygène du carbonyle sur le carbène électrophile, qui entraîne la migration 1,2 de l’acétate. La barrière d’énergie de cette étape est faible (4.29 kcal.mol-1). Après élimination du platine, le bicylo[3.1.0]hexène B est obtenu.

La première publication rapportant la cycloisomérisation d’énynes-1,5 portant un groupe oxygéné « mobile » en position propargylique date de 1984.98 Rautenstrauch présente l’utilisation de PdCl\textsubscript{2}(MeCN)\textsubscript{2} comme catalyseur pour la formation d’acétates

bicyclopropaniques (Schéma 3). Cinq exemples sont donnés avec des rendements compris entre 10 et 40%. Ni les structures exactes des molécules, ni les conditions réactionnelles ne sont décrites.

Le domaine est négligé jusqu’en 2004 lorsqu’apparaissent les travaux des équipes de Fürstner et Malacria sur la cycloisomérisation catalysée par le dichlorure de platine. Malacria présente la cycloisomérisation d’une série d’énynes avec comme substituant sur l’oxygène en position propargylique un groupement paranitrobenzoate.99 Le dichlorure de platine est utilisé comme catalyseur dans le toluène à 80°C. Lorsque le groupement oxygéné est un O-acyl, il y a alors migration de cette entité au cours du cycle catalytique (Schéma 4).

Le système catalytique est appliqué à la synthèse de la Sabina cétone qui est un composé naturel utile comme intermédiaire pour la synthèse de monoterpènes comme le sabinène ou l’hydrate de sabinène (Schéma 5).

Fürstner a décrit des réactions similaires catalysées par le dichlorure de platine ainsi que par un complexe d’or, AuCl(PPh₃) (Schéma 6). L’oxygène en position propargylique est substitué par un acétate. Après cycloisomérisation et hydrolyse de l’acétate d’éol, la bicyclohexanone 66 est obtenue avec 74% de rendement.

Ces méthodologies ont été appliquées à une variété de substrats, parmi les applications les plus intéressantes on peut citer la synthèse de molécules tricycliques originales qui sont préparées à partir de cycloundec-5-èn-1-yne en présence de dichlorure de platine. Le macrocycle substitué par un para-nitrobenzoate conduit au tricyclopropane avec un rendement de 56% (Schéma 7).

Une autre application remarquable de ces méthodologies est l’utilisation d’énynes monocycliques comme substrats de cycloisomérisation (Schéma 8). Des catalyseurs d’or (I), d’or (III) et de platine (II) conduisent à la formation d’espèce tricycliques à motifs cyclopropanes.

Chapitre III : Cycloisomérizations énantioméreselectives d'énynes-1,5

Afin de synthétiser des structures triquinanes, l'équipe de Malacria a étudié la cycloisomérisation d'énynes-1,6 dont la double liaison est comprise dans un cycle (Schéma 9).

Schéma 9

AuClSbF₆ est très réactif et conduit au produit tetracyclique en 10 minutes à température ambiante avec un rendement de 98%.

Cette stratégie a été appliquée à la synthèse totale d'un triquinane linéaire appelé Δ⁹(12)-capnellène (Schéma 10).

Schéma 10

Chapitre III : Cycloisomérisations énanti sélectives d’éynes-1,5

L’étape de cycloisomérisation permet de former le cœur tricyclique de la molécule cible. Le Δ9(12)-capnèllène a pu être synthétisé en quinze étapes avec un rendement global de 17%.

Le complexe AuCl(pyridine) entraîne le réarrangement des éynènes-1,5 68 en bicycles diastéréomères avec de bons rendements et de bonnes diastéréosélectivités. Après un traitement avec LiOH, les bicyclohexanones sont obtenues (Schéma 12).

Hanna a utilisé une étape de cycloisomérisation d’énynes-1,7 et -1,8, où la chaîne reliant les deux insaturations contient un aryle lors de la synthèse de nouveaux allocolchicinoides (Schéma 13).105

Ces éénynes se réarrangent en présence de catalyseurs à l’or (l) en dérivés cyclopropaniques contenant des cycles à 6 ou 7 carbones. Lors de la synthèse de l’allocolchicinoïde 70 (n=1), l’étape de cycloisomérisation/hydrolyse de l’acétate donne un rendement de 80% (Schéma 14).

\textbf{2) Cycloisomérisations d’énynes sans migration du groupement OR lors du cycle catalytique.}

Lorsque l’oxygène propargylque porte un hydrogène, un alkyle ou un groupement silylé, ces fonctions oxygénées ne peuvent pas migrer. On obtient alors les bicyclo[3.1.0]hexènes A (Schéma 1) comme produit de cycloisomérisation.

Fürstner propose pour la cycloisomérisation de ces molécules en bicyclohexanes, un mécanisme similaire à celui postulé pour les cycloisomérisations d’énynes-1,6 (chapitre II). Les études théoriques de Soriano valident le cycle catalytique dans le cas où le catalyseur est PtCl₂ (Schéma 15).

La complexation de la triple liaison par le platine entraîne une activation électrophile et permet la cyclisation par attaque de l’oléfine en tant que nucléophile. Le carbène formé subit alors une migration 1,2 de l’hydrogène. La migration de l’hydrogène a été prouvée par la cycloisomérisation d’un ényne dont la position gem de l’alcool est deuterée. La bicyclohexanone obtenue est deuterée exclusivement en position C-2 (Schéma 16). Le deutérium a donc migré de la position trois à la position deux lors du cycle catalytique.

Les premiers exemples de cycloisomérisation d’énynes sans migration du groupement OR ont été rapportés par les équipes de Fürstner et Malacria.
Furstner décrit l’emploi de dichlorure de platine comme catalyseur. Les réactions sont conduites dans le toluène à 60°C et permettent d’obtenir des composés bicycliques voir tricycliques avec de bons rendements (Schéma 17).

![Schéma 17](image)

La méthodologie est appliquée à la synthèse de la sabinone 72 et des deux sabinols isomères qui en dérivent (Schéma 18). Ces molécules sont des terpènes caractéristiques présents dans des plantes comme le genévrier, l’absinthe ou le thuya. La sabinone est synthétisée par réorganisation de l’hex-1-én-5-yn-4-ol 71 en présence de PtCl₂. Les sabinols cis et trans sont obtenus ensuite par une réduction de Luche et peuvent être séparés par chromatographie en phase gazeuse.

![Schéma 18](image)

Une étude similaire est réalisée par Malacria. L’utilisation de dichlorure de platine dans le toluène à 80°C entraîne la cyclisation d’alcools ainsi que d’éthers silylés (Schéma 19). Dans ce dernier cas, les produits bicycliques sont obtenus sous forme d’éthers d’énols silylés.

![Schéma 19](image)
Chapitre III : Cycloisomérizations énantiosélectives d’éïnynes-1,5

L’or induit également ces réarrangements. Par exemple, Gagosz propose une cycloisomérisation d’éïnynes catalysée par l’or comme étape clé de la synthèse de la guanacastépène A (Schéma 20).

Cette stratégie permettrait l’introduction assez tôt lors de la synthèse de la plupart des groupes fonctionnels présents sur le cycle A et l’unité cyclopropyle servirait d’enclage pour la construction du cycle B.

L’étape de cycloisomérisation de l’éïnyne 74 a donc été étudiée en détail. Différents produits peuvent être obtenus en fonction des substituants présents sur le squelette de l’éïnyne et de la stéréoïochimie de la molécule. Par exemple, l’éïnyne syn en présence d’Au(PPh₃)BF₄ dans le dichlorométhane à 20°C conduit aux bicyclohexênes 75a et 75b avec des rendements respectifs de 66 et 14% (Schéma 21). L’utilisation de l’éïnyne trans donne les mêmes produits mais avec une sélectivité inverse.

La cyclohexanone 75a est le diastéréomère utile pour la suite de la synthèse.

II. **Application des platinacycles chiraux comme catalyseurs de cycloisomérisation d’évênes-1,5.**

Comme nous l’avons vu dans le paragraphe I de ce chapitre, les cycloisomérisations d’évênes-1,5 en bicyclohexènes ont été largement étudiées dans leur version racémique. Nous verrons un peu plus loin dans ce manuscrit (II.2.c de ce chapitre) que la formation des squelettes bicycliques énatioenrichis a été envisagée par cyclisation diastéréosélective ou par transfert de chiralité à partir de substrats énantioméqurement enrichis. A notre connaissance, aucune cycloisomérisation énantiométhétique d’évênes-1,5 substitués en position propargylique par un groupement oxygéne n’a été rapportée dans la littérature.

Au laboratoire, nous avons choisi d’étudier ces réactions de cycloisomérisation en présence des complexes de platine de deuxième génération. Dans un premier temps, les dérivés du 3-hydroxy-5-méthyl-1-phényle-5-hexène-1-yne nous ont servi de substrats modèles (Schéma 22).

![Schéma 22](image)

1) Premiers essais de cycloisomérisation des dérivés du 3-hydroxy-5-méthyl-1-phényle-5-hexène-1-yne

a) **Synthèse des substrats**

Les évênes **S18, S19** et **S20** sont synthétisés selon les méthodes décrites dans la littérature (Schéma 23).99
Chapitre III : Cycloisomérisations énantiosélectives d'énynes-1,5

La première étape consiste à O-alkyler le 3-phényl-2-propyn-1-ol par le 3-bromo-2-méthylpropène en présence de NaH. L’éther 76 obtenu avec un rendement quantitatif subit ensuite un réarrangement de Wittig [2,3] pour former l’alcool S18 avec 81% de rendement.

La fonction alcool de ce substrat a été transformée pour accéder à d’autres énynes. Aussi, une fonction paranitrobenzoate a pu être introduite. (Schéma 24)

\[
\begin{align*}
\text{S18} & \quad \xrightarrow{\text{NO}_2\text{C}_2\text{H}_4\text{COCl, Et}_3\text{N}} \quad \text{DCM, t.a.} \quad 90\% \\
 & \quad \xrightarrow{\text{S19}} \\
\end{align*}
\]

Schéma 24

L’alcool est mis à réagir avec du chlorure de paranitrobenzoyle en présence de triéthylamine dans le dichlorométhane à température ambiante. Un rendement de 90% est obtenu.

La fonction hydroxyle peut être également silylée (Schéma 25).

\[
\begin{align*}
\text{S18} & \quad \xrightarrow{\text{TBSCI, Et}_3\text{N, DMAP}} \quad \text{DCM, reflux} \quad 73\% \\
 & \quad \xrightarrow{\text{S20}} \\
\end{align*}
\]

Schéma 25

En présence de chlorure de t-butyldiméthylsilyle, de triéthylamine et de DMAP on obtient l’éther silylé S20 avec un rendement de 73%.

b) Étude de la cycloisomérisation108

Les complexes de deuxième génération Pt/(S)-Ph-Binepine C3a et Pt/(R)-Monophos C2a ont été testés comme catalyseurs dans la réaction de cycloisomérisation des trois énynes présentés ci-dessus.

Nous avons d’abord considéré la cycloisomérisation de l’ényne portant un groupement OPNB, c’est à dire un groupement pouvant migrer lors de la réaction (Schéma 26). Dans ce cas, l’issue de la réaction dépend fortement de la nature du catalyseur.

![Schéma 26](image)

<table>
<thead>
<tr>
<th>CAT</th>
<th>Bicyclohexène P19a</th>
<th>Cyclohexadiène P19b ou P19c</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rendement (%)</td>
<td>ee (%)</td>
</tr>
<tr>
<td>PtCl₂</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>C21</td>
<td>22</td>
<td>-</td>
</tr>
<tr>
<td>C3a</td>
<td>19</td>
<td>16<sup>a</sup></td>
</tr>
<tr>
<td>C2a</td>
<td>7</td>
<td>6<sup>a</sup></td>
</tr>
</tbody>
</table>

Tableau 1

Les excès énantiomériques sont déterminés par HPLC :

^aColonne CHIRACEL IC, éluant hept/iPrOH 99,5/0,5, 1mL/min, temps de rétention 23,9 et 32,6 min.

^bColonne CHIRACEL AD-H, éluant hept/iPrOH 99,5/0,5, 1mL/min, temps de rétention 17,6 et 22,6 min.

En présence de dichlorure de platine, seul le cyclohexadiène P19c est obtenu. Le métallacycle C21 achiral est ensuite utilisé. Le produit bicyclique P19a est alors obtenu avec un rendement de 22%.

Le complexe Pt/Binepine C3a conduit à la formation du cyclohexadiène P19b majoritairement avec un rendement de 28% et un excès énantiomérique de 17%. 19% du bicyclohexène recherché sont également formés avec un excès énantiomérique de 16%.
Le complexe Pt/Monophos C2a donne de moins bons résultats avec seulement 9% d’excès énantiomérique pour le cyclohexadiène P19b obtenu majoritairement. Le bicycle P19a est formé avec 7% de rendement et 6% d’excès énantiomérique.
La formation de composés cyclohexadiéniques analogues à P19b et P19c a déjà été rapportée par le groupe de Malacria.109 La formation du diène P19b peut être rationalisée par un mécanisme débutant par l’attaque de l’alcène sur la triple liaison activée par le platine (Schéma 27). Une migration du groupement OPNB pourrait conduire à l’intermédiaire cationique b qui par la suite se rearrange en c. Une migration d’hydrogène permettrait d’accéder à d puis après élimination du platine, on obtiendrait P19b.

Schéma 27

Une autre série d’essais a été réalisée à partir de l’alcool S18. Les résultats préliminaires donnés dans le Tableau 2 montrent que les deux complexes C3d et C2a, comme attendu, isomérisent l’alcool S18 en bicyclo[3.1.0]hexanone P18 (Schéma 28).

Schéma 28

Chapitre III : Cycloisomérisations énantiosélectives d’énynes-1,5

<table>
<thead>
<tr>
<th>Cat</th>
<th>Rendement (%)</th>
<th>eea (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>42</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>53</td>
</tr>
</tbody>
</table>

Tableau 2

a Les excès énantiomériques sont mesurés par HPLC chirale: colonne CHIRACEL AD-H, éluant hept/iPrOH 99/1, 1mL/min, temps de rétention 4,3 et 5,6 min.

Ils donnent des rendements de 42 et 64 % respectivement ainsi que des excès énantiomériques de 9 et 53%. On remarque que le complexe comportant la (R)-Monophos comme ligand chiral est plus actif et permet l’obtention d’un excès énantiomérique bien meilleur que celui obtenu avec la (S)-Ph-Binépine.

La troisième série d’essais a été réalisée à partir de l’ényne-1,5 **S20** portant un groupement OTBS. Ce substrat a été engagé dans les mêmes conditions de catalyse afin de déterminer l’influence de la substitution de l’oxygène sur l’activité et l’énantiosélectivité fournies par les platinacycles.

![Schéma 29](image.png)
Chapitre III : Cycloisomérisations énantiosélectives d'énynes-1,5

<table>
<thead>
<tr>
<th>Cat</th>
<th>Rendement (%)</th>
<th>Rapport P20 :P18</th>
<th>ee (%) P18</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>41</td>
<td>37 :63</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>100 :0</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>95</td>
<td>60 :40</td>
<td>63</td>
</tr>
</tbody>
</table>

Tableau 3

En présence des complexes C3a et C2a, la cycloisomérisation de l'ényne S20 conduit à un mélange de produits bicycliques composé de l'éther d'énil silylé P20 et de la cétone P18. Les rendements présentés dans le tableau ci-dessus sont globaux et les excès énantiomériques ont été déterminés sur la cétone. En présence des complexes Pt/(S)-Ph-Binépine C3a et C3d des excès énantiomériques faibles de 4 et 25% sont obtenus. En revanche le complexe Pt/(R)-Monophos C2a permet d'atteindre 63% d'excès énantiomérique. Comme dans le cas de la cycloisomérisation de l'alcool S18, le complexe portant le (R)-Monophos donne de meilleurs résultats comparé au complexe de Ph-Binepine. La présence du groupement TBS augmente l'excès énantiomérique d'environ 10% par rapport à l'alcool libre.

L'excès énantiomérique de l'éther d'énil silylé bicyclique n'a pu être déterminé directement puisque aucune condition de séparation des énantiomères par HPLC chirale n'a pu être trouvée. Cependant, les cycles silylés ont pu être déprotégés afin d'obtenir la cétone pour laquelle nous connaissons les conditions de mesure de l'excès énantiomérique.
Le groupement TBS est déplacé par réaction avec le fluorure de t-butylamonium dans le THF (Schéma 30). En mesurant l’excès énantiosélectif de la cétonne ainsi obtenue, nous avons constaté que les deux produits de cycloisomérisation sont formés avec la même énantiosélectivité.

Par exemple, lors de la réaction de cycloisomérisation du substrat modèle en présence du complexe Pt/Monophos **C2a** (dernière ligne du Tableau 3), un mélange de bicyclohexanone et d’éthère d’énol silylé est obtenu. L’excès énantiosélectif de 63% pour la cétonne. L’éther d’énol silyl é a été déprotégé avec un rendement de 47%, l’excès énantiosélectif de la cétonne formée est également de 63%. Les excès énantiosélectifs étant égaux, l’élimination du TBS doit se faire après l’étape stéréodéterminante de formation du bicycle si elle se fait au cours du cycle catalytique.

Trois hypothèses peuvent être émises quant à la formation de la bicyclohexanone:

i) L’éther d’énol silylé bicyclique se forme, puis il est hydrolysé spontanément dans les conditions de la réaction. Cependant nous avons observé que l’ajout d’eau en fin de réaction ne modifie pas la proportion des deux produits.

ii) Le groupe silylé est déplacé au cours du cycle catalytique par hydrolyse d’un intermédiaire.

iii) L’hydrolyse du même éther est catalysée par l’un des métaux présents (le platine ou l’argent) pendant la réaction.

Nous avons vérifié cette dernière hypothèse, différentes quantités de sel d’argent ont été introduites dans le milieu réactionnel (Schéma 31 et Tableau 4).
Chapitre III : Cycloisomérisations énantiosélectives d’éynyes-1,5

<table>
<thead>
<tr>
<th>AgBF₄ (%mol)</th>
<th>Conversion (%)</th>
<th>P20 : P18</th>
<th>ee (%) P18</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>100</td>
<td>67 : 33</td>
<td>63</td>
</tr>
<tr>
<td>4</td>
<td>80</td>
<td>100 : 0</td>
<td>66</td>
</tr>
</tbody>
</table>

Tableau 4

Lorsque l’on utilise la même quantité de sel d’argent et de complexe de platine, on n’observe pas de formation de cétone. Il semblerait donc que l’excès d’argent présent dans le milieu dans les conditions habituelles de réaction (AgBF₄ 12% mol) catalyse la déprotection du groupement silylé. L’utilisation du sel d’argent à 4% mol donne un excès énantiomérique légèrement supérieur à celui obtenu avec 12% mol d’argent.

Pour tenter d’orienter la réaction vers un produit unique et d’optimiser les énantiomérités, dans un premier temps différents groupements ont été introduits sur l’oxygène en position propargylique. Puis la réaction a été réalisée dans différents solvants puis dans le toluène en présence de différentes quantités d’eau.

Les tests préliminaires réalisés sur les éynyes-1,5 montrent que la nature de la fonction oxygénée, alcool ou éther silylé a un effet considérable sur les excès énantiomériques. Nous avons donc voulu introduire différents groupements protecteurs qui ne migrent pas et voir leur effet en catalyse.¹⁰⁸

Des groupements méthyle, benzyle et t-butyldiphénylsilyle sont utilisés comme substituant de l’oxygène de l’éynye (Schéma 32).
Chapitre III : Cycloisomérisations énantiosélectives d’énynes-1,5

Les expériences sur les différents substrats confirment que de simples modifications du substituant de l’oxygène influencent fortement l’issue de la réaction. Les groupements méthyle et benzyle portés par l’oxygène conduisent à de faibles excès énantiomériques de 29% (entrées 2 et 3 du Tableau 5). En revanche, les groupements encombrés t-butyldiméthylsilyle et t-butyldiphénylsilyle donnent de meilleures énantiosélectivités de 63 et 65% (entrées 4 et 5 du Tableau 5).

Par la suite, la réaction a été réalisée dans différents solvants.

<table>
<thead>
<tr>
<th>Solvant</th>
<th>Température (°C)</th>
<th>Conversion (%)</th>
<th>Rapport P20 : P18</th>
<th>Rendement (%)</th>
<th>ee (%) P18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toluène</td>
<td>60</td>
<td>100</td>
<td>60 : 40</td>
<td>95</td>
<td>63</td>
</tr>
<tr>
<td>DCM</td>
<td>t.a.</td>
<td>100</td>
<td>33 : 67</td>
<td>97</td>
<td>33</td>
</tr>
<tr>
<td>CH₃CN</td>
<td>60</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>MeOH</td>
<td>60</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Toluène + 2 eq. MeOH</td>
<td>60</td>
<td>33</td>
<td>0 : 100</td>
<td>33</td>
<td>50</td>
</tr>
</tbody>
</table>

Tableau 6
Une conversion complète est obtenue dans le dichlorométhane à température ambiante mais l'excès énantiomérique est de seulement 33%. L'éther d'énoI silylé et la cétone sont obtenus dans des proportions de 33 :67 en faveur de la cétone. L’acétonitrile ne permet pas la formation du bicycle. La très faible solubilité du complexe dans ce solvant pourrait être à l’origine de l’absence de réactivité. La cycloisomérisation n’a également pas lieu dans le méthanol. En revanche, l’utilisation de deux équivalents de méthanol comme co-solvant du toluène conduit à une conversion de 33% et à un excès énantiomérique de 50%. Dans ces conditions, seule la cétone est formée. Les conditions réactionnelles utilisées initialement étant les meilleures (toluène à 60°C), nous les avons conservées.

D’autre part, nous avons observé que la température de cycloisomérisation n’a pas d’influence sur les excès énantiomériques. À température ambiante, dans le toluène, la réaction décrite dans le schéma ci-dessus donne un excès énantiomérique de 62%, mais est beaucoup plus lente. Au bout d’une nuit, on obtient un rendement de seulement 30%. C’est pourquoi, les réactions sont réalisées à 60°C.

Nous avons ensuite étudié l’influence de la présence d’eau dans le milieu sur la formation des produits P20 et P18 (Schéma 34).

Lorsque du toluène anhydre (eau<0.005%, Aldrich sous septum sur tamis moléculaire), est utilisé comme solvant, on obtient un mélange d’éther d’énoI silylé et de cétone dans des proportions 67/33 et un excès énantiomérique de 63%. Lorsqu’un équivalent d’eau est ajouté au début de la réaction, la proportion d’éther d’énoI silylé chute à 42% en faveur de la cétone. L’excès énantiomérique est comparable (61%). Un excès d’eau inhibe la réaction catalytique.
En conclusion, les résultats obtenus avec les substrats comportant un groupement oxygéné non mobile sont plus encourageant qu’avec les substrats substitués par un groupement mobile. Les meilleures conditions de cycloisomérisation impliquent le substrat S20, le catalyseur C2a, le toluène comme solvant et AgBF₄. La suite de notre travail a consisté à élargir l’étude à d’autres énynes-1,5 comportant en position propargylique un goupement OTBS ou un alcool.

2) **Cycloisomérisations d’énynes-1,5 substitués en position propargylique par un OTBS**

a) **Variation des substituants de l’ényne**

Nous avons voulu évaluer l’influence des substituants de l’ényne sur l’activité catalytique et l’énantiosélectivité (Schéma 35).

![Schéma 35](image-url)
Tableau 7

<table>
<thead>
<tr>
<th>Entrée</th>
<th>Substrat</th>
<th>Produit</th>
<th>Rendement en cétone (%)</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>95</td>
<td>63</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>36</td>
<td>19<sup>a</sup></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>26</td>
<td>60<sup>b</sup></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>28</td>
<td>33<sup>c</sup></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>64</td>
<td>40<sup>d</sup></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>35</td>
<td>8<sup>e</sup></td>
</tr>
</tbody>
</table>

Les excès énantiomériques sont mesurés par HPLC :

- ^a Colonne : CHIRACEL IA, éluant : hept/EtOH 99/1, 1mL/min, temps de rétention 4,7 et 4,9 min.
- ^b Colonne : CHIRACEL IC, éluant : hept/iPrOH 99/1, 1mL/min, temps de rétention 14,0 et 16,0 min.
- ^c Colonne : CHIRACEL AD-H, éluant : hept/iPrOH 99/1, 1mL/min, temps de rétention 4,0 et 5,0 min.
Chapitre III : Cycloisomérisations énantiosélectives d’énynes-1,5

Colonne : CHIRACEL IA, éluant :hept/EtOH 99/1, 1mL/min, temps de rétention 14,0 et 17,0 min.
Colonne : CHIRACEL IC, éluant :hept/iPrOH 99/1, 1mL/min, temps de rétention 14,0 et 21,0 min.

Lorsque la triple liaison est substituée par un groupement triméthylsilyyle, aucune conversion n’est observée (entrée 2 du Tableau 7). Si le phényle est remplacé par un xylène, un rendement de 36% en cétone et un excès énantiomérique de seulement 19% sont observés (entrée 3 du Tableau 7). En revanche, quand l’aryle sur la triple liaison est substitué par deux chlores en meta et para, l’énantiosélectivité atteint 60% (entrée 4 du Tableau 7).

Dans le cas où la triple liaison est substituée par un phényle, la suppression du méthyle sur l’oléfine conduit à une perte d’énantiosélectivité de 63 à 33% (entrées 1 et 5 du Tableau 7). De la même manière, lorsqu’un meta, para dichlorophényle se trouve sur la triple liaison, le passage d’un méthyle à un phényle sur la double liaison entraîne la diminution de l’excès énantiomérique de 60 à 40% (entrées 4 et 6 du Tableau 7).

Finalement, lorsque l’on place un phényle en position terminale de l’oléfine, le rendement est de 35% et l’énantiosélectivité est extrêmement faible (8%, entrée 7 du Tableau 7).

A ce point de notre travail, le meilleur excès énantiomérique de 63% (entrée 1 du Tableau 7) est obtenu dans la cycloisomérisation du substrat modèle S20. Toutes les variations du schéma de substitution du substrat entraîne une baisse de l’énantiosélectivité.

b) Evaluation de divers complexes platine/phosphoramidite

Dans le but d’optimiser ces réactions, nous avons ensuite évalué différents platinacycles chiraux. Dans une première série d’essais, des complexes Pt/(R)-Monophos avec différents substituants sur l’azote du carbène (chapitre II) sont testés dans la réaction de cycloisomérisation du substrat modèle (Schéma 36).
On compare des carbènes substitués respectivement par un méthyle, un t-butyle et un benzyle.
La présence du groupement t-butyle sur l’azote du carbène entraîne une meilleure énantiosélectivité (67%) comparée au méthyle, alors que le substituant benzyle amène une légère diminution de celle-ci à 59%.

Par la suite, des complexes portant des phosphoramidites autres que le Monophos comme ligands (voir chapitre II) ont été testées dans la même réaction (Schéma 37).
<table>
<thead>
<tr>
<th>entrée</th>
<th>catalyseur</th>
<th>Conversion (%)</th>
<th>Rendement (%)</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>100</td>
<td>95</td>
<td>63</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>61</td>
<td>50</td>
<td>29</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>29</td>
<td>29</td>
<td>49</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>100</td>
<td>78</td>
<td>64</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>73</td>
<td>73</td>
<td>71</td>
</tr>
</tbody>
</table>

Tableau 9

Les complexes portant le phosphoramidite dérivé du TADDOL ou le Siphos n’ont pas permis de catalyser la réaction (entrées 2 et 3 du Tableau 9). Le complexe C7 a conduit à
une conversion incomplète de 61% ainsi qu’à un excès énantiomérique faible de 29% (entrée 4 du Tableau 9).

Le catalyseur C10 portant comme phosphoramidite l’octahydro-Monophos donne un bon rendement de 78% et une énantiosélectivité identique à celle obtenue avec le complexe Pt/(R)-Monophos C2a (entrée 6 du Tableau 9).

Si l’on considère les trois complexes de phosphoramidite dérivé du binaphtol (entrées 1, 5 et 7 du Tableau 9), on s’aperçoit que le substituant du phosphore joue un rôle important dans l’issue de la réaction. La substitution du phosphore par NEt$_2$ conduit à une diminution de l’excès énantiomérique (de 63 à 43%) comparé à la Monophos ainsi qu’à un faible rendement (29%) (entrées 1 et 5 du Tableau 9). En revanche, lorsque le phosphore porte un groupe N(Me)CH$_2$Ph, l’excès énantiomérique (71%) est meilleur qu’avec la Monophos (entrée 1 et 7 du Tableau 9).

A ce point de notre travail, cet excès énatiomérique de 71% constitue le meilleur résultat obtenu (entrée 7 du Tableau 9).

c) Influence du centre stéréogène de l’ényne de départ sur la stéréochimie de la réaction

Dans les énynes-1,5 que nous avons étudiés jusqu’ici, le carbone propargylique substitué par le groupement oxygéné, est un centre stéréogène. Selon le mécanisme proposé pour la réaction (Schéma 15), ce centre stéréogène est encore présent lors de l’étape stéréodéterminante. Il pourrait donc jouer un rôle important dans le contrôle stéréochimique de la cycloisomérisation. Nous avons alors voulu déterminer le degré d’influence de ce centre stéréogène présent dans le produit de départ sur l’énantiosélectivité de la réaction. Les résultats de notre étude sont présentés dans ce paragraphe.

- Bibliographie

Les données de la littérature mettent en évidence un certain degré de transfert de chiralité lors de cycloisomérisations de substrats propargyliques chiraux, similaires à celle que nous étudions.
Furstner a étudié la cycloisomérisation des alcools allylpropargyliques diastéréomères 77a et 77b afin d'évaluer les implications stéréochimiques de la présence du centre stéréogène. La réaction est catalysée par le dichlorure de platine. Les expériences montrent que le rapport de diastéréomères de la bicyclohexanone dépend de la configuration relative du centre stéréogène propargylique et du carbone adjacent (Schéma 38).

Le substrat *syn* 77a conduit après cycloisomérisation aux produits bicycliques avec une bonne diastéréosélectivité (r.d. = 4,3) en faveur du produit 78a. En revanche, la même réaction à partir du substrat *anti* 77b donne une faible diastéréosélectivité de 1,5 :1 en faveur du produit 78c. La diastéréosélectivité des réactions est expliquée par des interactions stériques entre le groupe méthyle porté par le carbone allylique et les groupes adjacents, OH et cyclopropyle respectivement (Schéma 39).

L’intermédiaire carbénique A est favorisé par rapport au carbène B car il ne présente pas d’interactions entre le méthyle le cyclopropane. Il conduit au produit 78a. Le
Chapitre III : Cycloisomérisations énantiosélectives d’énynes-1,5

Le carbène C qui permet la formation de 78c est plus favorisé que le D qui conduit à 78d pour les mêmes raisons que précédemment.

Cet exemple montre l’influence des deux centres stéréogènes présents dans l’ényne de départ. Cependant on ne peut pas en déduire l’effet qu’aurait le centre stéréogène de l’alcool s’il était le seul élément chiral du substrat.

Lors des synthèses totales du α-cubèbène et du cubébol, les équipes de Fürstner110 et Fehr111,112,113 ont montré indépendamment que des esters propargylques énantioméquiquement purs donnent lieu à un transfert partiel de chiralité dans les conditions de cycloisomérisation. Les substrats (S)-79 et (R)-79 étudiés sont des diastéréomères (Schéma 40).

Fehr étudie la cycloisomérisation d’échantillons du substrat 80 présentant différents ratios de diastéréomères (Schéma 41).

Chapitre III : Cycloisomérizations énantiosélectives d’énynes-1,5

![Schéma 41](image)

La cycloisomérisation de l’ényne énantioenrichi 81 (ee=95%) en présence de PtCl₂ a également été étudiée (Schéma 42). Le produit tricyclique obtenu après hydrolyse a un excès énantiomérique de seulement 61%. Le transfert de chiralité lors de la réaction est donc seulement partiel.

![Schéma 42](image)

Les expériences de Fürstner et Fehr montrent que le centre stéréogène est donc bien présent lors de l’étape de cyclisation et influence l’issue stéréochimique de la réaction. Ils confortent donc les études théoriques de Soriano qui stipulent que le mécanisme passe d’abord par une étape de cyclisation puis par la migration du groupement oxygéné (Schéma 1). Nous avons donc voulu vérifier dans quelle mesure le centre stéréogène des substrats que nous avons étudiés joue un rôle dans le contrôle stéréochimique de la réaction.
- Synthèse de substrats énantiopurs et étude de leur cycloisomérisation108

\begin{center}
\includegraphics[width=\textwidth]{Scheme_43}
\end{center}

Schéma 43

Le 5-méthyl-1-phénylhex-5-en-1-yn-3-ol racémique est estérifié par l’acide (1\textit{S}, 4\textit{R}) camphanique en présence de DMAP et de DCC de manière quantitative. Le mélange de diastéréomères de l’estér camphanique est dédoublé par chromatographie en phase super critique (SFC). Les conditions de séparation par SFC sont : colonne Thar Instrument CYANO 60A, 6\textmu m, 250*10 mm, éluant : CO\textsubscript{2}/MeOH 93/7, 10 mL/min, 100 bar. Les temps de rétention sont de 3,9 (diastéréomère (\textit{R},\textit{S}),\textit{R})) et 4,3 min (diastéréomère (\textit{S},\textit{S},\textit{R})). Le diastéréomère avec un temps de rétention de 4,3 minutes a pu être cristallisé, ce qui a permis d’attribuer une configuration absolue (\textit{S}) au carbone propargylique par étude de diffraction des rayons X (Figure 1).
Chapitre III : Cycloisomérisations énantiosélectives d’énynes-1,5

Les esters diastéréoméqurement purs sont saponifiés en alcools énantioéqurement purs avec des rendements d’environ 82%, ces derniers sont alors protégés par un groupement t-butyldiméthylsilyle avec un rendement de 83%.

Les deux substrats énantioéqurement purs ont été soumis aux conditions de cycloisomérisation en présence de dichlorure de platine ou du complexe Pt/(R)-Monophos C2a (Schéma 44).

![Schéma 44]

<table>
<thead>
<tr>
<th>Entrée</th>
<th>Substrat</th>
<th>Catalyseur</th>
<th>Rendement (%)</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rac-S20</td>
<td>C2a</td>
<td>95</td>
<td>63 (-)</td>
</tr>
<tr>
<td>2</td>
<td>(S)-S20</td>
<td>PtCl2</td>
<td>48</td>
<td>54 (+)</td>
</tr>
<tr>
<td>3</td>
<td>(S)-S20</td>
<td>C2a</td>
<td>86</td>
<td>35 (-)</td>
</tr>
<tr>
<td>4</td>
<td>(R)-S20</td>
<td>C2a</td>
<td>88</td>
<td>92 (-)</td>
</tr>
</tbody>
</table>

Tableau 10

+a[α]_D=-15 , c=0,36 , CHCl₃.

En présence de dichlorure de platine, le substrat éantioipur conduit au produit bicyclique avec un excès énantioéqurement de 54% (entrée 2 du Tableau 10). Ce résultat montre que lors de la cycloisomérisation un transfert de chiralité non négligeable mais partiel se produit.
Chapitre III : Cycloisomérisations énantiosélectives d’éénynes-1,5

L’utilisation du complexe de (R)-Monophos C2a entraîne la cycloisomérisation du substrat (S)-S20 avec un rendement de 86% et un excès énantiosélectif de seulement 35% (entrée 3 du Tableau 10). En revanche, le même complexe donne en présence du substrat (R)-S20 un rendement de 88% et un très bon excès énantiomérique de 92% (entrée 4 du Tableau 10). Dans les deux essais, le produit final majoritaire a la même configuration. On peut donc dire que le contrôle stéréochimique du catalyseur chiral surpasse l’effet du substrat chiral et qu’il existe un effet match entre le catalyseur C2a et le substrat de configuration absolue (R). On observe également que les excès énantiomériques de 35 et 92 % obtenus à partir des deux énationmers séparément sont en accord avec l’énantiosélectivité de 63% obtenue avec le substrat racémique.

Si l’on veut exprimer de manière quantitative l’effet du centre stéréogène du produit de départ dans la réaction du Schéma 44, il faut considérer les deux cas limites :

- Soit le centre stéréogène n’a aucun effet sur la stéréochimie du produit bicyclique. Dans ce cas l’excès énantiomérique du produit obtenu à partir de l’éényne (S)-S20 serait le même que celui du bicycle issu de la cycloisomérisation de (R)-S20, c’est à dire 63%.

- Soit le centre stéréogène a un effet maximal sur la stéréochimie du produit d’arrivé (effet match/mismatch maximum avec le catalyseur chiral). Dans ce cas l’excès énantiomérique du bicycle obtenu à partir de (R)-S20 serait de 100% et celui du bicycle généré à partir de (S)-S20 serait de 26%.

Ces deux cas limites sont représentés sur le graphique suivant. On en déduit que dans notre cas (i.e. 92% ee pour le bicycle issu de (R)-S20, l’effet match/mismatch entre le centre stéréogène et le catalyseur chiral est d’environ 80% par rapport à son niveau maximum possible.
Ces résultats mettent en évidence le rôle important du centre stéréogène du produit de départ dans l’issue stéréochimique de la réaction. La configuration du centre stéréogène n’est pas simplement transférée vers le produit de cycloisomérisation et l’induction asymétrique peut être contrôlée par des catalyseurs chiraux comme les complexes de deuxième génération de type Pt/(R)-Monophos.

3) Étude de la réaction de cycloisomérisation d’énynes hydroxylés

Dans la suite de nos travaux, nous avons voulu étudier plus en détail la cycloisomérisation d’énynes hydroxylés puisque les résultats préliminaires (tableau 2 de ce chapitre) étaient plutôt encourageant. Une partie de ces travaux a été effectuée en collaboration avec Yang Zhang lors de sa première année de thèse au laboratoire. La cycloisomérisation de la 3-hydroxy-5-méthyl-1-phényl-5-hexèn-1-yne en bicyclohexanone est réalisée en présence des catalyseurs Pt/phosphoramidite portant différents substituants sur l’azote du carbène (Me, t-Bu et Bn) (Schéma 45). Le phosphoramidite chiral est le (R)-Monophos.

![Schéma 45](image-url)
Chapitre III : Cycloisomérisations énantiosélectives d’énynes-1,5

<table>
<thead>
<tr>
<th>Complexes</th>
<th>Rendement (%)</th>
<th>Excès énantiomérique (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>64</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>58</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>75</td>
</tr>
</tbody>
</table>

Tableau 11

Dans tous les cas, les conversions sont totales et les rendements sont bons. Lorsque le t-butyyle substitue le carbène, l’excès énantiomérique chute à 27% comparé au complexe de référence où l’azote porte un méthyle. En revanche, un groupement benzyle conduit à une meilleure énantiosélectivité (ee=75%). Avec ce dernier complexe, nous avons vérifié que la température de réaction n’influence pas l’enantiosélectivité. En effet, on observe que lorsque la réaction est réalisée à température ambiante, l’excès énantiomérique est de 72%. L’activité catalytique reste excellente même à température ambiante.

Nous avons ensuite engagé les catalyseurs portants d’autres phosphoramidites que le Monophos (II.4.b du chapitre II) dans la réaction de cycloisomérisation modèle (Schéma 46).

Schéma 46
<table>
<thead>
<tr>
<th>entrée</th>
<th>catalyseur</th>
<th>Conversion (%)</th>
<th>Rendement (%)</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>100</td>
<td>64</td>
<td>53</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>100</td>
<td>52</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>100</td>
<td>50</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>100</td>
<td>50</td>
<td>23</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>100</td>
<td>58</td>
<td>43</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>100</td>
<td>55</td>
<td>59</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>100</td>
<td>56</td>
<td>71</td>
</tr>
</tbody>
</table>

Tableau 12

Les rendements sont compris entre 50 et 64%. Les catalyseurs C7 et C8 donnent de très faibles excès énantiosélectifs (entrées 2 et 3 du Schéma 13). Le phosphoramidite
dérivé du TADDOL induit un excès énantiomérique de 23% (entrée 4 du Schéma 13). Les phosphoramidites C11 et C9 qui diffèrent du Monophos par les substituants présents sur l’azote (respectivement Et₂ et MeBn) génèrent la bicyclohexanone avec des excès énantiomériques de 59 et 71%. Ces résultats sont meilleurs que ceux obtenus avec le \((R) \)-Monophos.

En conclusion, la synthèse d’une variété de complexes de platine de seconde génération comportant des phosphoramidites comme ligands chiraux nous a permis d’obtenir de bons excès énantiomériques pour la formation de bicyclohexanones à partir d’énynes hydroxylés. Le meilleur résultat est obtenu avec le catalyseur C2d où le ligand chiral est le \((R) \)-Monophos et où l’azote du carbène est substitué par un benzyle. L’excès énantiomérique est alors de 75% et le rendement de 80%.
Cette étude est toujours en cours au laboratoire, une optimisation plus fine du système catalytique ainsi que des variations de structure du substrat sont réalisées.

III. Désymérisation de diénynes-1,5

1) Introduction

Comme nous l’avons vu dans le paragraphe précédent, le centre stéréogène présent dans les éénynes-1,5 que nous avons étudiés influence l’issue stéréochimique de la réaction de cycloisomérisation et en affecte l’énantiosélectivité. Pour contourner cette difficulté, nous avons voulu étudier la cyclisation de substrats similaires mais symétriques. Ces molécules présentent un second bras vinylique identique au premier, en position propargylique (Schéma 47).

![Schéma 47](image_url)
Chapitre III : Cycloisomérisations énantiosélectives d’énynes-1,5

Ces molécules diéniques ne possèdent pas d’hydrogène en position propargylique susceptible de migrer au cours du cycle catalytique. Nous avons alors introduit un groupement de type O-acyle capable de migrer lors de la réaction de cycloisomérisation.

Il n’y a pas d’exemple dans la littérature de cycloisomérisations de substrats symétriques de ce type. Cependant des substrats diéniques similaires ont été étudiés par l’équipe de Grubbs dans des réactions de métathèse.\(^{114,115}\) Un exemple est donné ci-dessous (Schéma 48).

![Schéma 48](image)

Des molécules analogues mais comportant deux chaînes oléfiniques de longueurs différentes et un groupement oxygéné en position propargylique ont servi comme substrats dans des réactions de cycloisomérisation catalysées par des complexes de platine ou d’or (un exemple est donné dans le Schéma 49).\(^{116,117,118,119,120}\)

![Schéma 49](image)

Le diényne 84 cyclise en présence de PtCl\(_2\) dans le toluène à 80°C pour donner majoritairement le bicycloheptène 85, par une réaction impliquant la chaîne oléfinique

la plus longue. Également 5 à 10% de bicyclohexène \textbf{86} provenant de la cyclisation de la chaine oléfinique la plus courte est obtenu.

Ces derniers résultats nous laissent penser que des énynes analogues mais symétriques pourraient cycliser en présence de catalyseurs à base de platine.

2) \textit{Étude de la cycloisomérisation de diénynes dont la triple liaison est substituée}

Nous avons étudié la cycloisomérisation de diénynes-1,5 mais aussi de diénynes-1,6 étant donné que selon les résultats de la littérature cités ci-dessus, ces derniers devraient être de meilleurs substrats.

\textit{a) Synthèse des diénynes}

Des diénynes dont la triple liaison est substituée par un phényle ou un méthyle ont été synthétisés. Les chaînes oléfiniques de deux différentes longueurs ont été introduites selon le schéma de synthèse suivant (Schéma 50).

\begin{center}
\includegraphics[width=0.8\textwidth]{sch_50.png}
\end{center}

Schéma 50

Tout d’abord, l’acide propionique est estérifié par le bromure de benzyle. Les rendements sont excellents. Puis les deux branches oléfiniques sont introduites par double addition des réactifs de Grignard correspondants. Les modes opératoires sont similaires pour tous les substrats quel que soit leur schéma de substitution. Enfin,
l'alcool est protégé par un groupement acétyle avec des rendements compris entre 53 et 85%.

\textit{b) Tests catalytiques}

Les substrats \textbf{S30-S34} ont été engagés dans les conditions de catalyse en présence de dichlorure de platine (4% mol de catalyseur, toluène, 90°C, 18h) ou du complexe Pt/(R)-Monophos \textbf{C2a} (4% mol du catalyseur, AgBF₄ (4% mol), toluène, 90°C, 18h).

\begin{center}
\begin{tikzpicture}
 \node (A) at (0,0) {\textbf{Schéma 51}};
 \draw (A) -- (B);
\end{tikzpicture}
\end{center}

\begin{center}
\begin{tabular}{|c|c|c|c|}
\hline
\textbf{Entrée} & \textbf{Substrat} & \textbf{Catalyseur} & \textbf{Produit} \\
\hline
1 & \begin{tikzpicture}
 \node (A) at (0,0) {\textbf{OAc}};
 \draw (A) -- (B);
\end{tikzpicture} & \textbf{PtCl₂} & \begin{tikzpicture}
 \node (A) at (0,0) {\textbf{Mélange complexe}};
 \draw (A) -- (B);
\end{tikzpicture} \\
\hline
2 & \begin{tikzpicture}
 \node (A) at (0,0) {\textbf{Ph}};
 \draw (A) -- (B);
\end{tikzpicture} & \textbf{S30} & \begin{tikzpicture}
 \node (A) at (0,0) {\textbf{C2a}};
 \draw (A) -- (B);
\end{tikzpicture} & 14\% \\
\hline
3 & \begin{tikzpicture}
 \node (A) at (0,0) {\textbf{OAc}};
 \draw (A) -- (B);
\end{tikzpicture} & \textbf{PtCl₂} & \begin{tikzpicture}
 \node (A) at (0,0) {\textbf{Mélange complexe}};
 \draw (A) -- (B);
\end{tikzpicture} \\
\hline
4 & \begin{tikzpicture}
 \node (A) at (0,0) {\textbf{Ph}};
 \draw (A) -- (B);
\end{tikzpicture} & \textbf{S31} & \begin{tikzpicture}
 \node (A) at (0,0) {\textbf{C2a}};
 \draw (A) -- (B);
\end{tikzpicture} & 57\% \\
\hline
5 & \begin{tikzpicture}
 \node (A) at (0,0) {\textbf{OAc}};
 \draw (A) -- (B);
\end{tikzpicture} & \textbf{PtCl₂} & \begin{tikzpicture}
 \node (A) at (0,0) {\textbf{Mélange complexe}};
 \draw (A) -- (B);
\end{tikzpicture} \\
\hline
6 & \begin{tikzpicture}
 \node (A) at (0,0) {\textbf{Ph}};
 \draw (A) -- (B);
\end{tikzpicture} & \textbf{S32} & \textbf{C2a} & Pas de conversion \\
\hline
\end{tabular}
\end{center}

136
Chapitre III : Cycloisomérisations énantiomélectives d’énynes-1,5

<table>
<thead>
<tr>
<th>7</th>
<th>PtCl₂</th>
<th>Mélanges complexes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AcO</td>
<td>S33</td>
</tr>
<tr>
<td>8</td>
<td>C2a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25%</td>
<td>+départ + autres produits</td>
</tr>
</tbody>
</table>

Tableau 13

<table>
<thead>
<tr>
<th>9</th>
<th>PtCl₂</th>
<th>Mélanges complexes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AcO</td>
<td>S34</td>
</tr>
<tr>
<td>10</td>
<td>C2a</td>
<td>Pas de conversion</td>
</tr>
</tbody>
</table>

Aucun des substrats n’a permis l’obtention des produits de cycloisomérisation attendus quelle que soit la longueur de la chaîne oléfinique. Le dichlorure de platine réagit avec tous ces substrats en formant des mélanges complexes de produits dont aucun n’a pu être clairement identifié.

En présence du complexe Pt/(R)-Monophos C2a activé par addition d’AgBF₄, les substrats S32 et S34 sont inertes (entrées 6 et 10 du Tableau 13). Dans le cas des substrats S30, S31 et S33 on observe trois modes de réactivité :

- L’élimination de l’acétate conduit à un trièn-yne (entrées 2 et 4 du Tableau 13). Des expériences supplémentaires où ces substrats sont mis en présence d’AgBF₄ seul nous ont montré que cette réaction est catalysée par l’argent.
- La migration 1,3 de l’acétate sur le carbone β de l’alcyne conduit à l’allène (entrée 8 du Tableau 13)_{116,117,119}.
- La migration d’un groupe allyle vers le carbone β de l’alcyne conduit à un allène et après hydrolyse à la cétone correspondante (entrée 4 du Tableau 13).

Les complexes d’or étant souvent plus actifs que ceux de platine en cycloisomérisation, nous avons décidé d’examiner brièvement la possibilité de catalyser ces mêmes réactions par des complexes d’or.
Les diénynes **S30** et **S32** réagissent en présence du complexe (PPh3)AuCl pour conduire aux bicyclohexènes **P30** et **P32** attendus dans des conditions douces (DCM, température ambiante, 6h) (Schéma 52). L’or est donc effectivement un métal plus adapté que le platine pour catalyser cette réaction même si les rendements restent modestes.

Par la suite nous avons effectué quelques essais préliminaires de catalyse énantiosélective avec des complexes d’or. Les catalyseurs chiraux ont soit été formés in situ, soit préformés et isolés avant d’être engagés dans la réaction de catalyse. Les conditions réactionnelles utilisées pour générer le catalyseur in situ sont : 10% du complexe AuCl(SMe2), 10% du ligand chiral (S)-Monophos et 10% d’AgBF₄ agités à température ambiante pendant une heure avant l’addition du substrat.¹²¹ La réaction est réalisée dans le dichlorométhane à température ambiante (Schéma 53).

Ce système catalytique n’a pas permis la formation du composé bicyclopropanique. En revanche, nous avons pu observer par RMN la formation exclusive de l’allène **87** issu de la migration de l’acétate.

Pour la synthèse d’un complexe bien défini d’Au(I), nous avons choisi d’utiliser une méthode décrite par Fürstner.¹²² Le complexe d’or est formé à partir de

tetrachloroaurate de sodium dihydrate et de Monophos en présence de 2,2-thiodiéthanol (Schéma 54).

Le complexe ClAu(Monophos) est obtenu avec un rendement de 63%.

A partir du complexe **C12**, l’espèce catalytique active est formée par addition d’AgBF₄. Le complexe d’or cationique ainsi généré catalyse la réaction de cycloisomérisation et conduit au produit désiré avec un rendement de 29% (Schéma 55). Les excès énantiomériques sont déterminés par HPLC dans les conditions suivantes : Colonne CHIRACEL AD-H, éluant : hept/iPrOH 99/1, 1 mL/min, temps de rétention 4,4 et 5,1 min. Aucune induction asymétrique n’a été observée, ce qui était dans une certaine mesure prévisible puisque seulement les phosphoramidites substitués en position 3,3’ par des groupes volumineux permettent habituellement une certaine discrimination chirale.

Le but de ce premier essai était de vérifier l’activité catalytique des complexes Au-phosphoramidite. Le résultat obtenu ouvre des perspectives intéressantes pour la mise au point de versions énantiomérisées de ces nouvelles réactions.
3) **Étude de la cycloisomérisation de diénynes dont la triple liaison est terminale**

Les tests catalytiques réalisés sur la première série de substrats de type diénynes présentés ci-dessus n’ont pas donné les résultats escomptés tout au moins dans les réactions catalysées par le platine. Cependant, au regard de la littérature citée plus haut\(^\text{118,119}\), les diénynes non substitués sur la triple liaison pourraient permettre les cycloisomérisations attendues. Nous avons donc synthétisé et étudié en catalyse des diénynes comportant une fonction alcyne vrai.

a) Synthèse des diénynes

Les diénynes à fonction alcyne terminale ont été préparés par addition d’un acétylure sur une cétone diénique. Par exemple, l’alcool **91** comportant deux chaînes butényles a été synthétisé comme indiqué ci-dessous (Schéma 56).

![Schéma 56](image)

Une double addition de bromure de 3-butényl magnésium sur le formate d’éthyle conduit à l’alcool **88** avec un rendement quantitatif. La cétone correspondante est ensuite obtenue par oxydation au PCC avec un très bon rendement de 93%. **89** subit alors l’addition du triméthylsilylacétylure avec un rendement de 92%. Le groupement triméthylsilyle est ensuite éliminé par réaction avec le fluorure de tetrabutylammonium. Les substrats **S35** et **S36** sont obtenus à partir de l’alcool **91** par estérisation. Des groupements acétate et paranitrobenzoate sont introduits (Schéma 57).
Les estérifications par l’anhydride acétique ou le chlorure de paranitrobenzoyle se font en présence de triéthylamine et de DMAP dans le dichlorométhane à température ambiante. Les deux substrats S35 et S36 sont obtenus avec des rendements quantitatifs et de 53% respectivement.

Le substrat S37 comportant deux chaînes allyles a été synthétisé de manière analogue selon le schéma suivant (Schéma 58).

L’hepta-1,6-dièn-4-ol est oxydé en cétoné par l’IBX avec un rendement de 85%. Le triméthylsilyleacétylure est additionné sur la cétoné 92 avec un rendement de 65%. L’alcool 93 est ensuite estérifié par le chlorure de paranitrobenzoyle puis le groupement triméthylsilyl est déplacé en présence de TBAF. Le substrat est obtenu avec un rendement de 41%.

Pour finir, l’alcool 97 qui présente deux fonctions méthylallyle a été obtenu de manière similaire à celle utilisée pour l’alcool 91 (Schéma 59).123

On réalise une double addition du bromure de 2-méthyl-2-propènyl magnésium sur le formate d'éthyle avec un rendement de 27%. L'alcool 94 est oxydé quantitativement en cétone 95. Cette dernière subit ensuite l'addition du triméthylsilylacétylure pour former l'alcool 96 avec un rendement de 50%. Le groupement triméthylsilyle est enlevé par action du TBAF avec un rendement de 88%.

Cet alcool est transformé par la suite soit en acétate, soit en paranitrobenzoate avec des rendements de 81% et 67% respectivement (Schéma 60).

Nous avons également tenté d'introduire d'autres groupements sur l'oxygène comme un pivalate ou un benzoate sans succès.

\textit{b) Tests catalytiques}

Les diénynes sont engagés dans la réaction de cycloisomérisation en présence de dichlorure de platine (Schéma 61).
Chapitre III : Cycloisomérizations énantiosélectives d’énynes-1,5

![Schéma 61](image)

<table>
<thead>
<tr>
<th>Entrée</th>
<th>Substrat</th>
<th>Produit</th>
<th>Rendement (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>33</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>56</td>
</tr>
</tbody>
</table>

Tableau 14

Dans tous les cas, les conversions sont totales et les produits bicycliques attendus sont obtenus avec des rendements d’environ 60% (entrées 1, 4 et 5 du Tableau 14), 38% et 33% (entrées 2 et 3 du Tableau 14).

