
HAL Id: tel-00773295
https://theses.hal.science/tel-00773295

Submitted on 12 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards adaptive learning and inference - Applications
to hyperparameter tuning and astroparticle physics

Rémi Bardenet

To cite this version:
Rémi Bardenet. Towards adaptive learning and inference - Applications to hyperparameter tuning
and astroparticle physics. Methodology [stat.ME]. Université Paris Sud - Paris XI, 2012. English.
�NNT : �. �tel-00773295�

https://theses.hal.science/tel-00773295
https://hal.archives-ouvertes.fr

UNIVERSITÉ PARIS-SUD XI

ÉCOLE DOCTORALE D'INFORMATIQUE

THÈSE DE DOCTORAT
Soutenue le 19 novembre 2012 par

Rémi Bardenet

Towards adaptive learning and inference
Applications to hyperparameter tuning and astroparticle physics

préparée au Laboratoire de l'Accélérateur Linéaire et au Laboratoire de
Recherche en Informatique de l'Université Paris-Sud XI, dans les équipes

AppStat, Auger et Tao

sous la direction de Balázs Kégl

Jury

Président Arnaud Doucet University of Oxford
Rapporteurs Éric Moulines Télécom ParisTech

Christian Robert Université Paris-Dauphine, IUF & CREST
Directeur Balázs Kégl Université Paris-Sud & CNRS
Examinateurs Francis Bach INRIA & ENS Paris

Fabien Cavalier Université Paris-Sud
Invité Radek Stompor Université Paris-Diderot & CNRS

Last modi�ed on November 21, 2012

Acknowledgments
Remerciements

I would like to thank my advisor, Balázs Kégl, who is not only an inspired and

inspiring scientist, but also a smart manager of people.

I owe a great deal to regular collaborators Gersende Fort and Olivier Cappé from

Telecom ParisTech, who taught me much more than technical skills.

My thanks go also to the Auger LAL team, especially to Karim louedec and Pham

Ngoc Diep who helped me integrate the world of particles. More generally, thanks

to Auger members all around the world, among which I made good friends while

eating tender bifes de chorizo.

Thanks also to all TAO members for fruitful discussions, especially Niko Hansen,

Tamás Eltetö, Cécile Germain-Renaud, Michèle Sebag, and Yann Ollivier. This

work has also bene�ted from exchanges with Julien Bect and Alireza Roodaki at

Supélec.

I have a special and friendly thought for all the past and present members of the

AppStat team at LAL, Robi, Djalel, Matyi, FD, and Diego, keep up the good work

in this warm atmosphere, now powered with tasty, gradually cheaper co�ee.

Thanks to Yoshua Bengio for welcoming me at UdeM in Montréal, to James Bergstra

for the good work together and to everybody at LISA for the good times there.

Thanks also to everyone that has been involved in the teaching part of my thesis, at

Université Paris-Sud and Polytech' Paris-Sud, among others Michel Menou, Jérôme

Azé, Claude Barras, Cédric Bentz, and Aurélien Max, for sharing their experience.

Finally, let me thank the sta� at LAL, the e�cient service missions and secrétariat,

and especially Françoise Maréchal at the library. Thanks also to Stéphanie Druetta

at the computer science doctoral school. These people have contributed to the great

working environment I enjoyed during my thesis.

Thanks also to my reviewers and jury members for kindly accepting to participate

to the �nal step of this thesis.

En�n, un énorme merci à Amélie, qui est toujours à mes côtés, derrière moi ou sur

mon dos, selon les besoins, à mes parents, dont la présence rassurante me donne des

ailes, et à tous mes amis qui sont heureusement trop nombreux pour être énumérés

ici.

Summary in French
Résumé en français

Nous proposons ici une introduction en français aux problèmes traités dans cette

thèse ainsi qu'un résumé des contributions qui y sont présentées.

En apprentissage arti�ciel, ou ML pour machine learning, le processus d'apprentis-

sage d'un algorithme correspond généralement à deux boucles imbriquées. La boucle

externe itère sur les valeurs des hyperparamètres, alors que la boucle interne minimise

une mesure d'erreur empirique. Pour �xer les idées, considérons un problème de clas-

si�cation auquel on applique une machine à vecteurs support (SVM, voir [27, 46])

avec un noyau gaussien isotrope à un paramètre, appelé longueur caractéristique.

Les deux hyperparamètres de l'algorithme sont alors cette longueur caractéristique

et le coe�cient multiplicatif de la norme du classi�eur dans l'objectif de la SVM.

Traditionnellement, on �xe ensuite une grille bidimensionnelle couvrant une partie

de l'espace des hyperparamètres, et pour chaque point de cette grille, on exécute

la procédure de maximisation de la marge de la SVM � la boucle interne �, en re-

tournant une erreur de validation. Finalement, on choisit dans la grille la valeur des

hyperparamètres qui a retourné la plus petite erreur de validation. Il est également

commun que l'utilisateur intervienne pendant la boucle externe et a�ne la grille

dans des régions � prometteuses � de l'espace des hyperparamètres.

Si on prend l'exemple de la classi�cation, un algorithme d'apprentissage est une

fonction qui associe un classi�eur à un jeu de données. Cette fonction inclut un

budget spéci�ant d'une part combien de cycles CPU sont à consacrer à l'ajustement

des hyperparamètres � la boucle externe � et combien de cycles sont à consacrer à

l'évaluation de chaque choix des hyperparamètres � la boucle interne. Des résultats

récents comme [103] et [43] suggèrent qu'avec le matériel d'aujourd'hui, en parti-

culier les structures de calcul massivement parallèles, une allocation optimale de

ce budget devrait favoriser l'exploration des hyperparamètres plus nettement qu'à

l'accoutumée.

Plusieurs arguments plaident en faveur du développement de méthodes d'ajuste-

ment des hyperparamètres plus e�caces et, surtout, plus automatiques que la re-

cherche exhaustive à base de grilles et d'interventions de l'utilisateur. Tout d'abord,

la boucle interne d'un algorithme d'apprentissage correspond souvent à un problème

d'optimisation en grande dimension, dont la résolution requiert l'exécution d'algo-

rithmes gloutons en évaluations de la fonction objectif, comme les variantes de la

descente de gradient. Appliquée aux bases de données énormes qui sont monnaie

courante aujourd'hui, une seule itération de la boucle externe est dès lors une ques-

tion d'heures, voire de jours. Par ailleurs, des algorithmes constituant l'état de l'art

en classi�cation comme les réseaux de neurones profonds [20] possèdent des dizaines

iv

d'hyperparamètres, ce qui rend la recherche exhaustive infaisable. De plus, de ré-

centes études [103, 41, 43] montrent que le di�cile problème de l'ajustement des

hyperparamètres dans les réseaux profonds est un obstacle majeur au progrès scien-

ti�que. Ces études ont dépassé l'état de l'art en classi�cation d'images grâce à un

meilleur ajustement des hyperparamètres de modèles simples, plutôt que par des

modélisations innovantes ou des stratégies d'apprentissage radicalement nouvelles.

En�n, la disponibilité de solutions logicielles pour l'ajustement automatique des

hyperparamètres en apprentissage permettrait d'une part une utilisation simpli�ée

pour les non-experts, et donc de décupler l'impact des découvertes en ce domaine où

les applications sont nombreuses ; d'autre part, l'utilisation généralisée d'une même

méthode automatique rendrait également plus juste la comparaison de résultats

expérimentaux proposés dans des études di�érentes.

Considérons maintenant un autre domaine où des questions similaires se posent.

En statistiques computationnelles, les méthodes dites MCMC, pour Markov chain

Monte Carlo, constituent une approche générique à l'échantillonnage de distribu-

tions de probabilité complexes. Les méthodes MCMC sont aujourd'hui de facto

l'outil standard de nombreuses applications en inférence bayésienne. L'algorithme

MCMC le plus répandu est l'algorithme de Metropolis-Hastings (MH, voir [110]).

MH construit une chaîne de Markov qui approxime des tirages indépendants iden-

tiquement distribués selon sa cible. En d'autres termes, MH est une boucle qui, à

chaque itération, propose un mouvement aléatoire local selon une distribution de

proposition, et accepte ou rejette le point proposé selon une règle sophistiquée. Le

choix de la distribution de proposition est crucial pour obtenir des résultats satisfai-

sants [110]. Lorsqu'on applique MH à des distributions cibles de petite dimension,

il est courant d'ajuster la distribution de proposition lors d'une étude préliminaire,

en essayant d'optimiser des critères variés. Cependant, lorsque qu'on a a�aire à des

algorithmes MCMC complexes, parfois imbriqués les uns dans les autres, et à des

cibles de haute dimension, comme les distributions a posteriori dans des modèles

génératifs à grande échelle, les interventions manuelles se compteraient en millions,

et il n'est pas même évident de savoir quel critère utiliser pour ajuster la distribu-

tion de proposition. De tels modèles génératifs à grande échelle sont en particulier

courants en physique des particules : l'expérience Pierre Auger, par exemple, est

une expérience actuelle dévolue à l'étude des rayons cosmiques, synonyme de près

de 1600 détecteurs et de plusieurs centaines de milliers de signaux.

Le but de cette thèse est de rendre l'application des algorithmes d'apprentissage et

d'inférence plus autonomes en leur faisant apprendre la structure du problème qu'ils

sont appelés à résoudre. Dans le contexte de l'ajustement des hyperparamètres en

apprentissage, l'optimisation séquentielle à base de modèles (SMBO, pour sequential

model-based optimization, voir [82]), aussi appelée optimisation bayésienne, a récem-

ment suscité un vif intérêt [21, 126, 120]. Contrairement aux méthodes de la famille

des descentes de gradient, SMBO est un paradigme particulièrement adapté aux

situations où l'évaluation d'un vecteur d'hyperparamètres est coûteuse. A chaque

itération, SMBO pro�te de l'information disponible à partir des précédentes évalua-

v

tions pour construire un modèle de la fonction objectif, ici une erreur de validation,

et utilise ce modèle pour choisir le prochain point à évaluer. Cette dernière tâche

est e�ectuée en optimisant un critère auxiliaire qui mesure l'intérêt de l'évaluation

de chaque point, connaissant le modèle courant de la fonction objectif. A moyen

terme, nous imaginons que l'exécution d'algorithmes d'apprentissage se fera de fa-

çon complètement automatique, ne requérant aucun ajustement manuel de la part

de l'utilisateur. Nous pensons que SMBO est un environnement idéal pour dévelop-

per cette automatisation, et nous présentons dans la première partie de cette thèse

les contributions que nous avons apportées pour rendre cette vision accessible.

Tout d'abord, le chapitre 2 présente SMBO, ainsi que notre contribution à l'étape

d'optimisation du critère auxiliaire. Ces critères, le plus connu étant certainement

l'amélioration en espérance (EI, pour expected improvement, voir [82]), sont habituel-

lement optimisés par une recherche exhaustive dans l'espace des hyperparamètres,

à l'aide de grilles, d'échantillons aléatoires ou pseudoaléatoires. La �gure 2.2 illustre

le critère EI � en rouge � lorsque le modèle de la fonction objectif est un processus

gaussien [108] � en bleu. Nous avons proposé dans [14] un algorithme d'optimisation

évolutionnaire dédié à l'optimisation de tels critères qui utilise ce qu'on connaît de

leur forme : en travaillant l'expression d'EI, on réalise qu'EI est nul aux points où la

fonction objectif a déjà été évaluée, et est multimodal. Nous montrons au chapitre 2

que cette approche améliore sensiblement l'optimisation d'EI en pratique. Ensuite,

pour montrer que SMBO est de taille à s'attaquer aux dé�s actuels du ML, nous pré-

sentons au chapitre 4 des applications sur mesure de SMBO à l'ajustement des plus

de 30 hyperparamètres de réseaux de neurones profonds (DBNs, pour deep belief net-

works), que nous avons publiées dans [21]. Nous démontrons premièrement que, de

façon surprenante, la méthode consistant simplement à tirer un échantillon aléatoire

de vecteurs d'hyperparamètres qu'on évalue ensuite donne de meilleurs résultats sur

cette tâche que l'ajustement manuel. Ensuite, nous démontrons que SMBO, à son

tour, est plus e�cace que ces deux approches. Motivés par ces résultats positifs,

nous avons réalisé qu'un des avantages cruciaux que les humains avaient encore sur

les algorithmes d'ajustement automatique des hyperparamètres était leur mémoire

des expériences passées avec des jeux de données similaires. Un utilisateur qui a déjà

trouvé dans le passé de bons hyperparamètres à son algorithme pour des données

présentant des caractères communs avec les données qui l'intéressent actuellement

(comme la taille de l'échantillon, le nombre d'attributs, ou des propriétés statistiques

décrivant la forme de l'échantillon) aura certainement pour intuition d'évaluer ces

mêmes anciens hyperparamètres sur ses nouvelles données, ou encore de considérer

certaines zones de l'espace des hyperparamètres comme prometteuses a priori. Dans

le chapitre 5, nous détaillons la construction, non encore publiée à la date de sou-

tenance de cette thèse, d'un algorithme nommé SCoT (pour surrogate collaborative

tuning), qui implémente SMBO sur l'espace produit des hyperparamètres et des

jeux de données, permettant ainsi de traduire cette intuition humaine. SCoT peut,

par exemple, (i) tirer parti de l'ajustement simultané du même algorithme sur des

jeux de données di�érents, et surtout (ii) utiliser l'information gagnée dans le passé

vi

par l'ajustement du même algorithme sur d'autres jeux de données. La principale

di�culté méthodologique apparaît lorsqu'on souhaite comparer les résultat de l'al-

gorithme en question sur des jeux de données di�érents : les traditionnelles erreurs

de validation ne peuvent être utilisées directement, puisque deux jeux de données

di�érents peuvent conduire à des erreurs à des échelles radicalement di�érentes. La

cible de l'algorithme SMBO est donc ici plus di�cile à dé�nir que dans nos applica-

tions précédentes. SCoT résout ce problème en faisant appel à chaque itération à un

algorithme de ranking qui construit un modèle d'une fonction latente d'amplitude

constante à travers les di�érents jeux de données, et qui, pour chaque jeu de données,

est une fonction croissante de l'erreur de validation sur ce jeu. Nous présentons une

application de SCoT à AdaBoost, un algorithme de classi�cation populaire. SCoT

est également intéressant d'un point de vue méthodologique, puisque c'est un al-

gorithme SMBO générique et nouveau, en ce qu'il adapte sa fonction objectif en

ligne.

Revenons maintenant aux algorithmes MCMC. L'ajustement de la distribution de

proposition de l'algorithme de Metropolis-Hastings (MH) peut être comparé au choix

des hyperparamètres d'un algorithme d'apprentissage. Depuis l'article fondateur

[69], les méthodes MCMC adaptatives qui apprennent leur distribution de propo-

sition en même temps qu'elles échantillonnent, et donc amassent de l'information

sur leur cible, sont devenues l'objet d'un domaine de recherche dédié. L'algorithme

Metropolis adaptatif (AM, voir [69], par exemple, estime la matrice de covariance de

sa distribution cible pendant l'exécution d'un MH avec distribution de proposition

gaussienne multivariée. La motivation principale de cette approche vient de résul-

tats théoriques [111, 112] qui suggèrent que la corrélation de la chaîne produite par

l'algorithme est minimisée lorsque la covariance de la proposition correspond à celle

de la cible, et ce pour une large classe de distributions unimodales aux marginales

indépendantes. AM calque donc la covariance de sa distribution de proposition sur

l'estimation qu'elle fait, à chaque itération et en utilisant un schéma d'approxima-

tion stochastique, de la covariance de sa cible. AM est un exemple d'algorithme

MCMC avec ajustement automatique de ses hyperparamètres, qui fonctionne en

utilisant l'information amassée sur sa cible au fur et à mesure de son exécution.

Cette remarque permet de rapprocher AM des méthodes SMBO d'ajustement des

hyperparamètres d'algorithmes d'apprentissage dont nous avons parlé plus haut. La

partie II de cette thèse est consacrée aux algorithmes MCMC adaptatifs et à leur

application.

Notre intérêt pour les algorithmes MCMC adaptatifs a été initialement motivé par

notre implication dans l'analyse des données de l'expérience Pierre Auger, que nous

abrégerons ici en Auger. Portant le nom d'un physicien français du début du ving-

tième siècle, Auger est un observatoire géant de rayons cosmiques qui est présenté au

chapitre 6. Les rayons cosmiques sont des particules chargées qui voyagent dans l'uni-

vers à des énergies particulièrement élevées. Lorsqu'une de ces particules rencontre

les molécules de gaz de notre atmosphère, elle génère une cascade de particules,

parmi lesquelles des muons, qui arrosent la surface de la Terre sur plusieurs kilo-

vii

mètres carrés. Auger possède, entre autres, un réseau de détecteurs au sol couvrant

plus de 3 000 km2 de pampa argentine et collectant des données sur ces larges cas-

cades. L'objectif de l'analyse des données est d'estimer, à partir des données d'une

cascade, certains paramètres de la première particule qui a frappé l'atmosphère. Dé-

terminer la composition chimique des rayons cosmiques, par exemple, aurait d'im-

portantes conséquences en astrophysique, comme détaillé dans le chapitre 6. Nous

avons donc commencé la dérivation d'un modèle génératif complet d'Auger qui per-

mette de pratiquer l'inférence bayésienne des paramètres de chaque cascade. Dans le

chapitre 7, nous décrivons la première partie de ce modèle, que nous présentâmes en

premier dans [17], et qui correspond au signal généré par les muons dans un unique

détecteur. Dans la seconde moitié du chapitre 7, nous exposons une procédure dite

� bayésienne empirique � qui requiert uniquement ce premier modèle pour donner

des résultats sur les données d'Auger.

Les algorithmes adaptatifs comme AM sont particulièrement e�caces pour l'infé-

rence dans des modèles complexes et de grande dimension comme celui d'Auger.

Cependant, le modèle que nous décrivons au chapitre 7 est un modèle additif formé

de la somme de plusieurs composantes, une par muon, et qui est invariant aux per-

mutations de ces composantes. Cette invariance rend l'inférence bayésienne sujette

à des di�cultés d'étiquetage des composantes, connues en anglais sous le nom de

label switching : la loi a posteriori des paramètres de toutes les composantes possède

un nombre exponentiel de modes redondants, un par permutation des composantes,

ce qui rend les marginales issues d'un algorithme MCMC di�ciles à interpréter. De

plus, l'utilisation de propositions MCMC adaptatives est rendue impossible par la

non-identi�abilité des composantes du modèle. Le chapitre 8 présente une revue des

méthodes existantes pour résoudre le label switching. Aucune de ces méthodes n'est

à la fois (i) théoriquement justi�ée, (ii) indépendante de l'expertise de l'utilisateur

et (iii) compatible avec AM. Ce vide méthodologique nous a inspiré AMOR [14], un

algorithme de Metropolis adaptatif avec réétiquetage en ligne qui possède ces trois

propriétés. Nous présentons AMOR au chapitre 9. Nous illustrons ensuite AMOR sur

un exemple qui met en lumière ses di�érences par rapport aux approches existantes

qui lui sont apparentées. Nous appliquons également AMOR à des tâches d'inférence

bayésienne comme l'estimation des paramètres de modèles de mélange, un exemple

courant possédant la même invariance par symétrie qui a motivée AMOR, ou comme

l'inférence des paramètres individuels de chaque muon dans notre modèle d'Auger.

Le premier exemple est tiré d'un article que nous avons soumis récemment [13], les

deux derniers sont apparus respectivement dans [14] et [16].

Le chapitre 10 est dédié à l'étude théorique de la convergence d'AMOR, que nous

avons également soumise dans [13]. L'un des dé�s techniques est qu'AMOR est

adaptatif non seulement en ses propositions, mais aussi en sa cible. En e�et, nous

montrons qu'AMOR apprend une restriction optimale, en un sens que nous préci-

sons, de la cible originelle à un de ses modes redondants. Nos résultats de convergence

constituent la première analyse théorique d'un algorithme de réétiquetage en ligne

à notre connaissance. Le cadre présenté possède les avantages de (i) généraliser cer-

viii

taines approches préexistantes, (ii) fournir une caractérisation explicite de la loi a

posteriori obtenue après réétiquetage, (iii) paver la voie vers une future étude du

comportement asymptotique des algorithmes de réétiquetage, et en�n (iv) il met en

lumière un lien clair et élégant entre le réétiquetage et la quanti�cation vectorielle,

qui était jusque là seulement subodoré.

Finalement, dans le chapitre 11, nous revenons sur des liens et questions esquissés

dans le texte principal. Tout d'abord, nous présageons une uni�cation prochaine

des algorithme de bandits, de SMBO et d'autres approches similaires décrites au

chapitre 3. Cette uni�cation est déjà en marche, au travers d'articles comme [122]

où le critère auxiliaire de SMBO est inspiré par l'algorithme UCB [11], ou encore

les algorithmes de bandits bayésiens de [83]. Les cadres de SMBO et des bandits

ont beaucoup à s'apporter mutuellement, le premier pouvant s'inspirer des garanties

théoriques fournies par le second, et ce dernier pouvant tirer parti des avancées mé-

thodologiques et expérimentales de la communauté SMBO. Nous discutons ensuite la

possibilité d'un système d'ajustement des hyperparamètres qui soit commun à tous

les utilisateurs du même algorithme et qui implémenterait SCoT avec un horizon

temporel in�ni. Imaginons en e�et que tous les utilisateurs du monde de percep-

trons à une couche cachée se mettent d'accord sur les hyperparamètres à utiliser et

sur une façon d'encoder les propriétés d'un jeu de données en un vecteur de réels.

Chaque nouveau jeu de données serait chargé dans une base de données commune

et l'utilisateur recevrait régulièrement un rapport sur l'ajustement de l'algorithme

à son jeu de données. Pour qu'une telle utopie n'en soit plus une, il faudrait lever

encore plusieurs di�cultés méthodologiques. Premièrement, les utilisateurs ont en

général une date limite à respecter, à laquelle ils doivent avoir obtenu les meilleurs

résultats possibles. Des algorithmes d'ajustement des hyperparamètres prenant en

compte cet horizon �ni sont donc souhaitables. Deuxièmement, les processus gaus-

siens et leur complexité cubique en le nombre de points évalués ne sont pas un choix

idéal de modèle si on envisage un grand nombre de jeux de données à traiter. D'un

côté, des améliorations signi�catives ont déjà été apportées pour réduire ce coût,

voir [108, Chapitre 8], et [38] pour une comparaison expérimentale récente de l'état

de l'art. D'un autre côté, d'autres modèles que les processus gaussiens peuvent et

ont déjà été introduits dans SMBO, comme les arbres de régression de [77], et nous

pensons qu'il y a de la place pour d'autres méthodes de régression. En�n nous ou-

vrons sur des ré�exions concernant les liens entre AMOR et SCoT d'une part, et les

algorithmes MCMC adaptatifs et les noyaux d'autre part.

Contents

1 Introduction 1

I On the automatic tuning of machine learning algorithms 7

2 Sequential model-based optimization 9

2.1 Introduction . 9

2.2 Sequential model-based optimization 11

2.2.1 The paradigm . 11

2.2.2 Gaussian processes . 12

2.2.3 The expected improvement criterion 13

2.3 A mixture cross-entropy algorithm 14

2.3.1 The cross-entropy method . 15

2.3.2 Introducing mixtures into the CEM 16

2.3.3 Initialization via triangulation 17

2.4 Experiments . 18

2.4.1 Benchmarking the mixture CE algorithm 18

2.4.2 A comparison on single EI steps: the setup 20

2.4.3 A comparison on single steps: comments 21

2.5 Conclusion . 23

3 A review on hyperparameter tuning 25

3.1 Introduction . 25

3.2 Model-free tuning . 26

3.2.1 Common optimization heuristics 26

3.2.2 Sophisticated grid searches 27

3.2.3 Racing . 27

3.3 Model-based tuning . 28

3.3.1 Linear regression . 28

x Contents

3.3.2 Neural network regression . 28

3.3.3 Gaussian process regression 28

3.3.4 Bagging of regression trees . 28

3.4 Where do the contributions of this thesis �t? 29

3.5 Conclusion . 29

4 Self-tuning deep learning 31

4.1 Introduction . 31

4.2 Optimizing EI on the DBN hyperparameter space 32

4.2.1 Building up on the mixture CEM 32

4.2.2 A tree-structured Parzen estimator approach 33

4.2.3 Details of the Parzen Estimator 34

4.3 Random search as the new baseline 35

4.4 Benchmarking SMBO for hyperparameter tuning in DBNs 36

4.4.1 Validating surrogate modelling on the �Boston housing� dataset 36

4.4.2 Parallelizing sequential search 37

4.5 Results and discussion . 38

4.6 Conclusion . 39

5 Surrogate collaborative tuning 43

5.1 Introduction . 43

5.2 The quality function and its prior . 45

5.2.1 A �ctitious generative model 45

5.2.2 A deconvolution method . 47

5.2.3 Collaborative tuning . 48

5.2.4 On the choice of a surrogate-based ranking algorithm 48

5.3 A case study on AdaBoost . 49

5.3.1 Setup . 49

5.3.2 Experiments . 50

5.3.3 Results . 52

5.3.4 Computational issues . 53

5.4 Conclusion . 53

Contents xi

II On adaptive MCMC algorithms, with applications to the
Pierre Auger experiment 57

6 The Pierre Auger experiment 59

6.1 Ultra-high energy cosmic rays . 59

6.1.1 A brief history of cosmic rays 60

6.1.2 Looking inside an air shower 61

6.1.3 Astrophysical questions raised by cosmic rays 63

6.2 The Auger detector . 65

6.2.1 The surface detector . 65

6.2.2 The �uorescence detector . 67

6.2.3 Latest results . 67

6.3 Conclusion and reading map . 70

7 Inferring muons 73

7.1 Introduction . 73

7.2 A model for the Auger tank signal 74

7.2.1 The formal tank signal . 75

7.2.2 The signal given the expected photoelectron count 75

7.2.3 The distribution of the expected PE count in time 79

7.2.4 Priors and features of the tank signal model 80

7.3 Going large-scale: counting muons in a shower 83

7.3.1 The lateral distribution function 84

7.3.2 An empirical Bayes setup . 87

7.4 Conclusion . 90

8 A review on relabeling MCMC algorithms 93

8.1 The label switching problem . 93

8.2 Relabeling algorithms . 94

8.2.1 Imposing an identi�ability constraint 94

8.2.2 Pivotal relabeling . 96

8.2.3 Constraining the allocation 97

xii Contents

8.2.4 Learning the constraint . 97

8.2.5 Probabilistic relabeling strategies 98

8.2.6 Permutation invariant loss functions 99

8.3 Conclusion and reading map . 99

9 AMOR: adaptive Metropolis with online relabeling 101

9.1 Introduction . 101

9.2 The AMOR algorithm . 103

9.2.1 The algorithm . 103

9.2.2 An illustrative example . 105

9.3 Application to Gaussian mixtures . 112

9.4 Application to the Auger tank signal model 114

9.5 Conclusion . 114

10 On the convergence of AMOR 117

10.1 Main results . 117

10.1.1 A stable AMOR algorithm . 118

10.1.2 Convergence of stable AMOR 121

10.2 Proofs . 123

10.2.1 A preliminary result . 123

10.2.2 Di�erentiating the cross-entropy term in (10.1.11) 124

10.2.3 The Lyapunov function . 130

10.2.4 Proof of Proposition 1 . 133

10.2.5 Regularity in θ of the Poisson solution 135

10.2.6 Proof of Theorem 2 . 143

10.2.7 Proof of Theorem 3 . 147

10.2.8 Proof of Theorem 4 . 148

10.3 Conclusion . 150

11 Closing remarks 151

A Notations 155

Contents xiii

Bibliography 157

Chapter 1

Introduction

In machine learning (ML), the training process of an algorithm generally consists of

two nested loops: the outer loop iterates over hyperparameter values, while the inner

loop minimizes an empirical error measure. For instance, assume we want to perform

binary classi�cation with a support vector machine (SVM; [27, 46]) and a kernel

with a single parameter, such as the lengthscale of an isotropic, unit-amplitude

squared exponential kernel. The hyperparameters are then this lengthscale and the

coe�cient of the norm penalty in the SVM objective function. Let us �x a �nite two-

dimensional grid on the hyperparameter space. For each point in the grid, we run

the SVM margin maximization algorithm, and report a validation error. We �nally

pick the hyperparameter values that yield the smallest validation error among the

grid points. It is also common practice for the user to intervene at some point in the

outer loop and re�ne the grid in �promising� regions of the hyperparameter space.

Overall, taking classi�cation as an example, a learning algorithm is a functional

from data to classi�er, and includes a budgeting choice of how many CPU cycles

are to be spent on hyperparameter exploration � the outer loop �, and how many

CPU cycles are to be spent evaluating each hyperparameter choice � the inner loop.

The results of [103] and [44] suggest that with current generation hardware such as

large computer clusters and GPUs, the optimal allocation of CPU cycles includes

more hyperparameter exploration than has been typical in the machine learning

literature.

There are several arguments in favor of the development of more e�cient and au-

tomatic approaches to hyperparameter tuning than manually assisted grid search.

First, the inner loop of an ML algorithm often corresponds to a high-dimensional

optimization problem that is solved using an algorithm that requires a large num-

ber of function evaluations, such as gradient descent variants. On today's large

datasets, it is thus not unusual for one iteration of the outer loop to require hours or

days. Second, state of the art classi�cation algorithms such as deep belief networks

(DBNs; [20]) have tens of hyperparameters, which makes grid search intractable.

Furthermore, recent results such as [103], [42], and [44] demonstrate that the chal-

lenge of hyperparameter optimization in large multilayer models such as DBNs is

a direct impediment to scienti�c progress. These works advanced state of the art

performance on image classi�cation problems by more concerted hyperparameter

optimization in simple algorithms, rather than by innovative modelling or machine

2 Chapter 1. Introduction

learning strategies. Third, automatic tuning software will make ML algorithms eas-

ier to use for non-expert users and allow experimental results from di�erent studies

to be compared more fairly.

We now consider another �eld, where similar questions arise. In computational

statistics, Markov chain Monte Carlo (MCMC) is a generic approach for exploring

complex probability distributions based on sampling. It has become the de facto

standard tool in many applications of Bayesian inference. The most widely appli-

cable MCMC algorithm is the Metropolis-Hastings algorithm (MH; [110]), which

builds a Markov chain that approximates independent draws of the desired target

distribution. MH is basically a loop which, at each iteration, makes a local random

proposal according to a proposal distribution, and accepts or rejects the new point

as its current state according to a sophisticated rule. Fine tuning of the proposal

distribution is crucial to obtain good results [110]. When applying MH to sample

from a small-dimensional target, it is customary to use rules of thumb or to set up

the proposal distribution in a preliminary analysis, optimizing various criteria. How-

ever, when running imbricated MCMC algorithms on a complex high-dimensional

target, such as the posterior distribution in a large-scale generative model, manual

interventions would often have to be counted in millions, and it is not even obvious

what the user should aim for. Such large-scale models are now common in particle

physics: the Pierre Auger experiment, for instance, is a running experiment designed

to study cosmic rays, and involves around 1600 detectors and several 100K signals.

The purpose of this thesis is to make the application of inference and ML algorithms

more autonomous by learning online about the structure of the problem they are

addressing. In the context of hyperparameter tuning in ML, sequential model-

based optimization (SMBO, also known as Bayesian optimization; [82]) has gained

interest recently [21, 126, 120]. Unlike gradient descent techniques, SMBO is an

optimization paradigm that performs well in regimes where evaluations of the target

function are costly. This is the case of the outer loop of hyperparameter tuning, since

the computational cost of evaluating one set of hyperparameters is high. At each

iteration, SMBO uses information such as previously evaluated points to build up a

surrogate model of the function to be optimized, here the validation error, and then

uses this model to pick the next point to be evaluated. The latter task is achieved by

optimizing an auxiliary criterion that measures the interest of the evaluation of each

point given the �tted model. Our vision is that in the near future, ML algorithms

should be turn-key, with the hyperparameter tuning task completely automatized.

We believe that SMBO is an appropriate framework to develop this automation,

and we now present the contributions we made towards this goal, which correspond

to Part I of this thesis.

First, Chapter 2 presents the SMBO framework, along with our contribution to the

inner optimization of the auxiliary criterion. Auxiliary criteria, such as the well-

known expected improvement criterion, are usually optimized by exhaustive search

over the hyperparameter space, setting a grid or randomly sampling. We proposed

3

a novel evolutionary optimization algorithm in [14] that outperforms exhaustive

search on this subtask by exploiting the known structure of the expected improve-

ment criterion. Second, to demonstrate that SMBO is up to the most challenging

tasks in ML hyperparameter tuning, Chapter 4 presents tailored SMBO algorithms

that tune the 30+ hyperparameters of DBNs, which we published in [21]. We �rst

show � perhaps surprisingly � that random search outperforms manual tuning on

these tasks, and that SMBO outperforms random search. Motivated by these pos-

itive results, we realized that a crucial advantage that human users still have over

automatic tuning algorithms, when confronted to a new dataset, is their memory

of past experiments over similar datasets, which gives them intuition on potentially

good regions of the hyperparameter space. In Chapter 5, we present a yet un-

published framework named SCoT � for surrogate collaborative tuning � to perform

model-based optimization of hyperparameters of learning algorithms across datasets.

SCoT can, for instance, (i) take advantage of simultaneously tuning the same al-

gorithm on several datasets and (ii) use the information gained from training the

same algorithm on di�erent datasets in the past. The main methodological di�culty

arises when comparing the results of the considered learning algorithm on di�erent

datasets; traditional validation errors cannot be used directly, since two datasets can

yield errors at arbitrarily di�erent scales. The target of the algorithm, that is, the

objective function of the overall optimization procedure, is thus ill-de�ned. SCoT

solves this by relying on a surrogate ranking algorithm to design its target at each

iteration. We present applications to AdaBoost, a popular classi�cation algorithm.

SCoT is also interesting from a pure methodological point of view, since it is a novel

and generic SMBO algorithm that adapts its target on the �y.

Now let us come back to MCMC algorithms. The tuning of the proposal in MH

can be compared to hyperparameter tuning in ML. Since the seminal paper [69],

adaptive MCMC methods that learn their proposal distribution on the �y are an

active research topic [9, 8]. Adaptive Metropolis (AM; [69]), for instance, aims at

identifying the unknown covariance structure of the target distribution along the

run of an MH algorithm with multivariate Gaussian proposal. The rationale behind

this approach is based on scaling results which suggest that the chain correlation is

minimized when the covariance matrix used in the proposal distribution matches,

up to a constant that depends on the dimension, the covariance matrix of the target,

for a large class of unimodal target distributions with independent marginals [111,

112]. AM thus progressively adapts, using a stochastic approximation scheme, the

covariance of its proposal distribution to the estimated covariance of the target.

AM is an example of MCMC algorithm with automatic hyperparameter tuning that

takes into account what it learns about its task to adapt its sampling strategy online.

This is similar in spirit to SMBO-based hyperparameter tuning in ML, although the

goals and details are di�erent. Part II of this thesis is devoted to adaptive MCMC

methodology and applications.

Initially, our interest for adaptive MCMC was motivated by our involvement in

the data analysis of the Pierre Auger experiment (henceforth denoted as Auger),

4 Chapter 1. Introduction

a giant cosmic ray observatory that we present in Chapter 6. Cosmic rays are

charged particles that travel through the universe at very high energies. When one

of these particles hits our atmosphere, it generates a cascade of particles, among

which muons, that strike the surface of Earth on several square kilometers. Auger

has a 3 000 km2 wide array of detectors gathering data from these cascades. The

objective of the data analysis is to infer the parameters of the original incoming

particles. For instance, the knowledge of the composition of the cosmic rays would

have important implications in astrophysics, as reviewed in Chapter 6. We are thus

interested in deriving a complete large-scale generative model of Auger to perform

Bayesian inference on the parameters of each cascade. In Chapter 7, we present

the bottom part of this model, which we �rst presented in [17], corresponding to

the signal that muons generate in a single detecting unit. In the second half of

Chapter 7, we describe an empirical Bayes procedure that only requires this bottom

part of the model to yield results on Auger data.

Adaptive MCMC algorithms like AM are particularly suitable for inference in such

intricate and high-dimensional models. However, the signal model presented in

Chapter 7 is an additive model made of several components, one for each muon,

which is invariant to permutations of these components. This invariance makes

MCMC inference prone to label switching: the posterior distribution of all compo-

nent parameters has exponentially many redundant modes, one for each permutation

of the components, thus rendering the marginals of a well-mixing MCMC algorithm

useless in practice. Furthermore, the use of adaptive proposal strategies is made

impossible by the unidenti�ability of the components. In Chapter 8, we review pre-

vious methods that address the label switching problem. None of these methods is

simultaneously provably accurate, user-independent, and suitable for adaptive in-

ference, which inspired us to design AMOR [14], an adaptive Metropolis algorithm

with online relabeling that shares all three properties. We present AMOR here in

Chapter 9. We then benchmark AMOR on a simple toy example to underline its

behavior compared to previous approaches, on Bayesian inference in Gaussian mix-

ture models, and on simulations from our Auger model described in Chapter 7. The

�rst example is taken from a recently submitted paper [13], the second appeared in

[14], and the third in [16].

Chapter 10 is devoted to the convergence proof of the AMOR algorithm that we

also submitted in [13]. One of the technical challenges is that AMOR is adaptive

both in its target and its proposal mechanism. Our convergence results are the

�rst theoretical analysis of an online relabeling algorithm to our knowledge. The

developed theoretical framework is appealing because (i) it generalizes previous

approaches, (ii) it provides an explicit characterization of the posterior, (iii) it paves

the way towards future work on the asymptotic behavior of relabeling algorithms and

convergence of the relabeled samples, and (iv) it states an elegant and clear relation

between relabeling and vector quantization techniques that was only subsumed in

previous approaches.

5

Finally, in Chapter 11, we come back to links that are sketched in the main text, and

make closing remarks on the future of some notions that are mentioned or developed

in this thesis.

This thesis is pluridisciplinary, and we hope it will have readers with di�erent back-

grounds. Whereas it is primarily intended for readers with a statistics background,

we tried to keep the general parts accessible and self-contained, provided chapters

are read in the presentation order. Some parts, however, were too speci�c to main-

tain this objective, like the proofs in Chapter 10. Finally, notations are introduced

along the main text to ease the reading, and we summarize the most frequent ones

in Appendix A.

Part I

On the automatic tuning of
machine learning algorithms

Chapter 2

Sequential model-based
optimization

Contents
2.1 Introduction . 9

2.2 Sequential model-based optimization 11

2.2.1 The paradigm . 11

2.2.2 Gaussian processes . 12

2.2.3 The expected improvement criterion 13

2.3 A mixture cross-entropy algorithm 14

2.3.1 The cross-entropy method . 15

2.3.2 Introducing mixtures into the CEM 16

2.3.3 Initialization via triangulation 17

2.4 Experiments . 18

2.4.1 Benchmarking the mixture CE algorithm 18

2.4.2 A comparison on single EI steps: the setup 20

2.4.3 A comparison on single steps: comments 21

2.5 Conclusion . 23

In this chapter, we review the paradigm of sequential model-based optimization and

contribute to the inner loop of sequential GP-based optimization. This contribution

is joint work with my advisor Balázs Kégl and was published in [15].

2.1 Introduction

There are numerous important global optimization problems in which the single

evaluation of the target �tness function is very costly. Parameter optimization of

large complex systems often requires running expensive simulations or carrying out

real experiments that can take a long time. Hyperparameter optimization in machine

learning is another example: evaluating one set of hyperparameters requires the full

training that can take hours or days on today's large databases.

10 Chapter 2. Sequential model-based optimization

A natural way to deal with such problems is to replace the �tness function by a

cheap-to-evaluate estimator, and optimize this surrogate model to propose a small

number of points where the expensive �tness function is evaluated in an iterative

active learning setup. This paradigm is called sequential model-based optimiza-

tion (SMBO), Bayesian optimization, or surrogate-based optimization. Gaussian

processes (GPs) provide an elegant way to model the �tness and to deal with the

exploration-exploitation trade-o� in a principled way. The paradigm of global op-

timization based on GPs dates back to the 1970s [97]. We start with some initial

training points spread over the input space, evaluate the �tness function f at those

points, and repeat the following steps:

1. Choose the next point to evaluate x∗ by optimizing a cheap sampling criterion

that measures some merit of an additional evaluation at any point of the input

space,

2. Evaluate f at x∗.

3. Add
(
x∗, f(x∗)

)
to the training set.

GP regression intervenes in the sampling criterion evaluation which involves the GP

posterior over the �tness function given the training set.

The design of e�cient sampling criteria (the so-called merit functions) is a hot

research topic. Recent advances in this domain include the conditional entropy of the

minimizer dealing with noisy evaluations (see [129] and the related [72]), the multi-

armed bandit criterion [122] to derive regret bounds and the marginalized expected

improvement and expected improvement per second of [120]. Our contributions do

not depend on the choice of the criterion; we concentrate however throughout this

thesis on the classical and commonly used expected improvement (EI) criterion of J.

Mockus (see [82] for a recent extensive review). EI measures the expected amount by

which we can improve the best �tness value obtained so far by going to a new point.

Such criteria are usually highly multimodal, so optimization is typically done by a

grid search or a Latin hypercube sampling approach that requires a large number

of evaluations of the sampling criterion. This is a major drawback of these methods

especially when the evaluation involves Monte Carlo sampling from the GP [129], so

these methods are used mostly to optimize �expensive-to-evaluate� functions when

the computational time to evaluate the functions justi�es the time to be spent on

proposing the next evaluation point.

In this chapter, we improve on the computational bottleneck of these methods by

replacing the exhaustive evaluation of the surrogate and merit functions by a cross-

entropy-based mixture method. The main idea is to replace the grid search by an

adaptive evolutionary algorithm that iteratively samples in regions of higher merit

value. The search distribution will be a mixture to take advantage of prior knowl-

edge on the shape of the merit functions like EI. We have two contributions: a well-

formulated mixture cross-entropy method and its application to model-based opti-

2.2. Sequential model-based optimization 11

mization. Experiments indicate that 1) we outperform the classical single-Gaussian

cross-entropy method when the �tness function is highly multimodal, and 2) we

outperform standard exhaustive search in GP-based surrogate optimization.

The outline of the chapter is as follows. In Section 2.2 we detail the SMBO paradigm

and instantiate its inputs by decribing GPs and the EI criterion. Then in Section 2.3

we formally derive a mixture cross-entropy optimization method and propose an ini-

tialization procedure using triangulation of the training data. Finally in Section 2.4

we benchmark our mixture algorithm as a generic global optimization method, and

compare it experimentally to exhaustive search on particular EI optimization prob-

lems.

2.2 Sequential model-based optimization

2.2.1 The paradigm

When tuning a learning algorithm on today's large databases, obtaining a valida-

tion error for a given set of hyperparameters requires a training phase that can

typically take hours or days. Sequential model-based optimization (SMBO) is a

surrogate optimization method suitable for such expensive-to-evaluate target func-

tions. SMBO works by replacing the target function f(x) by a cheaper-to-evaluate

surrogate model, and iteratively 1) tune the model and 2) optimize an auxiliary cri-

terion function S(x) that measures the interest of asking the target function value

at a new point x. The optimization paradigm is presented in Figure 2.1. The ingre-

dients that the user has to provide are a modelM and a criterion S, for which we

now present two common choices that we used in our approach.

SMBO
(
f,M0, T, S

)

1 O ← ∅

2 For t← 1 to T

3 x∗ ← argmaxx S(x,Mt−1)

4 Evaluate f(x∗) ⊲ Expensive step

5 O ← O ∪ (x∗, f(x∗))

6 Fit a new modelMt to O

7 return O

Figure 2.1: The pseudo-code of generic sequential model-based optimization. f is

the function to be optimized,M0 is an initial surrogate model, T is the number of

steps, and S is the auxiliary criterion that measures the interest of asking the target

function value at a new point x.

The GP (also known as kriging) is a popular choice for model M in Figure 2.1,

12 Chapter 2. Sequential model-based optimization

mainly due to its capacity to elegantly handle the uncertainty about the unknown

�tness function. Several auxiliary criteria (also called merit functions, denoted by

S in Figure 2.1) were proposed to handle the exploration-exploitation trade-o� in

global optimization. The most well-known are the probability of improvement and

the expected improvement (EI; [82]). More recently [129] proposed to use the con-

ditional entropy of the global minimizer to improve on EI when the the evaluation

of the �tness function is noisy. One of the most recent novelty in the �eld is [122]'s

proposal of using multi-armed bandits based on a GP surrogate model. After re-

calling the basics of GPs in Section 2.2.2 (based on [108]), we describe the most

well-known criterion of expected improvement [82] in Section 2.2.3. We carried out

all our experiments using this criterion; note, however, that the proposed technique

is applicable with any GP-based merit function.