Les produits de cycloisomérisation **P35** et **P38** comportant un groupement acétate se dégradent facilement contrairement aux paranitrobenzoates correspondants. Il semblerait que les molécules se réarrangent en un produit non clairement identifié qui ne présente pas de motif cyclopropane. Ces résultats montrent que lorsque l’alcyné n’est pas substitué la cycloisomérisation des diénynes possédants un groupe acyle en position propargylique est possible.
Les réactions énantiosélectives sont réalisées en présence des catalyseurs Pt/Monophos ou Pt/Binepine et d’AgBF₄ dans le toluène (Schéma 62). L’AgBF₄ ne doit pas être utilisé en excès par rapport au complexe car il conduit à la formation de sous-produits de type allène.

![Schéma 62](image)

<table>
<thead>
<tr>
<th>Substrat</th>
<th>Produit</th>
<th>[Pt]</th>
<th>T (°C)</th>
<th>Conv. (%)</th>
<th>Rdt (%)</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OAc</td>
<td>C2a</td>
<td>60</td>
<td>48</td>
<td>6</td>
<td>10ᵃ</td>
</tr>
<tr>
<td>2</td>
<td>S35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>P35</td>
<td>C2a</td>
<td>90</td>
<td>91</td>
<td>33</td>
<td>5ᵃ</td>
</tr>
<tr>
<td>4</td>
<td>S38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>P38</td>
<td>C3a</td>
<td>90</td>
<td>100</td>
<td>32</td>
<td>6⁹ᵇ</td>
</tr>
</tbody>
</table>

Tableau 15

Les excès énantiomériques sont déterminés par HPLC :

ᵃ colonne CHIRACELL IA, éluant hept/iPrOH 99,5/0,5, 1 mL/min, temps de rétention 5,5 et 6 min.
ᵇ colonne CHIRACELL IC, éluant hept/iPrOH 99,5/0,5, 1 mL/min, temps de rétention 5,1 et 5,4 min.

La réaction a été étudiée d’abord à partir des acétates S35 et S38. Le substrat S35 conduit au produit bicyclique P35 attendu en présence du complexe Pt/(R)-Monophos C2a. Si à température ambiante, aucune conversion n’est observée, à 60°C on obtient 48% de conversion et 10% d’excès énantiomérique, et à 90°C la conversion est de 91% et l’énantiosélectivité de 5%. Le complexe Pt/Binépine C3a donne le même produit de
Chapitre III : Cycloisomérisations énanti sélectives dénynes-1,5

cycloisomérisation à 90°C avec une conversion quasi-totale et un très faible excès énantiomérique de 6%. Malgré des taux de conversion élevés les rendements sont faibles puisque les produits bicycliques sont peu stables. Le diényle-1,5 **S38** est également isomérisé en **P38** par les complexes **C2a** et **C3a**. Le complexe Pt/Binépine **C3a** ne permet pas d’induire de l’é nanti sé lectivité dans la réaction. En revanche, le complexe Pt/(R)-Monophos **C2a** permet la formation du produit désiré avec un excès é nantiomérique de 69%. Ce résultat encourageant nous a conduit à poursuivre notre étude. Mais les substrats **S35** et **S38** présentent deux inconvénients majeurs. D’une part les bicycles correspondants révèlent peu en UV, ce qui rend la détermination de l’excès énantiomérique difficile, d’autre part ils se dégradent dans le temps.

Par conséquent, d’autres essais ont été réalisés en utilisant comme substrat les para nitrobenzoates **S36**, **S37** et **S39** (Schéma 63).

![Schéma 63](image)

<table>
<thead>
<tr>
<th>Entrée</th>
<th>Substrat</th>
<th>Produit</th>
<th>Conv. (%)</th>
<th>Rendement (%)</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S36</td>
<td>P36</td>
<td>n.d.</td>
<td>18 (RMN)</td>
<td>33a</td>
</tr>
<tr>
<td>2</td>
<td>S37</td>
<td>P37</td>
<td>35</td>
<td>16</td>
<td>20b</td>
</tr>
<tr>
<td>3</td>
<td>S39</td>
<td>P39</td>
<td>18</td>
<td>18</td>
<td>53c</td>
</tr>
</tbody>
</table>

Tableau 16
Chapitre III : Cycloisomérisations énantiosélectives d’énynes-1,5

Les excès énantiomériques sont déterminés par HPLC :

- colonne CHIRACEL IA, éluant hept/iPrOH 99/1, 1 mL/min, temps de rétention 9,8 et 10,9 min.
- colonne CHIRACEL IC, éluant hept/iPrOH 99/1, 1 mL/min, temps de rétention 14,2 et 17,2 min.
- colonne CHIRACEL IC, éluant hept/iPrOH 99/1, 1 mL/min, temps de rétention 10,1 et 13,1 min.

On remarque que le fait de remplacer le groupement acétate par un groupement para-nitrobenzoate dans le cas de l’ényne-1,6 S36 (entrée 1 du Tableau 16 comparé à entrée 2 du Tableau 15) permet d’obtenir un excès énantiomérique un peu meilleur (de 5 à 33%). En revanche, dans le cas de l’ényne-1,5 S39 la fonction para-nitrobenzoate entraîne une légère diminution de l’excès énantiomérique à 53% comparé à 69% pour l’acétate correspondant (entrée 3 du Tableau 16). Les conversions et rendements obtenus à partir de ces trois paranitrobenzoates sont faibles.

Ces résultats montrent que le groupement porté par l’oxygène du substrat influence à la fois la réactivité et l’énantiosélectivité de la réaction. L’introduction de différents substituants sur les chaînes oléfiniques du substrat pourrait être envisagé comme par exemple des groupements plus encombrés à la place du méthyle. D’autres catalyseurs pourraient également être testés afin de compléter cette étude.

IV. Conclusion :

Dans ce chapitre, les résultats obtenus dans les réactions de cycloisomérisation d’énynes-1,5 hydroxylés catalysées par des complexes de seconde génération portant des phosphoramidites comme ligands chiraux ont été présentés.

Une étude préliminaire a tout d’abord été effectuée avec des énynes présentant un groupement oxygéné mobile (OPNB) ou non mobile (OTBS, OH). Les résultats encourageants obtenus avec les énynes comportant un groupe non mobile nous ont conduit à étudier ces deux réactions en détail. Lorsque le substrat présente un OTBS en position propargylique, nous avons mis en évidence l’influence du centre stéréogène du produit de départ sur l’issue stéréo chimique de la réaction.

Les meilleurs résultats sont des excès énantiomériques de 71% pour l’ényne présentant un OTBS et de 75% pour l’ényne substitué par un alcool. Ces réactions sont toujours à
Chapitre III : Cycloisomérisations énantiosélectives d’énynes-1,5

l’étude au laboratoire, une optimisation plus fine des catalyseurs et des conditions réactionnelles est réalisée ainsi que des variations de substituants du substrat.

Nous avons également présenté des résultats préliminaires concernant la désymétrisation d’énynes-1,5 hydroxylés comportant un groupe oxygéné mobile. Quelques résultats encourageants ont été obtenus. Nous avons mis en évidence :

- La cycloisomérisation de diénynes en bicyclohexènes catalysée par des complexes d’or (Schéma 55).
- Un niveau d’énantiosélectivité encourageant dans la cycloisomérisation de diénynes où l’alcyne a une triple liaison terminale (ee jusqu’à 69%, Tableau 15 et Tableau 16).

Cette étude doit être poursuivie en optimisant les conditions réactionnelles et les catalyseurs.

Finalement, une meilleure compréhension des mécanismes de cycloisomérisation d’énynes-1,5, avec ou sans migration du groupement oxygéné, et de leur contrôle stéréochimique nous permettrait d’améliorer le système catalytique de façon plus appropriée.
Chapitre IV :
Autres projets et perspectives
Chapitre IV : Autres projets et perspectives

I. **Design de nouveaux pré-catalyseurs potentiels**

Au cours de ce travail nous avons imaginé de nouveaux complexes de platine(II) qui pourraient être utilisés comme catalyseur dans les réactions de cyclosomérisation et qui présenteraient une structure complémentaire à celles des complexes de première et seconde génération décrits jusqu’ici. La première génération de complexes possède dans la sphère de coordination du platine un carbène monodenté, une diphosphine chirale et un ligand labile ; la seconde génération comporte un carbène bidenté formant un platinacycle et une monophosphine chirale. La nouvelle structure imaginée serait platinacyclique comme les complexes de seconde génération mais cette fois-ci, la phosphine ferait partie du métallacycle. Les deux autres ligands seraient un carbène monodenté et un halogène (Schéma 1).

![Schéma 1](image1.png)

Pour former un platinacycle phosphoré chiral il est envisageable d’utiliser des phosphines ferrocéniques telles que 98 (Schéma 2). Il s’agit de phosphines à chiralité plane.

![Schéma 2](image2.png)

La fonction halogénure permettrait la formation d’un métallacycle à sept chainons dans une étape d’addition oxydante. Le complexe de platine(II) serait obtenu à partir d’un
Chapitre IV : Autres projets et perspectives

complexe de platine(0) par une stratégie analogue à celle suivie pour la synthèse des catalyseurs de première et deuxième génération (Schéma 3).

![Schéma 3](image)

Lors de l’étape clé, la phosphine viendrait substituer un ligand oléfinique sur le platine, puis l’addition oxydante de l’aryle halogéné se produirait.

La première étape pour la mise en œuvre de ce projet consiste à étudier la synthèse du ligand phosphoré convenablement fonctionnalisé. C’est ce qui a été réalisé au cours de ce travail.

Notre objectif est la synthèse de phosphines de structure générale A. En s’inspirant de méthodes de la littérature, notre stratégie consiste à former d’abord le squelette ferrocénique à chiralité plane et à introduire ensuite successivement l’halogénure d’aryle et la fonction phosphorée (Schéma 4).

![Schéma 4](image)

La voie de synthèse suivante a tout d’abord été envisagée (Schéma 5).
La (S)-α-(méthoxyméthyl)pyrrolidine¹²⁴ qui joue le rôle d’auxiliaire chiral est greffée sur le ferrocène par amination réductrice du ferrocène carboxaldéhyde.^{125,126} Le composé **99** est isolé avec un rendement de 57%. Une ortholithiation/iodation diastéréosélective assistée par la (S)-α-(méthoxyméthyl)pyrrolidine permet d’obtenir l’iodure **100** désiré avec un rendement de 92% et un rapport diastéréoisomérique supérieur à 99/1.^{125,126} La copule chirale est déplacée par réaction avec l’anhydride acétique afin d’introduire une fonction acétate qui doit servir ensuite de groupement partant.

Cette dernière étape est peu reproductible avec des rendements allant de 20 à 60%. Une certaine instabilité du composé **101** pourrait expliquer ces faibles rendements et la non reproductibilité de cette réaction. Un couplage de Suzuki est ensuite réalisé entre le ferrocène iodé et l’acide ortho-chlorophénylboranique en présence de palladium tetrakis(triphénylphosphine) et de carbonate de césium. Un rendement de 68% a été obtenu.

Les faibles rendements de l’étape de formation de l’acétate nous ont amenés à étudier une autre voie de synthèse où les étapes de formation de l’acétate et de réaction de Suzuki sont inversées (Schéma 6).

Un couplage de Suzuki est réalisé entre l'iodyure 100 et l’acide ortho-chlorophénylboronique. Le meilleur catalyseur est ici le PdCl\(_2\)(dppf). La réaction se fait en présence d’une solution d’hydroxyde de sodium 3N dans du 1,2-diméthoxyéthane à 85°C pendant 4 heures. Le produit de couplage est obtenu avec un rendement de 69%.

Le ferrocène 103a est mis en réaction avec de l’anhydride acétique, une nuit à 90°C afin de former 102a qui est obtenu avec un rendement de 69%.

La phosphine désirée 98a est ensuite formée par réaction de l’acétate 102a avec la diphénylphosphine dans l’acide acétique glacial à 50°C pendant 2 heures. La phosphine 98a s’oxydant très rapidement à l’air, la purification par chromatographie sur gel de silice, ou par extraction du milieu réactionnel à l’acétate d’éthyle a été réalisée sous atmosphère d’argon et avec des solvants dégazés. Néanmoins elle n’a pas pu être isolée sous forme totalement pure. Malgré la sensibilité à l’air de cette phosphine, nous avons tenté la synthèse du platinacycle C20 en engageant directement la phosphine partiellement purifiée dans la réaction avec un complexe carbénique de platine(0) (Schéma 7).

Le carbène choisi est le plus simple possible afin de ne pas gêner stériquement l’approche de la phosphine et l’addition oxydante. Après réaction dans le tetrahydrofurane à des températures comprises entre 60 et 90°C, aucun produit n’a pu être isolé. Le platine(0) de départ compose essentiellement le brut réactionnel, la phosphine qui n’est plus visible par RMN s’est probablement dégradée.

Nous avons alors supposé que l’aryle chloré n’était pas assez réactif dans l’étape d’addition oxydante. Afin de favoriser l’addition oxydante, nous avons synthétisé un ligand analogue mais possédant un aryle bromé (Schéma 8).
Les conditions réactionnelles du couplage de Suzuki et de déplacement de la copule chirale sont identiques à celles décrites précédemment. Les rendements sont respectivement de 100 et 77%.

L’étape de formation de la phosphine a été étudiée ensuite. Le composé 102b réagit avec la diphénylphosphine dans l’acide acétique glacial à 50°C pendant deux heures pour obtenir la phosphine désirée. La protection de la phosphine par un BH₃ a permis l’obtention d’une forme non oxydable du ligand et de pouvoir le caractériser complétement. Le rendement est de 21% si la réaction est faite dans les mêmes conditions, cependant à température ambiante le rendement est de 13% seulement.

Jusqu’ici le rendement trop faible de la synthèse de 98 n’a permis de réaliser que quelques essais préliminaires de complexation. Ces essais n’ont pas permis jusqu’ici d’obtenir le complexe désiré C20. Dans la suite de cette étude, il faudra étudier de manière plus détaillée la formation du platinacycle à partir de cette phosphine.

En cas d’échec, on pourra envisager de remplacer le bromure arylique par un iodure qui devrait être plus réactif dans l’étape d’addition oxydante.

II. Étude de complexes carbéniques de platine(II) comme potentiels agents antitumoraux

Au laboratoire, les propriétés cytotoxiques de complexes de platine carbéniques sont étudiées. Au cours de ma thèse, j’ai pu participer à ces travaux, en effet, la synthèse de ces composés suit la même stratégie que celle décrite pour les catalyseurs présentés dans ce manuscrit.
Chapitre IV : Autres projets et perspectives

Les cancers résultent de l’acquisition de multiples altérations génétiques conduisant la cellule à échapper aux mécanismes normaux de contrôle de la prolifération. En chimiothérapie, une stratégie longtemps utilisée pour lutter contre les cancers a été de cibler directement l’ADN et/ou d’interférer avec le métabolisme des acides nucléiques et la prolifération cellulaire. Cette approche a conduit entre autre au développement du cisplatine127 [cis-(NH\textsubscript{3})PtCl\textsubscript{2}] qui est l’un des agents anticancéreux les plus couramment utilisé en chimiothérapie. Il est utilisé pour le traitement des cancers de la tête, du cou, des testicules, des ovaires et des poumons, seul ou en complément d’autres traitements comme la radiothérapie. Cependant, sa non sélectivité pour les cellules tumorales comparée aux cellules saines entraîne de lourds effets secondaires indésirables ainsi que l’émergence de résistances.128 Depuis plus de trente ans, de nombreuses recherches ont été menées afin de trouver de nouvelles molécules plus sélectives et efficaces sur des cellules tumorales résistantes au cisplatine. Des analogues du cisplatine ont été développés, comme par exemples l’oxaliplatine et le carboplatine utilisés pour le traitement du cancer colorectal et des tumeurs ovariennes (Schéma 9).

![Schéma 9](image)

Malheureusement, ces molécules présentent également des effets secondaires comme des neuropathies périphériques ou la myelosuppression129, et la recherche de nouveaux analogues du cisplatine reste un objectif majeur. Dans ce contexte, notre équipe, en collaboration avec Sanofi-Aventis, a envisagé d’étudier le potentiel anticancéreux des complexes de platine(II) comportant des ligands carbènes N-hétérocycliques (NHC).130,131 L’intérêt des NHC est qu’ils sont accessibles en quelques étapes et facilement modulables, ce qui permettrait de faire varier à la fois les propriétés

physicochimiques et l’activité biologique des complexes de platine. Quelques applications biomédicales ont été rapportées pour des dérivés NHC. Des complexes d’argent et d’or sont connus pour leur propriétés antimicrobiennes tandis que des complexes d’or de cuivre de palladium et d’argent montrent une toxicité tumorale.

Dans notre équipe le Dr Myriam Skander a préparé des complexes de platine de formule générale Pt(NHC)I₂(amine). La voie de synthèse est la même que celle utilisée pour les complexes de première génération (chapitre II) à la différence que le ligand phosphoré est remplacé par un ligand azoté. Un exemple est donné ci-dessous (Schéma 10).

Le complexe (NHC)Pt(0) est préparé à partir du sel d’imidazolium 17 et du catalyseur de Karstedt avec un rendement de 83%. Puis par ajout successif de diiode et de

\[\text{Schéma 10} \]

cyclohexylamine sur O7, le complexe NHC-amine C14a est obtenu avec un rendement de 62%, sous forme d’un seul isomère. Les clichés de diffraction des rayons X montrent que le complexe adopte une configuration relative trans des deux ligands iodures (Figure 1).

Les activités cytotoxiques des complexes ont été évaluées in vitro sur des lignées cellulaires humaines sensibles au cisplatine, CCRF-CEM (leucémie) et NCI-H460 (cancer du poumon), mais également sur des cellules résistantes au cisplatine comme les A2780/DDP, CH1/DDP et SKOV3 (cancer des ovaires). Quelques valeurs d'IC50(μM) sont donnés dans le tableau suivant (Tableau 1). De bonnes cytotoxicités ont été obtenues sur les cellules sensibles au cisplatine mais également sur les cellules résistantes.
Chapitre IV : Autres projets et perspectives

<table>
<thead>
<tr>
<th>IC_{50} (μM)</th>
<th>CEM (^a)</th>
<th>H460 (^b)</th>
<th>A2780/DDP (^c)</th>
<th>CH1/DDP (^c)</th>
<th>SKOV3 (^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cisplatine</td>
<td>3,0±0,4</td>
<td>2,4±0,3</td>
<td>>10</td>
<td>>10</td>
<td>6,1±0,8</td>
</tr>
<tr>
<td>oxaliplatine</td>
<td>0,9±0,3</td>
<td>4,0±0,5</td>
<td>17,3±2,0</td>
<td>6,2±1,0</td>
<td>>10</td>
</tr>
</tbody>
</table>

![Structure C14a](image)

<table>
<thead>
<tr>
<th></th>
<th>2,0±0,5</th>
<th>3,8±1,0</th>
<th>1,2±0,2</th>
<th>2,0±0,3</th>
<th>5,3±1,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>C14a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Structure C14b](image)

<table>
<thead>
<tr>
<th></th>
<th>1,3±0,3</th>
<th>3,4±0,3</th>
<th>1,2±0,4</th>
<th>-</th>
<th>2,8±0,8</th>
</tr>
</thead>
<tbody>
<tr>
<td>C14b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Structure C14c](image)

<table>
<thead>
<tr>
<th></th>
<th>1,3±0,3</th>
<th>1,9±0,3</th>
<th>1,8±0,2</th>
<th>2,4±0,3</th>
<th>7,0±1,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>C14c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Structure C14d](image)

<table>
<thead>
<tr>
<th></th>
<th>2,7±1,0</th>
<th>1,6±0,1</th>
<th>1,4±0,3</th>
<th>2,1±0,3</th>
<th>>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>C14d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 1

\(^a\) Cellules leucémiques T CCRF-CEM, \(^b\) Cellules de cancer du poumon, \(^c\) Cellules de cancer humain des ovaires, résistantes au cisplatine.

Les complexes montrent des cytotoxicités de l'ordre du micromolaire comparables, voire supérieures à celles du cisplatine.

De très bons IC\(_{50}\) sont obtenus avec la plupart des complexes dans le cas des cellules résistantes au cisplatine A2780/DDP et CH1/DDP avec des valeurs comprises respectivement entre 1,2 et 1,8 μM et entre 2,1 et 2,4 μM. Le complexe **C14b** a également montré une forte cytotoxicité contre SKOV3 avec un IC\(_{50}\) de 2,8 μM comparé à 6,1 μM pour le cisplatine.

Après ces études initiales, les travaux de notre équipe se sont tournés vers la synthèse et l'évaluation de complexes bimétalliques. Les complexes de platine bi ou polymétalliques
Chapitre IV : Autres projets et perspectives

sont connus pour être des agents anticancéreux efficaces, et ont un mécanisme d’action biologique différent du cisplatine et des autres complexes monométalliques. En effet, ils créent des liaisons spécifiques sur l’ADN et peuvent donc contourner les mécanismes de résistances du cisplatine.

Dans le cadre de son stage post-doctoral au sein de l’équipe, le Dr Mélanie Chttchigrovsky a préparé des complexes de platine binucléaires [(NHC)Pt₂]_2(diamine) et dans le cadre de ma thèse j’ai collaboré à ces travaux. La synthèse est réalisée à partir des complexes de platine(0), précédemment évoqués, par ajout de diode puis d’une diamine (Schéma 11).

\[
\begin{align*}
\text{O7, } R &= C_6H_5, \\
\text{O8, } R &= 4-CF_3C_6H_4
\end{align*}
\]

Les complexes étudiés possèdent comme substituant du carbène, soit un CH₂-cyclohexyle soit un CH₂-4-(trifluorométhyl)phényle. Ces unités avaient montré de bonnes activités dans le cas des complexes mononucléaires. Les diamines utilisées sont aliphatiques et présentent des longueurs de chaîne allant de trois à huit carbones. Les complexes sont isolés avec des rendements compris entre 10 et 67%. La méthodologie de synthèse a été étendue à la préparation de complexes bimétalliques avec diverses diamines. Les deux noyaux platines du complexe £17 sont liés par une diamine aliphatique comprenant une fonction éther dans la chaîne (chaîne type PEG),

Chapitre IV : Autres projets et perspectives

tandis que les complexes **C18** et **C19** utilisent des chaînes diamines aromatiques (Schéma 12).

La structure du complexe **C19** a pu être établie par diffraction des rayons X. Le complexe présente une géométrie *trans* et le NHC forme un angle dièdre de 80,3° avec le plan de coordination du platine (Figure 2).

Les complexes bimétalliques ont été testés sur six lignées cellulaires humaines cancéreuses : KB3-1 (carcinome épidermique nasopharyngéal), SK-OV3, OVCAR-8, A2780, A2780/DDP (adénocarcinome, résistant au cisplatine). Les IC₅₀ sont donnés dans le tableau suivant en comparaison avec celles du cisplatine et du complexe monométallique **C14a**. Ils sont mesurés à 72h d’exposition.
Les complexes bimétalliques ont une activité cytotoxique de l’ordre du micromolaire, ils sont donc plus actifs que le cisplatine sur les lignées cellulaires non résistantes mais également sur les lignées résistantes. Les meilleures activités sont observées sur la lignée cellulaire lymphoblastoïde MV-4-11. Les complexes bimétalliques montrent une meilleure activité que le complexe monométallique C14a contre les cellules A2780.

Des études plus approfondies ont été menées par Sophie Bombard (Université Paris Descartes) et Thierry Cresteil (ICSN) afin de tenter de comprendre le mécanisme d’action des complexes bimétalliques sur l’ADN. Il a été montré que les complexes NHC-platine induisent une réponse cellulaire différente du cisplatine. Des études sur les cellules A2780 montrent que les complexes carbéniques mono et bimétalliques n’arrêtent pas le cycle cellulaire contrairement au cisplatine et au transplatine iminoether.150,151 D’autres études ont montré qu’ils induisent l’apoptose et la fragmentation de l’ADN. Certaines structures de complexe peuvent également engendrer la nécrose des cellules A2780.

En conclusion, du fait que les complexes mono et bimétalliques (NHC)PtX\textsubscript{2}(amine) entrainent la mort cellulaire par des mécanismes différents du cisplatine, ils pourraient

Chapitre IV : Autres projets et perspectives

être de bons candidats pour le développement de molécules contre les cancers résistant au cisplatine. Des études sont toujours en cours afin de mieux comprendre les propriétés biochimiques des composés NHC-platine.
Conclusion générale
Conclusion Générale

Mes travaux de thèse ont porté essentiellement sur l’élaboration de catalyseurs chiraux pour la cycloisomérisation d’énynes. A mon arrivée au laboratoire, une deuxième génération de complexes chiraux de platine était en cours d’élaboration. Ces pré-catalyseurs, combinant une structure platinacyclique carbénique et une monophosphine chiraile, ont été appliqués avec succès à la cycloisomérisation d’énynes-1,6 azotés (ee jusqu’à 97%) ainsi qu’à la désymétrisation de diénynes analogues par cycloisomérisation (ee jusqu’à 95%).152,153 Le meilleur ligand chiral est la Ph-Binepine.

La détermination de la configuration absolue de l’aza-bicyclo[4.1.0]heptène nous a permis d’émettre des hypothèses sur les mécanismes d’induction asymétrique de ces catalyseurs.

Dans une deuxième partie de ce travail, nous avons étendu l’utilisation des platinacycles comme catalyseurs à la cycloisomérisation d’énynes-1,5 portant un groupement oxygéné en position propargylique. Cette fois-ci, les meilleurs résultats ont été obtenus lorsque le platine porte comme ligand chiral un phosphoramidite.154

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{schema1.png}
\caption{Schéma 1}
\end{figure}

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
| R1 | R2 | R3 | R4 |
\hline
H | CH\textsubscript{2} | CH\textsubscript{2} | CH\textsubscript{2} |
\hline
\end{tabular}
\caption{Tableau 1}
\end{table}

Des excès énantiomériques de 71 et 75% ont été mesurés lorsque les énynes sont substitués respectivement par un OTBS et un alcool. Lors de ces travaux, nous avons mis en évidence l’effet du centre stéréogène du substrat sur la stéréochimie de la réaction (X=TBS).155 D’autres études sont encore nécessaires pour optimiser ces systèmes catalytiques. Une meilleure compréhension des mécanismes et des principes d’induction asymétrique, permettrait de mieux adapter les systèmes catalytiques.

Quelques résultats préliminaires encourageants ont été obtenus dans des réactions de désymétrisations d’énynes-1,5 et -1,6 portant une fonction Ω-acyle (ee jusqu’à 69%). Ces réactions devront être étudiées plus en détails avec différents catalyseurs de platine ou d’or.

Des recherches sont également menées afin de développer de nouveaux catalyseurs de platine chiraux dans le but, d’améliorer les résultats obtenus pour les cycloisomérisations d’énynes-1,5 mais également de découvrir de nouvelles réactivité.

En conclusion, au cours de ma thèse j’ai synthétisé des complexes de platine originaux qui ont été utilisés avec succès dans des réactions de cycloisomérisation énantiosélective d’énynes-1,6 et -1,5. Jusqu’à présent, ces réactions avaient été peu étudiées en version énantiosélective.156 Les perspectives de ce sujet sont l’élaboration

de nouveaux catalyseurs ainsi que l’élargissement de la gamme d’application de ces systèmes catalytiques.

Ces travaux de thèse se sont traduits par la publication de trois articles et d’une revue sur la cycloisomérisation énantiosélective :

Deux autres articles sont en cours de publication.
Experimental part
Experimental part

General remarks

Column chromatography: Unless otherwise stated, purification by column chromatography was performed on silica gel 60 (Merck: particle size 40-63 μm, or Carlo Erba SDS: particle size 35-70 μm) or with the CombiFlash® Companion on Redisep column.

NMR spectroscopy: Nuclear Magnetic Resonance spectra were recorded on Avance 300 and Avance 500 Bruker spectrometers. The frequencies were respectively 300 MHz and 500 MHz for proton spectroscopy (1H NMR), 75 MHz and 125 MHz for carbon spectroscopy (13C NMR), 202.5 and 121 MHz for phosphorus spectroscopy (31P NMR). Chemical shifts (δ) were given in parts per million (ppm), using solvent residual signals as references for proton and carbon NMR (1H NMR: 7.26 ppm for CHCl₃ in CDCl₃; 13C NMR: 77.16 ppm for CHCl₃ in CDCl₃).

Signal multiplicity is described as follows: s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), sex (sextet), sep (septet), m (multiplet). Broad singlets, for instance, are described as br. Coupling constants (J) are given in Hz.

Polarimetry: Optical rotation was measured at 589 nm (sodium D line) on a Jasco P-1010 polarimeter. Specific optical rotation [α]₀ is defined by [α]₀ = (αₒbs x 100)/(l x c), where αₒbs is the observed optical rotation in degrees, l is the path length in dm and c is the sample concentration in grams of product per 100 mL of solution. [α]₀ is given without units.

HRMS analysis: High Resolution Mass Spectroscopy (HRMS) was performed on LCT Waters equipment.

HPLC analysis: High Performance Liquid Chromatography (HPLC) was performed on a Waters 2695 Separations Module equipped with a diode array UV detector. Data are reported as follows: column type, eluent, flow rate, retention times.

Solvents: When “distilled solvents” were necessary, they were usually distilled with classical methods (unless stated otherwise) or purified by an Innovative Technology Inc. PureSolv apparatus.
Chapter II

Procedures for the synthesis of imidazolium salts

2-iodobenzyl methanesulfonate

To a solution of 2-iodobenzyl alcohol (3 g, 12.8 mmol, 1 eq) in toluene (100 mL) was added triethylamine (3.92 g, 38.4 mmol, 3 eq). Then at 0°C was added methane sulfonyl chloride (2.2 g, 19.2 mmol, 3 eq). The mixture was stirred at room temperature overnight, diluted with DCM (350 mL), washed with water (3 x 250 mL). The organic layer was dried over MgSO₄, filtered and concentrated. The desired product was obtained in 94% yield (3.75 g) and used in the next step without further purification.

¹H NMR (500 MHz, CDCl₃): δ 3.05 (s, 3H, Me), 5.29 (s, 2H, CH₂), 7.09-7.27 (m, 2H, Ar), 7.50 (m, 1H, Ar), 7.90 (d, J= 8.0 Hz, 1H, Ar).

1-(2-iodobenzyl)imidazole

NaH (760 mg, 60% in mineral oil, 16 mmol, 1 eq) was added at room temperature to a stirred solution of imidazole (730 mg, 10.7 mmol, 0.7 eq) in DMF (45 mL). After 5 min a solution of 2-iodobenzyl methanesulfonate (5.0 g, 16 mmol in DMF, 20 mL, 1 eq) was added. The mixture was stirred overnight at room temperature, hydrolyzed with water (50 mL) and extracted with DCM. 1-(2-iodobenzyl)imidazole was obtained in quantitave yield (3.0 g) after column chromatography with DCM/EtOH (9:1) as the eluent.

¹H NMR (300 MHz, CDCl₃): δ 5.14 (s, 2H, NCH₂), 6.84 (dd, 1H, J= 1.5 Hz, 3J= 7.5 Hz, Ar), 6.92 (br s, 1H), 7.01 (td, 1H, 3J ~ 7.5 Hz, J= 1.8 Hz, Ar), 7.10 (br s, 1H), 7.30 (td, 1H, J= 1.2 Hz, 3J ~7.5 Hz, Ar), 7.57 (br s, 1H), 7.86 (dd, 1H, J= 1.2 Hz, 3J= 8.0 Hz, Ar).

¹³C NMR (75 MHz, CDCl₃): δ 55.5 (NCH₂), 98.1 (C-I), 119.4 (NCH=), 128.5, 128.9, 129.8 (NCH=), 130.0, 137.7 (NCH=N), 138.6 (C), 139.8 (CH).

1-(2-iodobenzyl)-3-methylimidazolium iodide (I1)

1-(2-iodobenzyl)imidazole (3.0 g, 10 mmol, 1 eq) was reacted with methyl iodide (0.8 mL, 13 mmol, 1.3 eq) in refluxing MeCN (30 mL). After 6 h heating, the solvent was evaporated. The desired product was obtained in 90% yield (4.0 g) as a brown solid.

\[^1H \text{ NMR (300 MHz, CDCl}_3\]: \(\delta \) 4.10 (s, 3H, NMe), 5.64 (s, 2H, NCH_2), 7.13 (td, 1H, \(J = 7.8 \) Hz, J\textsubscript{NCH} = 1.8 Hz, Ar), 7.31 (t, 1H, J\textsubscript{NCH} = 1.8 Hz, NCH_2), 7.36 (t, 1H, J\textsubscript{NCH} = 1.8 Hz, NCH_2), 7.46 (td, 1H, J\textsubscript{NCH} = 1.2 Hz, J\textsubscript{NCH} = 7.5 Hz, Ar), 7.80 (dd, 1H, J\textsubscript{NCH} = 1.5 Hz, J\textsubscript{NCH} = 7.5 Hz, Ar), 7.89 (dd, 1H, J\textsubscript{NCH} = 7.5 Hz, J\textsubscript{NCH} = 1.2 Hz, Ar), 10.08 (1H, NCH_2 = N).

\[^13C \text{ NMR (75 MHz, CDCl}_3\]: \(\delta \) 37.3 (NMe), 57.6 (NCH_2), 100.3 (C-I), 122.0 (NCH_2), 123.3 (NCH_2), 129.8, 131.7, 132.1, 135.0 (C), 137.5 (NCH_2 = N), 140.3 (CH).

\[\text{HRMS (ESI): } \text{calcd. for C}_{11}\text{H}_{12}\text{N}_2\text{I: 299.0045. Found: 299.0041.} \]

1-Ethyl-3-(2-iodobenzyl)imidazolium iodide (I2)

1-(2-iodobenzyl)imidazole (1.5 g, 5.3 mmol, 1 eq) was alkylated with ethyl iodide (0.8 mL, 10 mmol, 1.9 eq) in refluxing MeCN (5 mL). After heating overnight, the solvent was evaporated, the solid residue was taken up in warm AcOEt and filtered. The desired product was obtained in 89% yield (2.0 g) as a brown solid.

\[^1H \text{ NMR (300 MHz, CDCl}_3\]: \(\delta \) 1.60 (t, 3H, \(J = 7.2 \) Hz, Me), 4.42 (q, 2H, \(J = 7.2 \) Hz, NCH_2Me), 5.65 (s, 2H, NCH_2), 7.10 (td, 1H, \(J = 7.8 \) Hz, J\textsubscript{NCH} = 1.8 Hz, Ar), 7.34 (t, 1H, J\textsubscript{NCH} = 1.8 Hz, NCH_2), 7.42 (td, 1H, J\textsubscript{NCH} = 1.2 Hz, J\textsubscript{NCH} = 7.8 Hz, Ar), 7.55 (t, 1H, J\textsubscript{NCH} = 1.8 Hz, NCH_2), 7.77 (dd, 1H, J\textsubscript{NCH} = 7.8 Hz, J\textsubscript{NCH} = 1.2 Hz, Ar), 10.1 (1H, NCH_2 = N).

\[^13C \text{ NMR (75 MHz, CDCl}_3\]: \(\delta \) 15.7 (Me), 45.7 (NCH_2Me), 57.5 (NCH_2), 100.4 (C-I), 122.1 (NCH_2), 129.7, 131.6, 132.0, 135.3 (C), 136.5 (NCH_2 = N), 140.2 (CH).

\[\text{HRMS (ESI): } \text{calcd. for C}_{12}\text{H}_{14}\text{N}_2\text{I: 313.0202. Found: 313.0200.} \]
1-Benzyl-3-(2-iodobenzyl)imidazolium chloride (I3)

1-{2-iodobenzyl}imidazole (1.0 g, 3.5 mmol, 1 eq) was alkylated with benzyl chloride (0.6 mL, 5 mmol, 1.4 eq) in refluxing MeCN (5 mL). After 16h, the solvent was evaporated, the residue was taken up in a minimum amount of DCM, and heptane was added. The imidazolium chloride was separated from the crude mixture as a viscous oil, after cooling at -20°C and obtained in 84% yield (1.2 g).

\(^1\)H NMR (500 MHz, CDCl\(_3\)): δ 5.58 (s, 2H, NCH\(_2\)), 5.68 (s, 2H, NCH\(_2\)), 7.0-7.4 (9H), 7.76 (br d, 1H, 3J ~ 7.0 Hz), 7.87 (br d, 1H, 3J ~ 7.0 Hz), 11.2 (1H, NCH=N).

\(^{13}\)C NMR (125 MHz, CDCl\(_3\)): δ 53.7 (NCH\(_2\)), 57.4 (NCH\(_2\)), 99.9 (C-I), 121.4 (NCH=), 121.6 (NCH=), 129.0, 129.5, 129.6, 129.8, 131.5, 132.0, 132.8 (C), 135.6 (C), 138.8, 140.2.

1-\textit{tert}-butyl-1\textit{H}-imidazole157

\textit{t}-Butylamine (0.7 mL, 6.9 mmol, 0.4 eq.) is diluted in distilled water (23 mL) with one drop of concentrated H\(_3\)PO\(_4\). Glyoxal (2 mL, 17.1 mmol, 1 eq.), paraformaldehyde (513 mg, 17.1 mmoles, 1 eq.) and dioxane (23 mL) are added. The mixture is heated at 80°C then NH\(_4\)Cl (906 mg, 17.1 mmol, 1 eq.) is added. The mixture is heated at 100°C during 5h then is stired over night at rt. The réaction is quench by addition of a saturated solution of K\(_2\)CO\(_3\). The organic layer is extracted with DCM, dried over MgSO\(_4\) then concentrated. The desired product is obtained after column chromatography whith DCM/EtOH 95/5 as eluant. An orange liquid is obtain in 18% yield (152 mg).

\(^1\)H NMR (300 MHz, CDCl\(_3\)): δ 1.57 (s, 9H, Me), 7.05 (s, 1H, CH), 7.07 (s, 1H, CH), 7.64 (s, 1H, CH).

1-tert-butyl-3-(2-iodobenzyl)-1H-imidazol-3-i um (I4)

![Chemical Structure](image)

2-iodobenzyl methanesulfonate (312 mg, 1.8 mmol) was added to a solution of 1-tert-butylimidazole (152 mg, 1.2 mmol) in CH₃CN (1.8 mL). The mixture was stirred overnight at 80°C. After concentration, the crude product was diluted in a minimum amount of DCM. Heptane was added until the solution became cloudy. After 2 h at -20°C, the supernatant was removed and 1-(tert-butyl)-3-(2-iodo-benzyl)imidazolium was obtained as an oil; yield: 485 mg (90%).

1H NMR (300 MHz, CDCl3): δ = 1.74 (s, 9H, Me), 2.85 (s, 3H, Me), 5.78 (s, 2H, CH₂), 7.12 (m, 1H), 7.25 (m, 1H), 7.47 (m, 2H), 7.81 (dd, 1H, J = 6.9 Hz, J = 0.6 Hz), 7.92 (dd, 2H, J = 7.8 Hz, J = 1.2 Hz), 10.13 (s, 1H, NCHN).

13C RMN (75 MHz, CDCl3): δ 26.9 (C), 29.9 (tBu), 39.6 (Me OMs), 57.4 (CH₂), 60.6 (C), 77.6 (C), 100.1 (C), 118.7 (CH), 121.5 (CH), 129.8 (CH), 131.3 (CH), 132.4 (CH), 140.1 (C).

MS: calc. for C₁₄H₁₈N₂: 341; Found: [M]+=341.1.

***(S)-1-(2-iodophenyl)ethanamine**

![Chemical Structure](image)

To a solution of (S)-(α)-phenylethylamine (2.1 mL, 17 mmol, 1 eq) in dry Et₂O (19 mL) at 0°C was added nBuLi (1.3M in hexane, 13 mL, 17 mmol, 1 eq) dropwise. The yellow suspension was stirred at 0°C for 15 min and then trimethylsilylchloride (2.1 mL, 17 mmol, 1 eq) was added dropwise. The mixture, a white suspension, was stirred 30 min and then nBuLi (1.3M in hexane, 38 mL, 50 mmol, 3 eq) was added dropwise. The brown solution was stirred for 1 h at 0°C and then 24 h at room temperature. The mixture was cooled to -78°C and a solution of diiodoethan (9 g, 33 mmol, 2 eq) in dry Et₂O (25 mL) was added via a canula. The solution was stirred at -45°C for 1 h, then quenched with HCl 2.25N (75 mL) and stirred 1 h at room temperature. The layers were separated in a separating funnel. The organic layer was washed twice with HCl 2.25N (2*48 mL). The aqueous layers were combined, basified to pH 12 with solid KOH. Then the solution was extracted with DCM (3x24 mL), dried over MgSO₄ and concentrated. The residue was

Experimental part: chapter II

purified with an EtOH/EtOAc gradient from (0:100) to (20:80) as the eluent (Combiflash, 80 g column, 50 min). The desired product was obtained as a brown oil in 23% yield (944mg).

\(^1\)H NMR (300 MHz, CDCl\(_3\)) : \(\delta 1.36\) (d, 3H, \(J= 7.0\) Hz, CHMe), \(4.34\) (q, 1H, \(J= 7.0\) Hz, NCHMe), \(6.93\) (td, 1H, \(J= 7.0\) Hz, \(J= 2.0\) Hz, Ar), \(7.36\) (m, 1H, Ar), \(7.50\) (dd, 1H, \(J= 2.0\) Hz, \(J= 8.0\) Hz, Ar), \(7.81\) (dd, 1H, \(J= 1.0\) Hz, \(J= 8.0\) Hz, Ar).

MS (ESI): \(m/z = 247.0\) [M+H]+, 231.0 [M-Me]+.

\([\alpha]_D = -24\) (c=0.9, CHCl\(_3\)).

\((S)-1\-\((1\-\(2\-\text{iodophenyl})\text{ethyl}\)imidazole

![Chemical structure](image LINK)

To a solution of \((S)-1\-\((2\-\text{iodophenyl})\text{ethanamine}\) (220 mg, 0.9 mmol, 0.4 eq) in distilled water (3 mL) were added one drop of concentrated phosphoric acid glyoxal (40% in H2O, 0.26 mL, 2.25 mmol, 1 eq), paraformaldehyde (68 mg, 2.25 mmol, 1 eq) and dioxane (3 mL). The mixture was heated at 80°C and ammonium chloride (119 mg, 2.25 mmol, 1 eq) was added. The reaction mixture was heated at 100°C for 5h and then stirred overnight at room temperature. The solution was quenched with a saturated solution of sodium carbonate, extracted with DCM, dried over MgSO\(_4\) and concentrated. The residue was purified with a DCM/EtOH mixture from (100:0) to (90:10) as the eluent (Combiflash, 4 g column, 35 min). The desired product was obtained as a brown oil in 44% yield (119 mg).

\(^1\)H NMR (500 MHz, CDCl\(_3\)) : \(\delta 1.85\) (d, 3H, \(J= 7.0\) Hz, CHMe), \(5.63\) (q, 1H, \(J= 7.0\) Hz, NCHMe), \(6.96\) (s, 1H, NCH=), \(6.98\) (d, 1H, \(J= 8.0\) Hz, Ar), \(7.02\) (t, 1H, \(J= 8.0\) Hz, Ar), \(7.11\) (s, 1H, NCH=), \(7.33\) (t, 1H, \(J= 8.0\) Hz, Ar), \(7.65\) (s, 1H, NCH=N), \(7.89\) (d, \(J= 8.0\) Hz, 1H, Ar).

\(^13\)C NMR (75 MHz, CDCl\(_3\)) : \(\delta 21.2\) (CHMe), \(60.6\) (NCHMe), \(99.0\) (C-I), \(118.3\) (NCH=), \(126.5\) (Ar), \(129.2\) (Ar), \(129.5\) (NCH=), \(129.9\) (Ar), \(136.1\) (NCH=N), \(104.0\) (Ar), \(143.7\) (C).

MS (ESI): \(m/z = 299.0\) [M+H]+, 231.

\([\alpha]_D = 55\) (c=1, CHCl\(_3\)).

\((S)-1\-\((1\-\(2\-\text{iodophenyl})\text{ethyl}\)imidazolium iodide (15)

![Chemical structure](image LINK)

169
Experimental part: chapter II

To a solution of (S)-1-(1-(2-iodophenyl)ethyl)imidazole (110 mg, 0.37 mmol, 1 eq) in 1 mL of acetonitrile was added iodomethane (28 μL, 0.44 mmol, 1.2 eq). The mixture was refluxed for 5h and the solvent removed under high vacuum to give 154 mg of a brown oil in 95% yield.

\(^1\text{H NMR (300 MHz, CDCl}_3\):} \; \delta 2.09 (d, 3H, J= 7.0 Hz, CHMe), 4.18 (s, 3H, NMe), 5.89 (q, 1H, J= 7.0 Hz, NCHMe), 7.09 (td, 1H, J= 2.0 Hz, J= 8.0 Hz, Ar), 7.14 (t, 1H, J= 2.0 Hz, NCH=), 7.44 (dd, 1H, J= 2.0 Hz, J= 8.0 Hz, Ar), 7.47 (m, 1H, NCH=), 7.53 (dd, 1H, J= 2.0 Hz, J= 8.0 Hz, Ar), 7.88 (dd, 1H, J= 2.0 Hz, J= 8.0 Hz, Ar), 10.21 (s, 1H, NCH=N).

\(^{13}\text{C NMR (75 MHz, CDCl}_3\):} \; \delta 21.5 (CHMe), 37.5 (NMe), 64.3 (NCHMe), 99.9 (C-I), 121.1 (NCH=), 123.9 (NCH=), 128.1 (Ar), 129.9 (Ar), 131.4 (Ar), 136.9 (NCH=N), 139.4 (C), 140.4 (Ar).

HRMS (ESI): calcd. for C\textsubscript{12}H\textsubscript{14}N\textsubscript{2}I: 313.0246. Found: 313.0210.

\([\alpha]_D = 43 (c= 0.7, \text{CHCl}_3)\).
Experimental part: chapter II

General procedure for the synthesis of the (NHC)Pt(0)(dvtms) complexes

The Pt(0) complexes were prepared according to the reported procedure.159 To a suspension of the imidazolium salt (0.35 mmol, 1 eq) and Karstedt’s catalyst (Pt2(1,3-divinyl-1,1,3,3-tetramethyldisiloxane)3) (3.5 mL, 0.1 M in xylene, 1 eq) in toluene (7 mL)-DCM (2 mL) was added an excess tBuOK (0.06 g, 0.53 mmol, 1.5 eq) at 0°C. The reaction mixture was stirred at room temperature for 3 h and evaporated to dryness. The final product was purified by column chromatography.

<table>
<thead>
<tr>
<th>(1-(2-Iodobenzyl)-3-méthylimidazol-2-ylidene)(1,3-divinyltetramethyldisiloxane) platine(0) (O1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Chemical Formula: C\textsubscript{29}H\textsubscript{31}N\textsubscript{2}OPtSi\textsubscript{2}</td>
</tr>
<tr>
<td>Molecular Weight: 679.61</td>
</tr>
</tbody>
</table>

Complex O1 was obtained in 68% yield (161 mg, 0.24 mmol) from 1-(2-iodobenzyl)-3-méthylimidazolium iodide I1, after purification by chromatography with heptane/ethyl acetate 9:1 as the eluent (Rf = 0.3).

1H NMR (500 MHz, CDCl\textsubscript{3}): δ -0.38 (br, 6H, SiMe), 0.30 (s, 6H, SiMe), 1.8-1.9 (4H, CH\textsubscript{2}=CHSi), 2.21 (br, 2H, CH\textsubscript{2}=CHSi), 3.59 (s, 3H, NMe), 5.16 (s, 2H, NCH\textsubscript{2}), 6.85 (br, 1H), 6.97 (2H), 7.08 (br, 1H), 7.28 (1H), 7.81 (d, 1H, J = 7.0 Hz).

13C NMR (75 MHz, CDCl\textsubscript{3}): δ -1.9 (SiMe), 1.5 (SiMe), 34.9 (CH\textsubscript{2}=CHSi), 37.0 (NMe), 40.4 (1J\textsubscript{C-Pt} = 157 Hz, CH\textsubscript{2}=CHSi), 58.0 (3J\textsubscript{C-Pt} = 41 Hz, NCH\textsubscript{2}), 121.0 (NCH=), 122.5 (NCH=), 128.4, 129.4, 139.1 (C), 139.4 (Ar).

<table>
<thead>
<tr>
<th>(1-Ethyl-3-(2-iodobenzyl)imidazol-2-ylidene)(1,3-divinyltetramethyldisiloxane) platinum(0) (O2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Chemical Formula: C\textsubscript{29}H\textsubscript{31}N\textsubscript{2}OPtSi\textsubscript{2}</td>
</tr>
<tr>
<td>Molecular Weight: 693.63</td>
</tr>
</tbody>
</table>

171
Complex **O2** was obtained in 62% yield (150 mg, 0.22 mmol) from 1-ethyl-3-(2-iodobenzyl)imidazolium iodide **I2**, after purification by chromatography with heptane/ethyl acetate (9:1) as the eluent (Rf = 0.2).

^1H NMR (500 MHz, CDCl3): δ -0.48 (br, 3H, SiMe), -0.28 (br, 3H, SiMe), 0.30 (s, 6H, SiMe), 1.33 (t, 3H, J = 7.5 Hz, NCH₂Me), 1.8-1.9 (4H, CH₂=CHSi), 2.20 (br, 2H, CH₂=CHSi), 4.00 (q, 2H, J = 7.5 Hz, NCH₂Me), 5.15 (s, 2H, NCH₂Ar), 6.8-7.0 (3H), 7.09 (br, 1H), 7.27 (1H), 7.80 (d, 1H, J = 8.0 Hz).

^13C NMR (125 MHz, CDCl3): δ -1.7 (SiMe), 1.7 (SiMe), 16.2 (NCH₂Me), 35.0 (J₇C Pt = 123 Hz, CH₂=CHSi), 41.2 (J₇C Pt = 156 Hz, CH₂=CHSi), 45.0 (J₇C Pt = 42 Hz, NCH₂Me), 58.2 (J₇C Pt = 45 Hz, NCH₂Ar), 120.7 (NCH=), 121.5 (J₇C Pt = 35 Hz, NCH=), 128.6, 129.6, 139.4 (C), 139.6 (Ar), 185.0 (C).

<table>
<thead>
<tr>
<th>(1-Benzyl-3-(2-iodobenzyl)imidazol-2-ylidene)(1,3-divinyltetramethyldisiloxane) platinum(0) (O3)</th>
</tr>
</thead>
</table>

![Chemical formula](image)

Chemical Formula: C₂₀H₂₁N₂OPtSi₂
Molecular Weight: 755.70

Complex **O3** was obtained in 72% yield (190 mg, 0.25 mmol) from 1-benzyl-3-(2-iodobenzyl)imidazolium iodide **I3**, after purification by chromatography with heptane/ethyl acetate (95:5) as the eluent (Rf = 0.2).

^1H NMR (300 MHz, CDCl3): δ -0.45 (br, 6H, SiMe), 0.28 (s, 6H, SiMe), 1.8-1.9 (4H, CH₂=CHSi), 2.21 (d, 2H, J = 16.8 Hz, CH₂=CHSi), 5.20 (s, 4H, NCH₂), 6.80 (1H), 6.97 (3H), 7.17 (2H), 7.2-7.4 (4H), 7.82 (d, 1H, J = 7.8 Hz).

^13C NMR (75 MHz, CDCl3): δ -2.0 (SiMe), 1.4 (SiMe), 35.2 (J₇C Pt = 119 Hz, CH₂=CHSi), 41.4 (J₇C Pt = 158 Hz, CH₂=CHSi), 53.7 (NCH₂Ph), 58.1 (NCH₂Ar), 121.3 (NCH=), 121.6 (NCH=), 127.7-129.6, 136.6 (C), 139.0 (C), 139.5 (Ar).
Experimental part: chapter II

(1-(2-Iodobenzyl)-3-tert-butylimidazol-2-ylidene)(1,3-divinyltetramethylidisiloxane) platine(0) (04)

Complex was obtained in 56% yield (231 mg, mmol) as an oil (two rotamers in a 59/41 ratio) from , after purification by chromatography with heptane/ethyl acetate 9:1 as the eluent (Rf = 0.3).

1H NMR (300 MHz, CDCl$_3$): δ = -0.55 (s, 6 H, SiMe, major), -0.35 (s, 6 H, SiMe, minor), 0.21 (s, 6 H, SiMe, major), 0.25 (s, 6 H, SiMe, minor), 1.56 (s, 9 H, CMe$_3$, major), 1.59 (s, 9 H, CMe$_3$, minor), 1.8–1.9 (m, 4 H), 2.1–2.2 (m, 2 H), 5.12 (s, 2 H, NCH$_2$, minor), 5.20 (s, 2 H, NCH$_2$, major), 6.60 (d, 1 H, $J = 7.2$ Hz, major), 6.8–7.3 (m, 5 H), 7.74 (d, 1 H, $J = 7.8$ Hz).

13C NMR (CDCl$_3$, 125 MHz): δ (major) = 1.9 (Me), 0.4 (Me), 1.5 (Me), 31.1 (CMe$_3$), 34.4 (CH$_{2}$=CHSi), 34.7 (=CHSi), 37.0 (NMe), 40.4 (1J$_{C, Pt}$ = 157 Hz, =CH$_2$), 57.6 (NCH$_2$), 120.7 (2J$_{C, Pt}$ = 37 Hz, NCH=), 122.3 (3J$_{C, Pt}$ = 36 Hz, NCH=), 125.5 (CH), 136.5 (CH).

(S)-1-(1-(2-Iodophenyl)ethylidimamidazo-2-ylidene)(1,3-divinyltetramethylidisiloxane) platinum(0) (05)

Complex was obtained from (S)-1-(1-(2-iodophenyl)ethyl)imidazolium iodide (0.02 mmol, 100 mg) as a white solid; yield: 121 mg (76%).

1H NMR (500 MHz, CDCl$_3$): δ = 0.34 (s, 3 H, SiMe), 0.28 (s, 3 H, SiMe), 0.27 (s, 3 H, SiMe), 0.34 (s, 3 H, SiMe), 0.78 (br, 1 H, CH$_2$=CHSi), 1.49 (br, 2 H, CH$_2$=CHSi), 1.69 (d, 3 H, 3J = 7.0 Hz, CHMe), 1.88 (br, 2 H, CH$_2$=CHSi), 2.30 (br, 1 H, CH$_2$=CHSi), 3.53 (s, 3 H, NMe), 5.71 (br, 1 H, NCHMe), 6.90 (2 H), 7.13 (s, 1 H, NCH), 7.25 (1 H), 7.38 (s, 1 H, NCH), 7.70 (d, $J = 8.0$ Hz, 1 H).