2.2.2 Gaussian processes

GPs provide a convenient way to put priors over functions. Let k be a positive

de�nite kernel on the input space X. As an example, a widely-used kernel for

regressing smooth functions f : R
d → R is the squared exponential kernel:

k(x, y) = a exp

(
−

1

2
(x− y)TΛ−1(x− y)

)
(2.2.1)

where Λ = Diag(ℓ21, . . . , ℓ
2
d) is a diagonal matrix containing the so-called lengthscale

parameters of k. An isotropic squared exponential kernel is then de�ned by taking

Λ = ℓId, where Id is the identity matrix of size d. A large number of kernels for real

function regression can be found in [108].

Under a GP(0, k) prior, the distribution of any vector of function values f =

(f(x1), . . . , f(xn))
T is a multivariate Gaussian f ∼ N (0,K), where the so-called

Gram matrix K is de�ned through Kij := k(xi, xj).

The most useful property of the GP prior is that it is closed under sampling: given

a prior p(f) ∼ GP(0, k) over functions and a set of samples

O :=
{
(xi, f(xi)); 1 ≤ i ≤ n

}
,

the posterior p(f |O) is also a GP with mean and covariance functions

m̃(x) = k(x,x)K−1
f ,

k̃(x, x′) = k(x, x′)− k(x,x)K−1k(x, x′) .

It is then straightforward to make predictions about the function value at a test point

x∗ since, according to the posterior, f(x∗) has distribution N (m̃(x∗), k̃(x∗, x∗)).

Observe that the posterior variance at training points is zero, since the observations

are noiseless. Additive homoscedastic Gaussian noise can be handled easily [108],

resulting in replacing the Gram matrix K by K + σ2In, where σ
2 > 0 is the noise

2.2. Sequential model-based optimization 13

variance and In the identity matrix of size n. Heteroscedastic output noises [64] and

input noises [95] can also be handled. An example �tted GP with homoscedastic

noise can be seen on the top panel of Figure 2.2.

Finally, let us add that similarly to other kernel machines, GPs have their own

hyperparameters η that are the parameters of the kernel k. For example, for the

squared-exponential kernel in (2.2.1), η is (a, ℓ1, . . . , ℓd)
T . These hyperparameters

are commonly chosen so as to maximize the marginal likelihood p(η|O) [108] and

we will always follow this heuristics in this thesis. This optimization task is what

��tting a GP� actually means, as in Step 6 of the algorithm in Figure 2.1. First, we

observe that evaluating the marginal likelihood requires inverting the Gram matrix

K, thus making the computational complexity of �tting a GP cubic in the size of the

training set O. Second, we note that it was recently suggested in [18] and [120] that

a full Bayesian treatment is more robust in practice: place a prior over η and sample

from the posterior of η to marginalize quantities when needed, as for example when

computing expected improvements.

2.2.3 The expected improvement criterion

Assume we want to minimize an unknown �tness function f , already evaluated at

n points

O := {(xi, f(xi)); 1 ≤ i ≤ n} .

The goal of EI is to �nd the next point xn+1 where the expected improvement

over the currently best minimum mn := mini f(xi) is the highest. As described in

Section 2.2.2, �tting a GP on O yields, at every test point x∗, a mean m̃(x∗) and a

standard deviation σ̃(x∗) = k̃(x∗, x∗)1/2. The EI merit function is then de�ned by

EI(x) := E
(
max(mn − f(x), 0)|Fn

)
,

where Fn is the σ-algebra generated by the previous �tness evaluations in O. An

easy computation yields

EI(x) = σ̃(x)
(
uΦ(u) + φ(u)

)
, (2.2.2)

where u = (mn − m̃(x))/σ̃(x), and Φ and φ denote the cdf and pdf of the N (0, 1)

distribution, respectively. This alternative de�nition is easier to understand: EI

represents a trade-o� between regions where the mean function is close to or better

than the best value obtained so far and regions where the uncertainty is high. Notice

that the EI merit function is always nonnegative and zero at every training point.

It is generally smooth since it inherits the smoothness of the chosen kernel (which

is in practice often at least once di�erentiable). The EI merit function is also

likely to be highly multimodal, especially as the number of training points increases.

Figure 2.2 illustrates an example of EI function. Our contribution in this chapter is

an optimization algorithm which exploits this prior knowledge on the shape of the

EI merit function to optimize it e�ciently.

14 Chapter 2. Sequential model-based optimization

4 2 0 2 4
10

5

0

5

10

15

20

25

30

GP mean
data

4 2 0 2 4
0.00

0.02

0.04

0.06

0.08

0.10

EI

Figure 2.2: On the top panel, an example output of GP regression with a one-

dimensional squared exponential kernel and additive homoscedastic, Gaussian noise

is shown. The set O of previous evaluations of the target f is depicted as circles,

the �tted posterior GP mean m̃ is the thick blue line, while the dark and light blue

shaded areas respectively depict one- and three-sigma error bars m̃ ± z k̃(x, x)1/2,

x ∈ [−5, 5], z = 1, 3. Shaded areas do not collapse at points in O, indicating a

nonzero noise level σ. If the top panel describes the prior on f , then the bottom

panel shows the expected improvement criterion corresponding to minimizing f .

Note that EI here is bimodal.

2.3 A mixture cross-entropy algorithm

Optimizing a GP-based merit function such as EI (2.2.2) is itself a di�cult problem.

Due to its multimodality, the most common technique is grid search either on a

full grid or, especially in higher dimensions, using a Latin hypercube sampling. In

any case, the criterion itself has to be evaluated a lot of times in each of the outer

iterations of the global optimization loop. This can be slow even if the evaluation

is analytical, let alone the case when the evaluation itself requires a Monte Carlo

(henceforth MC) simulation from the GP [129]. For this reason, GP-based global

optimization is often �marketed� as a technique for optimizing expensive functions,

where the high computational complexity of evaluating the original �tness function

f justi�es the work invested in predicting the next evaluation point. In this section

we describe an approach that can improve the computational complexity of the

2.3. A mixture cross-entropy algorithm 15

surrogate optimization, bringing GP-based global optimization closer to the family

of generic global optimizers. Note that although we instantiate our contribution

with the EI criterion in SMBO, it is a general optimization algorithm for highly

multimodal functions.

Our approach uses importance sampling to adapt the search grid to the optimization

problem. This is done by means of the cross-entropy method (CEM; see [117] for

a detailed review) that we describe in Section 2.3.1. We make use of the fact

that the multimodality of the merit functions suggests to model them with mixture

distributions. Our main contribution is found in Section 2.3.2: we show how to

use mixture distributions in CEM. Section 2.3.3 describes a speci�c initialization

routine adapted to GP-based merit functions.

2.3.1 The cross-entropy method

The cross-entropy method is an adaptive importance sampling technique originally

designed for integration on rare events. It proved to apply quite naturally to op-

timization. CEM provides a mathematical justi�cation to evolutionary sampling

methods, rigorously introducing the selection step in the estimation procedure. Con-

sider computing

I := Pu(A) =

∫
1A(x) g(x;u) dx (2.3.1)

where the expectation is taken with respect to a pdf g(x;u) belonging to some

parametric family G indexed by u, and A is Pu-rare. If one knows how to sample

from g(x;u), a crude Monte Carlo estimate of (2.3.1) is computable. But as A is

rare for Pu, few of the sampled points will happen to fall in A, so it is preferable to

use importance sampling to reduce the variance of the MC estimator by sampling

more points in the region of interest A. Importance sampling in this case consists

in writing

I =

∫
1A(x)

g(x;u)

q(x)
q(x) dx ≈

1

N

N∑

i=1

1A(xi)
g(xi;u)

q(xi)
(2.3.2)

for some distribution q chosen for easy sampling, whose support contains the support

of g(.;u) and x1, ..., xN ∼ q i.i.d. [110].

There is a theoretical answer to the question of the optimal choice of q, since if one

takes q = q̃ ∝ 1A(.)g(.;u), the variance of the MC estimator will be 0. Of course,

this is of no practical use since, to normalize q, the integral of interest I is needed,

but one can still try to approximate q̃ in some sense. In particular, minimizing over

g(.; v) ∈ G the Kullback-Leibler divergence between q̃ and g(.; v) is equivalent to

solve

max
v

∫
1A(x) g(x;u) log g(x; v) dx , (2.3.3)

or, taking the empirical counterpart of (2.3.3) with eventually a new importance

16 Chapter 2. Sequential model-based optimization

sampling step

max
v

N∑

i=1

1A(xi)
g(xi;u)

g(xi;w)
log g(xi; v) (2.3.4)

where the xi's are drawn i.i.d. according to g(.;w).

Let us now turn this remark into an evolutionary optimization algorithm adapted

to our original problem. Let us denote by S the criterion to maximize over X.

The key idea is to think of estimating probabilities of level sets, that is, integrals

of the form Pu(S(X) ≥ γ). Using the CEM principle to approximate the optimal

importance distribution 1(S(.)≥γ)g(.;u), the importance sampling paradigm will help

us to sample points in (S(X) ≥ γ). Iteratively repeating the procedure while cleverly

adapting γ to keep enough samples in the region of interest should lead us to sample

from close to the optima of S.

Since we do not care about the actual estimate of the integral, we can get rid of

the importance weights in (2.3.4) and iteratively optimize our choice of the impor-

tance distribution g(.; v) to estimate Pvt−1(S(X) ≥ γt). The core algorithm �nally

proposed by the authors of [117] is given in Figure 2.3.

CEM for Optimization(S,N, ρ, d)

1 Initialize v0, set t← 1

2 Sample x1, ..., xN ∼ g(.; vt−1) i.i.d.

3 Order S(x1), ..., S(xN) decreasingly

4 Take γt to be the (1− ρ)-quantile
of the ordered performances

5 Solve

vt := arg max
v

N∑

i=1

1(S(xi)≥γt) log g(xi; v) (2.3.5)

6 if t ≥ d and γt = γt−1 = ... = γt−d then stop

7 else set t := t+ 1 and go back to step 2

Figure 2.3: The CEM algorithm: the goal is to iteratively sample in regions of higher

criterion value.

Note that taking G to be the family of Gaussians in CEM leads to the estimation

of multivariate normal algorithm (EMNA; see [89] for a review on estimation of

distribution algorithms and their applications), a popular evolutionary algorithm

used in neural network training.

2.3.2 Introducing mixtures into the CEM

It is shown in [117] that (2.3.5) is analytically solvable when G is an exponential

family. It turns out that there is a certain class of more generic distributions which

2.3. A mixture cross-entropy algorithm 17

would intuitively allow for a better �t of disconnected areas (S ≥ γ), performing

better exploration of multimodal landscapes by clustering the data: the mixture

distributions. Their simplest form is a weighted sum of distributions belonging to

parametric family Φ = (ϕ(., v))v, i.e. g(.;v) :=
∑D

d=1 αdϕ(.; vd) where
∑

d αd = 1.

In the following subsection, we demonstrate that they also lead to analytical update

formulae, whenever Φ is an exponential family.

The problem in its integral form is maxv ℓ(α, v), where ℓ(α, v) denotes

∫
1(S(x)≥γ) log

(
D∑

d=1

αdϕ(x; vd)

)
g(x; v(t−1)) dx .

Let us de�ne the posterior probability of x belonging to the dth cluster by

ρd(x;α, v) ∝ αdϕ(x;µd,Σd), and consider

Lt(α, v) =

∫ D∑

d=1

1(S(x)≥γ) ρd(x;α
(t), v(t)) log

(
αdϕ(x; vd)

)
g(x; v(t−1)) dx .

By concavity of the log, we have

Lt(α, v)− Lt(α(t−1), v(t−1)) ≤ ℓ(α, v)− ℓ(α(t−1), v(t−1)) ,

so any increase in Lt would mean a bigger-or-equal increase in ℓ. At the same

time, maximization of Lt(α, v) leads to a closed formula whenever ϕ belongs to an

exponential family, e.g. in the Gaussian case, writing

ωtd,γ(x) = ρd(x;α
t, µt,Σt)1(S(x)≥γ) ,

we derive

αt+1
d =

∫
ωtd,γ(x) g(x; v

(t)) dx ,

µt+1
d =

1

αt+1
d

∫
ωtd,γ(x)x g(x; v

(t)) dx ,

Σt+1
d =

1

αt+1
d

∫
ωtd,γ(x) (x− µt+1

d)(x− µt+1
d)T g(x; v(t)) dx ,

whose empirical versions can be directly used as updates in Line 5 of Figure 2.3.

Note that this new algorithm is very similar to population Monte Carlo schemes for

integration [110].

2.3.3 Initialization via triangulation

CEM with mixtures �ts the shape of the merit function, but it does not specify

how to initialize the mixture components, a crucial step in practice. Recall that

merit functions are zero at every training point and nonnegative everywhere. Their

18 Chapter 2. Sequential model-based optimization

Table 2.1: The three benchmark functions.

Function Expression Bound

sphere
∑d

i=1 x
2
i 600

Rastrigin 10d+
∑d

i=1

(
x2
i − 10 cos(2πxi)

)
5

Ackley
20 + e− 20 exp

(
−0.2

√
1
d

∑d

i=1 x
2
i

)
−

exp
(

1
d

∑d

i=1 cos(2πxi)
) 10

local maxima are in between the training points, so we should try to initialize the

mixture components into these areas. The main idea is to triangulate the set of

training points, and look at the modes in the interior of the simplices. We propose to

initialize a component mean at the center of mass of every simplex and its covariance

to s2I, where s is the distance from the center of mass to the nearest corner.

We chose to use the Delaunay triangulation1 because it keeps the simplices as com-

pact as possible [104], in the sense that the interior of the circumsphere of any sim-

plex contains no training point. In the Euclidean plane, this is equivalent to saying

that the minimum angle of Delaunay's triangles is maximum over all triangulations:

every triangle is then as equilateral as possible. However, e�cient implementations

of Delaunay's triangulation for large datasets exist only for dimensions up to 6 [75].

In small dimensions, we could a�ord to build an initial training set containing the 2d

corners of a hypercubic search domain C, whereas in cases where d ≥ 6, we replaced

the complete set of corners by a small number of uniformly sampled corners.

2.4 Experiments

We present two sets of experiments. Since the mixture CE method is a novel pro-

posal, we �rst benchmark it on three common test functions taken from the op-

timization community (Table 2.1). We then compare the mixture algorithm with

Delaunay initialization against grid search on single steps of EI optimization with

di�erent training set sizes in two and ten dimensions.

2.4.1 Benchmarking the mixture CE algorithm

In this section we experimentally compare EMNA [89] to our mixture CE algorithm,

using mixtures of Gaussians. EMNA is a popular evolutionary algorithm based on

the on-line �t of a Gaussian surrogate model, and our algorithm can thus be seen as

a generalization of EMNA, allowing to launch several EMNAs in di�erent loci of the

search space and adapt to the �tness landscape while favoring the best components.

A mixture version of EMNA called estimation of mixture of distributions algorithm

1When d ≥ 3, triangulation is to be understood as simplexi�cation.

2.4. Experiments 19

(EMDA) was already mentioned in [89]. Although our algorithm can be seen as an

instance of EMDA, it is derived di�erently and it has the advantage of theoretically

justifying the selection step by a ghost integration goal which is at the core of the

CE method.

We started the optimization with a relatively large number of mixture components

(10 for dimension 10, 20 for dimension 50), and gradually killed them when their

mixing proportions went below a certain threshold (10−5 in our experiments). We

used two di�erent killing strategies. In the �rst strategy (red curves in Figure 2.4.1),

we simply continued the procedure with the remaining components without replac-

ing the killed ones. In the second strategy (green curves in Figure 2.4.1), we added a

new component at the old component with highest mixing proportion, and assigned

the new one a large initial variance to favor exploration around the current detected

modes. We performed seven independent runs for each of the three algorithms. We

plot the mean �tness obtained at the mean of the component with the highest mix-

ing proportion versus the number of function evaluations. Shaded areas represent

one standard deviation.

EMNA schemes are prone to degeneracy of the covariance matrix. To avoid it,

we followed the softening advice of the authors of [117], taking at each time step

t = 1, 2, ... the new covariance matrix to be a weighted sum of the old covariance

matrix and the selected sample covariance matrix, the weight of the latter being

βt = β − β (1− 1/t)q with β = 0.8 and q = 5. This softening makes the degeneracy

appear polynomially with the time rather than exponentially.

We chose common benchmark test functions in the continuous optimization com-

munity. We tried to reproduce the conditions of [89], initializing means uniformly

over the initial ranges [−B,B]d where B is the speci�ed bound in Table 2.1, taking

N = 2000 points at each iteration and selecting the best µ = 1000 points to com-

pute the updates. We initialized all variances to 1. The three columns of Figure

2.4.1 depict our results on the Sphere, Rastrigin, and Ackley functions, respectively,

the latter two being highly multimodal. The two rows correspond to dimensions

d = 10 and d = 50. All functions are normalized to present a unique minimum at

the origin.

Fitness graphs and spatial and eigenvalue-based diagnoses suggest that EMNA �

with the degeneracy-avoiding update � �nds the optimal mode after a reasonable

number of function evaluations. Our mixture CE method seems to reach more

quickly the best mode with either killing strategy: it automatically selects the best

area according to its global model of the surface by focusing on the best components.

We observed that after this pre-selection phase, the component means quickly con-

centrated on the best mode. After this step, the behavior was of course very similar

to EMNA.

Let us insist on the fact that we used the same N and µ for EMNA and the mixture

CEM, so updating a mixture costs the same price in function evaluations as updating

20 Chapter 2. Sequential model-based optimization

a single distribution. That is why we think our algorithm can be considered as an

automatic way of tuning the initialization of EMNA. Looking back to our original

problem, this is exactly what we need in the context of EI optimization. Indeed,

the EI landscape is possibly multimodal, and the mixture approach will allow us to

visit the di�erent modes, progressively select the best one, and �nally sample only

in the interesting area. As both killing strategies performed equally well, we will

use the �rst � no replacement � in what follows, for the sake of simplicity.

0 50 000 100 000
-10

0

10

20

30

40

50

60

Number of evaluations

Fi
tn

es
s

va
lu

e

0 50 000 100 000

0

50

100

150

Number of evaluations

Fi
tn

es
s

va
lu

e

0 50 000 100 000
-2

0

2

4

6

8

10

Number of evaluations

Fi
tn

es
s

va
lu

e

0 50 000 100 000

0

1´106

2´106

3´106

4´106

5´106

Number of evaluations

Fi
tn

es
s

va
lu

e

0 50 000 100 000 150 000

0

500

1000

1500

Number of evaluations

Fi
tn

es
s

va
lu

e

0 50 000 100 000

0

5

10

15

Number of evaluations

Fi
tn

es
s

va
lu

e

Figure 2.4: Empirical comparison of EMNA (blue) with two di�erent killing strate-

gies of our mixture CE algorithm (red and green, see the text for details) on the

three benchmark functions (sphere, Rastrigin and Ackley, from left to right) in di-

mensions 10 (top) and 50 (bottom). Thick lines represent the mean �tness values of

the components with highest mixing proportion, while shaded areas represent one-σ

error bars.

2.4.2 A comparison on single EI steps: the setup

To verify experimentally whether the mixture method is more e�cient than a grid

search on the EI optimization problem, we propose the following setup. We consid-

ered the domain C := [−5, 5]d with d = 2, 10, and we started by uniformly sampling

n′ = 5, 20, 40 points that we take as our training set, along with the (full or sam-

pled) domain corners. The di�erent values of n′ represent di�erent epochs in the

�nal algorithm: as n′ grows, we steer from an exploration phase to more advanced

(exploitation) stage.

For each n′, we optimized the EI criterion using grids of di�erent resolutions. Then

we ran our mixture CE method with an identical budget, meaning that it was only

allowed to perform as many EI function evaluations as the number of points in the

grid. For example, a 2D grid with a step size of 0.5 contains length(−5 : 0.5 : 5)2 =

441 points, so the red point corresponding to 0.5 in Figure 2.4.2 is the value obtained

by the mixture algorithm after 441 EI function evaluations. The algorithms were run

several times (3 times for each grid of stepsize r, with a shift uniformly distributed

2.4. Experiments 21

in [0, r], and 5 times for each budget); the mean values obtained are plotted in thick

lines, with shaded areas representing one-σ error bars.

The grid search becomes a real bottleneck in higher dimensions. The most popular

solution is to replace the grid search by a Latin hypercube search, where the budget

is a parameter. Figure 2.4.2 depicts a comparison of Latin hypercube search with

our mixture search (in which we replaced the full set of corners by a subsample of

10), as detailed in Section 2.3.3.

The underlying �tness functions were the sphere, Rastrigin and Ackley functions,

respectively (Table 2.1). The covariance function used in the experiments was an

isotropic squared exponential with homoscedastic noise, for which the hyperparam-

eters where tuned by maximizing the marginal likelihood of the GP [108].

0.5 1. 1.5 2.
3.0

3.5

4.0

4.5

5.0

5.5

6.0

Grid step size

E
I

va
lu

e

0. 0.5 1. 1.5 2.
0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Grid step size

E
I

va
lu

e

0.5 1. 1.5 2.
0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

Grid step size
E

I
va

lu
e

0.5 1. 1.5 2.
-0.2

0.0

0.2

0.4

0.6

Grid step size

E
I

va
lu

e

0. 0.5 1. 1.5 2.
-0.5

0.0

0.5

1.0

1.5

2.0

Grid step size

E
I

va
lu

e

0. 0.5 1. 1.5 2.
0.00

0.05

0.10

0.15

0.20

Grid step size

E
I

va
lu

e

0.5 1. 1.5 2.
-0.05

0.00

0.05

0.10

0.15

Grid step size

E
I

va
lu

e

0. 0.5 1. 1.5 2.
0.0

0.1

0.2

0.3

0.4

0.5

Grid step size

E
I

va
lu

e

0. 0.5 1. 1.5 2.
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Grid step size

E
I

va
lu

e

Figure 2.5: Empirical comparison of grid search (blue) and mixture search (red) on

the three benchmark functions (sphere, Rastrigin and Ackley, from left to right) in

dimension d = 2 with di�erent training set sizes n = 4 + n′ = 9, 24, 44 (from top

to bottom). Thick lines represent the mean of the best EI values obtained, while

shaded areas represent one σ error bars.

2.4.3 A comparison on single steps: comments

The mixture search outperforms the grid on all test functions in 2D for small train-

ing set size, and shows outstanding robustness to budget reduction for every training

set size on the most di�cult task (Ackley's function). On the sphere and Rastrigin's

22 Chapter 2. Sequential model-based optimization

0. 0.4 0.8 1.2 1.6 2.

2

4

6

8

10

r

E
I

va
lu

e

0. 0.4 0.8 1.2 1.6 2.

1

2

3

4

5

6

r

E
I

va
lu

e

0. 0.4 0.8 1.2 1.6 2.
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

r

E
I

va
lu

e

0. 0.4 0.8 1.2 1.6 2.

16

18

20

22

24

r

E
I

va
lu

e

0. 0.4 0.8 1.2 1.6 2.
0.2

0.4

0.6

0.8

1.0

1.2

1.4

r

E
I

va
lu

e

0. 0.4 0.8 1.2 1.6 2.
0.20

0.25

0.30

0.35

0.40

r

E
I

va
lu

e

Figure 2.6: Empirical comparison of grid (blue) and mixture search (red) on the

three benchmark functions (sphere, Rastrigin and Ackley, from left to right) in

dimension d = 10 with training set sizes n = 10 + n′ = 17, 25, from top to bottom.

The x-axis r value corresponds to a budget of (1+10/r)2. Thick lines represent the

mean of the best EI values obtained, while shaded areas represent one σ error bars.

functions on medium and big size training sets, the mixture method remains com-

petitive with the grid without outperforming it, while our method performs poorly

on the sphere function with small training set.

Several empirical diagnoses can be invoked. The sphere function is the easiest to

interpolate, and very quickly, the EI landscape consists only of a thin peak near

the best value obtained so far. For Ackley's function, even after 40 iterations, the

structure of the function was not explored enough, the support of the EI function

is thus broader and allows for better estimation by the cross-entropy algorithm.

Indeed, the elite sample of selected points is more representative of the EI function

than in a case where almost all the samples fall in a very low �tness area of C :=

[−5, 5]d.

In 10D, the comparison is even more favorable to the mixture method. It can clearly

adapt to the landscape whereas the Latin hypercube sampling cannot. The Latin

hypercube, and thus a grid, must contain a lot more points than the tested budgets

to hope to �nd a decent mode. It is interesting to note that the only function that

behaves di�erently is the sphere, for which Latin hypercube sampling seems more

e�cient for very low budget. But the implied EI values are quite high and do not

give evidence for a too peaky EI landscape as in 2D. We think the problem might

be the number of points given to the mixture algorithm: there must be an optimal

trade-o� between the number of iterations and the number of points for a given

budget. This is similar to CMA-ES [71], another e�cient search heuristics based

on the evolutionary update of a single Gaussian. Notice that we forced in our tests

the mixture search to perform at least �ve iterations, whatever the budget was (by

decreasing the number of points per iteration).

2.5. Conclusion 23

2.5 Conclusion

We derived a new adaptive search method based on mixtures to solve the problem

of merit maximization in GP-based global optimization. We gave it a theoretical

justi�cation through the link with the CEM, for which general convergence results

are still in progress. Our method was experimentally shown to compare favorably

with grid search in 2D with noticeable robustness to budget reduction, and to glob-

ally outperform Latin hypercube sampling in 10D. We believe that the proposed

method can be particularly useful in GP-based global optimization when the merit

function is not analytical so it needs Monte Carlo sampling from the GP.

Although the basic setup of the mixture CE method provides theoretical justi�ca-

tions if not guarantees, we had to make several heuristic algorithmic choices when

implementing the practical method (the number of sample points from the mixture

distribution, th e number of components, etc.). The triangulation initialization pro-

cedure is de�nitly a step that may be improved, especially in higher dimensions

where the curse of dimensionality must be addressed. We could obviously accel-

erate the method by not throwing away the CE mixture components from one EI

iteration to another, since it is likely that the EI surface would change signi�cantly

only around the newly added test point. This would eliminate the need of a heuris-

tic initialization procedure in each iteration, however, it would probably make the

procedure more sensitive to the birth/death policy of the mixture components.

An interesting direction to explore would be to further relate the method to Monte

Carlo Markov chain (MCMC) integration. On the one hand, the optimized surrogate

GP covariance could lead to an adaptive initialization of the CE mixture compo-

nents, similarly to adaptive Metropolis-Hastings with Gaussian proposals (see [69]

and Chapter 9 of this thesis). On the other hand, the birth/death policy could be

governed by a principled procedure based on Reversible Jump MCMC techniques

[68].

Chapter 3

A review on hyperparameter
tuning

Contents
3.1 Introduction . 25

3.2 Model-free tuning . 26

3.2.1 Common optimization heuristics 26

3.2.2 Sophisticated grid searches 27

3.2.3 Racing . 27

3.3 Model-based tuning . 28

3.3.1 Linear regression . 28

3.3.2 Neural network regression . 28

3.3.3 Gaussian process regression 28

3.3.4 Bagging of regression trees 28

3.4 Where do the contributions of this thesis �t? 29

3.5 Conclusion . 29

In this chapter, we review existing approaches to hyperparameter tuning in machine

learning (ML) and related �elds as an introduction to our contributions of Chapters 4

and 5. [77, Chapter 1] presents a good review of where other communities than ML

stood in 2009. We adapt and update this review here.

3.1 Introduction

Most algorithms have high-level parameters that need to be chosen carefully to

yield good performance. For instance, kernel-based classi�cation and regression

algorithms, such as support vector machines or Gaussian processes, typically require

the tuning of their kernel parameters. Such user-dependent input parameters of

an algorithm will be henceforth denoted as hyperparameters, and the process of

choosing them will be called hyperparameter tuning. Outside of machine learning,

it is sometimes called algorithm con�guration.

26 Chapter 3. A review on hyperparameter tuning

Recent breakthroughs in classi�cation have often come from better con�guration of

existing methods rather than the implementation of a new paradigm [103, 42, 44].

At the same time, deep architectures yield state-of-the-art results in classi�cation,

but are hard to set up for a non-expert: typical deep belief networks have tens of hy-

perparameters. Besides limiting the practical impact of new algorithmic discoveries,

the hyperparameter tuning problem also makes it di�cult to compare competing

approaches based on empirical results obtained by di�erent studies.

Eliminating the need for manual tuning was considered a major issue already in the

1990s in a lot of related �elds: machine learning, planning, evolutionary optimiza-

tion, SAT solving, etc. However, relatively few algorithmic solutions were proposed

in spite of their potential practical importance and wide cross-disciplinary impact.

In machine learning, for example, progressively re�ned grids or Latin hypercubes

with occasional manual intervention remained standard.

For the formal description of the problem, let A be an algorithm. Let H be the set

of all possible hyperparameter vectors for A. H is often a product of continuous

intervals and discrete sets. The methods presented here work by optimizing an ob-

jective function fA : H→ R that takes a hyperparameter vector x ∈ H as input and

outputs a measure of quality of x. In machine learning, this objective function is

typically a validation or a cross-validation error1. When tuning an optimization al-

gorithm, the objective function can be, for instance, the number of iterations needed

to reach a �xed level set of a target function. We group here existing approaches

in two big families according to whether they use a model of the objective function

fA. This classi�cation is only made for presentation purposes, and some algorithms

could arguably be put in both groups.

3.2 Model-free tuning

This section reviews automatic hyperparameter tuning procedures that do not use

a model of the objective function fA. These applications arose independently in

di�erent domains.

3.2.1 Common optimization heuristics

Be it to tune a machine learning, planning, or numerical optimization algorithm,

once de�ned the application-speci�c objective function fA, common optimization

heuristics can be applied to optimize it. Hill-climbing was used as early as [67].

1To the non-statistician reader: consider, for instance, a classi�cation algorithm A that learns to

assign a binary label to each point in R
d, given a labeled dataset. The dataset is usually partitioned

in three smaller sets; the validation error is the rate of points that are assigned the wrong label

by algorithm A in the validation dataset, after all parameters of A have been �xed by minimizing

an empirical error measure on the train dataset. After the user has found hyperparameters for A

with a small enough validation error, he �nally benchmarks A on the test dataset.

3.2. Model-free tuning 27

Later, more advanced heuristics were transposed and applied to hyperparameter

tuning, such as the Nelder-Mead algorithm [98] and a variable neighborhood search

with an acceptance step inspired by simulated annealing in [127]. Estimation of

distribution algorithms (EDA; see [89] and Section 2.3.1 of this thesis) were also

used recently [99], as well as ad hoc genetic algorithms in scheduling tasks [125].

3.2.2 Sophisticated grid searches

Sequentially and automatically re�ned grid searches were used for hyperparameter

tuning in numerical optimization [10]. Precisely, it is proposed to alternately

1. perform a grid search,

2. automatically �nd and zoom on a promising region of H.

Although the description of the algorithm in [10] uses a model of the objective,

the method does not really rely on it and could be used with the original objective

function, and we thus classify this algorithm as model-free. A similar approach,

replacing exhaustive grids by fractional experimental designs � subsampled grids,

such as Latin hypercubes �, was also proposed as a generic hyperparameter tuning

method [2].

3.2.3 Racing

Traditionally, experimental design is associated to statistical statements on the value

of fA at the evaluated points of H. Let G ⊂ H be a �nite set of n candidate hyper-

parameter vectors. A racing algorithm launches in parallel n instances of A, one per

candidate hyperparameter vector in the grid G. The race has the following elimina-

tion rule: regularly, statistical tests are performed to compare the n instances, and

the instances that are poorly ranked are discarded, meaning that their evaluation

stops, thus concentrating the e�ort on reducing the uncertainty on well-performing

instances. The F-race [24], for example, uses a Friedman test with null hypothesis

stating that all instances are performing equally well. If this hypothesis is rejected,

pairwise mean-comparison tests are applied to eliminate every instance that per-

formed signi�cantly worse than the current best instance.

Racing algorithms can be placed somewhere between the experimental design ap-

proaches of Section 3.2.2 and the pure exploration bandits with �nite number of

arms of [32]. Pure exploration bandits are bandit algorithms that seek to identify

the best out of a given number of arms in a given time budget, instead of aiming at

the traditional exploration/exploitation trade-o�.

28 Chapter 3. A review on hyperparameter tuning

3.3 Model-based tuning

Evaluation of hyperparameters is the bottleneck in hyperparameter tuning: in ma-

chine learning, obtaining a validation error can easily take hours or days on today's

large datasets. This limits the use of evaluation-greedy approaches such as exhaus-

tive grids or gradient approximations. Model-based optimization consists in �tting

a cheap-to-evaluate model to the objective function using all available information,

and use this model to propose the next set of hyperparameters to be tested, as

described in Chapter 2. We group here techniques according to what model they �t

to the objective function.

3.3.1 Linear regression

In [45], a gradient descent algorithm is used, but not on fA to avoid estimating

its gradient. At each iteration of the gradient descent algorithm, a linear model

ℓ : H→ R is �tted to fA based on the results of the evaluation of A on a fractional

experimental design, and the gradient step is made using the gradient of ℓ.

3.3.2 Neural network regression

In [30], several instances of the same planning problem are tuned at the same time.

Each is tuned with a (1+1)-CMA-ES (covariance matrix adaptation evolution strate-

gies; [71]) combined to genetic proposals. A one-layer neural network is �tted, not

directly to the objective function, but to a hidden function that takes as input the

features of an instance and outputs the best hyperparameters for this instance. The

neural network is alternately trained on the available data and used to give hints

to each CMA-ES. In this work, several instances of the same algorithm are tuned

simultaneously and share the same model, an idea that we will build on in Chapter 5.

3.3.3 Gaussian process regression

Gaussian processes (GPs; [108]) enjoy analytical properties that make them a model

of choice for fA in sequential model-based optimization (SMBO, see Algorithm 2.1),

as described in detail in Section 2.2. A reference work on hyperparameter tuning

with GPs is [77], where di�erent variants of SMBO tuning strategies are proposed.

Again, this is close to pure exploration bandit algorithms, this time also with con-

tinuous arm spaces.

3.3.4 Bagging of regression trees

Another model that is particularly well suited for modelling an objective function

with discrete inputs is the random forest [29]. SMBO algorithms with GPs replaced

3.4. Where do the contributions of this thesis �t? 29

by bagged regression trees are presented in [77]. We note that the prediction uncer-

tainty of the model is estimated in this work at a given hyperparameter vector by

taking the empirical variance of the aggregated base predictors. Having marginal

prediction and uncertainty allows to use similar strategies as with GPs to select the

next hyperparameters to evaluate, such as maximizing EI (see Section 2.2.3).

3.4 Where do the contributions of this thesis �t?

In Chapter 2, we improved on the most basic and commonly-used GP-based opti-

mizer. In the rest of Part I, we concentrate on the problem of model-based hyperpa-

rameter tuning, concentrating on ML applications, though the methods are generic

enough to be applied to other �elds. In Chapter 4, we develop a GP-based approach

and a novel tree-based Parzen estimator (TPE) method to tackle the di�cult task

of tuning the 30+ hyperparameters of 3-layer deep neural networks. In short, the

TPE is a model-based tuning algorithm in which the model is a Parzen-like esti-

mator that takes advantage of the treed structure of the hyperparameter space in

this particular problem. Finally, in Chapter 5, we present a novel SMBO framework

to perform collaborative tuning across datasets, that is, to tune an ML algorithm

on several datasets simultaneously, while making use of the information gathered in

the past when tuning the same algorithm on other datasets.

3.5 Conclusion

While hyperparameter tuning has been widely considered a major issue, dedicated

works are relatively sparse and state-of-the-art results in machine learning often are

the result of a combination of exhaustive search and manual intervention. However,

hyperparameter tuning in ML has clearly regained interest in the last two or three

years with essentially the development and/or application of model-based algorithms

as shown by recent publications on methodology or benchmarking. The develop-

ment of generic software for hyperparameter tuning of ML algorithms has also re-

ceived attention recently, with, for instance, the �Hyperopt� software package2 [22].

Additionally, two recent papers propose detailed experimental comparisons of the

model-based approaches we reviewed here, mostly applied to hyperparameter tuning

in ML. In [120], a �fully Bayesian� variant of a GP-based method (see Section 2.2.2

for details) is shown to compare favorably with existing methods, including our TPE

mentioned in Section 3.4 and usual GP-based methods on three di�erent tasks, one

of them being a recent di�cult classi�cation task. However, the dimension of the

considered problems is relatively small (from 2 to 9 hyperparameters). In [126], a

racing algorithm as in Section 3.2.3, the random forest approach of Section 3.3.4

and the TPE algorithm of Section 3.4 are compared on the task of choosing both

2https://github.com/jaberg/hyperopt

https://github.com/jaberg/hyperopt

30 Chapter 3. A review on hyperparameter tuning

the algorithm and its hyperparameters to tackle various benchmarks from the UCI

repository3.

When the evaluation of a hyperparameter vector is costly enough that it becomes the

bottleneck of the whole process, model-based methods provide useful tools. Now,

they have their limits too, and GPs, for example, typically do not scale well to

high dimensions either. However, we will show an application to deep learning in

Chapter 4 where model-based tuning with GPs and more than 30 hyperparameters

still outperform manual search. Note also that combining trees and GPs to obtain

non stationary processes that are piecewise GP is also possible [66].

Finally, we look forward to a grand uni�cation of racing, pure exploration bandits

and Gaussian process-based optimization, which would probably give more practi-

cal insight into these methods. Such a uni�cation is in the air, with the growing

interest for Bayesian bandits [83] and the appearance of bandit-inspired GP-based

optimization methods like [122].

3http://archive.ics.uci.edu/ml/

http://archive.ics.uci.edu/ml/

Chapter 4

Self-tuning deep learning

Contents
4.1 Introduction . 31

4.2 Optimizing EI on the DBN hyperparameter space 32

4.2.1 Building up on the mixture CEM 32

4.2.2 A tree-structured Parzen estimator approach 33

4.2.3 Details of the Parzen Estimator 34

4.3 Random search as the new baseline 35

4.4 Benchmarking SMBO for hyperparameter tuning in DBNs 36

4.4.1 Validating surrogate modelling on the �Boston housing� dataset 36

4.4.2 Parallelizing sequential search 37

4.5 Results and discussion . 38

4.6 Conclusion . 39

In this chapter, we describe concrete applications of the SMBO paradigm of Chap-

ter 2 to the task of tuning the hyperparameters of deep learning algorithms, which

are state-of-the-art learning algorithms widely studied in the ML community. The

content of this chapter is joint work with James Bergstra (by the time at Université

de Montréal, now at Harvard), his advisor Yoshua Bengio (Université de Montréal),

and my advisor Balázs Kégl. It was published in [21].

4.1 Introduction

Models such as deep belief networks (DBNs; [74, 20]), stacked denoising autoen-

coders [130], convolutional networks [90], as well as classi�ers based on sophisti-

cated feature extraction techniques have from ten to perhaps �fty hyperparameters,

depending on how the experimenter chooses to parametrize the model, and how

many hyperparameters the experimenter chooses to �x to a reasonable default. The

di�culty of tuning these models makes published results di�cult to reproduce and

extend, and makes even the original investigation of such methods more of an art

than a science.

32 Chapter 4. Self-tuning deep learning

Recent results such as [103], [42], and [44] demonstrate that the challenge of hy-

perparameter optimization in large multilayer models is a direct impediment to

scienti�c progress. These works have advanced state of the art performance on

image classi�cation problems by more concerted hyperparameter optimization in

simple algorithms, rather than by innovative modeling or machine learning strate-

gies. It would be wrong to conclude from a result such as [103] that feature learning

is useless. Instead, hyperparameter optimization should be regarded as a formal

outer loop in the learning process. A learning algorithm, as a functional from data

to classi�er (taking classi�cation problems as an example), includes a budgeting

choice of how many CPU cycles are to be spent on hyperparameter exploration, and

how many CPU cycles are to be spent evaluating each hyperparameter choice (i.e.

by tuning the regular parameters). The results of [103] and [44] suggest that with

current generation hardware such as large computer clusters and GPUs, the optimal

allocation of CPU cycles includes more hyperparameter exploration than has been

typical in the machine learning literature.

This chapter makes two contributions: (i) Random search is competitive with the

manual optimization of DBNs in the reference work [88], and (ii) sequential model-

based optimization outperforms both manual and random search.

For notions relative to sequential model-based optimization and the expected im-

provement criterion, we refer the reader to Chapter 2 of this thesis. Section 4.2

introduces two approaches to optimize the EI criterion on the particular hyper-

parameter space of DBNs. Section 4.3 describes the experimental details of DBN

hyperparameter optimization, and shows the e�ciency of random search. Section

4.4 shows the e�ciency of sequential optimization on the two hardest datasets ac-

cording to random search. We conclude the chapter with a discussion of our results

and �nal remarks in Section 4.5 and Section 4.6, respectively.

4.2 Optimizing EI on the DBN hyperparameter space

We present here two approaches to optimize the EI criterion on the particular hy-

perparameter space of DBNs.

4.2.1 Building up on the mixture CEM

Let H be the hyperparameter space of DBNs, and f(x) be the classi�cation error

made by a DBN with hyperparameters x ∈ H on a �xed validation dataset. We

put a GP prior on f and derive the expected improvement criterion as explained

in Section 2.2.3. We modify the mixture cross-entropy presented in Section 2.3.2 as

follows: we keep the EDA approach on the discrete part of our input space (categor-

ical and discrete hyperparameters), where we sample candidate points according to

binomial distributions, while we use the Covariance Matrix Adaptation - Evolution

4.2. Optimizing EI on the DBN hyperparameter space 33

Strategy (CMA-ES, [71]) for the remaining part of our input space (continuous hy-

perparameters). CMA-ES is a state-of-the-art gradient-free evolutionary algorithm

for optimization on continuous domains, which has been shown to outperform the

Gaussian search EDA [71]. Notice that such a gradient-free approach allows non-

di�erentiable kernels for the GP regression. We do not take on the use of mixtures

of Section 2.3.2, but rather restart the local searches several times, starting from

promising places. The use of triangulations suggested in Section 2.3.3 is prohibitive

here, as our task often means working in more than 10 dimensions, thus we start each

local search at the center of mass of a simplex with vertices randomly picked among

the training points. In the end, this search heuristics is very similar to the mixture

CEM introduced in Section 2.3.2. Furthermore, the choice of multiple restart CMA-

ES for this project was also dictated by the involvement of multiple programmers

and the availability of good production code with practical convergence diagnoses

for CMA-ES in several languages1.

Finally, we remark that not all hyperparameters are relevant for every DBN struc-

ture. For example, a DBN with only one hidden layer does not have parameters

associated to a second or third layer. Thus it is not enough to place one GP over

the entire space of hyperparameters. We chose to group the hyperparameters by

common use in a tree-like fashion and place di�erent independent GPs over each

group. As an example, for DBNs, this means placing one GP over common hyper-

parameters, including categorical parameters that indicate what are the conditional

groups to consider, three GPs on the parameters corresponding to each of the three

layers, and a few 1-dimensional GPs over individual conditional hyperparameters,

like ZCA2 energy (see Table 4.1 for a list of the considered DBN hyperparameters).

4.2.2 A tree-structured Parzen estimator approach

Anticipating that our hyperparameter optimization tasks will mean high dimensions

and relatively small �tness evaluation budgets, a regime in which GPs show their

limits, we now turn to another modeling strategy and EI optimization scheme for

the SMBO algorithm in Figure 2.1.

Denoting by y = f(x) the target validation error obtained with hyperparameters

x ∈ H, the GP approach of Section 4.2.1 builds a model of p(y|x,Fn), based on

observations

O = {(xi, yi), 1 ≤ i ≤ n} ⊂ H× R .

Inspired by Parzen estimators, we propose here to directly build, still given obser-

vations O, two approximations: ℓ(x) ≈ p(x|y < y∗,Fn) and g(x) ≈ p(x|y ≥ y
∗,Fn).

Before we give details on the construction of ℓ and g in Section 4.2.3, let us explain

here heuristically how this approach is related to EI maximization. Note that, if we

1http://www.lri.fr/~hansen/cmaesintro.html
2Zero-phase Component Analysis (ZCA) is a variant of Principal Component Analysis (PCA).

http://www.lri.fr/~hansen/cmaesintro.html

34 Chapter 4. Self-tuning deep learning

consider that improvement means that the observed y is smaller than y∗, then the

de�nition of EI in Section 2.2.3 yields

EI(x) =

∫ y∗

−∞
(y∗ − y) p(y|x) dy =

∫ y∗

−∞
(y∗ − y)

p(x|y)p(y)

p(x)
dy , (4.2.1)

where we dropped the conditioning on Fn for the sake of clarity.

Let now γ = p(y < y∗). Upon noting that

p(x) =

∫
p(x|y)p(y) dy

≈ p(x|y < y∗) p(y < y∗) + p(x|y ≥ y∗) p(y ≥ y∗)

≈ γℓ(x) + (1− γ)g(x) ,

and

∫ y∗

−∞
(y∗ − y) p(x|y)p(y) dy ≈ γy∗ℓ(x)− ℓ(x)

∫ y∗

−∞
y p(y) dy , (4.2.2)

we obtain

EI(x) ≈
γy∗ℓ(x)− ℓ(x)

∫ y∗
−∞ y p(y) dy

γℓ(x) + (1− γ)g(x)
∝

(
γ +

g(x)

ℓ(x)
(1− γ)

)−1

.

This last expression shows that, roughly, to maximize improvement we would like

points x with high probability under ℓ(x) and low probability under g(x). The

tree-structured form of the Parzen estimates ℓ and g will make it easy to draw

many candidates according to ℓ and evaluate them according to g(x)/ℓ(x). On each

iteration, our TPE algorithm returns the candidate x∗ with the greatest g/ℓ ratio.

4.2.3 Details of the Parzen Estimator

The models ℓ(x) and g(x) are hierarchical processes involving discrete-valued and

continuous-valued variables. We detail the construction of ℓ, the construction of g

being similar. Given n observations O = {(xi, yi), 1 ≤ i ≤ n} ⊂ H× R, let

Bℓ = {xi : yi ≤ y
∗} ,

where y∗ is chosen so that

γn ≤
n∑

i=1

1yi≤y∗ < γn+ 1 ,

and γ ∈ (0, 1] is to be �xed by the user. Each continuous hyperparameter is speci�ed

by a uniform distribution over some interval (a, b), or a Gaussian, or a log-uniform

distribution, see Table 4.1. The TPE substitutes an equally-weighted mixture of

that distribution with Gaussians centered at each of the xi ∈ Bℓ. The standard

4.3. Random search as the new baseline 35

Table 4.1: Distribution over DBN hyperparameters for random sampling. Distri-

bution speci�cations of the form A or B such as pre-processing (and including the

random seed) correspond to equally weighted mixtures. Symbol U means uniform,

N means Gaussian-distributed, and logU means uniformly distributed in the log-

domain. CD (also known as CD-1) stands for contrastive divergence, the algorithm

used to initialize the layer parameters of the DBN.

Whole model Per-layer

Parameter Distribution Parameter Distribution

pre-processing raw or ZCA n. hidden units logU(128, 4096)

ZCA energy U(.5, 1) W init. U(−a, a) or N (0, a2)

random seed 5 choices a algo A or B (see text)

learn. rate logU(0.001, 10) algo A coef. U(.2, 2)

anneal. start logU(100, 104) CD epochs logU(1, 104)

ℓ2-penalty 0 or logU(10−7, 10−4) CD learn. rate logU(10−4, 1)

n. layers 1 to 3 CD anneal. start logU(10, 104)

batch size 20 or 100 CD sample data yes or no

deviation of each Gaussian was set to the greater of the distances to the left and

right neighbor, but clipped to remain in a reasonable range. In the case of the

uniform, the points a and b were considered to be potential neighbors. For discrete

variables, supposing the prior was a vector of N probabilities pi, the posterior vector

elements were proportional to Npi +Ci where Ci counts the occurrences of choice i

in Bℓ. The log-uniform hyperparameters were treated as uniforms in the log domain.

4.3 Random search as the new baseline

One simple but recent step towards formalizing hyperparameter optimization is the

use of random search [103]. [23] showed that random search was much more e�cient

than grid search for optimizing the parameters of one-layer neural network classi�ers.

In this section, we evaluate random search for DBN optimization, compared with

the sequential grid-assisted manual search carried out in [88].

We chose the distributions listed in Table 4.1 to de�ne the search over DBN con-

�gurations. The details of the datasets, the DBN model, and the greedy layer-wise

training procedure based on contrastive divergence (CD; [34]) are provided in [88].

The distributions of Table 4.1 correspond to the search space of [88] except for the

following di�erences:

1. we allowed for ZCA pre-processing [78],

2. we allowed for each layer to have a di�erent size,

3. we allowed for each layer to have its own training parameters for CD,

36 Chapter 4. Self-tuning deep learning

4. we allowed for the possibility of treating the continuous-valued data as either

as Bernoulli means (more theoretically correct) or Bernoulli samples (more

typical) in the CD algorithm, and

5. we did not discretize the possible values of real-valued hyperparameters.

These changes expand the hyperparameter search problem, while maintaining the

original hyperparameter search space as a subset of the expanded search space.

The results of this preliminary random search are in Figure 4.1. Perhaps surprisingly,

the result of manual search can be reliably matched with 32 random trials for several

datasets. The e�ciency of random search in this setting is explored further in

[23]. Where random search results match human performance, it is not clear from

Figure 4.1 whether the reason is that it searched the original space as e�ciently,

or that it searched a larger space where good performance is easier to �nd. But

the objection that random search is somehow cheating by searching a larger space

is backward � the search space outlined in Table 4.1 is a natural description of the

hyperparameter optimization problem, and the restrictions to that space by [88]

were presumably made to simplify the search problem and make it tractable for

grid-search assisted manual search. Critically, both methods train DBNs on the

same datasets.

The results in Figure 4.1 indicate that hyperparameter optimization is harder for

some datasets. For example, in the case of the �MNIST rotated background images�

dataset (MRBI), random sampling appears to converge to a maximum relatively

quickly (best models among experiments of 32 trials show little variance in perfor-

mance), but this plateau is lower than what was found by manual search. In an-

other dataset (convex), the random sampling procedure exceeds the performance

of manual search, but is slow to converge to any sort of plateau. There is consid-

erable variance in generalization when the best of 32 models is selected. This slow

convergence indicates that better performance is probably available, but we need

to search the con�guration space more e�ciently to �nd it. The remainder of this

chapter explores sequential optimization strategies for hyperparameter optimization

for these two datasets: convex and MRBI.

4.4 Benchmarking SMBO for hyperparameter tuning in

DBNs

4.4.1 Validating surrogate modelling on the �Boston housing�
dataset

We validated our GP approach of Section 4.2.1 by comparing with random sampling

on the �Boston Housing� dataset, a regression task with 506 points made of 13 scaled

input variables and a scalar regressed output. We trained a multi-layer perceptron

4.4. Benchmarking SMBO for hyperparameter tuning in DBNs 37

(MLP) with 10 hyperparameters, including learning rate, ℓ1 and ℓ2 penalties, size

of hidden layer, number of iterations, whether a PCA pre-processing was to be

applied, whose energy was the only conditional hyperparameter [25]. Our results

are depicted in Figure 4.2(a). The �rst 30 iterations were made using random

sampling, while from the 30th on, we di�erentiated the random samples from the

GP approach trained on the updated history. The experiment was repeated 20 times.

Although the number of points is particularly small compared to the dimensionality,

the surrogate modelling approach �nds noticeably better points than random, which

supports the application of SMBO approaches to more ambitious tasks and datasets.

Applying the GP to the problem of optimizing DBN performance, we allowed 3

random restarts to the CMA+ES algorithm per proposal x∗, and up to 500 iterations

of conjugate gradient method in �tting the length scales of the GP. The squared

exponential kernel [108] was used for every node. The CMA-ES part of GPs dealt

with boundaries using a penalty method, the binomial sampling part dealt with it

by nature. The GP algorithm was initialized with 30 randomly sampled points in

H. After 200 trials, the prediction of a point x∗ using this GP took around 150

seconds.

For the TPE-based algorithm, we chose γ = 0.15 and picked the best among 100

candidates drawn from ℓ(x) on each iteration as the proposal x∗. After 200 trials,

the prediction of a point x∗ using this TPE algorithm took around 10 seconds.

TPE was allowed to grow past the initial bounds used with for random sampling

in the course of optimization, whereas the GP and random search were restricted

to stay within the initial bounds throughout the course of optimization. The TPE

algorithm was also initialized with the same 30 randomly sampled points as were

used to seed the GP.

4.4.2 Parallelizing sequential search

Both the GP and TPE approaches were actually run asynchronously in order to

make use of multiple compute nodes and to avoid wasting time waiting for trial

evaluations to complete. For the GP approach, the so-called constant liar approach

was used: each time a candidate point x∗ was proposed, a fake �tness evaluation

equal to the mean of the y's within the training set O was assigned temporarily,

until the evaluation completed and reported the actual loss f(x∗). For the TPE

approach, we simply ignored recently proposed points and relied on the stochasticity

of draws from ℓ(x) to provide di�erent candidates from one iteration to the next.

The consequence of parallelization is that each proposal x∗ is based on less feedback.

This makes search less e�cient, though faster in terms of wall time.

Runtime per trial was limited to 1 hour of GPU computation regardless of whether

execution was on a GTX 285, 470, 480, or 580. The di�erence in speed between the

slowest and fastest machine was roughly two-fold in theory, but the actual e�ciency

of computation depended also on the load of the machine and the con�guration

38 Chapter 4. Self-tuning deep learning

of the problem (the relative speed of the di�erent cards is di�erent in di�erent

hyperparameter con�gurations). With the parallel evaluation of up to �ve proposals

from the GP and TPE algorithms, each experiment took about 24 hours of wall time

using �ve GPUs.

4.5 Results and discussion

The performance of the trajectories constructed by each algorithm up to 200 steps

are illustrated in Figure 4.3, and compared with random search and the manual

search carried out in [88]. The generalization scores of the best models found using

these algorithms and others are listed in Table 4.2(b). On the convex dataset (2-

way classi�cation), both algorithms converged to a validation score of 13% error. In

generalization, TPE's best model had 14.1% error and GP's best had 16.7%. TPE's

best was signi�cantly better than both manual search (19%) and random search with

200 trials (17%). On the MRBI dataset (10-way classi�cation), random search was

the worst performer (50% error), the GP approach and manual search approximately

tied (47% error), while the TPE algorithm found a new best result (44% error). The

models found by the TPE algorithm in particular are better than previously found

ones on both datasets. The GP and TPE algorithms were slightly less e�cient than

manual search: GP and TPE identi�ed performance on par with manual search

within 80 trials, the manual search of [88] used 82 trials for convex and 27 trials

for MRBI.

There are several possible reasons for why the TPE approach outperformed the GP

approach in these two datasets. Perhaps the direct modelling of p(x|y) is more ac-

curate than the p(y|x) in the Gaussian process. Perhaps, conversely, the exploration

induced by the TPE's lack of accuracy turned out to be a good heuristic for search.

Perhaps the hyperparameters of the GP approach itself were not set to correctly

trade o� exploitation and exploration in the DBN con�guration space. More em-

pirical work is required to test these hypotheses. Additionally, after we published

these results in [21], a GP-approach with fully Bayesian tuning (see Section 2.2.2)

has been reported to outperform in its turn our TPE approach on tasks of smaller

dimension [120]. Critically though, all our four SMBO runs matched or exceeded

both random search and a careful human-guided search, which are currently the

state of the art methods for hyperparameter optimization.

The GP and TPE algorithms work well in both of these settings, but there are

certainly settings in which these algorithms, and in fact SMBO algorithms in general,

would not be expected to do well. Sequential optimization algorithms work by

leveraging structure in observed (x, y) pairs. It is possible for SMBO to be arbitrarily

bad with a bad choice of p(y|x). It is also possible to be slower than random sampling

at �nding a global optimum with an apparently good p(y|x), if it extracts structure

in H that leads only to a local optimum.

4.6. Conclusion 39

4.6 Conclusion

This chapter has introduced two sequential hyperparameter optimization algo-

rithms, and shown them to meet or exceed human performance and the performance

of a brute-force random search in two di�cult hyperparameter optimization tasks

involving DBNs. We have relaxed standard constraints (e.g. equal layer sizes at all

layers) on the search space, and fall back on a more natural hyperparameter space

of 32 variables (including both discrete and continuous variables) in which many

variables are sometimes irrelevant, depending on the value of other parameters (e.g.

the number of layers). In this 32-dimensional search problem, the TPE algorithm

presented here has uncovered new best results on both of these datasets that are

signi�cantly better than what DBNs were previously believed to achieve. Moreover,

the GP and TPE algorithms are practical: the optimization for each dataset was

done in just 24 hours using �ve GPU processors. Although our results are only for

DBNs, our methods are quite general, and extend naturally to any hyperparameter

optimization problem in which the hyperparameters are drawn from a measurable

set.

We hope that our work may spur researchers in the machine learning community

to treat the hyperparameter optimization strategy as an interesting and important

component of all learning algorithms. The question of �How well does a DBN do on

the convex task?� is not a fully speci�ed, empirically answerable question � di�erent

approaches to hyperparameter optimization will give di�erent answers. Algorithmic

approaches to hyperparameter optimization make machine learning results easier to

disseminate, reproduce, and transfer to other domains. The speci�c algorithms we

have presented here are also capable, at least in some cases, of �nding better results

than were previously known. Finally, powerful hyperparameter optimization algo-

rithms broaden the horizon of models that can realistically be studied; researchers

need not restrict themselves to systems of a few variables that can readily be tuned

by hand.

The TPE algorithm presented in this work, as well as parallel evaluation infrastruc-

ture, is available as BSD-licensed free open-source software, which has been designed

not only to reproduce the results in this work, but also to facilitate the application

of these and similar algorithms to other hyperparameter optimization problems.3

3 �Hyperopt� software package: https://github.com/jaberg/hyperopt

https://github.com/jaberg/hyperopt

40 Chapter 4. Self-tuning deep learning

1 2 4 8 16 32 64 128

experiment size (# trials)

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

mnist basic

1 2 4 8 16 32 64 128

experiment size (# trials)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ac
cu

ra
cy

mnist background images

1 2 4 8 16 32 64 128

experiment size (# trials)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

ac
cu

ra
cy

mnist rotated background images

1 2 4 8 16 32 64 128

experiment size (# trials)

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85
ac

cu
ra

cy
convex

1 2 4 8 16 32 64 128

experiment size (# trials)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

rectangles

1 2 4 8 16 32 64 128

experiment size (# trials)

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

ac
cu

ra
cy

rectangles images

Figure 4.1: Deep Belief Network (DBN) performance according to random search.

Random search is used to explore up to 32 hyperparameters (see Table 4.1). Results

found using a grid-search-assisted manual search over a similar domain with an

average 41 trials are given in green (1-layer DBN) and red (3-layer DBN). Each box-

plot (for N = 1, 2, 4, ...) shows the distribution of test set performance when the best

model among N random trials is selected. The datasets �convex� and �mnist rotated

background images� are used for more thorough hyperparameter optimization.

4.6. Conclusion 41

0 10 20 30 40 50
14

16

18

20

22

24

26

Time

B
es

tv
al

ue
so

fa
r

(a) �Boston housing� results (b) convex and MRBI test errors

Figure 4.2: (a) After iteration 30, GP optimizing the MLP hyperparameters on the

�Boston Housing� regression task. Thick lines depict the best minimum found so

far every 5 iterations, against time; red is for the GP+EI approach of Section 4.2.1,

blue is for random uniform search. Shaded areas indicate one-sigma error bars. (b)

The test set classi�cation error of the best model found by each search algorithm

on each problem. Each search algorithm was allowed up to 200 trials. The manual

searches used 82 trials for convex and 27 trials MRBI.

0 50 100 150 200time(trials)
0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

err
or
(fra

ctio
nin

cor
rec

t)

Dataset: convex
manual
99.5’th q.
GP
TPE

0 50 100 150 200time(trials)

0.5

0.6

0.7

0.8

0.9

err
or
(fra

ctio
nin

cor
rec
t)

Dataset: mnist rotated background images
manual
99.5’th q.
GP
TPE

Figure 4.3: E�ciency of Gaussian Process-based (GP) and graphical model-based

(TPE) sequential optimization algorithms on the task of optimizing the validation

set performance of a DBN of up to three layers on the convex task (left) and the

MRBI task (right). The dots are the sequences produced by each SMBO algorithm.

The solid colored lines are the validation set accuracy of the best trial found before

each point in time. Both the TPE and GP algorithms make signi�cant advances

from their random initial conditions, and substantially outperform the manual and

random search methods. A 95% con�dence interval about the best validation means

on the convex task extends 0.018 above and below each point, and on the MRBI

task extends 0.021 above and below each point. The solid black line is the test

set accuracy obtained by domain experts using a combination of grid search and

manual search [88]. The dashed line is the 99.5% quantile of validation performance

found among trials sampled from our prior distribution (see Table 4.1), estimated

from 457 and 361 random trials on the two datasets respectively.

Chapter 5

Surrogate collaborative tuning

Contents
5.1 Introduction . 43

5.2 The quality function and its prior 45

5.2.1 A �ctitious generative model 45

5.2.2 A deconvolution method . 47

5.2.3 Collaborative tuning . 48

5.2.4 On the choice of a surrogate-based ranking algorithm 48

5.3 A case study on AdaBoost . 49

5.3.1 Setup . 49

5.3.2 Experiments . 50

5.3.3 Results . 52

5.3.4 Computational issues . 53

5.4 Conclusion . 53

In this chapter, we contribute a yet unpublished framework named SCoT � for

surrogate collaborative tuning � to perform model-based optimization of hyperpa-

rameters of learning algorithms across datasets. In other words, SCoT presents the

two novelties of 1) tuning a learning algorithm on several new datasets and 2) tak-

ing into account the information gained from training the same algorithm on similar

datasets in the past. We present applications to AdaBoost, a popular classi�cation

algorithm. The content of this chapter is joint work with Matthias Brendel (by the

beginning of our collaboration at Université Paris-Sud, now at Ferchau Engineer-

ing, Germany), Michèle Sebag (CNRS, Université Paris-Sud) and my advisor Balázs

Kégl.

5.1 Introduction

We have seen in Chapter 5 a successful application of sequential model-based opti-

mization to the tuning of hyperparameters of deep belief networks. What may still

make experienced practitioners better at hyperparameter optimization is their abil-

ity to generalize across similar learning problems. For example, if somebody in the

44 Chapter 5. Surrogate collaborative tuning

past successfully applied a classi�cation algorithm A to the popular MNIST dataset

with a given set of hyperparameters x ∈ H, he or she would certainly use this set as

a hint (or prior) to choose the hyperparameters of A when tuning A on a slightly

noisy or rotated version of MNIST. Our main contribution is to propose a way

to mimic this human behavior when performing an automatized, surrogate-based

hyperparameter search.

As mentioned in Section 3.3.2, a related idea was recently proposed in [30], in which

the authors tuned an evolutionary algorithm by learning a mapping from problems to

hyperparameters using a neural network. This setting may work well if the problem

descriptors determine the optimal hyperparameters with high certainty. In machine

learning on diverse data sets, however, we cannot hope to come up with a set of easily

measurable problem descriptors that can correctly predict the best hyperparameters.

What we propose here instead is to build a model from past experience that can bias

the search on a new problem towards regions in the hyperparameter space where

the optimal hyperparameters are likely to be found. Surrogate-based methods suit

well this setup. They also solve e�ciently the exploration/exploitation dilemma.

Furthermore, combining surrogate-based ranking and optimization techniques, we

can de�ne a novel Bayesian optimization method that can be used to collaboratively

optimize quantitatively di�erent but similarly behaving objective functions.

Imagine for now that we have picked up Nf features of datasets that allow us to

consider each dataset as a point in D ⊂ R
Nf . To tackle the problem, we �rst

build a quality function fA : D × H → R that takes a dataset D ∈ D and a

set of hyperparameters x ∈ H as inputs, and outputs the quality fA(D,x) of the

result A(D,x) obtained by applying A on D using hyperparameters x. We then

place a prior over fA that incorporates knowledge from previous experiments. The

Gaussian process (GP) prior is now a common choice in surrogate-based global

optimization [82, 91]. We have mentioned in Chapter 2 that since GPs are closed

under sampling, they provide a simple and elegant way of accumulating more and

more knowledge about the surrogate function as the observations arrive. On the

other hand, specifying the quality function fA is more subtle. Typically, fA could

be a (cross-) validation error fA(D,x) = R
(
A(D,x)

)
as in Chapter 4. The problem

with this choice is that, when applying the same algorithm A to di�erent problems

D1, . . . , DM ∈ D, the errors can di�er signi�cantly, so that the raw validation error

is a poor choice for fA. At the same time, similar problems may share a model

about where the error is minimized in the hyperparameter space. To deal with

this issue, we need a quality function that encodes knowledge on the ranking of

hyperparameters on individual problems, and can convey information such that:

if fA(D1, x1) < fA(D1, x2) and D2 is similar to D1,

then probably fA(D2, x1) < fA(D2, x2),

even though the ranges of R
(
A(D1, ·)

)
and R

(
A(D2, ·)

)
are very di�erent. We pro-

pose therefore to rank hyperparameters xj on each problem Di by the corresponding

5.2. The quality function and its prior 45

validation error R
(
A(Di, xj)

)
, and take fA(Di, xj) to be the surrogate model output

by a surrogate-based ranking algorithm. This results in a novel and rather uncom-

mon SMBO algorithm that completely rede�nes its training set at each time step,

since new rankings yield a new model.

For a description of the SMBO paradigm, we refer the reader to Chapter 2 of this

document. The rest of the chapter is organized as follows: Section 5.2 contains our

methodological contributions, describing in detail the quality function fA and the

prior we place over it. Finally, we present in Section 5.3 an experimental case study

of our algorithm on AdaBoost, where we compare our approach to several realistic

human behaviors.

5.2 The quality function and its prior

To explain our motivation for designing the quality function and choosing a ranking-

based surrogate method, we start by an example. Figures 5.1(a) and 5.1(b) show

the two-dimensional error surfaces when running AdaBoost.MH of [118] on two

benchmark sets (the data selection and the experimental setup will be described

in detail in Section 5.3). The sets are similar in terms of some high-level features

(such as the number of instances, number of classes, or number of attributes) and

the shapes of the error surfaces are also similar, so it intuitively makes sense to try

to model the rankings de�ned by these two error functions by a common surrogate

function. The errors R
(
AdaBoost(D, (m,T)

))
, however, are quantitatively di�er-

ent, so that direct �tting of a common model would not make sense. To overcome

this problem, we will use a ranking surrogate fAdaBoost
(
D, (m,T)

)
that only de�nes

the relative ordering of error values.

5.2.1 A �ctitious generative model

To formally de�ne the hypothesis under which our approach makes sense, we can

describe an imaginary generative model that produces error surfaces using a common

underlying ranker. Our algorithm will then perform inference in this model in a

Bayesian-like approach.

Let us �x a learning algorithm A. Let R
(
A(D,x)

)
be a validation error of algorithm

A applied with hyperparameters x ∈ H to problem D ∈ D. For a �xed problem D,

de�ne a ranking ≺D over hyperparameters by

x1 ≺D x2 ⇔ R
(
A(D,x1)

)
≤ R

(
A(D,x2)

)
. (5.2.1)

Assume that there exists a smooth function f∗A : D×H→ R that preserves rankings

in the sense that for each problem D, x1 ≺D x2 implies f∗A(D,x1) < f∗A(D,x2).

Now de�ne an equivalence relation on functions by

f ∼ g ⇔ ∃σ : R→ R smooth and strictly increasing s.t. f = σ(g) .

46 Chapter 5. Surrogate collaborative tuning

2
4

6
8

1

2

3

0.1

0.15

0.2

0.25

0.3

0.35

log(
T)

log(m)

R
(A

d
a
B
o
o
s
t(
ly
m
p
h

,
(m

,
T

))

(a) Error surface of AdaBoost on lymph

2
4

6
8

1

2

3

0.2

0.3

0.4

0.5

log(
T)

log(m)

R
(A

d
a
B
o
o
s
t(
s
o
n
a
r
,
(m

,
T

))
)

(b) Error surface of AdaBoost on sonar

2
4

6
8

1

2

3

−1.5

−1

−0.5

0

0.5

1

log(
T)

log(m)

f
A

d
a

B
o

o
s
t
(.

,
(m

,
T

))

(c) The common latent ranker

Figure 5.1: (a,b) Error surfaces on two similar datasets have similar shapes although

the errors are quantitatively di�erent in terms of scale. (c) The similar shapes can

be captured by a latent ranker.

Then any member of the equivalence class C∗A of f∗A is a smooth function that

preserves rankings. When a problemDi is drawn from the problem space D, it comes

with an arbitrary smooth and strictly monotonic function σi that takes the output

of the ranking function f∗A(Di, x) as input, and outputs the error R
(
A(Di, x)

)
=

σi
(
f∗A(Di, x)

)
. In principle, we could draw data

O =
(
Di, xi, σi

(
f∗A(Di, xi)

))
i=1:N

(5.2.2)

from an arbitrary generative distribution over D×H. In reality, the problems cannot

be arbitrarily generated, so the set D will be �nite, and we will draw hyperparameter

vectors x1, . . . , xN for each dataset.

Assuming that f∗A(D,x) is smooth in x is quite natural, and most of the local

search and surrogate optimization algorithms are designed based on this hypothesis,

including the ones developed in Chapters 2 and 4. In addition, and this is our key

5.2. The quality function and its prior 47

assumption, we also suppose that f∗A(D,x) is smooth inD, which means that similar

problems produce similarly-looking error surfaces. How problem similarity is de�ned

is an interesting and generally unanswered question. In Section 5.3 we propose a

simple setup, but the algorithm described in the following sections is generic in the

sense that it only assumes that there exists a positive semide�nite kernel representing

problem similarity.

5.2.2 A deconvolution method

Our �nal algorithm, when confronted to choosing hyperparameters for algorithm A

on a new problem D, will aim at minimizing f∗A(D, ·). That is why we now start

from data O in (5.2.2) and present a way to perform inference on f∗A. Surrogate-

based learning algorithms such as SVMrank [81] or the GP-based ranking algorithm

of [40] build a function f̂A that preserves the rankings they have been given while

keeping f̂A su�ciently smooth and �at. This cancels the in�uence of σi in the

generation and we thus consider f̂A as a noisy realization of a representer of C∗A. We

then perform GP regression [108] on this realization f̂A and pick the next point to

add to O by maximizing EI, as described in Chapter 2. Note that for the moment,

the optimization of EI is restricted to the subspace {D} ×H.

Iteratively repeating the process described above yields a �rst Bayesian optimization

algorithm presented in Figure 5.2, named ST for Surrogate-based Tuning. What

makes it a particularly unusual Bayesian optimization algorithm is that the regressed

function is di�erent at each time step: it is the targeted equivalence class C∗A that

is �xed.

ST
(
D,T,O = (D,H,R),A,B

)

1 for t← 0 to T − 1

2 Compute rankings Pt from O as in (5.2.1)

3 f̂t ← surrogate model built by B called on (Dt,Ht) with rankings Pt

4 Mt−1 ← Posterior GP on f̂t knowing
(
(Dt,Ht), f̂t

)

5 x∗ ← argmaxx∈H EI(D,x)

6 R∗ ← R(A(D,x∗)) ⊲ Run learning algorithm

7 O ← O ∪ (D,x∗, R∗)

8 return O

Figure 5.2: The pseudo-code of the surrogate-based tuning algorithm. Input B

denotes a surrogate-based ranking algorithm. Input O summarizes results from

past experiments with the same algorithm. See text for details.

48 Chapter 5. Surrogate collaborative tuning

5.2.3 Collaborative tuning

It is common that a user wants to apply his learning algorithm to several problems

D1, . . . , DM . Instead of repeatedly applying ST (Figure 5.2), our surrogate-based

approach allows to tune all problems simultaneously by spending one iteration on

each problem in turn, thus making use of all information gained so far on all prob-

lems. This gives birth to the SCoT algorithm, for surrogate-based collaborative

tuning, presented in Figure 5.3.

SCoT
(
(D1, . . . , DM), T,O = (D,H,R),A,B

)

1 for t← 0 to T − 1

2 for i← 1 to M

3 Compute rankings Pt from O as in (5.2.1)

4 f̂t ← surrogate model built by B called on (Dt,Ht) with rankings Pt

5 Mt−1 ← Posterior GP on f̂t knowing
(
(Dt,Ht), f̂t

)

6 x∗ ← argmaxx∈H EI(Di, x)

7 R∗ ← R(A(Di, x
∗)) ⊲ Run learning algorithm

8 O ← O ∪ (Di, x
∗, R∗)

9 return O

Figure 5.3: The pseudo-code of the surrogate-based collaborative tuning algorithm.

Input B denotes a surrogate-based ranking algorithm. Input O summarizes results

from past experiments with the same algorithm. See text for details.

5.2.4 On the choice of a surrogate-based ranking algorithm

The method of choice for Algorithm B in Figure 5.3 is the Gaussian Process-based

ranking algorithm of [40] since it provides a way of simultaneously estimating the

values of a hidden f̂ and tuning the GP hyperparameters in a double optimization

for loop. This method, applied with a squared exponential kernel with automatic

relevance determination (SE-ARD; [108]), would avoid the need for Step 5 of SCoT

and provide an easier interpretation for f̂ . However, both our implementation and

the one available on the web proved to be too slow in the regime presented in Section

5.3 to be realistically incorporated in the for loop of SCoT. We thus chose to limit

ourselves in Step 4 to an isotropic squared exponential kernel, and used the e�cient

optimization routines available for SVMrank [81], while Step 5 is carried out with an

SE-ARD kernel. Note that SVMrank requires that all hyperparameter sets must be

comparable when applied to the same problem, which is the case in our framework.

5.3. A case study on AdaBoost 49

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4

log (n/d)

lo
g
(m

)

y = 0.17*x + 0.94

Figure 5.4: Optimal number of product terms versus the problem feature log(n/d).

5.3 A case study on AdaBoost

To test SCoT as a practical hyperparameter tuning algorithm, we now describe a

setup that mimics an experiencedAdaBoost user on multi-class classi�cation prob-

lems. We used the implementation of AdaBoost.MH available at multiboost.org

[19]. Let D ∈ D be a dataset. From now on, points in D are called instances, and the

components of a point in D are called attributes. The term feature will be reserved

to numerical descriptors of the whole classi�cation problem, i.e. the components of

D.

5.3.1 Setup

We downloaded 29 multi-class classi�cation problems from Weka. We converted

nominal attributes to numerical (binary) values using a one-hot encoding. We split

each set 80-20% into training and validation sets. We ran AdaBoost.MH with

decision products as weak learners [84], so that the two hyperparameters to tune were

the number of iterations T and the number of product terms m. Out target measure

R
(
AdaBoost(D, (m,T))

)
was the classical multi-class 0-1 error. To simplify the

algorithmic setup, we pre-computed all validation errors on a 12×9 grid with values

m ∈ {2, 3, 4, 5, 7, 10, 15, 20, 30}

and

T ∈ {2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000} ,

multiboost.org
http://prdownloads.sourceforge.net/weka/uci-20070111.tar.gz

50 Chapter 5. Surrogate collaborative tuning

giving us 108 trained models for each dataset. The inputs of the GP kernel were

the logarithms of the hyperparameters, rescaled to belong to [0, 1]. Figure 5.1 shows

two example error surfaces and a smooth latent ranker learnt by the GP.

We now describe the choice of the features describing each dataset. To embed the

problems into a Euclidean space where a GP can be used with a classical squared

exponential kernel, we �rst extracted three simple measures from each dataset, the

number of training instances n, the number of classes K, and the number of at-

tributes d, and de�ned three features K, log d, and log(n/d) that we found indica-

tive about the value of the best hyperparameters. For example, Figure 5.4 shows

that log(n/d) is correlated to the optimal number of product terms m, which makes

sense: the more instances we have compared to the number of attributes, the more

complex the optimal classi�er can be.

Table 5.1: Minimum value, �rst quartiles, medians, third quartiles and maximum

value of the features of the problems.

feature min 1st q. med 3rd q. max

K 2 2 5 10 26

log d 1.61 2.3 2.94 4.01 5.49

log(n/d) 1 3.03 4.04 4.57 7.05

ρ 0.14 0.5 0.67 0.75 0.86

The fourth feature ρ is called here PCA reduction rate, and was computed as follows:

we extracted the �rst d′ principal components that explained 95% of the variance of

each dataset, and divided d′ by the number of attributes d. Table 5.1 summarizes

the statistics of the features, and Figure 5.5 visualizes the datasets in the feature

space projected onto the �rst two principal components. The �rst two components

explain 73.5% of the variance, which means that the four-dimensional distribution

is not degenerate but not completely uniform either. Finally, the features were

rescaled to belong to [0, 1].

5.3.2 Experiments

We designed �ve experiments, each one mimicking a di�erent user behavior. In

all experiments, we used a 5-fold cross-validation over the 29 datasets. To avoid

confusion with training and testing in each problem, we call meta-train and meta-

test, respectively, the train and test sets made out of problems.

Global default This experiment mimics the tuning strategy of a non-expert in ma-

chine learning who chooses a unique hyperparameter vector for all problems.

Although this sounds unreasonable, a typical Weka user often runs classi�-

cation algorithms using the default hyperparameters. Here we assume that

the designer of the classi�cation algorithm is an expert, so he or she sets the

5.3. A case study on AdaBoost 51

(! (" (# ($ % $ # "
(!

("

(#

($

%

$

#

!"#"$%&('%"#&

%"(

%(&)*+(,
)*"!&+&'

&%-#*

.&"(+('+"+#-,
*-$-'/.&(&

('0))

#&++&(

#12/.

23&"+(3"%+-('

23&"+(3-4(*&(

23&"+(/*5&#

23&"+(6&($*0&

$4('&(1

-/+)*,*+'

/",&(!#-%0'

/&$)*,*+'

'&,2&$+

'-$"(

+*%(+"%(+-&

7&.*%#&

7-8&#

&'()*+,('-.',/0+.12,1-3-*

4
3
.
1
-
5
+,
('
-
.
',
/
0+
.
1
2
,
1
-
3
-
*

Figure 5.5: Projection of the problems onto the �rst two principal components of

the feature space. For the sake of visibility some problem names are omitted.

default hyperparameters to those that perform the best on average. Formally,

we select the hyperparameter vector that minimizes the average error over the

problems in the meta-train sets.

Collaborative default This experiment mimics the tuning strategy of a more ex-

perienced user, who builds a model according to his or her experience with

the meta-train set, but runs out of time before the conference deadline. She

thus uses the surrogate model to predict one vector of hyperparameters for

each problem, but does no tuning on the problems. In practice, this strategy

is similar to a single iteration of the outer loop of SCoT (Figure 5.3) and con-

sists in (i) taking the surrogate output by SVMrank, (ii) regressing it with

a GP, and (iii) taking the hyperparameter with the best posterior mean on

each meta-test problem.

Separate surrogate tuning This experiment mimics a user who has time for a

sequential algorithm, but does not learn either from the meta-train set or

from the knowledge acquired in tuning on other meta-test problems simulta-

neously. State-of-the-art surrogate tuning methods, such as the ones presented

52 Chapter 5. Surrogate collaborative tuning

in Chapter 4, are of this kind. This experiment consists in running a di�erent

SMBO algorithm on each meta-test problem, thus using an independent two-

dimensional GP for each meta-test problem. To avoid numerical problems, we

start by four random iterations.

SCoT (surrogate collaborative tuning) This experiment mimics an expert

user, who tries to learn a relation between features, hyperparameters, and

quality from the meta-train problems he encountered in the past. Here we

combine the static model and the surrogate technique, and we add collabora-

tive tuning as described in Section 5.2 and Figure 5.3.

Random search This is the baseline experiment that samples points uniformly

over the grid, without replacement. This is probably the most common strat-

egy when exhaustive grid search is out of computational reach. [23] demon-

strated that random search is competitive in hyperparameter tuning for clas-

sical multilayer perceptrons and deep belief networks, see also Chapter 4.

5.3.3 Results

Figure 5.6 shows the average meta-test error as a function of the number of iter-

ations. The curves are (obviously) similar in the beginning and at the end of the

experiment, but between step 20 and 50, the speedup of reaching a given error level

can be more than two-fold wrt. separate tuning, and more than three-fold wrt.

random search.

Comparing the methods in terms of average generalization error might however be

questionable for the exact same reason that made us use a ranking-based surrogate:

the classi�cation datasets may not be commensurable in terms of simple, general-

ization error. Hence we computed an average rank score in the following manner:

in each iteration and for each problem, the results of the di�erent strategies were

ranked with the so-called fractional ranking (also known as �1 2.5 2.5 4� ranking),

where ties are rewarded by the average of their ordinal rankings. For each strategy,

the ranking points of all meta-test problems were then averaged to get the �nal

score. The average rank can then be computed for each method and plotted against

the number of trials. Note that the average rank of a single method depends on

the results of the others, which means that non-tuning methods (global and collab-

orative defaults) will get higher and higher scores while their quality values remain

constant. Also, note that the lower the average rank score, the better is the method.

Figure 5.7 shows the results. The �rst observation is that the collaborative default

achieves a better score than the global default, validating therefore our hypothesis

that past experience can help to �nd better hyperparameters. Secondly, separate

tuning beats random search, con�rming the results of [21]. Finally, SCoT seems to

robustly outperform all methods which means that combining surrogate optimiza-

tion and collaborative tuning gets the best of both worlds. Note that as the number

http://en.wikipedia.org/wiki/Ranking#Fractional_ranking_.28.221_2.5_2.5_4.22_ranking.29

5.4. Conclusion 53

of iterations grow, all three tuning methods start to saturate the search space, so

their average rank converges to the same value.

5.3.4 Computational issues

Since SCoT is meant as a prototype for real-life hyperparameter tuning, it is im-

portant to look at computational costs. The training of the surrogate models in

separate tuning are negligible compared to running MultiBoost. The cost of

training a model on the meta-train problems in the collaborative approaches is

considerable: each fold contains 23 or 24 problems, each one associated with 108

hyperparameter vectors, which means that we need to train the latent ranker on

2500 points in total. In practice, it is realistic to learn, that is, to apply SVMrank

and to tune the parameters of the GP kernel, this model o�ine. It is also plausible

to update this model regularly with new points the user has tried out. What is

computationally too expensive is to completely re-train the model at each iteration

of an SMBO algorithm, since this would not compete with exhaustive search if cost

was raw computational time time (versus the number of runs of A). Our strat-

egy was therefore the following. In general once SVMrank �nds the values of the

surrogate ranker fA, we optimize the hyperparameters of the GP using CMA-ES

[71], a local search optimization algorithm. This optimization is run for 1000 iter-

ations on points from the meta-train. Once we start tuning the hyperparameters

of a meta-test problems, we add new points to the model one by one. Instead of

re-optimizing the GP hyperparameters each time from scratch, we start from the

last model and run CMA-ES only for 100 steps. In practice, this optimization of GP

hyperparameters can disappear once the number of meta-train problems is large.

5.4 Conclusion

We presented SCoT, a surrogate-based optimization algorithm for hyperparameter

tuning. It builds on previous approaches, adding a memory of past experiments and

a collaborative tuning ability. Developing these two new points has led to the com-

bination of surrogate-based optimization and ranking methods, resulting in a novel

Bayesian optimization algorithm whose target is moving with the iteration number.

We demonstrated SCoT in a case study on AdaBoost, where it outperformed

a variety of common tuning strategies, including vanilla surrogate-based optimiza-

tion. Its main limit is the computational cost of maintaining a Gaussian process

model over a huge set of problem-hyperparameter pairs, which we by-passed by fully

training the model only once in the beginning, then only updating it with shorter

optimization routines to keep the overall time-scale realistic for future applications.

In order to eventually yield a (semi) automatic hyperparameter tuner, some method-

ological and theoretical e�orts are still needed. On the methodological side, a com-

prehensive database of learning problems, progressively closing the gap between

http://www.lri.fr/~hansen/cmaesintro.html

54 Chapter 5. Surrogate collaborative tuning

benchmarks problems and a real-world application, should be compiled. On the

theoretical side, some e�orts of feature construction are needed to de�ne, for in-

stance, compound parameters, more amenable to build the surrogate quality model.

Such augmentations of the training set of SCoT will necessitate careful choices in

the methods employed, maybe leading to lighten the computational burden with

cheaper models, such as approximate GPs (see [108, Chapter 8], and [38]). Finally,

we feel there is room for improvement in designing asynchronous strategies for the

collaborative tuning of SCoT, which currently tunes problems in a synchronous

way, spending one point on each problem in turn, while it should intuitively spend

more evaluations on di�cult problems.

5.4. Conclusion 55

global default

collaborative default

SCoT

separate tuning

random search

0 20 40 60 80

0.080

0.085

0.090

0.095

number of trials

av
er

ag
e

te
st

er
ro

r

Figure 5.6: The average meta-test generalization error as a function of the number

of trials. The curves are (obviously) similar in the beginning and at the end of the

experiment, but in the middle of the experience, SCoT can reach a given average

error twice as fast as separate tuning and three times as fast as random search.

global default

collaborative default

random search

separate tuning

SCoT

0 20 40 60 80

2.5

3.0

3.5

4.0

number of trials

av
er

ag
e

ra
nk

Figure 5.7: The average rank of the di�erent methods as a function of the number

of trials. Collaborative methods start from the value 2.62 and all non-collaborative

methods start from 3.26, the �rst four iteration of separate tuning is the same as

random search for reasons described in the text.

Part II

On adaptive MCMC algorithms,
with applications to the Pierre

Auger experiment

Chapter 6

The Pierre Auger experiment

Contents
6.1 Ultra-high energy cosmic rays 59

6.1.1 A brief history of cosmic rays 60

6.1.2 Looking inside an air shower 61

6.1.3 Astrophysical questions raised by cosmic rays 63

6.2 The Auger detector . 65

6.2.1 The surface detector . 65

6.2.2 The �uorescence detector . 67

6.2.3 Latest results . 67

6.3 Conclusion and reading map 70

The Pierre Auger observatory is a giant ultra-high energy cosmic ray detector located

in the Argentinian pampa. Since we are members of the Pierre Auger collaboration,

this experiment motivated a lot of our research, looping from modelling to the

design of suitable inference algorithms to the application of these algorithms. This

chapter does not contain personal contributions, but is rather devoted to presenting

the Pierre Auger experiment, in order to motivate our contributions of Part II

and introduce notions in view of Chapters 7. The target of this chapter is the

non-physicist reader. The expert reader will �nd a more detailed and technical

introduction in [92, Chapters 1 and 2], to which the present chapter owes a lot.

6.1 Ultra-high energy cosmic rays

The study of cosmic rays is a wide and active research topic, related to many �elds of

physics like particle and nuclear physics, astrophysics, and cosmology. Our present

knowledge of elementary particles was initiated by the study of cosmic rays, with the

discovery of the positron in 1932, the muon in 1937, the pion in 1947, etc. Despite

the interest they raised and almost one century after their discovery, fundamental

questions on cosmic rays remain unanswered, particularly at ultra-high energy: what

kind of particles are these cosmic rays? If there exist sources, then where are they?

How do the cosmic rays reach such high energies? What do they tell us about the

60 Chapter 6. The Pierre Auger experiment

cosmic accelerators producing such extreme energies? How strong are the magnetic

�elds that they go through on their way to Earth? How do they interact with

the relic photons from the early universe that �ll the universe, also known as the

cosmic microwave background radiation (CMB)? What can we learn about particle

interactions at these otherwise inaccessible energies? We will examine these di�erent

questions and recent progress towards answering some of them, including the last

results from the Pierre Auger observatory, at the end of the chapter. In this section,

after a brief historical introduction, we will have a closer look at cosmic showers,

cascades of particles generated by cosmic rays hitting the atmosphere.

6.1.1 A brief history of cosmic rays

From balloon �ights made by Victor Franz Hess as early as 1912 [73] it became clear

that the ionization of the atmosphere increased very strongly with rising altitude.

Hess noted that the intensity of the ionization �rst decreased, but that at around

one kilometer it started to increase markedly. This would not be expected if the

origin was entirely from radioactive decay of material in the Earth's crust, as had

previously been suggested. Werner Kolhörster �ew balloons to altitudes exceeding

9 kilometers in Germany and measured even higher ionization levels. Hess and

Kolhörster concluded that the air was being ionized by an extraterrestrial source:

cosmic rays. The term was coined by Robert Millikan who was trying to prove that

cosmic rays were photons since they are very deeply penetrating in the atmosphere.

The nature of this radiation remained unclear for many years, although it was shown

early that the primary radiation included particles with energies as big as 1010 eV

(electronvolts1), and also that the majority were positively charged.

In 1928, a particle detector with the ability to reveal the passage of charged par-

ticles was developed: the Geiger counter, developed by Hans Geiger, was used by

Walther Bothe and Werner Kohlörster to prove that cosmic rays can penetrate thick

absorbing materials. Bruno Rossi used three Geiger counters, disposing them on a

horizontal surface, so that no single particle could pass through the three detectors.