13C NMR (CDCl$_3$, 125 MHz): δ = 2.0 (Me), 2.1 (Me), 1.5 (Me), 20.7 (NCHMe), 34.4 (1J$_{C, Pt}$ = 116 Hz, CH$_2$ = CHSi), 36.9 (2J$_{C, Pt}$ = 54 Hz, NMe), 39.6 (CH$_2$=CHSi), 39.9 (CH$_2$=CHSi), 62.8 (NCHMe), 118.5 (NCH=), 121.3 (3J$_{C, Pt}$ = 37 Hz, NCH=), 126.0, 128.4, 128.9, 139.5, 143.7 (C).
Experimental part: chapter II

\[\alpha \]_D = 7.5 (c = 0.5, CHCl_3)
Experimental part: chapter II

General procedure for the synthesis of the cyclometalated (NHC)Pt\(^{10}\) (phosphine) complexes

The platinum (II) - Phosphine Complex were synthetised according the following general procédure: A THF solution (5 mL) containing the Pt(0) complex (0.2 mmol) and phosphine (0.2 mmol) was heated at 60 °C for 5 h or 6h. After evaporation of the solvent, the final product was purified by column chromatography with a heptane/ethyl acetate gradient (from 9:1 to 7:3).

![Chemical Structure: C\(_{33}\)H\(_{30}\)N\(_3\)O\(_2\)P=Pt](image)

Complex was obtained from Pt(0) O1 (140 mg, 0.2 mmol), and (R)-Monophos (72 mg, 0.2mmol) as a white solid in 65% yield (110 mg), as a 75:25 mixture of isomers (Rf = 0.2 in heptane/ethyl acetate 7:3).

\(^{31}\)P NMR (121 MHz, CDCl\(_3\)): \(\delta\) 130.6 (br, \(\text{J}_{P,Pt} \sim 4510\) Hz) (major), \(\delta\) 130.2 (\(\text{J}_{P,Pt} = 4543\) Hz) (minor).

\(^{1}\)H NMR (500 MHz, CDCl\(_3\); major isomer): \(\delta\) = 2.91 (d, \(\text{J}_{H,P} = 10.0\) Hz, 6 H, PNMe\(_2\)), 4.01 (s, 3 H, NMe), 4.44 (d, \(\text{J} = 13.5\) Hz, 1 H, NCH\(_2\)), 5.08 (d, \(\text{J} = 13.5\) Hz, 1 H, NCH\(_2\)), 6.74 (s, 1 H), 6.94 (s, 1 H), 7.0-8.0 (aryls) ; (minor isomer): \(\delta\) = 2.85 (d, \(\text{J}_{H,P} = 10.5\) Hz, 6 H, PNMe\(_2\)), 3.98 (s, 3 H, NMe), 4.23 (d, \(\text{J} = 13.5\) Hz, 1 H, NCH\(_2\)), 4.90 (d, \(\text{J} = 13.5\) Hz, 1 H, NCH\(_2\))

\(^{13}\)C NMR (125 MHz, CDCl\(_3\); major isomer): \(\delta\) = 38.5 (d, \(\text{J}_{C,P} = 10.9\) Hz, PNMe\(_2\)), 40.3 (NMe), 58.6 (\(\text{J}_{C,\text{Pt}} = 104\) Hz, NCH\(_2\)), 120.3 (d, \(\text{J} = 6\) Hz, NCH=), 121.4 (d, \(\text{J} = 7\) Hz, NCH=), 148.2 (CCH\(_2\)P), 149.5 (CCH\(_2\)P).

HRMS (ESI): calcd. for C\(_{33}\)H\(_{30}\)N\(_3\)O\(_2\)Pt\(^{195}\)PtNa : 875.0645. Found: 875.0690.

\([\alpha]_D = -11\) (c= 0.5, CHCl\(_3\))

X-Ray analysis: cf annexe
Experimental part : chapter II

(Iodo)(1-ethyl-3-benzyl-κC-imidazolyridene)((R)-Monophos) platinum (C2b)

Complex was purified by column chromatography with an heptane/ethyl acetate (8:2) to (7:3) gradient (Rf = 0.28 in heptane/ethyl acetate 7:3) and obtained as a white solid in 50% yield (43 mg), as a 75:25 mixture of isomers.

31P NMR (121 MHz, CDCl$_3$): δ 129.9 (br, $^3J_{P,Pt} \sim$ 4540 Hz) (major), 130.5 ($^3J_{P,Pt} = 4550$ Hz) (minor).

1H NMR (500 MHz, CDCl$_3$, major isomer): δ = 1.45 (t, 3H, 3J = 7.5 Hz, NCH$_2$Me), 2.90 (d, 6H, 2J = 10.0 Hz, PNMe$_2$), 4.43 (d, 1H, 2J = 13.5 Hz, NCH$_2$), 4.48 (m, 1H, NCH$_2$Me), 4.63 (m, 1H, NCH$_2$Me), 5.08 (d, 1H, 2J = 13.5 Hz, NCH$_2$), 6.80 (s, 1H, NCH=), 6.94 (s, 1H, NCH=), 7.0-8.0 (Ar).

13C NMR (125 MHz, CDCl$_3$): δ =16.0 (NCH$_2$Me), 38.4 (d, J = 10.0 Hz, PNMe$_2$), 46.8 ($J_{C,Pt} = 26$ Hz, NCH$_2$Me), 58.7 (NCH$_2$), 148.2 (C), 149.6 (C).

MS (ESI): m/z 889.1 [M+Na]$^+$, 771.3 [M-NHC], 739.2 [M-I].

(Iodo)(1-t-butyl-3-benzyl-κCZ-imidazolyridene)((R)-Monophos) platinum (C2c)

Complex was obtained from O4 (166 mg, 0.23 mmol) and (R)-Monophos (83 mg, 0.23 mmol) as a 77:23 mixture of isomers ; yield : 96 mg (47%).

31P NMR (121 MHz, CDCl$_3$): δ = 127.1 (major), 125.9 (minor).

1H NMR (500 MHz, CDCl$_3$; major isomer): δ = 1.88 (s, 9 H, CMe$_3$), 2.87 (br, 6 H, PNMe$_2$), 4.42 (d, 1 H, 2J = 13.5 Hz, NCH$_2$), 5.32 (br, 1 H, NCH$_2$), 6.73 (br, 1 H, NCH=), 6.9–8.3 (Ar).

(minor isomer): δ = 1.89 (s, 9 H, CMe$_3$), 2.8 (br, 6 H, PNMe$_2$), 4.19 (br d, 1 H, 2J = 11 Hz, NCH$_2$), 5.05 (br d, 1 H, 2J = 11 Hz, NCH$_2$).
13C NMR (125 MHz, CDCl3): δ = 32.0 (CMe3), 38.1 (d, 3J_C,P = 8.6 Hz, PNMe2), 59.2 (NCH2)

HR-MS (ESI): m/z = 768.2 (M-I), calcd. for C36H36IN3O2P195Pt : 909.1394.

[α]D = -8.5 (c = 0.7, CHCl3).

X-Ray analysis: cf annexe

(Iodo)(1-benzyl-3-benzyl-κCZ-imidazoylidene)((R)-Monophos) platinum (C2d)

Complex was obtained from 03 (157 mg, 0.2 mmol) and (R)-Monophos as a 80 :20 mixture of isomers; yield: 110 mg (59%).

31P NMR (121 MHz, CDCl3): δ = 131 (br, major), 129.5 (3J_P,Pt = 4552 Hz, minor).

1H NMR (500 MHz, CDCl3; major isomer): δ = 2.86 (d, 3J_H,P = 10.5 Hz, 6 H, PNMe2), 4.48 (d, 1 H, 3J = 13.5 Hz, NCH2), 5.18 (br d, 1 H, 3J = 13 Hz, NCH2), 5.44 (d, 1 H, 3J = 14.8 Hz, NCH2), 6.20 (d, 1 H, 3J = 14.8 Hz, NCH2), 6.61 (s, 1 H, NCH=), 6.94 (s, 1 H, NHC=), 7.0–8.0 (Ar).

(minor isomer): δ = 2.77 (d, 6 H, 3J_H,P = 10.5 Hz, PNMe2), 4.30 (d, 1 H, 3J = 12.5 Hz, NCH2), 5.02 (br d, 1 H, 3J ≈ 13 Hz, NCH2), 5.55 (d, 1 H, 3J = 14.8 Hz, NCH2), 6.00 (d, 1 H, 3J = 14.8 Hz, NCH2), 6.64 (s, 1 H, NCH=), 6.8–8.3 (NCH, Ar).

13C NMR (125 MHz, CDCl3; major isomer): δ = 38.4 (d, 3J_C,P = 10.1 Hz, NMe2), 55.5 (NCH2Ph), 58.8 (3J_C,Pt = 104 Hz, NCH2).

HR-MS (ESI): m/z = 950.0914, calcd. for C39H33IN3O2P194PtNa : 950.0880 ;

[α]D = -16 (c = 0.5, CHCl3).
Experimental part: chapter II

(Iodo)(1-methyl-3-benzyl-κC-imidazolylidene)((S)-4-phenyl-4,5-dihydro-3H-dinaphtho-phosphepine) platinum (C3a)

Complex was purified by column chromatography with an heptane/ethyl acetate (7:3) mixture (Rf = 0.2) and was obtained as a pale yellow solid in 63% yield (44 mg), as a 8:2 mixture of isomers.

31P NMR (121 MHz, CDCl₃): $\delta = 27.4$ ($J_{P-Pt} = 2750$ Hz) (major), 28.8 ($J_{P-Pt} = 2777$ Hz) (minor).

1H NMR (500 MHz, CDCl₃): $\delta = 3.11$ (dd, 1H, $J_I = 12.0$ Hz, $J_{H-P} = 15.0$ Hz, PCH₂), 3.22 (d, 1H, $J_I = 12.0$ Hz, PCH₂), 3.34 (dd, 1H, $J_I = 8.0$ Hz, $J_H = 14.5$ Hz, PCH₂), 4.01 (s, 3H, NMe), 4.0 (1H, PCH₂), 4.57 (d, 1H, $J_I = 13.5$ Hz, NCH₂), 5.29 (d, 1H, $J_H = 13.5$ Hz, NCH₂), 6.45 (d, 1H $J_H = 8.5$ Hz), 6.7-7.2 (m), 7.4-7.5 (m), 7.74 (2H), 7.88 (4H).

13C NMR (125 MHz, CDCl₃): $\delta = 27.1$ (d, $J_{C-P} = 31$ Hz, PCH₂), 38.6 (d, $J_{C-P} = 29$ Hz, PCH₂), 40.3 (NMe), 58.9 (NCH₂), 120.1 (NCH=), 121.1 (NCH=), 122.9, 138.3 (d, $J = 7.3$ Hz, C), 139.7 (CH), 142.0 (d, $J_{C-P} = 7.4$ Hz, C), 172.0 (d, $J_{C-P} = 147$ Hz, C-Pt).

HRMS (ESI): calcd. for C$_{39}$H$_{32}$N$_2$P$_{19}$Pt : 754.1951. Found: 754.1959.

α= -77 (c = 0.5, CHCl₃).

X-Ray analysis: cf annexe

(Iodo)(1-methyl-3-benzyl-κC-imidazolylidene)(diphenyl-N,N-bis-((S,S)-1-phenylethyl)phosphinamine) platinum (C4)

Complex was purified by column chromatography with an heptane/ethyl acetate (7:3) mixture (Rf = 0.2) and was obtained as a white solid in 56% yield (76 mg), as a 63:37 mixture of isomers.

31P NMR (121 MHz, CDCl₃): $\delta = 78.4$ ($J_{P-Pt} = 3089$ Hz) (minor), 81.3 ($J_{P-Pt} = 3054$ Hz) (major).
Experimental part: chapter II

\(^1\)H NMR (500 MHz, CDCl\(_3\), major isomer): \(\delta = 1.44\) (d, 6H, \(J = 6.5\) Hz, Me), 3.79 (s, 3H, NMe), 4.18 (d, 2H, \(J = 13.5\) Hz, NCH\(_2\)), 5.11 (d, 2H, \(J = 13\) Hz, NCH\(_2\)), 5.75 (s, 2H, NCH), 6.09 (dd, 1H, \(J = 8\) Hz, NCH=CHN), 6.44 (dd, 1H, \(J = 7\) Hz, NCH=CHN).

\(^1^3\)C NMR (125 MHz, CDCl\(_3\), major isomer): \(\delta = 21.6\) (Me), 39.8 (NMe), 59.0 (NCH\(_2\)).

HRMS (ESI): calcd. for C\(_{39}\)H\(_{39}\)N\(_3\)P\(^{195}\)Pt: 775.2529. Found: 775.2502.

\([\alpha]_D = 18\) (c = 0.6, CHCl\(_3\)).

<table>
<thead>
<tr>
<th>(Iodo) (S)-[1-methyl-3-(1-phenylethyl)-κC-imidazolylidene][(R)-Monophos] platinum (C5a)</th>
</tr>
</thead>
</table>
| Complex was obtained from the Pt(0) complex O5 (145 mg, 0.2 mmol) and (R)-Monophos (72 mg, 0.2 mmol) in an isomer ratio of 92:8; yield: 68 mg (0.08 mmol, 39%).

\(^{31}\)P NMR (121 MHz, CDCl\(_3\)): \(\delta = 131\) (broad, \(J_{P, Pt} \sim 4530\) Hz).

\(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta = 1.91\) (br, 3 H, CH\(_3\)), 2.94 (d, 6 H, \(J_{P, H} = 10.5\) Hz, PNMMe\(_2\)), 4.05 (s, 3 H, NCH\(_3\)), 5.00 (q, 1 H, \(J = 6.5\) Hz, NCH), 6.77 (s, 1 H, NCH=), 6.98 (s, 1 H, NCH=), 7.5–8.0 (Ar).

\(^{13}\)C NMR (CDCl\(_3\), 125 MHz): \(\delta = 26.7\) (CHMe), 38.5 (d, \(J_{C, P} = 10.0\) Hz, PNMMe\(_2\)), 40.9 (NCH\(_3\)), 66.8 (\(J_{C, P} = 73\) Hz, NCHMe), 119.9 (d, \(J = 6\) Hz, NCH=), 121.3 (d, \(J = 6\) Hz, NCH=), 121.6–132 (Ar), 140.1 (d, \(J = 13\) Hz, CH), 143.6, 147.9, 149.5 (d, \(J = 13\) Hz, Cq), 171.5 (d, \(J = 63\) Hz, Cq).

HR-MS (ESI): m/z = 866.0886, calcd. for C\(_{34}\)H\(_{32}\)N\(_3\)O\(_2\)P\(^{194}\)Pt : 866.0904.347 ;

\([\alpha]_D = -33\) (c = 0.4, CHCl\(_3\)).
(Iodo) (S)-[1-methyl-3-(1-phenylethyl)-κC-imidazolylidene][(S)-Monophos] platinum (C5b)

Complex was obtained as a 6:4 mixture of isomers, from the Pt(0) complex 05 (145 mg, 0.2 mmol) and (S)-MonoPhos (72 mg, 0.2 mmol); yield: 109 mg, (63%).

31P NMR (121 MHz, CDCl$_3$): $\delta = 129.1$ ($J_{P,Pt} = 4604$ Hz)

1H NMR (300 MHz, CDCl$_3$: major isomer): $\delta = 1.58$ (d, 3 H, $^3J = 7.0$ Hz, CHMe), 2.89 (d, 6 H, $^3J_{H,P} = 10.5$ Hz, PNMe$_2$), 4.03 (s, NMe), 4.76 (q, $^3J = 7.0$ Hz, CHMe), 6.7–8.4 (Ar).

(minor isomer): $\delta = 1.94$ (d, 3 H, $^3J = 7.0$ Hz, CHMe), 2.93 (d, 6 H, $^3J_{H,P} = 10.0$ Hz, PNMe$_2$), 4.02 (s, NMe), 5.50 (br, CHMe), 6.7–8.0 (Ar).

HR-MS (ESI): m/z = 866.0946, calcd. for C$_{34}$H$_{32}$N$_{3}$O$_{2}$P$_{194}$Pt : 866.0904.

(Iodo)(1-methyl-3-benzyl-κC2-imidazolylidene)((3aR,8aR)-(-)-(2,2-Dimethyl-4,4,8,8-tetraphenyl-tetrahydro-[1,3]dioxolo[4,5-e][1,3,2]dioxaphosphepin-6-yl)dimethylamine) platinum (C6)

Complex was obtained from O1 (68 mg, 0.11 mmol) Pt(0) and ((3aR,8aR)-(-)-(2,2-Dimethyl-4,4,8,8-tetraphenyl-tetrahydro-[1,3]dioxolo[4,5-e][1,3,2]dioxaphosphepin-6-yl)dimethylamine) (60 mg, 0.11 mmol) as a single isomer; yield: 73 mg (64%).

31P NMR (202.5 MHz, CDCl$_3$): $\delta = 115.0$ ($J_{P,Pt} = 3107$ Hz).

1H NMR (500 MHz, CDCl$_3$: major isomer): $\delta = 0.39$ (s, 3H, Me), 0.52 (s, 3H, Me), 2.55 (s, 3H, Me), 2.57 (s, 3H, Me), 3.59 (d, 1H, $J = 13.5$ Hz, NCH$_2$), 3.66 (s, 3H, NMe), 3.95 (d, 1 H, $J = 13.5$ Hz, NCH$_2$), 5.18 (d, 1H, $J = 8$ Hz, OCH), 5.33 (d, 1H, $J = 8$ Hz, OCH), 6.53 (d, 1 H, $J = 7.5$ Hz, NCH=), 6.79 (s, 1 H, $J = 7.5$ Hz, NHC=), 6.3 – 8.2 (Ar).

13C NMR (125 MHz, CDCl$_3$: major isomer): $\delta = 26.5$ (Me), 26.6 (Me), 38.0 (NMe), 38.4 (N(Me)$_2$), 38.5 (N(Me)$_2$), 58.6 (NCH$_2$), 79.5 (OCH), 79.7 (OCH).

HR-MS (ESI): calc. For C$_{44}$H$_{44}$N$_{9}$O$_{4}$PtP : 1033.1919, found [M+H]$^+$: 1033.1903
Experimental part : chapter II

\[[\alpha]_D = -128 \ (c = 0.5, \text{CHCl}_3). \]

X-Ray analysis: cf annexe

Chemical Formula: \(C_{39}H_{37}IN_3O_2P_{2}Pt \)

Molecular Weight: 932.89

Complex was obtained from \(\text{O1} \) (68 mg, 0.11 mmol) of Pt(0) and BIPOL-A1 (S) (50 mg, 0.11 mmol) as a 67 : 33 mixture of isomers ; yield : 58 mg (56%).

\(^{31}\text{P NMR (202.5 MHz, CDCl}_3\): \(\delta = 136.9 \ (J_{\text{P, Pt}} = 3082 \text{ Hz, major}), 134.5 \) (minor).

\(^1\text{H NMR (500 MHz, CDCl}_3 \text{; major isomer):** \(\delta = 0.89 \) (t, 2H, \(J = 7 \text{ Hz, NCH})), 1.12 \) (d, 6H, \(J = 7 \text{ Hz, Me})), 2.89 \) (s, 3H, Me), 4.20 \) (d, 1H, \(J = 13.5 \text{ Hz, NCH}_2)), 4.69 \) (d, 1H, \(J = 13.5 \text{ Hz, NCH}_2)), 6.62 \) (d, 1H, \(J = 2 \text{ Hz, NCH})), 6.96 \) (s, 1H, \(J = 2 \text{ Hz, NHC})), 6.8 – 7.6 \) (Ar).

\(^{13}\text{C NMR (125 MHz, CDCl}_3 \text{; major isomer):** \(\delta = 14.1 \) (NCH), 19.2 \) (Me), 36.6 \) (Me), 59.0 \) (NCH\(_2\)), 120.1 \) (NCH\(_{=}\)), 120.3 \) (NCH\(_{=}\)).

HR-MS (ESI): calc. For \(C_{39}H_{37}N_3O_2^{195}\text{PtINa} : 955.1214, \) found \([M+Na]^+ : 955.1259\)

\[[\alpha]_D = 92 \ (c = 0.5, \text{CHCl}_3). \]

Chemical Formula: \(C_{39}H_{37}IN_3O_2P_{2}Pt \)

Molecular Weight: 818.55

Complex was obtained from (100 mg, 0.15 mmol) of Pt(0) \(\text{O1} \) and ((R)-Siphos) (50 mg, 0.15 mmol) as a mixture of 4 isomers ; yield : 69 mg (57%).

\(^{31}\text{P NMR (202.5 MHz, CDCl}_3\): \(\delta = 106.9 \ (J_{\text{P, Pt}} = 4585 \text{ Hz, minor}), 104.9 \) (\(J_{\text{P, Pt}} = 4585 \text{ Hz, minor}), 104.0 \) (\(J_{\text{P, Pt}} = 4648 \text{ Hz, minor}), 103.0 \) (\(J_{\text{P, Pt}} = 4636 \text{ Hz, major}).

\(^1\text{H NMR (500 MHz, CDCl}_3 \text{; major isomer):** \(\delta = 1.9-2.4 \) & 2.6-3.2 \) (m, 8H, CH\(_2\) spiro),
Experimental part: chapter II

2.19 (s, 6H, NMe₂), 4.02 (s, 3H, NMe), 4.41 (d, 1H, J = 12.5 Hz, NCH₂), 5.30 (d, 1H, ²J = 13 Hz, NCH₂), 6.13 (d, 1H, J = 7 Hz, NCH=), 6.55 (s, 1H, J = 8 Hz, NHC=), 6.5 – 7.1 (Ar).

13C NMR (125 MHz, CDCl₃; major isomer): δ = 30.6 (PNMe₂), 31.0 (CH₂ spiro), 38.4 (CH₂ spiro), 40.1 (NMe), 58.9 (NCH₂), 122.5 (NCH=), 128.0 (NCH=).

HR-MS (ESI): calc. For C₃₀H₃₁N₃O₂¹⁹⁵PtPNa : 841.0744, found [M+Na]+: 841.0710

[α]D = 27 (c = 0.5, CHCl₃).

X-Ray analysis: cf annexe.

(Iodo)(1-methyl-3-benzyl-κCZ-imidazolylidene) ((S)-(+)-(3,5-Dioxa-4-phosphacyclohepta[2,1-a;3,4-a’]dinaphthalen-4-yl) benzyl(methyl)amine) platinum (C9)

Complex was obtained from O1 (68 mg, 0.11 mmol) and ((S)-(+)-(3,5-Dioxa-4-phosphacyclohepta[2,1-a;3,4-a’]dinaphthalen-4-yl) benzyl(methyl)amine (50 mg, 0.11 mmol) as a 86:14 mixture of isomers; yield: 40 mg (39%).

3¹P NMR (202.5 MHz, CDCl₃): δ = 130.9 (1J/Pt = 4531 Hz, major), 129.9 (minor).

1H NMR (500 MHz, CDCl₃; major isomer): δ= 2.58 (br s, 3H, PNMe), 3.96 (s, 3H, NMe), 4.45 (d, 1H, J = 13.5 Hz, NCH₂), 5.09 (d, 2H, ²J = 13.5 Hz, NCH₂), 6.75 (s, 1H, NHC=), 6.95 (s, 1H, NHC=), 7.2–7.9 (Ar).

13C NMR (125 MHz, CDCl₃; major isomer): δ = 34.5 (PNMe), 40.2 (NMe), 58.6 (NCH₂Ph), 120.2 (NCH=), 123.1 (NCH=).

HR-MS (ESI): calc. For C₃₀H₃₁N₃O₂¹⁹⁵PtP : 929.1081, found [M+H]+: 929.1126

[α]D = 4.7 (c = 0.6, CHCl₃).
(Iodo)(1-methyl-3-benzyl-κCZ-imidazolylidene(11bS)-N,N-dimethyl-8,9,10,11,12,13,14,15-octahydropindaphtho[2,1-d:1′,2′-f][1,3,2]dioxaphosphepin-4-amine) platinum (C10)

Complex was obtained from O1 (92 mg, 0.14 mmol) and (S) -(S)- (8,9,10,11,12,13,14,15)-octahydro-3,5-dioxo-4-phosphacyclohepta[2,1-a;3,4-a'][2,1-a;3,4-a']dinaphthalene-4-yl)dimethylamine (50 mg, 0.14 mmol) as a 86:14 mixture of isomers; yield: 62 mg (51%).

31P NMR (202.5 MHz, CDC13): \(\delta = 124.9 \) \((J_{P,Pt} = 4555 \text{ Hz}, \text{ major}) \), 123.2 \((J_{P,Pt} = 4555 \text{ Hz}, \text{ minor}) \).

1H NMR (500 MHz, CDC13; major isomer): \(\delta = 1.76 \) (m, 8H, CH2), 2.20 (m, 2H, CH2), 2.82 (m, 12H, PNMe & CH2), 4.00 (s, 3H, NMe), 4.43 (d, 1H, \(J = 13.5 \text{ Hz}, \text{ NCH2} \)), 5.15 (d, 1H, \(J = 12.5 \text{ Hz}, \text{ NCH2} \)), 6.74 (d, 1H, \(J = 1.5 \text{ Hz}, \text{ NCH=} \)), 6.91 (s, 1H, \(J = 1.5 \text{ Hz}, \text{ NHC=} \)), 6.8 – 7.1 (Ar).

13C NMR (125 MHz, CDC13; major isomer): \(\delta = 22.7 \) (CH2), 27.7 (CH2), 29.0 (CH2), 29.1 (CH2), 38.4 (d, \(J_{C,P} = 9.1 \text{ Hz}, \text{ PNMe}2 \)), 40.3 (NMe), 58.7 (NCH2), 120.2 (d, \(J = 5.5 \text{ Hz}, \text{ NCH=} \)), 121.3 (d, \(J = 5.4 \text{ Hz}, \text{ NCH=} \)).

HR-MS (ESI): calc. For C33H38N3O2\(^{195} \text{PtPI} \): 861.1394, found [M+H]\(^+ \): 861.1398

[\(\alpha \)]D = -38 (c = 0.5, CHCl3).

X-Ray analysis: cf annexe.

(Iodo)(1-methyl-3-benzyl-κCZ-imidazolylidene)(((S)-(+)-(3,5-Dioxo-4-phosphacyclohepta[2,1-a;3,4-a']dinaphthalene-4-yl)diethylamine) platinum (C11)

Complex was obtained from O1 (102 mg, 0.15 mmol) and (S)-(+)-(3,5-Dioxo-4-phosphacyclohepta[2,1-a;3,4-a']dinaphthalene-4-yl)diethylamine as a 85:15 mixture of isomers; yield: 92 mg (70%).
Experimental part : chapter II

31P NMR (202.5 MHz, CDCl$_3$): $\delta = 132.0$ ($^{1}J_{P,Pt} = 4508$ Hz, major), 130.0 (minor).

1H NMR (500 MHz, CDCl$_3$; major isomer): $\delta = 1.17$ (br s, 6H, CH$_2$Me), 3.03 (br. s, 1H, NCH$_2$), 3.53 (br. s, 1H, NCH$_2$), 3.99 (s, 3H, NMe), 4.45 (d, 1H, $^{2}J = 13.5$ Hz, NCH$_2$), 5.07 (d, 1H, $^{2}J = 12.5$ Hz, NCH$_2$), 6.73 (s, 1 H, NCH=), 6.90 (s, 1 H, NHC=), 6.9–8.0 (Ar);

13C NMR (125 MHz, CDCl$_3$; major isomer): $\delta = 14.1$ (Me), 40.2 (NMe), 40.3 (NCH$_2$), 58.6 (NCH$_2$Ph), 120.2 (NCH=).

[α]$_D = 5.5$ (c = 0.6, CHCl$_3$).
Synthesis of 1,6-enynes

N-allyltoluenesulfonamide\(^{160}\)

![Chemical structure of N-allyltoluenesulfonamide]

Chemical Formula: C\(_{10}\)H\(_{13}\)NO\(_2\)S
Molecular Weight: 211.28

To a solution of allylamine (13 mL, 175 mmol, 1 eq) and triethylamine (27 mL, 193 mmol, 1.1 eq) in DCM (50 mL) at 0°C was added dropwise a solution of \(p\)-toluenesulfonyl chloride (36.7 g, 193 mmol, 1.1 eq) in DCM (180 mL). The reaction mixture was stirred for 1h at room temperature. The mixture was washed with an ammonium chloride saturated solution and then with brine. The organic layer was dried over MgSO\(_4\) and concentrated. N-allyltoluenesulfonamide was obtained in a quantitative yield as a white solid.

\(^1H\) NMR (500 MHz, CDCl\(_3\)): \(\delta\) 2.45 (s, 3H, Me), 3.43 (t, \(J=6.0\) Hz, 2H, NCH\(_2\)), 4.94 (dd, 1H \(J=1.0\) Hz, \(J=10.0\) Hz, CH\(_2\)=), 5.06 (dd, 1H, \(J=1.0\) Hz, \(J=15.0\) Hz, CH\(_2\)=), 5.65 (m, 1H, CH=), 6.02 (t, 1H, \(J=6.0\) Hz, NH), 7.19 (d, 2H, \(J=8.0\) Hz, Ph), 7.70 (d, 2H, \(J=8.0\) Hz, Ph).

3-bromo-1-phenyl-1-propyne\(^{161}\) (59)

![Chemical structure of 3-bromo-1-phenyl-1-propyne]

Chemical Formula: C\(_3\)H\(_7\)Br
Molecular Weight: 195.06

To a solution of 3-phenyl-2-propyn-1-ol (8.7 mL, 0.07 mol, 1 eq) and pyridine (0.4 mL) in Et\(_2\)O (20 mL) at -40°C was added phosphorus tribromide (2.4 mL, 0.025 mol, 0.36 eq) in Et\(_2\)O (10 mL) over a period of 45 minutes. The reaction mixture was stirred at -40°C for 2h and then at room temperature for 4h. The solution was poured in brine (40 mL), extracted with Et\(_2\)O, dried over MgSO\(_4\) and concentrated. 3-bromo-1-phenyl-1-propyne was obtained in 84% yield as a yellow oil.

\(^1H\) NMR (500 MHz, CDCl\(_3\)): \(\delta\) 4.19 (s, 2H, CH\(_2\)), 7.35-7.48 (m, 5H, Ph).

Experimental part: chapter II

N-allyl-N-(phenylethynyl)-4-methyl-benzenesulfonamide\(^{162,163}\) (S1)

A solution of N-allyltoluenesulfonamide (1.8 g, 8.6 mmol, 1 eq), potassium carbonate (2.48 g, 18.0 mmol, 1.2 eq) and 3-bromo-1-phenyl-1-propyne (2 g, 10.3 mmol, 1.2 eq) in MeCN (10 mL) was stirred at 60°C for 5h. The reaction mixture was filtered, washed with DCM and the filtrate evaporated. The residue was purified by flash chromatography on silica gel with an heptane/EtOAc (6:1) mixture. The desired product was obtained in 90% yield as a white solid.

\(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta\) 2.37 (s, 3H, Me), 3.91 (d, 2H, J = 7.0 Hz, NCH\(_2\)CH=), 4.33 (s, 2H, NCH\(_2\)), 5.29 (d, 1H, J = 10.0 Hz, CH\(_2\)=), 5.35 (d, 1H, J = 17.0 Hz, CH\(_2\)=), 5.82 (m, 1H, CH=), 7.09 (d, 2H, J = 8.0 Hz, Ts), 7.27 (m, 5H, Ph), 7.80 (d, 2H, J = 8.0 Hz, Ts).

(\(S\))-1-ido-4-(1-phenylethoxy)benzène (52)

Diethyl azodicarboxylate (1.2 mL, 8.2 mmol) was added to a solution of (R)-phenylethanol (1 mL, 8.2 mmol), 4-iodophenol (1.8 g, 8.2 mmol) and triphenylphosphine (2.1 g, 8.2 mmol) in THF (30 mL) at 0°C. After stirring overnight at room temperature, the solvents were removed under high vacuum. The crude mixture was taken up in hexane, filtered and the filtrate was evaporated. The residue was purified by flash chromatography with heptane/EtOAc (99:1) as eluent to give the desired product as a pale yellow solid; yield = 1.6 g (60%).

\(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta\) = 1.62 (d, 3H, J = 6.0 Hz, Me), 5.25 (q, 1 H, J = 6.0 Hz, CH), 6.63 (2 H, Ar), 7.2–7.3 (m, 5 H, Ph), 7.45 (2 H, Ar).

\(^{13}\)C NMR (CDCl\(_3\), 125 MHz): \(\delta\) = 24.4 (Me), 76.2 (CH), 82.7 (Cl), 118.3, 125.5, 127.6, 128.7, 138.1, 142.7 (C), 157.8 (OC).

MS (ESI): m/z = 324.0 [M]+, 219.0, 105.0

\([\alpha]_D = -25\) (c = 0.9, CHCl\(_3\); ee 97% by HPLC).

Experimental part : chapter II

(S)-3-(4-(1-phenylethoxy)phenyl)prop-2-yn-1-ol (53)

A solution of (S)-1-iodo-4-(1-phenylethoxy)benzene (0.35 g, 1.1 mmol), propargylalcohol (67 mL, 1.14 mmol) in toluene (1.1 mL), bis(triphenylphosphine)palladium chloride (23 mg, 0.033 mmol, 3 mol%), copper iodide (12.5 mg, 0.066 mmol, 6 mol%) and piperidine (0.2 mL, 2.2 mmol) was heated at 35°C for 4 h. The mixture was filtered and the solvents were removed under vacuum. The residue was purified by flash chromatography with DCM as eluent to give (S)-3-[4-(1-phenylethoxy)phenyl]-prop-2-yn-1-ol as an orange oil; yield: 0.23 g (82%).

^1H NMR (300 MHz, CDCl₃): δ = 1.65 (d, 3H, J = 6.0 Hz, Me), 1.8 (br, 1H, OH), 4.46 (d, 2H, J = 3.0 Hz, CH₂OH), 5.32 (q, 1H, J = 6.0 Hz, CH), 6.80 (2 H, Ar), 7.20 (2 H, Ar), 7.2–7.3 (5 H, Ph).

^13C NMR (CDCl₃, 125 MHz): δ = 24.4 (Me), 51.7 (CH₂OH) 76.1 (CH), 85.7 (C), 85.8 (C), 114.5 (C), 115.9, 125.5, 127.6, 128.7, 133.0, 142.7 (C), 158.2 (C).

MS (ESI): m/z = 251.1 [M-H]

[α]D = -28 (c 0.9, CHCl₃).

(S)-N-Allenyl-4-methyl-N-{3-[4-(1-phenylethoxy)phenyl]-prop-2-yn-1-yl}-p-nitrophenylsulfonamide (S10)

Di-tert-butyl azodicarboxylate (0.38 g, 1.6 mmol) was added to a solution of (S)-3-[4-(1-phenylethoxy)phenyl]prop-2-yn-1-ol (0.41 g, 1.6 mmol), N-allyl-p-nitrobenzenesulfonamide (0.40 mg, 1.6 mmol) and triphenylphosphine (0.43 mg, 1.6 mmol) in THF (10 mL) at 0 8°C. After stirring overnight at room temperature, solvents were removed under vacuum. The residue was purified by flash chromatography with a heptane/EtOAc gradient, from 95 :5 to 90 :10, as the eluent to give (S)-N-allenyl-4-methyl-N-{3-[4-(1-phenylethoxy)phenyl]prop-2-ynyl}-p-nitrophenylsulfonamide 6h as a yellow oil; yield: 0.40 g (51%); ee 97% by HPLC.

^1H NMR (300 MHz, CDCl₃): δ = 1.65 (d, 3H, J = 6.0 Hz, Me), 3.92 (d, 2H, J = 7.0 Hz, NCH₂), 4.34 (s, 2H, NCH₂), 5.3–5.4 (3H, =CH₂ + OCH), 5.78 (m, 1 H, CH=), 6.73 (d, 2H, J = 9.0 Hz, Ar), 6.91 (d, 2H, J = 9.0 Hz, Ar), 7.2–7.4 (5 H, Ph), 8.06 (d, 2H, J = 9.0 Hz, Ns), 8.70 (d, 2H, J = 9.0 Hz, Ns).
Experimental part: chapter II

13C NMR (75 MHz, CDCl$_3$): $\delta =$ 24.4 (Me), 37.0 (NCH$_2$), 49.5 (NCH$_2$), 76.2 (OCHMe), 79.5 (C), 86.4 (C), 113.4 (C), 115.9, 120.5 (CH$_2q$), 124.0, 125.5, 127.6, 128.7, 129.0, 131.4, 132.7, 142.6 (C), 144.9 (C), 150.0 (C), 158.4 (C).

MS (ESI): m/z = 499 [M + Na]$^+$

HPLC: Chiralpak IA column, heptane/2-propanol (90:10), 1 mL/min; retention times 14.8 (major) and 17.8 min; ee 97%.

<table>
<thead>
<tr>
<th>4-methyl-N-(3-phenylprop-2-yn-1-yl)benzenesulfonamide (63)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Chemical Formula: C${16}$H${14}$NO$_2$S</td>
</tr>
<tr>
<td>Molecular Weight: 285.36</td>
</tr>
</tbody>
</table>

63 has been prepared according the literature.164

1H NMR (300 MHz, CDCl$_3$): $\delta =$ 2.35 (s, 3H, Me), 4.07 (d, 2H, J = 6.0 Hz, CH$_2$), 4.44 (t, 1H, NH), 7.12 (2H, dd, J_1 = 1.5 Hz, J_2 = 7.8 Hz, Ts), 7.2-7.3 (m, 5H, Ar), 7.81 (d, 2H, J = 8.1 Hz, Ts).

13C NMR (75 MHz, CDCl$_3$): $\delta =$ 21.5 (Me), 33.8 (CH$_2$), 83.2 (C), 84.8 (C), 122.1 (C), 127.5 (Ts), 128.2 (Ar), 128.6 (Ar), 129.7 (Ar), 131.6 (Ts), 136.9 (C), 143.8 (C).

HRMS (ESI): calc. for C$_{16}$H$_{14}$NO$_2$S : 284.0745. found : 284.0755

<table>
<thead>
<tr>
<th>(E)-ethyl 4-(4-methyl-N-(3-phenylprop-2-yn-1-yl)phenylsulfonamido)but-2-enoate (S17)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Chemical Formula: C${22}$H${23}$NO$_4$S</td>
</tr>
<tr>
<td>Molecular Weight: 397.49</td>
</tr>
</tbody>
</table>

To a solution of 63 (250 mg, 0.88 mmol, 1 eq.) in acetonitril (1 mL) is added K$_2$CO$_3$ (254 mg, 1.84 mmol, 2.1 eq.) then ethyl-4-bromocrotonate (0.15 mL, 1.06 mmol, 1.2 eq.). The mixture is heated 4h at 60°C then concentrated. After column chromatography (silica, hept/MTBE 95/5 to 85/15) the product is obtained as a white solid (275 mg, 79 % yield).

1H NMR (300 MHz, CDCl$_3$): δ 1.28 (t, 3H, J = 6.9 Hz, Me), 2.35 (s, 3H, Me), 4.04 (dd, 2H, J_1 = 1.5 Hz, J_2 = 5.7 Hz, NCH$_2$CH$_2$CH$_2$), 4.19 (q, 2H, J = 6.9 Hz, CH$_2$), 4.31 (s, 2H, NCH$_2$), 6.07 (dt, 1H, J_1 = 1.8 Hz, J_2 = 15.9 Hz, CH$_2$), 6.86 (dt, 1H, J = 5.7 Hz, J_2 = 15.6 Hz, CH$_2$), 7.08 (dd, 2H, J_1 = 1.5 Hz, J_2 = 7.8 Hz, Ts), 7.2-7.3 (m, 5H, Ph), 7.78 (d, 2H, J = 6.3 Hz, Ts).

Experimental part: chapter II

13C NMR (75 MHz, CDCl$_3$): δ 14.2 (Me), 21.5 (Me), 37.7 (NCH$_2$), 37.7 (NCH$_2$), 60.7 (CH$_2$), 81.3 (C), 86.2 (C), 122.0 (C), 124.6 (CH=), 127.8 (Ts), 128.2 (Ar), 128.6 (Ar), 130.0 (Ar), 131.5 (Ts), 135.8 (C), 141.5 (CH=), 143.9 (C), 165.6 (C).

HRSM (ESI): calc. for C$_{22}$H$_{23}$NO$_4$Na: 420.1245. found: 420.1254.
Experimental part: chapter II

Synthesis of 1,6-dienynes

(3-Penta-1,4-dien-3-yl)tosylamide (58)

\[
\text{TsHNN} \quad \text{Chemical Formula: } \text{C}_{12}\text{H}_{13}\text{NO}_2\text{S} \quad \text{Molecular Weight: } 237,32
\]

To a solution of vinylmagnesium bromide (0.5 M, 39 mL, 19.4 mmol, 2.2 eq.) is added at 0°C over a period of 5 min, a solution of \(N\)-tosylformimidate\(^{165}\) (2 g, 8.8 mmol, 1 eq.) in dry THF (7 mL). The reaction is stirred 12 h at rt then quenched by addition at 0°C of a solution of NH\(_4\)Cl. The aqueous layer is extracted with Et\(_2\)O. The organic layer is dried over MgSO\(_4\), then the solvent is removed under reduced pressure. After purification on column chromatography (silica, hept/EtOAc 80/20, Rf=0.2) a white solid is obtained (1.4 g, yield: 64%).

\(^1\text{H NMR (300 MHz, CDCl}_3\): } \delta = 2.43 \text{ (s, 3H, Me), } 4.39 \text{ (m, 1H, CH), } 4.60 \text{ (br, 1H, NH), } 5.1-5.2 \text{ (4H, CH\(_2\)-), } 5.69 \text{ (ddd, 2H, } J = 16.2 \text{ Hz, } J = 10.2 \text{ Hz, } J = 5.7 \text{ Hz, CH=), } 7.3 \text{ (d, 2H, } J = 8.1 \text{ Hz, Ts), } 7.76 \text{ (d, 2H, } J = 8.4 \text{ Hz, Ts).}

\[\text{N-(2,4-dimethylpenta-1,4-dien-3-yl)-4-methylbenzenesulfonamide}^{165}\]

\[
\text{TsHNN} \quad \text{Chemical Formula: } \text{C}_{14}\text{H}_{19}\text{NO}_2\text{S} \quad \text{Molecular Weight: } 265,37
\]

To a solution of isopropylmagnesium bromide (0.5 M, 11 mL, 71.2 mmol, 2.2 eq.) is added at 0°C over a period of 5 min, a solution of \(N\)-tosylformimidate\(^{165}\) (570 mg, 2.5 mmol, 1 eq.) in dry THF (2 mL). The reaction is stirred 12 h at rt then quenched by addition at 0°C of a solution of NH\(_4\)Cl. The aqueous layer is extracted with Et\(_2\)O. The organic layer is dried over MgSO\(_4\), then the solvent is removed under reduced pressure. After purification on column chromatography (silica, hept/EtOAc 80/20, Rf=0.3) the product is obtained (367 mg, yield: 55%).

\(^1\text{H NMR (300 MHz, CDCl}_3\): } \delta = 1.54 \text{ (s, 6H, Me), } 2.41 \text{ (s, 3H, Me), } 4.17 \text{ (d, 1H, } J = 8 \text{ Hz, CH), } 4.82 \text{ (s, 2H, CH\(_2\)-), } 4.87 \text{ (s, 2H, CH\(_2\)-), } 5.54 \text{ (d, 1H, } J = 8.5 \text{ Hz, NH), } 7.26 \text{ (d, 2H, } J = 8 \text{ Hz, Ts), } 7.76 \text{ (d, 2H, } J = 8.5 \text{ Hz, Ts).}

Experimental part : chapter II

3-(3,5-dimethylphenyl)prop-2-ynol (60)

![Chemical structure of 3-(3,5-dimethylphenyl)prop-2-ynol](image)

Chemical Formula: C\(_{11}\)H\(_{12}\)O
Molecular Weight: 160.21

A mixture of prop-2-ynol (0.26 mL, 4.3 mmol, 1 eq), 1-iodo-3,5-dimethylbenzene (0.62 mL, 4.3 mmol, 1 eq), piperidine (0.86 mL, 8.6 mmol, 2 eq), PdCl\(_2\)(PPh\(_3\))\(_2\) (90 mg, 0.13 mmol, 3 mol%) and Cul (49 mg, 0.26 mmol, 6 mol%) in toluene 4.4 mL was stirred at 35°C for 4h. The reaction mixture was passed through a short silica pad and the solvent was removed under high vacuum. Flash column chromatography with DCM as the eluent afforded the desired product (Rf = 0.2) in 92% yield (635 mg).

\(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta\) 2.30 (s, 6H, Me), 4.50 (s, 2H, OCH\(_2\)), 6.98 (s, 1H, Ar), 7.09 (s, 2H, Ar).

\(^{13}\)C NMR (125 MHz, CDCl\(_3\)): \(\delta\) 21.1 (Me), 51.7 (OCH\(_2\)), 86.1 (C), 86.5 (C), 122.1 (C), 129.4 (CH), 130.4 (CH), 137.9 (CMe).

3-bromo-1-(3,5-dimethylphenyl)-1-propyne (61)

![Chemical structure of 3-bromo-1-(3,5-dimethylphenyl)-1-propyne](image)

Chemical Formula: C\(_{11}\)H\(_{11}\)Br
Molecular Weight: 223.11

PBr\(_3\) (0.13 mL, 1.4 mmol, 0.35 eq) was added dropwise, at -40°C to a cooled solution of 3-(3,5-dimethylphenyl)prop-2-ynol (635 mg, 4.0 mmol, 1 eq) and pyridine (25 \(\mu\)L) in Et\(_2\)O (9 mL). The mixture was stirred at -40°C for 2h then warmed to room temperature and stirred again for 4h. The reaction was quenched by pouring into a saturated NaCl solution. The aqueous phase was extracted with Et\(_2\)O. Drying of the organic layers with MgSO\(_4\) and evaporation of the solvent afforded 3-bromo-1-(3,5-dimethylphenyl)-1-propyne which was used in the next step without further purification.

\(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta\) 2.28 (s, 3H, Me), 4.16 (s, 2H, CH\(_2\)Br), 6.97 (s, 1H, Ar), 7.08 (s, 2H, Ar).
3-(3-methoxyphenyl)prop-2-yn-1-ol

A mixture of prop-2-ynol (0.35 mL, 5.3 mmol, 1 eq), 1-iodo-3-methoxyphenyl (1.2 g, 5.3 mmol, 1eq), triethylamine (3 mL, 2 mmol, 4 eq.), PdCl$_2$(PPh$_3$)$_2$ (83 mg, 0.03 mmol, 3 mol%) and Cul (48 mg, 0.06mmol, 6 mol%) in acetonitril (15 mL) was stirred at room temperature for 2h. The reaction mixture was passed through a short silica pad and the solvent was removed under high vacuum. Flash column chromatography with heptane/EtOAc (80/20) as the eluent afforded the desired product in 81% yield (692 mg).

1H NMR (500 MHz, CDCl$_3$): δ 1.63 (s, 1H, OH), 3.83 (s, 3H, Me), 4.51 (s, 2H, CH$_2$), 6.86 (d, 2H, $J= 8.5$ Hz, Ar), 7.40 (d, 2H, $J= 5$ Hz, Ar).

3-(3-nitrophenyl)prop-2-yn-1-ol

A mixture of prop-2-ynol (0.34 mL, 5 mmol, 1 eq), 1-iodo-4-nitrophenyl (1,2 g, 5 mmol, 1eq), triethylamine (2 mL, 2 mmol, 4 eq.), PdCl$_2$(PPh$_3$)$_2$ (80 mg, 0.03 mmol, 3 mol%) and Cul (47 mg, 0.06mmol, 6 mol%) in acetonitril (15 mL) was stirred at room temperature for 2h. The reaction mixture was passed through a short silica pad and the solvent was removed under high vacuum. Flash column chromatography with heptane/EtOAc (80/20) as the eluent afforded the desired product in 94% yield (831 mg).

1H NMR (500 MHz, CDCl$_3$): δ 1.86 (s, 1H, OH), 4.56 (s, 2H, CH$_2$), 7.59 (dd, 2H, $J= 2.5$ Hz, $J= 9$ Hz, Ar), 8.20 (dd, 2H, $J= 2$ Hz, $J= 9$ Hz, Ar).

3-(2-methoxyphenyl)prop-2-yn-1-ol

A mixture of prop-2-ynol (0.30 mL, 5.1 mmol, 1.2 eq), 3-iodoanisol (0.51 mL, 4.3 mmol,
Experimental part: chapter II

1eq), triethylamine (2.3 mL, 17 mmol, 4 eq.), PdCl₂(PPh₃)₂ (80 mg, 0.01 mmol, 3 mol%) and Cul (41 mg, 0.02 mmol, 6 mol%) in acetonitril (13 mL) was stirred at room temperature for 3h. The reaction mixture was passed through a short silica pad and the solvent was removed under high vacuum. Flash column chromatography with heptane/EtOAc from 90/10 to 70/30 (Rf=0.3) as the eluent afforded the desired product in 94% yield (652 mg, Brown oil).

¹H NMR (500 MHz, CDCl₃): δ = 1.82 (s, 1H, OH), 3.81 (s, 3H, Me), 4.51 (s, 2H, Me), 6.90 (dd, 1H, J= 0.9 Hz, J= 2.7 Hz, J= 8.4 Hz, Ar), 6.99 (m, 1H, Ar), 7.05 (dt, 1H, J= 1.2 Hz, J= 7.5Hz, Ar), 7.24 (1H, dd, , J= 7.8Hz, Ar).

¹³C NMR (75 MHz, CDCl₃): δ = 51.6 (CH₂), 55.3 (Me), 85.6 (C), 87.0 (C), 115.1 (Ar), 116.6 (Ar), 123.5 (C), 124.2 (Ar), 129.4 (Ar), 159.3 (C).

Dienynes 9 were prepared from (3-penta-1,4-dien-3-yl)tosylamide 58 according to methods A or B.

Method A: Diisopropyl azodicarboxylate (DIAD) (375 mg, 1.9 mmol) was added dropwise at 0°C to a THF solution (13 mL) containing (3-penta-1,4-dien-3-yl)tosylamide (0.29 g, 1.2 mmol) and the desired 3-arylpropargyl alcohol (1.9 mmol). The mixture was stirred at room temperature for 2 h. After removal of the solvent, the final product was purified by column chromatography.

Method B: Potassium carbonate (320 mg, 2.2 mmol) was added to a solution containing (3-penta-1,4-dien-3-yl)tosylamide (0.27 g, 1.1 mmol) and 3-arylpropargyl bromide (1.4 mmol) in MeCN (4 mL). The mixture was heated overnight at 60°C. After removal of the solvent, the final prod- uct was purified by column chromatography.

<table>
<thead>
<tr>
<th>4-methyl-N-(penta-1,4-dien-3-yl)-N-(3-phenylprop-2-yn-1-yl)benzenesulfonamide (S11)</th>
</tr>
</thead>
</table>
| ![Chemical Structure](image)

S11 is prepared in 87% yield according to method B.

¹H NMR (500 MHz, CDCl₃): δ = 2.36 (s, 3 H, Me), 4.31 (s, 2 H, NCH), 5.08 (m, 1 H, NCH), 5.25 (d, 2 H, 3J = 17.0 Hz, =CH₂), 5.27 (d, 2 H, 3J = 10.5 Hz, =CH₂), 5.98 (dd, 2H, 3J = 17.0 Hz, 3J = 10.5 Hz, 3J = 6.0 Hz, CH=), 7.1–7.3 (7 H, Ar), 7.81 (d, 2 H, 3J = 8.5 Hz, Ts).

Experimental part: chapter II

\[
N-(3-(3,5-dimethylphenyl)prop-2-yn-1-yl)-4-methyl-N-(penta-1,4-dien-3-yl)benzenesulfonamide (S12)
\]

![Chemical structure image]

Chemical Formula: C_{22}H_{26}NO_2S
Molecular Weight: 379.52

S12 is prepared in 83% yield according to method B.

1H NMR (300 MHz, CDCl₃): δ = 2.18 (s, 6 H, Me), 2.28 (s, 3 H, Me), 4.99 (br t, 1 H, NCH), 5.15 (d, 2 H, J ~ 17 Hz, CH₂), 5.17 (d, 2 H, J ~ 11 Hz, CH₂), 5.88 (ddd, 2 H, J = 16.8 Hz, J = 10.8 Hz, J = 6.0 Hz, CH=), 6.71 (s, 2 H), 6.85 (s, 1 H), 7.14 (2 H, Ts), 7.75 (2 H, Ts);

13C NMR (CDCl₃, 125 MHz): δ = 21.1 (Me), 21.5 (Me), 34.4 (NCH₂), 62.2 (NCH), 84.3 (C), 84.9 (C), 118.8 (CH₂=), 122.3 (C), 127.8, 129.1, 129.3, 130.2, 134.7, 137.7 (C), 137.9 (C), 143.1 (C).

HRMS (ESI): calc. for C_{22}H_{26}NO_2S : 380.1684. found : 380.1673

\[
N-(3-(4-methoxyphenyl)prop-2-yn-1-yl)-4-methyl-N-(penta-1,4-dien-3-yl)benzenesulfonamide (S13)
\]

![Chemical structure image]

Chemical Formula: C_{22}H_{26}NO_3S
Molecular Weight: 381.49

S13 is prepared in 32% yield according to method A.

1H NMR (300 MHz, CDCl₃): δ = 2.36 (s, 3 H, Me), 3.82 (s, 3 H, OMe), 4.28 (s, 2 H, CH₂), 5.07 (br t, 1 H, NCH), 5.23 (dm, 2 H, J = 16 Hz, CH₂), 5.25 (dm, 2 H, J = 10 Hz, CH₂), 5.97 (ddd, 2 H, J = 16.5 Hz, J = 10.5 Hz, J = 5.7 Hz, CH=), 6.80 (2 H, Ar), 7.12 (2 H, Ar), 7.21 (2 H, Ts), 7.83 (2 H, Ts);

13C NMR (CDCl₃, 125 MHz): δ = 21.4 (Me), 34.4 (NCH₂), 55.3 (OMe), 62.1 (NCH), 83.6 (C), 84.5 (C), 113.8 (CH), 114.7 (C), 118.7 (CH₂=), 127.8, 129.2, 132.8, 134.7, 137.8 (C), 143.1 (C), 159.6 (C).

HRMS (ESI): calc. for C_{22}H_{23}NO_3SNa : 404.1296. found : 404.1276
Experimental part: chapter II

N-(3-(3-methoxyphenyl)prop-2-yn-1-yl)-4-methyl-N-(penta-1,4-dien-3-yl)benzenesulfonamide (S14)

![Chemical structure of S14]

Chemical Formula: C_{23}H_{20}NO_{3}S
Molecular Weight: 381.49

S14 is prepared in 40% yield according to method A.