He developed a coincidence circuit to select only events triggering the three de-

tectors at the same time. This apparatus measured a large number of coincidences

proving in this way the existence of secondary particle showers: cascades of particles

produced after the primary ray hit the atmosphere.

The phenomenon now known as extensive air showers (EAS) was discovered by

Pierre Auger in 1938 in Paris [12]. Using two or three Geiger counters, operated

in coincidence and separated by a variable distance of up to 300 meters, Auger

1The eV is an energy unit commonly used in particle physics, with 1 eV ≈ 1.6 × 10−19 joules.

For comparison, the energy released by nuclear �ssion of a heavy nucleus is a few 1010 eV, the most

energetic proton collision the CERN Large Hadron Collider is planning to achieve is around 1017 eV,

the Auger observatory is designed to gather data on cosmic rays of energy beyond 1018 eV, and the

highest energy cosmic ray ever observed, the so-called oh-my-god particle, with its 3.2 × 1020 eV,

is equivalent to the kinetic energy of a tennis ball served by professional player Maria Sharapova.

6.1. Ultra-high energy cosmic rays 61

demonstrated that there are large particle showers arriving at ground level where

particles are correlated in time and space. Pierre Auger estimated that the showers

he detected were generated each by a single particle � the primary particle � hitting

the atmosphere, with energies up to 1015 eV, a jump of �ve orders of magnitude

over previous results.

The energy spectrum of cosmic rays � the empirical energy distribution of the pri-

mary particles � is depicted in Figure 6.1. One usually �ts to this spectrum several

power functions E 7→ E−γ , with changepoints known as the knee and the ankle, that

can be seen in Figure 6.1. More precisely, the remarkable features of the spectrum

are the following:

• the knee is thought to be an e�ect of the acceleration of cosmic rays by

objects in our galaxy and marks the top energy that protons can reach when

accelerated by a galactic supernova. The region around the knee is indicated

in Figure 6.1. A less marked second knee around 1017 eV marks the top energy

attainable by iron nuclei accelerated by a galactic supernova.

• the ankle at 3×1018 eV marks the transition energy above which the spectrum

is dominated by cosmic rays of extragalactic origin, i.e. cosmic rays produced

outside the milky way. The extragalactic mechanisms behind ultra-high en-

ergies are still widely discussed. Active galactic nuclei (AGNs), giant black

holes at the center of certain galaxies like Centaurus A (the nearest extra-

galactic AGN to us), are credible candidates. The Pierre Auger observatory

is designed to observe these ultra-high energies above the ankle, and the size

of the observatory (3 000 km2) is explained by the rate of arrivals of such rays:

one per square kilometer per year!

• the cuto� above 3 × 1019 eV, corresponding to the end of the cosmic ray

spectrum. The cuto� can be explained through the interaction of cosmic

rays with the cosmic background radiation, a process known as the Greisen-

Zatsepin-Kuz'min (GZK) e�ect.

Data has been collected in the second half of the 20th century by always larger arrays

of detectors, among which the Volcano Ranch array (8 km2), the Haverah Park array

(12 km2), AGASA (100 km2), and the Pierre Auger observatory (3000 km2). Let us

also mention HiRes, a �uorescence telescope. The Pierre Auger experiment targets

the part of the spectrum above 1018 eV, the so-called ultra-high energy cosmic rays.

6.1.2 Looking inside an air shower

Cosmic rays are charged nuclei, believed to range from proton to iron in the classi�-

cation table, with very high energies. When such a nucleus � the primary particle �

hits the atmosphere, it interacts with the nuclei in air molecules, generating several

secondary particles. Chances of hitting an nucleus in the air rise with energy, and

62 Chapter 6. The Pierre Auger experiment

1 PARTICLE

PER SQUARE

METER PER SECOND

1 PARTICLE

PER SQUARE

METER PER YEAR

1 PARTICLE

PER SQUARE

KILOMETER

PER YEAR

KNEE

1010 1012 1014 1016 1018 1020

R
E

L
A

T
IV

E
 P

A
R

T
IC

L
E

 F
L

U
X

 (
L

O
G

A
R

IT
H

M
IC

 U
N

IT
S

)

J
E

N
N

IF
E

R
 C

.
C

H
R

IS
T

IA
N

S
E

N

Figure 6.1: The cosmic ray energy spectrum. The black plain line corresponds to

E 7→ E−3 and is here for reference.

also with the mass of the primary (protons are the lightest candidates for primaries,

iron nuclei the heaviest). After a hit, the incoming energy is shared between the

generated particles, which in turn interact in the atmosphere generating new par-

ticles. The repetition of this process produces a cascade of particles, the so-called

extensive air shower.

Due to the steeply falling �ux of incident particles with energy shown in Figure 6.1,

direct observation of the primaries by high-altitude balloon and satellite experiments

is only possible at low energies. At the high end of the spectrum, information

regarding the energy, arrival direction and nature of the arriving particles can only

be obtained through the observation of the cascade of secondary particles and its

side e�ects.

A widely accepted model for extensive air showers is the Heitler model in Figure 6.2.

The �rst interaction of the primary nucleus with air molecules gives rise to a shower

in which we see three components: the nucleonic, pionic and electromagnetic cas-

cade. The nucleonic cascade corresponds to the leading primary particle loosing its

6.1. Ultra-high energy cosmic rays 63

energy and other possible heavy product nuclei. The pionic cascade has its origin

in the generated charged pions, unstable elementary particles that lose energy and

progressively decay � spontaneously disintegrate � into muons, another elementary

particle, often described as a very heavy analogue to the electron. There are also

neutral pions created along the path, which are even more unstable and quickly dis-

integrate into electromagnetic particles (photons, electrons, positrons), leading to

the electromagnetic cascade in Figure 6.2. The development of the shower is char-

acterized by a growth phase, where interactions and generations of new particles

dominate over decays, until the shower reaches its maximum at depth2 Xmax. After

that, because the falling particles have individually less and less energy and thus a

higher probability to decay, decays dominate and the number of particles decreases.

The depth Xmax is highly correlated with the depth of the �rst interaction. It is

thus a good indicator of the mass of the primary, since lighter particles such as pro-

tons statistically penetrate deeper in the atmosphere before hitting a nucleus than

heavier particles like iron. Not shown on Figure 6.2 are various emissions of light

that are not essential to our matter in this document, but one of them deserves to

be mentioned for its importance in determining the energy of the primary: the �u-

orescence light comes from the interaction of low-energy electrons with the nitrogen

molecules in the air. The excited molecules then radiate the acquired energy in the

UV range and go back to their steady state.

EM particles interact more with the atmosphere than muons. Consequently, the

longer the path of the shower in the atmosphere, the lower the proportion of EM

particles in the shower at ground. At ground level, inclined showers, arriving al-

most tangentially to the surface of Earth, are essentially restricted to their muonic

component.

6.1.3 Astrophysical questions raised by cosmic rays

The ultra-high energy cosmic rays (UHECRs) are the most energetic particles

known. Understanding their origin, production and propagation can be expected to

give us insight on basic aspects of our Universe.

6.1.3.1 Propagation of the cosmic rays

The propagation of cosmic rays is deeply related to the structure of our universe.

On the one hand, cosmic rays are charged particles, so they are de�ected by the

magnetic �elds they go through on their way, essentially in our galaxy. On the

other hand, cosmic rays are energetic particles that interact with the other par-

ticles they encounter, like the photons of the CMB, and these interactions make

2Depths such as Xmax are speci�ed in g cm−2, since they are de�ned as the integral of the

atmosphere density (in g cm−3) along the path taken (in cm). In other words, a depth means here

the amount of atmosphere crossed. This unit allows to compare depths in di�erent mediums.

64 Chapter 6. The Pierre Auger experiment

Cosmic ray nucleon

γ γ

 leader

nucleonic cascade

air nucleus

mπ0

2mπ±

π± decay

e+ e− e+ e−

pionic cascade electromagnetic cascade

nucleons muonic component electromagnetic component

γ γγ e±e± e±µ µ µ

Figure 6.2: The Heitler model for an extensive air shower. Particles appearing are

charged pions π+ and π−, neutral pions π0, muons µ, electrons e−, positrons e+

and photons γ. See text for details.

each cosmic ray lose energy and possibly change its composition, while leaving its

direction unchanged. Understanding the trajectories and energy distribution of cos-

mic rays thus constrains models of galactic and extragalactic �elds and background

radiations. For example, the experimental validation of the GZK e�ect (see Sec-

tion 6.1.1) was a landmark in the understanding of the CMB.

6.1.3.2 Origin and acceleration of the ultra-high energy cosmic rays

It is particularly tough to determine the origin of UHECRs, but we can reasonably

think that high energy protons, for instance, will not be de�ected too much by the

galactic magnetic �elds, thus allowing us to pinpoint potential sources by estimating

and drawing skymaps of the arrival directions of UHECRs.

Two classes of models were proposed for accelerating particles to such high energies:

the so-called top-down and bottom-up models. Top-down models involve very heavy

relics from the early universe decaying and require new physics, meaning that the

6.2. The Auger detector 65

current accepted model for elementary particles and their interaction � the standard

model � is not su�cient to explain UHECRs under top-down production models.

Bottom-up models are more popular, and explain UHECRs by extragalactic objects

accelerating the particles along their path through di�erent mechanisms that we

will not delve in here. A good candidate for acceleration sites are the active galactic

nuclei, supermassive black holes at the centers of certain galaxies.

Having a precise idea of the composition of the cosmic rays would also help in

the search for sources: nuclei interact, for instance, di�erently with the CMB, and

knowing in which proportion particles enter in the composition of cosmic rays would

help setting limits on the distance at which we have to look for sources. Additionally,

we know that iron nuclei de�ect too much in our galaxy, even at the highest energies,

so that a heavy composition would condemn source scans.

6.2 The Auger detector

We have seen the importance of estimating the energy spectrum, composition and

arrival directions of UHECRs. To tackle these issues, the Pierre Auger experiment

was conceived in the wake of always larger and more sophisticated detectors. It

consists of two sets of devices: a surface detector (SD) and a �uorescence detector

(FD). A summary drawing is shown in Figure 6.3.

The surface detector, shown in Figure 6.4, consists of 1 660 surface stations � water-

�lled tanks and their associated electronics � arranged on a triangular grid, the

distance between two tanks being 1.5 kilometers, with the grid covering a total area

of 3 000 square kilometers. On clear moonless nights, four optical stations look at

the atmosphere above the array. Each station contains six telescopes, designed to

detect the �uorescence light mentioned in Section 6.1.2.

6.2.1 The surface detector

When a charged particle crosses a medium � here water � at a greater speed than

the speed of light in the medium (you can go faster than light in water!), then na-

ture has the particle loose energy by emitting photons along its tracklength. This

process is known as the Cherenkov e�ect. Recall the secondary particles reaching

ground level are mainly muons, electrons, positrons and photons, see Figure 6.2).

By virtue of the Cherenkov e�ect, muons, electrons and positrons generate photons

in the water tanks of the SD. Individual photons are then seen by one of the three

photodetectors (also called photomultiplying tubes or PMTs) in the tank. These

photons are then converted to photoelectrons (electrons ejected from the detector

atoms by the incoming photons). If the signal satis�es hardware triggering condi-

tions designed by the experimenters to avoid recording noise, the current is then

measured, integrated over bins of width 25 nanoseconds and discretized to produce

66 Chapter 6. The Pierre Auger experiment

Figure 6.3: An overview of the Pierre Auger detector with its surface and �uores-

cence detectors. The main element of the SD is the tank (bottom right). The main

element of the FD is the optical station (top right).

Figure 6.4: On the left panel, red dots illustrate the surface detector and its 1 660

water tanks spread over 3 000 square kilometers near the middle Andes, about 400

kilometers south of Mendoza, Argentina. Green lines indicate the �eld of view of

each optical station of the �uorescence detector. A picture of an individual SD tank

is shown on the right panel with the Andes in the background.

the �nal SD signal, the so-called FADC3 histogram, or trace. The unit of the y-axis

3Flash analog to digital converter.

6.2. The Auger detector 67

in FADC traces is the vertical equivalent muon (VEM, VEM-peak). It is a cali-

bration unit that represents the mean signal of a muon crossing the tank vertically.

Each PMT producing a histogram, there are three FADC histograms produced by

each tank for each event. A view of a tank is given in Figure 6.4, while an example

of FADC histogram is given in Figure 6.5. The analyses in this thesis deal with this

SD signal.

6.2.2 The �uorescence detector

The four optical stations, the position of which is depicted in Figures 6.3 and 6.4

along with their �elds of view, are similar to the one shown depicted in Figure 6.3.

They are made of mirrors focusing the �uorescence light onto cameras. The FD

is operated only during clear moonless nights (about 13% of the time) and thus

accumulates less data than the SD, which works 24/7. FD data is essential in the

estimation of the energy of the observed cosmic rays, and datasets consisting of

events seen by both the SD and the FD are very valuable for the analysis.

6.2.3 Latest results

We quickly review here recent results obtained by the Auger collaboration on the

energy spectrum, the mass composition and the potential sources of UHECRs.

6.2.3.1 Spectrum

Figure 6.6 presents the most recent spectrum published by the Auger collaboration

[58]. The cuto� after 1019.4 eV is particularly pronounced. As previously men-

tioned, this cuto� is believed to be the result of the interaction of cosmic rays with

the CMB (the GZK e�ect). However, other explanations are possible, and maybe

complementary: it could be that cosmic rays cannot accelerate to higher energies

for some reason. Furthermore, a GZK cuto� at 1019.4 eV is only compatible with a

relatively light mass composition, while Auger seems to indicate a change to heavy

composition in the highest energies, but how heavy?

6.2.3.2 Sources

Only the cosmic rays with the highest energies can be expected not to have been

de�ected by the galactic magnetic �eld. A skymap of the reconstructed arrivals of

the most energetic events observed by Auger can be seen in Figure 6.7, which was

published in [1]. Various statistical tests for correlation with astronomical catalogues

are being run to detect potential sources. AGNs are plotted in blue on Figure 6.7,

could they be the birth place of cosmic rays? The most recent test results lead to

68 Chapter 6. The Pierre Auger experiment

(a) Real signal

0 500 1000 1500 2000 2500 3000
ns

0.5

1

1.5

2

2.5

3

3.5

4

VEM d=1287.4 m, E=10 EeV, Θ=45é Hred = muons; blue = gammasL

(b) Simulated signal

Figure 6.5: FADC signal examples. Figure 6.5(a) shows a real FADC trace, while

Figure 6.5(b) depicts a simulation where we separated the muonic and the EM

component of the signal, according to what kind of secondary particle of the shower

caused the photon emission. Muons (in red) typically produce peaky signals early in

the trace, with an exponential tail. The abundant EM particles (in blue) generate

a smoother and more elongated signal with lower amplitude.

rejecting the hypothesis of isotropy of the arrivals with an insu�cient signi�cance

level to claim a discovery [1].

6.2. The Auger detector 69

E[eV]

18
10

19
10

20
10

]
 2

 e
V

-1
 s

r
-1

 y
r

-2
 J

(E
)

[k
m

 3
 E 3710

3810

(E/eV)
10

log

18 18.5 19 19.5 20 20.5

 0.02± = 3.27
1

!

 0.01±/eV) = 18.61
ankle

(E
10

log

 0.01± = 2.68
2

!

 0.02±/eV) =19.41
break

(E
10

log

 0.1± = 4.2
3

!

Auger combined

/ndof = 37.8/16 = 2.7)2"Fit (

J(E) ∝ E
−γ

i , i = 1, 2, 3

Figure 6.6: The latest spectrum published by the Auger collaboration [58]. Plotted

is the �ux multiplied by the cube of the energy, so that E 7→ E−3 would yield a �at

horizontal line.

Figure 6.7: The 69 arrival directions of cosmic rays with energy larger than 5.5 ×

1019 eV detected by the Pierre Auger observatory. They are plotted as black dots

in an Aito�-Hammer projection of the sky in galactic coordinates (our galaxy is on

the x-axis). The solid line represents the border of the �eld of view of the Auger

Observatory for zenith angles lower than 60◦ (0◦ corresponds to a vertical shower,

90◦ to a �at shower tangent to the surface of earth. Blue circles are centered at the

position of the closest AGNs within the �eld of view of the observatory. Darker blue

indicates larger relative exposure.

70 Chapter 6. The Pierre Auger experiment

6.2.3.3 Mass composition

The Auger collaboration identi�ed several independent observable quantities that

are sensitive to the mass, and hence the nature, of the primaries. Some of these

quantities are

• the average depth of the shower maximum 〈Xmax〉 (see the Heitler model

described in Section 6.1.2): the lighter the particle, the deeper it penetrates

the atmosphere,

• the standard deviation RMS(Xmax) is also correlated with the nature of the

primary: the depth of proton showers tends to �uctuate more than the depth

of iron showers,

• the number of muons that reached the ground and their average maximum

muon production depth 〈Xµ
max〉,

• the risetime asymmetry parameter Θmax, an observable based on quantiles of

the signal in di�erent tanks.

These quantities are subject to independent systematic uncertainties (reconstruction

uncertainty that will not decrease with more data). Due to the large �uctuations

in shower development and the uncertainties in the interaction models, primary

particle identi�cation is very di�cult and, as of today, not possible on an event-

by-event basis. Figure 6.8 summarizes the latest results of the Auger collaboration

on mass composition presented in [57]. Red lines indicate the expected results for

pure proton showers, the lightest composition, while blue stands for pure iron, the

heaviest. Di�erent linestyles mean di�erent interaction models, that is, di�erent

sets of rules and parameters to propagate individual particles in the shower. We

will meet again two of these interaction models in Chapter 7: QGSJetII and EPOS.

The description and the implementation of interaction models is an active research

topic on its own, and astroparticle physicists usually compare to several of them,

since all are plausible but di�erent, through di�erent choices of free parameters

or di�erent sampling algorithms for example. In particular, EPOS predicts more

muons than QGSJetII, but both underestimate the number of muons in real data.

All four plots in Figure 6.8, when compared to interaction models, indicate a change

of composition towards heavy particles at high energies.

6.3 Conclusion and reading map

Cosmic rays convey important information on our universe. The Pierre Auger ob-

servatory gathers data on the cascade of particles each cosmic ray generates when

entering the atmosphere, among which muons. Ad hoc procedures exist to esti-

mate important quantities that are sensitive to key parameters like the energy, the

6.3. Conclusion and reading map 71

composition and the arrival direction of the cosmic ray from the accumulated data.

These estimates are often heavily dependent on existing simulators of the di�erent

interactions involved, the implementation of which is an active research topic on its

own.

As often in experimental physics, convincing results will come from independent

methods yielding consistent estimation of the key parameters. As statisticians,

we think that a natural way to go back from data to the primary parameters is to

derive a full generative model of a shower, with the numerous intermediate processes

(particle interactions, propagation of the shower, detection) encoded as hidden � or

nuisance � variables, and perform a full Bayesian analysis of the data with this

model. Chapter 7 is devoted to the derivation of the �bottom part� of this generative

model and a �rst approach to estimate the number of muons in a shower. The

remaining chapters of Part II of this thesis deal with Markov chain Monte Carlo

algorithms suitable for inference in this model.

72 Chapter 6. The Pierre Auger experiment

]
2

 [
g

/c
m

!
m

a
x

µ
X"

500

550

600

650

EPOSv1.99

QGSJETII-03

SIBYLL 2.1

proton

iron

Syst. Unc.

m
a
x

#

1.5

1.55

1.6

]
2

 [
g

/c
m

!
m

a
x

X"

650

700

750

800

850

energy [eV]

18
10

19
10

20
10

]
2

)
[g

/c
m

m
a
x

R
M

S
(X

20

30

40

50

60

Figure 6.8: The latest results published by the Pierre Auger collaboration on mass

composition [57]. The error bars correspond to the statistical uncertainty. System-

atic uncertainty is represented by the shaded bands and is roughly to read as an

additional uniform uncertainty which translates the precision of the observatory and

reconstruction methods. Three di�erent interaction models are plotted for reference.

Chapter 7

Inferring muons

Contents
7.1 Introduction . 73

7.2 A model for the Auger tank signal 74

7.2.1 The formal tank signal . 75

7.2.2 The signal given the expected photoelectron count 75

7.2.3 The distribution of the expected PE count in time 79

7.2.4 Priors and features of the tank signal model 80

7.3 Going large-scale: counting muons in a shower 83

7.3.1 The lateral distribution function 84

7.3.2 An empirical Bayes setup . 87

7.4 Conclusion . 90

In this chapter, we present our contributions to inference on the muonic content

of cosmic showers. This is joint work with my advisor Balázs Kégl, and Darko

Veberi£ (University of Nova Gorica, Slovenia) for the model in Chapter 7.2. These

contributions were presented in [17] and [85].

7.1 Introduction

We reviewed in Chapter 6 the shower parameters that we are interested to infer

with Auger data: composition, arrival direction, and energy of the primary cosmic

ray. The most appealing way to reconstruct shower parameters is to write down

a precise generative model of the Auger signal given these, and perform Bayesian

inference. Designing a model and the associated computational tools is a long term

task, of which Part II of this thesis shows di�erent aspects. In this chapter, we

start by deriving in Section 7.2 a model for the low-level SD tank signal of Auger

presented in Section 6.2.1 that will motivate the methodological contribution of

Chapter 9. Waiting for the overall model, the model of Section 7.2 could yield an

e�cient tankwise muon counter if used with an appropriate MCMC algorithm. To

obtain physics results in the short term, we thus present in Section 7.3.2 an empirical

Bayes procedure to estimate the number of muons in a shower given such a tankwise

74 Chapter 7. Inferring muons

muon counter, and illustrate it on shower simulations. Finally, for a summary of

the notations used here, we refer the reader to Appendix A.

7.2 A model for the Auger tank signal

The single muon response is a subject that was thoroughly explored in the early

phase of the Auger collaboration [105, 54, 106, 48, 107, 26, 39, 119, 53, 55, 124, 56,

3, 52, 51, 5]. The main purpose of these studies was to understand the mean muon

response in order to de�ne an SD (surface detector, the tank array, see Chapter 6)

energy estimate. Indeed energy is better estimated by the FD (�uorescence detector,

see Chapter 6), but the latter is only operating on clear moonless nights, while the

SD works 24/7. First, based on the muonic signal model, a calibration procedure

was designed for estimating the total signal in individual tanks. Then the total

signals were combined to compute one observable per shower, which was �nally

calibrated to the FD energy estimate.

The purpose of muon-counting [35, 61, 50, 62, 85] is to design a muon density

estimator without the need for outside calibration. Our ultimate goal is similar to

the program outlined in [56]: obtain a full parametrization of the muonic signal that

can be used in a Monte Carlo Markov chain (MCMC; [110]) reconstruction approach

as well as for �ne-tuning the muon counting techniques. Beside this principal goal,

we believe that this re�ned model may also help to improve the SD energy estimate

(mainly by decreasing the statistical error on the individual shower estimates along

the lines of [4]). The obtained model may also serve as a basis for a toy Monte Carlo

tank simulator that can be used to quickly generate a large number of tank signals.

We concentrate in this work on vertical centered muons, that is, muons entering

the tank vertically and through the center of its top face. Consequently, vertical

muons have a tracklength of 1.2 meters, the height of a tank, and the three PMTs

play a similar rôle. In Section 7.2, we formally describe the probability distribution

of the FADC signal x of an individual muon given its time of arrival tµ and the

signal amplitude. The signal amplitude depends mostly on the tracklength Lµ of

the muon in the tank, and, to a lesser extent, the energy of the muon Eµ. The

energy dependence of the signal will be captured through a unitless energy factor

φµ, which can be thought of as the ratio between the number of photons produced

by the considered muon and the expected number of photons generated by a muon

with kinetic energy of 1 GeV. Formally, the objective of this section is to develop a

model for

p(x|tµ, Lµ, φµ) .

Let θ denote the zenith angle of a muon: θ is the angle of the arrival direction of the

muon with respect to a vertical line. Vertical muons satisfy θ = 0. The extension of

the model to non-vertical muons will require the zenith-angle-dependent tracklength

7.2. A model for the Auger tank signal 75

distribution that was already described in [87], and the distribution of the energy

factor p(φµ|Eµ), which will be the subject of future work.

After summarizing our notations, we describe the model of the SD signal given the

expected photoelectron count in Section 7.2.2. In Section 7.2.3, we describe the

expected number of photoelectrons as a function of the muon and tank features,

before concluding and relating this section to the rest of this thesis in Section 7.2.4.

7.2.1 The formal tank signal

Let x = (x1, . . . , xN) ∈ R
N be the FADC signal vector. We interpret xi as the sum

of the signals deposited by photoelectrons (PEs), corrupted by noise, in the time

interval

[ti−1, ti) = [t0 + (i− 1)t∆, t0 + it∆) , (7.2.1)

where t0 is the absolute starting time of the signal, and t∆ = 25 ns is the signal

resolution (size of one bin). The signal is measured in FADC units. The goal is to

parameterize the density

p(x|tµ, Lµ, φµ) , (7.2.2)

where tµ is the arrival time of the muon, Lµ is the tracklength of the muon, and φµ
is a factor that captures the energy dependence of the signal amplitude. To �x the

scale of φµ, we set φµ ≈ 1 for an average1 vertical atmospheric muon. In general,

we will assume that maxφµ p(φµ) ≈ 1.

We will construct the model in a bottom-up fashion, that is, we start from the signal,

and develop the model by adding explanatory parameters and nuisance parameters

(Table 7.1).

7.2.2 The signal given the expected photoelectron count

First we will rewrite (7.2.2) as

p(x|tµ, Lµ, φµ) =

∫

R
N
+

p(x, n̄|tµ, Lµ, φµ) dn̄

=

∫

R
N
+

p(x|n̄, tµ, Lµ, φµ)p(n̄|tµ, Lµ, φµ) dn̄ , (7.2.3)

where n̄ = (n̄1, . . . , n̄N) ∈ R
N
+ , and n̄i is the expected number of PEs in the bin

[ti−1, ti). Since the signal is independent of tµ, Lµ, and φµ given n, we can simplify

(7.2.3) to

p(x|tµ, Lµ, φµ) =

∫

R
N
+

p(x|n̄) p(n̄|tµ, Lµ, φµ) dn̄ . (7.2.4)

1More precisely, φµ ≈ 1 for the most likely muon. Since p(φµ) has a heavy tail and also a strong

lower tail, in general E {φµ} 6= maxφµ p(φµ).

76 Chapter 7. Inferring muons

Table 7.1: Explanatory (�rst 13 lines) and nuisance parameters. For explanatory

parameters the fourth column is the prior distribution. For nuisance parameters

we give the conditional distributions. A summary of notations can be found in

Appendix A.

name not. unit law (priors or conditionals)

bin width t∆ ns δ25
signal decay time τ ns δ60 or N60,5

signal risetime td ns δ4 or N4,1

signal start time t0 s given for each signal

muon arrival time tµ ns inverse gamma IGα,β(tµ − t0)

muon tracklength Lµ m δ1.2 (see [87] for inclined muons)

muon energy factor φµ unitless δ1 or N1,0.1 (see [16] for inclined muons)

muon amplitude Aµ unitless φµLµν (see Section 7.2.4)

avg number of PEs / 1GeV / 1m ν m−1 δ228 or N228,120

PE signal mean (gain) µ adc δ1.8 or Γ18,0.1

PE signal shape k unitless δ2 or Γ20,0.1

PE signal noise std σ adc δ0.55 or N0.55,0.05

PE signal baseline b adc N55,5

expected number of PEs in bin i n̄i unitless φµLµν
∫ ti
ti−1

pτ,td(t− tµ)dt (see (7.2.21))

number of PEs in bin i ni unitless Poin̄i
noiseless signal in bin i x̄i adc Γnik,µ/k
signal in bin i xi adc Nb+x̄,σ

Since the second term is a Dirac delta � n̄ is a deterministic function of tµ, Lµ, φµ,

and some other explanatory parameters �, the convolution further simpli�es to a

simple product

p(x|tµ, Lµ, φµ) = p(x|n̄) δ
n̄(tµ,Lµ,φµ) . (7.2.5)

The function n̄(tµ, Lµ, φµ) in the second term depends mainly on the time response

pro�le which we will describe in Section 7.2.3. Here we start by developing the

�rst term p(x|n̄) of (7.2.5). First note that given the expected number of PEs,

the bin-wise PE signals xi are independent of each other. This is a quite realistic

assumption since the signals vary due to some random events in the PMT, although

some dependence can occur due to some secondary e�ects.2 In this model we ignore

these e�ects, and factor p(x|n̄) to obtain

p(x|n̄) =

N∏

i=1

p(xi|n̄i) . (7.2.6)

We now introduce a second nuisance parameter, the actual number of PEs ni in the

bin [ti−1, ti), and rewrite p(xi|n̄i) as

p(xi|n̄i) =

∞∑

ni=0

p(xi, ni|n̄i) =

∞∑

ni=0

p(xi|ni, n̄i)p(ni|n̄i) . (7.2.7)

2See Figure A-52 in [51].

7.2. A model for the Auger tank signal 77

Given ni, the signal xi is independent of the expected number of PEs n̄i, so

p(xi|ni, n̄i) = p(xi|ni). Since we can assume that the PEs were generated by cap-

turing a small portion of Cherenkov photons, the number of PEs ni is Poisson with

parameter n̄i, and so (7.2.7) simpli�es to

p(xi|n̄i) =

∞∑

ni=0

p(xi|ni)Poin̄i(ni) . (7.2.8)

The �rst term p(xi|ni) depends on the spectrum of single PEs, the baseline, and the

bin-wise noise. To model this convolution, we introduce our last nuisance parameter,

the noiseless signal x̄i in the bin [ti−1, ti), and rewrite p(xi|ni) as

p(xi|ni) =

∫ ∞

0
p(xi, x̄i|ni) dx̄i =

∫ ∞

0
p(xi|x̄i, ni)p(x̄i|ni) dx̄i . (7.2.9)

Given x̄i, the signal xi is independent of the PE count ni (it only depends on the

noise and the baseline), so we can rewrite (7.2.9) as

p(xi|ni) =

∫ ∞

0
p(xi|x̄i)p(x̄i|ni) dx̄i . (7.2.10)

The bin-wise noiseless signal x̄i is shifted by a baseline b, and also corrupted by an

additive Gaussian noise with zero mean and standard deviation σ so the �rst term

of (7.2.10) becomes

p(xi|x̄i) = Nb+x̄i,σ(xi) (7.2.11)

The noiseless signal x̄i is a sum of ni independent PE signals. It was measured

[48, 63, 51] that single PEs deposit a signal which is almost exponential, having a

relative variance
variance

mean2
≈ 0.5 . (7.2.12)

The actual form of the distribution is not very important since the total signal is

a sum of several PE signals, so we decided to model the single PE spectrum by a

Gamma distribution with shape parameter k = mean2/variance and scale parameter

θ = variance/mean. We parametrize the distribution using the gain µ = kθ and

the shape parameter k. Since the distribution of the sum of n independent Gamma

variates with parameters k and θ is Γnk,θ, the distribution of the noiseless signal x̄i
given the number of PEs ni is

3

p(x̄i|ni) = Γnik,µ/k(x̄i) . (7.2.13)

3To avoid the singularity, we will de�ne Γ0,θ(x) = δ0(x) where δa is the Dirac delta distribution

centered at a.

78 Chapter 7. Inferring muons

Combining equations (7.2.8), (7.2.10), (7.2.11), and (7.2.13), our �nal bin-wise signal

model is

p(xi|n̄i) =

∞∑

ni=0

Poin̄i(ni)

∫ ∞

0
Γnik,µ/k(x̄i)Nb+x̄i,σ(xi) dx̄i

=

∫ ∞

0
Nb,σ(xi − x̄i)

∞∑

ni=0

Poin̄i(ni)Γnik,µ/k(x̄i)

︸ ︷︷ ︸
compound Poisson

dx̄i . (7.2.14)

Figure 7.1 shows the single PE spectrum under the model, using di�erent values for

the gain µ and the shape parameter k. The spectrum contains the additive noise,

that is, we numerically integrated the convolution of (7.2.14) with ni = 1. The

curves are reasonably close to those depicted by Figure 2 in [63], Figures 1-2 in [48],

or Figure A-53 in [51].

0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

@adcD

p

(a) k = 2.5, µ = 1.9, σ = 0.6

0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

@adcD

p

(b) k = 1.05, µ = 1.2, σ = 0.6

Figure 7.1: �Ideal� single PE spectra with additive noise.

The distribution p(xi|n̄i) is the convolution of a Gaussian and a compound Poisson

� the latter being a sum of independent Gamma variables � so its mean is b + n̄iµ

and its variance is

n̄iµ
2

(
1 +

1

k
+

σ2

n̄iµ2

)
. (7.2.15)

Setting aside the baseline translation, the relative variance is

1

n̄i

(
1 +

1

k
+

σ2

n̄iµ2

)
, (7.2.16)

where the third term in the parentheses can safely be ignored for large n̄i. The range

of k goes from 1 (exponential PE spectrum) to ∞ (Dirac PE spectrum), with the

relative signal variance (7.2.16) being between 1/n̄i (Dirac) and 2/n̄i (exponential).

Generating random variates from (7.2.14) is easy: one just has to go through the

convolution chain. On the other hand, evaluating (7.2.14) given xi and n̄i (which we

need in parameter estimation) can only be done numerically. One can approximate

7.2. A model for the Auger tank signal 79

(7.2.14) by simpler formulas, but we found that these approximations may corrupt

the estimation of signal parameters µ, k, and σ. In case these parameters are known,

we can approximate the convolution (7.2.14) by a Gamma distribution with the same

mean and variance:

p(xi|n̄i) ≈ Γk′,θ′(xi − b) (7.2.17)

with

k′ = n̄i
k

(k + 1)
(
1 + kσ2

(k+1)n̄iµ2

) , (7.2.18)

θ′ = µ
k + 1

k
+

σ2

n̄iµ
. (7.2.19)

If the signal parameters are estimated with a Monte Carlo Markov chain (MCMC)

algorithm, we can explicitly introduce the nuisance parameters n̄i, ni, and x̄i, and

let the MCMC do the numerical integration.

7.2.2.1 Discretization

The FADC count is a discretized value of the original signal. The likelihood (7.2.14)

is a good approximation of the real likelihood in case σ is larger than half the

resolution (which is 1 in our case). In this case the discretization variance 1/12 is

included in the estimated σ. In experiments we found that σ is around the critical

value of 0.5, and we started to observe both a slight bias in the baseline estimate

and a �uctuation of the noise estimate, depending where the real baseline was with

respect to the FADC bin boundaries, so we opted to include the discretization in

the likelihood by using

p(xi|n̄i) =

∞∑

ni=0

Poin̄i(ni)

∫ ∞

0
Γnik,µ/k(x̄i)

∫ xi+0.5

xi−0.5
Nb+x̄i,σ(x

′
i) dx′i dx̄i . (7.2.20)

instead of (7.2.14).

7.2.3 The distribution of the expected PE count in time

The second term n̄i(Lµ, φµ, tµ) of (7.2.5) determines the expected number of PEs

in the bin [ti−1, ti), given Lµ, φµ, and tµ. We will use a simple model with three

additional explanatory parameters, the risetime td, the rate of the exponential decay

τ (both measured in ns), and the mean number ν of PEs generated by a muon with

kinetic energy 1 GeV on a tracklength of 1 m. We found that this parametrization

works �ne for vertical centered muons, to which we limit the scope of this chapter.

The re�nement of the model for inclined non-centered muons, with treatment of the

PMT asymmetries and direct light is postponed as future work.

80 Chapter 7. Inferring muons

Our model is based on the assumption that a muon generates a number of Cherenkov

photons along its trajectory at a rate that depends on its energy. The photons are

generated at a precise angle around the trajectory. They can be re�ected several

times on the walls of the tank before arriving into the PMT. It was measured

that the photon distribution �mixes� (becomes uniform) after around two re�ections

within another 5 to 10 ns. This means that the risetime is in the �rst two bins (at

most). After that the rate of arrival in the PMT becomes exponential because of

the constant decay rate due to the absorption of photons in the water and re�ection

losses. The rate can change from one tank to another, and it was observed to

change also in time. To model the risetime, we assume that the photon generation

is uniform in a window of width td. The decay phase is modeled by an exponential

with parameter τ . The convolution can be solved analytically to obtain the time

response distribution

pτ,td(t) =
1

td
·





0 if t < 0 ,

1− exp(−t/τ) if 0 ≤ t < td ,

exp
(
− (t− td)/τ

)
− exp(−t/τ) if td ≤ t .

(7.2.21)

Figure 7.2(a) shows the time response distribution with typical parameter values

τ = 60ns and td = 4ns.

To obtain the expected number of PEs in a bin, we �rst have to integrate pτ,td(t)

in the bin, and then we have to multiply it with (a) the tracklength Lµ, (b) the

average number of PEs per unit tracklength ν = 228m−1, and (c) the energy factor

φµ,

n̄i(Lµ, φµ, tµ) = φµLµν

∫ ti

ti−1

pτ,td(t− tµ) dt . (7.2.22)

7.2.4 Priors and features of the tank signal model

Note that the tracklength Lµ, the energy factor φµ, and the average number of PEs

per unit tracklength ν appear only in a product in , which is not a problem here

since Lµ is equal to the height of a tank and ν is constant, but will make them hard

to disentangle for muons which are not vertical. We thus group these parameters

and de�ne the amplitude Aµ = φµLµν of a muon. The prior on Aµ is thus NνLµ,1
for vertical muons, according to Table 7.1. An example prior for Aµ in the case of

inclined muons can be found in [16].

The prior on tµ is taken to be inverse gamma, according to personal communications

with Sylvie Dagoret-Campagne (Université Paris-Sud XI), with parameters that

depend on several higher-level geometric features of the shower. For simulations in

this thesis, we use an IG2,100 prior.

The model is summarized in the Directed Acyclic Graph (DAG) given in Figure 7.3,

along with Table 7.1. Although we have considered Nµ �xed throughout the section,

7.2. A model for the Auger tank signal 81

-20 0 20 40 60 80 100
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

t @nsD

p

(a)

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475
0

2

4

6

8

10

12

14

16

18

20

22

24

26

t @nsD

ð
PE

(b)

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475
0

5

10

15

20

25

30

35

40

45

50

55

60

65

t @nsD

@a
dc
D

(c)

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475
0

5

10

15

20

25

30

35

40

45

50

55

60

65

t @nsD

@a
dc
D

(d)

Figure 7.2: (a) The time response distribution with typical values τ = 60 ns and

td = 4ns. (b) The same ideal time response, with an example n vector. (c) Example

gamma vector x̄ vector. (d) Example x vector with Gaussian noise depicted in black.

we specify in the DAG a Poisson prior PoiNµ
for Nµ to allow estimation of Nµ via

reversible jump MCMC algorithms [68].

Given Nµ and, the muon arrival times t = (t1, . . . , tNµ) and amplitudes A =

(A1, . . . , ANµ), the likelihood of a signal x is �nally

p(x|A, t, Nµ) =

N∏

i=1

p(xi|n̄i(A, t, Nµ)) , (7.2.23)

where p(xi|n̄i) is de�ned in (7.2.14) and

n̄i(A, t, Nµ) =

Nµ∑

j=1

Aj

∫ ti

ti−1

pτ,td(t− tj) dt .

Priors are speci�ed in Table 7.1, so that we can speak of the posterior distribution

of A, t. The posterior is likely to show correlation between variable blocks Ai, ti
belonging to di�erent muons, since, for instance, two muons close in time will �com-

pete� to explain the signal and thus have negatively correlated amplitudes. When

it comes to choosing the right MCMC algorithm to sample from this posterior, this

82 Chapter 7. Inferring muons

xi

bσ

x̄i

µk

ni

n̄iAj

ν

td

tj

τ

NµNµ

α

βt0

i = 1, . . . , N

j = 1, . . . , Nµ

Figure 7.3: Directed acyclic graph summarizing the tank signal model described in

Section 7.2. Distributions are speci�ed in Table 7.1. Data x is in gray, while n,

depicted in a blue rectangle, is a deterministic function of its parent nodes.

motivates the use of adaptive MCMC algorithms that learn the covariance of the

target distribution on the �y and use it to propose points more e�ciently.

Another feature of the model (7.2.23) is permutation-invariance. Indeed, in the case

where Nµ = 2, for instance, it comes

p(x|(A1, A2), (t1, t2), Nµ = 2) = p(x|(A2, A1), (t2, t1), Nµ = 2) .

7.3. Going large-scale: counting muons in a shower 83

If the chosen prior does not favor any permutation of the muons either, then MCMC

inference in such a model has to be done with care since label switching will occur,

as explained in Chapter 8, where we also review existing algorithmic solutions.

Chapters 9 and 10 are devoted to the presentation, application and theoretical

analysis of AMOR, an adaptive algorithm that solves the label switching problem

and was motivated by the model presented in this section.

7.3 Going large-scale: counting muons in a shower

Deriving a full generative model for cosmic showers is a di�cult task: after the

low-level tank signal of Section 7.2, it remains to add the EM component to the

model in a cheap-to-sample-from way, derive the parts of the model that govern the

shower generation 1) between the tank and the production site of the particles and

2) between production and the hit of the primary ray. Furthermore, once derived

a full model, a classical treatment would require to have an MCMC algorithm that

integrates over all nuisance variables. For one single tank, the model presented in

Section 7.2 already involves several nuisance variable vectors of length the number

of FADC bins, which will be a few hundreds for real data. In a joint work with A.

Roodaki (Télécom ParisTech), we have preliminary experiments that show that a

clever design of RJMCMC proposals yields good results on the single tank model,

but nothing guarantees that once we go large-scale and put all tanks together in a

model that includes more high level nuisance variables, we will be able to implement

an e�cient sampler. This is why we now present a tractable way of performing

inference on the number of muons in a shower, an important observable as seen in

Chapter 6, that requires only a tankwise posterior on the number of muons given

the signal. Once it will contain the EM component, an RJMCMC algorithm applied

to the model of Section 7.2 will �ll that rôle. Note that methods presented in this

Section 7 are not novel, our contribution is their application to Auger simulations

and data4.

In Section 7.3.1, we describe the Lateral Distribution Function (LDF) and precise

what we mean by estimating the number of muons. In Section 7.3.1.3, we present

the shower likelihood and priors, before deriving an empirical Bayes algorithm to

estimate the LDF parameters in Section 7.3.2. In Section 7.3.2.1, we benchmark

our method with a Bayesian neural network as tankwise muon counter. We showed

in [85] that this approach outperforms the current state-of-the-art implemented in

Auger software.

4Since the use of Auger data would imply this thesis is not in open access, we will only consider

o�cial simulations here. We refer interested readers with Auger collaboration rights to [85].

84 Chapter 7. Inferring muons

7.3.1 The lateral distribution function

The �number of muons� in a shower is an ill-de�ned notion: is it the number of

muons produced, the number of muons reaching the ground, the number of muons

observed? The Auger collaboration de�ned observables to quantify the muonic

content of a shower.

Let the shower axis be an imaginary line that goes through the �rst interaction

point of the primary particle and follows the arrival direction. Let the shower core

be the intersection of the shower axis and the ground. Denote by r the distance of

a tank to the shower axis. The Lateral Distribution Function (LDF) is the glue that

links tankwise results. It is de�ned as the number of muons in an imaginary tank

at distance r from the shower axis. The LDF is typically given a simple parametric

form; once its parameters are estimated � we say the LDF is reconstructed � using

tankwise estimates of the number of muons, we can compute, for instance, the

number Nµ(1000) of muons in an imaginary tank at r = 1000m as a function of the

energy of the shower and its inclination.

7.3.1.1 Notations for data

Assume we have n showers, indexed by i. If the shower is simulated, then its real

energy Ei and zenith angle θi are provided. The ith shower has mi active detectors,

indexed by j. Out of these mi detectors, ki have triggered and mi − ki are non-

triggering: data is censored. Without loss of generality, we will assume that the �rst

ki have triggered and the last mi−ki are non-triggering. The real number of muons

in the jth detector of the ith shower will be denoted by Ni,j (we omit the index µ for

simplicity). Ni,j is, of course, only observed in simulations, and we use it only for

sanity checks of the approach presented in this section, such as checking the LDF

estimation is working well when provided with the real numbers of muons. For each

detector, we also observe its distance from the shower axis ri,j and an indicator ιi,j
whether it has triggered or not (that is, ιi,j = 1 if the detector triggers, 0 if it is

non-triggering). When we talk about the whole shower i, the vector of the numbers

of muons in all detectors will be denoted by Ni. Similarly, the vector of distances

to the shower axis, the vector of FADC signals and the vector of trigger indicators

will be ri, Xi, and ιi, respectively.

In the �nal application, Ei and θi will be estimated by existing ad-hoc techniques

(the FD estimate of E is, for example, based on the quantity of �uorescence light

emitted), and Ni,j will be replaced by the probability table pTE(N |xi,j) provided by

a tankwise muon counting algorithm that is assumed to be given. Such a tankwise

counter can be an RJMCMC algorithm applied to the model of Section 7.2, or a

regressed estimator as in [85] and Section 7.3.2.1.

7.3. Going large-scale: counting muons in a shower 85

7.3.1.2 The LDF parametrization

We use a log-log parabola for the LDF parametrization. The three parameters of

the �t are the number Nµ(1000) of muons at 1000 m, the slope of the �t β and the

curvature parameter γ. To simplify the notation, we will use ν for logNµ(1000), so

the LDF function is

NLDF(r, ν, β, γ) = exp
(
ν + β log

r

1000 m
+ γ log2

(r

1000 m

))
. (7.3.1)

We use the notation NLDF to emphasize that the function expresses the expected

number of muons in a detector at a distance r from the shower axis. Accordingly,

the parameter exp(ν) = Nµ(1000) will target the expected number of muons in an

imaginary detector at 1000 m from the shower axis.

7.3.1.3 The shower likelihood

To simplify the notation, in some of the formulas we will omit the dependence of

NLDF on r, ν, β, and γ. Given the lateral distribution function NLDF(r, ν, β, γ),

the likelihood of the number of muons is a simple Poisson

p(N |NLDF) = PoiNLDF
(N) .

We assume that the probability that a detector triggers

p(ι = 1|N) = fι(N)

is a deterministic non-parametric function of the number of muons in the detector.

This is de�nitely a simpli�cation and it could be re�ned in a subsequent analysis.

We do not parametrize fι, rather, we provide it as a table of probabilities, see

Section 7.3.2. The trigger probability in a detector given the �t is then

p(ι = 1|r, ν, β, γ) = p(ι = 1|NLDF(r, ν, β, γ))

=
∑

N

p(ι = 1|N)p(N |NLDF)

=
∑

N

fι(N)PoiNLDF
(N) ,

where we use the simplifying assumption in the second equality. Similarly, the

no-trigger probability is

p(ι = 0|r, ν, β, γ) = p(ι = 0|NLDF(r, ν, β, γ))

=
∑

N

p(ι = 0|N)p(N |NLDF)

=
∑

N

(1− fι(N))PoiNLDF
(N) .

(7.3.2)

86 Chapter 7. Inferring muons

Since we do not observe the number of muons in non-triggering detectors, (7.3.2) is

itself the likelihood of a detector being non-triggering given the �t and the distance

r of the detector from the shower axis. Given that we observe the real number of

muons N in the detector, the likelihood of the pair (ι,N) of a detector that has

triggered is

preal(ι = 1, N |r, ν, β, γ) = p(ι = 1, N |NLDF(r, ν, β, γ))

= p(ι = 1|N,NLDF)p(N |NLDF)

= p(ι = 1|N)p(N |NLDF)

= fι(N)PoiNLDF
(N) .

In this case the likelihood of the triplet νi, βi, γi is

preal(Ni, ιi, ri|νi, βi, γi) =

ki∏

j=1

fι(Ni,j)PoiNLDF(ri,j ,νi,βi,γi)
(Ni,j)

×
mi∏

j=ki+1

∑

N

(1− fι(N))PoiNLDF(ri,j ,νi,βi,γi)
(N) .

(7.3.3)

When using the probability table pTE(N |x) provided by the tankwise estimator, the

likelihood of the pair of the trigger indicator ι and the FADC signal x is also a sum

pTE(ι = 1,x|r, ν, β, γ) =
∑

N

pTE(N |x)fι(N)PoiNLDF
(N) ,

so the likelihood of the triplet νi, βi, γi is

pTE(Xi, ιi, ri|νi, βi, γi) =

ki∏

j=1

∑

N

pTE(N |xi,j)fι(N)PoiNLDF(ri,j ,νi,βi,γi)
(N)

×
mi∏

j=ki+1

∑

N

(1− fι(N))PoiNLDF(ri,j ,νi,βi,γi)
(N) .

(7.3.4)

7.3.1.4 The priors (constraints)

Maximizing the likelihoods (7.3.3) or (7.3.4) with completely free parameters is

possible, but it can lead to degenerate �ts with large uncertainties especially for

lower energy events or events with bad geometry, that is, showers with �unlucky�

patterns of triggered tanks. As an alternative, one could �x β and/or γ and �t only

the log number of muons ν at 1000 m, but this would eliminate the shower-to-shower

�uctuation of β and γ and bias the �ts unnecessarily for high quality events. In this

analysis we opt for a best-of-both-worlds solution: we de�ne �soft constraints� that

can be formally interpreted as priors over the parameters ν, β, and γ.

7.3. Going large-scale: counting muons in a shower 87

In particular, the parameters ν, β, and γ will be modeled with independent Gaus-

sians

p(β|µβ, σβ) = Nµβ ,σβ ,

p(γ|µγ , σγ) = Nµγ ,σγ ,

p(ν|µν , σν) = Nµν ,σν .

(7.3.5)

We know by experience that all parameters depend on the energy and the zenith

angle of the shower. This dependence is very strong for ν, but β and γ can also

have slight but clear trends in energy and zenith angle. We thus parametrize their

means and standard deviations in E and θ. In this setup, the likelihood of the ith

shower (conditioned on µβ , µγ , µν , σβ , σγ , and σν) is

preal(Ni, ιi, ri, νi, βi, γi|µβ, µγ , µν , σβ, σγ , σν) =

preal(Ni, ιi, ri|νi, βi, γi)×Nµβ(Ei,θi),σβ(Ei,θi)(βi)

×Nµγ(Ei,θi),σγ(Ei,θi)(γi)×Nµν(Ei,θi),σν(Ei,θi)(νi) ,

(7.3.6)

when the number of muons is observed in each detector, and

pTE(Xi, ιi, ri, νi, βi, γi|µβ, µγ , µν , σβ, σγ , σν) =

pTE(Xi, ιi, ri|νi, βi, γi)×Nµβ(Ei,θi),σβ(Ei,θi)(βi)

×Nµγ(Ei,θi),σγ(Ei,θi)(γi)×Nµν(Ei,θi),σν(Ei,θi)(νi) ,

(7.3.7)

when the number of muons is estimated using the tankwise estimator.

In our �rst attempt, the mean functions µβ(E, θ), µγ(E, θ), and µν(E, θ) were simple

polynomial parametrizations inE and θ, but we found that the natural shape of some

of these functions did not follow any simple polynomial, so this rigid setup either led

to unnecessary biases or the degrees of the polynomials had to be unreasonably high.

To overcome this problem, we settled in a nonparametric solution in which overall

trends were modeled with low-order polynomials, and the residuals were then �tted

with smooth nonparametric function using Gaussian processes (see [108, 86] and

Section 2.2.2). The standard deviation functions σβ(E, θ), σγ(E, θ), and σν(E, θ)

are linear functions of E and θ.

7.3.2 An empirical Bayes setup

We now detail how the empirical Bayes framework [33] applies to our reconstruc-

tion. In a classical Bayesian analysis, the goal would be to draw inference on φ by

means of the posterior distribution p(φ|data). In our case data represents either{
(Ni, ιi, ri)

}n
i=1

or
{
(Xi, ιi, ri)

}n
i=1

, and the parameter vector φ is
{
(νi, βi, γi)}

n
i=1.

Since events (showers) are independent, the likelihood p(data|φ) is simply the

product of (7.3.3) or (7.3.4) for all events. In our case, the prior p(φ) is further

parametrized by

ξ = (µβ, µγ , µν , σβ, σγ , σν) .

88 Chapter 7. Inferring muons

In the empirical Bayes setup, we do not �x the prior, rather we estimate it by

maximizing the marginal likelihood

p(data|ξ) =

∫
p(data,φ|ξ)dφ =

∫
p(data|φ)p(φ|ξ)dφ , (7.3.8)

where we used the fact that, given φ, the data is independent of the hyperparame-

ters ξ. Once the maximum marginal likelihood estimator (MMLE)

ξ̂ = arg max
ξ

p(data|ξ)

is found, the showerwise parameters φ = {φi}
n
i=1 =

{
(νi, βi, γi)}

n
i=1 can be estimated

by using the distributions p(φi|datai, ξ̂).

Maximizing (or even computing) (7.3.8) is intractable even if we suppose that the

underlying densities factorize and the factors p(datai|φi) and p(φi|ξ) have simple

forms (Gaussians, for instance). To overcome this problem, we use a well-known

trick in statistics that builds on the concavity of the log function and Jensen's

inequality to de�ne the lower bound

log

∫
p(data,φ|ξ) dφ ≥

∫
q(φ) log

p(data,φ|ξ)

q(φ)
dφ = F(q, ξ) . (7.3.9)

Note that the inequality is true for any density q over the shower parameters φ ={
(νi, βi, γi)}

n
i=1 with an appropriate support. We alternately optimize F(q, ξ) in

its two parameters, in what could be called an expectation-maximization algorithm

(EM; [49]) with Laplace approximation. We now quickly describe these two steps.

1. In the E-step, we �x the hyperparameters ξ(t), and optimize F(q, ξ) in q. Com-

puting p(data,φ|ξ) ∝ p(φ|data, ξ(t)) is still infeasible, so we �rst approximate

it. Since the shower events are independent, the posterior factorizes so that

we can �t each shower independently:

p(φ|data, ξ(t)) =

n∏

i=1

p(φi|datai, ξ
(t)) ∝

n∏

i=1

p(datai|φi)p(φi|ξ
(t)) , (7.3.10)

where the general term of the last product is exactly our likelihood (7.3.6) or

(7.3.7) with �xed constraints ξ(t) = {µ
(t)
• , σ

(t)
• }•=β,γ,ν . We now approximate

p(φi|datai, ξ
(t)) with a Gaussian centered at its maximum with covariance

matrix an estimate of the inverse Hessian5 at this maximum:

p(φi|datai, ξ
(t)) ≈ N bφi,cΣi

(φi) , (7.3.11)

Now putting this approximation back in (7.3.10) and (7.3.9), and upon not-

ing that F(q, ξ) is minus the Kullback-Leibler divergence between q and the

5We will see that because of the uncorrelated prior on ξ, it is actually enough to consider

diagonal Σi's, but we stay general here at no cost.

7.3. Going large-scale: counting muons in a shower 89

approximate p(φi|datai, ξ
(t)), F(q, ξ) is maximized by setting q to the same

approximation:

q(t)(φ) =

N∏

i=1

N bφi,cΣi
(φi) . (7.3.12)

2. In the M-step, we �x the posterior q(t)(φ) and maximize F(q(t), ξ) (7.3.9) in

its second input to obtain

ξ(t+1) = arg max
ξ

F(q(t), ξ)

= arg max
ξ

∫
q(t)(φ) log p(data,φ|ξ) dφ .

Since q(t)(φ)p(data|φ) does not depend on ξ, this further simpli�es to

ξ(t+1) = arg max
ξ

∫
q(t)(φ) log p(φ|ξ) dφ . (7.3.13)

By (7.3.12) and (7.3.5), this is equivalent to the three independent following

optimizations:

ξ(t+1) = arg min
µβ ,σβ

n∑

i=1

log σβ(Ei, θi) +
1

2

(µβ(Ei, θi)− β̂
(t)
i)2 + σ̂

(t)2

βi

σβ(Ei, θi)2
,

(µ(t+1)
γ , σ(t+1)

γ) = arg min
µγ ,σγ

n∑

i=1

log σγ(Ei, θi) +
1

2

(µγ(Ei, θi)− γ̂
(t)
i)2 + σ̂

(t)2

γi

σγ(Ei, θi)2
,

(µ(t+1)
ν , σ(t+1)

ν) = arg min
µν ,σν

n∑

i=1

log σν(Ei, θi) +
1

2

(µν(Ei, θi)− ν̂
(t)
i)2 + σ̂

(t)2

νi

σν(Ei, θi)2
,

(7.3.14)

where φ̂i
(t)

= (β̂
(t)
i , γ̂

(t)
i , ν̂

(t)
i)T and Diag(Σ̂i

(t)
) = (σ̂

(t)2

βi
, σ̂

(t)2

γi , σ̂
(t)2

νi). The min-

imizations can be done over any suitable family of functions. In [85], we used

kernel regression with polynomial trends for the means µ•(E, θ) and linear

functions for the standard deviations σ•(E, θ).

Finally, the trigger probability table fι(N) can, in principle, be also optimized in

the E-step. However, in our applications, we found that letting fι(N) free gave too

much �exibility to the �t, so we decided to �x it to {fι(0) = 0, fι(1) = 0.1, fι(2) =

0.6, fι(3) = 0.9, fι(4) = 1.0, . . .}. These values were set manually, trying to minimize

the bias of the �nal estimator of Nµ(1000). Among the three shower parameters,

only the curvature γ happened to be sensitive to the actual values in the probability

table which was one of the reasons we kept γ free.

90 Chapter 7. Inferring muons

7.3.2.1 Illustrative examples

We applied the described empirical Bayes estimation of the LDF parameters in [85].

The tankwise posterior pTE on the number of muons was a Bayesian neural network

[25] trained on simulations (approx. 18 000 showers, 150 000 individual tank signals).

Figure 7.4 shows the e�ect of the EM iterations on some example reconstructions.

The �rst row contains �nice� events with detectors spaced uniformly around 1000 m

and with good detectorwise estimations of the number of muons. These events

are reconstructed well in the �rst iteration, so the gradually tightening prior or

constraint (7.3.5) has no signi�cant e�ect on the estimated N̂µ(1000).

The second row contains events with bad geometry: the detector near the shower

core is saturated, so all usable detectors are further from shower core than 1000 m. In

the standard LDF reconstruction, these events pro�t from the �xed slope. The EM

rounds have a similar e�ect here: the slope and the curvature is constrained by the

tightening prior (7.3.5). The advantages are that 1) we do not have to �x the slope

beforehand, the average slope (given the energy and the zenith angle is estimated

from data), and 2) we do not �x the slope at all, allowing for shower-to-shower

�uctuation. �Nice� but �uctuating events pro�t from this additional �exibility.

The third row contains some �exotic� events from the point of view of reconstruc-

tion. Inclined events (Figure 7.4(e)) often have non-triggering detectors downstream

relatively close to the shower core. The upstream and downstream detectors usu-

ally average out, but, depending the actual geometry, the shape of unconstrained

�t might be signi�cantly altered, biasing also the N̂µ(1000) estimate. The solution

to this problem would be a parametrization that can account for the asymmetry.

In the meantime, pulling the slope and curvature back towards the mean using our

iterative reconstruction can correct this bias.

The detectorwise estimator is far from being perfect, but the estimation error usually

cancels out when the event contains a relatively large number of detectors. However,

in some unlucky cases, the estimation error can have a �structure�. Figure 7.4(f)

depicts an event where the number of muons are underestimated near 1000 m and

overestimated at the edges of the �t, causing the unconstrained (log-log) LDF to be

convex. Again, the e�ect of the data-dependent priors (7.3.5) is that the curvature is

pulled back towards the population mean, greatly improving the N̂µ(1000) estimate.

7.4 Conclusion

Building on previous studies, we have derived in Section 7.2 the �rst complete

generative model for the muonic tank traces. To be applicable to data, this model

should now incorporate the electromagnetic component of the tank signal, which is

smoother and of smaller amplitude, as shown in Figure 6.5(b). EM particles generate

a signal similar to the muons, but their number is typically bigger (hundreds against

7.4. Conclusion 91

a few tens at most for muons) and their amplitude and time of arrival distributions

are signi�cantly di�erent. Since there are so many EM particles and since we do not

need to estimate precisely the features of each of them, we are looking for a cheaper-

to-estimate EM model, with less nuisance variables. The choice of this model, along

with an e�cient RJMCMC algorithm reconstructing the sum of the muonic and

EM components, are current joint work with Alireza Roodaki (Télécom ParisTech).

Once we will have the posterior on the number of muons in each tank, we will in

a �rst time estimate the muonic content of each shower with the empirical Bayes

algorithm of Section 7.3.1. Benchmarked with a discriminative algorithm providing

the tankwise posteriors, this empirical Bayes procedure was demonstrated to be

promising. In the near future, we plan to continue to develop the model for cosmic

showers, going from the tank to the production of the particles near the shower axis,

and then from the production to the primary hit on the atmosphere.

92 Chapter 7. Inferring muons

1000 20001500

1

2

5

10

20

50

r @mD

N
Μ

QGSJet proton, lg E = 18.84 eV, Θ = 53

(a) �nice� event

1000 1500

1

2

5

10

20

50

100

r @mD

N
Μ

QGSJet proton, lg E = 18.88 eV, Θ = 46

(b) �nice� event

1000 1500

1.0

10.0

5.0

2.0

20.0

3.0

1.5

15.0

7.0

r @mD

N
Μ

QGSJet proton, lg E = 18.84 eV, Θ = 34

(c) bad geometry

800. 900. 1000. 1100. 1200. 1300. 1400.

1.0

10.0

5.0

2.0

20.0

3.0

1.5

15.0

7.0

r @mD

N
Μ

QGSJet proton, lg E = 18.59 eV, Θ = 29

(d) bad geometry

1000 1500

1

2

5

10

20

r @mD

N
Μ

QGSJet proton, lg E = 18.9 eV, Θ = 60

(e) inclined, non-triggering detectors, asymme-

try

1000 20001500

1

2

5

10

20

50

100

r @mD

N
Μ

QGSJet proton, lg E = 18.95 eV, Θ = 51

(f) correcting the detectorwise

Figure 7.4: Example reconstructions on simulations. The blue dots are real number

of muons Nµ with
√
Nµ Poisson error bars. The red bars are one-sigma regions of

the estimated number of muons N̂µ = E {pTE(N |x)} with σ̂Nµ =
√

Var {pTE(N |x)}

of the arti�cial neural network (ANN), and the red error bars are the complete

approximate error bars
√
N̂µ + σ̂2

Nµ
. The yellow dots are non-triggering detectors.

The magenta dot is the real number of muons at 1000 m, available since we are

using simulations. The green curves are the LDF �ts: light green depicts the �rst

empirical Bayes iteration, green the second, dark green the third. The green dots

and error bars are the corresponding N̂µ(1000) estimates.

Chapter 8

A review on relabeling MCMC
algorithms

Contents
8.1 The label switching problem 93

8.2 Relabeling algorithms . 94

8.2.1 Imposing an identi�ability constraint 94

8.2.2 Pivotal relabeling . 96

8.2.3 Constraining the allocation 97

8.2.4 Learning the constraint . 97

8.2.5 Probabilistic relabeling strategies 98

8.2.6 Permutation invariant loss functions 99

8.3 Conclusion and reading map 99

Motivated by the study of the Auger tank model in Section 7.2, we review in this

chapter the label switching problem and existing relabeling MCMC algorithms. We

will benchmark some of these algorithms on an illustrative example in Chapter 9.

Other reviews can be found in [123, 80].

8.1 The label switching problem

Markov chain Monte Carlo (MCMC) is a generic approach for exploring complex

probability distributions based on sampling. It has become the de facto standard

tool in many applications of Bayesian inference. However, a very common situation

in which MCMC algorithms face serious di�culties is when the target distribution

is known to be invariant under some permutations (or block permutations) of the

variables. In that case, the di�culties are both computational, as most often the

MCMC algorithm fails to validly visit all the modes of the posterior, but also in-

ferential, in particular rendering marginal posterior inference about the individual

variables particularly cumbersome [37]. This latter di�culty is usually referred to

as the label switching problem in the literature [123]. The most well-known example

of this situation arises when performing Bayesian inference in a mixture model. In

94 Chapter 8. A review on relabeling MCMC algorithms

this case the mixture likelihood is invariant to permuting the mixture components,

and the prior itself often does not favor any speci�c ordering of the mixture compo-

nent [36, 123, 79, 80, 101, 121, 94]. Another example of importance arises in signal

processing with additive decomposition models. In this case, the observed signal

is represented as the superposition of individual signals, and the main goal is to

recover the individual signals or their parameters and most often to determine the

number of individual signals that are present [116, 115, 16]. The Auger tank signal

model presented in Section 7.2 is such an additive model.

We now illustrate the label switching problem on the core of the Auger tank signal

model of Section 7.2. Consider four centered vertical muons with di�erent arrival

times ti and multiplicative amplitudes A1, . . . , A4, generating the Poisson signal n

described in Section 7.2. We do not further include here the subsequent steps of the

model, since at this stage, the likelihood

p(n|t,A)

is already invariant to permutations of the four muons. Figure 8 depicts the results

of applying an adaptive MCMC [69] to estimate the parameters Ai, ti, i = 1, . . . , 4.

Label-switching can be seen in Figure 8.1(a) through the constant change of rôle

played by each marginal chain, as well as in Figure 8.1(b) through the multimodality

of marginal histograms.

8.2 Relabeling algorithms

In order to favor interpretable unimodal posterior marginals, several methods have

been proposed, which we now review. We build upon the review [80] and complete

it with recent advances. We also deliberately insist on aspects that will be of impor-

tance in our contributions of the next chapters. Sections 8.2.1 to 8.2.4 are devoted

to genuine relabeling algorithms, in that they output a relabeled sample, while Sec-

tions 8.2.5 and 8.2.6 shortly describe procedures that bypass the label switching

problem, each in its own way.

We will always denote by π : R
d → R the target distribution of the considered

MCMC algorithms, and assume that π is invariant to the permutations contained

in P: for any x ∈ R
d and any σ ∈ P, π(x) = π(σ(x)). Furthermore, all mixture

models considered in this section are of �xed and known number of components K.

8.2.1 Imposing an identi�ability constraint

Since π is invariant to the action of P, it has |P| redundant modes that are permuted

copies of each other. Note that what we call mode in this chapter is a restriction of

the target π to an area, from which π could be recovered by applying all permutations

in P. We use the term mode in a loose acception, since the restriction of π to one

8.2. Relabeling algorithms 95

0 5000 10 000 15 000 20 000 25 000 30 000
0

50

100

150

200

250

300

(a) AM: component chains and means

100 200 300 400 500 600
0

5

10

15

20

25

30

35

40

45

50

t @nsD

ð
PE

(b) AM: component posteriors

Figure 8.1: The results of AM on an example Poisson tank signal. Panel 8.1(b)

shows the parameters of the four muons. The x-coordinates of the black dots are

the four times or arrival, while the y-coordinates are the corresponding amplitudes.

The blue curve is the ideal PE response. Colored histograms depict the marginal

posteriors of the four arrival times. Shaded ellipses are exp(1/2)-level sets of Gaus-

sian distributions: the means are the Bayesian estimates for the arrival time and

amplitude of each muon, and the covariance is the marginal posterior covariance

of each arrival time/amplitude couple. Panel 8.1(a) shows the four chains of the

arrival times (light colors), the running means of all marginal chains (dark colors),

and the mean of the running means (black curve). The AM algorithm shows heavy

label switching among the three rightmost components.

of these modes can well be multimodal; in this case, following the label switching

literature, we will speak of genuine multimodality. Classical relabeling algorithms

96 Chapter 8. A review on relabeling MCMC algorithms

work by choosing one of these copies and constrain the sample to remain in this

area. The �rst idea that came up was to add a constraint to the prior that forces

the chain to visit a single mode of the posterior, this mode being chosen prior to

the experience by the user. In the example of Figure 8.1, it could, for instance,

correspond to enforce t1 < t2 < t3 < t4 by multiplying the prior on the vector (t,A)

by 1C where

C = {(t,A) / t1 < t2 < t3 < t4} .

A similar method that leads to higher acceptance consists in permuting each can-

didate point of the MCMC sampler targeting the unconstrained posterior π so that

the permuted candidate satis�es the identi�ability constraint. These two methods

are widely used in practice since they are easy to implement. They are empirically

assessed in [60]. In practice, one can run an unconstrained MCMC algorithm tar-

geting the original posterior, apply several constraints to the posterior sample in a

post-processing step, and select the constraint that yields the best looking marginals.

There are two important downsides to identi�ability constraints. First, the choice of

the constraint is left to the user, and a bad choice might well not respect the topology

of the posterior [94] and lead to arti�cial biases. In our example of Figure 8.1, if the

signal contains two very close arrival times t1 ≈ t2 with similar amplitudes A1 ≈ A2,

imposing t1 < t2 in the sample will arti�cially censor the chains and yield estimates

of t1 and t2 that are further away from each other than expected. Second, simply

permuting the candidate points of an MCMC sampler without any repercussion on

the acceptance ratio does not lead to a balanced algorithm, thus making the target

distribution of the chain unclear. We have not seen this last point discussed in the

literature, and we will discuss it again in Chapters 9 and 10.

8.2.2 Pivotal relabeling

Since a bad choice of identi�ability constraint can lead to ill-shaped restrictions

of the posterior, the authors of [94] have proposed to post-process the sample x =

(x1, . . . , xN) targeting π as follows: �rst �x xMAP = arg maxi π(xi) to be an estimate

of the maximum of the target, and then replace each sample xi by σi(xi) where

σi = arg min
σ∈P

‖σ(xi)− xMAP‖ ,

Loosely said, the selected mode of the posterior is then the most circular possible,

centered at xMAP. This method is a way to automatically choose an identi�ability

constraint and apply it, and thus inherits the relatively small computational cost

of this approach. However, in case of genuine multimodality of the target, that is,

multimodality within one of the modes duplicated by the permutation invariance,

the selected region around the target maximum might still be a poor choice of

constraint. Intuitively, the mean of the target over the selected region would be a

better choice of pivot, see the follow-up in Section 8.2.4.

8.2. Relabeling algorithms 97

8.2.3 Constraining the allocation

Consider performing inference on the parameters of a mixture model. If one has

a realization (xi, zi)i=1,...,N of a chain targeting the complete posterior over both

the mixture parameters x and the allocation vector z ∈ {1, . . . ,K}N , the authors

of [101] propose to put a constraint on the allocation variable z by relabeling each

sample (xi, zi) so that the relabeled allocation belongs to a previously �xed set Z0.

While the experiments demonstrate quite a general set of constraints available, the

choice of the set Z0 as described in [101] is rather sophisticated and, in the end, user-

dependent. Furthermore, there is no theoretical guarantee that the output relabeled

sample is concentrated exactly on a single symmetric mode of the posterior.

Let us add that suggestions are made in [101] to choose Z0 that are inspired by the

pivotal relabeling algorithm described in Section 8.2.2, while speed of convergence

is addressed in [102].

8.2.4 Learning the constraint

An important reference in the relabeling literature is [123]. Its main contribution is

a post-processing relabeling MCMC algorithm: once a realization x = (x1, ..., xN)

of a chain targeting the unconstrained posterior π has been drawn, one performs

inference tasks as usual but with the relabeled sample, de�ned as

σ(x) = {σ1(x1), . . . , σN (xN)} ,

where

σ = (σ1, . . . , σN) = arg min
P×···×P

L(x,σ) ,

and L is a user-de�ned cost function. Explicit choices for L are given in [123], among

which

L(x,σ) =

N∏

i=1

N (σi(xi)|µ
σ
N ,Σ

σ
N) , (8.2.1)

where N (·|µ,Σ) denotes the Gaussian pdf with mean µ and covariance matrix Σ,

and

µσ
N =

1

N

N∑

i=1

σi(xi) ,

Σσ
N =

1

N

N∑

i=1

(σi(xi)− µ
σ
N)(σi(xi)− µ

σ
N)T .

The Gaussian cost function (8.2.1) translates the idea that one wants a relabeled

sample to be the most Gaussian possible among its permutations σ(x),σ ∈ PN , in

order for σ(x) to look as unimodal as possible. Loosely speaking, this approach is a

sophisticated version of the pivotal reordering described in Section 8.2.2, replacing

98 Chapter 8. A review on relabeling MCMC algorithms

the sample maximum of the posterior by a relabeled sample mean and replacing

the Euclidean distance by a Mahalanobis distance dictated by the relabeled sample

covariance.

This post-processing approach can be seen as a way to automatically learn a reason-

able identi�ability constraint. However, it is particularly costly since it involves a

combinatorial optimization over PN , which is unfeasible in practice: if π is de�ned

on R
d and P is the group Sd formed by the permutations of d elements, PN has

cardinal (d!)N . Approximate optimization algorithms will further render the rela-

beled target di�cult to identify. Cost functions that yield easier optimization tasks

at the price of interpretability are advocated in [123], and a similar approach can

be found in [47].

An online approach to the optimization of the Gaussian cost function was proposed

in [36], and is actually older than the post-processing approach of [123]. We have

delayed its presentation until now for the sake of clarity. The approach of [36],

henceforth referred to as Celeux's algorithm, is to use the online estimates µi and

Σi of the mean and covariance of the relabeled sample to relabel each candidate

point of the MCMC algorithm: after drawing a candidate x̃ at iteration i, x̃ is

replaced by σ(x̃), where

σ = arg min
σ∈P

N
(
σ(x̃)|µi,Σi

)
, (8.2.2)

before being accepted or not. This way, the sample is relabeled online, and the �nal

cost is in Nd!. Furthermore, Celeux's original algorithm only considers diagonal

matrices Σi, zeroing all cross-covariance terms, thus making the optimization task

(8.2.2) computationally cheaper but sacri�cing the genericity of the learned identi�-

ability constraint, as we will demonstrate in Chapter 9. Another downside is again

the di�culty to interpret the distribution of the relabeled sample, especially if we

add the fact that the relabeling should be taken into account in the acceptance ratio

of any online relabeling algorithm in order to yield a well-de�ned MCMC algorithm,

while it is not in [36]. A related open question is that of the convergence of the

estimates µi and Σi. We will address these questions in Chapters 9 and 10.

8.2.5 Probabilistic relabeling strategies

It has been proposed in [79] to consider that each realization xi, i = 1 . . . N of the

chain is associated to an unknown permutation σi and to approximate distributions

gi(·; x̄) over the permutations attached to each realization xi, given a pivotal value

x̄ ∈ R
d of the parameters of interest. Estimation of a function h(x) is then performed

by averaging

ĥ(x) =
1

N

N∑

i=1

∑

σ∈P

h(σ(xi))gi(σ; x̄) .

The construction of x̄ and gi is a di�cult task. Post-processing suggestions are

proposed in [79]. They work by

8.3. Conclusion and reading map 99

• running the sampler for a few steps, visually checking that the chain has not

switched,

• taking x̄ to be the sample mean of that small sample,

• estimate gi with a method similar to the expectation-maximization (EM; [49])

algorithm.

In [121], EM and stochastic EM variants are described, which explicitly consider the

permutation attached to each sample as a hidden variable.

8.2.6 Permutation invariant loss functions

Depending on the problem considered, there might be other ways to bypass the label

switching problem, as described in [37]. Let L : R
d×A → R be a loss function that

is invariant to relabeling

L(x, a) = L(σ(x), a), ∀σ ∈ P, ∀a ∈ A ,

where A is an action space that corresponds to the task to perform. If the aim of

the inference task can be described by the minimization problem

min
a

EπL(x, a) ,

then an approximate solution can be obtained by minimizing

N∑

i=1

L(xi, ·) ,

for which stochastic optimization algorithms can be used.

As an example, consider performing Bayesian inference on the parameters x ∈M ⊂

R
d of a mixture distribution. A can then be taken to beM, and a choice of invari-

ant loss function L(x, a) is the squared distance between the mixture distributions

corresponding respectively to parameters x and a. Other examples of loss functions

and algorithms can be found in [37] and [76].

This approach has two advantages: label switching is simply not a problem anymore,

and its Bayesian decision theoretic framework is elegant. However, it still necessi-

tates a good stochastic optimization procedure and the existence of a suitable loss

function for the problem considered, which is not the case in general.

8.3 Conclusion and reading map

Solving or bypassing the label switching problem has been given much attention

in the statistics community, and di�erent methods have been proposed, each with

100 Chapter 8. A review on relabeling MCMC algorithms

its advantages and drawbacks. Many solutions exist to output a relabeled sample

that targets a constrained target, which hopefully matches a single out of the many

symmetric modes of the target. The two main downsides to existing methods are

that

• they often require human intervention to set up free parameters,

• there is in general no guarantee on the convergence of the relabeled sample,

either because the MCMC algorithm is not balanced, or because local and/or

approximate optimization algorithms are used.

These points become big issues when performing inference in a large model with

permutation invariance where human intervention is not possible, and no loss func-

tion is available to apply the approach of Section 8.2.6. Inference in a large-scale

generative model of Auger, part of which is presented in Section 7.2, is such a task.

In Chapter 9, we propose AMOR, an adaptive MCMC algorithm with an online

relabeling mechanism that builds on the approaches of Section 8.2.4. As an adap-

tive MCMC algorithm, AMOR automatically tunes its proposal distribution. In

Chapter 10, we identify the target of AMOR, which does not depend on the user

or implementation parameters. We also prove a convergence result on AMOR that

answers the question of the convergence of the empirical mean of the chain. Our

results are easily applicable to a modi�ed version of Celeux's algorithm, and an

online version of the algorithm in [123] also presented in Section 8.2.4.

Chapter 9

AMOR: adaptive Metropolis with
online relabeling

Contents
9.1 Introduction . 101

9.2 The AMOR algorithm . 103

9.2.1 The algorithm . 103

9.2.2 An illustrative example . 105

9.3 Application to Gaussian mixtures 112

9.4 Application to the Auger tank signal model 114

9.5 Conclusion . 114

In Chapter 8, we described various approaches to deal with label switching. In the

current chapter, we present AMOR, a novel doubly-adaptive MCMC algorithm with

online relabeling, which learns both its target and its proposal on the �y, tying the

two adaptations in an e�cient manner. We �rst published AMOR in [14]. In [16],

we applied it to the Auger tank signal model of Section 7.2. Recently, we submitted

in [13] the illustrative example of Section 9.2.2 and the proof in Chapter 10. This is

joint work with Olivier Cappé, Gersende Fort (both at CNRS & Télécom ParisTech),

and my advisor Balázs Kégl.

9.1 Introduction

In this chapter, we address the label switching problem in the generic case where no

useful external information on the target is known. This corresponds, for instance,

to a posterior distribution when neither the likelihood is assumed to have a speci�c

form, nor the prior is chosen to have conjugacy properties, which forbids the use of

Gibbs sampling or other specialized sampling strategies. We assume, however, that

the target is known to be invariant under some permutations of the parameters.

This framework is typical, for instance, in experimental physics applications where

the likelihood computation is commonly deferred to a black-box numerical code. In

those cases, one cannot assume anything about the structure of the posterior or its

102 Chapter 9. AMOR: adaptive Metropolis with online relabeling

conditional distributions, except that they should be invariant to some permutations

of the parameters. We also restrict ourselves to the case where the dimension of the

model is �nite and known so the parameters of the model are R
d-valued for some

�xed d.

Adaptive MCMC algorithms can self-calibrate their internal parameters along the

iterations in order to reach decent performance without (or with almost no) knowl-

edge about the target distribution, thus automatizing the grueling step of tuning

the proposals. Adaptive MCMC has been an active �eld of research in the last ten

years, following the pioneering contribution of [69] � see [8] as well as the other

papers in the same special issue of Statistics and Computing, along with [9, 7, 114].

Adaptive Metropolis (hereafter AM; [69]) and its variants aim at identifying the

unknown covariance structure of the target distribution along the run of a random

walk Metropolis-Hastings algorithm with a multivariate Gaussian proposal. The ra-

tionale behind this approach is based on scaling results which suggest that, when d

tends to +∞, the chain correlation is minimized when the covariance matrix used in

the proposal distribution matches, up to a constant that depends on the dimension,

the covariance matrix of the target, for a large class of unimodal target distribu-

tions with independent marginals [111, 112]. AM thus progressively adapts, using a

stochastic approximation scheme, the covariance of the proposal distribution to the

estimated covariance of the target.

It has been empirically observed in [14], and we provide further evidence of this

fact below in Section 9.2.2, that the e�ciency of AM can be greatly impaired when

label switching occurs. The reason for such a di�culty is obvious: if label switching

occurs, the estimated covariance matrix no longer corresponds to the local shape

of the modes of the posterior and so the exploration can be far from optimal. In

Section 9.2.2, we also provide some empirical evidence that o�-the-shelf solutions

to the label switching problem, such as imposing identi�ability constraints or post-

processing the simulated sample, are not fully satisfactory. A key di�culty here is

that most of the approaches proposed in the literature are based on post-processing

of the simulated trajectories after the MCMC algorithm has been fully run [123, 79,

80, 101, 121, 94, 116]. Unfortunately, in the case of adaptive MCMC, post-processing

cannot solve the improper exploration issue described above. On the other hand,

online relabeling algorithms [109, 37] often require manual tuning based on, for

example, prior knowledge on the location of the redundant modes of the target.

Without such manual tuning they often yield poor samplers, as we will show it in

Section 9.2.2.

In this chapter, we describe an adaptive Metropolis algorithm with online relabeling,

called AMOR, building on the approaches reviewed in Section 8.2.4. Our idea is

to nest relabeling steps within the MCMC algorithm based on the estimation of

a single covariance matrix that is used both for adapting the covariance of the

proposal distribution used in the Metropolis algorithm step and for online relabeling.

Unlike [36], the AMOR algorithm also corrects for the relabelings using a modi�ed

9.2. The AMOR algorithm 103

acceptance ratio.

In Section 9.2.2, we provide empirical evidence that the coupling established in

AMOR between the criterion used for relabeling and the estimation of the covari-

ance of the local modes of the posterior is bene�cial to avoid the distortion of

the marginal distributions. Furthermore, the example considered in Section 9.2.2

also demonstrates that the AMOR algorithm samples from non-trivial identi�able

restrictions of the posterior distribution, that is, truncations of the posterior on

regions where the posterior marginals are distinct but from which the complete pos-

terior can be recovered by permutation. The study of the convergence of AMOR

in Section 10.1 reveals an interesting connection with the problem of optimal prob-

abilistic quantization [65] which was implicit in earlier works on label switching.

It was observed previously by [100] that some adjustments to the usual theory of

stochastic approximation are necessary to analyze online optimal quanti�cation due

to the presence of points where the mean �eld of the algorithm is not di�erentiable.

To circumvent this di�culty, we introduce the stable AMOR algorithm, a novel vari-

ant of the AMOR algorithm that avoids these problematic points of the parameter

space. Finally, we establish a consistency result for the stable AMOR algorithm,

showing that it indeed asymptotically provides samples distributed under a suit-

ably de�ned restriction of the posterior distribution in which the parameters are

marginally identi�able.

The chapter is organized as follows. In Section 9.2, we describe the AMOR al-

gorithm. In Section 9.2.2 we compare AMOR with alternative approaches on an

illustrative example. We defer the theoretical analysis of AMOR to Chapter 10.

9.2 The AMOR algorithm

In this section, we brie�y review the AMOR algorithm and illustrate its performance

on an arti�cial example.

9.2.1 The algorithm

Let π be a density with respect to (w.r.t.) the Lebesgue measure on R
d which is

invariant to the action of a group P of matrices, that is,

∀x ∈ R
d, ∀P ∈ P, π(x) = π(Px) .

Denote by C+
d the set of d×d real positive de�nite matrices. For µ ∈ R

d and Σ ∈ C+
d ,

de�ne Lθ : R
d → R+ by

Lθ(x) = (x− µ)TΣ−1(x− µ) , (9.2.1)

and let N (·|µ,Σ) denote the Gaussian density with mean µ and covariance matrix

Σ. The pseudocode of the AMOR algorithm of [14] is given in Figure 9.1.

104 Chapter 9. AMOR: adaptive Metropolis with online relabeling

AMOR

(
π(.), X0, T, θ0 = (µ0,Σ0), c, (γt)t≥0

)

1 S ← ∅

2 for t← 1 to T

3 Σ← cΣt−1 ⊲ scaled adaptive covariance

4 X̃ ∼ N
(
· |Xt−1,Σ

)
⊲ initial proposal

5 P̃ ∼ arg min
P∈P

Lθt−1

(
PX̃

)
⊲ pick an optimal permutation

6 X̃ ← P̃ X̃ ⊲ relabel the initial proposal

7 if
π(X̃)

∑
P N

(
PXt−1|X̃,Σ

)

π(Xt−1)
∑

P N
(
PX̃|Xt−1,Σ

)> U [0, 1] then

8 Xt ← X̃ ⊲ accept

9 else

10 Xt ← Xt−1 ⊲ reject

11 S ← S ∪ {Xt} ⊲ update the posterior sample

12 µt ← µt−1 + γt
(
Xt − µt−1

)

13 Σt ← Σt−1 + γt
(
(Xt − µt−1)(Xt − µt−1)

⊺− Σt−1

)

14 θt ← (µt,Σt)

15 return S

Figure 9.1: The pseudocode of the AMOR algorithm. The relabeling steps that

make AMOR di�er from the adaptive Metropolis of [69] are in blue. Steps 6 is

a uniform draw over the arg min. See text for a step-by-step description of the

algorithm.

To explain the proposal mechanism of AMOR, let µt−1 and Σt−1 denote the sample

mean and the sample covariance matrix, respectively, at the end of iteration t− 1,

and let θt−1 = (µt−1,Σt−1). Let S be the MCMC sample. At iteration t, a point X̃ is

�rst drawn from a Gaussian centered at the previous state Xt−1 and with covariance

cΣt−1, where c implements the optimal scaling results in [111, 112] discussed in

Section 9.1 (Steps 3 and 4). Then in Steps 5 and 6, X̃ is replaced by P̃ X̃, where P̃ is

a uniform draw over permutations arg minP Lθt−1(PX̃) that minimize the relabeling

criterion (9.2.1).1 This relabeling step makes the augmented sample S ∪{P̃ X̃} look

as Gaussian as possible. Formally, it can be seen as a projection onto the Voronoi

cell Vθt−1 , where

Vθ = {x ∈ X / Lθ(x) ≤ Lθ(Px), ∀P ∈ P} . (9.2.2)

Then, in Steps 7 to 10, the candidate P̃ X̃ is accepted or rejected according to

the usual Metropolis-Hastings rule. Finally, the sample mean and covariance are

1Step 5 usually boils down to selecting the permutation P̃ that minimizes Lθt−1
. In case of ties,

however, P̃ should be drawn uniformly over the set on which the minimum is achieved.

9.2. The AMOR algorithm 105

adapted according to a stochastic approximation scheme in Steps 12 to 14 and so

(γt) is a sequence of nonnegative steps, usually set according to a polynomial decay

γt ∼ t
−β, β ∈ (1/2, 1].

AMOR is a doubly adaptive MCMC algorithm since it is adaptive both in its proposal

and relabeling mechanisms. This means that, besides the proposal distribution, its

target also changes with the number of iterations. In Section 10.1 we prove that,

at each iteration t, AMOR implements a random walk Metropolis-Hastings kernel

with stationary distribution πθ ∝ π 1Vθ .

(a) π (b) πseed

Figure 9.2: Panel 9.2(a) shows an example target distribution π, obtained by sym-

metrizing the Gaussian πseed shown in Panel 9.2(b).

9.2.2 An illustrative example

In this section, we consider an arti�cial target aimed at illustrating the gap in

performance between the AMOR algorithm and other common approaches to the

label switching problem, especially when used within an adaptive MCMC algorithm.

Consider the two-dimensional pdf π depicted in Figure 9.2(a), which satis�es π(x) =

π(Px) for P ∈ P, where

P =

{(
1 0

0 1

)
,

(
0 1

1 0

)}
.

The density π is a mixture of two densities with equal weights obtained by superpos-

ing the Gaussian pdf πseed represented in Figure 9.2(b) with a symmetrized version

of itself. This arti�cial target does not correspond to the posterior distribution in

an actual inference problem2. Nevertheless, it is relevant because it is permutation

2In particular, although π itself is a mixture, it is not the posterior distribution of the parameters

of any speci�c mixture model.

106 Chapter 9. AMOR: adaptive Metropolis with online relabeling

invariant and the desired solution of the label switching problem is well-de�ned:

we know that, under suitable relabeling, we can obtain univariate near-Gaussian

marginals for both coordinates by recovering the marginals of the two-dimensional

Gaussian πseed in Figure 9.2(b). In spite of its simplicity, this example is challenging

because the two marginals of πseed have similar means (0 and 2) but very di�erent

variances (16 and 1), and so they are hard to separate (the correlation between the

two coordinates is -0.975).

Given the modest dimension of the problem, we �x the number of iterations to

20 000, of which 4 000 are discarded as burn-in. Unless stated otherwise, all proposals

are tuned to reach 50% acceptance of the corresponding MCMC algorithm, which

is roughly optimal (at least for unimodal Gaussian densities).