\(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta = 2.37\) (s, 3 H, Me), 3.80 (s, 3 H, OMe), 4.30 (s, 2 H, CH\(_2\)), 5.08 (br t, 1 H, NCH), 5.24 (dm, 2 H, \(J = 16\) Hz, CH\(_2\)), 5.26 (dm, 2 H, \(J = 10\) Hz, CH\(_2\)), 5.97 (ddd, 2 H, \(J = 16.8\) Hz, \(J = 10.5\) Hz, \(J = 6.0\) Hz, CH=), 6.71 (m, 1 H, Ar), 6.78 (d, 1 H, \(J = 7.5\) Hz, Ar), 6.87 (ddd, 1 H, \(J = 8.4\) Hz, \(J = 2.7\) Hz, \(J = 1.0\) Hz, Ar), 7.19 (t, 2 H, Ar), 7.23 (2 H, Ts), 7.84 (2 H, Ts);

\(^{13}\)C NMR (CDCl\(_3\), 125 MHz): \(\delta = 21.4\) (Me), 34.3 (NCH\(_2\)), 55.2 (OMe), 62.1 (NCH), 84.5 (C), 84.9 (C), 114.4 (CH), 116.6 (CH), 118.8 (CH=), 123.6 (C), 123.9, 129.7, 134.6, 137.8 (C), 143.2 (C), 159.2 (C);

4-methyl-N-(3-(4-nitrophenyl)prop-2-yn-1-yl)-N-(penta-1,4-dien-3-yl)benzenesulfonamide (S15)

![Chemical structure of S15]

Chemical Formula: C\(_{21}\)H\(_{21}\)N\(_2\)O\(_4\)S
Molecular Weight: 396.46

S15 is prepared in 16% yield according to method A.

\(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta = 2.38\) (s, 3 H, Me), 4.32 (s, 2 H, CH\(_2\)), 5.10 (br, 1 H, NCH), 5.26 (dm, \(J = 17\) Hz, 2 H, CH\(_2\)), 5.29 (dm, 2 H, \(J = 10\) Hz, CH\(_2\)), 5.93 (ddd, 2 H, \(J = 16.5\) Hz, \(J = 10.2\) Hz, \(J = 5.7\) Hz, CH=), 7.24 (2 H, Ar), 7.31 (2H, Ar), 7.82 (2 H, Ts), 8.16 (2 H, Ar);

\(^{13}\)C NMR (125 MHz, CDCl\(_3\)): \(\delta = 21.5\) (Me), 34.2 (NCH\(_2\)), 62.0 (NCH), 82.7 (C), 90.8 (C), 119.2 (CH=), 123.4, 127.7, 129.3, 132.1, 134.3, 137.7 (C), 143.4 (C), 147.1 (C).

Experimental part: chapter II

\[N\text{-}(2,4\text{-dimethylpenta}-1,4\text{-dien}-3\text{-yl})\text{-}4\text{-methyl}\text{-}N\text{-}(3\text{-phenylprop-2-yn-1-yl})\text{benzenesulfonamide (S16)}^{167} \]

\[\text{Chemical Formula: C}_{23}\text{H}_{25}\text{NO}_{2}\text{S} \]
\[\text{Molecular Weight: 379.52} \]

\textbf{S16} is prepared in 48% yield, according to method B

\textbf{1H NMR (300 MHz, CDCl\textsubscript{3}):} δ = 1.73 (s, 6H, Me), 2.35 (s, 3 H, Me), 4.33 (s, 2 H, NCH\textsubscript{2}), 4.82 (s, 1H, NCH), 4.98 (s, 2H, =CH\textsubscript{2}), 5.11 (s, 2H, =CH\textsubscript{2}), 7.1-7.3 (m, 7H, Ar), 7.87 (d, 2H, J= 8.5 Hz, Ts).

\textbf{13C NMR (125 MHz, CDCl\textsubscript{3}):} δ = 21.5 (Me), 22.0 (Me), 34.8 (NCH\textsubscript{2}), 67.7 (NCH), 83.8 (C), 85.2 (C), 115.5 (CH\textsubscript{2}=), 122.8 (C), 128.1 (Ar), 129.2 (Ar), 131.4 (Ar), 138.1 (C), 141.3 (C), 143.1 (C).

\textbf{HRMS (ESI):} calcd. for C\textsubscript{23}H\textsubscript{24}NO\textsubscript{2}S: 402.1528. Found: 402.11524.

General procedure for the Pt(II)-Promoted Cycloisomerizations

To a solution of the Pt(II) complex (6.4·10⁻³ mmol, 4 mol%) in toluene (0.5 mL) under argon AgBF₄ (4 mg, 0.02 mmol) and the enyne or dienyne substrate (0.16 mmol, in 4.5 mL toluene) were added sequentially. The mixture was stirred at 60°C for 18–24 h. The reaction was monitored by NMR. The solvent was removed under reduced pressure and the final product was purified by column chromatography. Enantiomeric excesses have been measured by chiral HPLC. Samples of racemic compounds have been obtained via PtCl₂ promoted cycloisomerizations.

6-Phenyl-3-(toluenesulfonyl)-3-aza-bicyclo[4.1.0]hept-4-ene\(^{168}\) (P1)

\[
\begin{array}{c}
\text{Ts} \\
\text{Ph}
\end{array}
\]

Chemical Formula: C₁₉H₁₈NO₂S
Molecular Weight: 325.42

\[^{1}\text{H NMR (300 MHz, CDCl}_3\):} \delta = 0.89 (dd, 1H, J = 5.0 Hz, J = 6.0 Hz, CH₂), 1.37 (dd, 1H, J = 5.0 Hz, J = 9.0 Hz, CH₂), 1.72 (m, 1H, CH), 2.44 (s, 3H, Me), 3.16 (dd, 1H, J = 3.0 Hz, J = 12.0 Hz, NCH₂), 4.00 (dd, 1H, J = 1.0 Hz, J = 12.0 Hz, NCH₂), 5.51 (d, 1H, J = 8.0 Hz, NCH=CH), 6.47 (d, 1H, J = 8.0 Hz, NCH=), 7.18 (m, 2H, Ph), 7.25 (m, 3H, Ph), 7.34 (d, 2H, J = 8.0 Hz, Ts), 7.69 (d, 2H, J = 8.0 Hz, Ts).

\([\alpha]_D = -67 \text{ (ee = 70\%, c = 0.6, CHCl}_3\).}

HPLC: Chiracel IA column, eluent heptane/EtOH 9:1, 1 mL/min, retention times 12.7 min and 15.8 min.

X-Ray analysis: cf annexe

6-(4-((S)-1-phenylethoxy)phenyl)-3-(p-nitrobenzenesulfonamide)-3-azabicyclo[4.1.0]hept-4-ene (P10)

\[
\begin{array}{c}
\text{Ns} \\
\text{Ph}
\end{array}
\]

Chemical Formula: C₂₉H₂₆N₂O₅S
Molecular Weight: 478.54

\[^{1}\text{H NMR (300 MHz, CDCl}_3\):} \delta = 0.63 (t, 1H, J = 6.0 Hz, CH₂), 1.26 (t, 1H, J = 6.0 Hz, CH₂), 1.60 (d, 3H, J = 7.0 Hz, CHMe), 1.66 (m, 1H, CH), 3.21 (dt, 1H, J = 2.0 Hz, J = 12.0 Hz, NCH₂), 4.00 (d, 1H, J = 12.0 Hz, NCH₂), 5.24 (q, 1H, J = 7.0 Hz, CHMe), 5.53 (dt, 1H, J = 2.0 Hz, J = 8.0 Hz, CH=), 6.37 (d, 1H, J = 8.0 Hz, NCH=), 6.74 (d, 2H, J = 9.0 Hz, Ar), 6.96 (d, 2H, J = 9.0 Hz, Ar), 7.32 (m, 5H, Ph), 7.97 (d, 2H, J = 9.0 Hz, Ns), 8.39 (d, 2H, J = 9.0 Hz, Ns).

Experimental part : chapter II

13C NMR (CDCl$_3$, 75 MHz): δ = 20.9 (CH$_2$), 24.5 (CHMe), 28.0 (CH), 41.1 (NCH$_2$), 76.0 (CHMe), 115.8 (Ar), 117.7 (CH=), 119.5 (NCH=), 124.5 (Ns), 125.5 (Ph), 127.4 (Ns), 128.0 (Ar), 128.2 (Ph), 128.6 (Ph).

MS (ESI): m/z = 499.1 [M+Na]$^+$.

HPLC: Chiracel IA column, eluent heptane-isopropanol 90:10, 1 mL/min, retention times 24.6 min (major) and 29.6 min.

| 6-Phenyl-3-(p-toluenesulfonyl)-2-vinyl-3-azabicyclo-[4.1.0]-hept-4-ene (P11) |

\[
\text{Chemical Formula: C}_{21}\text{H}_{22}\text{NO}_{2}\text{S} \\
\text{Molecular Weight: 351.46}
\]

1H NMR (500 MHz, CDCl$_3$): δ = 0.41 (t, J = 4.8 Hz, 1 H, CH$_2$), 1.30 (dd, 1 H, J = 9.0 Hz, J = 5.0 Hz, CH$_2$), 1.78 (br t, 1 H, J = 8 Hz, CH), 2.46 (s, 3 H, Me), 4.81 (d, 1 H, 3J = 6.0 Hz, NCH), 5.16 (d, 1 H, 3J = 10.5 Hz, =CH$_2$), 5.30 (d, 1 H, 3J = 17.5 Hz, =CH$_2$), 5.61 (d, 1 H, 3J = 8.0 Hz, =CH), 5.91 (ddd, H, 3J = 17.5 Hz, 3J = 10.5 Hz, 3J = 6.0 Hz, CH=), 6.31 (d, 1 H, 3J = 8.0 Hz, NCH=), 7.1–7.4 (7 H, Ar), 7.72 (d, 2 H, 3J = 8.0 Hz, Ts).

13C NMR (CDCl$_3$, 75 MHz): δ = 21.0 (CH$_2$), 21.6 (Me), 22.5 (C), 35.8 (CH), 52.7 (NCH), 116.4 (=CH$_2$), 117.7 (CH=), 118.5 (CH=), 126.3, 126.9, 127.2, 128.5, 129.7, 136.0, 136.4 (C).

HRMS (ESI): calcd. for C$_{21}$H$_{22}$NO$_2$S : 352.1371. Found : 352.1382.

HPLC: Chiracel IC column ; eluent heptane/ethanol (99 :1), 1 mL.min$^{-1}$, retention times 29 and 32 min (major).

X-Ray analysis : cf annexe

| 6-(3,5-Dimethylphenyl)-3-(p-toluenesulfonyl)-2-vinyl-3- azabicyclo[4.1.0]hept-4-ene (P12) |

\[
\text{Chemical Formula: C}_{22}\text{H}_{20}\text{NO}_{2}\text{S} \\
\text{Molecular Weight: 379.52}
\]

1H NMR (300 MHz, CDCl$_3$): δ = 0.37 (t, 1H, J = 4.8 Hz, CH$_2$), 1.27 (dd, 1H, J = 9.0 Hz, J = 4.8 Hz, CH$_2$), 1.77 (br t, 1H, CH), 2.28 (s, 6H, Me), 2.46 (s, 3H, Me), 4.81 (d, 1H, 3J = 6.3 Hz,}
Experimental part : chapter II

NCH), 5.18 (d, 1H, 3J = 10.5 Hz, =CH₂), 5.31 (d, 1H, 3J = 17.1 Hz, =CH₂), 5.61 (d, 1H, 3J = 8.0 Hz, =CH), 5.92 (ddd, 1H, 3J = 17.1 Hz, 3J = 10.5 Hz, 3J = 6.3 Hz, CH=), 6.30 (d, 1H, 3J = 8.0 Hz, NCH=), 6.81 (s, 2H), 6.86 (s, 1H), 7.35 (d, 2H, 3J = 8.1 Hz, Ts), 7.72 (d, 2H, 3J = 8.1 Hz, Ts).

\[^{13}\text{C NMR (CDCl}_3, 125 MHz)\]: δ = 21.0 (CH₂), 21.3 (Me), 21.6 (Me), 22.3 (C), 35.7 (CH), 52.8 (NCH), 116.4 (CH₂=), 118.1 (CH=), 118.3 (CH=), 125.0, 127.0, 128.0, 129.7, 136.1 (CH=), 136.4 (C), 138.0 (C), 143.5(C), 143.6 (C).

HPLC Chiracel IC column ; eluent heptane/ethanol (99:1), 1 mL.min\(^{-1}\); retention times 28 and 30 min (major).

6-(4-Methoxyphenyl)-3-(p-toluenesulfonyl)-2-vinyl-3-aza-bicyclo[4.1.0]hept-4-ene (P13)

Chemical Formula: C₂₃H₂₅NO₃S

Molecular Weight: 381.49

\[^{1}\text{H NMR (300 MHz, CDCl}_3)\]: δ = 0.37 (dd, 1H, J = 6.0 Hz, J = 4.8 Hz, CH₂), 1.22 (dd, 1H, J = 9.0 Hz, J = 4.8 Hz, CH₂), 1.74 (br t, 1H, CH), 2.46 (s, 3H, Me), 3.78 (s, 3H, OMe), 4.80 (d, 1H, 3J = 6.3 Hz, NCH), 5.17 (d, 1H, 3J = 10.5 Hz, =CH₂), 5.31 (dd, 1H, 3J = 17.1 Hz, J = 1.2 Hz, =CH₂), 5.56 (d, 1H, 3J = 8.1 Hz, =CH), 5.92 (ddd, H, 3J = 17.1 Hz, 3J = 10.5 Hz, 3J = 6.3 Hz, CH=), 6.29 (dd, 1H, 3J = 8.1 Hz, J = 1.0 Hz, NCH=), 6.82 (d, 2H, 3J = 8.7 Hz, Ar), 7.11 (d, 2H, 3J = 8.7 Hz, Ar), 7.35 (d, 2H, 3J = 8.1 Hz, Ts), 7.72 (d, 2H, 3J = 8.1 Hz, Ts).

\[^{13}\text{C NMR (CDCl}_3, 125 MHz)\]: δ = 21.0 (CH₂), 21.6 (Me), 22.0 (C), 35.6 (CH), 52.8 (NCH), 55.3 (OMe), 113.9 (CH), 116.3 (CH₂=), 118.3 (CH=), 118.3 (CH=), 127.0, 128.5, 129.7, 135.8 (C), 136.2 (CH=), 136.4 (C), 143.6 (C), 158.2 (C).

HR-MS (ESI): calc. for C₂₂H₂₄NO₃S : 382.1477. found : 382.1473.

HPLC: Chiracel IC column ; eluent heptane/ethanol (98:2), 1 mL.min\(^{-1}\); retention times 33 and 36 min.

X-Ray analysis: cf annexe

6-(3-Methoxyphenyl)-3-(p-toluenesulfonyl)-2-vinyl-3-aza-bicyclo[4.1.0]hept-4-ene (P14)
Experimental part: chapter II

Chemical Formula: C_{22}H_{24}NO_{3}S
Molecular Weight: 381.49

^1H NMR (300 MHz, CDCl₃): δ = 0.41 (dd, 1H, J = 6.0 Hz, CH), 1.29 (dd, 1H, J = 9.0 Hz, J = 4.8 Hz, CH₂), 1.78 (br t, 1H, CH), 2.46 (s, 3H, Me), 3.79 (s, 3H, OMe), 4.80 (br d, 1H, 3J = 6.4 Hz, NCH), 5.16 (d, 1H, 3J = 10.3 Hz, =CH₂), 5.29 (d, 1H, 3J = 17.0 Hz, =CH₂), 5.60 (dd, 1H, 3J = 8.0 Hz, J = 0.6 Hz, =CH), 5.89 (ddd, 1H, 3J = 17.0 Hz, 3J = 10.3 Hz, 3J = 6.3 Hz, CH=), 6.31 (dd, 1H, 3J = 8.0 Hz, J = 1.1 Hz, NCH=), 6.76 (3H, Ar), 7.20 (m, 1H, Ar), 7.34 (d, 3J = 8.3 Hz, 2H, Ts), 7.72 (d, 3J = 8.3 Hz, 2H, Ts).

^13C NMR (125 MHz, CDCl₃): δ = 21.2 (CH₂), 21.6 (Me), 22.5 (C), 35.9 (CH), 52.7 (CH), 55.2 (OMe), 111.4 (CH), 113.4 (CH), 116.4 (CH₂=), 117.5 (CH), 118.6 (CH), 119.5, 127.0 (Ts), 129.7 (Ts), 136.0 (CH), 136.3 (C), 143.6 (C), 145.2 (C), 159.7 (C).

HRMS (ESI): calc. for C_{22}H_{24}NO_{3}S: 382.1477. Found: 382.1462.

HPLC: Chiralcel IC column; eluent heptane/2-propanol (98:2), 1 mL/min; retention times 28 and 30 min.

1-methyl-6-phenyl-2-(prop-1-en-2-yl)-3-tosyl-3-azabicyclo[4.1.0]hept-4-ene (P16)

Chemical Formula: C_{23}H_{26}NO_{3}S
Molecular Weight: 379.52

^1H NMR (300 MHz, CDCl₃): δ = 0.53 (d, 1H, J = 5.0 Hz, CH₂), 0.72 (s, 3H, Me), 1.21 (d, 1H, J = 4.5 Hz, CH₂), 1.70 (s, 3H, Me), 2.46 (s, 3H, Me), 4.61 (s, 1H, CH), 4.88 (m, 1H, CH), 5.08 (s, 1H, CH), 5.50 (d, 1H, J = 8.0 Hz, =CH), 6.36 (d, 1H, J = 8.0 Hz, =CH), 7.15 (m, 7H, Ar), 7.64 (d, 2H, J = 8.5 Hz, Ar).

^13C NMR (75 MHz, CDCl₃): δ = 18.7 (Me), 19.7 (Me), 21.6 (Me), 25.4 (CH₂), 29.2 (C), 35.5 (C), 60.9 (CH), 116.0 (CH₂), 118.8 (=CH), 119.4 (=CH), 126.5 (Ar), 127.1 (Ar), 128.2 (Ar), 128.8 (Ar), 129.6 (Ar), 136.1 (C), 140.9 (C), 143.4 (C), 143.5 (C).
Chapter III:

Synthesis of gold complex

\[(\text{chloro})(\text{R})\text{-Monophos})\text{gold (C12)}\]

Thiodiethanol (0.75 mmol, 3 eq., 75 μL) is slowly added at 0°C to a solution of sodium tetrachloroaurate (0.25 mmol, 1 eq., 100 mg) in degazed water (12.5 mL). Then a solution of (R)-Monophos (0.25 mmol, 1 eq, 90 mg) in degazed chloroform (2.5 mL) is added. The mixture is stirred 1h at 0°C then 3h at rt. The layers are separated then the aqueous layer is extracted with DCM (3 x 25mL). The organic layer is washed with NaHCO₃ aq, dried over MgSO₄ and concentrated under reduced pressure. The product is obtained after purification by column chromatography on silica gel with a mixture of hept/DCM 50/50 as eluant (Rf = 0.1). Complex was obtained as a white powder; yield: 93 mg (63%).

\(^{31}\text{P NMR (202.5 MHz, CDCl}_3\text{)}\): \(\delta = 129.0\).

\(^1\text{H NMR (300 MHz, CDCl}_3\text{)}\): \(\delta = 2.65 (s, 3H, Me), 2.69 (s, 3H, Me), 7.2 (m, 3 H, Ar), 7.3 (m, 2H, Ar), 7.4 (m, 2 H, Ar), 7.48 (dd, 1H, J = 1.5 Hz, J = 8.7 Hz, Ar), 7.86 (dd, 2H, J = 3.3 Hz, J = 8.1 Hz, Ar), 7.90 (d, 1H, J = 9 Hz, Me), 7.97 (d, 1H, J = 1.5 Hz, J = 8.7 Hz, Ar).

\(^{13}\text{C NMR (CDCl}_3\text{, 75 MHz)}\): \(\delta = 37.3 (\text{Me}), 37.5 (\text{Me}), 120.4 (\text{CH}), 120.9 (\text{CH}), 121.0 (\text{CH}), 122.1 (d, J = 2.2 Hz, C), 122.6 (d, J = 2.7 Hz, C), 125.9 (\text{CH}), 126.0 (\text{CH}), 126.9 (\text{CH}), 127.0 (\text{CH}), 127.0 (\text{CH}), 128.6 (\text{CH}), 128.7 (\text{CH}), 131.3 (\text{CH}), 131.5 (\text{C}), 131.8 (\text{CH}), 132.1 (\text{C}), 132.3 (\text{C}), 132.4 (\text{C}), 146.6 (d, J = 6 Hz, C), 147.5 (d, J = 13 Hz, C).

\([\alpha]_D = -295\ (c = 1, \text{CHCl}_3)\).
Experimental part: Chapter III

Synthesis of 1,5-enynes

1-phenyl-6-methyl-4-oxahept-6-en-1-yne (76)

To a solution of propargyl alcohol (1.9 mL, 15 mmol, 1 eq.) in distilled THF (38 mL) at 0°C is added NaH (60% in oil, 900 mg, 23 mmol, 1.5 eq.). The mixture is stirred 2h at room temperature. Then at 0°C, 3-bromo-2-methylene (3 mL, 30 mmol, 2 eq.) is added. After one night at room temperature, the reaction is quenched by addition of water (11 mL). The aqueous layer is extracted with three times Et₂O (3*38 mL). The organic layer is washed with water (20 mL) then with a solution of NaClₐq (20 mL), and dried over MgSO₄. The solvents are removed under reduced pressure. After purification on column chromatography (silica, hept/DCM 9/1 to 7/3, Rf= 0.2) a yellow oil is obtained with a quantitativ yield (2.8 g).

1H NMR (300 MHz, CDCl₃): δ 1.82 (s, 3H, Me), 4.08 (s, 2H, OCH₂), 4.39 (s, 2H, OCH₂), 4.99 (bs, 1H, CH₂=), 5.09 (bs, 1H, CH₂=), 7.33 (m, 3H, Ph), 7.49 (m, 2H, Ph).

13C NMR (75 MHz, CDCl₃): δ 19.6 (Me), 57.8 (OCH₂), 73.7 (OCH₂), 85.3 (C), 86.2 (C), 113.0 (CH₂=), 122.8 (C), 128.3, 128.4, 131.8, 141.6 (C).

1-phenyl-5-methylhex-5-en-1-yn-3-ol169 (S18)

To a solution of 1-phenyl-6-methyl-4-oxahept-6-en-1-yne (2.8 g, 15 mmol, 1 eq) in THF (32 mL) at -78°C was added a solution of nButyllithium (2.5 M in hexane) dropwise (7.2 mL, 17.9 mmol, 1.2 eq). After stirring for 1h at -78°C, the mixture was treated with saturated NH₄Cl solution. The aqueous layer was extracted with Et₂O. The combined organic phases were washed with brine and dried over MgSO₄. The residue was purified by flash chromatography with heptane/ Et₂O (80:20) as eluent to give 2.0 g of the desired product as an orange oil (yield: 74%).

1H NMR (300 MHz, CDCl₃): δ 1.85 (s, 3H, Me), 2.56 (d, 2H, J= 7.0 Hz, CH₂), 4.75 (t, 1H, J= 7.0 Hz, CHO), 4.93 (br, 1H, CH₂=), 4.98 (br, 1H, CH₂=), 7.29 (m, 3H, Ph), 7.45 (m, 2H, Ph).

Experimental part: Chapter III

\(^{13}\text{C NMR (75 MHz, CDCl}_3\): \(\delta\) 22.7 (Me), 46.2 (CH\(_2\)), 61.0 (CHOH), 84.9 (C), 89.9 (C), 114.4 (CH\(_2\)=), 122.7 (C), 128.3, 128.4, 131.7, 141.1 (C).

| 3\text{-tert\text{-butyldimethylsilyloxy-5-methyl-1-phenylhex-5-en-1-yne (S20)} |}
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To a solution of 5-methyl-1-phenylhex-5-en-1-yn-3-ol S18 (500 mg, 2.7 mmol) in DCM (5 mL) were added triethylamine (1.9 mL, 13.5 mmol), dimethylaminopyridine (33 mg, 0.27 mmol) and \text{-tert\text{-butyldimethylsilyl chloride (610 mg, 4.05 mmol). The mixture was refluxed for 4h. The reaction mixture was treated with a saturated NH\textsubscript{4}Cl solution. The aqueous layer was extracted with DCM. The combined organic phases were washed with brine and dried over MgSO\textsubscript{4}. The residue was purified by flash chromatography with heptane/ Et\text{\textsubscript{2}}O (99:1) as the eluent to give 623 mg of the desired product as an yellow oil (77% yield).

\(^1\text{H NMR (300 MHz, CDCl}_3\): \(\delta\) 0.18 (s, 3H, SiMe), 0.21 (s, 3H, SiMe), 0.96 (s, 9H, CMe\(_3\)), 1.84 (s, 3H, Me), 2.52 (m, 2H, CH\(_2\)), 4.73 (t, 1H, J= 7.0 Hz, CHOSi), 4.87 (m, 1H, CH\(_2\)=), 4.89 (m, 1H, CH\(_2\)=), 7.3 (3H, Ph), 7.4 (2H, Ph).

\(^{13}\text{C NMR (75 MHz, CDCl}_3\): \(\delta\) -4.9 (SiMe), -4.4 (SiMe), 18.3 (CMe\(_3\)), 23.0 (Me), 25.9 (CMe\(_3\)), 47.0 (CH\(_2\)), 62.6 (CHOSi), 84.4 (C), 90.9 (C), 113.6 (CH\(_2\)=), 123.2 (C), 128.1, 128.3, 131.5, 141.5 (C).

MS (ESI): m/z= 355.2 [M+Na+MeOH]+.

| (1\text{-phenyl-5-methylhex-5-en-1-yn-3-yl)-p-nitrobenzoate (S19)} |}
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To a solution of 1-phenyl-5-methylhex-5-en-1-yn-3-ol S18 (500 mg, 2.7 mmol, 1 eq) in DCM (5 mL) were added triethylamine (1.9 mL, 13.5 mmol, 5 eq) and 4-nitrobenzoylchloride (599 mg, 3.24 mmol, 1 eq). After stirring for 1h at room temperature, the reaction mixture was treated with saturated NH\textsubscript{4}Cl solution. The aqueous layer was extracted with DCM. The combined organic phases were washed with brine and dried over MgSO\textsubscript{4}. The residue was purified by flash chromatography with heptane/ Et\text{\textsubscript{2}}O (95:5) as eluent to give 814 mg of the desired product as a yellow oil in 90% yield.
Experimental part : Chapter III

\(^1\text{H NMR (300 MHz, CDCl}_3\): \(\delta\) 1.88 (s, 3H, Me), 2.72 (dd, \(J= 6.0\) Hz, \(J= 14.0\) Hz, 1H, CH2), 2.81 (dd, 1H, \(J= 8.0\) Hz, \(J= 14.0\) Hz, CHz), 4.93 (s, 2H, CH2=), 6.02 (dd, 1H, \(J= 6.0\) Hz, \(J= 8.0\) Hz, OCH), 7.31 (m, 3H, Ph), 7.45 (m, 2H, Ph), 8.25 (d, \(J= 9.0\) Hz, 2H, PNB), 8.30 (d, 2H, \(J= 9.0\) Hz, PNB).

\(^13\text{C NMR (75 MHz, CDCl}_3\): \(\delta\) 22.6 (Me), 43.4 (CH2), 64.5 (CHOH), 85.7 (C), 86.3 (C), 114.9 (CH2=), 121.0 (C), 123.6 (PNB), 128.3, 128.9, 130.9 (PNB), 131.9, 135.4 (C), 139.8 (C), 150.7 (C), 163.7 (C).

3-methoxy-5-methyl-1-phenylhex-5-en-1-yne (S21)

![Chemical structure of 3-methoxy-5-methyl-1-phenylhex-5-en-1-yne](image)

Chemical Formula: C\(_{23}\)H\(_{22}\)O
Molecular Weight: 200.28

To a solution of 1-phenyl-5-methylhex-5-en-1-yn-3-ol (150 mg, 0.81 mmol) in THF (3 mL) was added sodium hydride (60% in mineral oil, 39 mg, 0.97 mmol). The reaction mixture was stirred for 5 minutes and then iodomethane (0.25 mL, 4 mmol) was added dropwise. The solution was stirred for 1h at room temperature. The reaction mixture was treated with saturated NH\(_4\)Cl solution. The aqueous layer was extracted with Et\(_2\)O. The combined organic phases were washed with brine and dried over MgSO\(_4\). The residue was purified by flash chromatography with heptane/ EtOAc (9:1) as eluent to give the desired product as a yellow oil in quantitative yield (164 mg).

\(^1\text{H NMR (300 MHz, CDCl}_3\): \(\delta\) 1.84 (s, 3H, Me), 2.51 (dd, 1H, \(J= 14\) Hz, \(J= 14\) Hz, CH2), 2.60 (dd, 1H, \(J= 10\) Hz, \(J= 10\) Hz, CHz), 3.50 (s, 3H, OMe), 4.34 (t, 1H, \(J= 7.0\) Hz, CH), 4.90 (s, 1H, CH2=), 4.92 (s, 1H, CH2=), 7.32 (m, 3H, Ph), 7.46 (m, 2H, Ph).

\(^13\text{C NMR (75 MHz, CDCl}_3\): \(\delta\) 22.8 (Me), 43.9 (CH2), 56.5 (OMe), 70.4 (CH), 86.1 (C), 87.8 (C), 113.3 (CH2=), 122.8 (C), 128.3 (CH), 131.7 (CH), 141.3 (C).

MS(ESI): \(m/z= 255.2\) [M+Na+MeOH]⁺.

3-benzyloxy-5-methyl-1-phenylhex-5-en-1-yne (S22)

![Chemical structure of 3-benzyloxy-5-methyl-1-phenylhex-5-en-1-yne](image)

Chemical Formula: C\(_{23}\)H\(_{22}\)O
Molecular Weight: 276.37

To a solution of 1-phenyl-5-methylhex-5-en-1-yn-3-ol (150 mg, 0.81 mmol) in THF (3 mL) was added sodium hydride (60% in mineral oil, 39 mg, 0.97 mmol). The reaction mixture was stirred for 5 minutes and then benzylbromide (0.13 mL, 1.13 mmol) and
tetrabutylammonium iodide (30 mg, 0.08 mmol) were added. The solution was stirred for 1.5 h at room temperature. The reaction mixture was treated with saturated NH₄Cl solution. The aqueous layer was extracted with Et₂O. The combined organic phases were washed with brine and dried over MgSO₄. The residue was purified by flash chromatography with heptane/ Et₂O (99:1) as eluent to give 224 mg (quantitative yield) of the desired product as a yellow oil.

¹H NMR (300 MHz, CDCl₃): δ 1.82 (s, 3H, Me), 2.57 (dd, 1H, J₂= 14.0 Hz, J₃= 7.0 Hz, CH₂), 2.67 (dd, 1H, J₂= 14.0 Hz, J₃= 7.0 Hz, CH₂), 4.49 (t, 1H, J₃= 7.0 Hz, CH), 4.64 (d, 1H, J₂= 12.0 Hz, OCH₂Ph), 4.9 (m, 2H, CH₂=), 4.91 (d, 1H, J₂= 12.0 Hz, OCH₂Ph), 7.28-7.50 (m, 10H, Ph).

¹³C NMR (75 MHz, CDCl₃): δ 22.9 (Me), 44.1 (CH₂), 68.1 (CH), 70.6 (OCH₂Ph), 86.3 (C), 88.1 (C), 113.4 (CH₂=), 122.8 (C), 127.7, 128.1, 128.4, 128.8, 129.1, 131.8, 138.0 (C), 141.3 (C).

MS (ESI): m/z= 299.2 [M+Na].

3-tert-butyldiphenylsilyloxy-5-methyl-1-phenylhex-5-en-1-yne (S23)

![Chemical Structure](image)

To a solution of 5-methyl-1-phenylhex-5-en-1-yn-3-ol (150 mg, 0.8 mmol) in DCM (2 mL) were added triethylamine (0.6 mL, 4.1 mmol), dimethylaminopyridine (10 mg, 0.08 mmol) and tertbutyldiphenylsilyl chloride (0.32 mL, 1.2 mmol). The mixture was refluxed for 3h and treated then with a saturated NH₄Cl solution. The aqueous layer was extracted with DCM. The combined organic phases were washed with brine and dried over MgSO₄. After evaporation, the residue was purified by flash chromatography with heptane/ Et₂O (95:5) as the eluent to give 283 mg (82% yield) of S23 as a yellow oil.

¹H NMR (300 MHz, CDCl₃): δ = 1.12 (s, 9H, SiCMe₃), 1.68 (s, 3H, Me), 2.52 (d, 2H, J= 6.6 Hz, CH₂), 4.68 (t, 1H, J= 6.6 Hz, CH-O), 4.81 (br, 1H, CH₂=), 4.83 (br, 1H, CH₂=), 7.0-7.3 (m, 11H, Ph), 7.76 (dm, 2H, J= 6.0 Hz, Ph), 7.82 (dm, 2H, J= 6.0 Hz, Ph).

¹³C NMR (75 MHz, CDCl₃): δ = 22.8 (Me), 26.9 (SiCMe₃), 27.0 (SiCMe₃), 46.9 (CH₂), 63.4 (CH(O), 85.3 (C), 90.7 (C), 114.0 (CH₂=), 123.1 (C), 127.5, 127.7, 128.05, 128.1, 129.6, 129.8, 131.5, 133.7 (C), 133.8 (C), 135.6, 136.0, 136.2, 141.2 (C).

Experimental part : Chapter III

3-(tert-butyldimethylsilyloxy)-5-methyl-1-trimethylsilylhex-5-en-1-yne

The compound was synthesised as described in the literature.

1H NMR (300 MHz, CDCl$_3$) : δ = 0.09 (s, 3H, SiMe), 0.12 (s, 3H, SiMe), 0.90 (s, 18H, SiMe$_3$, SiMe), 1.77 (s, 3H, Me), 2.39 (m, 2H, CH$_2$), 4.46 (t, 1H, J= 7.0 Hz, CHSi), 4.80 (br, 1H, CH$_2$=), 4.83 (br, 1H, CH$_2$=).

1,3-dimethyl-5-(3-(2-methylallyloxy)prop-1-ynyl)benzene

To a solution of 3-(3,5-dimethylphenyl)prop-2-yn-1ol 60 (197 mg, 1.2 mmol, 1 eq) and HMPA (0.86 mL, 4.9 mmol, 4 eq) in THF (1 mL) was added EtMgBr (1.4 mL, 1.4 mmol, 1.1 eq) dropwise at 0°C. The mixture was stirred for 5 min and 3-bromo-2-methylpropene was added (0.2 mL, 1.9 mmol, 1.5 eq). The reaction mixture was heated at reflux for 4 h and then quenched with water, HCl 1N. The organic layer was extracted with Et$_2$O, washed with water, dried over MgSO$_4$ and concentrated under high vacuum. Flash column chromatography with an heptane/Et$_2$O mixture from (99:1) to (98:2) as the eluent afforded the desired product (Rf = 0.44) in 68% yield (179 mg).

1H NMR (300 MHz, CDCl$_3$) : δ = 1.80 (s, 3H, Me), 2.30 (s, 6H, Me), 4.06 (s, 2H, CH$_2$), 4.36 (s, 2H, CH$_2$), 4.97 (m, 1H, CH$_2$=), 5.05 (m, 1H, CH$_2$=), 6.98 (s, 1H, Ar), 7.11 (s, 2H, Ar).

13C NMR (75 MHz, CDCl$_3$) : δ = 19.6 (Me), 21.1 (Me), 57.8 (CH$_2$), 73.6 (CH$_2$), 84.4 (C), 86.5 (C), 112.9 (CH$_2$=), 122.3 (C), 129.4 (Ar), 130.3 (Ar), 137.9 (C), 141.6 (C).
Experimental part : Chapter III

1-(3,5-dimethylphenyl)-5-methylhex-5-en-1-yn-3-ol

To a solution of compound (170 mg, 0.79 mmoles, 1 eq) in THF (1.7 mL) at 78°C was added nBuLi (1.6M solution in hexane, 0.8 mL, 0.95 mmol, 1.2 eq) dropwise. The reaction mixture was stirred for 1 h at -78°C and quenched with a saturated solution of NH₄Cl. The organic layer was extracted with Et₂O, washed with brine, dried over MgSO₄ and concentrated. Flash column chromatography with an heptane/Et₂O (8:2) mixture as the eluent afforded the desired product (Rf = 0.29) in 74% yield (126 mg) as a yellow oil.

1H NMR (300 MHz, CDCl₃) : δ = 1.85 (s, 3H, Me), 2.28 (s, 6H, Me), 2.54 (d, 2H, J = 6.9 Hz, CH₂), 4.72 (m, 1H, CHOH), 4.90 (m, 1H, CH₂=), 4.95 (m, 1H, CH₂=), 6.95 (s, 1H, Ar), 7.06 (s, 2H, Ar).

13C NMR (75 MHz, CDCl₃) : δ = 21.1 (Me), 22.7 (Me), 46.2 (CH₂), 60.9 (CHOH), 85.2 (C), 89.0 (C), 114.4 (CH₂=), 122.2 (C), 129.4 (Ar), 130.3 (Ar), 137.9 (C), 141.1 (C).

3-tert-butyl dimethylsilyloxy-5-methyl-1-(3,5-dimethylphenyl)-5-hex-5-en-1-yn (S25)

To a solution of alcohol (167 mg, 0.78 mmol, 1 eq) in DCM (1.4 mL) was added triethylamine (0.5 mL, 3.89 mmol, 5 eq), DMAP (10 mg, 0.08 mmol, 0.1 eq) and tertbutyldimethylsilylchloride (176 mg, 1.17 mmol, 1.5 eq). The reaction mixture was heated at reflux for 4 h and then quenched with NH₄Cl. The organic layer was extracted with DCM, washed with water, dried over MgSO₄ and concentrated. Flash column chromatography with an heptane/Et₂O mixture from (100:0) to (99:1) as the eluent afforded the desired product (Rf = 0.79) in 72% yield (185 mg) as a colorless oil.

1H NMR (300 MHz, CDCl₃) : δ = 0.17 (s, 3H, SiMe), 0.20 (s, 3H, SiMe), 0.94 (s, 9H, SiMe₃), 1.83 (s, 3 H, Me), 2.29 (s, 6H, Me), 2.49 (m, 2H, CH₂), 4.70 (t, 1H, J = 6.9 Hz, CHOSi), 4.85 (m, 1H, CH₂=), 4.86 (m, 1H, CH₂=), 6.94 (s, 1H, Ar), 7.04 (s, 2H, Ar).

13C NMR (75 MHz, CDCl₃) : δ = -4.9 (SiMe), -4.3 (SiMe), 18.3 (SiMe₃), 21.1 (Me), 23.0 (Me), 25.9 (SiMe₃), 47.0 (CH₂), 62.6 (CHO), 84.7 (C), 90.2 (C), 113.5 (CH₂=), 122.8 (C), 207
Experimental part: Chapter III

129.1 (Ar), 130.0 (Ar), 137.8 (C), 141.6 (C).

MS (ESI): m/z = 351.2 [M+Na]+.

<table>
<thead>
<tr>
<th>3-(3,4-dichlorophenyl)prop-2-yn-1-ol</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Chemical Formula: C_{9}H_{6}Cl_{2}O</td>
</tr>
<tr>
<td>Molecular Weight: 201.05</td>
</tr>
</tbody>
</table>

3-(3,4-dichlorophenyl)prop-2-yn-1-ol was prepared in the same condition as 60. The desired product was obtained in 66% yield (484 mg) as a red solid.

¹H NMR (300 MHz, CDCl₃): δ = 1.70 (s, 1H, OH), 4.48 (s, 2H, CH₂), 7.45 (dd, 1H, J= 1.8 Hz, J= 8.4 Hz, Ar), 7.38 (d, 1H, J= 8.4 Hz, Ar), 7.52 (d, 1H, J= 1.8 Hz, Ar).

¹³C NMR (75 MHz, CDCl₃): δ = 51.5 (CH₂), 83.4 (C), 89.2 (C), 122.5 (C), 130.4 (Ar), 130.8 (Ar), 132.6 (C), 133.0 (C), 133.3 (Ar).

<table>
<thead>
<tr>
<th>1,2-dichloro-4-(3-(2-methylallyloxy)prop-1-ynyl)benzene</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Chemical Formula: C_{13}H_{12}Cl_{2}O</td>
</tr>
<tr>
<td>Molecular Weight: 255.14</td>
</tr>
</tbody>
</table>

The compound was prepared the same way as 76 and was obtained in 60% yield (370 mg, Rf= 0.30).

¹H NMR (300 MHz, CDCl₃): δ = 1.78 (s, 3H, Me), 4.02 (s, 2H, CH₂), 4.33 (s, 2H, CH₂), 4.95 (m, 1H, CH₂=), 5.02 (m, 1H, CH₂=), 7.26 (dd, 1H, J= 2.1 Hz, J= 8.1 Hz, Ar), 7.38 (d, 1H, J= 8.1 Hz, Ar), 7.53 (d, 1H, J= 2.1Hz, Ar).

¹³C NMR (75 MHz, CDCl₃): δ = 19.6 (Me), 57.6 (CH₂), 73.9 (CH₂), 83.8 (C), 87.4 (C), 113.2 (CH₂=), 122.7 (C), 130.3 (Ar), 130.9 (Ar), 132.5 (C), 132.9 (C), 133.4 (Ar), 141.4 (C).
Experimental part: Chapter III

1-(3,4-dichlorophenyl)-5-methylhex-5-en-1-yn-3-ol

![Chemical structure of 1-(3,4-dichlorophenyl)-5-methylhex-5-en-1-yn-3-ol]

1-(3,4-dichlorophenyl)-5-methylhex-5-en-1-yn-3-ol was obtained in the same conditions as S18 but was not isolated because of a quick degradation.

\[^1\text{H NMR (300 MHz, CDCl}_3\text{)}\] : \(\delta = 1.84\) (s, 3H, Me), 2.53 (d, 2H, \(J = 6.0\) Hz, CH\(_2\)), 4.71 (t, 1H, \(J = 6.0\) Hz, CH\(_2\)), 4.93 (m, 1H, CH\(_2\)=), 4.98 (m, 1H, CH\(_2\)=), 7.24 (dd, 1H, \(J = 2.0\) Hz, \(J = 8.0\) Hz, Ar), 7.37 (d, 1H, \(J = 8.0\) Hz, Ar), 7.51 (d, \(J = 2.0\) Hz, Ar).

3-tert-butylidimethylsilyloxy-5-methyl-1-(3,4-dichlorophenyl)-hex-5-en-1-yn (S26)

![Chemical structure of 3-tert-butylidimethylsilyloxy-5-methyl-1-(3,4-dichlorophenyl)-hex-5-en-1-yn]

Substrate S26 was synthesised as S25 and obtained in 18% yield (102 mg, \(Rf = 0.77\)) over two steps.

\[^1\text{H NMR (300 MHz, CDCl}_3\text{)}\] : \(\delta = 0.14\) (s, 3H, SiMe), 0.16 (s, 3H, SiMe), 0.92 (s, 9H, Si\(\text{Me}_3\)), 1.80 (s, 3H, Me), 2.47 (m, 2H, CH\(_2\)), 4.67 (t, 1H, \(J = 6.9\) Hz, CHO), 4.83 (m, 1H, CH\(_2\)=), 4.87 (m, 1H, CH\(_2\)=), 7.21 (dd, 1H, \(J = 2.1\) Hz, \(J = 8.1\) Hz, Ar), 7.37 (d, 1H, \(J = 8.1\) Hz, Ar), 7.47 (d, 1H, \(J = 2.1\) Hz, Ar).

\[^{13}\text{C NMR (75 MHz, CDCl}_3\text{)}\] : \(\delta = -5.0\) (SiMe), -4.5 (SiMe), 18.3 (Si\(\text{Me}_3\)), 23.0 (Me), 25.8 (Si\(\text{Me}_3\)), 46.8 (CH\(_2\)), 62.5 (CHO), 82.2 (C), 93.0 (C), 113.8 (CH\(_2\)=), 123.0 (C), 130.3 (Ar), 130.7 (Ar), 132.4 (C), 133.1 (Ar), 141.6 (C).

\text{MS (ESI)}: m/z = 409.1 [M+Li+MeOH]+.
Experimental part: Chapter III

1,2-dichloro-4-(3-(2-phenylallyloxy)prop-1-ynyl)benzene

![Chemical structure of 1,2-dichloro-4-(3-(2-phenylallyloxy)prop-1-ynyl)benzene](image)

Chemical Formula: C_{18}H_{14}Cl_{2}O
Molecular Weight: 317.21

Compound was prepared in the same condition as 76 from 3-bromo-2-phenylpropene170 and was obtained with 51% yield.

\textbf{^1H NMR (300 MHz, CDCl₃):} \(\delta = 4.39\) (s, 2H, CH₂), 4.55 (s, 2H, CH₂), 5.18 (s, 1H, CH₂=), 5.63 (s, 1H, CH₂=), 7.27-7.55 (m, 8H, Ph).

1-(3,4-dichlorophenyl)-5-phenylhex-5-en-1-yn-3-ol

![Chemical structure of 1-(3,4-dichlorophenyl)-5-phenylhex-5-en-1-yn-3-ol](image)

Chemical Formula: C_{18}H_{14}Cl_{2}O
Molecular Weight: 317.21

Alcohol was synthesised in the same conditions as S18 and was obtained as a yellow oil in 21\% yield.

\textbf{^1H NMR (300 MHz, CDCl₃):} \(\delta = 2.04\) (s, 1H, OH), 3.04 (d, 2H, J= 6.6 Hz, CH₂), 4.65 (t, 1H, J= 6.6 Hz, CHO), 5.28 (d, 1H, J= 1.2 Hz, CH₂=), 5.48 (d, 1H, J= 1.2 Hz, CH₂=), 7.12-7.53 (m, 8H, Ar).

Experimental part: Chapter III

3-ter-butyl(dimethyl)silyloxy-5-phenyl-1-(3,4-dichlorophenyl)-hex-5-en-1-yne (S28)

![Chemical structure of 3-ter-butyl(dimethyl)silyloxy-5-phenyl-1-(3,4-dichlorophenyl)-hex-5-en-1-yne (S28)]

The product was obtained in 53% according to the same procedure as for compound S25.

1H NMR (500 MHz, CDCl$_3$) : δ = 0.03 (s, 3H, SiMe), 0.10 (s, 3H, SiMe), 0.91 (s, 9H, SiMe$_3$), 3.00 (m, 2H, CH$_2$), 4.61 (t, 1H, J = 6.9 Hz, CHO), 5.24 (s, 1H, CH$_2$=), 5.44 (s, 1H, CH$_2$=), 7.16 (d, 1H, J= 9.5 Hz, Ar), 7.28-7.47 (m, 7H, Ar).

1-phenylhex-5-en-1-yn-3-ol171,172

![Chemical structure of 1-phenylhex-5-en-1-yn-3-ol](image1)

Product was synthesised as described in the literature and was obtained in 39% yield (328 mg) over two steps from phenylacetylene.

1H NMR (300 MHz, CDCl$_3$) : δ = 1.93 (s, 1H, OH), 2.58 (t, 2H, J = 6.3 Hz, CH$_2$), 4.66 (t, 1H, J = 6.3 Hz, CHO), 5.24 (m, 2H, CH$_2$=), 5.96 (m, 1H, CH=), 7.31 (m, 3H, Ph), 7.43 (m, 2H, Ph).

3-ter-butyl(dimethyl)silyloxy-1-phenylhex-5-en-1-yne (S27)

![Chemical structure of 3-ter-butyl(dimethyl)silyloxy-1-phenylhex-5-en-1-yne (S27)]

Experimental part : Chapter III

Alcohol was protected with the same experimental conditions as S25 and was obtained as a colorless oil in 93% yield (494 mg).

\[^1H \text{ NMR (300 MHz, CDCl}_3 \] : \(\delta = 0.17 \) (d, 3H, J= 4.0 Hz, SiMe), 0.19 (d, 3H, J= 4.0 Hz, SiMe), 0.95 (s, 9H, SiCMe\textsubscript{3}), 2.53 (m, 2H, CH\textsubscript{2}), 4.61 (m, 1H, CHO), 5.16 (m, 2H, CH\textsubscript{2}=), 5.93 (m, 1H, CH=), 7.30 (m, 3H, Ph), 7.41 (m, 2H, Ph).

\[^{13}C \text{ NMR (75 MHz, CDCl}_3 \] : \(\delta = -4.4 \) (SiMe), -4.9 (SiMe), 18.3 (SiCMe\textsubscript{3}), 25.9 (SiCMe\textsubscript{3}), 42.2 (CH\textsubscript{2}), 63.3 (CHO), 84.5 (C), 90.6 (C), 117.7 (CH\textsubscript{2}=), 123.1 (C), 128.1 (Ph), 128.2 (Ph), 131.6 (Ph), 134.1 (CH=).

MS (ESI): \(m/z = 309.2 \) [M+Na]+, 155.1 [M-OTBS]+.

Trimethyl(3-(tetrahydro-2H-pyran-2-yloxy)prop-1-ynyl)silane

![Chemical structure](image)

Chemical Formula: \(\text{C}_\text{12}\text{H}_{20}\text{O}_\text{3}\text{Si} \)
Molecular Weight: 212.36

To a solution of 3-(trimethylsilyl)propargyl alcohol (0.58 mL, 3.89 mmol, 1 eq) and 3,4 dihydro-2H-pyran (0.39 mL, 4.28 mmol, 1.1 eq) in DCM (1.5 mL) at 0°C was added CSA (cat, 1.5 mg). The reaction mixture was stirred at room temperature for 4 h and then quenched with a saturated solution of sodium bicarbonate. The organic layer was extracted with DCM, washed and dried over MgSO\textsubscript{4}. The desired product was obtained as a colorless liquid in a quantitative yield (993 mg) and was used without further purification in the next step.

\[^1H \text{ NMR (300 MHz, CDCl}_3 \] : \(\delta = 0.17 \) (s, 9H, SiMe\textsubscript{3}), 1.52-1.67 (m, 6H, CH\textsubscript{2}THP), 3.55 (m, 1H, OCH\textsubscript{2}THP), 3.84 (m, 1H, OCH\textsubscript{2}THP), 4.26 (q, 2H, J= 8.4 Hz, OCH\textsubscript{2}), 4.82 (m, 1H, OCHTHP).

(E)-6-phenyl-1-(trimethylsilyl)hex-5-en-1-yn-3-ol[171]

![Chemical structure](image)

Chemical Formula: \(\text{C}_\text{20}\text{H}_{26}\text{O}_\text{3}\text{Si} \)
Molecular Weight: 244.40

The product was synthesised as described in the literature. An orange oil was obtained in 26% yield (68 mg) over two steps.

\[^1H \text{ NMR (300 MHz, CDCl}_3 \] : \(\delta = 0.06 \) (s, 9H, SiMe\textsubscript{3}), 1.83 (s, 1H, OH), 2.50 (m, 2H, CH\textsubscript{2}), 4.35 (m, 1H, CHO), 6.15 (m, 1H, CH=), 6.40 (d, 1H, J= 15.6 Hz, CH=), 7.13-7.26 (m, 5H, Ph).
Experimental part: Chapter III

(E)-6-phenylhex-5-en-1-yn-3-ol

\[\text{Chemical Formula: } \text{C}_{12}\text{H}_{16}\text{O} \]
\[\text{Molecular Weight: 172.22} \]

To a solution of (E)-6-phenyl-1-(trimethylsilyl)hex-5-en-1-yn-3-ol (253 mg, 1.03 mmol, 1 eq) in THF at 0°C was added TBAF (1.55 mL, 1.55 mmol, 1.5 eq) diluted in 0.7 mL of THF diluted. The mixture was stirred for 1 h at room temperature and quenched with a saturated solution of NH₄Cl. The organic layer was extracted with Et₂O, washed with water, dried over MgSO₄ and concentrated. Flash column chromatography with an heptane/Et₂O mixture from (9:1) to (7:3) as the eluent afforded the desired product (Rf = 0.1 for 8:2) in 74% yield (131 mg) as a yellow oil.

\[\text{H NMR (300 MHz, CDCl}_3\text{): } \delta = 2.27 (s, 1H, OH), 2.54 (s, 1H, =CH), 2.65 (m, 2H, CH₂), 4.52 (td, 1H, J= 6.0 Hz, J= 2.1 Hz, CHO), 6.31 (m, 1H, CH=), 6.55 (d, 1H, J= 15.9 Hz, CH=), 7.33 (m, 5H, Ph). \]

(E)-1,6-diphenylhex-5-en-1-yn-3-ol

\[\text{Chemical Formula: } \text{C}_{18}\text{H}_{16}\text{O} \]
\[\text{Molecular Weight: 248.32} \]

To a solution of iodo benzene (0.12 mL, 1.04 mmol, 1 eq) in toluene (1.3 mL) were added under argon bis(triphenylphosphine) palladium chloride (22 mg, 3.1.10⁻² mmol, 3 mol%), copper iodide (12 mg, 6.2.10⁻² mmol, 6 mol %), piperidine (0.21 mL, 2.08 mmol, 2 eq) and (E)-6-phenylhex-5-en-1-yn-3-ol (180 mg, 1.04 mmol, 1 eq). The reaction mixture was stirred at 35°C for 4 h and then filtered off silica. The filtrate was concentrated and the residue was purified by flash column chromatography with an heptane/Et₂O mixture from (9:1) to (7:3) as the eluent. The desired product was obtained as a yellow oil in 66% yield (170 mg, Rf = 0.1 in 8:2).

\[\text{H NMR (300 MHz, CDCl}_3\text{): } \delta = 2.07 (s, 1H, OH), 2.74 (t, 2H, J= 6.3 Hz, CH₂), 4.73 (t, 1H, J= 6.3 Hz, CHOH), 6.35 (m, 1H, CH=), 6.59 (d, 1H, J= 15.6 Hz, CH=), 7.20-7.46 (m, 10H, Ph). \]

\[\text{C NMR (75 MHz, CDCl}_3\text{): } \delta = 41.5 (CH₂), 62.4 (CHOH), 85.4 (C), 89.4 (C), 124.4 (CH=), 126.3 (Ph), 127.5 (Ph), 128.3 (Ph), 128.5 (Ph), 131.7 (Ph), 134.1 (CH=), 137.1 (C). \]
(E)-3-tert-butyldimethylsilyloxy-1,6-diphenylhex-5-en-1-yne (S29)

Compound was protected in the same conditions as described for S25 and was obtained as a colorless oil in 72% yield (195 mg, Rf= 0.79 in 8:2 heptane/Et₂O).

¹H NMR (300 MHz, CDCl₃): δ = 0.16 (s, 3H, SiMe), 0.19 (s, 3H, SiMe), 0.95 (s, 9H, SiCMe₃), 2.68 (t, 2H, J= 6.0 Hz, CH₂), 4.66 (t, 1H, J= 6.0 Hz, CHO), 6.31 (m, 1H, CH=), 6.52 (d, 1H, J = 15.9 Hz, CH=), 7.32 (m, 10H, Ph).

¹³C NMR (75 MHz, CDCl₃): δ = -4.8 (SiMe), -4.4 (SiMe), 18.3 (C), 25.9 (SiCMe₃), 42.5 (CH₂), 63.6 (CHO), 84.7 (C), 90.6 (C), 123.0 (C), 125.8 (CH=), 126.1 (Ph), 127.1 (Ph), 128.2 (Ph), 128.3 (Ph), 128.5 (Ph), 131.6 (Ph), 132.8 (CH=), 137.6 (C).

MS (ESI): m/z= 385.2 [M+Na]⁺.

5-methyl-1-phenylhex-5-en-1-yn-3-carboxylic esters (83)

To a solution of 5-methyl-1-phenylhex-5-en-1-yn-3-ol (100 mg, 0.6 mmol) in DCM (1 mL) were added DMAP (33 mg, 0.3 mmol) then (1S)-camphoric acid (118 mg, 0.6 mmol). A solution of DCC (134 mg, 0.7 mmol) in DCM (1 mL) was added at 0°C. The mixture was stirred overnight at room temperature. After evaporation of the solvent, the crude mixture was purified by flash chromatography with heptane/Et₂O (80:20) as the eluent to give 229 mg (quantitative yield) of the desired product 6. Separation of the diastereomeric esters has been performed by supercritical fluid chromatography (Investigator 2 SFC semi-preparative WATERS, PDA 2998) : Thar Instrument CYANO 60A, 6µ, 250*10mm; Eluent: CO₂/MeOH 93/7, 10 mL/min, 100 bar, retention times 3.91 and 4.31 min.

(R)-83 (colorless oil): **¹H NMR (300 MHz, CDCl₃)**: δ = 1.02 (s, 3H, Me), 1.09 (s, 3H, Me), 1.13 (s, 3H, Me), 1.71 (ddd, 1H, J = 13.3 Hz, J = 9.3 Hz, J = 4.2 Hz, CH₂), 1.85 (s, 3H, Me), 1.9-2.1 (m, 2H, CH₂), 2.48 (ddd, 1H, J = 13.5 Hz, J = 10.8 Hz, J = 4.5 Hz, CH₂), 2.64 (dd, 1H, JAB = 14.2 Hz, J = 6.3 Hz, CH₂), 2.71 (dd, 1H, JAB = 14.3 Hz, J = 7.5 Hz, CH₂), 4.91 (1H, CH₂=), 4.93 (1H, CH₂=), 5.89 (dd, 1H, J = 7.5 Hz, J = 6.3 Hz, OCH), 7.3 (3H, Ph), 7.4 (2H, Ph).

¹³C NMR (75 MHz, CDCl₃): δ = 9.7 (Me), 16.7 (Me), 16.9 (Me), 22.5 (Me), 29.1 (CH₂), 30.6 (CH₂), 43.2 (CH₂), 54.4 (C), 54.8 (C), 62.0 (OCH), 85.6 (C), 86.2 (C), 90.9 (C), 114.7
Experimental part: Chapter III

(CH₂=), 122.0 (C), 128.3 (CHPh), 128.8 (CHPh), 131.8 (CHPh), 139.7 (C), 166.5 (CO), 177.0 (CO).

[α]₀ = +61 (c = 0.9, T = 27°C, CHCl₃)

(S)-83 (white solid, mp 66°C): ¹H NMR (300 MHz, CDCl₃): δ = 1.00 (s, 3H, Me), 1.12 (s, 3H, Me), 1.13 (s, 3H, Me), 1.71 (ddd, 1H, J = 13.5 Hz, J = 9.3 Hz, J = 4.5 Hz, CH₂), 1.85 (s, 3H, Me), 1.95 (ddd, 1H, J = 13.2 Hz, J = 10.5 Hz, J = 4.2 Hz, CH₂), 2.08 (ddd, 1H, J = 13.5 Hz, J = 9.3 Hz, J = 4.5 Hz, CH₂), 2.46 (ddd, 1H, J = 13.5 Hz, J = 10.8 Hz, J = 4.2 Hz, CH₂), 2.63 (dd, 1H, J = 6.0 Hz, CH₂), 2.70 (dd, 1H, J = 14 Hz, J = 7.8 Hz, CH₂), 4.90 (1H, CH₂=), 5.89 (dd, 1H, J = 7.8 Hz, J = 6.0 Hz, OCH), 7.3 (m, 3H, Ph), 7.4 (m, 2H, Ph).

¹³C NMR (75 MHz, CDCl₃): δ = 9.7 (Me), 16.7 (Me), 16.8 (Me), 22.5 (Me), 28.9 (CH₂), 30.6 (CH₂), 43.2 (CH₂), 54.5 (C), 54.9 (C), 64.2 (OCH), 85.6 (C), 86.1 (C), 90.9 (C), 114.7 (CH₂=), 122.0 (C), 128.3 (CHPh), 128.8 (CHPh), 131.8 (CHPh), 139.7 (C), 166.7 (CO), 178.1 (CO).

[α]₀ = -76 (c = 0.5, T = 28°C, CHCl₃)

The configurations of the propargylic carbons of the diastereomeric esters 83 have been assigned by an X-ray diffraction study of (S)-S20.

(R)- and (S)-3 -tert-butyldimethylsilyloxy-5-methyl-1-phenylhex-5-en-1-yne ((R)-S20 and (S)-S20)

The diastereomerically pure camphanic ester 6a and 6b have been converted into the corresponding propargylic alcohols S18 as follows. Water (1.6 mL) and KOH (53 mg, 0.9 mmol) were added to a solution of camphanic ester (R)-6a (115 mg, 0.3 mmol) in MeOH (1.6 mL). The mixture was stirred overnight at room temperature then diluted with water. The aqueous layer was extracted with MTBE. The combined organic phases were washed with brine and dried over MgSO₄. The residue was purified by flash chromatography with heptane/ Et₂O (90:10) as the eluent to give 47 mg (82% yield) of the desired alcohol (R)-S18 as a pale yellow oil.

[α]₀ ((R)-S18) = +35 (c = 0.2, CHCl₃).
[α]₀ ((S)-S18) = -33 (c = 0.1, CHCl₃).

(R)- and (S)-S18 have been converted into the corresponding silyl ethers (R)- and (S)-S20, as described above for the synthesis of racemic S20.
Experimental part: Chapter III

\[[\alpha]_D (\mathbf{(S)}-\mathbf{S20}) = -23 \ (c = 0.8, \text{CHCl}_3). \]
Typical Procedure for the Enantioselective Cycloisomerizations.

Racemic procedure: To a solution of substrate (0.16 mmol, 1 eq) in toluene (5 mL) in a schlenk tube under argon is added PtCl₂ (0.006 mmol, 4mol%). The mixture is heated overnight at 90°C then concentrated. After purification by column chromatography on silica gel with heptane/EtOAc (90:10) as eluent the product is obtained.

Enantioselective procedure: AgBF₄ (0.9 mg, 6.4.10⁻³ mmol) and enyne (0.16 mmol, in 4.5 mL toluene) were added sequentially to a solution of the Pt(II) complex (6.4.10⁻³ mmol, 4 mol%) in toluene (0.5 mL) under argon. The mixture was stirred at 60°C for 18h. The solvent was removed under reduced pressure, the crude mixture was monitored by NMR and the final product was purified by column chromatography on silica gel with heptane/EtOAc (90:10) as eluent.

5-methyl-1-phenylbicyclo[3.1.0]hexan-3-one (P18)

\[
\begin{align*}
\text{Chemical Formula: } & C_{13}H_{14}O \\
\text{Molecular Weight: } & 186.25
\end{align*}
\]

\[\text{\textbf{1H NMR (300 MHz, CDCl₃):}} \delta 0.64 (d, 1H, \text{J}= 6.0 \text{ Hz, CH}_2), 1.06 (s, 3H, Me), 1.24 (m, 1H, CH₂), 2.48 (d, 1H, \text{J}= 19.0 \text{ Hz, CH}_2), 2.63 (d, 1H, \text{J}= 19.0 \text{ Hz, CH}_2), 2.67 (dq, 1H, \text{J}= 19.0 \text{ Hz, J}= 2.0 \text{ Hz, CH}_2), 2.92 (dq, 1H, J= 19.0 \text{ Hz, J}= 2.0 \text{ Hz, CH}_2), 7.25-7.4 (5H, Ph).
\]

\[\text{\textbf{13C NMR (75 MHz, CDCl₃):}} \delta 18.6 (Me), 23.8 (CH₂), 26.1 (C), 33.5 (C), 48.3 (CH₂), 50.3 (CH₂), 126.6, 128.5, 129.2, 140.1 (C), 216.4 (CO).
\]

\[\text{[α]₀ = -15 (c = 0.4, CHCl₃) [ee = 92% by HPLC].}
\]

\[\text{\textbf{MS (ESI): m/z=} 187.1 [M+H]^+.
\]

\[\text{\textbf{HPLC: Chiracel AD-H, heptane/isopropanol 99:1, 1 mL/min, retention times 4.4 and 5.3 min.}
\]

The silylated enol ethers were converted into P18 by using TBAF as follows: TBAF (1M in THF, 1.5 eq) was added at 0°C to a solution of P20 (1 eq) in THF. The mixture was stirred 1h at room temperature then quenched by addition of a saturated solution of NH₄Cl. The aqueous layer was extracted with MTBE. The combined organic phases were washed with brine and dried over MgSO₄. The bicyclic ketone P18 was purified as described before.
3-tert-butylidimethylsilyloxy-5-methyl-1-phenylbicyclo[3.1.0]hex-3-ene (P20)

![Chemical structure of 3-tert-butylidimethylsilyloxy-5-methyl-1-phenylbicyclo[3.1.0]hex-3-ene (P20)](attachment:chemical_structure.png)

Chemical Formula: C_{20}H_{35}OSi

Molecular Weight: 300.51

1H NMR (300 MHz, CDCl₃):
- δ = 0.19 (s, 3H, SiMe), 0.21 (s, 3H, SiMe), 0.75 (d, 1H, J= 4.5 Hz, CH₂), 0.96 (s, 3H, Me), 0.97 (s, 9H, CMe₃), 1.37 (d, 1H, J= 4.5 Hz, CH₂), 2.47 (d, 1H, J= 10.5 Hz, CH₂), 2.54 (d, 1H, J= 10.5 Hz, CH₂), 5.01 (s, 1H, CH=), 7.2-7.3 (5H, Ph).

13C NMR (75 MHz, CDCl₃):
- δ = -4.6 (SiMe), -4.5 (SiMe), 18.2 (CMe₃), 18.7 (Me), 25.7 (SiCMe₃), 27.1 (CH₂), 28.0 (C), 39.1 (C), 44.1 (CH₂), 111.5 (CH=), 125.6, 127.9, 128.4, 129.5, 140.9 (C), 154.2 (C).

1-phenyl-5-methylbicyclo[3.1.0]hex-2-en-2-yl-p-nitrobenzoate (P19a)

![Chemical structure of 1-phenyl-5-methylbicyclo[3.1.0]hex-2-en-2-yl-p-nitrobenzoate (P19a)](attachment:chemical_structure.png)

Chemical Formula: C_{20}H_{17}NO₄

Molecular Weight: 335.35

1H NMR (300 MHz, CDCl₃):
- δ = 0.91 (d, 1H, J= 5.0 Hz, CH₂), 1.04 (s, 3H, Me), 1.49 (d, 1H, J= 5.0 Hz, CH₂), 2.79 (dd, 1H, J= 2.0 Hz, J= 17.0 Hz, CH₂CH=), 2.91 (dd, 1H, J= 2.0 Hz, J= 17.0 Hz, CH₂CH=), 5.96 (t, 1H, J= 2.0 Hz, CH₂CH=), 7.23-7.35 (m, 5H, Ph), 8.25 (d, 2H, J= 9.0 Hz, PNB), 8.32 (d, 2H, J= 9.0 Hz, PNB).

13C NMR (75 MHz, CDCl₃):
- δ = 18.5 (Me), 26.4 (C), 26.7 (CH₂), 39.0 (C), 41.6 (CH₂CH=), 122.1 (CH₂CH=), 123.7 (PNB), 126.2, 128.1, 128.5, 131.0 (PNB), 135.0 (C), 139.0 (C), 148.7 (C), 150.8 (C).

HPLC: Chiracel IC column, eluent heptane/isopropanol 99.5:0.5, 1mL/min, retention times 23.9 min and 32.6 min.

4-methyl-2-phenylcyclohexa-1,5-dienyl 4-nitrobenzoate (P19b)

![Chemical structure of 4-methyl-2-phenylcyclohexa-1,5-dienyl 4-nitrobenzoate (P19b)](attachment:chemical_structure.png)

Chemical Formula: C_{20}H_{21}NO₄

Molecular Weight: 335.35

1H NMR (300 MHz, CDCl₃):
- δ = 1.21 (d, 3H, J= 7.0 Hz, Me), 2.23 (m, 1H, CH₂), 2.49 (m, 1H, CH₂), 2.73 (m, 1H, CHMe), 5.75 (dd, 1H, J= 4.0 Hz, J= 5.0 Hz, CHCH=), 5.91 (d, 1H, J= 4.0 Hz, CH=), 7.13-7.28 (m, 5H, Ph), 7.98 (d, J= 9.0 Hz, 2H, PNB), 8.18 (d, 2H, J= 9.0 Hz,
Experimental part: Chapter III

PNB).

\[^{13}\text{C NMR (75 MHz, CDCl}_3\text{): } \delta = 19.4 \text{ (Me), 28.9 \text{ (CHMe), 29.9 \text{ (CH}_2, 113.6 \text{ (CHCH=), 123.4 \text{ (PNB), 127.2, 127.9, 130.8 \text{ (PNB), 134.9 \text{ (CH=), 137.1 \text{ (C), 145.4 \text{ (C), 150.6 \text{ (C).}}}}\]

HPLC: Chiracel AD-H column, eluent heptane/isopropanol 99.5:0.5, 1mL/min, retention times 17.6 min and 22.6 min.

<table>
<thead>
<tr>
<th>1-(3,5-dimethylphenyl)-5-methylbicyclo[3.1.0]hexan-3-one (P25)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Formula: C\textsubscript{15}H\textsubscript{18}O</td>
</tr>
<tr>
<td>Molecular Weight: 214.30</td>
</tr>
</tbody>
</table>

\[^{1}\text{H NMR (300 MHz, CDCl}_3\text{): } \delta = 0.59 \text{ (m, 1H, CH}_2, 1.06 \text{ (s, 3H, Me), 1.21 \text{ (m, 1H, CH}_2, 2.33 \text{ (s, 6H, Me), 2.4-2.7 \text{ (m, 3H, CH}_2, 2.90 \text{ (d, 1H, } J = 19.2 \text{ Hz, CH}_2, 6.89 \text{ (s, 1H, Ar), 6.92 \text{ (s, 2H, Ar).}}\]

\[^{13}\text{C NMR (75 MHz, CDCl}_3\text{): } \delta = 17.6 \text{ (Me), 20.3 \text{ (Me), 22.7 \text{ (CH}_2, 25.0 \text{ (C), 32.4 \text{ (C), 47.3 \text{ (CH}_2, 49.4 \text{ (CH}_2, 126.0 \text{ (Ar), 127.3 \text{ (Ar), 136.9 \text{ (C), 139.0 \text{ (C), 215.6 \text{ (C).}}}}\]

MS (ESI): m/z= 214.0 [M]+.

HPLC: Chiracel IA column, eluent heptane/ethanol 99:1, 1mL/min, retention times 4.7 min and 4.9 min.

<table>
<thead>
<tr>
<th>1-(3,4-dichlorophenyl)-5-methylbicyclo[3.1.0]hexan-3-one (P26)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Formula: C\textsubscript{13}H\textsubscript{12}Cl\textsubscript{2}O</td>
</tr>
<tr>
<td>Molecular Weight: 255.14</td>
</tr>
</tbody>
</table>

\[^{1}\text{H NMR (300 MHz, CDCl}_3\text{): } \delta = 0.67 \text{ (d, 1H, } J = 6.0 \text{ Hz, CH}_2, 1.07 \text{ (s, 3H, Me), 1.20 \text{ (m, 1H, CH}_2, 2.57 \text{ (m, 3H, CH}_2, 2.84 \text{ (m, 1H, CH}_2, 7.14 \text{ (dd, 1H, } J = 2.1 \text{ Hz, } J = 8.1 \text{ Hz, Ar), 7.40 \text{ (m, 2H, Ar).}}\]

\[^{13}\text{C NMR (75 MHz, CDCl}_3\text{): } \delta = 18.6 \text{ (Me), 20.0 \text{ (CH}_2, 26.7 \text{ (C), 32.8 \text{ (C), 48.0 \text{ (CH}_2, 49.8 \text{ (CH}_2, 128.6 \text{ (Ar), 130.5 \text{ (Ar), 130.7 \text{ (C), 131.2 \text{ (Ar), 132.5 \text{ (C), 140.6 \text{ (C), 215.1 \text{ (C).}}}}\]

MS (ESI): m/z= 254.0 [M]+.
Experimental part: Chapter III

HPLC: Chiracel IC column, eluent heptane/isopropanol 99:1, 1mL/min, retention times 14.0 min and 16.0 min.

1-phenylbicyclo[3.1.0]hexan-3-one (P27)

![Chemical Structure](image)

Chemical Formula: C\(_{12}\)H\(_{12}\)O
Molecular Weight: 172.22

\[^1\text{H NMR (300 MHz, CDCl}_3\):}\] δ = 0.65 (t, 1H, J= 4.8 Hz, CH), 1.30 (m, 1H, CH\(_2\)), 2.00 (m, 1H, CH\(_2\)), 2.39 (d, 1H, J= 18.6 Hz, CH\(_2\)), 2.65 (d, 1H, J= 18.6 Hz, CH\(_2\)), 2.85 (ddm, 1H, J= 5.7 Hz, J= 19.2 Hz, CH\(_2\)), 2.95 (dm, 1H, J= 18.6 Hz, CH\(_2\)), 7.21 (m, 2H, Ph), 7.28 (m, 1H, Ph), 7.34 (m, 2H, Ph).

\[^{13}\text{C NMR (75 MHz, CDCl}_3\):}\] δ = 22.0 (CH), 23.2 (CH\(_2\)), 27.8 (C), 42.3 (CH\(_2\)), 45.7 (CH\(_2\)), 125.9 (Ph), 126.1 (Ph), 128.6 (Ph), 143.1 (C).

MS (ESI): m/z = 211.1 [M+Li+MeOH]\(^+\).

HPLC: Chiracel AD-H column, eluent heptane/isopropanol 99:1, 1mL/min, retention times 4.0 min and 5.0 min.

1-(3,4-dichlorophenyl)-5-phenylbicyclo[3.1.0]hexan-3-one (P28)

![Chemical Structure](image)

Chemical Formula: C\(_{18}\)H\(_{14}\)Cl\(_2\)O
Molecular Weight: 317.21

\[^1\text{H NMR (300 MHz, CDCl}_3\):}\] δ = 0.87 (d, 1H, J= 7.5 Hz, CH\(_2\)), 2.03 (m, 1H, CH\(_2\)), 2.76 (d, 1H, J= 19.2 Hz, CH\(_2\)), 2.78 (d, 1H, J= 19.2 Hz, CH\(_2\)), 3.1-3.2 (m, 2H, CH\(_2\)), 6.86 (dd, 1H, J= 2.4 Hz, J= 8.4 Hz, Ar), 7.1-7.3 (m, 7H, Ar).

\[^{13}\text{C NMR (75 MHz, CDCl}_3\):}\] δ = 24.7 (CH\(_2\)), 29.7 (C), 34.6 (C), 48.6 (CH\(_2\)), 49.3 (CH\(_2\)), 77.2 (C), 126.9 (Ar), 127.5 (Ar), 128.4 (Ar), 128.6 (Ar), 130.1 (Ar), 130.2 (Ar), 213.5 (C).

MS (APCI): m/z = 217.0 [M]\(^+\).

HPLC: Chiracel IA column, eluent heptane/EtOH 99:1, 1mL/min, retention times 14.0 min and 17.0 min.
Experimental part: Chapter III

1,6-diphenylbicyclo[3.1.0]hexan-3-one (P29)

![Chemical Structure](image)

Chemical Formula: C\(_{18}\)H\(_{16}\)O
Molecular Weight: 248.32

\(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta = 2.02\) (d, 1H, \(J = 4.5\) Hz, CH), 2.52 (t, 1H, \(J = 4.5\) Hz, CH), 2.61 (d, 1H, \(J = 19.0\) Hz, CH\(_2\)), 2.89 (m, 2H, CH\(_2\)), 3.01 (ddd, 1H, \(J = 1.5\) Hz, \(J = 6.0\) Hz, \(J = 19.0\) Hz, CH\(_2\)), 6.83 (m, 2H, Ph), 7.11 (m, 8H, Ph).

\(^{13}\)C NMR (75 MHz, CDCl\(_3\)): \(\delta = 25.8\) (CH), 37.4 (C), 38.3 (CH), 42.6 (CH\(_2\)), 48.9 (CH\(_2\)), 125.9 (Ph), 126.5 (Ph), 127.8 (Ph), 128.1 (Ph), 129.0 (Ph), 137.2 (C).

MS (ESI):
\([M-H+\text{MeOH}]^+\)

HPLC: Chiral IC column, eluent heptane/ isopropanol 99:1, 1mL/min, retention times 14.0 min and 21.0 min.
Experimental part: Chapter III

Synthesis of 1,5- and 1,6-dienynes

benzyl 3-phenylpropiolate 173

\[
\text{Chemical Formula: } \text{C}_{16}\text{H}_{12}\text{O}_{2} \\
\text{Molecular Weight: 236.27}
\]

To a solution of 3-phenyl-propionic acid (500 mg, 3.42 mmol, 1 eq) in CH₃CN is added DBU (0.5 mL, 3.42 mmol, 1 eq) then benzyl bromide (0.45 mL, 3.76 mmol, 1.1 eq). The reaction mixture is stirred 2 h 30 at rt then diluted with water (3.4 mL). The aqueous layer is extracted with Et₂O, the organic layer washed with water and dried over MgSO₄. The solvant is removed under reduced pressure. The product is obtained after column chromatography on silica with a mixture of heptane/Et₂O (from 99/1 to 95/5, Rf = 0.31) as eluent. A white solid is obtained (812 mg) with a quantitative yield.

¹H RMN (300 MHz, CDCl₃): \(\delta \) 5.27 (s, 2H, CH₂), 7.26-7.47 (m, 8H, Ar), 7.56-7.60 (m, 2H, Ar).

¹³C RMN (75 MHz, CDCl₃): \(\delta \) 67.7 (CH₂), 119.6 (Cq), 128.6 (Ar), 130.7 (Ar), 133.0 (Ar), 134.9 (Cq), 153.9 (Cq).

HRMS (ESI): calc. for C₁₆H₁₂O₂Na: 259.0735. found: 259.0735.

IR: 3063.0 (C=Char), 3031.2 (C=Char), 1701.8 (C=O), 1490.2 (C=C ar), 1454.3 (C=C ar), 1445.7 (C=C ar), 1189.7 (C-O), 1169.2 (C-O).

benzyl but-2-ynoate

\[
\text{Chemical Formula: } \text{C}_{11}\text{H}_{10}\text{O}_{2} \\
\text{Molecular Weight: 174.20}
\]

To a solution of 3-methyl-propionic acid (1 g, 11.9 mmol, 1 eq) in CH₃CN (12 mL) is added DBU (1.8 mL, 11.9 mmol, 1 eq) then benzyl bromide (1.6 mL, 13.1 mmol, 1.1 eq). The reaction mixture is stirred 4 h at rt then diluted with water (12 mL). The aqueous layer is extracted with Et₂O, the organic layer washed with water and dried over MgSO₄. The solvant is removed under reduced pressure. The product is obtained after column chromatography on silica with a mixture of heptane/Et₂O (95/5, Rf = 0.30) as eluent. A colorless oil is obtained (1.9 g) : 90% yield.

Experimental part : Chapter III

1H RMN (300MHz, CDCl₃): δ 1.99 (s, 3H, Me), 5.20 (s, 2H, CH₂), 7.36-7.41 (m, 5H, Ar).

13C RMN (75 MHz, CDCl₃): 3.8 (Me), 67.4 (CH₂), 72.3 (Cq), 86.0 (Cq), 128.5 (Ar), 128.6 (Ar), 135.0 (Cq), 153.5 (Cq).

HRMS (ESI): calc. for C₁₁H₁₀O₂Na: 197.0578 found: 197.0474.

IR: 3034.5 (C=CH), 1703.6 (C=O), 1497.4 (C=C), 1454.8 (C=C), 1239.8 (C=O).

4-(phenylethynyl)hepta-1,6-dien-4-ol

![Chemical Structure](attachment:image.png)

Chemical Formula: C₁₅H₁₂O
Molecular Weight: 212.29

Benzyl 3-phenylpropiolate (200 mg, 0.85 mmol, 1 eq) is dissolved in THF (3 mL) at 0°C. Allylmagnesium bromide (1M in Et₂O, 2.5 mL, 2.54 mmol, 3 eq) is added dropwise then the solution is stirred 20 min. A saturated solution of NH₄Clₐq is added. The aqueous layer is extracted with Et₂O then washed with NaClₐq and dried over MgSO₄. The solvent is removed under reduced pressure. The product is obtained after column chromatography on silica with a mixture of heptane/Et₂O (from 95/5 to 90/10) as eluent. A colorless liquid is obtained (191 mg) with a quantitativ yield.

1H RMN (300MHz, CDCl₃): 2.33 (s, 1H, OH), 2.48 (ddt, 2H, J₁=1.2Hz, J₉=7.8Hz, J₆=13.5Hz, CH₂), 2.59 (ddt, 2H, J₁=1.2Hz, J₉=6.6Hz, J₆=13.8Hz, CH₂), 5.21 (dm, 2H, J₆=7.2Hz, CH₂=), 5.26 (dd, 2H, J₆=0.9, CH₂=), 6.05 (m, 2H, CH=), 7.32 (m, 3H, Ar), 7.42 (m, 2H, Ar).

13C RMN (75 MHz, CDCl₃): δ 46.3 (CH₂), 69.6 (Cq), 85.7 (Cq), 91.1 (Cq), 119.5 (CH₂=), 122.6 (Cq), 128.3 (CHₑ), 128.4 (Ar), 131.7 (Ar), 133.2 (CH=).

HRMS (ESI): calc. for C₁₅H₁₆O₂Na: 235.1099 found: 235.1102.

IR: 3413.9 (OH), 3076.4(C=Car), 3031.2 (C=Car), 1639.9 (C=C), 1597.4 (C=C), 1488.5 (C=C).

5-(phenylethynyl)nona-1,8-dien-5-ol

![Chemical structure](image)

Chemical Formula: C₁₇H₂₉O
Molecular Weight: 240.34

4-bromo-1-butene (2.3 mL, 22.8 mmol, 4 eq.) is added to a suspension of Mg (684 mg, 28.5 mmol, 5 eq.) in dry THF (40 mL) at rt. The mixture is stirred 40 min then transferred via a cannula to a solution of benzyl 3-phenylpropionate in THF (20 mL) at 0°C. The solution is stirred 1 h then quenched by addition of NH₄Claq (100 mL). The aqueous layer is extracted with Et₂O (2 x 50 mL) then the organic layer is washed with NaClaq (2 x 100 mL), dried over MgSO₄ and concentrated. After column chromatography (silica, hept/Et₂O from 95/5 to 90/10, Rf = 0.18 hept/Et₂O 80/20) the product is obtained (283 mg): 28% yield.

¹H RMN (500MHz, CDCl₃) : 1.88 (m, 4H, CH₂), 2.36 (s, 1H, OH), 2.42 (m, 4H, CH₂), 5.02 (d, 2H, Jₙ= 10.5 Hz, CH₂=), 5.13 (d, 2H, Jₙ= 17.5, CH₂=), 5.94 (m, 2H, CH=), 7.34 (m, 3H, Ar), 7.46 (m, 2H, Ar).

2,6-dimethyl-4-(phenylethynyl)hepta-1,6-dien-4-ol

![Chemical structure](image)

Chemical Formula: C₁₇H₂₉O
Molecular Weight: 240.34

2-methylallyl magnésium chloride (0.5 M in THF, 7.8 mL, 3.9 mmol, 2.5 eq.) is added dropwise to a solution of methyl-3-phenylpropionate (250 mg, 1.56 mmol, 1 eq.) in THF (7.8 mL) at 0°C. The mixture is stirred 1 h at 0°C then overnight at rt. The reaction is quenched by addition of NH₄Claq. The aqueous layer is extracted with Et₂O. The organic layer is washed with NaClaq, dried over MgSO₄ then concentrated. After column chromatography (silica, eluent: hept/EtOAc from 100/0 to 90/10) the product is obtained as a pale yellow oil (271 mg, 72% yield).

¹H RMN (300MHz, CDCl₃) : δ = 2.02 (s, 6H, Me), 2.54 (d, 4H, J = 2.1 Hz, CH₂), 2.65 (s, 1H, OH), 4.95 (s, 2H, CH₂=), 5.05 (m, 2H, CH₂=), 7.32 (m, 3H, Ar), 7.42 (m, 2H, Ar).

¹³C RMN (75 MHz, CDCl₃) : δ = 24.4 (Me), 50.3 (Me), 68.3 (C), 84.9 (C), 92.5 (C), 115.9 (CH₂=), 122.9 (C), 128.3 (Ar), 131.6 (Ar), 141.8 (Cq).

HRMS (ESI): calc. for C₁₇H₂₀O Na: 263.1412 found: 263.1420.

224
Experimental part: Chapter III

IR: 3512.1 (OH), 3075.4 (C=CH), 2916.3 (C=CH), 1640.9 (C=C), 1488.9 (C=C), 1070.6 (C=O).

4-(methylethynyl)hepta-1,6-dien-4-ol

Methyl 3-phenylpropionate (500 mg, 2.87 mmol, 1 eq) is dissolved in THF (10 mL) at 0°C. Allylmagnesium bromide (1M in Et₂O, 8.6 mL, 8.61 mmol, 3 eq) is added dropwise then the solution is stirred 45 min. A saturated solution of NH₄Clₐq is added. The aqueous layer is extracted with Et₂O then washed with NaClₐq and dried over MgSO₄. The solvent is removed under reduced pressure. The product is obtained after column chromatography on silica with a mixture of heptane/Et₂O (from 95/5 to 80/20) as eluent. A colorless liquid is obtained (293 mg) : 68% yield.

¹H RMN (300MHz, CDCl₃): δ 1.86 (s, 3H, Me), 2.16 (s, 1H, OH), 2.42 (m, 4H, CH₂), 5.16 (m, 1H, CH₂=), 5.21 (m, 3H, CH₂=), 5.99 (m, 2H, CH=).

¹³C RMN (75 MHz, CDCl₃): δ = 3.5 (Me), 46.4 (CH₂), 69.1 (C), 81.0 (C), 81.4 (C), 119.1 (CH₂=), 133.4 (CH=).

5-(prop-1-yn-1-yl)nona-1,8-dien-5-ol

A solution of 4-bromo-1-butene (0.9 mL, 8.61 mmol, 3 eq.) in dry THF (2 mL) is added to a suspension of Mg (279 mg, 11.5 mmol, 4 eq.) in dry THF (20 mL) at rt. The mixture is stirred 40 min then transferred via a cannula to a solution of methyl 3-phenylpropionate in THF (10 mL) at 0°C. The solution is stirred 15 min then quench by addition of NH₄Clₐq (50 mL). The aqueous layer is extracted with Et₂O (2 x 25 mL) then the organic layer is washed with NaClₐq (2 x 50 mL), dried over MgSO₄ and concentrated. After column chromatography (silica, hept/Et₂O from 95/5 to 80/20, Rf = 0.28 hept/Et₂O 80/20) the product is obtained (210 mg) as a yellow oil : 41% yield.

¹H RMN (500MHz, CDCl₃): 1.73 (m, 4H, CH₂), 1.87 (s, 3H, Me), 2.32 (m, 4H, CH₂), 4.99 (d, 2H, J= 10.5 Hz, CH₂=), 5.09 (d, 2H, J= 17 Hz, CH₂=), 5.89 (m, 2H, CH=).
4-(phenylethynyl)hepta-1,6-dien-4-yl acetate175 (S30)

\[
\begin{align*}
\text{Chemical Formula: } & C_{17}H_{18}O_{2} \\
\text{Molecular Weight: } & 254.32
\end{align*}
\]

Triethylamine (571 mg, 5.65 mmol, 4 eq), DMAP (34 mg, 0.28 mmol, 0.2 eq), and acetic anhydride (0.27 mL, 2.82 mmol, 2 eq) are added to a solution of 4-(phenylethynyl)hepta-1,6-dien-4-ol (300 mg, 1.41 mmol, 1 eq) in DCM (2.8 mL). The mixture is stirred overnight at rt. At 0°C is added saturated NH\textsubscript{4}Cl\textsubscript{aq}. The aqueous layer is extracted with Et2O then washed with NaCl\textsubscript{aq} and dried over MgSO\textsubscript{4}. The solvent is removed under reduced pressure. The product is obtained after column chromatography on silica with a mixture of heptane/Et\textsubscript{2}O (from 95/5 to 90/10) as eluent (Rf = 0.58, hept/Et2O 80/20). A colorless liquid is obtained (219 mg) with a 61% yield.

\textbf{1H RMN (300MHz, CDCl_3)}: \(\delta = 2.04 \text{ (s, 3H, Me)}, 2.82 \text{ (ddd, 4H, } J = 1.2 \text{ Hz, } J = 6.9 \text{ Hz, } J = 14 \text{ Hz, CH}_2\), 5.16 \text{ (m, 2H, CH}_2=\), 5.20 \text{ (m, 2H, CH}_2=\), 5.91 \text{ (m, 2H, CH}=\), 7.29 \text{ (m, 3H, Ar)}, 7.45 \text{ (m, 2H, Ar)}.

\textbf{13C RMN (75 MHz, CDCl_3)}: \(\delta = 21.9 \text{ (Me)}, 42.5 \text{ (CH}_2\), 86.7 \text{ (Cq)}, 88.2 \text{ (Cq)}, 119.1 \text{ (CH}_2=\), 122.5 \text{ (Cq)}, 128.2 \text{ (Ar)}, 128.5 \text{ (Ar)}, 131.9 \text{ (Ar)}, 133.3 \text{ (CH}=\), 169.2 \text{ (Cq)}.

\textbf{HRMS (ESI)}: calc. for C\textsubscript{17}H\textsubscript{18}O\textsubscript{2}Na: 277.1204 found: 277.1205.

\textbf{IR}: 3077,2 (=CH), 2981,9 (=CH), 1743,6 (C=O), 1641,3 (C=C), 1489,7 (C=C), 1220,9 (C-O).

5-(phenylethynyl)nona-1,8-dien-5-yl acétate (S31)

\[
\begin{align*}
\text{Chemical Formula: } & C_{19}H_{22}O_{2} \\
\text{Molecular Weight: } & 282.38
\end{align*}
\]

Triethylamine (0.89 mL, 6.48 mmol, 4 eq), DMAP (39 mg, 0.32 mmol, 0.2 eq), and acetic anhydride (0.30 mL, 3.2 mmol, 2 eq) are added to a solution of 4-(phenylethynyl)hepta-1,6-dien-4-ol (383 mg, 1.60 mmol, 1 eq) in DCM (3.2 mL). The mixture is stirred overnight at rt. At 0°C is added saturated NH\textsubscript{4}Cl\textsubscript{aq}. The aqueous layer is extracted with

Experimental part: Chapter III

Et₂O then washed with NaClₐq and dried over MgSO₄. The solvent is removed under reduced pressure. The product is obtained after column chromatography on silica with a mixture of heptane/Et₂O (from 95/5 to 90/10) as eluent (Rf = 0.36, hept/Et₂O 90/10). A colorless oil is obtained (314 mg): 69% yield.

¹H RMN (300MHz, CDCl₃): δ = 2.07 (s, 3H, Me), 2.24-2.34 (m, 8H, CH₂), 5.01 (dd, 2H, J = 10.2 Hz, J = 1.5 Hz, CH₂=), 5.10 (dd, 2H, J = 17.1 Hz, J = 1.8 Hz, CH₂=), 5.88 (m, 2H, CH=), 7.31 (m, 3H, Ar), 7.47 (m, 2H, Ar).

¹³C RMN (75 MHz, CDCl₃): δ = 22.0 (Me), 28.6 (CH₂), 37.8 (CH₂), 78.8 (Cq), 86.5 (Cq), 88.2 (Cq), 114.9 (CH₂=), 122.6 (Cq), 128.2 (Ar), 128.4 (Ar), 131.9 (Ar), 137.8 (CH=), 169.2 (Cq).

HRMS (ESI): calc. for C₁₉H₂₂O₂Na: 305,1517 found: 305,1525.

IR: 3076.6 (=CH), 2931.4 (=CH), 1740.7 (C=O), 1640.2 (C=C), 1489.0 (C=C), 1444.0 (C=C), 1229.3 (C-O).

2,6-dimethyl-4-(phenylethynyl)hepta-1,6-dien-4-yl acétate (S32)

[Chemical Diagram]

To a solution of 2,6-dimethyl-4-(phenylethynyl)hepta-1,6-dien-4-ol (243 mg, 1.01 mol, 1 eq.) in DCM (2 mL) is added successively triethylamine (0.56 mL, 4.04 mmol, 4 eq.), DMAP (25 mg, 0.20 mmol, 0.2 eq.), and Ac₂O (0.2 mL, 2.02 mmol, 2 eq.). The mixture is stirred at rt overnight. The reaction is quenched at 0°C with NH₄Cl₂sat. The aquous layer is extracted with Et₂O. The organic layer is washed with NaCl₂sat, dried over MgSO₄ then concentrated under reduced pressure. After column chromatography (silica, hept/EtOAc from 99/1 to 98/2, Rf = 0.33 hept/EtOAc 95/5) the product is obtained as a colorless oil (244 mg, 85% yield).

¹H RMN (300MHz, CDCl₃): δ 1.94 (s, 6H, Me), 2.06 (s, 3H, Me), 2.74 (d, 4H, J = 13.8 Hz, CH₂), 2.97 (d, 4H, J = 13.8 Hz, CH₂), 4.92 (s, 2H, CH₂=), 4.99 (m, 2H, CH₂=), 7.31 (m, 3H, Ar), 7.44 (m, 2H, Ar).

¹³C RMN (75 MHz, CDCl₃): 22.2 (Me), 24.0 (Me), 46.6 (CH₂), 87.0 (C), 88.9 (C), 115.9 (CH₂=), 122.7 (C), 128.2 (Ar), 128.4 (Ar), 131.7 (Ar), 140.8 (C), 169.4 (C).

HRMS (ESI): calc. for C₁₉H₂₂O₂Na: 305.1517 found: 305.1526.

IR: 3076.3 (C=CH), 2918.8 (C=CH), 1741.9 (C=O), 1643.9 (C=C), 1490.4 (C=C), 1441.9 (C=C), 1217.7 (C-O).
5-(prop-1-ynyl)nona-1,8-dien-5-yl acétate S33)

\[
\begin{align*}
\text{Chemical Formula: } & C_{14}H_{25}O_2 \\
\text{Molecular Weight: } & 220.31
\end{align*}
\]

Triethylamine (0.70 mL, 4.72 mmol, 4 eq), DMAP (29 mg, 0.24 mmol. 0.2 eq), and acetic anhydride (0.22 mL, 2.36 mmol, 2 eq) are added to a solution of 4-(methylthynyl)hepta-1,6-dien-4-ol (210 mg, 1.18 mmol, 1 eq) in DCM (2.4 mL). The mixture is stirred overnight at rt. At 0°C is added saturated NH₄Claq. The aqueous layer is extracted with Et₂O then washed with NaClaq and dried over MgSO₄. The solvent is removed under reduced pressure. The product is obtained after column chromatography on silica with a mixture of heptane/Et₂O (from 95/5 to 90/10) as eluent (Rf = 0.7, hept/Et₂O 80/20). The product is obtained (139 mg) : 53% yield.

\[1^H \text{RMN (300MHz, CDCl}_3\] : \(\delta\) 2.07 (s, 3H, Me), 2.24-2.34 (m, 8H, CH₂), 5.01 (dd, 2H, J = 10.2 Hz, J = 1.5 Hz, CH₂=), 5.10 (dd, 2H, J = 17.1 Hz, J = 1.8 Hz, CH₂=), 5.88 (m, 2H, CH=), 7.31 (m, 3H, Ar), 7.47 (m, 2H, Ar).

\[13^C \text{RMN (75 MHz, CDCl}_3\] : \(\delta\) 22.0 (Me), 28.6 (CH₂), 37.8 (CH₂), 78.8 (Cq), 86.5 (Cq), 88.2 (Cq), 114.9 (CH₂=), 122.6 (Cq), 128.2 (Ar), 128.4 (Ar), 131.9 (Ar), 137.8 (CH=), 169.2 (Cq).

HRMS (ESI): calc. for C₁₉H₂₂O₂Na: 305,1517 found: 305,1525.

IR: 3076,6 (=CH), 2931,4 (=CH), 1740,7 (C=O), 1640,2 (C=C), 1489,0 (C=C), 1444,0 (C=C), 1229,3 (C=O).

4-(methylthynyl)hepta-1,6-dien-4-yl acétate (S34)

\[
\begin{align*}
\text{Chemical Formula: } & C_{13}H_{26}O_2 \\
\text{Molecular Weight: } & 192.25
\end{align*}
\]

Triethylamine (1 mL, 7.53 mmol, 4 eq), DMAP (46 mg, 0.38 mmol. 0.2 eq), and acetic anhydride (0.36 mL, 3.76 mmol, 2 eq) are added to a solution of 4-(methylthynyl)hepta-1,6-dien-4-ol (282 mg, 3.76 mmol, 1 eq) in DCM (3.8 mL). The mixture is stirred overnight at rt. At 0°C is added saturated NH₄Claq. The aqueous layer is extracted with Et₂O then washed with NaClaq and dried over MgSO₄. The solvent is removed under reduced pressure. The product is obtained after column chromatography on silica with a mixture of heptane/Et₂O (95/5) as eluent (Rf = 0.47, hept/Et₂O 80/20). The product is obtained as a colorless oil (255 mg) : 70% yield.
Experimental part: Chapter III

^1H RMN (300MHz, CDCl₃): δ 1.89 (s, 3H, Me), 2.02 (s, 3H, Me), 2.72 (m, 4H, CH₂), 5.12 (dm, 2H, J = 5.1 Hz, CH₂=), 5.17 (s, 2H, CH=), 5.86 (m, 2H, CH=).

^13C RMN (75 MHz, CDCl₃): δ 3.7 (Me), 21.9 (Me), 42.6 (CH₂), 78.3 (Cq), 82.8 (Cq), 118.7 (CH₂=), 132.5 (CH=), 169.4 (C).

HRMS (ESI): calc. for C₁₂H₁₆O₂Na: 215,1048 found: 215,1038.

IR: 3077,3 (=CH), 2918,6 (=CH), 1741,1 (C=O), 1641,5 (C=C), 1225,3 (C-O).

nona-1,8-dien-5-ol^176 (88)

![Chemical structure diagram]

Chemical Formula: C₉H₁₄O
Molecular Weight: 140.22

A solution of distilled 4-bromobutene (4.6 mL, 50 mmol, 2.5 eq.) in THF (40 mL) is added dropwise to Mg (1.2 g, 50 mmol, 2.5 eq.). The reaction mixture is stirred 1h at rt then a solution of distilled ethyl formate (1.6 mL, 20 mmol, 1 eq.) in THF (10 mL) is added at 0°C. After 2h at rt, the reaction is quenched with NH₄Claq. The aqueous layer is extracted with Et₂O. The organic layer is washed with NaClaq, dried over MgSO₄ and concentrated under reduced pressure. The product is used in the next step without any further purification (2.8 g, quantitativ yield).

^1H RMN (500MHz, CDCl₃): δ 1.60 (m, 4H, CH₂), 2.20 (m, 4H, CH₂), 3.67 (m, 1H, CH), 5.00 (d, 2H, J = 10 Hz, CH₂=), 5.06 (dd, 2H, J = 1.5 Hz, J = 17 Hz, CH₂=), 5.85 (m, 2H, CH=).

2,6-dimethylhepta-1,6-dien-4-ol^177 (94)

![Chemical structure diagram]

Chemical Formula: C₉H₁₄O
Molecular Weight: 140.22

To a suspension of Mg (3.6 g, 0.15 mmol, 3 eq.) in Et₂O (20 mL) is added a solution of distilled 2-methyl-3-bromo-1-propene (5 mL, 0.05 mmol, 1 eq.) in Et₂O (40 mL) for a period of 2h30 (the temperature doesn’t reach 25°C). The mixture is stirred 10 min then transferred via a canula in another balloon. At 0°C, a solution of ethyl formate (2.1 mL, 0.03 mmol, 0.5 eq.) in Et₂O (4 mL) is added dropwise. Then the solution is stirred 4h at rt. The reaction is quenched with NH₄Claq. The aqueous layer is extracted with Et₂O. The organic layer is dried over MgSO₄ and concentrated under reduced pressure. After

purification on column chromatography (silica, éluent: hexane/MTBE from 98/2 to 90/10, Rf = 0.16 hex/MTBE 90/10) a colorless oil is obtained (950 mg, yield = 27%).

\[
{^1H\text{ RMN (300MHz, CDCl}_3\text{):}}\quad \delta = 1.79 \text{ (s, 6H, Me), 2.20 (m, 4H, CH}_2\text{), 3.91 (m, 1H, CH), 4.82 (s, 2H, CH}_2\text{=), 4.89 (s, 2H, } CH \text{=).}
\]

\[
\text{nona-1,8-dien-5-one}^{178} (89)
\]

To a solution of nona-1,8-dien-5-ol (2.8 g, 20 mmol, 1 eq.) in DCM (43 mL) is added silica gel (5.7 g) then PCC (4.7 g, 22 mmol, 1.1 eq.). After 18h at rt silica gel is added (5.7 g). The reaction mixture is filtrated on a short pad of silica and washed with Et\text{2}O then concentrated. An yellow oil is obtained which is used without any further purification (2.6 g, yield : 93%).

\[
{^1H\text{ RMN (500MHz, CDCl}_3\text{):}}\quad \delta = 2.33 \text{ (m, 4H, CH}_2\text{), 2.50 (m, 4H, CH}_2\text{), 4.97 (d, 2H, } J = 10 \text{ Hz, CH}_2\text{=), 5.03 (d, 2H, } J = 15.5 \text{ Hz, CH}_2\text{=), 5.80 (m, 2H, CH=).}
\]

\[
\text{hepta-1,6-dien-4-one (92)}
\]

IBX (1.6 g, 5.78 mmol, 1.5 eq.) is solubilized in DMSO (7.7 mL). A solution of hepta-1,6- en-4-ol (0.5 mL, 3.85 mmol, 1 eq.) in THF (39 mL) is added, then the mixture is stirred 7h at r.t.. The reaction mixture is diluted with water then filtrated. The aqueous organic is extracted 3 times with Et\text{OAc} then washed with a solution of NaCl\text{sat}, dried over MgSO\text{4}, and concentrated under reduced pressure. A yellow oil is obtained (334 mg, 79% yield). The product is used in the next step without further purification.

\[
{^1H\text{ RMN (500MHz, CDCl}_3\text{):}}\quad \delta = 3.10 \text{ (d, 4H, } J = 7 \text{ Hz, CH}_2\text{), 5.05 (dd, 4H, } J = 10 \text{ Hz, } J = 17.5 \text{ Hz, CH=), 5.80 (m, 4H, CH}_2\text{=).}
\]

\[
\text{2,6-dimethylhepta-1,6-dien-4-one (94)}
\]

\[
\text{Chemical Formula: C}_{29}\text{H}_{44}\text{O}
\]

\[
\text{Molecular Weight: 138.21}
\]

To a solution of 2,6-dimethylhepta-1,6-dien-4-ol (1.6 g, 11.4 mmol, 1 eq.) in DCM (24 mL) is added silica gel (3.3 g) then PCC (2.7 g, 12.6 mmol, 1.1 eq.). After 18h at rt silica gel is added (3.3 g). The reaction mixture is filtrated on a short pad of silica and washed with Et2O then concentrated. An yellow oil is obtained which is used without any further purification (quantitative yield).

\[^1H \text{RMN (500MHz, CDCl}_3 \] : \(\delta \) 1.76 (s, 6H, Me), 3.16 (s, 4H, CH2), 4.83 (s, 2H, CH2=), 4.97 (s, 2H, CH2=).

\[^13C \text{RMN (75 MHz, CDCl}_3 \] : \(\delta \) = 22.6 (Me), 51.6 (CH2), 115.2 (CH2=), 139.1 (C), 200.5 (C).

\[5-((\text{trimethylsilyl})\text{ethynyl})\text{nona-1,8-dien-5-ol (90)} \]

To a solution of (trimethylsilylacetylen (5 mL, 37 mmol, 2 eq.) in THF (100 mL) is added nBuLi (1.4 M in hexan, 16 mL, 22.2 mmol, 1.2 eq.) at -78°C. The solution is stiritred 1h30 at 0°C then at -78°C a solution of nona-1,8-dien-5-one (2.6 g, 18.5 mmol, 1 eq.) in THF (18 mL). The reaction is quenched by addition of NH\textsubscript{4}Cl\textsubscript{aq}. The aqueous layer is extracted with EtOAc. The organic layer is washed with NaCl\textsubscript{aq} then dried over MgSO\textsubscript{4} and the solvent is removed under reduced pressure. After purification on column chromatography (silica, eluant : hept/EtOAc from 100/0 to 95/5) a pale yellow liquid is obtained (4 g, yield : 92%).

\[^1H \text{RMN (300MHz, CDCl}_3 \] : \(\delta \) = 0.19 (s, 9H, TMS), 51.75 (m, 4H, CH2), 2.25 (m, 4H, CH2), 5.01 (dm, 2H, J = 10.2 Hz, =CH2), 5.09 (dm, 2H, J = 17.1 Hz, =CH2), 5.89 (m, 2H, =CH).

\[^13C \text{RMN (75 MHz, CDCl}_3 \] : \(\delta \) = -0.06 (Me TMS), 28.9 (CH2), 41.2 (CH2), 114.9 (CH2=), 138.6 (CH=).

HRMS (ESI): calc. for C\textsubscript{14}H\textsubscript{24}O\textsubscript{2}NaSi: 259.1494 found: 259.1487.

IR: 3396.4 (OH), 1250.3 (C=O).

\[4-((\text{trimethylsilyl})\text{ethynyl})\text{hepta-1,6-dien-4-ol (93)} \]
To a solution of (trimethylsilyl)acetylene (3.7 mL, 26 mmol, 2 eq.) in THF (75 mL) is added dropwise nBuLi (1.3 M in hexan, 12 mL, 15.8 mmol, 1.2 eq.) at -78°C. The solution is stirred 1h20 at 0°C then at -78°C a solution of hepta-1,6-dien-4-one (1.5 g, 13 mmol, 1 eq.) in THF (13 mL) is added. The reaction is quenched by addition of NH₄Claq. After extraction with EtOAc, the organic layer is washed with NaCl₃ then dried over MgSO₄ and the solvent is removed under reduced pressure. A yellow oil is obtained (1.8 g, 65% yield). The product is used in the next step without further purification.

\(^1\)H RMN (500MHz, CDCl₃): \(\delta = 0.14 \) (s, 9H, TMS), 2.34 (dd, 2H, \(J = 7.5 \) Hz, \(J = 13.5 \) Hz, CH₂), 2.43 (dd, 2H, \(J = 6.5 \) Hz, \(J = 13.5 \) Hz, CH₂), 5.16 (m, 4H, =CH₂), 5.93 (m, 2H, =CH).

2,6-dimethyl-4-((trimethylsilyl)ethynyl)hepta-1,6-dien-4-ol (96)

To a solution of (trimethylsilyl)acetylene (3.3 mL, 24 mmol, 2 eq.) in THF (64 mL) is added nBuLi (1.3 M in hexan, 11 mL, 14.3 mmol, 1.2 eq.) at -78°C. The solution is stirred 1h30 at 0°C then at -78°C a solution of 2,6-dimethylhepta-1,6-dien-4-one (1.7 g, 11.9 mmol, 1 eq.) in THF (11 mL). After 1h at -78°C, the reaction is quenched by addition of NH₄Cl₃. The aqueous layer is extracted with EtOAc. The organic layer is washed with NaCl₃ then dried over MgSO₄ and the solvent is removed under reduced pressure. After purification on column chromatography (silica, eluant: hept/EtOAc from 100/0 to 98/2) a pale yellow liquid is obtained (1.4 g, yield: 50%).

\(^1\)H RMN (300 MHz, CDCl₃): \(\delta = 0.16 \) (s, 9H, TMS), 1.95 (s, 6H, Me), 2.43 (m, 4H, CH₂), 2.54 (s, 1H, OH), 4.87 (s, 2H, =CH₂), 4.99 (s, 2H, =CH₂).

\(^1\)C RMN (75 MHz, CDCl₃): \(\delta = -0.3 \) (Me TMS), 24.4 (Me), 50.0 (CH₂), 68.0 (C), 89.3 (C), 109.0 (C), 115.7 (CH₂=), 117.3 (C), 141.7 (C).

5-ethynlnona-1,8-dien-5-ol (91)

A solution of TBAF (1M in THF, 4.4 mL, 4.4 mmol, 1.5 eq.) is added at 0°C to a solution of 5-((trimethylsilyl)ethynyl)nona-1,8-dien-5-ol (693 mg, 2.9 mmol, 1eq.) in THF (16 mL). After 1h at rt, the reaction is quenched with NH₄Cl. The aqueous layer is extracted with EtOAc. The organic layer is washed with water and dried over MgSO₄ then concentrated.
Experimental part: Chapter III

After purification on column chromatography (silica, eluant: hept/EtOAc from 100/0 to 90/10) the product is obtained (211 mg, yield: 44%).

\[^1H \text{RMN (500 MHz, CDCl}_3 \]: \delta = 1.78 (t, 4H, J = 8.5 Hz, CH\textsubscript{2}), 2.11 (s, 1H, OH), 2.35 (m, 4H, CH\textsubscript{2}), 2.50 (s, 1H, CH), 5.01 (d, 2H, J = 10.5 Hz, =CH\textsubscript{2}), 5.10 (dd, 2H, J = 17.5 Hz, J = 1.5 Hz, =CH\textsubscript{2}), 5.90 (m, 2H, =CH).