The results of directly applying AM (with no relabeling) are shown in Figure 9.3.

The marginal posteriors are sampled quite well (Figures 9.3(c) and 9.3(d)) and the

covariance of the joint sample (indicated by a thick ellipse Figure 9.3(a)) is almost

symmetric. This is not surprising: the joint distribution, although severely non-

Gaussian, is unimodal, and AM has enough time to explore both the original seed

πseed and its symmetric version by frequent label switching. On the other hand, the

covariance of the joint distribution π (Figure 9.2(a)) is broader than the covariance

of the seed πseed (Figure 9.2(b)). This results in poor adaptive proposals and slow

mixing as indicated by the slight di�erences between the marginals and the sample

marginals, and by autocorrelation function of the �rst component of the sample

in Figure 9.3(b). The reference (dashed line) is the autocorrelation function of an

MCMC chain with optimal covariance (proportional to the covariance of the target)

targeting the single Gaussian πseed (Figure 9.2(b)).

We now consider a modi�ed version of AM with online relabeling obtained by simply

ordering the variables, meaning that after each proposal x = (x1, x2), the compo-

nents of the proposed point are permuted so that x1 ≤ x2. This strategy is known

as imposing an identi�ability constraint. It is known to perform badly when the

constraint does not respect the topology of the target [94]. The results of this ap-

proach on our illustrative example are shown in Figure 9.4. The unshaded triangle

in Figure 9.4 shows that this time the sample is restricted to a subregion of R
2

where the components are identi�able. Unfortunately, marginals of π restricted to

the unshaded triangle in Figures 9.4(c) and 9.4(d) are even more highly skewed than

the marginals of the full joint distribution π. Thus, sampling from the restricted

distribution π′ is not easier than before indicated by the only slightly improved

autocorrelation function in Figure 9.4(b).

Applying the ordering constraint after the full sample has been drawn with AM

leads to similar results as shown in Figure 9.5. This shows that the problem lies

with the relabeling criterion rather then with the online nature of the relabeling

procedure.

Next, we consider the approach introduced by Celeux in [36]. Celeux's algorithm
builds on a non-adaptive isotropic random-walk Metropolis, where online relabeling

9.2. The AMOR algorithm 107

(a)

0 50 100 150 200
0.2

0.0

0.2

0.4

0.6

0.8

1.0

ACF
reference

(b)

10 5 0 5 10
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

(c)

10 5 0 5 10
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

(d)

Figure 9.3: Results of vanilla AM on the two-dimensional target π of Figure 9.2.

The rest of the caption is the same for Figures 9.4 to 9.7. On Panel 9.3(a), level lines

of π are depicted in thin black lines; a thick ellipse centered at the empirical mean

µT of the sample S indicates the set {x : (x− µT)TΣ−1
T (x− µT) = 1}, where ΣT is

the sample covariance. When appropriate, the region of the space selected by (the

last iteration of) the algorithm corresponds to the unshaded background while the

region not selected is shaded. On Panel 9.3(b), the autocorrelation function (ACF)

of the �rst component of S is plotted as a solid line. The dashed line indicates the

ACF obtained when sampling from the seed Gaussian πseed of Figure 9.2(b) using

a random walk Metropolis algorithm with an optimally tuned covariance matrix.

Panels 9.3(c) and 9.3(d) display the histograms of the two marginal samples. The

solid curves are the marginals of π in this �gure. In Figures 9.4 to 9.7, they are the

marginals of π restricted to the unshaded region selected by the algorithms.

is performed in the following way: when a point x = (x(1), x(2)) is proposed at time

108 Chapter 9. AMOR: adaptive Metropolis with online relabeling

(a)

0 50 100 150 200
0.2

0.0

0.2

0.4

0.6

0.8

1.0

ACF
reference

(b)

10 5 0 5 10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(c)

10 5 0 5 10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(d)

Figure 9.4: Results of AM with online ordering constraint. For details about the

plots, see the caption of Figure 9.3.

t, it is relabeled by

x← arg min





(
x(1) − µ

(1)
t

x(2) − µ
(2)
t

)T

D−1
t

(
x(1) − µ

(1)
t

x(2) − µ
(2)
t

)
,

(
x(2) − µ

(1)
t

x(1) − µ
(2)
t

)T

D−1
t

(
x(2) − µ

(1)
t

x(1) − µ
(2)
t

)
 .

(9.2.3)

where µt = (µ
(1)
t , µ

(2)
t) is the empirical mean of the current sample x1:t = x1, . . . , xt

and Dt is the diagonal matrix containing the empirical variances of the coordinates

of x1:t on its diagonal. Formally, this relabeling rule is equivalent to Steps 6 and 7

in Figure 9.1, but with all non-diagonal elements of Σ equal to zero. The results

of Celeux's algorithm are shown in Figure 9.6. It is hard to determine precisely

the formal target of the algorithm, in particular because the preservation of the

detailed balance condition would require incorporating a term into the acceptance

ratio to account for the relabeling, which is absent here. It is still possible that the

9.2. The AMOR algorithm 109

(a)

0 50 100 150 200
0.2

0.0

0.2

0.4

0.6

0.8

1.0

ACF
reference

(b)

10 5 0 5 10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

(c)

10 5 0 5 10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(d)

Figure 9.5: Results of AM with ordering constraint applied as post-processing. For

details about the plots, see the caption of Figure 9.3.

algorithm is approximately sampling from the restriction π′ of π to this unshaded

area in Figure 9.6 (which represents the relabeling rule implemented at the end of

the run) in a certain sense. The histograms in Figures 9.6(c) and 9.6(d) are similar

to the marginals although they are visibly not identical. Certainly, there are no

formal guarantees that this should happen. On the other hand, in Section 10.1 we

can prove the corresponding claim for the AMOR algorithm.

This relabeling strategy seems to recover πseed better than the mere ordering of

coordinates as suggested by the marginal plots in Figures 9.6(c) and 9.6(d) which are

less skewed and now centered at the correct values (0 and 2, respectively). However,

using a diagonal covariance Dt also generates some distortion which results in a

severely non-Gaussian marginal in Figure 9.6(c). Because of these imperfections

and due to the isotropic proposal, the autocorrelation in Figure 9.6(b) indicates,

again, a much less e�cient sampling than in the case of an optimal Metropolis chain

110 Chapter 9. AMOR: adaptive Metropolis with online relabeling

(a)

0 50 100 150 200
0.2

0.0

0.2

0.4

0.6

0.8

1.0

ACF
reference

(b)

10 5 0 5 10
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(c)

10 5 0 5 10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(d)

Figure 9.6: Results of Celeux's algorithm. For details about the plots, see the

caption of Figure 9.3.

targeting πseed.

The signi�cance of Celeux's algorithm is that its adaptive relabeling rule (9.2.3)

makes it possible to resolve the permutation invariance problem in a non-trivial way

which appears to be more adapted to the true geometry of the target. It is still

not perfect, and, as suggested by [123], one should replace the diagonal covariance

matrix in (9.2.3) by the full covariance matrix of the sample. However, [123] explored

this idea only as a post-processing approach. A severe di�culty in this context is

the computational cost: if T denotes the number of drawn samples and p is the

number of permutations to which π is invariant, the required post-processing is a

combinatorial problem with pT possible relabelings. This eventually led [123] to

consider a more tractable alternative instead. More importantly in our context, we

have seen above (e.g., in Figure 9.3) that running an adaptive MCMC on the full

permutation-invariant target may result in a poor mixing performance. To achieve

9.2. The AMOR algorithm 111

(a)

0 50 100 150 200
0.2

0.0

0.2

0.4

0.6

0.8

1.0

ACF
reference

(b)

10 5 0 5 10
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

(c)

10 5 0 5 10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(d)

Figure 9.7: Results of AMOR. For details about the plots, see the caption of Figure

9.3.

both relevant relabeling and e�cient adaptivity, the key idea of AMOR is to link

the covariance of the proposal distribution and the covariance used for relabeling,

which are proportional to each other in AMOR.

Figure 9.7 displays the results obtained using AMOR on our running example.

AMOR does separate R
2 in two regions that respect the topology of the target much

more closely than the approaches examined previously. Figure 9.7(a) indicates that

the relabeled target is as Gaussian as possible among all partitionings based on a

quadratic criterion of the form (9.2.1). The marginals in Figures 9.7(c) and 9.7(d)

now look almost Gaussian. They closely match the marginals of both the restricted

distribution π′ and the seed distribution πseed in Figure 9.2(b). Furthermore, the

autocorrelation function of AMOR (Figure 9.7(b)) is as good as the reference auto-

correlation function corresponding to an optimally tuned random walk Metropolis

Hastings algorithm targeting the seed Gaussian πseed in Figure 9.2(b). This perfect

112 Chapter 9. AMOR: adaptive Metropolis with online relabeling

adaptation is possible because the sample covariance now matches the covariance

of the target restricted to the unshaded region of the plane (Figure 9.7(a)). On

this example, the AMOR algorithm thus automatically achieves, without requiring

any manual tuning, a satisfactory result that cannot be obtained with any of the

methods examined previously.

9.3 Application to Gaussian mixtures

As mentioned in Chapter 8, one of the most common use of relabeling happens when

performing Bayesian inference in mixture models. We thus benchmark AMOR on

two such tasks.

First, we estimate the nine parameters ψ = (αi, µi, σi)i=1,2,3 of a mixture of three

one-dimensional Gaussians
∑3

i=1 αiN (.|µi, σi), taking wide �at priors over each pa-

rameter. Similarly to Section 9.2.2, we compare

• a symmetric random walk Metropolis with an ordering constraint on the three

means µ1 ≤ µ2 ≤ µ3 (see Section 8.2.1),

• Celeux's algorithm (see Sections 8.2.4 and 9.2.2),

• Celeux's algorithm with modi�ed acceptance ratio according to (7), henceforth

denoted as modi�ed Celeux,

• our AMOR algorithm presented in Section 9.2.

To quantify the performance after T iterations, we �rst select the permutation of

the running posterior mean components (µ̂
(T)
i)i=1,2,3 which minimizes the sum of

the ℓ2 errors on the three estimates of the means µi, i = 1, 2, 3, and we consider the

latter sum taken at this best permutation of the posterior mean:

ST = arg min
τ∈S3

3∑

i=1

(µ̂
(T)
τ(i) − µi)

2 .

We repeated this experiment 100 times on 100 di�erent datasets coming from pa-

rameters generated as follows: draw (αi) ∼ D(1), µi ∼ U(0,1) i.i.d., and σi ∼ U(0,0.05)

i.i.d. This choice of generative distribution ensures a reasonable number of datasets

containing overlapping Gaussians, thus provoking switching. Figure 9.9(a) depicts

the performance measure ST averaged over the 100 datasets of this 9D experiment,

versus the number T of MCMC iterations. We use this averaging as a way to esti-

mate the expected performance measure on a class of problems given by the genera-

tive distribution. AMOR signi�cantly outperforms other approaches as it converges

faster on average and to a better solution. As expected, imposing an ordering con-

straint on the means (RWM+OC on Figure 9.9(a)) reveals a poor strategy leading

9.3. Application to Gaussian mixtures 113

to arti�cial additional bias. Note �nally that the modi�cation of the acceptance ra-

tio does not increase drastically the performance of the online relabeling algorithm

of [36] (�Original RWM+OR� vs. �Modi�ed RWM+OR�), which is not a surprise

since the additional factor in the acceptance ratio (Step (7) in Figure 9.1) is often

close to 1. Figure 9.8 provides insight into how the two best methods (AMOR and

modi�ed Celeux) behaves after T1 = 1 000 and T2 = 30 000 iterations, presenting

scatterplots of performances S1,000 and S30,000. Each point corresponds to one of

the 100 datasets. Clearly, starting from a rather random distribution of the errors,

AMOR took the advantage after 30K iterations.

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ
æ

æ

æ

0.0 0.5 1.0 1.5

0.0

0.5

1.0

1.5

Squared Error of AMOR

Sq
ua

re
d

E
rr

or
of

M
C

(a) S1,000 in the 9D experiments

æ

æ

æ
æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ
æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ æ

æ

0.0 0.5 1.0 1.5

0.0

0.5

1.0

1.5

Squared Error of AMOR

Sq
ua

re
d

E
rr

or
of

M
C

(b) S30,000 in the 9D experiments

Figure 9.8: Experimental comparison of the performance measure S for AMOR

(x-axis) versus modi�ed Celeux (y-axis) in the 9D experiment.

0 5000 10 000 15 000 20 000 25 000 30 000
0.0

0.2

0.4

0.6

0.8

1.0

MCMC iterations

A
ve

ra
ge

sq
ua

re
d

er
ro

r

RWM+OC

Modified RWM+OR

Original RWM+OR

AMOR

(a) 9D experiments

0 10 000 20 000 30 000 40 000 50 000
1.0

1.1

1.2

1.3

1.4

1.5

1.6

MCMC iterations

A
ve

ra
ge

sq
ua

re
d

er
ro

r

Modified RWM+OR

AMOR

(b) 30D experiments

Figure 9.9: Experimental comparison of several relabeling approaches. The plots

show the performance measure ST vs. T averaged over 100 datasets drawn from a

common generative model.

To further investigate the comparison between AMOR and MC, we now consider a

higher dimensional experiment. This time, the goal is to estimate the three means of

a 10-dimensional Gaussian mixture
∑3

i=1 1/3 N (.|µi, 0.1I10). Again, 100 datasets of

100 points each were generated with µi ∼ U(0,1) i.i.d. Again, as seen in Figure 9.9(b),

AMOR stabilizes earlier and selects a better region of R
30 than modi�ed Celeux,

114 Chapter 9. AMOR: adaptive Metropolis with online relabeling

thus illustrating again the interest of combining adaptive selection and proposal

mechanisms.

9.4 Application to the Auger tank signal model

The development of an adaptive MCMC algorithm that is able to cope with label

switching was originally motivated by the Auger tank signal model of Section 7.2.

To demonstrate that we cannot rely on AM being stuck in one of the redundant

symmetric modes of the posterior and that relabeling yields improvement, we com-

pare simple AM and AMOR on the task of inferring the 4 × 2 parameters � four

amplitudes A = (Ai)i=1...4 and four arrival times t = (ti)i=1...4 � of four vertical

centered muons producing a Poisson signal n. As for the initial label switching

example in Section 8.1, we do not include the subsequent steps of the model, since

at this stage, the likelihood

p(n|t,A)

is already invariant to permutations of the four muons. We ran both AMOR and AM

on 1200 simulated tank signals with 20 bins and N = 4. To create di�cult and real-

istic situations, we set the prior p(t) to be a product of independent inverse Gamma

distributions with parameters 2 and 100. This led to an arrival time distribution

with small variance, thus making simulations exhibit a reasonable number of over-

lapping muons. Examples of such simulated signals are depicted in Figures 9.10(a)

and 9.10(b).

To quantify the performance after T iterations, we �rst select the permutation of

the running posterior mean components (t̂
(T)
µi)i=1,2,3,4 which minimizes the sum of

the squared errors on the four estimates of the times of arrival tµi, i = 1, 2, 3, 4,

and we consider the sum of squared errors taken at this best permutation τ of the

posterior mean to compute an error per muon:

ST =
1

4

(
arg min
τ∈S4

4∑

i=1

(
t̂(T)
µτ(i)
− tµi

)2
)1/2

.

Figure 9.10(c) shows a scatterplot of ST after T = 3 × 106 iterations. On each

signal, both AM and AMOR started with the same initial point, that is all points

in Figure 9.10(c) were lying on the diagonal. AMOR clearly outperforms AM on

cases where label switching appears, leading to an estimate of the average error per

muon of 17.0± 0.1ns versus 18.3± 0.1ns on these di�cult cases.

9.5 Conclusion

We presented AMOR, an adaptive Metropolis-Hastings algorithm that ties the adap-

tation of its proposal to the online design of its relabeling rule, and demonstrated

9.5. Conclusion 115

0 100 200 300 400 500
t[ns]

0

50

100

150

200

#
P
E

(a)

0 100 200 300 400 500
t[ns]

0

50

100

150

200

#
P
E

(b)

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

æ

æ
æ

æ
æ

æ

æ

æ

ææ

æ

æææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
ææ

æ

æ

æ
æ

æ

æ

æ

æ

ææ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

ææ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ
æ

æ
æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æææ

æ
æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

æ

ææ

æ

æææ
æ

æ

æ

ææ
æ
æ

æ

æ
æ

æ

æ

æ

ææ

æ

ææ

ææ

æææ

æ

æ

æ

æ

æ
æ

æ

æ

æææ

æ

æ

æ

æ
æ

æ

æ

ææ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ ææ

æ

ææ

æ

æ

æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ
æ

æ

æ

æ

æ

æ

æææ

æ

ææ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

ææ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ
ææ

æ

æ

æ æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æææ

æ

æ
æ

æ

æ

æ
æ

æ

ææ

æ

æ

æ

æ

æ
æ
æ

æ

æ

æ

æ
æ

æ

æ

æ
æ

æ
æ

æ
æ

æ ææ

æ

æ

æ
ææ

æ

æ

æ

æ

æ

ææ
æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ
ææ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

ææ
æ

æ

æ

æææ
æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ
æ

æ
æ
æ
æ

æ

æ

æ

æ

ææ

æ
ææ

æ

æ
æ

æ
æ
æææ

æ

æ

æ

æ

æ

æ

æ
æ

ææ æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ
æ
æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æææ

æ

æ

æ

æ

æ

æ

æ

ææ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

ææ
æ

æ
æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ
æ

æ

æ
æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

ææ
ææ

æ

æ
ææ

æ
ææ
æ

æ

æ

æææ

æ

æ

ææ

æ

æ

æ
æ
æ

æ

æ
æ

ææ

æ

æ
æ

æ

æ

ææ

æ

æ
ææ

æææ
æ
ææ

æ

æ
æ

æ

æ
ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ
æ

æ

æ
æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ
ææ

æ

æ
æ

æ

æ

ææ

ææ

æ

æ

æ

æ

æ

æ
æ

æ

æ

ææ
ææ
æ

æ

æ

æ

æ

ææ

æ

æ
æ

æ

æ

æ
æ
æ

æ

æ
æ

æ

æ
æ
æ
ææ

ææ
æ

æ
æ
æ

ææ

æ

æ

æ

æ

æ

ææ

æ
æ

æ

æ

æ

æ

æ
æ

æ

æ

æ
æ
æ
æ

æ
æ
æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ
æ

æ

æ

ææ

æ

æ

æ
æ

ææ

æ

æ
ææ

æ

æ

æ

æ

æ

æ

æ
æ
æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

ææ

æ

æ
æ
æ

æ

æ

æ
æ

æ

æ

æææ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ æ
æ

æ

æ

æ ææ

æ

æ

æ

æ
æ
ææ

æ

ææ

æ

æ

æ

æ
æ
æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ
æ

ææ

æ

æ
æ

æ

æ

æ
ææ

æ

æ

æ

æ

æ
æ

æ

æ
æ

æ

æ
æ

ææ
æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ
æ

æ

æ

æ
æ

æ

æ

æ

æ
æ

æ

æ

æ
æ
æ

æ

ææ

æ

æ

æ

æ
ææ
ææ
æ

æ

æ

æ
ææ

æ

æ

ææ

æ

æ

æ

æ

æ
ææ

æ

ææ
æ

æ

æ

æ
ææ

æ

æ

æ

æ

æ

æ

æææ

æ
ææ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ
æ

æ

æ
æ
æ

æ

æ

æ
æææ

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

Squared Error of AMOR @sD

Sq
ua

re
d

E
rr

or
of

A
M
@s
D

(c) SAMT vs. SAMORT

Figure 9.10: (a),(b) Examples of generated Auger tank Poisson signals, with 20

bins and 4 muons each. Arrival time distribution is IG(2, 100). (c) Scatter plots of

squared errors of AM vs. AMOR, with T = 32 000 (see text).

AMOR on applications. We now discuss future methodological work on AMOR. The

online nature of AMOR makes it cheaper than its post-processing counterpart, but

it still requires to sweep over all elements of P at each iteration. This is prohibitive

in problems with large |P|, such as our Auger tank model when the number of muons

is large. In future work, we will concentrate on algorithmic modi�cations to reduce

this cost, potentially inspired by probabilistic relabeling algorithms [79, 121], while

conserving our theoretical results of Section 10.1. Furthermore, we are interested

in extending AMOR to trans-dimensional problems, such as mixtures with an un-

known number of components. This problem can be addressed by reversible jump

MCMC (RJMCMC; [68]), but the latter also su�ers from label switching and infer-

ential di�culties, and is not adaptive. We plan to study algorithms that combine

RJMCMC and AMOR.

Chapter 10

On the convergence of AMOR

Contents
10.1 Main results . 117

10.1.1 A stable AMOR algorithm 118

10.1.2 Convergence of stable AMOR 121

10.2 Proofs . 123

10.2.1 A preliminary result . 123

10.2.2 Di�erentiating the cross-entropy term in (10.1.11) 124

10.2.3 The Lyapunov function . 130

10.2.4 Proof of Proposition 1 . 133

10.2.5 Regularity in θ of the Poisson solution 135

10.2.6 Proof of Theorem 2 . 143

10.2.7 Proof of Theorem 3 . 147

10.2.8 Proof of Theorem 4 . 148

10.3 Conclusion . 150

In Chapter 9, we introduced and demonstrated AMOR, an adaptive Metropolis

algorithm with online relabeling. In this chapter, we present our theoretical analysis

of AMOR and prove a consistency result that we submitted in [13]. We present here

a combination of our papers [13] and [14], which presents the proof of our consistency

result in its entirety. This is joint work with Olivier Cappé, Gersende Fort (both at

CNRS & Télécom ParisTech), and my advisor Balázs Kégl.

10.1 Main results

AMOR can be cast into the family of adaptive MCMC algorithms such that the

updating rule of the design parameter relies on a stochastic approximation scheme.

Adaptive MCMC can be described as follows: given a family of transition kernels

(Pθ)θ∈Θ, the algorithm produces a X × Θ-valued process ((Xt, θt))t≥0 such that

the conditional distribution of Xt given the past is given by the transition kernel

Pθt−1 . This algorithm is designed so that when t tends to in�nity, the distribution

of Xt converges to the invariant distribution of the kernel Pθt . Convergence of such

118 Chapter 10. On the convergence of AMOR

adaptive procedures was recently analyzed by [113, 59], where su�cient conditions

are in terms of the so-called containment condition and the diminishing adaptation

property (see [113]). When each transition kernel Pθ possesses its own invariant

distribution, a condition on the convergence of these distributions is also required

(see [59]).

In the AMOR case, we will show that each transition kernel has its own invariant

distribution (see Section 10.1.1). Therefore, as a preliminary step for the conver-

gence of AMOR, the stability and the convergence of the design parameter sequence

(θt)t≥0 have to be established. Su�cient conditions for the convergence of stochas-

tic approximation procedures rely on the existence of a (regular enough) Lyapunov

function on Θ, on the behavior of the mean �eld at the boundary of the parameter

set Θ, and on the magnitude of the stepsize sequence (γt)t≥0. For AMOR, we were

only able to design a Lyapunov function for which some boundaries of Θ are not

repulsive (such a preliminary result can be found in [14]). Therefore, we introduced

a modi�ed AMOR which di�ers from the AMOR algorithm in Figure 9.1 through

the update rules for (θt): a penalty term is added in Steps 12 and 13 of AMOR so

that the boundaries of Θ become repulsive for the new algorithm. A stabilization

step is also added at the end of the main loop, in order to ensure the sequence

(θt)t≥0 is bounded and it does not get too close to the boundaries of Θ.

The convergence of the stable algorithm is addressed when π is compactly supported.

Assumption 1. π is a density w.r.t. the Lebesgue measure on R
d, which is bounded,

with compact support X, and which is invariant to permutations in the group P:

∀x ∈ X,∀P ∈ P, π(Px) = π(x) .

The compacity assumption makes it simpler to analyze the limiting behavior of the

algorithm. The proofs can be extended to a more general case by using the same

tools as in [59] and [6, section 3]. These technical steps are out of the scope of this

thesis.

This chapter is organized as follows. In Section 10.1.1, we �rst describe the stable

AMOR algorithm, and we show that it is an adaptive MCMC algorithm. We then

characterize the limiting behavior of the sequence (θt)t≥0 in Section 10.1.2 and ad-

dress a strong law of large numbers for the samples (Xt)t≥0, as well as the ergodicity

of the sampler. All proofs are given in Section 10.2.

10.1.1 A stable AMOR algorithm

Set P∗ = P \ {Id} and

Θ = {(µ,Σ) ∈ R
d × C+

d / ∀P ∈ P∗, Σ−1µ 6= PΣ−1µ} . (10.1.1)

The set R
d × C+

d is endowed with the scalar product 〈(a,A), (b, B)〉 = aT b +

Trace(ATB). We will use the same notation ‖.‖ for the norm induced by this

10.1. Main results 119

scalar product, for the Euclidean norm on R
d, and for the norm ‖A‖ = Tr(ATA)1/2

on d× d real matrices.

Denote by Sd the set of d × d symmetric real matrices; and for P ∈ P, let UP =

(I − P)T (I − P). Let α > 0 be �xed and de�ne H : X×Θ→ R
d × Sd by

H(x, θ) =
(
Hµ(x, θ),HΣ(x, θ)

)
(10.1.2)

where

Hµ(x, θ) = x− µ− α
∑

P∈P∗

1

‖(I − P)Σ−1µ‖4
UPΣ−1µ ,

HΣ(x, θ) = (x− µ)(x− µ)T − Σ

+α
∑

P∈P∗

1

‖(I − P)Σ−1µ‖4
(
µµTΣ−1UP + UPΣ−1µµT

)
.

Finally, for any δ > 0, set

Kδ = {(µ,Σ) ∈ Θ : inf
P∈P∗

‖(I − P)Σ−1µ‖ ≥ δ} . (10.1.3)

Let (δq)q≥0 be a decreasing positive sequence such that limq→∞ δq = 0 and Kδ0 is

not empty; choose θ0 = (µ0,Σ0) ∈ Kδ0 . Figure 10.1 describes the stable AMOR

algorithm in pseudocode.

We now prove that stable AMOR is an adaptive MCMC algorithm. For any θ ∈ Θ,

de�ne the transition kernel Pθ on (X,X) by

Pθ(x,A) =

∫

A∩Vθ

αθ(x, y)qθ(x, y) dy + 1A(x)

∫

Vθ

(1− αθ(x, z)) qθ(x, z) dz ,

(10.1.4)

where

αθ(x, y) = 1 ∧
π(y)qθ(y, x)

π(x)qθ(x, y)
, (10.1.5)

and

qθ(x, y) =
∑

P∈P

N (Py|x, cΣ) . (10.1.6)

For θ ∈ Θ, de�ne also

πθ = |P|1Vθπ . (10.1.7)

The following proposition shows that qθ(x, ·) is a density on Vθ, and that the distri-

bution πθ given by (10.1.7) is invariant for the transition kernel Pθ. It also estab-

lishes that Stable AMOR is an adaptive MCMC algorithm: given (Xt−1, θt−1), Xt

is obtained by one iteration of a random walk Metropolis-Hastings algorithm with

proposal qθt−1 and invariant distribution πθt−1 .

Proposition 1. 1. For any θ ∈ Θ and x ∈ X,
∫
Vθ

qθ(x, y) dy = 1.

2. For any θ ∈ Θ, πθPθ = πθ and for any x ∈ Vθ, Pθ(x, Vθ) = 1.

120 Chapter 10. On the convergence of AMOR

stableAMOR
(
π(·), X0, T, θ0 = (µ0,Σ0), c, (γt)t≥0, α, (Kδq)q≥0

)

1 S ← ∅

2 ψ ← 0 ⊲ Projection counter

3 for t← 1 to T

4 Σ← cΣt−1 ⊲ scaled adaptive covariance

5 X̃ ∼ N
(
· |Xt−1,Σ

)
⊲ initial proposal

6 P̃ ∼ arg min
P∈P

Lθt−1

(
PX̃

)
⊲ pick an optimal permutation

7 X̃ ← P̃ X̃ ⊲ relabel the initial proposal

8 if
π(X̃)

∑
P N

(
PXt−1|X̃,Σ

)

π(Xt−1)
∑

P N
(
PX̃|Xt−1,Σ

) > U [0, 1] then

9 Xt ← X̃ ⊲ accept

10 else

11 Xt ← Xt−1 ⊲ reject

12 S ← S ∪ {Xt} ⊲ update posterior sample

13 µt ← µt−1 + γtHµ(Xt, θt−1)

14 Σt ← Σt−1 + γtHΣ(Xt, θt−1)

15 if (µt,Σt) /∈ Kδψ then

16 (µt,Σt)← (µ0,Σ0) ⊲ Project back to Kδ0

17 ψ ← ψ + 1 ⊲ Increment projection counter

18 θt ← (µt,Σt)

19 return S

Figure 10.1: Pseudocode of stable AMOR. Step 6 is a uniform draw over the arg min.

There are two modi�cations w.r.t. AMOR in Figure 9.1, depicted in blue in the

current �gure. The �rst one is about the updates of µ and Σ in Steps 13 and 14,

with H(µ,Σ) being de�ned in (10.1.2). The second one is the projection mechanism,

Steps 15 to 17. These modi�cations prevent the new value (µt,Σt) to jump to the

set {θ ∈ Θ : infP∈P∗ ‖(I − P)Σ−1µ‖ = 0}.

3. Let (θt, Xt)t≥0 be given by the stable AMOR in Figure 10.1. Conditionally on

σ(X0, θ0, X1, θ1, ..., Xt−1, θt−1), the distribution of Xt is Pθt−1(Xt−1, ·).

Note that the proof of Proposition 1 is independent of the update scheme of (θt)t≥0,

which makes the proposition valid for both AMOR in Figure 9.1 and stable AMOR

in Figure 10.1.

10.1. Main results 121

10.1.2 Convergence of stable AMOR

Let µπθ ,Σπθ be the expectation and covariance matrix of πθ

µπθ =

∫
x πθ(x) dx , (10.1.8)

Σπθ =

∫
(x− µπθ)(x− µπθ)

T πθ(x) dx . (10.1.9)

De�ne the mean �eld h : Θ→ R
d × Sd by

h(θ) =
(
hµ(θ), hΣ(θ)

)
(10.1.10)

where

hµ(θ) = µπθ − µ− α
∑

P∈P∗

1

‖(I − P)Σ−1µ‖4
UPΣ−1µ ,

hΣ(θ) = Σπθ − Σ + (µπθ − µ)(µπθ − µ)T

+α
∑

P∈P∗

1

‖(I − P)Σ−1µ‖4
(
µµTΣ−1UP + UPΣ−1µµT

)
.

The key ingredient for the proof of the convergence of the sequence (θt)t≥0 is the

existence of a Lyapunov function w for the mean �eld h: we prove in Section 10.2

(see Lemma 10) that the function w : Θ→ R+, de�ned by

w(θ) = −

∫
logN (x|θ)πθ(x) dx+

α

2

∑

P∈P∗

1

‖(I − P)Σ−1µ‖2
, (10.1.11)

is continuously di�erentiable on Θ and satis�es 〈∇w, h〉 ≤ 0. In addition,

〈∇w(θ), h(θ)〉 = 0 i� θ is in the set

L = {θ ∈ Θ : h(θ) = 0} = {θ ∈ Θ : ∇w(θ) = 0} . (10.1.12)

The convergence of the sequence (θt)t≥0 is proved by verifying the su�cient con-

ditions for convergence of stochastic approximation for Lyapunov stable dynamics

given in [6]. The �rst step consists in proving that the sequence is bounded with

probability one: we prove that, almost surely, the number of projections ψ is �nite

so that the projection mechanism (lines 15 to 17 in Figure 10.1) never occurs af-

ter a (random) number of iterations. We then prove the convergence of the stable

sequence. To that goal, following the same lines as in [6], it is assumed

Assumption 2. Let L be given by (10.1.12). There exists M⋆ > 0 such that L ⊂

{θ : w(θ) ≤M⋆}, and w(L) has an empty interior.

De�ne for x ∈ R
d and A ⊂ R

d, d(x,A) = infa∈A ‖x − a‖. The following result is

proved in Section 10.2.

122 Chapter 10. On the convergence of AMOR

Theorem 2. Let β ∈ (1/2, 1] and γ⋆ > 0. Let (θt)t≥0 be the sequence produced by

the stable AMOR algorithm in Figure 10.1 with γt ∼ γ⋆ t
−β when t → +∞. Under

Assumptions 1 and 2,

1. Almost surely, there existM > 0 and t⋆ > 0 such that for any t ≥ t⋆, θt ∈ {θ ∈

Θ : w(θ) ≤M}. In addition, the number of projections is �nite almost-surely.

2. Almost surely, lim supt d(θt,L)→ 0.

Theorem 2 states the convergence of (θt)t≥0 to the set L of the zeros of h. This is

a classical type of result in stochastic approximation theory. Pointwise convergence

can be obtained by further assuming that, e.g., the set L is a union of isolated points.

In practice, it is hard to check whether such an assumption is satis�ed. However, in

our experiments, we always observed pointwise convergence to a limiting value that

did not depend on initialization of the algorithm or implementation parameters.

We now state a strong law of large numbers for the samples (Xt)t≥0, which holds

for all paths such that (θt)t converges to a point θ⋆ ∈ L.

Theorem 3. Let β ∈ (1/2, 1], γ⋆ > 0 and θ⋆ ∈ L. Let (Xt, θt)t≥0 be the sequence

generated by the stable AMOR algorithm in Figure 10.1 with γt ∼ γ⋆ t
−β when

t→ +∞. Under Assumptions 1 and 2, on the set {limt θt = θ⋆}

lim
T→∞

1

T

T∑

t=1

f(Xt) = πθ⋆(f) ,

for any bounded function f .

Finally, Theorem 4 yields the ergodicity of AMOR.

Theorem 4. Let β ∈ (1/2, 1], γ⋆ > 0, and θ⋆ ∈ L. Let (Xt, θt)t≥0 be the sequence

generated by Algorithm 10.1 with γt ∼ γ⋆ t
−β when t→ +∞. Under Assumptions 1

and 2,

lim
t→∞

sup
‖f‖∞≤1

∣∣∣∣E
[
f(Xt)1limq θq=θ⋆

]
− πθ⋆(f) P(lim

q
θq = θ⋆)

∣∣∣∣ = 0 .

The expression of w provides insight into the links between relabeling and vector

quantization [65]. The �rst term in the RHS of (10.1.11) is similar to a distortion

measure in vector quantization as noted in [14], and restated here in Section 10.2

as Lemma 6. It can also be seen as the cross-entropy between πθ and a Gaussian

with parameters θ. The second term in the RHS of (10.1.11) is similar to a barrier

penalty in continuous optimization [28]. From this perspective, stable AMOR can

be seen as a constrained optimization procedure that minimizes the cross-entropy.

In that sense, if θ⋆ denotes a solution to this optimization problem, the relabeled

target πθ⋆ ∝ 1Vθ⋆π is the restriction of π to one of its symmetric modes Vθ⋆ that

looks as Gaussian as possible.

10.2. Proofs 123

Vector quantization algorithms have already been investigated with stochastic ap-

proximation tools [100]. However, stability was guaranteed in previous work by

making strong assumptions on the trajectories of the process (θt)t≥0, such as in

[100, Theorem 32], see also [100, Results 33 to 37 & Remark 38]. These assumptions

ensure (θt) stays asymptotically away from sets where the function used elsewhere

as a Lyapunov function is not di�erentiable. We adopt a di�erent strategy by intro-

ducing the modi�cations of the stable AMOR algorithm and adding a barrier term

in the de�nition of our Lyapunov function (10.1.11) that penalizes these sets. One

of the contributions of this chapter is to show that this penalization strategy leads

to a stable algorithm, without requiring any strong assumption on (θt).

10.2 Proofs

Throughout the proofs, let ∆π > 0 be such that

x ∈ X⇒ ‖x‖ ≤ ∆π . (10.2.1)

For any function f : D → R, we will denote by ‖f‖∞ = supx∈D |f(x)|.

10.2.1 A preliminary result

First, we will use extensively the following lemma, which in particular gives the

normalization constant of πθ in (10.1.7).

Lemma 5. Let θ ∈ Θ. Then

1. The sets {PVθ, P ∈ P} cover X and for any P,Q ∈ P such that P 6= Q, the

Lebesgue measure of PVθ ∩QVθ is zero.

2. Let λ be a measure on (X,X) with a density w.r.t. the Lebesgue measure.

Furthermore, let λ be such that for any A ∈ X and P ∈ P, λ(PA) = λ(A).

Then λ(Vθ) = λ(X)/|P|.

Proof. (1) Let θ ∈ Θ. We �rst prove that for any P,Q ∈ P and P 6= Q, the Lebesgue

measure of PVθ∩QVθ is zero. Observe that PVθ∩QVθ ⊆ {x : Lθ(P
Tx) = Lθ(Q

Tx)}

and Lθ(P
Tx) = Lθ(Q

Tx) i�

(x− Pµ)TPΣ−1P T (x− Pµ) = (x−Qµ)TQΣ−1QT (x−Qµ) ,

or, equivalently,

xT
(
PΣ−1P T −QΣ−1QT

)
x− 2µT

(
Σ−1P T − Σ−1QT

)
x = 0 .

Then {x : Lθ(P
Tx) = Lθ(Q

Tx)} is either a quadratic or a linear hypersurface, and

thus of Lebesgue measure zero, except if both Σ−1 = RTΣ−1R and Σ−1µ = RΣ−1µ

124 Chapter 10. On the convergence of AMOR

with R = QTP . Since P is a group, R ∈ P and the de�nition (10.1.1) of Θ now

guarantees that these two conditions never simultaneously hold when θ ∈ Θ.

We now prove that X ⊆
⋃
P∈P PVθ. For any x ∈ X , there exists P ∈ P such that

Lθ(Px) = minQ∈P Lθ(Qx). Then x ∈ P
TVθ and this concludes the proof since P is

a group.

(2) Let θ ∈ Θ. Using item (1), it holds

λ(X) =

∫

X

dλ =
∑

P∈P

∫

PVθ

dλ =
∑

P∈P

∫

Vθ

dλ = |P|

∫

Vθ

dλ .

10.2.2 Di�erentiating the cross-entropy term in (10.1.11)

Now, for θ ∈ Θ, let

w̃(θ) = −

∫
logN (x|θ)πθ(x) dx . (10.2.2)

Anticipating that we will need to di�erentiate the function w de�ned in (10.1.11),

of which w̃ is the �rst term, we state and prove three lemmas and a proposition that

yield the gradient of w̃. Lemma 6 explicitely reformulates w̃ as a distortion measure

in vector quantization [65]. Lemma 7 gives the gradient of a distortion measure for

generic loss functions Lθ and a generic open set Θ. Its proof is adapted from [65,

Lemma 4.10, page 44]. We then show in Lemma 8 that Lemma 7 applies to the loss

function given by (9.2.1) and the set Θ given by (10.1.1). Finally, Proposition 9

gives an expression of the gradient of w̃.

Lemma 6. For any θ ∈ Θ,

w̃(θ) =
1

2
ln det(Σ) +

1

2

∫
min
P∈P

L(Pµ,PΣPT)(x)π(x) dx .

Proof. Let θ ∈ Θ. By de�nition of w̃ and by Lemma 5,

w̃(θ) =
1

2
ln det(Σ) +

|P|

2

∫

Vθ

Lθ(x)π(x) dx ,

where Vθ and Lθ are given respectively by (9.2.2) and (9.2.1). Upon noting that π

is invariant under the action of P, we compute

|P|

∫

Vθ

Lθ(x)π(x) dx =
∑

P∈P

∫

Vθ

Lθ(x)π(x) dx =
∑

P∈P

∫

PVθ

Lθ(P
Tx)π(x) dx .

In addition, by the de�nition (9.2.2) of Vθ,

PVθ = {x ∈ X : Lθ(P
Tx) = min

Q∈P
Lθ(Qx)} .

10.2. Proofs 125

Then by Lemma 5,

|P|

∫

Vθ

Lθ(x)π(x) dx =
∑

P∈P

∫

PVθ

min
Q∈P

Lθ(Qx)π(x) dx =

∫
min
Q∈P

Lθ(Qx)π(x) dx .

Finally, by the de�nition (9.2.1) of Lθ, Lθ(Qx) = L(QTµ,QTΣQ)(x), and this con-

cludes the proof.

Lemma 7. Let Θ be an open subset of R
ℓ, r be a positive integer and O ⊆ Θr be an

open set. Let X ⊆ R
d be a measurable set and π be a probability density w.r.t. the

Lebesgue measure on X . Let {Lθ, θ ∈ Θ} be a family of loss functions Lθ : X → R,

satisfying

A. For π-almost every x, θ 7→ Lθ(x) is C1 on Θ and for any θ ∈ Θ, there exists

h0 > 0 such that
∫

sup
‖h‖≤h0

1

‖h‖
|hT ∇θLθ(x)| π(x) dx <∞ .

B. For any θ ∈ Θ, there exists h0 > 0 such that

∫
sup

‖h‖≤h0

|Lθ+h(x)− Lθ(x)|

‖h‖
π(x) dx <∞ .

C. For any θ = (θ1, ..., θr) ∈ O, the sets

Vθi = {x ∈ X : Lθi(x) ≤ minjLθj (x)}

are measurable, cover X and for any i 6= j, the Lebesgue measure of Vθi ∩ Vθj is

zero.

For θ = (θ1, · · · , θr) ∈ O de�ne the function ϕ : Θr → R by

ϕ(θ) =

∫
min

1≤i≤r
Lθi(x) π(x) dx .

Then ϕ is di�erentiable on O and for 1 ≤ i ≤ r,

∇θiϕ(θ) =

∫

Vθi

∇θiLθi(x)π(x) dx .

Proof. Let θ = (θ1, · · · , θr) ∈ O. Set

d(x,θ) = min
1≤i≤r

Lθi(x) .

By de�nition of the function ϕ

ϕ(θ + h)− ϕ(θ) =

∫ (
d(x,θ + h)− d(x,θ)

)
π(x) dx . (10.2.3)

126 Chapter 10. On the convergence of AMOR

We now prove that

lim
‖h‖→0

‖h‖−1

(
ϕ(θ + h)− ϕ(θ)−

r∑

i=1

∫

Vθi

〈∇θiLθi(x), hi〉π(x) dx

)
= 0

by applying the dominated convergence theorem. First, by Assumption C,

ϕ(θ + h)− ϕ(θ) −
r∑

i=1

∫

Vθi

〈∇θiLθi(x), hi〉π(x) dx

=

r∑

i=1

∫

Vθi

(
d(x,θ + h)− d(x,θ)− 〈∇θiLθi(x), hi〉

)
π(x) dx .

Now set

V ◦
θi

= {x ∈ X : Lθi(x) < minj 6=iLθj (x)}

and note that Vθi \ V
◦
θi
has measure zero under Assumption C. Then

ϕ(θ + h)− ϕ(θ)−
r∑

i=1

∫

Vθi

〈∇θiLθi(x), hi〉π(x) dx

=

r∑

i=1

∫

V ◦
θi

(
d(x,θ + h)− d(x,θ)− 〈∇θiLθi(x), hi〉

)
π(x) dx .

Let x ∈ V ◦
θi
; under Assumption A, θ 7→ Lθ(x) is continuous on Θ and there exists

εx such that

‖h‖ ≤ εx ⇒ d(x,θ + h) = Lθi+hi(x) .

Then, by Assumption A,

d(x,θ + h)− d(x,θ)− 〈∇θiLθi(x), hi〉 = Lθi+hi(x)− Lθi(x)− 〈∇θiLθi(x), hi〉

= C(θi, x, hi)

with ‖hi‖
−1C(θi, x, hi) → 0 when ‖hi‖ → 0. Hence, we proved that for any i ≤ r

and any x ∈ V ◦
θi
,

lim
‖h‖→0

‖h‖−1
(
d(x,θ + h)− d(x,θ)− 〈∇θiLθi(x), hi〉

)
= 0 .

We now prove that there exists h0 such that

∫
sup

‖h‖≤h0

‖h‖−1
∣∣d(x,θ + h)− d(x,θ)−

r∑

i=1

〈∇θiLθi(x), hi〉1Vθi (x)
∣∣π(x) dx < +∞ .

(10.2.4)

First remark that for all z,a = (a1, · · · , ar), b = (b1, · · · , br),

|d(z,a + b)− d(z,a)| ≤ max
1≤i≤r

|Lai+bi(z)− Lai(z)| . (10.2.5)

10.2. Proofs 127

Indeed, assume without loss of generality that d(z,a) ≤ d(z,a + b) and let i be

such that d(z,a) = Lai(z), then by de�nition of the distance d, d(z,a + b) ≤

Lai+bi(z), which proves Eq. (10.2.5). Now, the proof of (10.2.4) is a consequence of

Assumptions A and B and the inequality

max
1≤i≤r

|Lai+bi(z)− Lai(z)| ≤
r∑

i=1

|Lai+bi(z)− Lai(z)| .