4-ethyl-2,6-dimethylhepta-1,6-dien-4-ol (97)

\[\text{Chemical Formula: } C\textsubscript{11}H\textsubscript{16}O \]
\[\text{Molecular Weight: } 164.24 \]

A solution of TBAF (1M in THF, 9 mL, 9.01 mmol, 1.5 eq.) is added at 0°C to a solution of 2,6-dimethyl-4-[(trimethylsilyl)ethyl]ylhepta-1,6-dien-4-ol (1.4 g, 6.01 mmol, 1 eq.) in THF (33 mL). After 1h at rt, the reaction is quenched with NH\textsubscript{4}Cl. The aqueous layer is extracted with EtOAc. The organic layer is washed with water and dried over MgSO\textsubscript{4} then concentrated. After purification on column chromatography (silica, eluant: hept/EtOAc from 100/0 to 95/5) the product is obtained (866 mg, yield: 88%).

\[^1H \text{RMN (300 MHz, CDCl}_3 \]: \delta = 1.96 (s, 6H, Me), 2.46 (s large, 4H, CH\textsubscript{2}), 2.50 (s, 1H, CH), 2.57 (s, 1H, OH), 4.90 (m, 2H, =CH\textsubscript{2}), 5.01 (m, 2H, =CH\textsubscript{2}).

\[^{13}C \text{RMN (75 MHz, CDCl}_3 \]: \delta = 24.5 (Me), 40.0 (CH\textsubscript{2}), 67.8 (CH), 73.8 (C), 86.8 (C), 115.9 (CH\textsubscript{2}=), 125.5 (C), 141.6 (C).

5-ethyl-nona-1,8-dien-5-yl acétate (S35)

\[\text{Chemical Formula: } C\textsubscript{13}H\textsubscript{18}O\textsubscript{2} \]
\[\text{Molecular Weight: } 206.28 \]

The crude product is diluted in DCM (3.4 mL). Triethylamine (0.95 mL, 6.8 mmol, 4 eq.), DMAP (42 mg, 0.34 mmol, 0.2 eq.) and Ac\textsubscript{2}O (0.32 mL, 3.4 mmol, 2 eq) are added. The reactionnal mixture is stirred overnight at rt. The reaction is quenched by addition of NH\textsubscript{4}Cl\textsubscript{aq}. The aqueous layer is extracted with MTBE, the organic layer is washed with water, dried over MgSO\textsubscript{4} and concentrated. After purification on column chromatography (silica, eluant: hept/EtOAc from 100/0 to 90/10) the pure product is obtained (306 mg, quantitative yield).

\[^1H \text{RMN (300 MHz, CDCl}_3 \]: \delta = 1.99 (m, 2H, CH\textsubscript{2}), 2.05 (s, 3H, Me), 2.11-2.27 (m, 6H, triple CH), 5.04 (ddd, 4H, J = 1.8 Hz, J = 17.1 Hz, =CH\textsubscript{2}), 5.83 (m, 2H, =CH).
Experimental part : Chapter III

13C NMR (75 MHz, CDCl$_3$): δ = 21.9 (Me), 28.3 (CH$_2$), 33.7 (CH$_2$), 74.6 (CH), 77.9 (C), 82.7 (C), 115.0 (CH$_2$=), 137.5 (CH=), 169.2 (C).

HRMS (ESI): calc. for C$_{13}$H$_{18}$O$_2$Na: 229.1204 found: 229.1200.

IR: 3396.4 (CtripletC), 1741.6 (C=O), 1642.2 (C=C), 1227.5 (C-O).

5-ethynyltrona-1,8-dien-5-yl 4-nitrobenzoate (S36)

![Chemical Formula: C$_{13}$H$_{18}$NO$_4$](image)

Molecular Weight: 313.35

1H NMR (300MHz, CDCl$_3$): δ = 2.18 (m, 2H, CH$_2$), 2.33 (m, 6H, CH$_2$), 2.73 (s, 1H, CH), 5.01 (dd, 2H, J_1 = 1.2 Hz, J_2 = 10.2 Hz, =CH$_2$), 5.09 (dm, 2H, J_1 = 16.8 Hz, =CH$_2$), 5.86 (m, 2H, =CH), 8.18 (dm, 2H, J_1 = 9 Hz, Ar), 8.29 (dm, 2H, J_1 = 8 Hz, Ar).

13C NMR (75 MHz, CDCl$_3$): δ = 28.4 (CH$_2$), 37.6 (CH$_2$), 75.7 (CH), 79.9 (C), 81.9 (C), 115.3 (CH$_2$=), 123.6 (Ar), 130.7 (Ar), 136.1 (C), 137.2 (CH=), 150.6 (C), 162.7 (C).

IR: 1727.5 (C=O), 1275.5 (C-O).

4-ethynylhepta-1,6-dien-4-yl 4-nitrobenzoate (S37)

![Chemical Formula: C$_{13}$H$_{18}$NO$_4$](image)

Molecular Weight: 285.29

4-((trimethylsilyl)ethynyl)hepta-1,6-dien-4-ol (377 mg, 1.81 mmol, 1 eq.) is diluted in DCM (4 mL). Triethylamine (1.3 mL, 9.05 mmol, 5 eq.), DMAP (22 mg, 0.18 mmol, 0.1 eq.) and para-nitrobenzoyl chloride (504 mg, 2.71 mmol, 1.5 eq.) are added sequentialy. The mixture is refluxed overnight then a solution of TBAF (1M in THF, 5.6 mL, 5.6 mmol, 3.1 eq.) is added at 0°C. After 3h45 at r.t., the aqueous layer is extracted 3 times with Et$_2$O and the organic layer is washed with NaCl$_{aq}$, then dried over MgSO$_4$. Solvents are removed under reduced pressure. After purification on column chromatography (silica, hept/EtOAc), a yellow soli dis obtained (213 mg, 41% yield).

1H NMR (300MHz, CDCl$_3$): δ = 2.72 (s, 1H, CH), 2.88 (m, 4H, CH$_2$), 5.20 (m, 4H, =CH$_2$), 5.90 (m, 2H, =CH), 8.14 (dm, 2H, J_1 = 9 Hz, Ar), 8.26 (dm, 2H, J_1 = 9 Hz, Ar).

13C NMR (75 MHz, CDCl$_3$): δ = 38.0 (C), 42.5 (CH$_2$), 75.8 (CH), 81.8 (C), 119.8 (CH$_2$=), 123.5 (CH=), 130.7 (Ar), 131.5 (Ar), 136.1 (C), 150.6 (C), 162.7 (C).
Experimental part : Chapter III

4-ethynyl-2,6-dimethylhepta-1,6-dien-4-yl acétate (S38)

![Chemical Structure](image)

Chemical Formula: C_{13}H_{18}O_2
Molecular Weight: 206.28

To a solution of 4-ethynyl-2,6-dimethylhepta-1,6-dien-4-ol (377 mg, 2.30 mmol, 1 eq.) in DCM (4.5 mL) is added triethylamine (1.3 mL, 9.18 mmol, 5 eq.), DMAP (122 mg, 0.46 mmol, 0.2 eq.) and Ac_2O (0.44 mL, 4.60 mmol, 2 mmol). The reaction is stirred overnight at rt then treated with NH_4Cl. The aqueous layer is extracted with EtOAc, the organic layer is washed with water and dried over MgSO_4 then concentrated. After column chromatography (silica, eluent: hept/EtOAc from 100/0 to 95/5) the product is obtained (305 mg, yield: 81%).

¹H RMN (300MHz, CDCl₃): δ = 1.87 (s, 6H, Me), 2.04 (s, 3H, Me), 2.65 (s, 1H, CH), 2.68 (d, 2H, J = 13.8 Hz, CH₂), 2.85 (d, 2H, J = 14.1 Hz, CH₂), 4.87 (m, 2H, =CH₂), 4.96 (m, 2H, =CH₂).

¹³C RMN (75 MHZ, CDCl₃): δ = δ 22.1 (Me), 24.0 (Me), 46.4 (CH₂), 75.4 (tripleCH), 83.1 (C), 116.1 (CH₂=), 125.5 (C), 126.6 (C), 129.8 (C), 131.4 (C), 140.4 (C).

4-ethynyl-2,6-dimethylhepta-1,6-dien-4-yl 4-nitrobenzoate (S39)

![Chemical Structure](image)

Chemical Formula: C_{18}H_{18}NO₄
Molecular Weight: 313.35

To a solution of 4-ethynyl-2,6-dimethylhepta-1,6-dien-4-ol (100 mg, 0.61 mmol, 1 eq.) in DCM (1.3 mL) is added triethylamine (0.42 mL, 3.05 mmol, 5 eq.), DMAP (74 mg, 0.61 mmol, 1 eq.) and PNCl (170 mg, 0.92 mmol, 1.5 mmol). The reaction is refluxing overnight then treated with NH_4Cl. The aqueous layer is extracted with DCM, the organic layer is washed with NaCl and dried over MgSO₄ then concentrated. After column chromatography (silica, eluent: hept/EtOAc from 100/0 to 96/4) the product is obtained (128 mg, yield: 67%). HJ597

¹H RMN (500MHz, CDCl₃): δ = 1.90 (s, 6H, Me), 2.76 (s, 1H, CH), 2.85 (d, 2H, J = 14.5 Hz, CH₂), 3.03 (d, 2H, J = 14.5 Hz, CH₂), 4.92 (s, 2H, =CH₂), 4.99 (s, 2H, =CH₂), 8.19 (d, 2H, J = 8.5 Hz, Ar), 8.30 (d, 2H, J = 8.5 Hz, Ar).
Typical Procedure for the Cycloisomerizations of 1,5- and 1,6-dienynes

Gold Catalysis:

Racemic procedure: AgBF₄ (0.6 mg, 0.003 mmol) and enyne (0.16 mmol, in 1.5 mL DCM) were added sequentially to a solution of AuCl(PPh₃) (0.003 mmol, 2 mol%) in DCM (0.5 mL) under argon. The mixture was stirred at r.t. for 7h. The solvent was removed under reduced pressure, and the final product was purified by column chromatography on silica gel with heptane/EtOAc (90:10) as eluent.

Enantioselective procedure: AgBF₄ (0.6 mg, 0.003 mmol) and enyne (0.16 mmol, in 1.5 mL DCM) were added sequentially to a solution of C₁₂ (0.003 mmol, 2 mol%) in DCM (0.5 mL) under argon. The mixture was stirred at r.t. for 18h. The solvent was removed under reduced pressure, and the final product was purified by column chromatography on silica gel with heptane/EtOAc (90:10) as eluent.

3-allyl-1-phenylbicyclo[3.1.0]hex-2-en-2-yl acétate (P30)

![Chemical Structure](image)

Chemical Formula: C₁₁H₁₈O₂
Molecular Weight: 254.32

¹H RMN (500 MHz, CDCl₃): δ = 1.01 (dd, 1H, J = 4.2 Hz, CH₂), 1.60 (m, 1H, CH₂), 1.71 (m, 1H, CH), 1.99 (s, 3H, Me), 2.33 (d, 1H, J = 17.1 Hz, CH₂), 2.74 (m, 3H, CH₂), 5.06 (m, 2H, CH₂=), 5.76 (m, 1H, CH=), 7.21-7.30 (m, 5H, Ar).

¹³C RMN (75 MHz, CDCl₃): δ = 20.4 (Me), 21.4 (CH₂), 23.8 (CH), 31.2 (CH₂), 33.6 (CH₂), 37.0 (C), 115.8 (CH₂=), 122.0 (C), 126.3 (Ar), 128.3 (Ar), 128.6 (Ar), 135.1 (CH=), 139.0 (C), 147.9 (C), 168.4 (C).

HRMS (ESI): calc. for C₁₁H₁₈O₂Na: 277.1204 found: 277.1199.

IR: 1732.7 (C=O), 1204.0 (C-O).

5-methyl-3-(2-methylallyl)-1-phenylbicyclo[3.1.0]hex-2-en-2-yl acétate (P32)

![Chemical Structure](image)

Chemical Formula: C₁₉H₂₂O₂
Molecular Weight: 282.38

¹H RMN (300 MHz, CDCl₃): δ = 0.71 (d, 1H, J = 3.9 Hz, CH₂), 0.91 (d, 1H, J = 4.2 Hz, CH₂), 1.31 (s, 3H, Me), 1.76 (s, 3H, Me), 2.10 (d, 1H, J = 16.5 Hz, CH₂), 2.19 (s, 3H, Me), 2.34 (d,
Experimental part : Chapter III

1H, J = 16.5 Hz, CH2), 2.72 (d, 1H, J = 16.5 Hz, CH2), 2.88 (d, 1H, J = 16.2 Hz, CH2), 4.98 (s, 2H, CH2=), 7.14-7.19 (m, 1H, Ar), 7.25-7.36 (m, 4H, Ar).

13C RMN (75 MHz, CDCl3) : δ = 19.2 (Me), 20.9 (Me), 22.9 (Me), 23.9 (C), 28.5 (CH2), 35.3 (C), 36.0 (CH2), 40.5 (CH2), 111.1 (CH2=), 119.7 (C), 126.6 (Ar), 128.0 (Ar), 128.0 (C), 128.3 (Ar).

HPLC : Chiracel AD-H column, hept/iPrOH 99/1, 1 mL.min⁻¹, retention times : 4.3 and 5.1 min.

Platinum Catalysis :

Racemic procedure : To a solution of substrate (0.16 mmol, 1 eq) in toluene (5 mL) in a schlenk tube under argon is added PtCl2 (0.006 mmol, 4mol%). The mixture is heated overnight at 90°C then concentrated. After purification by column chromatography on silica gel with heptane/EtOAc (90:10) as eluent the product is obtained.

Enantioselective procedure : AgBF4 (0.9 mg, 6.4.10⁻³ mmol) and enyne (0.16 mmol, in 4.5 mL toluene) were added sequentially to a solution of the Pt(II) complex (6.4.10⁻³ mmol, 4 mol%) in toluene (0.5 mL) under argon. The mixture was stirred at 90°C for 18h. The solvent was removed under reduced pressure, the crude mixture was monitored by NMR and the final product was purified by column chromatography on silica gel with heptane/EtOAc (90:10) as eluent.

3-(but-3-en-1-yl)bicyclo[4.1.0]hept-2-en-2-yl acétate (P35)

\[
\text{\begin{tikzpicture}
\node[draw,shape=circle,fill=black] at (0,0) (center) {OAc};
\end{tikzpicture}}
\]

Chemical Formula: C_{13}H_{18}O_2
Molecular Weight: 206.28

1H RMN (300 MHz, CDCl3) : δ = 0.70 (q, 1H, J = 5.7 Hz, CH2), 0.79 (m, 1H, CH2), 1.22 (m, 1H, CH), 1.45 (m, 1H, CH), 1.88-2.07 (m, 8H, CH2), 2.19 (s, 3H, Me), 4.97 (m, 2H, CH2=), 5.79 (m, 1H, CH=).

13C RMN (75 MHz, CDCl3) : δ = 8.86 (CH2), 11.1 (CH), 13.4 (CH), 18.4 (CH2), 19.9 (Me), 22.7 (CH2), 28.7 (CH2), 30.7 (CH2), 113.5 (CH2=), 117.2 (C), 137.4 (CH=), 142.7 (C), 168.4 (C).

HRMS (ESI) : calc. for C_{13}H_{18}O_2Na: 229,1204 found: 229.1214.

IR : 1752.9 (C=O), 1215.0 (C-O).

HPLC : Chiracel IA column, hept/iPrOH 99.5/0.5, 1 mL.min⁻¹, retention times : 5.5 and 6.0 min.
Experimental part : Chapter III

3-(but-3-en-1-yl)bicyclo[4.1.0]hept-2-en-2-yl 4-nitrobenzoate (P36)

\[
\text{Chemical Formula: C}_{18}H_{19}NO_4 \\
\text{Molecular Weight: 313.35}
\]

\[\text{^1H RMN (300 MHz, CDCl}_3\text{)}: \delta = 0.85 \text{ (m, 2H, CH}_2\text{), 1.33 \text{ (m, 1H, CH), 1.51 \text{ (m, 1H, CH), 1.76-2.19} \text{ (m, 8H, CH}_2\text{), 4.96 \text{ (m, 2H, CH}_2=\text{), 5.74 \text{ (m, 1H, CH=), 8.33 \text{ (m, 4H, Ar).}}}\]

\[\text{^13C RMN (75 MHz, CDCl}_3\text{)}: \delta = 10.1 \text{ (CH}_2\text{), 12.2 \text{ (CH), 14.7 \text{ (CH), 19.4 \text{ (CH}_2\text{), 23.9 \text{ (CH}_2\text{), 29.8 \text{ (CH}_2\text{), 31.7 \text{ (CH}_2\text{), 114.8} \text{ (CH}_2=\text{), 119.1} \text{ (C), 123.7} \text{ (Ar), 131.1} \text{ (Ar), 135.5} \text{ (C), 138.1} \text{ (CH=), 143.9} \text{ (C), 150.7} \text{ (C), 168.2} \text{ (C).}}\]

\[\text{IR: 1731.9 (C=O), 1524.9 et 1346.4 (NO}_2\text{), 1265.2 (C-O).}\]

\[\text{HPLC : Chiracel IA column, hept/iPrOH 99/1, 1 mL min}^{-1} \text{, retention times : 9.8 and 10.9 min.}\]

3-allylbicyclo[3.1.0]hex-2-en-2-yl 4-nitrobenzoate (P37)

\[
\text{Chemical Formula: C}_{16}H_{15}NO_4 \\
\text{Molecular Weight: 285.29}
\]

\[\text{^1H RMN (300 MHz, CDCl}_3\text{)}: \delta = 0.45 \text{ (q, 1H, J = 4.2 Hz, CH}_2\text{), 0.95 \text{ (m, 1H, CH}_2\text{), 1.68 (m, 1H, CH), 2.01 (m, 1H, CH), 2.33 (dd, 1H, J = 3 Hz, J = 17.1, CH}_2\text{), 2.66 (dd, 1H, J = 7.2 Hz, J = 17.1 Hz, CH}_2\text{), 2.73 (m, 2H, CH}_2\text{), 5.01 (m, 2H, CH}_2=\text{), 5.72 (m, 1H, CH=), 8.32 (m, 4H, Ar).}}\]

\[\text{^13C RMN (75 MHz, CDCl}_3\text{)}: \delta = 11.8 \text{ (CH), 15.0 \text{ (CH}_2\text{), 20.1 \text{ (CH), 28.7 \text{ (CH}_2\text{), 33.0 \text{ (CH}_2\text{), 114.9 \text{ (CH}_2=\text{), 120.7} \text{ (C), 122.6} \text{ (Ar), 130.1} \text{ (Ar), 133.8} \text{ (CH=), 134.0} \text{ (C), 147.2} \text{ (C), 149.7} \text{ (C), 161.4} \text{ (C).}}\]

\[\text{IR: 1735.6 (C=O), 1521.8 et 1342.7 (NO}_2\text{), 1262.7 et 1244.5 (C-O).}\]

\[\text{HPLC : Chiracel IC column, hept/iPrOH 99/1, 1 mL min}^{-1} \text{, retention times : 14.2 and 17.2 min.}\]
Experimental part: Chapter III

5-methyl-3-(2-methylallyl)bicyclo[3.1.0]hex-2-en-2-yl acetate (P38)

\[
\begin{align*}
\text{Chemical Formula: } & C_{13}H_{18}O_2 \\
\text{Molecular Weight: } & 206.28
\end{align*}
\]

\[\text{\textbf{1H RMN (300 MHz, CDCl}_3\text{)}: } \delta = 0.48 \text{ (dd, 1H, } J = 3.3 \text{ Hz, CH}_2\text{), 0.78 \text{ (dd, 1H, } J = 3.9 \text{ Hz et } J = 6.9 \text{ Hz, CH}_2\text{), 1.29 \text{ (s, 3H, Me), 1.57 \text{ (s, 1H, CH), 1.64 \text{ (s, 3H, Me), 2.18 \text{ (s, 3H, Me), 2.29 (s, 2H, CH}_2\text{), 2.61 \text{ (s, 2H, CH}_2\text{), 4.69 \text{ (d, 2H, } J = 16.5 \text{ Hz, CH}_2=\text{).}}}}
\]

\[\text{\textbf{13C RMN (75 MHz, CDCl}_3\text{)}: } \delta = 20.8 \text{ (Me), 21.8 \text{ (Me), 22.1 \text{ (Me), 23.0 (CH}_2\text{), 27.9 \text{ (CH), 29.7 (C), 35.1 \text{ (CH}_2\text{), 40.0 (CH}_2\text{), 111.3 (CH}_2=\text{).}}}}
\]

\[\text{\textbf{HPLC:} Chiracel IC column, hept/iPrOH 99.5/0.5, 1 mL.min}^{-1}, \text{ retention times: 5.1 and 5.4 min.}
\]

5-methyl-3-(2-methylallyl)bicyclo[3.1.0]hex-2-en-2-yl 4-nitrobenzoate (P39)

\[
\begin{align*}
\text{Chemical Formula: } & C_{18}H_{19}NO_4 \\
\text{Molecular Weight: } & 313.35
\end{align*}
\]

\[\text{\textbf{1H RMN (500 MHz, CDCl}_3\text{)}: } \delta = 0.60 \text{ (dd, 1H, } J = 3 \text{ Hz, CH}_2\text{), 0.88 \text{ (dd, 1H, } J = 3 \text{ Hz, } J = 7 \text{ Hz, CH}_2\text{), 1.34 \text{ (s, 3H, Me), 1.67 \text{ (s, 3H, Me), 1.78 (d, 1H, } J = 6 \text{ Hz, CH), 2.38 (s, 2H, CH}_2\text{), 2.68 \text{ (d, 2H, } J = 3 \text{ Hz, CH}_2\text{), 4.70 (s, 1H, CH}_2=\text{), 4.73 (s, 1H, CH}_2=\text{), 8.28 (d, 2H, } J = 7 \text{ Hz, Ar), 8.34 (d, 2H, } J = 9 \text{ Hz, Ar).}}
\]

\[\text{\textbf{HPLC:} Chiracel IC column, hept/iPrOH 99/1, 1 mL.min}^{-1}, \text{ retention times: 10.1 and 13.1 min.}
\]
Chapter IV:

(S)-2-(methoxymethyl)pyrrolidin-1-yl)methylferrocene179,180 (99)

![Chemical Structure of (S)-2-(methoxymethyl)pyrrolidin-1-yl)methylferrocene](image)

To a solution of (S)-2-methoxymethylpyrrolidine181 (120 mg, 1 mmol, 1 eq.) in methanol, (1 mL) were added ferrocene carboxaldehyde (215 mg, 1 mmol, 1 eq.), 4 Å molecular sieves, and finally sodium cyanoborohydride (63 mg, 1 mmol, 1 eq.), which caused a slight warming of the reaction mixture. After 24h of stirring at r.t., the solvent was removed under reduced pressure. Purification on column chromatography (silica, MTBE/Et\textsubscript{3}N 98/2) afforded an orange oil (260 mg, 83% yield).

1H NMR (500 MHz, CDC\textsubscript{3}): δ = 1.56 - 1.77 (m, 3H, CH\textsubscript{2}), 1.81 - 1.89 (m, 1H, CH\textsubscript{2}), 2.27 (td, 1H, J = 9.5 Hz, J = 7.5 Hz, CH\textsubscript{2}), 2.61 - 2.68 (m, 1H, CH), 2.93 - 2.99 (m, 1H, NCH\textsubscript{2}), 3.27 (dd, 1H, J = 6.5 Hz, J = 9.5 Hz, CH\textsubscript{2}OMe), 3.38 (s, 3H, OMe), 3.39 (dd, 1H, J = 9.3 Hz, J = 4.8 Hz, CH\textsubscript{2}OMe), 3.43 (d, 1H, J = 13.5 Hz, NCH\textsubscript{2}), 3.77 (d, 1H, J = 13 Hz, NCH\textsubscript{2}), 4.09 - 4.13 (m, 2H, CH\textsubscript{Fe}), 4.13 (s, 5H, CH\textsubscript{Fe}), 4.17 - 4.20 (m, 1H, CH\textsubscript{Fe}), 4.20 - 4.22 (m, 1H, CH\textsubscript{Fe}).

(S)-1-iodo-2-(methoxymethyl)pyrrolidin-1-yl)methylferrocene179,180 (100)

![Chemical Structure of (S)-1-iodo-2-(methoxymethyl)pyrrolidin-1-yl)methylferrocene](image)

To a solution of (S)-2-(methoxymethyl)pyrrolidin-1-yl)methylferrocene (700 mg, 2.23 mmol, 1 eq.) in Et\textsubscript{2}O (10 mL) is added at -78°C sBuLi (1.33M, 2 mL, 2.68 mmol, 1.2 eq.). The solution is stirred 15 min at -78°C then 45 min at -25°C. At -78°C is added a solution of diiodoethane (940 mg, 3.35 mmol, 1.5 eq.) in Et\textsubscript{2}O (7 mL). After 10 min at -78°C and 2h at r.t. the reaction is quenched by addition of EtOAc. Purification on column chromatography (alumina, MTBE) afforded the product (913 mg, 93% yield).

1H NMR (300 MHz, CDCl\textsubscript{3}): δ = 0.89 (q, 1H, J = 7.8 Hz, CH\textsubscript{2}), 1.54 - 1.79 (m, 3H, CH\textsubscript{2}).

1.79-1.95 (m, 1H, CH$_2$), 2.20-2.30 (m, 1H, CH$_2$), 2.70-2.80 (m, 1H, CH), 3.00-3.09 (m, 1H, NCH$_2$), 3.28 (dd, 1H, $J = 9.5$ Hz, $J = 6.5$ Hz, OCH$_2$), 3.40 (s, 3H, OMe), 3.46 (d, 1H, $J = 13.2$ Hz, NCH$_2$), 3.51 (dd, 1H, $J = 9.5$ Hz, $J = 4.8$ Hz, CH$_2$OMe), 3.90 (d, 1H, $J = 13.2$ Hz, NCH$_2$), 4.13 (s, 5H, CH$_{Fe}$), 4.21 (t, 1H, $J = 2.4$ Hz, CH$_{Fe}$), 4.29 (dd, 1H, $J = 2.4$ Hz, $J = 1.7$ Hz, CH$_{Fe}$), 4.43 (dd, 1H, $J = 2.4$ Hz, $J = 1.7$ Hz, CH$_{Fe}$).

Chemical Formula: C$_{23}$H$_{30}$ClFeNO

Molecular Weight: 423.76

100 (210 mg, 0.48 mmol, 1 eq.), 2-chlorophenylboronic acid (150 mg, 0.96 mmol, 2 eq.), PdCl$_2$(dpf).DCM (39 mg, 0.05 mmol, 0.1 eq.) are introduced in a schlenk tube under argon. 1,2-dimethoxyethan (2.5 mL) then NaOH 3N (0.4 mL) are added. The solution is degazed with argon then heated at 85°C during 4h. The aqueous layer is extracted with EtOAc. The organic layer is washed with brine, dried over MgSO$_4$ and concentrated. Purification by column chromatography (silica gel; eluant: heptane/THF/Et$_3$N 80/19/1) gave an orange oil (141 mg, yield: 69%).

1H NMR (300 MHz, CDCl$_3$): δ = 1.5 -1.6 (m, 2 H, CH$_2$), 1.6 -1.7 (m, 2 H, CH$_2$), 2.06 (~ q, 1 H, $J = 7.2$ Hz, CH$_2$), 2.61 (m, 2H, CH & CH$_2$), 3.01 (dd, 1 H, $J = 6$ Hz, $J = 9.3$ Hz, CH$_2$OMe), 3.10 (dd, 1 H, $J = 4.8$ Hz, $J = 9.3$ Hz, CH$_2$OMe), 3.25 (s, 3H, OMe), 3.50 (d, 1 H, $J = 13.2$ Hz, NCH$_2$), 3.85 (d, 1 H, $J = 13.5$ Hz, NCH$_2$), 4.17 (s, 5 H, CH$_{Fe}$), 4.30 (dd, 1 H, $J = 2.4$ Hz, CH$_{Fe}$), 4.38 (dd, 1 H, $J = 1.5$ Hz, $J = 7.8$ Hz, Ar), 4.53 (dd, 1 H, $J = 1.2$ Hz, CH$_{Fe}$), 7.2 - 7.3 (m, 2 H, Ar), 7.36 (dd, 1H, $J = 2.1$ Hz, $J = 7.5$ Hz, Ar).

13C NMR (CDCl$_3$, 75 MHz): δ = 22.9 (CH$_2$), 28.4 (CH$_2$), 51.0 (NCH$_2$), 53.3 (NCH$_2$), 59.0 (OMe), 61.3 (NCH), 66.7 (CH$_{Fe}$), 69.8 (CH$_{Fe}$), 70.0 (CH$_{Fe}$), 70.9 (CH$_{Fe}$), 76.1 (CH$_2$OMe), 87.4 (C), 125.5 (C), 125.9 (Ar), 127.8 (Ar), 129.6 (Ar), 134.2 (Ar), 135.0 (C), 136.0 (C).

HRMS (ESI): calc. for C$_{23}$H$_{27}$NOClFe : 424.1131. Found: 424.1136.

[α]$_D$ = -7.4 (c = 0.7, CHCl$_3$).
Experimental part: chapter IV

(R)-1-[(S)-2-(methoxymethyl)pyrrolidin-1-yl)methyl]-2-(o-bromophenyl)ferrocene (103b)

100 (500 mg, 1.14 mmol, 1 eq.), 2-bromophenylboronic acid (201 mg, 2.28 mmol, 2 eq.), PdCl₂(dppf).DCM (93 mg, 0.11 mmol, 0.1 eq.) are introduced in a schlenk tube under argon. 1,2-dimethoxyethan (5.9 mL) then NaOH 3N (1 mL) are added. The solution is degazed with argon then heated at 85°C during 4h. The aqueous layer is extracted with EtOAc. The organic layer is washed with brine, dried over MgSO₄ and concentrated. Purification by column chromatography (silica gel; éluant: heptane/THF/Et₃N 80/19/1) gave an orange oil (534 mg, yield: 100%).

1H NMR (300 MHz, CDCl₃): δ = 1.4 - 1.7 (m, 4 H, CH₂), 2.07 (~ q, 1 H, J = 7.2 Hz, CH₂), 2.61 (m, 2H, CH & CH₂), 3.01 (m, 2 H, CH₂OMe), 3.24 (s, 3 H, OMe), 3.57 (d, 1 H, J = 14.1 Hz, NCH₂), 3.80 (d, 1 H, J = 13.5 Hz, NCH₂), 4.16 (s, 5 H, CH₆Fe), 4.30 (t, 1 H, J = 2.4 Hz, CH₂Fe), 4.40 (br s, 1 H, CH₂Fe), 4.51 (dd, 1 H, J = 1.5 Hz, J = 2.7 Hz, CH₂Fe), 7.13 (dt, 1 H, J₁ = 7.5 Hz, Jd = 1.2 Hz, Ar), 7.34 (dt, 1 H, J₁ = 7.5 Hz, J₂ = 1.8 Hz, Ar), 7.55 (dd, 1 H, J₁ = 7.8 Hz, J₂ = 1.2 Hz, Ar), 7.95 (dd, 1 H, J₁ = 7.5 Hz, J₂ = 1.5 Hz, Ar).

13C NMR (CDCl₃, 75 MHz): δ = 22.8 (CH₂), 28.2 (CH₂), 45.8 (NCH₂), 53.3 (NCH₂), 59.1 (O Mei), 61.0 (NCH), 66.5 (CH₂Fe), 69.8 (CH₂Fe), 71.1 (CH₂Fe), 75.7 (CH₂O Me), 89.9 (C), 125.6 (C), 126.1 (C), 126.6 (Ar), 128.2 (Ar), 132.7 (Ar), 134.2 (Ar), 137.7 (C).

[α]D = -0.5 (c = 0.7, CHCl₃).

(R)-1-(2-(o-chlorophenyl)ferrocen-1-yl)methyl acétate (102a)

103a (51 mg, 0.12 mmol, 1 eq.) is diluted in 2.4 mL of Ac₂O in a schlenk Under argon. The mixture is heated at 90°C over night then concentrated Under reduced pressure. After column chromatography (alumina, éluant: hept/EtOAc 95/5) the product is obtained as an orange oil (30 mg, yield: 69%).
Experimental part: chapter IV

\(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta = 1.99\) (s, 3 H, Me), 4.25 (s, 5 H, CH\(_\text{Fe}\)), 4.36 (dd, 1 H, \(J = 2.4\) Hz, CH\(_\text{Fe}\)), 4.48 (dd, 2 H, \(J = 2.7\) Hz, CH\(_\text{Fe}\)), 4.79 (d, 1 H, \(J = 12.3\) Hz, OCH\(_2\)), 4.96 (d, 1 H, \(J = 12.3\) Hz, OCH\(_2\)), 7.20 – 7.32 (m, 2 H, Ar), 7.36 (dd, 1H, \(J = 1.8\) Hz, \(J = 7.8\) Hz, Ar), 7.86 (dd, 1 H, \(J = 1.8\) Hz, \(J = 7.2\) Hz, Ar).

\(^{13}\)C NMR (CDCl\(_3\), 75 MHz): \(\delta = 20.9\) (Me), 61.4 (OCH\(_2\)), 67.7 (CH\(_\text{Fe}\)), 69.3 (CH\(_\text{Fe}\)), 71.7 (CH\(_\text{Fe}\)), 81.4 (C), 88.1 (C), 126.2 (Ar), 128.3 (Ar), 129.6 (Ar), 133.6 (Ar), 135.1 (C), 170.8 (C).

\([\alpha]_{D} = 39\) (c = 0.5, CHCl\(_3\)).

\((R)\)-1-(2-(bromophenyl)ferrocen-1-yl)methyl acétate (102b)

103b (180 mg, 0.38 mmol, 1 eq.) is diluted in 7.8 mL of Ac\(_2\)O in a schlenck under argon. The mixture is heated at 90°C over night then concentrated Under reduced pressure. After column chromatography (alumina, eluant: hept/EtOAc 95/5) the product is obtained as an orange oil (121 mg, yield: 77%).

\(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta = 1.97\) (s, 3 H, Me), 4.27 (s, 5 H, CH\(_\text{Fe}\)), 4.36 (dd, 1 H, \(J = 2.4\) Hz, CH\(_\text{Fe}\)), 4.45 (m, 1 H, CH\(_\text{Fe}\)), 4.46 (m, 1 H, CH\(_\text{Fe}\)), 4.76 (d, 1 H, \(J = 12\) Hz, OCH\(_2\)), 4.89 (d, 1 H, \(J = 12.3\) Hz, OCH\(_2\)), 7.16 (dt, 1 H, \(J_d = 1.5\) Hz, \(J_t = 7.8\) Hz, Ar), 7.35 (dt, 1 H, \(J_d = 0.9\) Hz, \(J_t = 7.2\) Hz, Ar), 7.56 (dd, 1H, \(J = 1.2\) Hz, \(J = 8.1\) Hz, Ar), 7.92 (dd, 1 H, \(J = 1.5\) Hz, \(J = 7.5\) Hz, Ar).

\(^{13}\)C NMR (CDCl\(_3\), 75 MHz): \(\delta = 20.9\) (Me), 61.2 (OCH\(_2\)), 67.3 (CH\(_\text{Fe}\)), 68.0 (CH\(_\text{Fe}\)), 69.8 (CH\(_\text{Fe}\)), 71.7 (CH\(_\text{Fe}\)), 81.8 (C), 90.8 (C), 126.2 (C), 126.8 (Ar), 128.7 (Ar), 132.6 (Ar), 133.9 (Ar), 136.9 (C), 170.8 (C).

\([\alpha]_{D} = 77\) (c = 0.6, CHCl\(_3\)).
(R)-diphenyl-[(2-(o-bromophenyl)ferrocen-1-yl)]methylphosphine borane (98b)

To a solution of (R)-1-(2-(o-bromophenyl)ferrocen-1-yl)methyl acetate (91 mg, 0.22 mmol, 1 eq.) in degased CH₃COOH (1 mL) is added PPh₂ (46 µL, 0.27 mmol, 1.2 eq.). The mixture is heated at 50°C for 2h. The solvent is eliminated Under reduced pressure. Then the crude phosphine is diluted in degased THF (2.2 mL) and BH₃.SMe₂ (2M in THF, 0.33 mL, 0.66 mmol, 3 eq.) is added. The mixture is stirred 45 min then the solvent is removed. After column chromatography (silica, eluant : hept/EtOAc 95/5) an orange solid is obtained (19 mg, yield = 15%).

31P NMR (121 MHz, CDCl₃): $\delta = 17.1$ (broad).

1H NMR (300 MHz, CDCl₃): $\delta = 3.34$ (dd, 1 H, $J = 8.1$ Hz, $J = 15$ Hz, CH₂), 3.34 (dd, 1 H, $J = 12.9$ Hz, $J = 15$ Hz, CH₂), 4.06 (s, 5 H, CH₅), 4.13 (t, 1 H, $J = 2.7$ Hz, CH₆), 4.21 (t, 1 H, $J = 1.5$ Hz, CH₇), 4.42 (dd, 1 H, $J = 1.2$ Hz, $J = 2.4$ Hz, CH₈), 7.04 (dt, 1 H, $J_d = 1.5$ Hz, $J_i = 7.8$ Hz, Ar), 7.14 (dt, 2 H, $J_d = 2.4$ Hz, $J_i = 7.8$ Hz, Ar), 7.2-7.4 (m, 9H, Ar), 7.87 (dd, 1 H, $J = 1.5$ Hz, $J = 7.5$ Hz, Ar).

13C NMR (CDCl₃, 75 MHz): $\delta = 26.8$ (d, $J = 31.7$ Hz, CH₂), 66.5 (CH₅), 69.9 (CH₆), 70.4 (CH₇), 70.6 (CH₈), 80.1 (C), 88.4 (C), 126.6 (Ar), 128.2 (Ar), 128.4 (Ar), 128.6 (Ar), 128.7 (Ar), 130.8 (Ar), 131.2 (Ar), 131.8 (Ar), 131.9 (Ar), 133.0 (Ar), 133.1 (Ar), 133.3 (Ar), 133.8 (Ar), (C), (C).

HRMS (ESI): calc. for C₂₉H₂₇BBrFe : 552.0476. Found: 552.0475.

$[\alpha]^D = 156$ (c = 0.3, CHCl₃).
Experimental part: chapter IV

Representative procedure for the synthesis of bimetallic complexes:

A solution of I₂ (182 mg, 0.72 mmol) in toluene (13 ml) was added at 0°C under argon to a solution of Pt (0) complex [(1) (0.72 mmol) in 9 ml of toluene. After 10 minutes stirring at 0°C, diamine (0.36 mmol) was added. The reaction mixture was stirred overnight at room temperature. After evaporation of the solvent, the residue was purified by chromatography on a silica gel column.

\[\text{N,N’-Bis[trans-diiodo(1-cyclohexylmethyl-3-methylimidazol-2-ylidene)platinum]-} \]
\[\text{1,3-diaminopropane (C15a)} \]

The crude product was purified by chromatography on a silica gel column with a heptane/ethyl acetate 75:25 mixture as the eluent to afford C15a as a pale yellow solid (Rf = 0.2). Yield: 67% (318 mg).

\(^1H\) NMR (500 MHz, CDCl₃): \(\delta = 6.78 \) (d, 2H, J = 1.5 Hz, NCH=), 6.75 (d, 2H, J = 1.5 Hz, NCH=), 4.09 (d, 4H, J = 7.5 Hz, NCH₂CH), 3.87 (s, 6H, NMe), 3.2 (m, 4H, NH₂CH₂), 3.0 (m, 4H, NH₂), 2.4 (m, 2H, NCH₂CH), 2.21 (quint, 2H, J = 7.0 Hz, NCH₂CH₂), 1.6-1.8 (m, 10H), 1.1-1.3 (m, 6H), 1.0 (m, 4H).

\(^{13}C\) NMR (500 MHz, CDCl₃): \(\delta = 137.83 \) (C), 121.38 (NCH), 121.30 (NCH), 57.34 (NCH₂CH), 42.45 (NH₂CH₂), 38.45 (NMe), 37.29 (CH), 33.23 (NCH₂CH₂), 30.83 (CH₂), 26.32 (CH₂), 25.67 (CH₂).

\[\text{N,N’-Bis[trans-diiodo(1-cyclohexylmethyl-3-methylimidazol-2-ylidene)platinum]-} \]
\[\text{1,5-diaminopentane (C15b)} \]

Chemical Formula: C₂₅H₄₆N₆Pt₂
Molecular Weight: 1356.51

Complex C15b was purified by chromatography with a heptane-ethyl acetate gradient. Yield: 29%, pale yellow solid.

1H NMR (500 MHz, CDCl$_3$): $\delta = 6.78$ (d, 2H, $J = 2.0$ Hz, NCH=), 6.75 (d, 2H, $J = 2.0$ Hz, NCH=), 4.08 (d, 4H, $J = 7.5$ Hz, NCH$_2$), 3.87 (s, 6H, NMe), 3.07 (m, 4H, NH$_2$CH$_2$), 2.9 (m, 4H, NH$_2$), 2.4 (m, 2H, NCH$_2$CH), 1.7-1.8 (m, 14H), 1.4-1.5 (m, 2H), 1.2-1.3 (m, 6H), 0.9-1.1 (m, 4H).

13C NMR (500 MHz, CDCl$_3$): $\delta = 138.32$ (C), 121.38 (NCH), 121.23 (NCH), 57.34 (NCH$_2$), 45.19 (NH$_2$CH$_2$), 38.37 (NMe), 37.27 (CH), 31.41 (CH$_2$), 30.81 (CH$_2$), 26.33 (CH$_2$), 25.64 (CH$_2$), 23.59 (CH$_2$).

N,N'-Bis[trans-diido(1-cyclohexylmethyl-3-methylimidazol-2-ylidene)platinum]-1,7-diaminoheptane (C15c)

Complex C15c was purified by chromatography with a heptane-dichloromethane gradient. Yield: 27%, pale yellow solid.

1H NMR (500 MHz, CDCl$_3$): $\delta = 6.78$ (d, 2H, $J = 2.0$ Hz, NCH=), 6.75 (d, 2H, $J = 2.0$ Hz, NCH=), 4.08 (d, 4H, $J = 7.5$ Hz, NCH$_2$CH), 3.86 (s, 6H, NMe), 3.03 (m, 4H, NH$_2$CH$_2$), 2.9 (m, 4H, NH$_2$), 2.45 (m, 2H, NCH$_2$CH), 1.67-1.75 (m, 14H), 1.4-1.2 (m, 12H), 1.1-1.0 (m, 4H).

13C NMR (500 MHz, CDCl$_3$): $\delta = 138.51$ (C), 121.38 (NCH=), 121.21 (NCH=), 57.33 (NCH$_2$), 45.36 (NH$_2$CH$_2$), 38.34 (NMe), 37.26 (CH), 31.84 (CH$_2$), 30.80 (CH$_2$), 29.7 (CH$_2$), 28.80 (CH$_2$), 26.34 (CH$_2$), 25.63 (CH$_2$).

N,N'-Bis[trans-diido(1-cyclohexylmethyl-3-methylimidazol-2-ylidene)platinum]-1,8-diaminooctane (C15d)

Complex C15d was purified by chromatography with a heptane-dichloromethane gradient. Yield: 61%, pale yellow solid.
Experimental part: chapter IV

1H NMR (500 MHz, CDCl$_3$): δ = 6.78 (d, 2H, J = 2.0 Hz, NCH=), 6.75 (d, 2H, J = 2.0 Hz, NCH=), 4.08 (d, 4H, J = 8.0 Hz, NCH$_2$CH), 3.86 (s, 6H, NMe), 3.03 (m, 4H, J = 7.0 Hz, NH$_2$CH$_2$), 2.90-2.93 (m, 4H, NH$_2$), 2.45 (m, 2H, NCH$_2$CH), 1.6-1.7 (m, 14H), 1.2-1.4 (m, 14H), 0.97-1.05 (m, 4H)

13C NMR (500 MHz, CDCl$_3$): δ = 138.57 (C), 121.38 (N=CH), 121.21 (N=CH), 57.34 (NCH$_2$), 45.40 (NH$_2$CH$_2$), 38.34 (NMe), 37.26 (CH), 31.93 (CH$_2$), 30.80 (CH$_2$), 29.05 (CH$_2$), 26.41 (CH$_2$), 26.35 (CH$_2$), 25.63 (CH$_2$).

N,N'-Bis[trans-diido(1-(4-trifluoromethylbenzyl)-3-methylimidazol-2-ylidene)platinum]-1,3-diaminopropane (C16a)

Complex C16a was purified by chromatography with a heptane-ethyl acetate gradient. Yield: 55%, pale yellow solid.

1H NMR (500 MHz, CDCl$_3$): δ = 7.63 (d, 4H, J = 8.0 Hz, Ar), 7.55 (d, 4H, J = 8.0 Hz, Ar), 6.83 (d, 2H, J = 2.0 Hz, NCH=), 6.59 (d, 2H, J = 2.0 Hz, NCH=), 5.68 (s, 4H, NCH$_2$), 3.91 (s, 6H, NMe), 3.19 (m, 4H, NH$_2$CH$_2$), 3.05 (m, 4H, NH$_2$), 2.20 (quint, 2H, J = 7.0 Hz, NCH$_2$CH$_2$).

13C NMR (500 MHz, CDCl$_3$): δ = 139.81 (C), 139.41 (C), 130.54 (q, $J_{CF} = 32$ Hz, C), 129.07 (Ar), 125.79 (q, $J_{CF} = 3.6$ Hz, Ar), 122.75 (NCH), 119.91 (NCH), 53.84 (NCH$_2$), 42.55 (NH$_2$CH$_2$), 38.40 (NMe), 33.11 (NCH$_2$CH$_2$).

N,N'-Bis[trans-diido(1-(4-trifluoromethylbenzyl)-3-methylimidazol-2-ylidene)platinum]-1,5-diaminopentane (C16b)

Complex C16b was purified by chromatography with a heptane-ethyl acetate gradient. Yield: 10%, pale yellow solid.

1H NMR (500 MHz, CDCl$_3$): δ = 7.63 (d, 4H, J = 8.0 Hz, Ar), 7.56 (d, 4H, J = 8.0 Hz, Ar), 6.82 (d, 2H, J = 2.0 Hz, NCH), 6.59 (d, 2H, J = 2.0 Hz, NCH), 5.68 (s, 4H, NCH$_2$), 3.90 (s, 6H,
NMe), 3.01 (m, 4H, NH₂CH₂), 2.95 (m, 4H, NH₂), 1.66-1.72 (m, 4H, NCH₂CH₂), 1.4-1.5 (m, 2H, CH₂).

¹³C NMR (500 MHz, CDCl₃): δ = 140.31 (C), 139.46 (C), 130.53 (q, JCF = 32 Hz, C), 129.07 (Ar), 125.78 (q, JCF = 3.6 Hz, Ar), 122.72 (NCH), 119.85 (NCH), 53.80 (NCH₂), 45.22 (NH₂CH₂), 38.32 (NMe), 31.41 (CH₂), 23.46 (CH₂).

N,N’-Bis[trans-diido(1-(4-trifluoromethylbenzyl)-3-methylimidazol-2-ylidene)platinum]-1,7-diaminoheptane (C16c)

Complex C16c was purified by chromatography with a heptane-ethyl acetate gradient. Yield: 37%, pale yellow solid.

¹H NMR (500 MHz, CDCl₃): δ = 7.64 (d, 4H, J = 8.0 Hz, Ar), 7.58 (d, 4H, J = 8.0 Hz, Ar), 6.85 (d, 2H, J = 1.5 Hz, NCH=), 6.61 (d, 2H, J = 1.5 Hz, NCH), 5.70 (s, 4H, NCH₂), 3.92 (s, 6H, NMe), 2.9-3.0 (m, 8H, NH₂CH₂), 1.6-1.7 (br, 4H, NCH₂CH₂), 1.4 (br, 4H, CH₂), 1.2-1.3 (br, 2H, CH₂).

¹³C NMR (500 MHz, CDCl₃): δ = 140.53 (C), 139.49 (C), 130.52 (q, JCF = 32 Hz, C), 129.06 (Ar), 125.77 (Ar), 122.70 (NCH), 119.84 (NCH), 53.79 (NCH₂), 45.39 (NH₂CH₂), 38.30 (NMe), 31.89 (CH₂), 28.62 (CH₂), 23.46 (CH₂).

N,N’-Bis[trans-diido(1-cyclohexylmethyl-3-methylimidazol-2-ylidene)platinum]-4,7,10-trioxytridecane-1,13-diamine (C17)

Complex C17 was purified by chromatography with a heptane-ethyl acetate 70:30 mixture. Yield: 11%, pale yellow solid.

¹H NMR (500 MHz, CDCl₃): δ = 6.77 (d, 2H, J = 2.0 Hz, NCH=), 6.74 (d, 2H, J = 2.0 Hz, NHC=), 4.08 (d, 4H, J = 7.5 Hz, NCH₂CH), 3.86 (s, 6H, NMe), 3.73 (m, 4H, OCH₂), 3.6-3.7 (m, 8H, OCH₂), 3.3 (m, 4H), 3.1-3.2 (m, 4H), 2.45 (m, 2H, NCH₂CH), 1.86 (m, 4H, CH₂), 1.6-1.7 (m, 10H), 1.1-1.3 (m, 6H), 0.95-1.05 (m, 4H).
Experimental part: chapter IV

13C NMR (500 MHz, CDCl$_3$): $\delta = 139.28$ (C), 121.28 (NCH), 121.17 (NCH), 70.57 (OCH$_2$), 70.44 (OCH$_2$), 57.31 (NCH$_2$), 44.65 (NH$_2$CH$_2$), 38.34 (NMe), 37.27 (CH), 31.37 (CH$_2$), 30.80 (CH$_2$), 26.35 (CH$_2$), 25.64 (CH$_2$).

$N,N'\text{-Bis[trans-diiodo(1-cyclohexylmethyl-3-methylimidazol-2-ylidene)platinum]}$-$1,8\text{-naphthalendiamine}$ (C18)

![Chemical structure of C18]

Complex C18 was purified by chromatography with a heptane-ethyl acetate gradient. Yield: 74%, pale yellow solid.

1H NMR (500 MHz, CDCl$_3$): $\delta = 7.80$ (m, 4H), 7.43 (m, 2H), 6.78 (d, 2H, $J = 1.5$ Hz, NCH=), 6.75 (d, 2H, $J = 1.5$ Hz, NCH=), 5.96 (s, 4H, NH$_2$), 4.07 (d, 4H, $J = 7.5$ Hz, NCH$_2$CH), 3.85 (s, 6H, NMe), 2.4 (m, 2H, NCH$_2$CH), 1.6-1.7 (m, 10H, CH$_2$), 1.1-1.2 (m, 6H, CH$_2$), 0.9-1.0 (m, 4H, CH$_2$).

13C NMR (500 MHz, CDCl$_3$): $\delta = 132.99$ (C), 132.87 (C), 131.05 (C), 127.24 (CH), 126.09 (CH), 121.54 (CH), 121.43 (CH), 121.33 (CH), 57.42 (NCH$_2$), 38.61 (NMe), 37.12 (CH), 30.77 (CH$_2$), 26.27 (CH$_2$), 25.60 (CH$_2$).

MS (ESI): m/z: 1412.9 (20%, [M+H]$^+$), 658.1 (100%, C$_{21}$H$_{28}$N$_5$Pt).

$N,N'\text{-Bis[trans-diiodo(1-cyclohexylmethyl-3-methylimidazol-2-ylidene)platinum]}$-$4,4'\text{-}(1,3\text{-phenylenebis(propane-2,2-diyl))dianiline}$ (C19)

![Chemical structure of C19]

Complex C19 was purified by chromatography with a heptane-ethyl acetate 80:20 mixture (Rf = 0.2). Yield: 89%, light brown solid.

1H NMR (500 MHz, CDCl$_3$): $\delta = 7.41$ (d, 4H, $J = 8.0$ Hz, Ar), 7.15 (t, 1H, $J = 8.0$ Hz, Ar), 7.11 (d, 4H, $J = 8.0$ Hz, Ar), 7.10 (s, 1H, Ar), 7.02 (dd, 2H, $J = 8.0$ and 1.5 Hz, Ar), 6.75 (d, 2H, $J = 1.5$ Hz, NCH), 6.72 (d, 2H, $J = 1.5$ Hz, NCH), 5.0 (s, 4H, NH$_2$), 3.98 (d, 4H, $J = 7.5$ Hz,
Experimental part: chapter IV

N\text{CH}_2\text{CH}), 3.81 (s, 6H, NMe), 2.5 (m, 2H, N\text{CH}_2\text{CH}), 1.5-1.6 (m, 10H, \text{CH}_2), 1.62 (s, 12H, Me), 1.1-1.2 (m, 6H, \text{CH}_2), 0.9 (m, 4H, \text{CH}_2).

^{13}\text{C NMR (500 MHz, CDCl}_3\text{)}: \delta = 149.85 (C), 148.09 (C), 137.20 (C), 134.77 (C), 127.59 (Ar), 127.19 (Ar), 125.30 (Ar), 124.28 (Ar), 121.89 (Ar), 121.79 (NCH), 121.03 (NCH), 57.66 (N\text{CH}_2), 42.77 (C), 38.42 (NMe), 37.01 (CH), 30.80 (Me), 30.57 (CH_2), 26.32 (CH_2), 25.53 (CH_2).