Lemma 8. Under Assumption 1, the quadratic loss function given by (9.2.1), the

set Θ given by (10.1.1), and the open set

O = {(Pµ, PΣP T) : P ∈ P, (µ,Σ) ∈ Θ}

satisfy the assumptions of Lemma 7.

Proof. When taking derivatives with respect to a matrix, we shall use the �vec�

notation during computations. For a d× d matrix A, its vectorized form vec(A) is

a d2 vector such that vec(A) stacks the columns of A on top of one another. In

general, we refer to [31] for matrix algebra notions.

We check the conditions of Lemma 7. Denote by r the cardinality of P and set

P = (Id, P2, · · · , Pr), where Id is the d× d identity matrix. We set

O = {(θ1, · · · , θr) ∈ Θr : θi = (Piµ, PiΣP
T
i),∀i ≥ 1} .

Note that for θ ∈ O, Lθi(x) = Lθ1(P
T
i x) and Vθi = PiVθ1 . Now, we have

(µ,Σ) 7→ (x− µ)TΣ−1(x− µ) =
1

det Σ
(x− µ)TAdjugate(Σ)(x− u)

so that θ 7→ Lθ(x) is a rational function in the coe�cients of µ and Σ whose

denominator det Σ > 0. In addition,

sup
‖h‖≤h0

1

‖h‖

∣∣hT∇θLθ(x)
∣∣ ≤ ‖∇θLθ(x)‖ ≤ ‖∇µLθ(x)‖+ ‖∇ΣLθ(x)‖ .

The RHS is at most quadratic in x (for �xed θ). By Assumption 1, the RHS is

π-integrable. This proves Assumption A of Lemma 7.

We now prove Assumption B of Lemma 7. Let θ ∈ Θ and set ∆θ = (∆µ,∆Σ). By

standard algebra, we have

(Σ + ∆Σ)−1 = Σ−1 − Σ−1 ∆Σ Σ−1 + o(‖∆Σ‖)

for any matrix ∆Σ such that Σ + ∆Σ is invertible. Therefore,

Lθ+∆θ(x)−Lθ(x) = −2(∆µ)TΣ−1(x−µ)−(x−µ)TΣ−1 ∆Σ Σ−1(x−µ)+Ξ(x, θ,∆θ) ,

128 Chapter 10. On the convergence of AMOR

for some function Ξ(x, θ,∆θ) such that

|Ξ(x, θ,∆θ)| ≤ C(θ)‖x‖2‖∆θ‖2

and some constant C(θ) (depending upon θ but independent of x and ∆θ). The

proof is concluded since, by Assumption 1,
∫
‖x‖2π(x) dx < +∞.

Finally, the sets Vθi are measurable for any θ1, · · · , θr ∈ Θ since (x, θ) 7→ Lθ(x) is

continuous on X × Θ. The proof of Assumption C of Lemma 7 is then concluded

by application of Lemma 5.

We are now ready to state the �nal result of this preliminary section, and give the

expression of the gradient of w̃ de�ned in (10.2.2).

Proposition 9. Under Assumption 1, the function w̃ de�ned in (10.2.2) is contin-

uously di�erentiable on Θ and for any θ ∈ Θ,

∇µw̃(θ) = −Σ−1(µπθ − µ) ,

∇Σw̃(θ) = −
1

2
Σ−1

(
Σπθ − Σ + (µπθ − µ)(µπθ − µ)T

)
Σ−1 .

Proof. Let r denote the cardinality of P and set P = (Id, P2, · · · , Pr). Let θ ∈ Θ.

By Lemma 6, we have

w̃(θ) =
1

2
ln det(Σ) +

1

2

∫
min

1≤i≤r
Lθi(x) π(x) dx ,

where θi = (Piµ, PiΣ
−1P Ti).

We �rst consider the derivative w.r.t. µ. We have

∇µw̃(θ) =
1

2
∇µ

∫
min

1≤i≤r
Lθi(x) π(x) dx.

By Lemmas 7 and 8 and the chain rule, we have

∇µw̃(θ) =
1

2

r∑

i=1

P Ti

∫

Ai

∇µi
[
(x− µi)PiΣ

−1P Ti (x− µi)
]
µi=Piµ

π(x) dx

= −Σ−1
r∑

i=1

∫

Ai

(P Ti x− µ) π(x) dx ,

where

Ai = {x : Lθi(x) ≤ min
j
Lθj (x)} = PiVθ ,

with Vθ de�ned in (9.2.2). Hence, by Lemma 5, and since π is invariant under the

action of P, we have

∇µw̃(θ) = −Σ−1
r∑

i=1

∫

Vθ

(x− µ) π(x) dx

= −Σ−1

∫
(x− µ)[r π(x)1Vθ(x)] dx

= −Σ−1 (µπθ − µ) ,

10.2. Proofs 129

where we used the de�nition (10.1.8) of µπθ .

We now consider the derivative w.r.t. Σ, that we will derive in a similar manner. We

refer to [31] for matrix algebra notions such as Kronecker products. First remark

that, by standard algebra and since Σ is symmetric,

∇vec(Σ)ln det Σ = vec(Σ−1) .

Then recall that

∇vec(Σ)(x− µ)Σ−1(x− µ) = −Σ−1(x− µ)⊗ Σ−1(x− µ) .

Now let, for A a matrix, A⊗2 = A⊗A. Using Lemmas 7 and 8 along with the chain

rule, we compute

∇vec(Σ)w̃(θ)−
1

2
vec(Σ−1)

=
1

2

r∑

i=1

(P⊗2
i)T

∫

PiVθ

∇vec(Σi)

[
(x− Piµ)TΣ−1

i (x− Piµ)
]
Σi=PiΣPTi

π(x) dx

= −
1

2

r∑

i=1

(P Ti)⊗2

∫

PiVθ

[
PiΣ

−1P Ti (x− Piµ)
]⊗2

π(x) dx

= −
1

2

r∑

i=1

∫

PiVθ

[
Σ−1(P Ti x− µ)

]⊗2
π(x) dx

= −
1

2
(Σ−1)⊗2

r∑

i=1

∫

PiVθ

[P Ti x− µ]⊗2π(x) dx

where we used the identities (A⊗B)T = AT ⊗BT and (A⊗B)(C ⊗D) = (AC)⊗

(BD). A change of variables now leads to

∇vec(Σ)w̃(θ)−
1

2
vec(Σ−1)

= −
1

2
(Σ−1)⊗2

r∑

i=1

∫

Vθ

(x− µ)⊗2π(x) dx

= −
1

2
(Σ−1)⊗2

∫
(x− µπθ + µπθ − µ)⊗2[r π(x)1Vθ(x)] dx

= −
1

2
(Σ−1)⊗2

(∫
(x− µπθ)⊗ (x− µπθ)πθ(x) dx+ (µπθ − µ)⊗ (µπθ − µ)

)

= −
1

2
(Σ−1 ⊗ Σ−1)vec(Σπθ + (µπθ − µ)(µπθ − µ)T) ,

where we used the distributivity of the Kronecker product, Lemma 5, and the def-

initions (10.1.8) and (10.1.9) of µπθ and Σπθ . Finally, the identity vec(AXB) =

(BT ⊗A)vec(X) allows us to write

∇vec(Σ)w̃(θ) = −
1

2
vec
(
Σ−1

[
Σπθ − Σ + (µπθ − µ)(µπθ − µ)T

]
Σ−1

)
.

130 Chapter 10. On the convergence of AMOR

10.2.3 The Lyapunov function

Lemma 10 establishes the existence of a Lyapunov function for the mean �eld h

given by (10.1.10).

Lemma 10. Under Assumption 1, the mean �eld h is continuous on Θ, the function

w de�ned by (10.1.11) is C1 on Θ and

1. ∇µw(θ) = −Σ−1hµ(θ) and ∇Σw(θ) = −1
2Σ−1hΣ(θ)Σ−1.

2. 〈∇w(θ), h(θ)〉 ≤ 0 on Θ and 〈∇w(θ), h(θ)〉 = 0 i� θ ∈ L.

3. For any M > 0, the level set

WM = {θ ∈ Θ : w(θ) ≤M} (10.2.6)

is a compact subset of Θ, and there exist δ1, δ2 > 0 such that

inf
θ∈WM

inf
P∈P∗

‖(I − P)Σ−1µ‖ ≥ δ1 and (10.2.7a)

inf
θ∈WM

λmin(Σ) ≥ δ2 , (10.2.7b)

where λmin(Σ) denotes the minimal eigenvalue of the real symmetric matrix

Σ.

Remark 11. As a consequence of Lemma 10, observe that for any M > 0, there

exists δ > 0 such that WM ⊆ Kδ, where Kδ is de�ned in (10.1.3).

Proof. (Continuity of h) Since (I −P)Σ−1µ 6= 0 on Θ for any P ∈ P∗, it su�ces to

show that θ 7→ µπθ and θ 7→ Σπθ are continuous. Since, by Lemma 5, the boundary

of Vθ is of Lebesgue measure zero, the continuity of θ 7→ µπθ follows from Lebesgue's

dominated convergence theorem if, for any x ∈ X \ ∂Vθ, θ 7→ x1Vθ(x) is continuous.

To see this, note that if x is in the interior of Vθ, then there exists a neighborhood

V of θ such that for any θ′ ∈ V, x ∈ Vθ′ , and if x ∈ X \ Vθ, which is an open subset

of X, then there exists a neighborhood V of θ such that for any θ′ ∈ V, x ∈ X \ Vθ′ .

The case of θ 7→ Σθ is similar and omitted.

(w is C1 on Θ) Proposition 9 states that the �rst term in the RHS of (10.1.11) is

continuously di�erentiable on Θ. Since ‖(I − P)Σ−1µ‖ 6= 0 for any P ∈ P∗ and

(µ,Σ) ∈ Θ, the second term in the RHS of (10.1.11) is also continuously di�eren-

tiable on Θ. By Proposition 9, it thus holds, for any θ = (µ,Σ) ∈ Θ,

∇µw(θ) = −Σ−1(µπθ − µ) + α
∑

P

1

‖(I − P)Σ−1µ‖4
Σ−1UPΣ−1µ

= −Σ−1hµ(θ)

10.2. Proofs 131

and

∇Σw(θ) = −
1

2
Σ−1(Σπθ − Σ + (µ− µπθ)(µ− µπθ)

T)Σ−1 . . .

−
α

2

∑

P

1

‖(I − P)Σ−1µ‖4
Σ−1

(
µµTΣ−1UP

)
Σ−1 + UPΣ−1µµT

= −
1

2
Σ−1hΣ(θ)Σ−1 .

Hence, upon noting that hΣ(θ) and Σ−1 are symmetric,

〈∇w(θ), h(θ)〉 = −hµ(θ)
TΣ−1hµ(θ)−

1

2
Trace

(
Σ−1hΣ(θ)Σ−1hΣ(θ)

)

= −hµ(θ)
TΣ−1hµ(θ)−

1

2
Trace

(
Σ−1/2hΣ(θ)Σ−1hΣ(θ)Σ−1/2

)
.

The �rst term of the RHS is negative since Σ ∈ C+
d and the second term is negative

since (A,B) 7→ Trace(ATB) is a scalar product. Therefore 〈∇w(θ), h(θ)〉 ≤ 0 with

equality i� θ ∈ L.

(WM is compact) We prove (10.2.7a). By the de�nition (10.1.11) of w, for any

θ ∈ WM , we have

−

∫
logN (x|θ)πθ(x) dx+

α

2

∑

P∈P∗

1

‖(I − P)Σ−1µ‖2
≤M .

In particular, since the �rst term in the LHS is a cross-entropy and thus it is non-

negative (alternatively, see [14, Proposition 1 of the supplementary material]), for

any θ ∈ WM , we have

∑

P∈P∗

1

‖(I − P)Σ−1µ‖2
≤

2M

α
.

This yields ‖(I − P)Σ−1µ‖2 ≥ α
2M for any P ∈ P∗, thus concluding the proof of

(10.2.7a).

We now prove (10.2.7b). Let θ = (µ,Σ) ∈ WM . Denote by (λi(Σ))i≤d the eigen-

values of Σ. Since Σ is symmetric, there exist d × d matrices Qθ,Λθ such that

Σ = QθΛθQ
T
θ , Qθ is orthogonal, and Λθ = Diag(λi(Σ)). Then

2M ≥ 2w(θ) ≥ −2

∫
logN (x|θ)πθ(x) dx

= d log(2π) + log det Σ + (µπθ − µ)TΣ−1(µπθ − µ) + Trace(Σ−1Σπθ)(10.2.8)

≥
d∑

i=1

log λi(θ) + 0 + Trace(Σ−1Σπθ) .

Set bi(θ) = (QTθ ΣπθQθ)ii. Then

Trace(Σ−1Σπθ) = Trace(QθΛ
−1
θ QTθ Σπθ) = Trace(QTθ ΣπθQθΛ

−1
θ) =

d∑

i=1

bi(θ)

λi(θ)
.

(10.2.9)

132 Chapter 10. On the convergence of AMOR

Therefore, for any θ ∈ WM ,

d∑

i=1

log λi(θ) +
bi(θ)

λi(θ)
≤ 2M . (10.2.10)

We now prove that for any i, infWM
bi > 0. This property, combined with (10.2.10),

will conclude the proof of (10.2.7b). Let ε > 0 be such that

2dε‖π‖∞∆d−1
π < |P| ,

and for v ∈ {x ∈ R
d : ‖x‖ = 1}, let

Bv
ε (θ) = {x ∈ Supp(π) ∩ Vθ : |〈x− µπθ , v〉| ≤ ε} . (10.2.11)

Note that by Assumption 1,

π
(
Bv
ε (θ)

)
≤ ‖π‖∞Leb

(
Bv
ε (θ)

)
≤ 2dε‖π‖∞∆d−1

π .

Then, by de�nition of ε,

π
(
Vθ \B

v
ε (θ)

)
≥ |P| − 2dε‖π‖∞∆d−1

π > 0 . (10.2.12)

Now, if (ei) denotes the canonical basis of R
d, then

bi(θ) = |P|eTi Q
T
θ

(∫

Vθ

(x− µπθ)(x− µπθ)
Tπ(x) dx

)
Qθei

= |P|

∫

Vθ

(Qθei)
T (x− µπθ)(x− µπθ)

TQθei π(x) dx

= |P|

∫

Vθ

〈x− µπθ , Qθei〉
2π(x) dx

≥ |P|

∫

Vθ\B
Qθei
ε (θ)

〈x− µπθ , Qθei〉
2π(x) dx

≥ ε2|P|π
(
Vθ \B

Qθei
ε (θ)

)
, (10.2.13)

where the last inequality follows from the de�nition (10.2.11) of BQθei
ε (θ). Thus, by

(10.2.12), bi(θ) is bounded away from zero on WM .

As w is continuous on Θ, {θ ∈ Θ, w(θ) ≤ M} is closed. From (10.2.7b), (10.2.8)

and Assumption 1, µ 7→ (µπθ − µ)TΣ−1(µπθ − µ) is bounded on WM . In addition,

(10.2.8), (10.2.9) and (10.2.13) imply that Σ 7→ log det Σ is bounded onWM . These

properties combined with (10.2.7b) imply that WM is bounded. Hence WM is

compact.

10.2. Proofs 133

10.2.4 Proof of Proposition 1

(1) By the de�nition (10.1.1) of Θ and Lemma 5, ∀θ ∈ Θ, x ∈ X, it holds
∫

Vθ

qθ(x, y) dy =
∑

P∈P

∫

Vθ

N (Py|x, cΣ) dy = 1 .

(2) Let (Xt)t≥0 and (θt)t≥0 be the random processes de�ned by the stable AMOR

algorithm in Figure 10.1. We prove that for any measurable positive function f ,

E[f(Xt)|X0, θ0, . . . , Xt−1, θt−1] =

∫
f(xt)Pθt−1(Xt−1, xt) dxt , w.p.1.

Let f be measurable and positive. Let (P̃ , X̃) be the r.v. de�ned by Steps 5 and

6. Let U be a uniform r.v. independent of σ(X0, θ0, . . . , Xt−1, θt−1, P̃ , X̃). By

construction, it holds that

E[f(Xt)|X0, θ0, . . . , Xt−1, θt−1] = E[f(P̃ X̃)1U≤αθt−1
(Xt−1,P̃ X̃)|X0, θ0, . . . , Xt−1, θt−1]

+ E[f(Xt−1)1U>αθt−1
(Xt−1,P̃ X̃)|X0, θ0, . . . , Xt−1, θt−1] ,

(10.2.14)

where αθ(x, y) is given by (10.1.5). Since U is independent of the past and from P̃

and X̃, we have

E[f(P̃ X̃)1U≤αθt−1
(Xt−1,P̃ X̃)|X0, θ0, . . . , Xt−1, θt−1]

= E

[
f(P̃ X̃)

(
1− αθt−1(Xt−1, P̃ X̃)

)
|X0, θ0, . . . , Xt−1, θt−1

]
, (10.2.15)

and

E[f(Xt−1)1U>αθt−1
(Xt−1,P̃ X̃)|X0, θ0, . . . , Xt−1, θt−1]

= f(Xt−1) E

[(
1− αθt−1(Xt−1, P̃ X̃)

)
|X0, θ0, . . . , Xt−1, θt−1

]
. (10.2.16)

Now note that the projection mechanism (Steps 15 to 17 in Figure 10.1) guarantees

that θt−1 ∈ Θ with probability 1. By Lemma 5, θ ∈ Θ implies X = ∪P (PVθ) and

∀P,Q ∈ P such that P 6= Q, Leb(PVθ ∩QVθ) = 0.

Thus, for any measurable and bounded function ϕ : X×Θ→ R, we have
∫

X

ϕ(x, θ) dx =
∑

Q∈P

∫

QVθ∩(∪R 6=QRVθ)c
ϕ(x, θ) dx .

Applying this decomposition to (10.2.15) yields

E[f(P̃ X̃)1U≤αθt−1
(Xt−1,P̃ X̃)|X0, θ0, . . . , Xt−1, θt−1]

=
∑

P∈P

∫
h(Px)

1

N(x, θt−1)
1Vθt−1

(Px)N (x| > Xt−1, cΣt−1) dx

=
∑

P,Q∈P

∫

QVθt−1
∩(∪R 6=QRVθt−1

)c
h(Px)

1

N(x, θt−1)
1Vθt−1

(Px)N (x|Xt−1, cΣt−1) dx ,

134 Chapter 10. On the convergence of AMOR

where N(x, θ) = |{Q ∈ P/Qx ∈ Vθ}|. Using Lemma 5 again,

θ ∈ Θ, x /∈ ∪P 6=Q(PVθ ∩QVθ)⇒ N(x, θ) = 1 ,

and thus

E[f(P̃ X̃)1U≤αθt−1
(Xt−1,P̃ X̃)|X0, θ0, . . . , Xt−1, θt−1]

=
∑

P,Q∈P

∫

QVθt−1
∩(∪R 6=QRVθt−1

)c
h(Px)1Vθt−1

(Px)N (x|Xt−1, cΣt−1) dx

=
∑

P∈P

∫
h(Px)1Vθt−1

(Px)N (x|Xt−1, cΣt−1) dx

=
∑

P∈P

∫
h(y)1Vθt−1

(y)N (P−1y|Xt−1, cΣt−1) dy

=

∫

Vθt−1

h(y)qθt−1(Xt−1, y) dy ,

where in the last step we used the fact that P is a group. Similarly,

E

[(
1− αθt−1(Xt−1, P̃ X̃)

)
|X0, θ0, . . . , Xt−1, θt−1

]

=

∫

Vθt−1

(
(1− αθt−1(Xt−1, y)

)
qθt−1(Xt−1, y) dy ;

and this concludes the proof.

(3) Let θ ∈ Θ. Eqn. (10.1.4) implies that if x ∈ Vθ, then P (x, Vθ) = 1. To prove

that πθPθ = πθ, it is su�cient to check the detailed balance condition, which states

that

∀A,B ⊂ X measurable,

∫

A
πθ(x)Pθ(x,B) dx =

∫

B
πθ(y)Pθ(y,A) dy .

We consider the two summands in the de�nition (10.1.4) separately. First, it holds

that

πθ(x)αθ(x, y)qθ(x, y)1Vθ(y) = |P |
(
π(x)qθ(x, y) ∧ π(y)qθ(y, x)

)
1Vθ(x)1Vθ(y)

= πθ(y)αθ(y, x)qθ(y, x)1Vθ(x) ,

so
∫

A
πθ(x)

(∫

B∩Vθ

αθ(x, y)qθ(x, y) dy

)
dx =

∫

B
πθ(y)

(∫

A∩Vθ

αθ(y, x)qθ(y, x) dx

)
dy .

Secondly,
∫

A
πθ(x)1B(x)

∫

Vθ

(1− αθ(x, z)) qθ(x, z) dz dx

=

∫

A∩B
πθ(x)

∫

Vθ

(1− αθ(x, z)) qθ(x, z) dz dx

=

∫

B
πθ(y)1A(y)

∫

Vθ

(1− αθ(y, z)) qθ(y, z) dz .

10.2. Proofs 135

This concludes the proof of the detailed balance condition.

10.2.5 Regularity in θ of the Poisson solution

Lemma 12. 1. For any M > 0, there exists ρ ∈ (0, 1) such that for any x ∈ X

and any θ ∈ WM , ‖Pnθ (x, ·)− πθ‖TV ≤ 2(1− ρ)n.

2. Under Assumption 1, for any θ ∈ Θ, there exists a solution Ĥθ of the Poisson

equation g − Pθg = H(·, θ)− πθH(·, θ). Furthermore, for any M > 0,

sup
θ∈WM

sup
x∈X

|Ĥθ(x)| <∞ . (10.2.17)

Proof. (of Item 1) It is su�cient to prove that there exists ρ ∈ (0, 1) such that for

any x ∈ X and θ ∈ WM , Pθ(x, ·) ≥ ρπθ (see e.g. [96, Theorem 16.2.4]). By (10.1.4),

for any x ∈ X and A ∈ X , Pθ(x,A) ≥
∫
A∩Vθ

αθ(x, y)qθ(x, y) dy. By Lemma 10,

there exists a > 0 such that for any (µ,Σ) ∈ WM , any m, z ∈ X, and any P ∈ P,

we have N (Pz|m,Σ) ≥ a. Thus, for any θ ∈ WM and y ∈ Vθ, it holds that

αθ(x, y)qθ(x, y)1Vθ(y) ≥ a|P|

(
1 ∧

π(y)

π(x)

)
1Vθ(y) ≥

a

‖π‖∞
πθ(y) . (10.2.18)

Thus, we have Pθ(x, ·) ≥ ρπθ for any x ∈ X and θ ∈ WM with ρ = a/‖π‖∞.

(Proof of Item 2)

∣∣∣∣∣
∑

n

Pnθ
(
H(x, θ)− πθ(H(·, θ))

)
∣∣∣∣∣ ≤ sup

θ∈WM

‖H(·, θ)‖∞
∑

n

‖Pnθ (x, ·)− πθ‖TV

≤ 2 sup
θ∈WM

‖H(·, θ)‖∞ρ
−1. (10.2.19)

Since the sup is �nite by Lemma 10, the series
∑
Pnθ
(
H(x, θ) − πθ(H(·, θ))

)
con-

verges. Finally, note that

Ĥθ(x) =
∑

n

Pnθ
(
H(x, θ)− πθ(H(·, θ))

)

is a solution of the Poisson equation, and that supθ∈WM ,x∈X |Ĥθ(x)| <∞.

Lemma 13. Let M > 0 and κ ∈ (0, 1/2). Under Assumption 1, there exists C > 0

such that for any θ ∈ WM and θ′ ∈ Θ, it holds that

Leb(Vθ \ Vθ′) ≤ C‖θ − θ
′‖1−2κ , (10.2.20)

where Leb(A) denotes the Lebesgue measure of the set A.

136 Chapter 10. On the convergence of AMOR

Proof. We prove that there exist C̄, h̄ > 0, such that for any θ ∈ WM and any θ′ ∈ Θ

such that ‖θ − θ′‖ ≤ h̄, Leb(Vθ \ Vθ′) ≤ C̄‖θ − θ′‖1−2κ. Note that since Vθ ⊂ X

and since X is bounded, there exists Č > 0 such that Leb(Vθ \ Vθ′) ≤ Č. Therefore,

(10.2.20) holds with C = C̄ ∨ Č/h̄1−2κ.

By Lemma 10, w is uniformly continuous on WM+1, and there exists h0 > 0 small

enough for which

[
θ ∈ WM , θ

′ ∈ Θ, ‖θ − θ′‖ < h0

]
⇒ ∀u ∈ [0, 1], θ + u(θ′ − θ) ∈ WM+1 . (10.2.21)

Let h̄ ≤ h0. Let θ = (µ,Σ) ∈ WM and θ′ 6= θ such that ‖θ − θ′‖ ≤ h̄.

By de�nition of the set Vϑ, for any x ∈ Vθ \ Vθ′ , there exists P ∈ P∗ such that

Lθ′(x) − Lθ′(P
Tx) > 0 and Lθ(x) − Lθ(P

Tx) ≤ 0. Since ϑ 7→ Lϑ(x) − Lϑ(P
Tx) is

continuous on WM+1, there exists u ∈ [0, 1] depending on x, θ, θ′, and P such that

Lθ+u(θ′−θ)(x)− Lθ+u(θ′−θ)(P
Tx) = 0. Therefore

Vθ \ Vθ′ ⊂
⋃

P∈P∗

VP ,

where

VP =
⋃

u∈[0,1]

Z
(
Lθ+u(θ′−θ)(·)− Lθ+u(θ′−θ)(P

T ·)
)
∩ X ; (10.2.22)

and Z(f) denotes the zeros of the function f . The proof proceeds by showing that

for any P ∈ P∗, VP is included in a measurable set with measure O
(
‖θ − θ′‖1−2κ

)
.

Let P ∈ P∗. Let B(0,∆π) = {y ∈ R
d : ‖y‖ ≤ ∆π}, where ∆π is de�ned by 10.2.1.

For any x ∈ B(0,∆π), de�ne

lθ(x) = 2µTΣ−1(I − P T)x ,

qθ(x) = xT (Σ−1 − PΣ−1P T)x ,

Bθ,θ′ = {x ∈ B(0,∆π) : |lθ(x)| ≤ ‖θ − θ
′‖κ} .

Denote by S the unit sphere {x ∈ R
d / ‖x‖ = 1}. Let u ∈ [0, 1] and tv ∈

Z
(
Lθ+u(θ′−θ)(·) − Lθ+u(θ′−θ)(P

T ·)
)
∩ X where t ∈ [0,∆π] and v ∈ S. Upon not-

ing that for any ϑ ∈ WM+1,

Lϑ(tv)− Lϑ(tP
T v) = t

(
qϑ(v)t− lϑ(v)

)
, (10.2.23)

we consider several cases:

(i) tv ∈ Bθ,θ′ .

(ii) tv /∈ Bθ,θ′ and qθ+u(θ′−θ)(v) = 0. Then, by (10.2.23), lθ+u(θ′−θ)(tv) = 0 which

implies that tv ∈ Bθ,θ′ . This yields a contradiction.

10.2. Proofs 137

(iii) tv /∈ Bθ,θ′ and qθ+u(θ′−θ)(v) 6= 0. Then t 6= 0 and, by (10.2.23),

t =
lθ+u(θ′−θ)(v)

qθ+u(θ′−θ)(v)
. (10.2.24)

Since we assumed t ∈ [0,∆π], this ratio is positive. In order to characterize

the point tv, additional notations are required. First, note that by Lemma 10,

there exists C1 > 0 such that for any θ̃ = (µ̃, Σ̃) ∈ WM+1,

‖θ̃ − θ‖ ≤ h0 ⇒ ‖Σ̃
−1 − Σ−1‖ ≤ C1‖Σ̃− Σ‖ .

Thus, there exists C2 > 0 such that for any θ̃ ∈ WM+1, ‖θ̃ − θ‖ ≤ h0, and for

any x ∈ B(0,∆π),

|lθ̃(x)− lθ(x)| = 2
∣∣∣µT
[
Σ̃−1 − Σ−1

]
(I − P T)x+ (µ̃− µ)T Σ̃−1(I − P T)x

∣∣∣
≤ C2‖θ̃ − θ‖ . (10.2.25)

Note that since x, µ ∈ B(0,∆π), C2 does not depend on x and θ. Similarly,

there exists C3 > 0 such that for x ∈ B(0,∆π) and θ̃ ∈ WM+1 satisfying

‖θ̃ − θ‖ ≤ h0,

|qθ̃(x)− qθ(x)| ≤ C3‖θ̃ − θ‖ . (10.2.26)

We can assume without loss of generality that h̄ is small enough so that

‖θ − θ′‖ ≤ h̄⇒ ‖θ − θ′‖κ − (C2 + 2C3∆π) ‖θ − θ
′‖ ≥

1

2
‖θ − θ′‖κ .

(10.2.27)

We now distinguish three subcases.

a) v ∈ Bθ,θ′ .

b) v /∈ Bθ,θ′ and qθ(v) 6= 0. Since t ∈ [0,∆π], (10.2.24) implies that

|qθ+u(θ′−θ)(v)| ≥ |lθ+u(θ′−θ)(v)|/∆π. Since v /∈ Bθ,θ′ , |lθ(v)| ≥ ‖θ − θ
′‖κ,

and by using (10.2.25)

|lθ+u(θ′−θ)| ≥ |lθ(v)| −
∣∣lθ+u(θ′−θ) − lθ(v)

∣∣ ≥ ‖θ − θ′‖κ − C2‖θ − θ
′‖ .

Hence, it holds that |qθ+u(θ′−θ)(v)| ≥ (‖θ− θ′‖κ −C2‖θ− θ
′‖)/∆π, and, by

(10.2.26), we have |qθ(v)| ≥ |qθ+u(θ′−θ)(v)| −C3‖θ− θ
′‖. These inequalities

together with (10.2.25) and (10.2.27) lead to
∣∣∣∣t−

lθ(v)

qθ(v)

∣∣∣∣ =
∣∣∣∣
lθ+u(θ′−θ)(v)

qθ+u(θ′−θ)(v)
−
lθ(v)

qθ(v)

∣∣∣∣ ≤ C4‖θ − θ
′‖1−2κ,

for some C4 > 0.

c) v /∈ Bθ,θ′ and qθ(v) = 0. Then by (10.2.25) and (10.2.26),

t ≥
‖θ − θ′‖κ − C2‖θ − θ

′‖

C3‖θ − θ′‖
≥ 2∆π ,

which is in contradiction with the assumption that t ≤ ∆π.

138 Chapter 10. On the convergence of AMOR

As a conclusion, we have just proved that VP is included in the union of three sets

de�ned by Bθ,θ′ (case i), by {tv : t ∈ [0,∆π], v ∈ S ∩ Bθ,θ′} (case iiia), and by

{
tv : v ∈ S, v /∈ Bθ,θ′ , qθ(v) 6= 0, 0 ≤ t ≤ ∆π,

∣∣∣∣t−
lθ(v)

qθ(v)

∣∣∣∣ ≤ C4‖θ − θ
′‖1−2κ

}

(case iiic). This concludes the �rst step.

The second step consists in computing an upper bound for the Lebesgue measure of

each of these three sets. For simplifying the presentation, we detail the case d = 2

and use polar coordinates (ρ, φ); the argument remains valid when d > 2 using

generalized spherical coordinates. De�ne tθ(φ) = lθ(e
iφ)/qθ(e

iφ). Rephrasing the

conclusion of the �rst step, we have VP ⊂
⋃3
ℓ=1 V

(ℓ)
P with

V
(1)
P = Bθ,θ′ ,

V
(2)
P = {(ρ, φ) / ρ ∈ [0,∆π], e

iφ ∈ Bθ,θ′} ,

V
(3)
P = {(ρ, φ) /eiφ /∈ Bθ,θ′ , qθ(e

iφ) 6= 0, 0 ≤ ρ ≤ ∆π, |ρ− tθ(φ)| ≤ C4‖θ − θ
′‖1−2κ} ,

and these sets are Borel sets. By de�nition of WM , lθ is not identically zero and

thus

Leb(V
(1)
P) = Leb(Bθ,θ′) ≤ 2∆π

‖θ − θ′‖1−2κ

‖2µtΣ−1(I − P T)‖
≤ C5‖θ − θ

′‖1−2κ

for some C5 > 0 as a consequence of Lemma 10. For V
(2)
P , note that it is upper

bounded by the reunion of the two circular sectors in bold lines in Figure 10.2. This

area is easily bounded by the area of the outer rectangle, which is proportional to

‖θ − θ′‖1−2κ. Finally,

Leb(V
(3)
P) =

∫ 2π

0

[
ρ2

2

]∆π∧(tθ(φ)+C4‖θ−θ′‖1−2κ)

0∨(tθ(φ)−C4‖θ−θ′‖1−2κ)

1qθ(eiφ) 6=0 dφ .

We can assume without loss of generality that h̄ is small enough so that 2C4h̄
1−2κ <

∆π. Therefore, we can partition [0, 2π] = A ∪ B ∪ C, where

A = {φ ∈ [0, 2π] / tθ(φ)− C4‖θ − θ
′‖1−2κ ≥ 0 and tθ(φ) + C4‖θ − θ

′‖1−2κ ≤ ∆π} ,

B = {φ ∈ [0, 2π] / tθ(φ)− C4‖θ − θ
′‖1−2κ ≥ 0 and tθ(φ) + C4‖θ − θ

′‖1−2κ ≥ ∆π} ,

C = {φ ∈ [0, 2π] / tθ(φ)− C4‖θ − θ
′‖1−2κ ≤ 0 and 0 ≤ tθ(φ) + C4‖θ − θ

′‖1−2κ ≤ ∆π} .

This yields

Leb(V
(3)
P) ≤ 2C4

∫

A
tθ(φ)‖θ − θ′‖1−2κ dφ+

1

2

∫

B

(
∆2
π −

(
tθ(φ)− C4‖θ − θ

′‖1−2κ
)2)

dφ

+
1

2

∫

C

(
tθ(φ) + C4‖θ − θ

′‖1−2κ
)2
dφ (10.2.28)

≤ C6‖θ − θ
′‖1−2κ , (10.2.29)

10.2. Proofs 139

∆π

1

2(I − P)Σ−1µ

O

Bθ,θ′

b

Figure 10.2: Bounding the measure of the set V
(2)
P .

for some C6 > 0, since on A, 0 ≤ tθ(φ) ≤ ∆π, on B, (tθ(φ) − C4‖θ − θ
′‖1−2κ)2 ≥

(∆π − 2C4‖θ − θ
′‖1−2κ)2, and on C, |tθ(φ)| ≤ C4‖θ − θ

′‖1−2κ.

This concludes the proof.

Lemma 14. (Regularity in θ of the invariant distribution πθ)

Let M > 0 and κ ∈ (0, 1/2). Under Assumption 1, there exists C > 0 such that for

any θ ∈ WM and θ′ ∈ Θ,

‖πθ − πθ′‖TV ≤ C‖θ − θ
′‖1−2κ.

Proof. By de�nition of the total variation,

‖πθ − πθ′‖TV = sup
‖f‖∞≤1

∣∣∣∣
∫
f(x)πθ(x) dx−

∫
f(x)πθ′(x) dx

∣∣∣∣

= |P| sup
‖f‖∞≤1

∣∣∣∣∣

∫

Vθ\Vθ′

f(x)π(x) dx−

∫

Vθ′\Vθ

f(x)π(x) dx

∣∣∣∣∣
≤ |P|

(
π(Vθ \ Vθ′) + π(Vθ′ \ Vθ)

)
.

Since

Vθ′ \ Vθ = Vθ \
(
Vθ ∩ Vθ′

)
, Vθ \ Vθ′ = Vθ \

(
Vθ ∩ Vθ′

)
,

it holds that

π(Vθ′ \ Vθ) =
1

|P|
− π(Vθ ∩ Vθ′) = π(Vθ \ Vθ′) ,

140 Chapter 10. On the convergence of AMOR

where we used Lemma 5. Then, by Assumption 1 and Lemma 13, there exists C > 0

such that for any θ ∈ WM and θ′ ∈ Θ,

‖πθ − πθ′‖TV ≤ 2‖π‖∞Leb(Vθ \ Vθ′) ≤ C‖θ − θ
′‖1−2κ .

Lemma 15. (Regularity in θ of the kernels Pθ)

Let M > 0 and κ ∈ (0, 1/2). Under Assumption 1, there exists C > 0 such that for

any θ ∈ WM and θ′ ∈ WM+1,

‖Pθ(x, ·)− Pθ′(x, ·)‖TV ≤ C‖θ − θ
′‖1−2κ.

Proof. From the de�nition of the transition kernel Pθ, we have

|Pθf(x)− Pθ′f(x)| ≤

∣∣∣∣
∫
f(y)

(
αθ(x, y)qθ(x, y)1Vθ(y)− αθ′(x, y)qθ′(x, y)1Vθ′ (y)

)
dy

∣∣∣∣

+|f(x)|

∣∣∣∣
∫ (

αθ′(x, y)qθ′(x, y)1Vθ′ (y)− αθ(x, y)qθ(x, y)1Vθ(y)
)
dy

∣∣∣∣

≤ 2‖f‖∞

∫ ∣∣∣αθ(x, y)qθ(x, y)1Vθ(y)− αθ′(x, y)qθ′(x, y)1Vθ′ (y)
∣∣∣ dy

= 2‖f‖∞

4∑

i=1

∆i
θ,θ′(x) , (10.2.30)

where

∆1
θ,θ′(x) =

∫

Aθ(x)∩Aθ′ (x)

∣∣∣αθ(x, y)qθ(x, y)1Vθ(y)− αθ′(x, y)qθ′(x, y)1Vθ′ (y)
∣∣∣ dy ,

∆2
θ,θ′(x) =

∫

Rθ(x)∩Rθ′ (x)

∣∣∣αθ(x, y)qθ(x, y)1Vθ(y)− αθ′(x, y)qθ′(x, y)1Vθ′ (y)
∣∣∣ dy ,

∆3
θ,θ′(x) =

∫

Aθ(x)∩Rθ′ (x)

∣∣∣αθ(x, y)qθ(x, y)1Vθ(y)− αθ′(x, y)qθ′(x, y)1Vθ′ (y)
∣∣∣ dy ,

∆4
θ,θ′(x) =

∫

Rθ(x)∩Aθ′ (x)

∣∣∣αθ(x, y)qθ(x, y)1Vθ(y)− αθ′(x, y)qθ′(x, y)1Vθ′ (y)
∣∣∣ dy ,

and

Aθ(x) = {y : αθ(x, y) = 1} , Rθ(x) = {y : αθ(x, y) < 1} .

We now upper bound each term in turn.

∆1
θ,θ′(x) =

∫

Aθ(x)∩Aθ′ (x)

∣∣∣
∑

Q∈P

(
1Vθ(y)N (Qy|x,Σ)− 1Vθ′ (y)N (Qy|x,Σ′)

)∣∣∣ dy

≤

∫ ∣∣1Vθ(y)− 1Vθ′ (y)
∣∣ ∑

Q∈P

N (Qy|x,Σ) +

1Vθ′ (y)
∑

Q∈P

∣∣N (Qy|x,Σ)−N (Qy|x,Σ′)
∣∣ dy . (10.2.31)

10.2. Proofs 141

By Lemma 10, there exist a, b > 0 such that for any θ ∈ WM+1, m, z ∈ X, and

Q ∈ P, we have

a ≤ N (Qz|m, cΣ) ≤ b , (10.2.32)

so that the �rst term in the RHS of (10.2.31) is bounded by

∫ ∣∣1Vθ(y)− 1Vθ′ (y)
∣∣ ∑

Q∈P

N (Qy|x,Σ) dy ≤ |P|b

∫ ∣∣1Vθ(y)− 1Vθ′ (y)
∣∣ dy

= |P|b

∫ (
1Vθ\Vθ′

(y) + 1Vθ′\Vθ
(y)
)
dy

≤ C‖θ − θ′‖1−2κ ,

where we used Lemma 13. Let us now consider the second term of the right-hand

side of (10.2.31). Using the uniform continuity of w on WM+1 (see Lemma 10),

there exists h̄ small enough such that

θ ∈ WM , ‖h‖ < h̄⇒ θ + h ∈ WM+1. (10.2.33)

For any θ ∈ WM , θ′ ∈ WM+1 such that ‖θ − θ′‖ ≥ h̄, there exists C1 such that

∑

Q∈P

∣∣N (Qy|x,Σ)−N (Qy|x,Σ′)
∣∣ dy ≤ C1‖θ − θ

′‖1−2κ .

Assume now that θ ∈ WM , θ′ ∈ WM+1 and ‖θ − θ′‖ < h̄. Denote by

Σt = (1− t)Σ + tΣ′ . (10.2.34)

By (10.2.33) and (10.2.7b), Σ−1
t exists and supt≤1,θ∈WM ,θ′∈WM+1

‖Σ−1
t ‖ < ∞. We

can then write

∣∣N (Qy|x,Σ)−N (Qy|x,Σ′)
∣∣ =

∫ 1

0
N (Qy|x,Σt)

∣∣∣∣
d

dt
logN (Qy|x,Σt)

∣∣∣∣ dt

≤ b

∫ 1

0

∣∣∣∣
d

dt
logN (Qy|x,Σt)

∣∣∣∣ dt . (10.2.35)

In addition, by Assumption 1, there exists C2 such that

∣∣∣∣
d

dt
logN (Qy|x,Σt)

∣∣∣∣ =
∣∣∣(x−Qy)TΣ−1

t (Σ′ − Σ)Σ−1
t (x−Qy)

∣∣∣ ≤ C2‖θ − θ
′‖ .

(10.2.36)

We thus have proved that

[
θ ∈ WM , θ′ ∈ WM+1 , ‖θ−θ

′‖ < h̄
]

=⇒
∣∣N (Qy|x,Σ)−N (Qy|x,Σ′)

∣∣ ≤ C‖θ−θ′‖ .

Therefore, it is established that ‖∆1
θ,θ′‖∞ ≤ C‖θ − θ

′‖1−2κ.

142 Chapter 10. On the convergence of AMOR

Let us consider the second term ∆2
θ,θ′(x) in the RHS of (10.2.30). Note �rst that if

x ∈ X and y ∈ Rθ(x) ∩Rθ′(x), then by (10.2.32), π(y)/π(x) ≤ b/a, so

∆2
θ,θ′(x) =

∫

Rθ(x)∩Rθ′ (x)

π(y)

π(x)

∣∣∣∣∣∣
∑

Q∈P

(
1Vθ(y)N (Qx|y,Σ)− 1Vθ′ (y)N (Qx|y,Σ′)

)
∣∣∣∣∣∣
dy

≤
b

a

∫

Rθ(x)∩Rθ′ (x)

∣∣∣∣∣∣
∑

Q∈P

(
1Vθ(y)N (Qx|y,Σ)− 1Vθ′ (y)N (Qx|y,Σ′)

)
∣∣∣∣∣∣
dy .

Therefore, repeating the above discussion for the bound of ∆1
θ,θ′(x), it is established

that ‖∆2
θ,θ′‖∞ ≤ C‖θ − θ

′‖1−2κ.

To deal with ∆3
θ,θ′(x), �rst observe that there exists C > 0 such that for any θ ∈ WM ,

θ′ ∈ WM+1, and x, y ∈ X, we have
∣∣∣∣
qθ(y, x)

qθ(x, y)
−
qθ′(y, x)

qθ′(x, y)

∣∣∣∣ ≤ C‖θ − θ′‖ , (10.2.37)

because of (10.1.6), (10.2.32), and the above discussion for the upper bound of

∆1
θ,θ′(x). Now let y ∈ Aθ(x) ∩Rθ′(x), then we have

π(y)qθ′(y, x)

π(x)qθ′(x, y)
≤ 1 ≤

π(y)qθ(y, x)

π(x)qθ(x, y)
,

which, combined with (10.2.37), yields

1− C
π(y)

π(x)
‖θ − θ′‖ ≤

π(y)qθ′(y, x)

π(x)qθ′(x, y)
≤ 1 .