\text{HRMS (ESI)}: \text{calc. for } \text{C}_{46}\text{H}_{65}\text{I}_4\text{N}_6\text{Pt}_2\cdot\text{H}: 1599.0745, \text{Found 1599.0796}.
Annexes
Structures cristallographiques

![Crystal Structure](image)

<table>
<thead>
<tr>
<th>Reference</th>
<th>C2a</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCDC number</td>
<td>800935</td>
</tr>
<tr>
<td>Empirical formula</td>
<td>C({33}) H({29}) I N(_3) O(_2) P Pt</td>
</tr>
<tr>
<td>Formula weight</td>
<td>852.55</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>293(2)</td>
</tr>
<tr>
<td>Diffractometer</td>
<td>Nonius-kappaCCD</td>
</tr>
<tr>
<td>Wavelength (Å)</td>
<td>0.7107</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Tetragonal</td>
</tr>
<tr>
<td>Space group</td>
<td>I 4</td>
</tr>
<tr>
<td>Unit cell Dimensions</td>
<td></td>
</tr>
<tr>
<td>a (Å)</td>
<td>30.979(11)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>30.979(11)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>7.465(5)</td>
</tr>
<tr>
<td>α (°)</td>
<td>90</td>
</tr>
<tr>
<td>β (°)</td>
<td>90</td>
</tr>
<tr>
<td>γ (°)</td>
<td>90</td>
</tr>
<tr>
<td>Volume (Å(^3))</td>
<td>7164(6)</td>
</tr>
<tr>
<td>Z, Z°</td>
<td>8,</td>
</tr>
<tr>
<td>Calcd density (Mg/m(^3))</td>
<td>1.581</td>
</tr>
<tr>
<td>Abs. coefficient (mm(^{-1}))</td>
<td>4.853</td>
</tr>
<tr>
<td>F(000)</td>
<td>3280</td>
</tr>
<tr>
<td>Crystal size (mm)</td>
<td>0.36 x 0.06 x 0.06 mm</td>
</tr>
<tr>
<td>Parameter</td>
<td>Value</td>
</tr>
<tr>
<td>---</td>
<td>----------------------------</td>
</tr>
<tr>
<td>q_{range} for data collect$^\circ$ (°)</td>
<td>1.86 to 25.32</td>
</tr>
<tr>
<td>Limiting indices</td>
<td>-25≤h≤26</td>
</tr>
<tr>
<td></td>
<td>0≤k≤37</td>
</tr>
<tr>
<td></td>
<td>-7≤l≤8</td>
</tr>
<tr>
<td>Reflect$^\circ$ collected / unique</td>
<td>26618 / 6380</td>
</tr>
<tr>
<td>R(int)</td>
<td>0.0678</td>
</tr>
<tr>
<td>Completeness to q_{max} (%)</td>
<td>99.7</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical from equivalents</td>
</tr>
<tr>
<td>Max. and min. Transmission</td>
<td>0.747 and 0.650</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F^2</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>6379 / 59 / 370</td>
</tr>
<tr>
<td>Goodness-of-fit on F^2</td>
<td>1.016</td>
</tr>
<tr>
<td>Final R indices</td>
<td>R_1</td>
</tr>
<tr>
<td>[I>2σ(I)]</td>
<td>wR_2</td>
</tr>
<tr>
<td>R indices</td>
<td>R_1</td>
</tr>
<tr>
<td>(all data)</td>
<td>wR_2</td>
</tr>
<tr>
<td>Flack1 parameter</td>
<td>0.000(7)</td>
</tr>
<tr>
<td>Extinction coefficient</td>
<td>-</td>
</tr>
<tr>
<td>Δ_{max} peak and hole (e. Å3)</td>
<td>0.719 and -0.985</td>
</tr>
</tbody>
</table>

![Diagram of molecular structure]
<table>
<thead>
<tr>
<th>reference</th>
<th>C2c</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCDC number Reference</td>
<td>800936</td>
</tr>
<tr>
<td>1109-1124</td>
<td></td>
</tr>
<tr>
<td>Empirical formula</td>
<td>C\textsubscript{36} H\textsubscript{35} I\textsubscript{3} O\textsubscript{2} Pt, C\textsubscript{7} H\textsubscript{8}</td>
</tr>
<tr>
<td>Formula weight</td>
<td>986.76</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>293(2)</td>
</tr>
<tr>
<td>Diffractometer</td>
<td>Nonius-kappaCCD</td>
</tr>
<tr>
<td>Wavelength (Å)</td>
<td>0.7107</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Orthorhombic</td>
</tr>
<tr>
<td>Space group</td>
<td>P 2\textsubscript{1} 2\textsubscript{1} 2\textsubscript{1}</td>
</tr>
<tr>
<td>Unit cell Dimensions</td>
<td>a (Å)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>16.706(2)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>21.682(4)</td>
</tr>
<tr>
<td>a (°)</td>
<td>90</td>
</tr>
<tr>
<td>b (°)</td>
<td>90</td>
</tr>
<tr>
<td>g (°)</td>
<td>90</td>
</tr>
<tr>
<td>Volume (Å3)</td>
<td>4027.9(11)</td>
</tr>
<tr>
<td>Z, Z’</td>
<td>4, 1</td>
</tr>
<tr>
<td>Calcd density (Mg/m3)</td>
<td>1.475</td>
</tr>
<tr>
<td>Abs. coefficient (mm-1)</td>
<td>4.320</td>
</tr>
<tr>
<td>F(000)</td>
<td>1736</td>
</tr>
<tr>
<td>Crystal size (mm)</td>
<td>0.18 x 0.16 x 0.13 mm</td>
</tr>
<tr>
<td>q range for data collectα (°)</td>
<td>1.88 to 25.35</td>
</tr>
<tr>
<td>Limiting indices</td>
<td>-13\textless h\textless 13</td>
</tr>
<tr>
<td>-20\textless k\textless 20</td>
<td></td>
</tr>
<tr>
<td>-26\textless l\textless 26</td>
<td></td>
</tr>
<tr>
<td>Reflectα collected / unique</td>
<td>39840 / 7343</td>
</tr>
<tr>
<td>R(int)</td>
<td>0.0646</td>
</tr>
<tr>
<td>Completeness to qmax (%)</td>
<td>100</td>
</tr>
<tr>
<td>Absorption correction</td>
<td></td>
</tr>
<tr>
<td>Max. and min. Transmission</td>
<td>0.57 and 0.53</td>
</tr>
<tr>
<td>Refinement method</td>
<td>SQUEEZE</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>7343 / 0 / 402</td>
</tr>
<tr>
<td>Goodness-of-fit on F2</td>
<td>1.041</td>
</tr>
<tr>
<td>Final R indices</td>
<td>R1</td>
</tr>
<tr>
<td>[I\textgreater 2\textsigma(I)]</td>
<td>wR2</td>
</tr>
<tr>
<td>R indices</td>
<td>R1</td>
</tr>
<tr>
<td>(all data)</td>
<td>wR2</td>
</tr>
<tr>
<td>Flack(^{1}) parameter</td>
<td>-0.004(6)</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Extinction coefficient</td>
<td>-</td>
</tr>
<tr>
<td>(\Delta_{\text{max}}) peak and hole (e. Å(^3))</td>
<td>0.495 and -0.654</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>reference</th>
<th>C3a</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCDC number</td>
<td>713409</td>
</tr>
<tr>
<td>Reference</td>
<td>Brissy et al (2009)</td>
</tr>
<tr>
<td></td>
<td>Org Lett</td>
</tr>
<tr>
<td></td>
<td>11 2137-2139</td>
</tr>
<tr>
<td>Empirical formula</td>
<td>C({46}) H({40}) I N(_{2}) P Pt</td>
</tr>
<tr>
<td>Formula weight</td>
<td>973.76</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>293(2)</td>
</tr>
<tr>
<td>Diffractometer</td>
<td>Nonius-kappaCCD</td>
</tr>
<tr>
<td>Wavelength (Å)</td>
<td>0.7107</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Orthorhombic</td>
</tr>
<tr>
<td>Space group</td>
<td>P 2(_1) 2(_1) 2(_1)</td>
</tr>
<tr>
<td>Unit cell Dimensions</td>
<td>(a) (Å) 10.608(3)</td>
</tr>
<tr>
<td></td>
<td>(b) (Å) 11.682(3)</td>
</tr>
<tr>
<td></td>
<td>(c) (Å) 31.819(8)</td>
</tr>
<tr>
<td></td>
<td>(a) (°) 90</td>
</tr>
<tr>
<td></td>
<td>(b) (°) 90</td>
</tr>
<tr>
<td></td>
<td>(g) (°) 90</td>
</tr>
<tr>
<td>Volume (Å(^3))</td>
<td>3943.1(18)</td>
</tr>
<tr>
<td>Z, Z(^{\prime})</td>
<td>4, 1</td>
</tr>
<tr>
<td>Calcd density (Mg/m(^3))</td>
<td>1.640</td>
</tr>
<tr>
<td>Abs. coefficient (mm(^{-1}))</td>
<td>4.416</td>
</tr>
<tr>
<td>F(000)</td>
<td>1904</td>
</tr>
<tr>
<td>Crystal size (mm)</td>
<td>0.28 x 0.13 x 0.06</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>(q) range for data collect – (°)</td>
<td>2.16 to 25.34</td>
</tr>
<tr>
<td>Limiting indices</td>
<td></td>
</tr>
<tr>
<td>(-12 \leq h \leq 12)</td>
<td></td>
</tr>
<tr>
<td>(-14 \leq k \leq 14)</td>
<td></td>
</tr>
<tr>
<td>(-38 \leq l \leq 38)</td>
<td></td>
</tr>
<tr>
<td>Reflect (\circ) collected / unique</td>
<td>43549 / 7175</td>
</tr>
<tr>
<td>(R) (int)</td>
<td>0.0687</td>
</tr>
<tr>
<td>Completeness to (q_{\text{max}}) (%)</td>
<td>99.9</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical from equivalents</td>
</tr>
<tr>
<td>Max. and min. Transmission</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.76 and 0.60</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on (F^2)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7172 / 88 / 462</td>
</tr>
<tr>
<td>Goodness-of-fit on (F^2)</td>
<td></td>
</tr>
<tr>
<td>Final (R) indices</td>
<td></td>
</tr>
<tr>
<td>([I>2\sigma(I)])</td>
<td></td>
</tr>
<tr>
<td>(R) indices</td>
<td></td>
</tr>
<tr>
<td>(R1)</td>
<td>0.0430</td>
</tr>
<tr>
<td>(wR2)</td>
<td>0.0842</td>
</tr>
<tr>
<td>(R1)</td>
<td>0.0760</td>
</tr>
<tr>
<td>(wR2)</td>
<td>0.0955</td>
</tr>
<tr>
<td>Flack(^{1}) parameter</td>
<td>-0.010(8)</td>
</tr>
<tr>
<td>Extinction coefficient</td>
<td>-</td>
</tr>
<tr>
<td>(\Delta_{\text{max}}) peak and hole (e. Å(^3))</td>
<td>0.825 and -0.798</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>C6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>Empirical formula</td>
<td>(C_{44}H_{45}I)N(_3)O(_4)P)Pt</td>
</tr>
<tr>
<td>Formula weight</td>
<td>1032.79</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>193(2)</td>
</tr>
<tr>
<td>Diffractometer</td>
<td>Rigaku mm007</td>
</tr>
<tr>
<td>Rapid II</td>
<td></td>
</tr>
<tr>
<td>Wavelength (Å)</td>
<td>1.54187</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Orthorhombic</td>
</tr>
<tr>
<td>--------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Space group</td>
<td>P 2₁ 2₁ 2₁,</td>
</tr>
<tr>
<td>Unit cell Dimensions</td>
<td>(a (\text{Å})) 13.5011(2)</td>
</tr>
<tr>
<td></td>
<td>(b (\text{Å})) 18.1088(3)</td>
</tr>
<tr>
<td></td>
<td>(c (\text{Å})) 23.3450(16)</td>
</tr>
<tr>
<td></td>
<td>(a (^{\circ})) 90</td>
</tr>
<tr>
<td></td>
<td>(b (^{\circ})) 90</td>
</tr>
<tr>
<td></td>
<td>(g (^{\circ})) 90</td>
</tr>
<tr>
<td>Volume (Å³)</td>
<td>5707.6(4)</td>
</tr>
<tr>
<td>Z, Z’</td>
<td>4, 1</td>
</tr>
<tr>
<td>Calcd density (Mg/m³)</td>
<td>1.202</td>
</tr>
<tr>
<td>Abs. coefficient (mm⁻¹)</td>
<td>9.370</td>
</tr>
<tr>
<td>F(000)</td>
<td>2032</td>
</tr>
<tr>
<td>Crystal size (mm)</td>
<td>?</td>
</tr>
<tr>
<td>q range for data collect° (°)</td>
<td>3.09 to 68.23</td>
</tr>
<tr>
<td>Limiting indices</td>
<td>-16≤h≤14,</td>
</tr>
<tr>
<td></td>
<td>-21≤k≤21</td>
</tr>
<tr>
<td></td>
<td>-28≤l≤23</td>
</tr>
<tr>
<td>Reflect° collected / unique</td>
<td>57129 / 10341</td>
</tr>
<tr>
<td>R(int)</td>
<td>0.0746</td>
</tr>
<tr>
<td>Completeness to q max (%)</td>
<td>99.8</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical from equivalents</td>
</tr>
<tr>
<td>Max. and min. Transmission</td>
<td>1.000 and 0.520</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on (F^2)</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>10341 / 0 / 488</td>
</tr>
<tr>
<td>Goodness-of-fit on (F^2)</td>
<td>1.101</td>
</tr>
<tr>
<td>Final R indices</td>
<td>(R1) 0.0552</td>
</tr>
<tr>
<td>(all data)</td>
<td>(wR2) 0.1575</td>
</tr>
<tr>
<td>R indices</td>
<td>(R1) 0.0637</td>
</tr>
<tr>
<td>Flack¹ parameter</td>
<td>0.064(11)</td>
</tr>
<tr>
<td>Extinction coefficient</td>
<td>0.00079(6)</td>
</tr>
<tr>
<td>(\Delta_{\text{max peak and hole (e. Å³)}})</td>
<td>1.296 and -0.662</td>
</tr>
<tr>
<td>reference</td>
<td>C10</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Formula weight</td>
<td>C₃₃ H₇₇ I N₃ O₂ P Pt</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>860.62</td>
</tr>
<tr>
<td>Diffractometer</td>
<td>293(2)</td>
</tr>
<tr>
<td>Wavelength (Å)</td>
<td>Rigaku mm007</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Rapid II</td>
</tr>
<tr>
<td>Space group</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Unit cell Dimensions</td>
<td></td>
</tr>
<tr>
<td>a (Å)</td>
<td>P 2₁</td>
</tr>
<tr>
<td>b (Å)</td>
<td>8.8620(10)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>7.6920(10)</td>
</tr>
<tr>
<td>a (°)</td>
<td>23.695(4)</td>
</tr>
<tr>
<td>b (°)</td>
<td>90</td>
</tr>
<tr>
<td>g (°)</td>
<td>92.820(10)</td>
</tr>
<tr>
<td>Volume (Å³)</td>
<td>90</td>
</tr>
<tr>
<td>Z, Z’</td>
<td>1613.2(4)</td>
</tr>
<tr>
<td>Calcd density (Mg/m³)</td>
<td>2, 1</td>
</tr>
<tr>
<td>Abs. coefficient (mm⁻¹)</td>
<td>1.772</td>
</tr>
<tr>
<td>F(000)</td>
<td>16.377</td>
</tr>
<tr>
<td>Crystal size (mm)</td>
<td>836</td>
</tr>
<tr>
<td>q range for data collect (°)</td>
<td>0.23 x 0.20 x 0.04</td>
</tr>
<tr>
<td>Limiting indices</td>
<td>3.74 to 68.22</td>
</tr>
<tr>
<td>Reflect° collected / unique</td>
<td>-9≤h≤10</td>
</tr>
<tr>
<td>R(int)</td>
<td>-9≤k≤6</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>-28≤l≤23</td>
</tr>
<tr>
<td>R(int)</td>
<td>11497 / 4790</td>
</tr>
<tr>
<td>Completeness to q max (%)</td>
<td>0.0492</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>98.6</td>
</tr>
<tr>
<td>Max. and min. Transmission</td>
<td>Semi-empirical from equivalents</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F^2</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td></td>
</tr>
<tr>
<td>Goodness-of-fit on F^2</td>
<td>4790 / 11 / 373</td>
</tr>
<tr>
<td>Final R indices</td>
<td>R_1 1.140</td>
</tr>
<tr>
<td>$[I>2\sigma(I)]$</td>
<td>wR_2 0.0410</td>
</tr>
<tr>
<td>R indices</td>
<td>R_1 0.0740</td>
</tr>
<tr>
<td>(all data)</td>
<td>wR_2 0.0481</td>
</tr>
<tr>
<td>Flack1 parameter</td>
<td>0.0829</td>
</tr>
<tr>
<td>Extinction coefficient</td>
<td>-0.002(10)</td>
</tr>
<tr>
<td>Δ_{max} peak and hole (e. Å3)</td>
<td>2.160 and -1.064</td>
</tr>
</tbody>
</table>

![Diagram of molecule](image)

<table>
<thead>
<tr>
<th>reference</th>
<th>C8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C${36}$ H${31}$ I N$_3$ O$_2$ P Pt, C H Cl$_3$</td>
</tr>
<tr>
<td>Formula weight</td>
<td>937.91</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>293(2)</td>
</tr>
<tr>
<td>Diffractometer</td>
<td>Nonius-kappaCCD</td>
</tr>
<tr>
<td>Wavelength (Å)</td>
<td>0.7107</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P 1</td>
</tr>
<tr>
<td>Unit cell Dimensions</td>
<td>a (Å) 8.426(2)</td>
</tr>
<tr>
<td></td>
<td>b (Å) 8.703(4)</td>
</tr>
<tr>
<td></td>
<td>c (Å) 12.378(2)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>a ($^\circ$)</td>
<td>99.642(3)</td>
</tr>
<tr>
<td>b ($^\circ$)</td>
<td>93.048(2)</td>
</tr>
<tr>
<td>c ($^\circ$)</td>
<td>110.851(4)</td>
</tr>
<tr>
<td>Volume (\AA^3)</td>
<td>830.0(5)</td>
</tr>
<tr>
<td>Z, Z'</td>
<td>1, 1</td>
</tr>
<tr>
<td>Calcd density (Mg/m3)</td>
<td>1.884</td>
</tr>
<tr>
<td>Abs. coefficient (mm$^{-1}$)</td>
<td>5.501</td>
</tr>
<tr>
<td>$F(000)$</td>
<td>452</td>
</tr>
<tr>
<td>Crystal size (mm)</td>
<td>0.25 x 0.18 x 0.05</td>
</tr>
<tr>
<td>q range for data collect$^\circ$ ($^\circ$)</td>
<td>2.76 to 25.63</td>
</tr>
<tr>
<td>Limiting indices</td>
<td>-10h\leq10</td>
</tr>
<tr>
<td></td>
<td>-10k\leq10</td>
</tr>
<tr>
<td></td>
<td>-14l\leq14</td>
</tr>
<tr>
<td>Reflect$^\circ$ collected / unique</td>
<td>15116 / 5716</td>
</tr>
<tr>
<td>R(int)</td>
<td>0.0481</td>
</tr>
<tr>
<td>Completeness to q_{max} (%)</td>
<td>98.4</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical from equivalents</td>
</tr>
<tr>
<td>Max. and min. Transmission</td>
<td>0.76 and 0.47</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F^2</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>5716 / 3 / 382</td>
</tr>
<tr>
<td>Goodness-of-fit on F^2</td>
<td>1.037</td>
</tr>
<tr>
<td>Final R indices</td>
<td>$R1$ 0.0344</td>
</tr>
<tr>
<td>$[I>2\sigma(I)]$</td>
<td>$wR2$ 0.0862</td>
</tr>
<tr>
<td>R indices</td>
<td>$R1$ 0.0344</td>
</tr>
<tr>
<td>(all data)</td>
<td>$wR2$ 0.0862</td>
</tr>
<tr>
<td>Flack1 parameter</td>
<td>0.032(5)</td>
</tr>
<tr>
<td>Extinction coefficient</td>
<td>-</td>
</tr>
<tr>
<td>Δ_{max} peak and hole (e. \AA^3)</td>
<td>-1.375</td>
</tr>
</tbody>
</table>

![Diagram of a molecular structure](image)

259
<table>
<thead>
<tr>
<th>Reference</th>
<th>P10</th>
</tr>
</thead>
</table>
| **CCDC number Reference** | 800937
353, 1109-1124 |
| **Empirical formula** | C_{26} H_{24} N_{2} O_{5} S |
| **Formula weight** | 476.53 |
| **Temperature (K)** | 293(2) |
| **Diffractometer** | Nonius-kappaCCD |
| **Wavelength (Å)** | 0.7107 |
| **Crystal system** | Monoclinic |
| **Space group** | P 2_{1} |
| **Unit cell Dimensions** |
| a (Å) | 16.621(5) |
| b (Å) | 12.690(4) |
| c (Å) | 12.116(4) |
| a (%) | 109.095(5) |
| b (%) | 2414.9(13) |
| g (%) | 4, 2 |
| **Volume (Å³)** | 1.311 |
| **Z, Z’** | 0.174 |
| **Calcd density (Mg/m³)** | 1000 |
| **Abs. coefficient (mm⁻¹)** | 0.50 x 0.20 x 0.15 |
| **F(000)** | 2.40 to 23.69 |
| **Crystal size (mm)** | -17≤h≤18
-13≤k≤14
-13≤l≤12 |
| **q range for data collect⁹ (°)** | 12123 / 6918 |
| **Limiting indices** | 0.0340 |
| **Reflect⁹ collected / unique** | 93.6 |
| **R(int)** | Semi-empirical from equivalents |
| **Completeness to q max (％)** | 0.975 and 0.872 |
| **Absorption correction** | Full-matrix least-squares on F² |
| **Max. and min. Transmission** | 6918 / 53 / 679 |
| **Refinement method** | 1.024 |
| **Data / restraints / parameters** | 0.0451
0.1018 |
| **Goodness-of-fit on F²** | 0.0731 |
| **Final R indices** |
R1
[wR2] |
| **[I>2σ(I)]** | 0.1179
-0.03(9) |
<table>
<thead>
<tr>
<th>R indices</th>
<th>R1</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>(all data)</td>
<td>wR2</td>
<td>0.141 and -0.279</td>
</tr>
</tbody>
</table>

Flack1 parameter

Extinction coefficient

Δ_{max} peak and hole (e.$\,\AA^3$)

<table>
<thead>
<tr>
<th>Reference</th>
<th>P1</th>
</tr>
</thead>
</table>
| **CCDC number Reference** | 800938
| **Empirical formula** | C$_{19}$ H$_{19}$ N O$_2$ S |
| **Formula weight** | 325.41 |
| **Temperature (K)** | 200(2) |
| **Diffractometer** | Rigaku mm007
Rapid II |
| **Wavelength (Å)** | 1.54187 |
| **Crystal system** | Monoclinic |
| **Space group** | P 2$_1$ |
| **Unit cell Dimensions** | a (Å) 15.5808(15)
b (Å) 7.8120(4)
c (Å) 15.7953(9)
a (°) 118.909(10)
b (°) 1683.0(2)
g (°) 4, 2 |
<p>| Volume (Å3) | 1.284 |
| Z, Z' | 1.776 |</p>
<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcd density (Mg/m³)</td>
<td>688</td>
</tr>
<tr>
<td>Abs. coefficient (mm⁻¹)</td>
<td>0.48 x 0.34 x 0.22</td>
</tr>
<tr>
<td>F(000)</td>
<td>6.53 to 68.18</td>
</tr>
<tr>
<td>Crystal size (mm)</td>
<td>-18≤h≤18</td>
</tr>
<tr>
<td></td>
<td>-5≤k≤9</td>
</tr>
<tr>
<td></td>
<td>-18≤l≤19</td>
</tr>
<tr>
<td>q range for data collect° (°)</td>
<td>17934 / 4906</td>
</tr>
<tr>
<td>Limiting indices</td>
<td>0.0358</td>
</tr>
<tr>
<td>Reflect° collected / unique</td>
<td>98.6</td>
</tr>
<tr>
<td>R(int)</td>
<td>Semi-empirical from equivalents</td>
</tr>
<tr>
<td>Completeness to q_max (%)</td>
<td>1.000 and 0.747</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Max. and min. Transmission</td>
<td>4906 / 1 / 418</td>
</tr>
<tr>
<td>Refinement method</td>
<td>1.116</td>
</tr>
<tr>
<td></td>
<td>0.0347</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>0.0924</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>0.0423</td>
</tr>
<tr>
<td>Final R indices</td>
<td>R1</td>
</tr>
<tr>
<td></td>
<td>0.1140</td>
</tr>
<tr>
<td>[I>2s(I)]</td>
<td>wR2</td>
</tr>
<tr>
<td></td>
<td>0.02(2)</td>
</tr>
<tr>
<td>R indices</td>
<td>R1</td>
</tr>
<tr>
<td></td>
<td>0.0022(3)</td>
</tr>
<tr>
<td>(all data)</td>
<td>wR2</td>
</tr>
<tr>
<td></td>
<td>0.320 and -0.429</td>
</tr>
<tr>
<td>Flack¹ parameter</td>
<td></td>
</tr>
<tr>
<td>Extinction coefficient</td>
<td></td>
</tr>
<tr>
<td>Δmax peak and hole (e. Å³)</td>
<td></td>
</tr>
</tbody>
</table>

![Diagram of a molecule](image_url)
<table>
<thead>
<tr>
<th>Reference</th>
<th>P13</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCDC number Reference</td>
<td>800939</td>
</tr>
<tr>
<td>Empirical formula</td>
<td>C_{22} H_{23} N O_{3} S</td>
</tr>
<tr>
<td>Formula weight</td>
<td>381.47</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>293(2)</td>
</tr>
<tr>
<td>Diffractometer</td>
<td>Rigaku mm007 Rapid II</td>
</tr>
<tr>
<td>Wavelength (Å)</td>
<td>1.54187</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P 2_{1}</td>
</tr>
<tr>
<td>Unit cell Dimensions</td>
<td></td>
</tr>
<tr>
<td>(a) (Å)</td>
<td>10.4318(6)</td>
</tr>
<tr>
<td>(b) (Å)</td>
<td>8.2032(4)</td>
</tr>
<tr>
<td>(c) (Å)</td>
<td>11.5928(8)</td>
</tr>
<tr>
<td>(a) (°)</td>
<td>92.266(7)</td>
</tr>
<tr>
<td>(b) (°)</td>
<td>991.27(10)</td>
</tr>
<tr>
<td>(g) (°)</td>
<td>2, 1</td>
</tr>
<tr>
<td>Volume (Å³)</td>
<td>1.278</td>
</tr>
<tr>
<td>(Z, Z')</td>
<td>1.624</td>
</tr>
<tr>
<td>Calcd density (Mg/m³)</td>
<td>404</td>
</tr>
<tr>
<td>Abs. coefficient (mm⁻¹)</td>
<td>0.60 x 0.24 x 0.12</td>
</tr>
<tr>
<td>F(000)</td>
<td>6.61 to 68.20</td>
</tr>
<tr>
<td>Crystal size (mm)</td>
<td>-12\leq h \leq 11</td>
</tr>
<tr>
<td></td>
<td>-9\leq k \leq 9</td>
</tr>
<tr>
<td></td>
<td>-11\leq l \leq 13</td>
</tr>
<tr>
<td>q_range for data collect° (°)</td>
<td>5516 / 2936</td>
</tr>
<tr>
<td>Limiting indices</td>
<td>0.0277</td>
</tr>
<tr>
<td>Reflect° collected / unique</td>
<td>96.5</td>
</tr>
<tr>
<td>R(int)</td>
<td>Semi-empirical from equivalents</td>
</tr>
<tr>
<td>Completeness to (q_{max}) (%)</td>
<td>1.000 and 0.753</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Full-matrix least-squares on (F^2)</td>
</tr>
<tr>
<td>Max. and min. Transmission</td>
<td>2936 / 5 / 256</td>
</tr>
<tr>
<td>Refinement method</td>
<td>1.101</td>
</tr>
<tr>
<td></td>
<td>0.0442</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>0.1068</td>
</tr>
<tr>
<td>Goodness-of-fit on (F^2)</td>
<td>0.0666</td>
</tr>
<tr>
<td>Final R indices</td>
<td>R1</td>
</tr>
<tr>
<td>--------------------</td>
<td>----</td>
</tr>
<tr>
<td>[I>2s(I)]</td>
<td>wR2</td>
</tr>
<tr>
<td>R indices</td>
<td>R1</td>
</tr>
<tr>
<td>(all data)</td>
<td>wR2</td>
</tr>
<tr>
<td>Flack(^1) parameter</td>
<td></td>
</tr>
<tr>
<td>Extinction coefficient</td>
<td></td>
</tr>
<tr>
<td>(\Delta_{\text{max}}) peak and hole (e. Å(^3))</td>
<td></td>
</tr>
</tbody>
</table>

![Chemical structure diagram](image)

<table>
<thead>
<tr>
<th>Reference</th>
<th>P11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C({21}) H({21}) N O(_2) S</td>
</tr>
<tr>
<td>Formula weight</td>
<td>351.45</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>200(2)</td>
</tr>
<tr>
<td>Diffractometer</td>
<td>Rigaku mm007 Rapid II</td>
</tr>
<tr>
<td>Wavelength (Å)</td>
<td>1.54187</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>C 2/c</td>
</tr>
<tr>
<td>Unit cell Dimensions</td>
<td></td>
</tr>
<tr>
<td>a (Å)</td>
<td>33.7725(8)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>7.8978(2)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>14.5832(10)</td>
</tr>
<tr>
<td>a (°)</td>
<td>111.004(8)</td>
</tr>
<tr>
<td>b (°)</td>
<td>3631.3(3)</td>
</tr>
<tr>
<td>g (°)</td>
<td>8, 2</td>
</tr>
<tr>
<td>Volume (Å(^3))</td>
<td>1.286</td>
</tr>
<tr>
<td>Z, Z’</td>
<td>1.686</td>
</tr>
<tr>
<td>Calcd density (Mg/m(^3))</td>
<td>1488</td>
</tr>
<tr>
<td>Abs. coefficient (mm(^{-1}))</td>
<td>0.60 x 0.40 x 0.26</td>
</tr>
<tr>
<td>F(000)</td>
<td>6.87 to 72.12</td>
</tr>
<tr>
<td>Crystal size (mm)</td>
<td>-39≤h≤40</td>
</tr>
<tr>
<td></td>
<td>-9≤k≤7</td>
</tr>
<tr>
<td></td>
<td>-17≤l≤17</td>
</tr>
<tr>
<td>q range for data collect(^8) (°)</td>
<td>18746 / 3525</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Limiting indices</td>
<td>0.0668</td>
</tr>
<tr>
<td>Reflect° collected / unique</td>
<td>98.4</td>
</tr>
<tr>
<td>R(int)</td>
<td>Semi-empirical from equivalents</td>
</tr>
<tr>
<td>Completeness to q_max (%)</td>
<td>Full-matrix least-squares on F^2</td>
</tr>
<tr>
<td>Max. and min. Transmission</td>
<td>3525 / 0 / 227</td>
</tr>
<tr>
<td>Refinement method</td>
<td>1.191</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>0.0476</td>
</tr>
<tr>
<td>Goodness-of-fit on R^2</td>
<td>0.1324</td>
</tr>
<tr>
<td>Final R indices</td>
<td>0.0556</td>
</tr>
<tr>
<td>[I>2s(I)]</td>
<td>-</td>
</tr>
<tr>
<td>R indices</td>
<td>R1</td>
</tr>
<tr>
<td>(all data)</td>
<td>wR2</td>
</tr>
<tr>
<td>R indices</td>
<td>-</td>
</tr>
<tr>
<td>Flack1 parameter</td>
<td>0.285 and -0.525</td>
</tr>
<tr>
<td>Extinction coefficient</td>
<td></td>
</tr>
<tr>
<td>Δ_{max} peak and hole (e. Å3)</td>
<td></td>
</tr>
</tbody>
</table>

![Diagram of the molecule](image)

<table>
<thead>
<tr>
<th>Reference</th>
<th>(R,S,R)-83</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>CCDC number Reference</th>
<th>831795</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Empirical formula</th>
<th>C${23}$ H${26}$ O$_4$</th>
</tr>
</thead>
</table>

265
Formula weight	366.44
Temperature (K)	200(2) K
Diffractometer	Rigaku mm007 Rapid II
Wavelength (Å)	1.54187
Crystal system	Monoclinic,
Space group	P 2_1
Unit cell Dimensions	
a (Å)	6.1980(5)
b (Å)	7.5321(5)
c (Å)	21.7541(16)
a (°)	92.721(6)
b (°)	1014.42(13)
g (°)	2, 1
Volume (Å³)	1.200
Z, Z’	0.651
Calcd density (Mg/m³)	392
Abs. coefficient (mm⁻¹)	0.58 x 0.24 x 0.20
F(000)	7.15 to 68.96
Crystal size (mm)	-5≤h≤7
	-5≤k≤9
	-26≤l≤25
q range for data collect° (°)	4220 / 1952
Limiting indices	0.0654
Reflect° collected / unique	95.5
R(int)	Semi-empirical from equivalents
Completeness to q max (%)	1.000 and 0.656
Absorption correction	Full-matrix least-squares on F^2
Max. and min. Transmission	1952 / 1 / 249
Refinement method	0.967
	0.0682
Data / restraints / parameters	0.1386
Goodness-of-fit on F^2	0.0982
Final R indices	R1 0.1562
	[I>2s(I)] wR2 0.0095(16)
R indices	R1 -
(all data)	wR2 0.238 and -0.295
Flack² parameter	
Extinction coefficient	
Δmax peak and hole (e. Å³)	
Enantioselective, transition metal catalyzed cycloisomerizations

Angela Marinetti,* Hélène Jullien and Arnaud Voituriez

Received 20th January 2012
DOI: 10.1039/c2cs35020c

This review illustrates enantioselective transition-metal promoted skeletal rearrangements of polyunsaturated substrates possessing olefin, alkyne or allene functions. These processes are classified according to the number of carbon atoms involved in the cyclization, from (1C+1C) to (2C+2C+2C) or (2C+5C) cyclizations. Thus, for instance, (1C+1C) processes are typified notably by Alder-ene type reactions taking place mainly under palladium and rhodium catalysis, in the presence of chiral phosphorus ligands. Also, rhodium, platinum, and gold promoted insertions of unsaturated carbon–carbon bonds into C–H bonds belong to this class. For each class of reactions or substrate type the best ligand–metal pairs are highlighted. Unfortunately, unlike other transition metal promoted reactions, the mechanisms of chiral induction and stereochmical pathways have not been established so far in any of these reactions. In only a few instances, qualitative heuristic models have been tentatively proposed. Although the available stereochmical information is systematically given here, the paper focuses mainly on synthetic aspects of enantioselective cycloisomerizations.

Introduction

The subject of this review are transition metal catalysed cycloisomerizations of enynes, dienes, allenynes and analogous unsaturated substrates. Cycloisomerizations are intended as rearrangements of polyunsaturated substrates by which C–C bonds are formed and at least one degree of unsaturation is consumed to make a cyclic product and no formal loss or gain of any atom takes place. Such rearrangements have been demonstrated to provide atom-economic, efficient approaches to cyclic or bicyclic compounds from readily available starting materials.

Most notably, transition metal catalysis enables inactivated polyunsaturated substrates to participate in C–C bond forming reactions usually under mild conditions. Many recent reviews have been devoted to cycloisomerizations and definitely demonstrate their wide synthetic potential, as well as their versatility which results from a variety of mechanistic pathways.1–11

This paper will focus specifically on enantioselective reactions of this class, by highlighting the most successful catalytic systems known to date. With respect to the myriad of synthetic and theoretical studies and reviews devoted to catalytic cycloisomerization, comparatively few examples of asymmetric reactions have been reported to date. With the only exception of a book chapter from our group focused on enyne cycloisomerizations,12 enantioselective cycloisomerizations have not been specifically reviewed since 2004,13 although they

Angela Marinetti received a Laurea degree in Chemistry from the University of Torino (Italy) in 1979 and a PhD degree in 1984 from Paris VI University (France), under the supervision of Professor F. Mathey. She is currently Directeur de Recherche at the CNRS. Her research interest focuses on phosphorus chemistry, organo- and organometallic enantioselective catalysis.

Hélène Jullien received her master degree in organic chemistry in 2009 from the Paris XI University (Orsay, France). She started then her PhD training under the supervision of Dr Angela Marinetti, at the Institut de Chimie des Substances Naturelles (CNRS, Gif-sur-Yvette, France). Her doctoral work focuses on the development of chiral platinum complexes for enantioselective enyne cycloisomerizations.
are occasionally mentioned in more general reviews. This account is intended therefore to fill this gap by providing a concise overview of the field. Metal promoted rearrangements involving C=C bond formation from unsaturated substrates, but also concomitant C-heteroatom bond formation are outside its scope. Also, we do not intend to focus on mechanistic issues, since they have been discussed extensively in most reviews dealing with cycloisomerization reactions, and specialized accounts have appeared recently.

Cycloisomerization reactions are classified hereafter as a function of the number of atoms that are directly involved in the formation of the cyclic unit. The \((nC+nC) \) convention is used to designate the number of atoms involved in each process.

\section*{(1C + 1C) Cyclizations}

This first section will summarize enantioselective rearrangements of polyunsaturated substrates in which a cyclic unit is created by formation of only one C-C bond. From a historical perspective, reactions of this class, namely the so-called “Alder-ene” type cyclizations disclosed in the nineties by Trost and Zhang, are the first known enantioselective cycloisomerization reactions.

Alder-ene type cyclizations of enynes

The term “Alder-ene type cyclizations” usually indicates cycloisomerization processes where a 1,6- or 1,7-enzyme or diene displaying an allylic hydrogen atom rearranges into a vinyl-substituted cyclic moiety under transition metal catalysis, as shown in Scheme 1. The development of appropriate catalytic systems has been reported initially by Trost who first noticed the process during investigations on palladium catalysis.

Alder-ene type reactions generate a tetrahedral stereogenic centre from the olefinic sp\(^2\) carbon of enynes, and two contiguous stereogenic centres from diene substrates. Asymmetric variants of these reactions allow the stereochemical control of such intracyclic carbon centres, by taking advantage of mainly palladium and rhodium complexes suitably modified by chiral ligands.

Also, related rearrangements have been reported that involve formal migration of a leaving group, typically a halogen or an acetate group, instead of hydrogen. In this series, asymmetric variants have been carried out mainly under palladium catalysis.

\section*{Palladium catalysts}

The very first examples of asymmetric induction in cycloisomerization reactions of this class have been reported in the late eighties. A catalyst obtained by combining \(\text{Pd}_2(\text{dba})_3 \cdot \text{CHCl}_3 \), triphenylphosphine and (S)-binaphthoic acid as the chiral additive promoted the rearrangement of a 1,6-enzyme into the corresponding Alder-ene type product in 33\% enantiomeric excess (Scheme 2a). Although moderate, the enantioselectivity level demonstrated the feasibility of enantioselective variants and opened the way to further improvements that have been operated then by means of chiral phosphorus ligands.

Thus, first the Trost group made use of a chiral bidentate phosphine\(^{27}\) to convert the 1,7-enzyme shown in Scheme 2b into the corresponding methylene-cyclohexene in a moderate 42\% ee.

Then, the first examples of highly enantioselective ene-type cyclizations under palladium catalysis could be implemented by Ito in 1996, with a catalyst generated from \(\text{Pd}_2(\text{dba})_3 \cdot \text{CHCl}_3 \) and the trans-coordinating ligand TRAP (2,2’-bis-\([1-\text{(diarylphosphino)ethyl}]-1,1’-\text{biferrocene} \) (Scheme 3). Enynes bearing sulfonamide functions in the tethering chains were converted into mixtures of the regioisomeric 1,4- and 1,3-dienes A and B, with moderate to good regioselectivities (A : B ratios from 3 : 1 to > 98 : 2) and enantiomeric excesses peaking at 95\% ee, for \(R = \text{CH}_3 \text{SiMe}_3 \). Unfortunately this highly enantioselective cycloisomerization took place with low...
regioselectivity and this might explain why the scope of the reaction was not expanded further.

More extended studies on palladium-promoted Alder-ene type reactions focused then on catalysts made from palladium(II) and atropisomeric phosphorus ligands. Preferred substrates were 1,6-enynes bearing either sulfonamide or ether functions in the tethering chains, while carbon tethers have been seldom considered.

Thus, Mikami et al. designed some of the so far most successful auxiliaries, i.e. tol-BINAP, H$_8$-Xyl-BINAP, Segphos29 and a series of atropisomeric phosphine-oxazolines (Scheme 4).30,31 Segphos and modified BINAP derivatives achieved quantitative yields and virtually complete enantioselectivity in the cycloisomerization of the oxygen tethered enyne as shown in Scheme 4, but the scope of these catalysts could not be expanded to other substrates. On the other hand, the phosphine-oxazoline ligands based on a chiral binaphthyl scaffold shown in Scheme 430,31 proved to be equally efficient in the cycloisomerizations of both ether, tosylamide and carbon tethered enynes of the same class. In order to design optimal catalysts, comparative studies have been conducted on this series of phosphine-oxazolines containing chiral (R1 or R2 = H or Bu) and achiral oxazoline units (R1 = R2 = H or Me). This demonstrated that the stereogenic center of the oxazoline does not play any significant role in stereochemical control, which is mainly induced by the atropisomorphic binaphthyl moiety. However, catalytic tests as well as X-ray analysis of the corresponding PdCl$_2$ complexes suggested that steric hindrance at the C4 oxazoline carbon was essential. Therefore, the simplified ligand displaying an achiral gem-dimethyl substituted oxazoline ring (R1 = R2 = Me) could be developed.

In these cyclizations, (S_{ax})-configured phosphine-oxazolines afforded (S)-configured cyclized products in 88–93% ee. A tentative rational for the sense of chiral induction has been proposed, based on ONIOM calculations. Having demonstrated that the catalytic cycle goes through palladium hydrides and involves alkyne insertions in the Pd–H bond, the favoured transition state for the C–C bond forming step is assumed to be as shown in Scheme 5. It involves σ-coordination of the olefinic function trans-to-P and a trans-to-N coordination of the σ-vinyl ligand. Steric repulsion between the methyl substituent of the olefin and the oxazoline is expected to drive this methyl group to the upper-right quadrant. From this arrangement, the carbopalladation step will produce the observed (S)-configured cyclopentane ring.

The same palladium/phosphine-oxazoline catalysts also displayed high efficiency in the enantioselective cycloisomerization of the allyl propargyl ethers and sulfonamides shown in Scheme 6, where the alkene function is embedded into a cyclic unit.30,32 The reactions produced the expected spirocyclic derivatives A, together with the isomeric spirocycles B, which result from olefin migration under palladium catalysis. The product selectivity markedly depends on the ring size of the cyclic olefin: starting from cyclopentene derivatives ($n = 1$)
and 15-membered olefins \((n = 11)\) the corresponding spiro-
cyclic compounds \(A\) were obtained as the major products
\((A/B\) ratios \(> 9 : 1)\), while cycloheptene \((n = 3)\) and
cyclo-octene \((n = 4)\) derivatives are converted mainly into the
isomerized products \(B\), with moderate selectivity. Compounds
\(A\) were obtained in uniformly high enantiomeric excesses
\((84–95\% ee)\), irrespective of the ring size. On the other hand,
the enantiomeric excesses of \(B\) proved to be markedly dependent
on the ring size, with about 35\% ees for six-membered rings
and 80–95\% ees for seven or eight-membered rings.

Unlike the 1,6-enynes above, 1,7-enynes proved to be
challenging substrates for enantioselective ene-type cyclizations,
likely due to the increased difficulty of forming six-atom rings,
as compared to five-atom rings. Under palladium catalysis,
the only suitable substrates proved to be enynes with ortho-
substituted benzene scaffolds and a tosylamide function in
the tethering chain.33 A representative example is shown in
Scheme 7. A BINAP based catalyst allowed the quantitative
conversion of these 1,7-enynes displaying dihydropyran units,
into spiro-quinolines, with almost perfect stereochemical control
of the quaternary stereogenic center at the ring junction.

In the same work, related enynes displaying either acyclic
olefins or five- to fifteen-membered cyclic olefin moieties have
been subjected to cycloisomerization. These reactions afforded
the desired spirocyclic derivatives in very high enantiomeric excesses
when starting from either acyclic or 15-membered
cyclic olefins (99\% and 86\% ees respectively), while the enantio-
selectivity levels decreased significantly when five- or six-
membered cyclic olefins were used (71\% and 44\% ee respectively).
In these last instances, migration of the olefin function is assumed
to induce partial racemization of the final product.

In summary, the few selected examples above typify the use
of chiral palladium complexes in ene-type cyclizations and
suggest that these catalysts mainly apply to 1,6-enynes dis-
playing heteroatom (N or O) containing linkers, terminal ester
functionalized alkene units, as well as both cyclic and
acyclic olefinic moieties.

A related class of rearrangements are \((1C+1C)\) cyclizations of
enynes involving formal 1,8-migration of a leaving group
other than hydrogen.34 (On a mechanistic point of view, these
may be stepwise reactions involving addition of external
nucleophiles rather than intramolecular transfer of the leaving
groups.) Enantioselective variants have been applied mainly to
the synthesis of lactone and lactame derivatives under Pd(II)
catalysis. Here, the reactions either do not occur or their rates
decrease dramatically in the presence of phosphine ligands
and, therefore, chiral nitrogen based ligands have been used
instead. Thus, for the cyclization of enynes involving formal
1,8-acetate shifts, the use of chiral pyridine-oxazolines and bis-
oxazolines, combined with palladium acetate, allowed good
asymmetric protocols to be established (Scheme 8).35–37

Enynes displaying ester functions in the tethering chain
\((X = O)\) were converted into \(\gamma\)-butyrolactones with enantio-
selectivity levels up to 92\%.35 By the same procedure enynes
with amides tethering chains \((X = NTs)\) were converted
into the corresponding \(\gamma\)-butyrolactames in only moderate
enantiomeric excesses (up to 65\% ee).38

The method has been applied to the total synthesis of
naturally occurring lactones and lactames, i.e. \((3S)\)-A-factor35
and \((-\) - isocynometrine38 respectively.

Rhodium catalysts. Suitable alternatives to palladium
catalysts for ene-type cyclizations are afforded by rhodium
complexes modified by chiral phosphorus ligands. Effective
rhodium catalysts for Alder-ene cyclizations of 1,6-enynes
with disubstituted \((Z)\)-configured double bonds have been
reported in 2000 by Zhang et al.,39 who also simultaneously
introduced asymmetric variants (Scheme 9).40 The best chiral
pre-catalysts were found to be the \([\text{Rh}(\text{diphosphine})\text{Cl}]_2\)
complexes, with DuPhos and BICP as the diphosphines. The
catalytically active species were generated by addition of a
silver salt such as AgSbF$_6$.40 Selected 1,6-enynes with ether or sulfonamide functions underwent highly enantioselective cycloisomerizations (ees up to 98%), however the reactions proved to be highly substrate-dependent and, therefore, systematic screening and tuning of the ligands was required for each substrate. For instance, for reactions in Scheme 9, the use of Me-DuPhos proved to be convenient for the cycloisomerization of aryl substituted alkynes, while the use of BICP was found to be optimal for alkyl-substituted alkynes.

In these studies Zhang also demonstrated that, depending on the ligand, the choice of the rhodium precursor may be crucial to get satisfying catalytic activity. Most notably and somehow unexpectedly, preformed BINAP–rhodium complexes proved to be inactive, while catalysts formed in situ from [Rh(cod)Cl]$_2$, BINAP or analogous biaryl diphosphines (MeOBIPHEP, Tunaphos) and AgSbF$_6$ displayed excellent catalytic activity.41 These improved catalytic systems became the most widely used. They achieved impressively high enantioselectivity (ee > 99%) starting from simple enynes as well as from enynes with functional groups on either the alkyne or the allylic terminus, as illustrated by the representative examples in Scheme 10(a).41–45 The method also enabled an enantioselective access to α-alkylidene lactames,46 lactones47 and cyclopentanone derivatives48 by cycloisomerization of 1,6-enynes with amide, ester and keto functions in the tethering chains, respectively (Scheme 10(b)). Comparison of the optical rotation values with that of known compounds showed that (R)-configured BINAP affords (R)-configured lactone and lactame derivatives.

More recently, the use of rhodium–BINAP catalysts in Alder-ene type cyclizations has been extended to 1,7-enynes displaying trisubstituted olefin functions.49 Zhang’s procedure does not always apply however to the cycloisomerization of enynes with terminal alkyne functions. For this class of substrates, Nicolaou et al. demonstrated50,51 that optimized conditions involve the use of a preformed Rh(BINAP)$^+$SbF$_6^-$ catalyst, obtained from [Rh(BINAP)(nbd)]SbF$_6$ under a stream of hydrogen gas.52,53 Thus, it appears that even subtle changes of the phosphine–rhodium complex used as the pre-catalyst may totally change the outcome and selectivity of these cycloisomerizations. The new catalyst performed well with substrates containing a range of structural motifs linking the two unsaturated functions, namely 1,1-diesters and sulfones, amides, sulfonamides, ether linkages and others. Preferred substrates were enynes with hydroxyl functions at the allylic position, since they generate potentially reactive aldehyde functionalities in the final products (Scheme 11).

With the rhodium–BINAP catalysts above, only disubstituted olefins with (Z)-configuration of the double bond are cycloisomerized. Trans-olefins do not react.54 In spite of this limitation, these Rh–BINAP promoted reactions represent extremely versatile and useful methods to produce tetrahydrofurans, pyrrolines, cyclopentanes, lactones, lactones and cyclopentanones in almost enantiomerically pure form. Their synthetic potential has been demonstrated notably by their applications to formal and total synthesis of biologically active compounds. Relevant examples are the formal synthesis of (±)-pilocarpine, a leading pharmaceutical in the treatment of glaucoma,47 as well as the synthesis of dihydrojasmonate48 and 15-deoxy-$\Delta^{12,14}$-prostaglandin J$_2$ (Scheme 12).55 Also, 3,4,5-trisubstituted lactones, that constitute building units of many polyketide metabolites such as (±)-blastmycinone, have been prepared in this way. The stereoselective synthesis of (±)-blastmycinone requires kinetic resolution of an enyne
displaying a methyl substituent at the allylic position (Scheme 12) and subsequent diastereoselective cyclization. In this case, the (R)-configured BINAP matches the (S)-reactant and affords the (2S,3R)-trans-lactone as the only product, in >99% ee, for a 47% yield.56,57

Most notably, the Alder-ene cycloisomerization of 1,6-enynes was applied by Nicolaou to the synthesis of the polycyclic core of platensimycin, a natural antibiotic with promising antibacterial properties against drug resistant bacteria. Starting from a 1,6-enyne with a cyclohexadienone scaffold, the reaction produced the desired spirodienone structure in excellent enantiomeric excess (ee > 99%, Scheme 13). This key step allowed then the asymmetric total synthesis of platensimycin to be achieved.51,58

The remarkable synthetic usefulness and enantioselectivity levels attained by the Rh–BINAP catalysts have motivated the recent development of supported, reusable catalysts of this family. To this end, a rhodium catalyst has been synthesized by alternating, ring opening co-polymerization between cyclooctene and a (R)-5,5′-dinorimido-BINAP rhodium complex (Scheme 14). The resulting polymer displayed excellent catalytic properties in model Alder-ene cycloisomerizations. The immobilized catalyst was reused up to seven times, with catalyst loadings of 1 mol% for each run. It provided total turnover numbers up to 890, and proved to be at least as selective as the parent homogeneous catalyst (e.e.s 95–99%).59

As a complement to these studies on BINAP-rhodium complexes, Mikami considered Alder-ene type processes as model reactions to demonstrate the concept of “asymmetric activation of chirally flexible (tropos) ligands”, by which atropoisomeric, configurationally unstable ligands can be converted into chiral catalysts by association with chiral activators.60–62

We already mentioned above that the rhodium–BINAP catalysts apply to the cycloisomerization of disubstituted (Z)-configured olefins only. Regarding trisubstituted olefins, Alder-ene type cyclizations could be carried out by using Skewphos as the chiral ligand in rhodium complexes. The catalyst introduced by Mikami et al. is the dicationic dimeric [[(S,S)-Skewphos]Rh]_2(SbF_6)_2 complex shown in Scheme 15. Complexes of this class being usually unstable and difficult to isolate, the catalyst was formed in situ from [(Skewphos)Rh(nbd)]SbF_6 by hydrogenation of the norbornadiene ligand and used directly.

This catalyst efficiently promoted Alder-ene type cyclizations of 1,6-enynes displaying trisubstituted double bonds and either ether or amide functions in the tethering chain. These reactions afforded the expected dihydrofurans and pyrrolines A with high levels of enantioselectivity (>90% ee, Scheme 15). Only minor amounts of the isomerized endo-olefin products B were occasionally isolated. The same catalyst has been applied also to the synthesis of spirocyclic ethers and tosylamides from 1,6-enynes where the olefin functions are embedded in 6- and 8-membered rings (91–94% and 88% ee, respectively, see Scheme 6 for analogous reactions).

In the reactions above Skewphos performs better than BINAP in terms of enantioselectivity levels, even though their chelated complexes adopt both λ and δ-conformations, due to the flexibility of the alkyl chain.

Gold catalysts. The gold complexes (R)-BINAP(AuCl)_2 and [(R)-MOP]AuCl have been investigated as catalysts for the Alder-ene cycloisomerization of a N-tethered 1,6-enyne. The catalytic activity was excellent but the ees were disappointingly low (22% ee).64

Hydro双赢ations, hydroarylations and other (1C+1C) cyclizations

In this section we will present mainly enantioselective cyclization reactions in which a single C–C bond is formed via formal insertion of an unsaturated unit into an olefinic or aromatic C–H bond.65 These transformations may proceed via C–H
activation steps,66 with the additional aim of exerting effective stereochemical control in the subsequent C–C bond formation.

Hydrovinylations. The intramolecular hydrovinylation of dienes, i.e. the formal insertion of one olefin into the C–H bond of a second olefin, is known to be promoted by a variety of transition metal derivatives including rhodium,67,68 ruthenium,69 titanium70 and nickel complexes.71 Pioneering studies on enantioselective variants were disclosed in 1979 by Bogdanović who demonstrated that a nickel methylphosphine complex catalyses the asymmetric cyclisations of either 1,6-heptadiene or diallylether in albeit low enantiomeric selectivity levels attained promising values, with ees of about 60%, however conversions and regioselectivity were too low to be synthetically useful.

The first successful examples of enantioselective alkene hydrovinylations have been reported then by Murai et al. in 1997.73 A chiral rhodium catalyst was generated from [RhCl(cyclooctene)]₂ and the ferrocenic monodentate phosphine (R,S)-PPFOMe as shown in Scheme 16. This catalyst converted 1,5-dienes bearing heterocyclic substituents (pyridyl or imidazolyl) on the olefinic unit, into alkyldienecyclopentanes, in moderate to good enantiomeric excesses (ees up to 82%).

Later, diallylmalonates and diallyltosylamide became the most common, model substrates for asymmetric reactions (Scheme 17). Enantioselective exo-cyclisations of these substrates have been attempted initially by using palladium catalysts generated in situ from (MeCN)₂PdCl₂, AgBF₄ and either (–)-sparteine or a chiral bis-oxazoline. The enantioselectivity levels attained promising values, with ees of about 60%, however conversions and regioselectivity were too low to be synthetically useful.74 A significantly improved catalytic system could be developed then by Leitner et al., based on nickel complexes modified by chiral phosphorus ligands.

The cationic nickel complexes made from Wilke’s azaphospholene shown in Scheme 17 and [Ni(allyl)cod][BARF] (BARF = B[3,5-(CF₃)₂-C₆H₄]₄) afforded the most active and stereoselective catalysts for the cycloisomerization of symmetrical 1,6-dienes with all-carbon tethers.75,76 The benchmark substrate, dimethyl diallylmalonate, was converted to the desired cyclopentane selectively (97% product selectivity), with high turnover frequency (TOF = 182 h⁻¹) and an enantiomeric excess of 67%.77 Higher ees could be achieved for instance in the cyclization of tert-butyl diallylmalonate (X = C(CO₂Bu)₂ in Scheme 17, 88% ee) or the corresponding diol (X = C(CH₃OH)₂, 91% ee). The same azaphospholene ligand as well as the phosphoramidite Quinaphos have been used also for the cycloisomerization of diallyltosylamide, but the enantioselectivity levels were only moderate (33–54% ee, depending on the pre-catalyst used).78

Overall, although significant ees have been attained in some cases, the scope of the enantioselective intramolecular hydrovinylations of dienes remains rather restricted.

Enantioselective intramolecular hydrovinylations of allenes have been reported by Gagne to take place under gold catalysis. These reactions have been applied to the synthesis of six-membered rings as shown in Scheme 18.79 Preferred pre-catalysts for these reactions are bimetallic gold(±) complexes of atropisomeric diphosphines and especially the (R)-(3,5-Xyl-Binap)(AuCl₂) complex which afforded moderate to good enantiomeric excesses (6 examples, 45–72% ee). The bimetallic complex must be activated by addition of an excess of AgOTf. However, the actual nature of the catalytically active species has been questioned, since the (R)-(3,5-Xyl-Binap)(AuOTf) complex itself does not catalyse the cycloisomerization. Also, suspecting a role of silver(±) in the process, mixtures of this gold-triflate and silver sulfs have been tested, but they did not afford the same results as the catalyst generated in situ.80 So, in the end, the actual catalytically active species has not been identified so far.

The third class of intramolecular hydrovinylations involves alkynes as the cyclization partners. Although these reactions generate sp²–sp² C–C bonds, they could be adapted to asymmetric processes by targeting final products with axial chirality. Thus, the hydrovinylation of alkynes under transition metal catalysis has been applied by Tanaka et al. to the synthesis of...
atropisomeric 4-aryl-2-pyridone derivatives (Scheme 19). The starting materials were acyclic arylethynyl-amides with a vinyl moiety on nitrogen. They were converted into the corresponding axially chiral 2-pyridones in the presence of \(\pi \)-electrophilic chiral gold(I), silver(I), rhodium(I) and palladium(II) complexes of atropisomeric diphosphines. Cationic palladium(II)/(R)-Xyl-Segphos complexes provided the highest yields and enantiomeric excesses and were applied therefore to the synthesis of a wide range of axially chiral pyridones. Examples of suitable substrates include alkynes with naphthyl substituents, as shown in Scheme 19, but also \textit{ortho}-disubstituted phenyl, tetrahydro-naphthyl and benzodioxolyl substituted alkynes. All these alkyne units can be combined with both cyclic and acyclic olefin units (10 examples, 51–97% ee).

Hydroarylations. The hydrovinylolation strategy shown in Scheme 19 for the synthesis of axially chiral 4-aryl-2-pyridones has been extended recently by Tanaka et al. to the intramolecular hydroarylation of alkynes.\(^{81,82}\) In this case, the preferred catalysts were cationic palladium/Xyl-H\(_5\)-BINAP complexes. The method provided an efficient access to 4-aryl-2-quinolinones starting from alkynylamides with various aryl substituents on nitrogen. It has been applied notably to the synthesis of the axially chiral 2-quinolinones shown in Scheme 19 (9 examples, 54–98% ee). In terms of both reactivity and enantioselectivity levels, the scope of the reaction seems to be restricted to alkynes with MeO-substituted aryl groups, and therefore it is assumed that the reaction proceeds via complexation of this MeO-function to the palladium center.

Other examples of metal promoted hydroarylations involve olefins and allenes as reaction partners. Thus, the asymmetric intramolecular hydroarylation of olefins with relatively unactivated C–H bonds has been disclosed in 2004 in parallel studies by Widenhoefer and Bergman–Ellman on different substrates. Widenhoefer et al. reported on the platinum-catalyzed enantioselective hydroarylation of alkenes that are tethered to the 2-positions of indoles by three- or four-atom chains (Scheme 21).\(^{83,84}\) (Note: These reactions can be viewed also as Friedel–Crafts type alkylations of indoles by metal-activated olefin functions.) These indoles could be converted into tetrahydrocarbazoles or hexahydro-cyclohept[a]indoles, respectively, by \textit{exo}-cyclization in the presence of PtCl\(_2\) complexes of atropisomeric diphosphines, activated by addition of AgOTf. The best hydroarylation protocol involves the use of a MeO-Biphep derivative which displays sterically hindered substituents on the phosphorus atom, and one equivalent of the silver salt. The postulated catalytically active species is a monomeric cationic (diphosphine)PtCl\(_2^+\) complex. It affords the annulation products with enantiomeric excesses up to 90% (13 examples, ee 47–90%). Selected examples are shown in Scheme 21. It has been demonstrated also that the tethering chain of the substrate must contain two identical R\(^1\) groups to get high enantioselectivity levels. If not, the stereogenic carbon centre of the substrate tends to control the reaction outcome, leading to a \textit{syn}-configured product in almost racemic form.

The scope of these platinum/MeO-Biphep catalysed reactions is restricted to terminal olefins. However, disubstituted internal olefins may undergo the same cyclizations when using as catalysts the chiral, five-membered platinationcyclic derivative shown in Scheme 22(a). This Pt(t) catalyst displays a planar
chiral ferrocene as well as chiral imidazoline units. The high reactivity of these complexes is assigned to their highly strained and distorted structure, supposedly enhancing their ability to coordinate the olefin function of the substrate. The cyclization products were isolated in 45–95% yield, 78–92% ee (15 examples).85

Also, allenes have been considered as potential substrates for the same cyclizations, but, in this case, platinum based catalysts proved to be inefficient. Instead, bimetallic gold complexes of (3,5-di-t-Bu-4-MeO-C₆H₃)-MeO-Biphep could be used successfully after activation with AgBF₄ (6 examples, 72–92% ee) (Scheme 22(b)).86

Bergman–Ellman’s method for the intramolecular enantioselective coupling of aromatic C–H bonds with alkenes is based on the rhodium catalysts ([RhCl(cyclooctene)]₂/L*).87,88 It applies to aromatic imines in which an alkene, meta-tethered to the imine function, undergoes endo-insertion in the ortho-CH bond (Scheme 23). In this case, ligand screening focused on monodentate phosphorus derivatives because both P–P and P–N chelating phosphines proved to be inefficient. Taddol base phosphines displayed high catalytic activity but only moderate enantioselectivity, while Monophos type phosphoramidites afforded high enantioselectivity levels with ees up to 96%. As shown in Scheme 23, the enantiomeric excesses could be modulated by fine tuning of the nitrogen substituents of the phosphoramidite ligand. Most often the highest ees were obtained with the modified Monophos L₂* which combines a chiral binaphthyl scaffold and a chiral N-substituent, with relative (S,R,R)-configurations. The stereoselectivity of these reactions is controlled by the chiral binaphthyl unit of the ligand. Diastereomers with opposite configurations of the N-substitutent afforded indeed the same enantiomeric excesses while displaying different reaction rates.

The substrate scope of these reactions, initially focused on 1,1-disubstituted olefins (R² = H), was extended then to 1,2-disubstituted (R¹ = H) and 1,1,2-trisubstituted alkenes, for which H₂-Monophos type ligands afforded the best catalysts (7 examples, 87–93% ee). For 1,2-disubstituted alkenes, both Z and E isomers gave the same stereoselectivity, likely due to in situ Z/E isomerization of the substrates, combined with a faster cyclization of the Z-alkene. On the other hand, trisubstituted olefins tethered to other functions afforded the corresponding disubstituted benzofuranes as the syn-isomers selectively.

Overall these transformations provided a general, stereo-selective access to a range of dihydrobenzofuranes with different substitution patterns. Moreover, the method has been applied to the enantioselective synthesis of a protein kinase C inhibitor displaying a bicyclic dihydropropyrolo-indole core scaffold (Scheme 24).89 To this end the imine-directed C–H activation/cyclization was carried out on an indole bearing a suitable allyl chain as the nitrogen substituent. The rhodium–Monophos complex shown in Scheme 24 catalyzed the endo-cyclization and afforded the desired pyrrolidine unit with good stereochemical control of the stereogenic carbon center (90% ee).

The rhodium catalyzed hydroarylation has been extended later to analogous intramolecular hydroarylation of olefins with imidazoles and benzoimidazoles (Scheme 25). After an extensive screening of several chiral monodentate and bidentate ligands, the bulky diphosphine t-Bu-TangPhos was highlighted as the best chiral ligand and the reaction was carried out then successfully on several substrates (9 examples, 71–98% ee).90 Although TangPhos is a potentially chelating ligand, it was postulated to generate labile complexes and to behave as a monodentate ligand in the key steps of the catalytic cycle, which require an additional open coordination site.

Other 1C+1C cyclizations. Finally, among other recent complements to these C–C bond formation through C–H
activation, we could mention the cyclization in Scheme 26 where an olefin unit formally inserts into an allylic C–H bond under rhodium catalysis. Phosphoramidites of the Monophos series, and especially Et-Monophos, proved to be suitable chiral ligands. The cyclization process generates two adjacent stereogenic centres, one of which is a quaternary stereogenic carbon, with high stereocontrol of their relative configurations (dr > 19 : 1). The method applies not only to nitrogen tethered dien–enens, as shown in Scheme 26, but also to dien–enens connected by alkyl chains and oxygen containing chains. Thus, it represents an efficient asymmetric approach to tetrahydropyrroles (13 examples, 68–94% ee), tetrahydrofurans (one example, 64% ee) and cyclopentenes (one example, 81% ee).

Other enantioselective 1C–1C cyclizations have been carried out on enynes such as allyl propargyl ethers (Scheme 27a) and o-(alkynyl)styrenes (Scheme 27b) under palladium and gold catalysis respectively. The bimetallic (S)-3,5-Xyl-MeO-Biphep/gold catalyst shown in Scheme 27b gives selectively 5-endo-dig-cyclizations of o-alkynylstyrenes via formal insertion of the alkyne into the vinylic C–H bond. The enantiomeric excesses are moderate to high, depending on the nature of the silver salt and the reaction temperature (at 25 °C: AgSbF₆, 41% ee; AgOTf, 50% ee; AgOTs, 60% ee). At −30 °C the enantiomeric excesses increase to over 80% (82% ee for R¹ = Ph, R² = Me, R³ = H), while the reaction times remain overall acceptable (3–4 days).

Finally, in this section we would like to mention also two significantly more complex isomerizations of functionalized enynes. The first one is a 1C–1C cyclization reported by Toste et al. that involves two consecutive migration processes (Scheme 28). In this case, the substrates display pivalate substituents which undergo 1,2-migrations, as well as allyl ether functions which undergo formal 1,4-sigmatropic rearrangements. The enantiodetermining step is assumed to be the allyl migration step, from an intermediate oxonium cation. Enantioface control at this step can be exerted efficiently by using bimetallic gold complexes of (R)-3,5-di-tert-butyl-4-MeO-Biphep. As in many enantioselective cyclizations, the choice of the appropriate phosphine aryl substituents is critical here to obtaining excellent enantioselectivity levels.

The second reaction, also reported by Toste et al. (Scheme 29), involves enynes with an aryl substituent on the alkyne function and an alkylidene cyclopropane unit. These substrates are converted into tricyclic derivatives by several successive rearrangements of cationic gold containing intermediates. The key steps of the postulated reaction pathway...
include a ring expansion of the cyclopropane moiety by alkyl migration, as shown in Scheme 29. An enantioselective variant of this reaction has been carried out with the bimetallic gold complexes of (R)-Xyl-SDP which afforded the final product in 82% enantiomeric excess.

(2C + 1C) Cyclizations of enynes and dienes

The electrophilic activation of enynes and dienes by π-acid, carboxphile metal centres is known to induce a variety of skeletal rearrangements including formal cyclopropanation reactions.76–98 A three-membered ring is made by combining the two-carbon atoms of the olefin with one carbon of the second unsaturated function, thus leading to bicyclic scaffolds (Scheme 30).

The most common of these cyclizations are eno cyclizations of 1,6- and 1,5-dienes into bicyclo[4.1.0]heptanes and bicyclo[3.1.0]hexanes, respectively, as well as the cyclizations of 1,6-enynes into bicyclo[4.1.0]heptenes. The whole catalytic cycle of these reactions was postulated to involve a single metal–substrate bond, alternatively a π- and a σ-bond. Therefore metal complexes with only one vacant coordination site were postulated to afford suitable catalysts for these rearrangements.

According to this hypothesis, Gagné first envisioned the use of square planar platinum(ii) catalysts with tridentate phosphines as the ligands for the cycloisomerization of dienic substrates. These tricoordinated catalysts were also postulated to prevent possible side reactions from β-elimination pathways. This strategy was implemented successfully in racemic form,99,100 but asymmetric variants were hardly accessible, because of the difficulty of synthesizing and modulating chiral tridentate ligands. To circumvent this difficulty, tridentate ligands were replaced by modular combinations of an achiral monodentate and a chiral bidentate ligand.101 Thus, cationic pre-catalysts of the general formula (P2)PtI(P) † I–, typified in Scheme 32, were generated by adding a monodentate phosphine to a chiral (diphosphine)PtI2 complex. After activation by addition of AgBF4, these catalysts enabled the cycloisomerizations of 1,5- and 1,6-dienes into bicyclo[3.1.0]hexane and bicyclo[4.1.0]heptane derivatives respectively (Scheme 31).

After screening of several combinations of commercially available monodentate phosphines and chiral diphosphines, such as BINAP, Segphos, Tunaphos, Chiraphos and Quinap, the bulky (R)-3,5-Xyl-BINAP was highlighted as the most suitable auxiliary when associated to PMe3. In the absence of PMe3, the same catalyst led to only moderate yields and enantioselectivities and inverted the sense of stereoselection. Under optimized conditions these reactions were found to be efficient at a low catalyst loading (2–5 mol%) and proved to be highly chemo- and enantioselective (6 examples, 69–96% ee). It was established that the R-configured Binap complex affords a 1R,5R-configured azabicyclohexane from the N-tethered enyne.

The observed stereoselection has been tentatively rationalized based on PM3 calculations of the preferred geometry of the initial η2-alkene complex, but the chiral induction pathway has not been totally elucidated. The tentative stereochemical model is displayed in Scheme 32.

To the best of our knowledge, the studies of Gagné et al. are so far the only investigations on asymmetric 2C + 1C cyclizations on dienes. More extended studies have been carried out on the analogous 2C + 1C cycloisomerizations of enynes. Basically, the same approach of using metal complexes with only one vacant coordination site has been applied. Based on this strategy, our group has designed the first series of e NHC and a chelating chiral diphosphine,102,103 where a diene–phosphine tridentate ligand coordinates the rhodium centre (Scheme 33).107
The most common application of these pre-catalysts is the 6-endo-dig cyclization of 4-tosylamido-1,6-enynes into 3-aza-bicyclo[4.1.0]hept-4-enes (Scheme 34). Also, analogous substrates with different nitrogen protecting groups have been considered, including the easily removable p-nitrophenylsulfonyl group. In these reactions, the catalytically active species are generated by addition of silver or sodium salts to complexes C1–C4 (AgBF₄ or NaBARF₄ [ArF² = 3,5-bis(trifluoromethyl)phenyl]).

With the platinum complexes C1, an extensive catalytic screening highlighted (S,S)-Chiraphos as the most effective chiral diphosphine and demonstrated that suitable modulation of the NHC ligand allows tuning of the enantioselectivity levels. Catalyst optimization led to a maximum 74% ee for the pre-catalyst, it is considered that in the platinum complex the NHC and phosphine ligands shield significantly the three space quadrants displayed in Scheme 35. It is assumed that the highest steric constraints result from the alkyne aryl substituent, which therefore, in the cyclization step, tends to occupy the less hindered quadrant, i.e. the bottom-left quadrant. Based on this hypothesis, the allyl group should approach the alkyne unit as shown in Scheme 35 to account for the observed (1R,6S) stereochemistry of the final product.

The platinacyclic catalysts C2, for PR₃ = Monophos, have been reported to also allow the enantioselective cycloisomerization of 1,5-enynes displaying hydroxy, alkoxy or silyloxy functions on their tethering carbon chain. The cycloisomerization of an O-TBS substituted enyne was shown to produce the expected bicyclo[3.1.0]hex-2-enyl silyl ether which was converted then into the corresponding ketone with TBAF (Scheme 36). The enol ether and the ketone have the same enantiomeric excess (95% total yield, 63% ee).

Although the propargylic stereogenic centre of the substrate is lost during the cycloisomerization process, it was anticipated to play a key role in the stereochemical control of these reactions. Therefore, the degree of chirality transfer from the substrate to the final product had to be ascertained here. By using enantiomERICALLY enriched substrates with opposite configurations of the carbon centre, it was established that the stereochemistry of the substrate induces a marked match–mismatch effect in these reactions. The chiral platinum-Monophos catalyst C2 is however predominant in stereochemical control: in the presence of (R)-C2, the (R)- and (S)-configured substrates (>95% ee) afford the same enantiomer.
of the final product in 35% and 92% ee respectively. The
(R)-configured substrate constitutes a matching pair with the
(R)-Monophos catalyst.

These preliminary experiments highlight the platinacyclic
complexes with Monophos type ligands as promising catalysts
for the [2C+1C] cycloisomerization of 1,5-enynes. Given the
variety of Monophos type ligands that are easily available,
further optimization through extensive ligand screening can be
anticipated.

Overall, complexes C2 are the first known, and so far unique
class of well-defined Pt(II) complexes leading to high enantio-
selectivity in the above (2C+1C) enyne rearrangements.

Concerning the rhodium complexes C3, they were generated
from the corresponding chiral diene complexes [(R,R)-diene]-
RhCl2 and monodentate phosphines such as PPh3. They gave
good catalytic activity and high enantioselectivity in the cyclo-
isomerization of N-tethered 1,6-enynes displaying Me-substituted
alkyne and aryl-substituted olefin units (6 examples, 73–95% ee,
Scheme 37). The nature of the phosphorus ligand had a significant
influence on both the catalytic activity and enantioselectivity,
which demonstrate that this ligand coordinates to rhodium in
the key stereodetermining step. The absolute configuration of the
final product, for R1 = Me, R2 = H, R3 = Ph, R4 = H, was
found to be (1S,6R,4R) by X-ray analysis.106

Overall, catalyst C3 displayed a restricted substrate scope
and some drawbacks, including the poor availability of the
chiral benzobarralene ligand. Therefore the analogous
complex C4 displaying a phosphine-tethered diene ligand
was developed later as a more suitable pre-catalyst. Its main
advantages are the strong coordinating power of the tridentate
ligand and its easy availability from natural (R)-α-phellandrene.
The substrate scope of this catalyst was fairly broad, since
nitrogen-bridged enynes with various substitution patterns
could be converted into bicyclic scaffolds with high enantio-
selectivity (18 examples, 76–99% ee).107

In addition to the platinum and rhodium catalysts above,
the asymmetric cycloisomerization of N-tethered 1,6-enynes
into bicyclo[3.1.0]heptenes has been carried out also with
iridium112 and gold complexes with chiral phosphorus
ligands.113,114 Gold complexes have been applied by Teller
and Fürstner114 to the synthesis of GSK1360707F,115 a
serotonin, noradrenaline, dopamine reuptake inhibitor under
development at GlaxoSmithKline. In this case, the most
efficient pre-catalysts are phosphoramidites complexes of the
type L*AuCl, with L* being TADDOL derived phosphor-
amidites. The preferred catalyst shown in Scheme 38 afforded
the bicyclic cycloisomerization product in 88% yield and
95% ee. Then, the target compound was obtained after
removal of the benzoyloxy carbonyl (Cbz) protecting group
and concomitant hydrogenation of the double bond in the
presence of palladium black and Na2CO3.

Although the cycloisomerization of N-tethered 1,6-enynes
into 3-aza-bicyclo[3.1.0]heptenes shown in Schemes 34, 37 and
38, may proceed with very high enantioselectivity, the stereo-
chemical control of these processes is hardly understood.
Moreover, divergent hypotheses have been made on the nature
of the stereodetermining steps (concerted or stepwise formation
of the chiral cyclopropane unit)114 as well as on the structural
units of the substrate that might give the key stereodetermining
steric interactions (alkyne substituents or N-protecting
groups).105,106 Additional experimental and theoretical studies
are needed to enlighten the stereochemical course of these
useful processes.

Finally, Fensterbank et al. have adapted a conceptually
different strategy, i.e. the chiral counterion strategy, to the
design of chiral catalysts for the same cycloisomerization
processes (Scheme 39).116 The iridium based Vaska’s complex,
IrCl(CO)(PPh₃)₂ was combined with a chiral silver phosphate derived from a 3,3'-disubstituted binaphthol. The cationic iridium phosphate obtained after precipitation of silver chloride was used as catalyst for the cycloisomerization of N-tethered 1,6-enynes. This catalyst provided higher enantioselectivity levels than the classical catalysts made of iridium complexes of chiral phosphines. It afforded the desired azabicyclo[3.1.0]heptenes in up to 93% ee.

Besides the N-tethered enynes above, a few examples of carbon- and oxygen-tethered 1,6-enynes have been considered as substrates in the same kind of enantioselective cyclizations. Thus, for instance allyl propargyl ethers have been converted into bicyclic ethers in moderate yields and high enantiomeric excesses (10 examples, 91–98% ee) by using bimetallic MeO-Biphep/gold catalysts (Scheme 40). Gold catalyzed olefin cyclopropanations also allowed the enantioselective synthesis of some medium-sized ring compounds. These processes however differ from the previous ones, as far as they involve 1,2-migration of an acetyl (or a pivaloyl) group and cyclopropanation of the olefin by a gold-carbene intermediate. Representative examples are shown in Scheme 41. The cycloisomerizations of propargylic esters into bicyclic derivatives displaying seven- or eight-membered rings were successfully accomplished with bimetallic Xyl-Binap gold catalysts (7 examples 49–92% ee).

(2C + 2C) Cyclizations of allen-enes

As already mentioned in the previous sections (Schemes 18 and 22), allenes are suitable substrates for gold(i)-catalyzed cycloisomerizations. Complexation by gold activates the allenic unit and generates, among others, transient allylic cations which are able to react then with suitable electrophiles including olefins. In 2007 Toste et al. demonstrated that a possible outcome of such reactions between allenes and olefins under gold catalysis is a [2 + 2] intramolecular cycloaddition leading to alkylidene cyclobutane derivatives. Preferred substrates are 1,6-allenenes with either alkyl- or nitrogen containing tethering chains, which are converted into bicyclo-[3.2.0]heptanes or the corresponding bicyclic pyrrolidines, respectively. These are postulated by Toste et al. to be stepwise processes which produce preferentially the most stable cis fused rings, with possible substituents in exo positions. Enantioselective reactions of this class were carried out initially on alkyl tethered allen-enes by using bimetallic gold complexes of (R)-DTBM-Segphos. These catalysts provided the four-membered cycloadducts as single isomers in excellent enantioselectivity (6 examples, 92–97% ee) from substrates displaying a trisubstituted allene function and aryl-substituted olefinic units (Scheme 42).

For the same formal [2 + 2] cycloadditions, Forster designed later mononuclear gold complexes of chiral phosphoramidites. Binol derived phosphoramidites failed to give good enantioselectivity levels, but TADDOL derivatives (Scheme 42) proved to be more suitable. In order to optimize the catalytic properties of these TADDOL-based gold complexes, a few structural parameters have been tuned and some information on the key parameters have been inferred. Especially, the X-ray structures showed that the two aryl rings of TADDOL and one of the phenyl substituents of the amine form a pocket of approximate C₃ symmetry which was assumed to be a key feature (see Scheme 43). It has been suggested that structural modifications that either bring the arene rings into closer contact with the gold center (e.g. electron-donating aryl substituents on the TADDOL unit of the phosphoramidites) or give a tighter and more regular C₃-symmetric chiral environment (e.g. TADDOL derivatives with an acyclic skeleton) will afford outstanding levels of enantioselectivity. The TADDOL derivative shown in Scheme 42 represents so far the best catalyst. It combines a tert-butylphenyl-substituted...
(R,R)-TADDOL scaffold with an (R,R)-configured bis-(1-phenylethyl)amine unit on phosphorus. This practical catalyst afforded almost perfect enantioselectivities in the (2C+2C) cycloadditions of carbon-tethered 1,6-allenenes (6 examples, 87–98% ee, Scheme 42).

Both catalysts shown in Scheme 42 above did not perform well in the analogous (2C+2C) cyclizations of N-tethered allenenes. For this class of substrates, Toste et al. succeeded in designing highly efficient gold catalysts. He carried out an extensive screening of the modular and easily available phosphoramidite type ligands, including BINOL, VANOL, VAPOL and spirobiindane derivatives. Finally, the commercially available SIPHOS-PE ligand in Scheme 44 which combines an (R)-configured spirobiindane scaffold with a chiral (R,R)-bis(1-phenylethyl)amine unit on phosphorus proved to be ideal. The corresponding gold chloride complex promotes the formal [2+2] cycloaddition of N-allyl N-allyl tosylamides into bicyclic pyrrolidines with very high enantioselectivity levels. The reaction tolerates both electron-rich and electron-deficient aryl substituents on the olefin moiety, in both cis and trans configurations (6 examples, 80–97% ee), but variations of the allene moiety have not been mentioned.

Overall the SIPHOS-PE derived catalyst shown in Scheme 44 displayed a complementary application field with respect to the bimetallic Segphos–gold complex shown in Scheme 42. The SIPHOS-PE complex compares favourably to the Segphos complex in the [2C + 2C] cycloisomerization of the nitrogen tethered substrates above, but also in the cycloisomerization of allen-enes tethered by a –CH₂–C(SO₂Ph)₂–CH₂– chain (85% ee vs. 0% ee), while the Segphos complex performs better in the enantioselective cycloisomerization –CH₂–C(CO₂Me)₂–CH₂– tethered substrates (14% ee vs. 95% ee). The stereochemical control in these cyclizations as well as the subtle substrate effects have not been rationalized so far.

Scheme 43

Scheme 44

Scheme 45

(4C + 2C) Cyclizations of trienes, dien–ynes and allen–dienes

Transition metal catalysis has expanded the scope of the classical Diels–Alder type [4 + 2] cyclizations by allowing a variety of polyunsaturated substrates, including non-activated species, to be converted into six-membered rings. Formal intramolecular Diels–Alder cyclizations have been carried out on simple trienes, dien–ynes and allen–dienes with conjugated dienic units, notably under palladium, nickel, and rhodium catalysis. These inherently chirogenic cyclizations can be carried out in an asymmetric manner by an appropriate choice of chiral catalysts for each class of substrates: rhodium catalysts have been envisioned for the [4+2] cyclizations of trienes and dien–ynes while gold catalysts proved to be prominent for the enantioselective cyclizations of allen–dienes. As a general trend only substrates with three atom chains connecting the unsaturated units have been successfully subjected to these cycloisomerizations thus leading to 5,6-fused bicyclic systems.

The first examples of enantioselective reactions of this class have been reported by Livinghouse in the nineties, who disclosed rhodium–DIOP complexes as suitable catalysts for the [4+2] cyclizations of trienes and dien–ynes displaying conjugated diene units. Representative examples are shown in Scheme 45. After initial studies on dien–enes (or dien–ynes) displaying ether type three-atom tethering chains (X = O), Livinghouse investigated the cyclizations of analogous tosylamides (X = NTs). In the latter experiments both the catalytic activity and enantioselectivity proved to be dependent on the nature of the rhodium pre-catalyst. The best enantiomeric excess (86% yield, 79% ee) was attained by using a rhodium–DIOP complex generated in situ from [(COE)₂RhBr]₂ (COE = cyclooctene) and DIOP, while the highest yield was afforded by an analogous Rh–chloride complex (97% yield, 76% ee).
Later Gilbertson et al. carried out analogous cycloisomerizations of trienes by using BINAP as the chiral auxiliary (Scheme 45). The cationic ([nbd]Rh(BINAP)]SbF₆ complex was activated by hydrogenation before addition of the substrate. It afforded the bicyclic ether shown in Scheme 45 (X = O) as essentially one enantiomer, in 64% isolated yield. This Rh-BINAP complex represents so far the best catalyst for the [4+2] cyclization of trienic ethers of this class. A recent attempt of using rhodium complexes of unsymmetric phosphine–phosphate ligands allowed a good but slightly lower ee to be attained in the cycloisomerization of the same substrate (X = O, 90% ee) under microwave conditions.

None of the above catalysts have wide scope and general applicability. The same holds for rhodium based catalysts for the analogous Diels–Alder like cyclizations of dien–ynes which produce bicyclic species with cyclohexadiene subunits. Following the initial attempts of Livinghouse with rhodium–DIOP pre-catalysts (one example, 87% ee), iridium–BDPP and rhodium–DuPhos complexes were investigated (Scheme 46). The Ir–BDPP catalyst afforded ees in the range 94–98% (4 examples) in the [4+2] cyclization of ether type and tosylamide type dien–ynes with substituted alkyne moieties. The DuPhos–Rh catalyst was applied to the cycloisomerization of both ether type and carbon tethered substrates, with either terminal or substituted alkyne units. Enantiomeric excesses in the range 88–95% were obtained.

Finally, Mikami et al. and Hayashi et al. afforded significant advances in the [4+2] cyclizations of dien–ynes by disclosing rhodium catalysts with chiral diene ligands. Mikami’s design of chiral catalysts (Scheme 47) started from the experimental observation that the diene ligand of the usual rhodium pre-catalysts modulates the chiral induction. He therefore envisioned catalysts based on a proper combination of a chiral diene and a chiral bidentate phosphine with appropriate synergic effects. Notably, combinations of Me- or Et-DuPhos with the chiral bicyclic diene shown in Scheme 47 provided very effective catalysts. They led to enantiomeric excesses in the range 88–98% in the cycloisomerization of four ether tethered dienynes. The chiral diene can be prepared easily from a commercially available carvone.

Mikami assumed that both the phosphine and the chiral diene coordinate to rhodium during the catalytic cycle, the diene should behave however as a monodentate ligand in the key cyclization step. The postulated key intermediate is shown in Scheme 48.

In 2009 Hayashi and Shintani afforded a further improvement to these dien–yne cyclizations. They demonstrated by kinetic studies that phosphine-free rhodium–diene complexes also display high catalytic activity. Consequently they designed simple diene–rhodium complexes as potentially suitable catalysts and finally highlighted the (S,S)-Ph-bod diene shown in Scheme 49 as an appropriate chiral ligand. Dien–ynes, with either carbon-, nitrogen- or oxygen-containing tethering chains were converted into fused bicyclic derivatives with high enantioselectivity levels (8 examples, 83–99% ee, Scheme 49). The catalyst loading could be decreased to 0.5 mol% for reactions run at 0 °C: under these conditions the bicyclic ether (X = O, R₁ = Ph, R₂ = Me) was isolated in 90% yield with a 96% enantiomeric excess. The (S,S)-configured ligand afforded a (3R,6S)-configured bicyclo[4.3.0]nonane.

For all the cycloisomerization reactions we have mentioned so far, the stereodetermining process is an enantiofacial
selection taking place during the transformation of a sp² centre into a sp³ chiral centre. Recently Hashmi et al. have introduced the alternative concept of "enantiotopos selection", that is the use of substrates which contain two identical and enantiotopic alkynyl groups connected to a prochiral carbon centre. From this structural unit, the cycloisomerization process will create a stereogenic carbon. The strategy has been applied to gold catalyzed cycloisomerizations of dien–diynes as typified in Scheme 50. The test substrate combines two propargyl units and a furyl group as the diene component. Under Au(I) catalysis, the substrate undergoes a cycloisomerization/ring expansion process leading to a functionalized tetrahydronaphthalene. An ee of only 55% has been attained, despite an extensive screening of chiral phosphines (Josiphos and other ferrocene-based phosphines, BINAP, MeO-Biphep and Monophos type ligands). Nevertheless, these preliminary experiments highlight enantiotopos selection as a potential strategy for enantioselective cycloisomerizations.

The last class of enantioselective cyclizations that we will discuss in this section is the [4C+2C] cyclizations of allen–dienes. Enantioselective reactions of this class have been introduced by López, Mascareñas et al. in 2009. The cyclizations take place under gold catalysis and provide a straightforward access to bicyclic cyclohexenes with alkylidene substituents (Scheme 51). Mascareñas's work focused on N-tosyl-tethered allen–dienes. In these experiments a possible competitive reaction is a (4C+3C) cyclization (see next section of this manuscript). The selectivity depends on the catalyst used (carbophilic gold complexes with electron-withdrawing ligands favour (4C+2C) cyclizations) as well as on the substrate: allene units dialkylated at their distal position give (4C+2C) cyclizations, while terminal and mono-substituted allenes tend to either undergo (4C+3C) cyclizations or to afford complex mixtures. In these reactions, bimetallic gold complexes of atropisomeric diphosphines as well as phosphoramidite gold(i) complexes performed well. Bimetallic complexes did not give significant enantiomeric excesses, but the highly versatile phosphoramidite–gold complexes could be finely tuned to attain high enantioselectivity levels.

The best chiral ligand proved to be the phosphoramidite with multiple stereogenic elements shown in Scheme 51(a). The matching configurations was obtained by merging an (R)-binaphthyl scaffold with an (R,R)-bis(1-phenylethylamine) moiety. The binaphthyl skeleton of the ligand bears very bulky anthracenyl substituents at the 3,3'-positions. This gold–phosphoramidite catalyst provided trans-fused 5,6- and 6,6-fused rings in excellent yields and enantioselectivity ranging from 91 to 97%, with only small amounts of the [4C+3C] cyclization product (4 examples).

According to DFT calculations, the enantiodetermining step of these cyclizations is a concerted [4+3] cycloaddition involving the allyl-gold cation A shown in Scheme 52. The six-membered ring would arise then from B through a ring contraction process (1,2-alkyl migration), which is especially favoured in the case of gold complexes with electron-withdrawing ligands. This mechanistic hypothesis is fully consistent with the fact that [4C+2C] cycloadducts and the minor [4C+3C] cycloadducts have virtually identical enantiomeric excesses.

In parallel studies, González and Toste have disclosed the BINOL derived phosphoramidite shown in Scheme 51(b) as an alternative ligand for the same cyclizations. This ligand afforded an almost perfect enantioselectivity level (2 examples). Later on, Fürstner et al. demonstrate the efficiency of a TADDOL derived phosphoramidite in the same reaction (1 example, 90% yield, 91% ee).

Finally, the enantioselective (4C+2C) cyclizations were extended by González and Toste to allen–dienes with three carbon tethers. Phosphites–AuCl complexes were anticipated to promote the isomerization of allene–dienes into fused cyclohexenes selectively, due to their electron-poor character. Screening of several phosphites highlighted the H₈-BINOL...
derived phosphite shown in Scheme 53 as an excellent ligand. 1,7-Allen–dienes were converted selectively into trans-fused bicyclo[4.3.0]nonanes in good yields and enantiomeric excesses of over 80% (6 examples, 82–92% ee). The catalyst is stable enough to be recovered after the catalytic reaction.

(4C + 3C) Cyclizations of allen–diienes

As discussed in the previous section, allen–diienes undergo intramolecular (4C + 2C) cyclizations under gold catalysis. However small changes in the substitution pattern of the substrate can change the outcome of these reactions by favouring (4C + 3C) cyclization products (Scheme 54). The gold promoted reactions provide [4+3] cycloadducts preferentially when starting from allenes monosubstituted at their terminal carbon. Allen–diienes with both three and four-atom chains connecting the allenic and dienic units are converted into fused bicyclic cycloheptadienes. Enantioselective variants of these reactions have been implemented recently by López and Mascareñas who disclosed that the same kind of phosphoramidite gold catalysts previously used for (4C + 2C) cyclizations also promote highly enantioselective (4C + 3C) cyclizations. The optimum ligand is the BINOL derived phosphoramidite shown in Scheme 54. It displays 9-anthracenyl substituents at the 3,3’-positions and a chiral bis(α-phenylethyl)-amine substituent at phosphorus. The cyclization proceeded efficiently, with high enantioselectivity levels (12 examples, 87–98% ee).

(5C + 2C) Cyclizations involving vinylcyclopropanes

Rhodium(I) catalysts are known to promote the intramolecular (5C + 2C) cycloadditions between vinylcyclopropanes and a variety of π-systems, i.e. alkynes,140 alkenes141 or allenes142 as the 2C components.143 Wender et al. first addressed the issue of asymmetric variants of the cyclizations of vinylcyclopropanes with olefins.53,144 Several rhodium complexes of chiral diphosphines have been evaluated. From these comparative studies, BINAP emerged as the most efficient ligand (Scheme 55). The cationic [(R)-BINAP]RhSbF$_6$ catalyst, generated in situ from [Rh(nbd)Cl]$_2$, (R)-BINAP, AgSbF$_6$ under a stream of H$_2$, afforded high yields and moderate to high enantioselectivities, depending on the substrate. Especially, substrates with tosylamide or malondiester tethering groups gave high ees in these (5C + 2C) cyclizations (4 examples, 95% to > 99% ee).

The absolute configuration of the final product has been established and a stereochemical model has been proposed based on DFT calculations. The key steps of the catalytic cycle are shown in Scheme 56. It is assumed that the stereodetermining step is the C–C bond formation leading from B to C, and also that the stereochemistry of the final product is determined by the favored conformation of intermediate B. This conformation is shown in Scheme 56. It minimizes steric interactions.
between, notably, the R^1 substituent of the olefin and the chiral (R)-BINAP ligand which hinders the upper-left and bottom-right quadrants of the rhodium complex.

The BINAP–rhodium complex above was ineffective, in terms of chiral induction, for the analogous intramolecular $(5C+2C)$ cyclizations of vinlylcyclopropanes and alkynes. These last reactions could be carried out later by Shintani et al. who achieved very high enantiomeric excesses by means of rhodium complexes of chiral phosphoramidites. The BINOL derived phosphoramidite shown in Scheme 57 induced uniformly high enantioselectivity in the cyclization of enynes with three-atom tethering chains, largely irrespective of the nature of this chain (9 examples, 83–99% ee).

In these reactions, the catalytically active species formed in situ is presumably a Rh/phosphoramidite 1:1 complex, since an excess ligand inhibits the catalytic reaction. Concerning the design of the chiral ligand, it has been demonstrated that the presence of chiral substituents on nitrogen is not essential. However the presence of phenyl groups on these substituents (either two or four phenyl groups) is necessary. These phenyl groups supposedly organize the conformation of the rhodium complex so as to create well-defined, sterically distinct quadrants in the environment of the metal. Finally, a stereochemical model very similar to that in Scheme 56 has been proposed for these reactions.

(2C+2C+2C) Cyclizations of dien–ynes, en–diynes and triynes

Under transition metal catalysis, substrates with three non-conjugated multiple bonds may undergo $(2C+2C+2C)$ cycloisomerizations leading to six-membered rings, often included in more complex polycyclic scaffolds. The six-membered rings are assumed to be formed mainly by oxidative couplings of two of the π-systems in the coordination sphere of the metal (Scheme 58), followed by insertion of the third unsaturated function in the metallacycle.

These reactions are classified hereafter into three separate sections according to the classes of substrates, i.e. triynes, dien–ynes and en–diynes respectively.

Triynes. The inter- or intramolecular $[2+2+2]$ cycloaddition of triynes represents a well-known, straightforward protocol for the synthesis of benzene derivatives. It has been adapted to the enantioselective synthesis of chiral compounds of three different classes: axially chiral biaryls, planar-chiral metacyclophanes and helical structures.

Axially chiral biaryls have been obtained by Shibata et al. by cyclotrimerization of oxygen-bridged 1,6,11-triynes with naphthyl groups on the external alkynes. As shown in Scheme 59, the final product displays two benzo-fused five member rings. This reaction was carried out under iridium catalysis, with a catalyst formed in situ from $[\text{IrCl(cod)}]_2$ and (S,S)-Me-DuPhos. It produced the desired atropisomeric diarylbenzene as a mixture of dl and meso isomers in a $7 : 1$ ratio. The chiral isomer displayed a very high enantiomeric excess (94% ee).

The same strategy, when applied to hexa-ynes, enables the synthesis of biaryls via two consecutive $[2+2+2]$ cyclizations (Scheme 60). In this case, the bulky, atropisomeric ligands tol-BINAP and Xyl-BINAP gave the best results and afforded the doubly cyclized products with excellent enantioselectivity. Enantiomeric excesses of 96–98% were obtained from hexaynes with either oxygen or nitrogen containing tethers, displaying...
either aryl substituents or bulky alkyls (i-Pr) on the external alkyynes.

The metal-catalyzed trimerization of triynes also allows the asymmetric synthesis of helically chiral molecules. This strategy has been demonstrated initially by Stará et al. as shown in Scheme 61a: the central aromatic ring of the hexahelicene has been created by [2 + 2 + 2] cyclization of the corresponding triyne under nickel catalysis in the presence of (S)-MOP as the chiral ligand.152 Although a promising 48% enantiomeric excess had been obtained in this first attempt, the control of the helical chirality by means of nickel catalysts could not be improved in further experiments.153

Later, Tanaka succeeded in the construction of helical chirality by [2 + 2 + 2] cyclotrimerization of analogous triynes by using chiral rhodium catalysts. Under rhodium-Me-Duphos catalysis, the naphthol derived triynes shown in Scheme 61b have been converted into the corresponding heptahelicenes in ee up to 85%.154

The intramolecular cyclotrimerization of triynes also allows the enantioselective synthesis of planar chiral cyclophanes, planar chirality is found notably in metacyclophanes with unsymmetrically substituted aryl rings, provided that the ansa-chains are short enough to avoid flipping over the plane of the aromatic rings. This is the case for the ortho-substituted [7]- to [10]-metacyclophanes shown in Scheme 62. Tanaka et al. obtained these scaffolds in enantiomerically enriched form by using chiral rhodium-[S,S]-Me-Duphos complexes. They afforded the desired cage compounds in up to 95% yield and 98% ee (Scheme 62, R = 4-Br–C\textsubscript{6}H\textsubscript{4}). Also, an iridium based catalyst generated in situ from [IrCl(cod)]\textsubscript{2} and (S,S)-Me-DuPhos produced the same cage compounds with high enantioselectivity (88% ee, for R = Ph), but the reaction required much harsher conditions (120 °C) to have a significant conversion rate (62% yield).

In the same study,157 the method has been applied also to a hetero-[2 + 2 + 2] cyclotrimerization process which involves a nitrile function as the third cyclization partner (52% yield, 94% ee). In this case, BINAP has been used instead of DuPhos as the chiral ligand.

Dien–ynes. Dien–ynes that have been subjected to cycloisomerization include compounds with “ene–ene–yne” and...
“ene–yne–ene” sequences. Their cycloisomerization gives distinct outcomes depending on the bond connectivity, as well as on the substitution pattern and the nature of the tethering chains.

Substrates displaying branched “ene–ene–yne” sequences have been investigated in depth by Shibata.158,159 The branched “ene–ene–ynes” in Scheme 64, in the presence of rhodium complexes, afforded either the tricyclic compounds A or the bicyclic compounds B, depending on the nature of the R2 substituent of the diene and the length of the tethering chain. 1,4-Dien–ynes in which R2 = Me or Ph afforded the bicyclo[2.2.1]heptane scaffolds A, while the bicyclic cyclohexadienes B were formed selectively from 1,4-dien–ynes non-substituted at the 2-positions (n = 1, R2 = H).

For these transformations, a ligand screening highlighted (R)-TolBINAP as the best chiral ligand. The corresponding rhodium complex afforded the polycyclic species A or B with excellent control of the stereochemistry of their quaternary stereogenic centres (10 examples, ees in the range 88–99%). The catalyst shown in Scheme 64 operates at 60 °C, but the reaction could be run under even milder conditions (room temperature, 24 h), when using a pre-catalyst prepared from [Rh(cod)]\textsubscript{2}BF\textsubscript{4} and Tol-BINAP and pretreated with hydrogen gas to remove the cyclooctadiene ligand.158

Under the same conditions, starting from non-substituted 1,5-dien–ynes (n = 2, R2 = H) the reactions afforded mixtures of A and B from which B was isolated with almost perfect enantioselectivity (Scheme 64). 1,6-Dien–ynes with either all-carbon or ether tethers between the olefinic units were converted into the tricyclic species A in very high enantiomeric excesses (5 examples, 89% to >99% ee).

Moreover, Shibata et al. demonstrated that, under analogous conditions, branched 1,4-dien–ynes bearing bulky aryl groups on the alkene (R1 = o-tolyl, 1-naphthyl, 2-PhC\textsubscript{6}H\textsubscript{4}H, 9-phenanthryl) followed a different reaction pathway leading to the spirocyclic compounds in Scheme 65a.159 In these rearrangements the cationic Rh-TolBINAP catalyst also afforded excellent enantioselectivities (5 examples, 92–99% ee >90%).

On the other hand, when branched 1,5-dien–ynes with aryl groups at the 2-position of the diene (R2 = Ph, o-tolyl, 2-PhC\textsubscript{6}H\textsubscript{4}H) were subjected to the same conditions, the new chiral tricyclo[6.3.1.03,7]dodecenes shown in Scheme 65b were isolated as the major products, with excellent enantiomeric excesses (4 examples, 99% ee).159

Overall, the protocols shown in Scheme 65 provide multicyclic compounds with very good control of their stereo-centres, including the quaternary stereogenic centres at the ring junctions.

Another class of substrates is dien–ynes displaying linear “ene–yne–ene” or “ene–ene–yne” sequences. Under metal catalysis, “ene–yne–ene” type substrates undergo formal [2C + 2C + 2C] cyclizations and generate cyclohexene units embedded in fused tricyclic structures. The first intramolecular enantioselective [2+2+2] cyclization of this class was carried out by Tanaka et al. on the symmetrical, N-tethered dien–yne shown in Scheme 66a.160 In the presence of rhodium(II) complexes of atropisomeric diphosphines the reaction led to mixtures of cis- and trans-fused cyclohexenes with 5,6,6-tricyclic scaffolds. With H\textsubscript{2}-BINAP as the chiral ligand, the chiral trans-fused isomer was obtained with perfect enantioselectivity, it was produced however in only minor amounts.

Further studies were conducted then on unsymmetrical dien–ynes since, in this case, both trans-fused and cis-fused scaffolds would be chiral.161 The best results were obtained in the [2+2+2] cyclizations of the dienynes combining two tethers of different nature and lengths typified in Scheme 66a (for n = 2) and 66b. Excellent stereochemical control was obtained in these cyclizations by using cationic rhodium complexes of (R)-H\textsubscript{2}-BINAP or, alternatively, rhodium complexes of (R)-Segphos. Especially, the phenol-tethered enynes shown in Scheme 66b were converted selectively into cis-fused 5,6,6-tricyclic derivatives, thanks to the geometrical constraints induced by the aromatic linker. The corresponding tricyclic derivatives were obtained in high yields and very high enantiomeric excesses (6 examples, 93–99% ee). The absolute configuration of the final cis-configured tricyclic product...
was assigned as (3αR,5αS) by X-ray diffraction studies for Z = N-Ts and R = H.

Substrates displaying an "ene–ene–yne" sequence undergo analogous \([2+2+2]\) cyclizations to provide tricyclic cyclohexenes with three stereogenic carbons. Enantioselective variants of these reactions have been reported by Shibata\(^{162}\) to be promoted efficiently by the same rhodium–\(\text{H}_8\)-BINAP complexes previously used for the cycloisomerizations of "ene–yne–ene" type substrates. Representative examples are shown in Scheme 67. Suitable substrates have three atom tethering chains with at least one tosylamide function, the second chain being either an heteroatom functionalized or a simple three-carbon chain. The tethering chain can include an aromatic ring and the alkyne units bear either a phenyl or a methyl substituent. These \([2+2+2]\) cyclizations proceed with high enantioselectivity (5 examples, 73–95% ee).

Notably, the reaction has been extended to a trien–yne which displays a conjugated diene unit (Scheme 68). The terminal double bond of the diene has been involved in the cyclization process which therefore afford a 5,6,7-tricyclic scaffold, with very high enantiomeric excess (65% yield, 98% ee). BINAP was used in this last reaction, instead of \(\text{H}_8\)-BINAP\(^{162}\).

En–diynes. Transition metal promoted \([2+2+2]\) cyclizations have been observed also for en–diynes where two alkyne moieties are connected to the contiguous carbons of an alkene, in a linear "yne–ene–yne" type sequence. As for the analogous cyclizations on dien–ynes, these reactions afford a six-membered ring embedded in a tricyclic scaffold (Scheme 69). Asymmetric reactions of this class have been carried out by Shibata \(^{163}\) and Tanaka \(^{160}\) by using rhodium complexes of modified BINAPs. The targeted en–diynes have an \(E\)-configured olefinic unit, since \(E\)-olefins will produce anti-fused cycloadducts, that is chiral species, from both symmetrical and unsymmetrical substrates. Rhodium complexes of \(\text{H}_8\)-BINAP proved to be efficient chiral promoters with rather wide scope. They have been used for the cyclization of en–diynes with three atom tethers into trans-fused 5,6,5-tricyclic derivatives with a central cyclohexadiene unit. The starting en–diynes may display either carbon chains, with geminal ethoxycarbonyl or phenylsulfonyl substituents, or heteroatom containing chains. The alkyne termini can have alkyll, aryl, halide or ester groups as the substituents. All these functions are combined to give both symmetrical and unsymmetrical substrates. With only a few exceptions, these cyclization
processes displayed high enantioselectivity. Selected examples are illustrated in Scheme 69. X-ray data demonstrate that the final 5,6,5-tricyclic species (for \(Z = \text{C(SO}_3\text{Ph)}_2, \text{R} = \text{R}^1 = \text{H} \)) generated by (S)-H$_2$-BINAP has an \((R,R)\) configuration at the two contiguous stereogenic carbons.

Attempts of using chiral N-phosphino sulfinamide ligands in the same reactions met with only moderate success.164

Soon after, the rhodium promoted \([2+2+2]\) cyclization of en–diynes has been applied to the 15- and 16-membered macrocyclic substrates shown in Scheme 70. These reactions afforded fused tetracyclic compounds with a cyclohexadiene core in enantioenriched form. Of the three chiral ligands tested in these experiments, (S)-BINAP, (S)-(neomethyl)-diphenylphosphino and (23,5S)-2,3-bis(diphenylphosphino)-butane, only (23,5S)-2,3-bis(diphenylphosphino)butane afforded significant enantioselective excesses (44 and 41% ee for \(n = 1 \) and \(n = 2 \) respectively).165

Overall, with only a few exceptions, the rhodium complexes of atropisomeric diphosphines proved to be the privileged catalysts for the enantioselective \([2+2+2]\) cyclizations of polyunsaturated en–diynes, dien–ynes as well as of some triyne substrates. The stereochemical course of these reactions has not been elucidated so far although detailed mechanistic studies are available for achiral catalysts.166

Concluding remarks

Undoubtedly, cycloisomerizations of unsaturated substrates have the potential of being highly useful tools for the enantioselective synthesis of carbocycles and heterocycles, including core scaffolds of biologically active natural products. Therefore, enantioselective variants of these reactions are eagerly sought. This short overview demonstrates that very high catalyst efficiency and enantioselectivity levels can be attained in these reactions by the choice of appropriate metal–ligand pairs. However, cycloisomerization reactions that have been subjected to extensive investigations are still rather limited in number, as well as in terms of substrate scope. The rhodium promoted Alder-ene reactions are the first and still the most studied of these reactions. They have attained a significant, synthetically useful level of development, thanks to the active contributions of several research teams.

From this literature overview, only a few guidelines can be sketched for the design of appropriate catalysts:

- In gold promoted cycloisomerizations, enantioselective processes largely relate to the availability of relatively inexpensive phosphoramidite type ligands that can be easily designed and tuned for each specific reaction.
- Alternatively, bimetallic gold complexes of atropisomeric diphosphines seem to have quite general applicability.
- In rhodium chemistry, the atropisomeric diphosphines still play a major role, although chiral dienes are emerging as successful ligands also.
- Palladium complexes of either atropisomeric diphosphines or phosphine-oxazolidines are useful mainly for Alder-ene type reactions.
- In platinum and iridium chemistry specific ligand and catalyst design has been carried out for single reactions and therefore general trends cannot be drawn.

Finally, a major drawback that might hamper the rapid development of this area is that factors that determine the stereochemical control are largely unknown for all of the cycloisomerization processes. The few mechanistic pathways and stereochemical models that have been proposed so far are mainly speculative and have not been used as predictive models. An improved theoretical knowledge should contribute in the near future to appropriate catalyst design for a wider range of enantioselective cycloisomerization reactions. Subsequently, a more extensive development of synthetic applications, including the synthesis of biologically active compounds, can be easily anticipated.

Note: After submission of this review, additional papers relevant to enantioselective cycloisomerization have appeared.167,168

Notes and references

Étude de Cycloisomérisations Énantiosélectives d’Énynes Catalysées par des Platinacycles Carbéniques

Les cycloisomérisations d’énynes sont des réarrangements de substrats polyinsaturés qui permettent d’accéder à des composées cycliques ou polycycliques en une seule étape. Ces réactions sont catalysées par de nombreux métaux de transition et présentent un grand intérêt synthétique. Cependant, peu de cycloisomérisations énantiosélectives sont décrites dans la littérature.

Des platinacycles carbéniques comportant une monophosphine comme ligand chiral ont été développés au laboratoire. Ces complexes ont été utilisés avec succès dans la réaction de cycloisomérisation d’allylamides propargyliques en aza[4.1.0]heptènes ; des excès énantiomériques jusqu’à 97% ont été obtenus. Ce système catalytique a été étendu à la désymétrisation par cycloisomérisation d’allylamides propargyliques comportant deux unités vinyliques (ee jusqu’à 95%).

Par la suite, ces catalyseurs ont été appliqués à la cycloisomérisation d’énynes-1,5 comportant un groupement oxygéné en position propargylique. Des excès énantiomériques allant jusqu’à 75% ont été mesurés.

Mots clés : cycloisomérisation, énynes, énantiosélectivité, platinacycles

Study of Enantioselective Enyne Cycloisomerisations Catalysed by Carbenic Platinacycles

Enyne cycloisomerisations induce the formation of cyclic or polycyclic compounds from unsaturated substrates in a single step. These reactions catalysed by transition metals have a great interest in organic synthesis. However enantioselective versions of these reactions remain rare.

Carbenic platinacycles with chiral monophosphines as ligands have been developed in our team. These complexes have been successfully used in the cycloisomerisation of allylpropargylamides into azabicyclo[4.1.0]heptenes ; enantiomeric excess up to 97% have been attained. This catalytic system has been extended to the desymetrisation of allylpropargylamides bearing a second vinyl moiety (ee’s up to 95%).

These catalysts have been used also in the cycloisomerisation of 1,5-énynes bearing an oxygen fonction at the propargylic position. Enantiomeric excess up to 75% have been obtained.

Key words : cycloisomerisation, enynes, enantioselectivity, platinacycles