Thus,

∆3
θ,θ′(x) =

∫

Aθ(x)∩Rθ′ (x)

∣∣∣∣qθ(x, y)1Vθ(y)−
π(y)qθ′(y, x)

π(x)qθ′(x, y)
qθ′(x, y)1Vθ′ (y)

∣∣∣∣ dy

≤

∫ (∣∣qθ(x, y)1Vθ(y)− qθ′(x, y)1Vθ′ (y)
∣∣ ∨ · · ·

∣∣∣qθ(x, y)1Vθ(y)− qθ′(x, y)1Vθ′ (y) + C
π(y)

π(x)
‖θ − θ′‖qθ′(x, y)1Vθ′ (y)

∣∣∣
)
dy .

Therefore, it is established that ‖∆3
θ,θ′‖∞ ≤ C‖θ − θ

′‖1−2κ.

The upper bound of ∆4
θ,θ′(x) is similar and thus its proof is omitted.

Lemma 16. (Regularity in θ of the solution of the Poisson equation)

Let M > 0 and κ ∈ (0, 1/2). Under Assumption 1, there exists C > 0 such that for

any θ ∈ WM and θ′ ∈ WM+1,

‖PθĤθ − Pθ′Ĥθ′‖∞ ≤ C‖θ − θ
′‖1−2κ.

10.2. Proofs 143

Proof. We recall the following result, proved in [59, Lemma 5.5, page 24]: there

exists C > 0 such that for any θ ∈ WM , θ′ ∈ WM+1, and x ∈ X,

‖PθĤθ − Pθ′Ĥθ′‖∞ ≤ C‖H(·, θ)−H(·, θ′)‖∞ + C sup
θ∈WM

‖H(·, θ)‖∞
{
‖πθ − πθ′‖TV

+ sup
x∈X

‖Pθ(x, ·)− Pθ′(x, ·)‖TV

}
. (10.2.38)

Here supθ∈WM
‖H(·, θ)‖∞ is �nite by Lemma 10. Now, by Lemma 10 again, there

exists C > 0 such that for any θ ∈ WM and θ′ ∈ WM+1,

‖H(·, θ)−H(·, θ′)‖∞ ≤ C‖θ − θ′‖.

The upper bounds for the two last terms in the RHS of (10.2.38) result from Lem-

mas 14 and 15, respectively.

10.2.6 Proof of Theorem 2

The proof is prefaced with two lemmas.

Lemma 17. Let (γt)t>0 be a sequence such that
∑

t γ
2
t < ∞,

∑
t |γt+1 − γt| < ∞,

and
∑

t γ
2(1−κ)
t <∞ for some κ ∈ (0, 1/2). Denote by ψt the value of the projection

counter at the end of iteration t in Figure 10.1. Let also (θt, Xt)t≥0 be the sequence

generated by the stable AMOR algorithm in Figure 10.1. Under Assumptions 1 and

2, for any M > 0,

lim
L→+∞

sup
ℓ≥1

∥∥∥∥∥

(
L+ℓ∏

k=L

1θk∈WM
1ψk+1=ψk

)
L+ℓ∑

k=L

γk+1

(
H(Xk+1, θk)− h(θk)

)
∥∥∥∥∥ = 0 w.p.1 ,

(10.2.39)

where H, h, w, and WM are given by (10.1.2), (10.1.10), (10.1.11), and (10.2.6),

respectively.

Proof. LetM > 0. By uniform continuity of w onWM+1, let L(M) be large enough

so that

L ≥ L(M), θ ∈ WM =⇒ ∀x ∈ X , θ + γL+1H(x, θ) ∈ WM+1 . (10.2.40)

Let L ≥ L(M) and denote by

IL,ℓ =

L+ℓ∏

k=L

1θk∈WM
1ψk+1=ψk .

For any θ ∈ WM , Lemma 12 implies that there exists a function Ĥθ such that

Ĥθ − PθĤθ = H(·, θ)− πθ(H(·, θ)) and sup
x∈X,θ∈WM

‖Ĥθ(x)‖ <∞ .

144 Chapter 10. On the convergence of AMOR

Therefore, for ℓ+ L ≥ i ≥ L ≥ 0, we have

IL,ℓ

(
H(Xi+1, θi)− h(θi)

)
= IL,ℓ

(
Mi+1 +R

(1)
i+1 +R

(2)
i+1

)
,

where

Mi+1 =
(
Ĥθi(Xi+1)− PθiĤθi(Xi)

)
, (10.2.41)

R
(1)
i+1 = PθiĤθi(Xi)− Pθi+1

Ĥθi+1
(Xi+1) , (10.2.42)

R
(2)
i+1 = Pθi+1

Ĥθi+1
(Xi+1)− PθiĤθi(Xi+1) . (10.2.43)

First note that

IL,ℓ

L+ℓ∑

i=L

γi+1Mi+1 = IL,ℓ

(
L+ℓ∑

i=0

γi+1Ii,0Mi+1 −
L−1∑

i=0

γi+1Ii,0Mi+1

)
. (10.2.44)

By Lemma 12, {Ii,0Mi+1}i is a martingale-increment. Therefore, by [70], a su�cient

condition for
∑

i≥0 γi+1Ii,0Mi+1 to converge to zero is

∑

i≥0

γ2
i+1E

(
‖Ĥθi(Xi+1)− PθiĤθi(Xi)‖

2
Ii,0

)
<∞ . (10.2.45)

By the parallelogram identity and Hölder's inequality,

‖Ĥθi(Xi+1)− PθiĤθi(Xi)‖
2

Ii,0 ≤ 4 sup
x∈X,θ∈WM

‖Ĥθ(x)‖
2 .

Eqn. (10.2.45) then holds since
∑

t γ
2
t <∞. By (10.2.44), we obtain that

lim
L→∞

sup
ℓ≥1

∣∣∣∣∣IL,ℓ
L+ℓ∑

k=L

γk+1Mk+1

∣∣∣∣∣ = 0 w.p. 1 .

Let us now consider the term R
(1)
i+1 de�ned in (10.2.42). Summing by parts, we get

IL,ℓ

L+ℓ∑

i=L

γi+1R
(1)
i+1 = IL,ℓ γL+1PθLĤθL(XL) + IL,ℓ

L+ℓ∑

i=L+1

(γi+1 − γi)PθiĤθi(Xi)

−IL,ℓγL+ℓ+1PθL+ℓ+1
ĤθL+ℓ+1

(XL+ℓ+1) .

Since supx∈X,θ∈WM
‖Ĥθ(x)‖ < ∞, there exists a constant C such that the RHS

is upper bounded by C
(
|γL+1|+

∑
i≥ℓ+1 |γi+1 − γi|+ |γL+ℓ+1|

)
. Under the stated

assumptions, this upper bound yields

lim
L→∞

sup
ℓ≥1

∣∣∣∣∣IL,ℓ
L+ℓ∑

i=L

γi+1R
(1)
i+1

∣∣∣∣∣ = 0 ,

with probability 1.

10.2. Proofs 145

Finally, let us consider the term R
(2)
i+1 de�ned in (10.2.43). By (10.2.40), Lemma 16,

and since on the event {ψk+1 = ψk}, we have θk+1 = θk + γk+1H(Xk+1, θk), we

obtain

IL,ℓ

∣∣∣∣∣
L+ℓ∑

i=L

γi+1R
(2)
i+1

∣∣∣∣∣ ≤ IL,ℓ

L+ℓ∑

i=L

γi+1

∥∥Pθi+1
Ĥθi+1

− PθiĤθi

∥∥
∞

≤ C IL,ℓ

L+ℓ∑

i=L

γi+1‖θi+1 − θi‖
1−2κ ≤ C ′

L+ℓ∑

i=L

γ
2(1−κ)
i+1 .

This concludes the proof.

Lemma 18. Let M ∈ (0,M⋆) and set

ΓMM⋆
= {θ ∈ Θ : M⋆ ≤ w(θ) ≤M} , ι = inf

θ∈ΓM
M⋆

|〈∇w(θ), h(θ)〉| .

Under Assumptions 1 and 2, there exist δ ∈ (0, ι) and λ, β > 0 such that

(A) u ∈ WM⋆ , 0 ≤ γ ≤ λ, ‖ξ‖ ≤ β ⇒ w(u+ γ(u) + γξ) ≤M , and

(B) u ∈ ΓMM⋆
, 0 ≤ γ ≤ λ, ‖ξ‖ ≤ β ⇒ w(u+ γ(u) + γξ) < w(u)− γδ.

Proof. De�ne u′ = u+ γ(u) + γξ.

(A) Let u ∈ WM . Since w is continuous on Θ and the level set WM is a compact

subset of Θ (see Lemma 10), there exists η > 0 such that for any u ∈ WM and any

u′ satisfying ‖u′ − u‖ ≤ η, u′ ∈ WM+1. Therefore, since

‖u− u′‖ ≤ λ(max
WM

‖‖+ β), (10.2.46)

there exists λ1, β1 > 0 such that for any 0 ≤ γ ≤ λ1 and any ‖ξ‖ ≤ β1, u
′ ∈ WM+1

(note that maxWM
‖‖ <∞ by Lemma 10).

Since w is continuous on the compact set WM+1 (see Lemma 10), it is uniformly

continuous (u.c.) on WM+1. Then we can choose λ2, β2 > 0 (smaller than λ1, β1)

such that

∀u ∈ WM⋆ ,∀γ ≤ λ2, ‖ξ‖ ≤ β2 ,
∣∣w(u)−w(u+ γ(u)+ γξ)

∣∣ ≤M −M⋆ . (10.2.47)

This concludes the proof of (A).

(B) Let u ∈ ΓMM⋆
. Following the same lines as in the proof of (10.2.47), there exist

λ1, β1 > 0 such that for any 0 ≤ γ ≤ λ1 and ‖ξ‖ ≤ β1, [u, u′] ⊂ WM+1. By

Lemma 10, this implies that w is continuously di�erentiable on (u, u′). We write

∣∣〈∇w(u), (u)〉 − 〈∇w(u′), (u) + ξ〉
∣∣ =

∣∣〈∇w(u), (u)〉 − 〈∇w(u′), (u′)〉

+〈∇w(u′), (u′)− (u)− ξ〉
∣∣ .

146 Chapter 10. On the convergence of AMOR

By Lemma 10, ϕ : u 7→ 〈∇w(u), h(u)〉 is continuous and negative on the compact set

ΓMM⋆
, so there exists ε ∈ (0, ι) such that 〈∇w(u), h(u)〉 ≤ −ε on ΓMM⋆

. Furthermore,

ϕ is u.c. on WM+1, and, for any ε
′ > 0, we can thus take β2 and λ2 small enough

so that for any 0 ≤ γ ≤ λ2 and ‖ξ‖ ≤ β2, |ϕ(u)− ϕ(u′)| ≤ ε′/2. Therefore

∣∣〈∇w(u), (u)〉 − 〈∇w(u′), (u) + ξ〉
∣∣ ≤ ε′/2 +

(
‖(u)− (u′)‖+ β2

)
max
WM+1

‖∇w‖ .

Since x 7→ ‖∇w(x)‖ is continuous on the compact set WM+1, maxWM+1
‖∇w‖ is

�nite. As is u.c. on WM+1, one can pick λ2, β2 small enough so that

∀u ∈ ΓMM⋆
,∀γ ≤ λ2, ‖ξ‖ ≤ β2 , and

∣∣〈∇w(u), (u)〉 − 〈∇w(u′), (u) + ξ〉
∣∣ ≤ ε′ .

Finally, applying Taylor's formula, we get

w(u′)− w(u) =

∫ 1

0

〈
∇w(u+ tγ((u) + ξ)), γ((u) + ξ)

〉
dt

= γϕ(u) + γ

∫ 1

0

(〈
∇w(u+ tγ((u) + ξ)), (u) + ξ

〉
−
〈
∇w(u), (u)

〉)
dt

≤ −γε+ γε′.

Since ε′ is arbitrary, this yields (B).

Proof of Item 1 in Theorem 2. Let M > M⋆ and q (depending upon M) be such

that (see Remark 11)

WM ⊂ WM+2 ⊆ Kδq ; (10.2.48)

and θ0 ∈ WM . Let λ, β be given by Lemma 18. By Lemma 10, w and h are

uniformly continuous on WM+1, and there exists η > 0 such that

x ∈ WM , ‖x− y‖ < η =⇒ |w(x)− w(y)| < 1 and ‖h(x)− h(y)‖ < β . (10.2.49)

By Lemma 17, there exists an almost surely �nite r.v. N such that w.p.1.,

n ≥ N ⇒ γn

(
1 + sup

x∈X,θ∈WM

‖H(x, θ)‖

)
< λ ∧ η, and (10.2.50)

sup
ℓ≥1

(
N+ℓ∏

i=N

1θi∈WM+1
1ψi+1=ψi

)∥∥∥∥∥
N+ℓ∑

i=N

γi+1 (H(Xi+1, θi)− h(θi))

∥∥∥∥∥ < η .(10.2.51)

The proof is by contradiction. Denote by ψt the number of projections at the end

of iteration t. We assume that P(limt ψt = +∞) > 0. We can assume without loss

of generality that on the set {limt ψt = +∞}

w(θN) ≤M , ψN ≥ q .

De�ne the sequence (θ′N+k)k≥0 as

θ′N = θN and θ′N+k+1 = θ′N+k + γN+k+1(θN+k) .

10.2. Proofs 147

We prove by induction on k that for any k ≥ 0, on the set {limt ψt = +∞},

θ′N+k ∈ WM , θN+k ∈ WM+1 , ‖θ′N+k − θN+k‖ < η , ψN+k+1 = ψN+k .

The case k = 0 is trivial since θ′N = θN ∈ WM and by using (10.2.49), (10.2.50), and

(10.2.48) on the set {limt ψt = +∞}. Assume this property holds for k ∈ {0, 1, ..., ℓ}.

Then we have

θ′N+ℓ+1 = θ′N+ℓ + γN+ℓ+1(θ
′
N+ℓ) + γN+ℓ+1

(
(θN+ℓ)− (θ′N+ℓ)

)
.

Since ‖θ′N+ℓ − θN+ℓ‖ < η and θ′N+ℓ is in WM , we have ‖(θ′N+ℓ) − (θN+ℓ)‖ < β.

Since γN+ℓ+1 < λ by (10.2.50), we can apply Lemma 18 to obtain θ′N+ℓ+1 ∈ WM .

In addition,

θ′N+ℓ+1 − θN+ℓ+1 =

N+ℓ∑

i=N

γi+1

(
H(Xi+1, θi)− h(θi)

)
1ψi+1=ψi +

N+ℓ∑

i=N

(
γi+1h(θi) + θi − θ0

)
1ψi+1 6=ψi

=

(
N+ℓ∏

i=N

1θi∈WM+1

)
N+ℓ∑

i=N

γi+1

(
H(Xi+1, θi)− h(θi)

)
1ψi+1=ψi ,

where we used the induction assumption in the last equality. From (10.2.49) and

(10.2.51), this yields ‖θ′N+ℓ+1 − θN+ℓ+1‖ < η and w(θN+ℓ+1) ≤ M + 1. Finally by

(10.2.49), Eqs. (10.2.50) and (10.2.48) imply that on the set {limt ψt = +∞}

θN+ℓ + γN+ℓ+1H(XN+ℓ+1, θN+ℓ) ∈ WM+2 ⊂ KψN+ℓ
,

that is, ψN+ℓ+1 = ψN+ℓ. This concludes the induction.

As a consequence of this induction, we have ψN+ℓ = ψN for any ℓ ≥ 0 on the set

{limt ψt = +∞} which is a contradiction.

Proof of Item 2 in Theorem 2. The proof is along the same lines as the proof of

Theorem 2.3 of [6, page 5], and is thus omitted.

10.2.7 Proof of Theorem 3

The proof consists in checking the conditions of [59, Corollary 2.8]. Let f be a

measurable bounded function.

By Lemma 12, (i) there exists a measurable function f̂θ such that f̂θ−Pθf̂θ = f−πθf ;

and (ii) for any compact set WM , there exists L (depending upon M) such that

∀θ ∈ WM , x ∈ X, |f̂θ(x)| ≤ L .

By Theorem 2, P(ΩM) ↑ 1 when M tends to in�nity where

ΩM =
⋂

t≥0

{θt ∈ WM} .

148 Chapter 10. On the convergence of AMOR

Therefore, in order to apply [59, Corollary 2.8], we only have to prove that almost

surely,
∑

k

k−1 sup
x∈X

‖Pθk(x, ·)− Pθk−1
(x, ·)‖TV1ΩM <∞ , (10.2.52)

lim
t
πθt(f)1ΩM = πθ⋆(f)1ΩM . (10.2.53)

By Lemma 15, there exists C and κ ∈ (0, 1/2) such that

sup
x∈X

‖Pθk(x, ·)− Pθk−1
(x, ·)‖TV1ΩM ≤ C ‖θk − θk−1‖

1−2κ .

In addition, by Theorem 2, there exists a random variable K, almost-surely �nite,

such that for any k ≥ K,

‖θk − θk−1‖1ΩM ≤ γk sup
θ∈WM ,x∈X

|H(x, θ)| .

This yields
∑

k≥K

k−1 sup
x∈X

‖Pθk(x, ·)− Pθk−1
(x, ·)‖TV1ΩM ≤ C

∑

k≥K

k−1γ1−2κ
k ,

for some constant C > 0. This concludes the proof of (10.2.52). The limit (10.2.53)

is a consequence of Lemma 14.

10.2.8 Proof of Theorem 4

Let f be a measurable function such that ‖f‖∞ ≤ 1 and set

It(f) =
∣∣E[f(Xt)1B]− πθ⋆(f)P(B)

∣∣ =
∣∣E[
(
f(Xt)− πθ⋆(f)

)
1B]
∣∣ .

Let ε > 0. We prove that there exists Tε such that for all t ≥ Tε,

sup{f :‖f‖∞≤1} It(f) ≤ 4ε. Choose κ ∈ (0, 1/2) and δ > 0 such that

CM⋆+1δ
1−2κ ≤ ε , (10.2.54)

where M⋆ and CM⋆ are de�ned in Assumption 2 and in Lemma 14, respectively.

Choose rε such that

2(1− ρM⋆+1)
rε ≤ ε , (10.2.55)

where ρM⋆+1 is de�ned in Lemma 12. By uniform continuity of w onWM⋆+2, assume

�nally δ is small enough that

θ ∈ WM⋆+1, θ
′ ∈ Θ, ‖θ − θ′‖ ≤ δ ⇒ |w(θ)− w(θ′)| ≤

1

rε + 1
. (10.2.56)

There exists T 1
ε such that for any t ≥ T 1

ε ,

P

(
‖θt−rε − θ

⋆‖ ≤ δ, lim
q
θq = θ⋆

)
≤ ε/2 .

10.2. Proofs 149

Hence, for any t ≥ T 1
ε , It(f) ≤

∑3
i=1 I

i
t(f) + ε, where

I1
t (f) =

∣∣E[
(
f(Xt)− P

rε
θt−rε

f(Xt−rε)
)
1‖θt−rε−θ

⋆‖≤δ]
∣∣ (10.2.57)

I2
t (f) =

∣∣E[
(
P rεθt−rε

f(Xt−rε)− πθt−rε (f)
)
1‖θt−rε−θ

⋆‖≤δ]
∣∣ (10.2.58)

I3
t (f) =

∣∣E[
(
πθt−rε (f)− πθ⋆(f)

)
1‖θt−rε−θ

⋆‖≤δ]
∣∣ . (10.2.59)

We �rst upper bound I1
t (f). For θ, θ′ ∈ Θ, let

D(θ, θ′) = sup
x∈X

‖Pθ(x, ·)− Pθ′(x, ·)‖TV .

Applying [9, Proposition 1.3.1], it comes for any t ≥ T 1
ε ,

I1
t ≤ E


2 ∧

rε−1∑

j=1

D(θt−rε+j , θt−rε)1‖θt−rε−θ⋆‖≤δ




≤ E


2 ∧

rε−1∑

j=1

(rε − j)D(θt−rε+j , θt−rε+j−1)1‖θt−rε−θ⋆‖≤δ


 ,

where we used that for any q, ℓ > 0 D(θq+ℓ, θq) ≤
∑ℓ

j=1D(θq+j , θq+j−1). By

Proposition 1, the random iteration number τψ where the last projection oc-

curs in Algorithm 10.1 is �nite with probability one. Let then Mε be such that

2P(τψ ≥Mε) ≤ ε/2, so that

I1
t (f) ≤ E


2 ∧

rε−1∑

j=1

(rε − j)D(θt−rε+j , θt−rε+j−1)1‖θt−rε−θ⋆‖≤δ1τψ≤Mε


+

ε

2
.

Let now T 2
ε ≥ T

1
ε ∨ (Mε + rε) be such that

t ≥ T 2
ε ⇒ γt sup

x∈X,θ∈WM⋆+2

‖H(x, θ)‖ ≤ δ .

Then, by recurrence and using (10.2.56), we obtain that on {‖θt−rε − θ⋆‖ ≤ δ},

θt−rε+j ∈ WM⋆+1 for all 0 ≤ j ≤ rε. By Lemma 15 this yields for any t ≥ T 2
ε

I1
t (f) ≤ CM⋆+1[sup

x∈X,θ∈WM⋆+2

‖H(x, θ)‖]1−2κ
rε−1∑

j=1

(rε − j)γ
1−2κ
t−rε+j

+
ε

2
,

and there exists T 3
ε ≥ T

2
ε such that t ≥ T 3

ε ⇒ sup{f :‖f‖∞≤1} I
1
t (f) ≤ ε.

We now consider I2
t (f); it holds

I2
t ≤ E

[∥∥P rεθt−rε(Xt−rε , ·)− πθt−rε
∥∥

TV
1‖θt−rε−θ

⋆‖≤δ

]
.

By (10.2.56), ‖θt−rε − θ
⋆‖ ≤ δ ⇒ θt−rε ∈ WM⋆+1 and thus, applying Lemma 12 and

(10.2.55)

sup
{f :‖f‖∞≤1}

I2
t (f) ≤ 2(1− ρM⋆+1)

rε ≤ ε .

The derivation of the upper bound of I3
t is similar to that of I2

t , with Lemma 12

replaced by Lemma 14 and uses (10.2.54). Details are omitted.

150 Chapter 10. On the convergence of AMOR

10.3 Conclusion

We proved a strong law of large numbers for a stable version of AMOR, along with

its ergodicity. Our algorithm adapts both its proposal and its target on the �y, which

makes it a turn-key algorithm. Our results lead to a sound characterization of the

target of AMOR that does not depend on the initialization of the algorithm nor on

the user. This is the �rst theoretical analysis of an online relabeling algorithm to

our knowledge, and our framework is generic enough to be applied to other online

relabeling algorithms, provided that an appropriate modi�ed acceptance ratio is

used. The proof further shows how relabeling is related to vector quantization.

Unlike previous work on stochastic approximation schemes for vector quantization,

we make no strong assumptions on the trajectories of the process considered, rather,

we ensure that the appropriate constraint is satis�ed by introducing a penalization

directly into the stochastic approximation framework.

We now examine possible directions for future work on the theoretical analysis of

relabeling algorithms. First, following our analysis in Section 10.1, we know that

after a �nite (random) number of iterations, there is no projection (Steps 15 to 17

in Figure 10.1) anymore in stable AMOR, so that it should behave similarly to a

penalized AMOR. The penalization, corresponding to Steps 13 and 14 in Figure 10.1,

is however necessary for convergence. In most cases, since the coe�cient α of the

penalization is small and the limiting points are relatively far from the border of Θ,

AMOR and stable AMOR should have similar behaviors, but we should investigate

practical cases where AMOR converges to the border of Θ to have a better intuition

of the rôle of the penalization in stable AMOR. Second, the question of the control

of the convergence of AMOR arises, and results such as a central limit theorem

would be a natural next step.

Chapter 11

Closing remarks

We presented in this thesis our contributions to autonomous learning and inference.

Rather than summarizing them anew, we come back in this section to our vision

and underlying links between chapters that we think deserve to be emphasized as

closing remarks.

Racing, bandits, and SMBO

Racing algorithms, described in Section 3.2.3 are similar to pure exploration bandit

algorithms [32] � bandit algorithms that seek to identify the best out of a given

number of arms in a given time budget, instead of aiming at the traditional explo-

ration/exploitation trade-o�. Now, in the bandit framework, if the reward function,

as a function on the arm space, can be assumed to follow a GP prior, then the

problem of �nding the best arm may be addressed with GP-based SMBO algorithm

(see Chapter 2). In [122], for example, an SMBO approach is proposed, where the

auxiliary criterion is inspired by the upper-con�dence bound algorithm (UCB; [11]).

The approach allows an elegant derivation of results on the speed of convergence

of the algorithm, which is novel in SMBO. On the other hand, Bayesian methods

for bandit problems also exist (see [83, Section 1] for a review) and provide e�cient

algorithms, such as the Bayes-UCB algorithm of [83]. Bayes-UCB selects the arm

to play according to quantiles of the posterior on the reward function at each arm,

in a manner strikingly similar to SMBO with probability of improvement auxiliary

criterion [82]. We think that the bandit and the SMBO framework can be further

interwoven, bringing new methods and new proof techniques to each domain.

A perpetual tuner

We foresee that hyperparameter tuning will be further automatized. Imagine a com-

munity of users that makes repeated use of a single algorithm, such as a company

that specializes in the application of neural networks. Once implemented a collabo-

rative tuning framework like SCoT (Chapter 5), the tuning process of SCoT could

basically be run until the end of times on dedicated computers. When users have

a new dataset, they add it to the database and it will eventually be treated. In an

ideal world, imagine that all users of single-layer neural networks in the world one

day agree on the choice of a hyperparameter space and dataset features, and store

152 Chapter 11. Closing remarks

their datasets and tested hyperparameters on a centralized structure, and start run-

ning SCoT. Whenever somebody wants to tune a neural network on a new dataset,

he logs in to the structure, uploads his dataset, and regularly receives a report

specifying the best hyperparameters for his problem.

There is still methodological progress to make in order to be able to set up such

a structure, but we are not that far. First, users usually have deadlines, and they

will want to tune the algorithm the best way possible until the deadline is reached.

Budgeted hyperparameter tuning is thus an interesting research avenue. Second,

traditional GPs would probably not be the right choice for such a structure which

should scale to the hopefully numerous uploaded datasets. On the one hand, sub-

stantial e�orts were made to reduce the inherent cubic computational cost of training

a GP, see [108, Chapter 8], and [38] for a recently available experimental compari-

son of the state of the art. Furthermore, other models than GPs can be plugged in

SMBO, such as the bagged regression trees of [77], and we think there is room for

other regression schemes.

Doubly adaptive algorithms

Although SCoT (Chapter 5) and AMOR (Chapter 9) are completely di�erent algo-

rithms, they share the property of being adaptive both in their proposal mechanism

and in the design of their target. Furthermore, in both algorithms, the two adap-

tations are linked: AMOR tries to �nd the restriction of the target for which its

Gaussian proposals are optimal, while SCoT de�nes its target as a smooth function

that preserves the rankings it takes as input, and uses a model of this function to

propose a new point to evaluate.

One could object that, unlike AMOR, SCoT does not really pick a target that

makes its proposals more e�cient. However, in Chapter 5, the values of the target

are obtained, at each iteration, by running SVMrank, a surrogate ranking algorithm.

SVMrank is based on an SVM algorithm, which is an optimization algorithm with

a penalty for functions that are not smooth. More precisely, the SVM is associated

to a user-de�ned kernel k and the penalty is high for functions with a large norm

in the reproducing kernel Hilbert space corresponding to k. In Chapter 5, we used

a squared exponential kernel, and thus favored targets with low frequencies, that

in turn yielded a smooth expected improvement. In that sense, SCoT also allows

an interplay between the adaptation of the proposal and the adaptation of the

target. Now, the question arises how to match the right kernel to the right auxiliary

criterion.

Adaptive MCMC and kernels

It was proposed in [93] to adapt the parameters of the proposal of an MCMC algo-

rithm with SMBO. The approach works by setting a GP prior on the autocorrelation

153

of the chain as a function of the parameters of the proposal distribution. Regularly,

a new set of proposal parameters are chosen that maximize expected improvement

of the autocorrelation. The setup is demonstrated on constrained discrete distri-

butions, with proposals using a few hyperparameters. However, in practice, the

adaptation is stopped at the end of a burn in period. We do not think this method

can be easily applied to generic MCMC. Furthermore, continuing the adaptation

during the entire run would certainly destroy MCMC convergence, since the be-

havior of the sequence of adapted parameters will be hard to control and probably

erratic. Indeed, when a region of the parameter space will have been su�ciently ex-

plored, EI will be higher in unexplored regions where posterior variance of the GP is

large. It can be proved that under suitable assumptions on the kernel, SMBO with

EI produces dense sequences [128], which is precisely not what adaptive MCMC

needs, since changes in the proposal have to progressively diminish [113, 59]. Still,

we think kernels could be used advantageously in adaptive MCMC. Kernel machines

[46], for instance, rely heavily on linearity in a reproducing kernel space implying

nonlinear relationships in their input space, and we foresee applications of kernels

to the design of better, nonlinear adaptive proposals.

Appendix A

Notations

In this appendix, we gather both notations that appear repeatedly throughout the

thesis and chapter-speci�c remarks.

Miscellaneous

We denote the natural logarithm by log.

Probability distributions

Table A.1 summarizes the notations we used for distributions and their probability

density functions (henceforth pdfs). Since Chapter 7 contains probabilistic models

and products of several pdfs, it has its own notations, with distributions bearing

their parameters as indices, to keep formulas clear.

Table A.1: Summary of notations for distributions and pdfs. A blank space means

the object is not used.

Distribution Parameters Notation pdf Notation in pdf in

Chapter 7 Chapter 7

1D Gaussian mean µ, N (µ, σ2) N (·|µ, σ2) Nµ,σ2 Nµ,σ2(·)

variance σ2

Gaussian mean µ, N (µ,Σ) N (·|µ,Σ)

covariance matrix Σ

Poisson mean λ Poi(λ) Poiλ Poiλ(·)

gamma shape k, scale θ Γk,θ Γk,θ(·)

inverse gamma shape α, scale β IGα,β
Dirac location a δa δa(·)

uniform interval [a, b] U(a, b)

Notations for Part I

H always denotes the set of all possible hyperparameters. It is usually a product of

discrete and continuous spaces. O denotes the set of already evaluated hyperparam-

eters. Each point in O is a pair (hyperparameter, quality), where the function used

as a quality measure is a validation or cross-validation error, except in Chapter 5,

156 Appendix A. Notations

where a more sophisticated quality measure is de�ned. In Chapter 5, points in O

become triplets (Di, xi, yi), since each point is attached to a single dataset Di.

Notations for Chapter 7

In Chapter 7, we use a large number of probability distributions with the following

convention. p denotes all distributions and is thus largely overloaded: the actual

semantics is de�ned by its arguments. If we further want to di�erentiate between

distributions of the same or similar arguments, we put a label in the index of p.

Estimates are denoted by a hat. We use (mostly small) italic letters for variables

(with the notable exception of N denoting the number of muons). Vectors are

typeset bold. If x is a vector, xi is its ith element.

Bibliography

[1] P. Abreu et al. Update on the correlation of the highest energy cosmic rays

with nearby extragalactic matter. Astroparticle Physics, 34:314�326, 2012.

(Cited on pages 67 and 68.)

[2] B. Adenso-Diaz and M. Laguna. Fine-tuning of algorithms using fractional ex-

perimental design and local search. Operations Research, 54(1):99�114, 2006.

(Cited on page 27.)

[3] M. Aglietta. A direct measurement of the photoelectron number per vertical

muon in the Capisa SD detector. Technical Report GAP-05-010, Auger Project

Technical Note, 2005. (Cited on page 74.)

[4] J. Alvarez-Muñiz, G. Rodríguez-Fernández, I. Valiño, and E. Zas. An alter-

native method for tank signal response and S(1000) calculation. Technical

Report GAP-05-054, Auger Project Technical Note, 2005. (Cited on page 74.)

[5] J. Alvarez-Muñiz, G. Rodríguez-Fernández, I. Valiño, and E. Zas. Update on

the method for tank signal response (SdSignalUSC code). Technical Report

GAP-09-038, Auger Project Technical Note, 2009. (Cited on page 74.)

[6] C. Andrieu, E. Moulines, and P. Priouret. Stability of stochastic approxima-

tion under veri�able conditions. SIAM Journal on Control and Optimization,

44:283�312, 2005. (Cited on pages 118, 121 and 147.)

[7] C. Andrieu and C. P. Robert. Controlled Markov chain Monte Carlo methods

for optimal sampling. Technical Report 125, Cahiers du Ceremade, 2001.

(Cited on page 102.)

[8] C. Andrieu and J. Thoms. A tutorial on adaptive MCMC. Statistics and

Computing, 18:343�373, 2008. (Cited on pages 3 and 102.)

[9] Y. Atchadé, G. Fort, E. Moulines, and P. Priouret. Bayesian Time Series

Models, chapter Adaptive Markov chain Monte Carlo: Theory and Methods,

pages 33�53. Cambridge Univ. Press, 2011. (Cited on pages 3, 102 and 149.)

[10] C. Audet and D. Orban. Finding optimal algorithmic parameters using

the mesh adaptive direct search algorithm. SIAM Journal on Optimization,

17(3):642 � 664, 2006. (Cited on page 27.)

[11] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the mul-

tiarmed bandit problem. Machine Learning, 47:235�256, 2002. (Cited on

pages viii and 151.)

http://www.auger.org/admin/GAP_Notes/GAP2005/GAP2005_010.pdf
http://www.auger.org/admin/GAP_Notes/GAP2005/GAP2005_prot/GAP2005_054.pdf
http://www.auger.org/admin/GAP_Notes/GAP2009/GAP2009_038.pdf

158 Bibliography

[12] P. Auger. Extensive cosmic-ray showers. Review of Modern Physics, 11:288�

291, 1939. (Cited on page 60.)

[13] R. Bardenet, O. Cappé, G. Fort, and B. Kégl. Adaptive MCMC with on-

line relabeling. Submitted, preprint available as arXiv:1210.2601. (Cited on

pages vii, 4, 101 and 117.)

[14] R. Bardenet, O. Cappé, G. Fort, and B. Kégl. An adaptive Metropolis algo-

rithm with online relabeling. In Proceedings of the International Conference

on Arti�cial Intelligence and Statistics (AISTATS), volume 22, pages 91�99,

April 2012. (Cited on pages v, vii, 3, 4, 101, 102, 103, 117, 118, 122 and 131.)

[15] R. Bardenet and B. Kégl. Surrogating the surrogate: accelerating Gaussian-

process-based global optimization with a mixture cross-entropy algorithm.

In Proceedings of the 27th International Conference on Machine Learning

(ICML), 2010. (Cited on page 9.)

[16] R. Bardenet and B. Kégl. An adaptive Monte Carlo Markov chain algorithm

for inference from mixture signals. In Proceedings of ACAT'11, Journal of

Physics: Conference series, 2012. (Cited on pages vii, 4, 76, 80, 94 and 101.)

[17] R. Bardenet, B. Kégl, and D. Veberi£. Single muon response: The signal

model. Technical Report GAP-10-110, Auger Project Technical Note, 2010.

(Cited on pages vii, 4 and 73.)

[18] R. Benassi, J. Bect, and E. Vazquez. Bayesian optimization using sequential

Monte Carlo. In Proceedings of the International Conference on Learning and

Intelligent Optimization (LION), 2012. (Cited on page 13.)

[19] D. Benbouzid, R. Busa-Fekete, N. Casagrande, F.-D. Collin, and B. Kégl.

MultiBoost: a multi-purpose boosting package. Journal of Machine Learning

Research, 13:549�553, 2012. (Cited on page 49.)

[20] Y. Bengio. Learning deep architectures for AI. Foundations and Trends in

Machine Learning, 2(1):1�127, 2009. (Cited on pages iii, 1 and 31.)

[21] J. Bergstra, R. Bardenet, B. Kégl, and Y. Bengio. Algorithms for hyperpa-

rameter optimization. In Advances in Neural Information Processing Systems,

volume 24. The MIT Press, 2011. (Cited on pages iv, v, 2, 3, 31, 38 and 52.)

[22] J. Bergstra, R. Bardenet, B. Kégl, and Y. Bengio. Implementations of al-

gorithms for hyper-parameter optimization. In NIPS Workshop on Bayesian

optimization, 2011. (Cited on page 29.)

[23] J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization.

Journal of Machine Learning Research, 2012. (Cited on pages 35, 36 and 52.)

http://www.auger.org/admin/GAP_Notes/GAP2010/GAP2010_043.pdf

Bibliography 159

[24] M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp. A racing algorithm

for con�guring metaheuristics. In Proceedings of the Genetic and Evolutionary

Computation Conference (GECCO), 2002. (Cited on page 27.)

[25] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University

Press, 1995. (Cited on pages 37 and 90.)

[26] C. B. Bonifazi, P. Bauleo, A. Ferrero, A. Filevich, and A. Reguera. Response of

a water Cherenkov detector to oblique and quasi-horizontal muons. Technical

Report GAP-01-018, Auger Project Technical Note, 2001. (Cited on page 74.)

[27] B. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin

classi�ers. In Fifth Annual Workshop on Computational Learning Theory,

pages 144�152, 1992. (Cited on pages iii and 1.)

[28] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University

Press, 1991. (Cited on page 122.)

[29] L. Breiman. Random forests. Machine Learning, 2001. (Cited on page 28.)

[30] M. Brendel and M. Schoenauer. Instance-based parameter tuning for evo-

lutionary AI planning. In Proceedings of the 20th Genetic and Evolutionary

Computation Conference, 2011. (Cited on pages 28 and 44.)

[31] J.W. Brewer. Kronecker products and matrix calculus in system theory. IEEE

Transactions on Circuits and Systems, 25:772�781, 1978. (Cited on pages 127

and 129.)

[32] S. Bubeck, R. Munos, and G. Stoltz. Pure exploration in multi-armed ban-

dits problems. In Proceedings of the international conference on Algorithmic

Learning Theory (ALT), 2009. (Cited on pages 27 and 151.)

[33] B. P. Carlin and T. A. Louis. Bayes and Empirical Bayes Methods for Data

Analysis. Chapman & Hall / CRC, 2000. (Cited on page 87.)

[34] M. A. Carreira-Perpiñan and G. E. Hinton. On contrastive divergence learning.

In Proceedings of the Tenth International Workshop on Arti�cial Intelligence

and Statistics (AISTATS), 2005. (Cited on page 35.)

[35] A. Castellina and G. Navarra. Separating the electromagnetic and muonic

components in the FADC traces of the Auger Surface Detectors. Technical

Report GAP-06-065, Auger Project Technical Note, 2006. (Cited on page 74.)

[36] G. Celeux. Bayesian inference for mixtures: The label-switching problem. In

R. Payne and P. Green, editors, COMPSTAT 98. Physica-Verlag, 1998. (Cited

on pages 94, 98, 102, 106 and 113.)

[37] G. Celeux, M. A. Hurn, and C.P. Robert. Computational and inferential

di�culties with mixture posterior distributions. J. American Statist. Assoc.,

95:957�970, 1995. (Cited on pages 93, 99 and 102.)

http://www.auger.org/admin/GAP_Notes/GAP2001/gap_2001_018.pdf
http://www.auger.org/admin/GAP_Notes/GAP2006/GAP2006_prot/GAP2006_065.pdf

160 Bibliography

[38] K. Chalupka, C. K. I. Williams, and I. Murray. A framework for evaluat-

ing approximation methods for Gaussian process regression. pre-print, 2012.

arXiv:1205.6326. (Cited on pages viii, 54 and 152.)

[39] A. S. Chou. Vertical equivalent muon study with the Fermilab tank. Technical

Report GAP-02-045, Auger Project Technical Note, 2002. (Cited on page 74.)

[40] W. Chu and Z. Ghahramani. Preference learning with Gaussian processes. In

Proceedings of the 22nd International Conference on Machine Learning, pages

137�144, 2005. (Cited on pages 47 and 48.)

[41] A. Coates, H. Lee, and A. Y. Ng. An analysis of single-layer networks in

unsupervised feature learning. NIPS Deep Learning and Unsupervised Feature

Learning Workshop, 2010. (Cited on page iv.)

[42] A. Coates, H. Lee, and A. Y. Ng. An analysis of single-layer networks in

unsupervised feature learning. NIPS Deep Learning and Unsupervised Feature

Learning Workshop, 2010. (Cited on pages 1, 26 and 32.)

[43] A. Coates and A. Y. Ng. The importance of encoding versus training with

sparse coding and vector quantization. In Proceedings of the International

Conference on Machine Learning (ICML), 2011. (Cited on pages iii and iv.)

[44] A. Coates and A. Y. Ng. The importance of encoding versus training with

sparse coding and vector quantization. In Proceedings of the International

Conference on Machine Learning (ICML), 2011. (Cited on pages 1, 26 and 32.)

[45] S. P. Coy, B. L. Golden, G. C. Runger, and E. A. Wasil. Using experimental

design to �nd e�ective parameter settings for heuristics. Journal of Heuristics,

7(1):77 � 97, 2001. (Cited on page 28.)

[46] N. Cristianini and J. Shawe-Taylor. Kernel methods for pattern recognition.

Cambridge University Press, 2004. (Cited on pages iii, 1 and 153.)

[47] A. J. Cron and M. West. E�cient classi�cation-based relabeling in mixture

models. The American Statistician, pages 16�20, 2011. (Cited on page 98.)

[48] D. Ravignani et al. Calculation of the number of photoelectrons with the wa-

ter Cherenkov detector model. Technical Report GAP-97-024, Auger Project

Technical Note, 1997. (Cited on pages 74, 77 and 78.)

[49] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete

data via the EM algorithm. Journal of the Royal Statistical Society, Series B,

39(1):1�38, 1977. (Cited on pages 88 and 99.)

[50] P. N. Diep. Comments on muon counting in the FADC traces of the Auger sur-

face detector. Technical Report GAP-08-136, Auger Project Technical Note,

2008. (Cited on page 74.)

http://www.auger.org/admin/GAP_Notes/GAP2002/gap2002_045.pdf
http://www.auger.org/admin/GAP_Notes/GAP1997/GAP_97_024.ps.gz
http://www.auger.org/admin/GAP_Notes/GAP2008/GAP2008_136.pdf

Bibliography 161

[51] D. Dornic. Développement et caractérisation de photomultiplicateurs hémis-

phériques pour les expériences d'astroparticules d'étalonnage des détecteurs de

surface et analyse des gerbes horizontales de l'Observatoire Pierre Auger. PhD

thesis, Université Paris XI, 2006. pdf. (Cited on pages 74, 76, 77 and 78.)

[52] D. Dornic, F. Arneodo, I. Lhenry-Yvon, X. Bertou, C. Bonifazi, P. Ghia,

C. Grunfeld, and T. Suomijarvi. Calibration analysis: Capisa data. Technical

Report GAP-05-101, Auger Project Technical Note, 2005. (Cited on page 74.)

[53] A. Etchegoyen. Track geometry and smearing of the bump calibration. Tech-

nical Report GAP-02-078, Auger Project Technical Note, 2002. (Cited on

page 74.)

[54] FCEyN & Tandar Groups. Simulations with GEANT. Technical Report GAP-

96-011, Auger Project Technical Note, 1996. (Cited on page 74.)

[55] G. R. Fernandez, A. Tripathi, and K. Arisaka. Simulation of the Pierre Auger

surface detector response using GEANT4. Technical Report GAP-03-054,

Auger Project Technical Note, 2003. (Cited on page 74.)

[56] G. R. Fernandez, E. Zas, T. Ohnuki, A. Tripathi, D. Barnhill, J. Lee,

K. Arisaka, and W. E. Slater. Surface detector response using lookup table

based on GEANT4 simulation. Technical Report GAP-04-045, Auger Project

Technical Note, 2004. (Cited on page 74.)

[57] D. Garcia-Pinto for the Pierre Auger collaboration. Measurements of the

longitudinal development or air showers with the Pierre Auger observatory.

In Proceedings of the International Cosmic Ray Conference, 2012. (Cited on

pages 70 and 72.)

[58] F. Salamida for the Pierre Auger collaboration. Update on the measurement

of the CR energy spectrum above 1018 eV made using the Pierre Auger ob-

servatory. In Proceedings of the International Cosmic Ray Conference, 2012.

(Cited on pages 67 and 69.)

[59] G. Fort, E. Moulines, and P. Priouret. Convergence of adaptive and interacting

Markov chain Monte Carlo algorithms. Annals of Statistics, 39(6):3262�3289,

2012. (Cited on pages 118, 143, 147, 148 and 153.)

[60] S. Frühwirth-Schnatter. Markov chain Monte Carlo estimation of classical and

dynamic switching in mixture models. Journal of the American Statistical

Association, 96(453):194�209, 2001. (Cited on page 96.)

[61] X. Garrido, A. Cordier, S. Dagoret-Campagne, B. Kégl, D. Monnier-Ragaigne,

and M. Urban. Measurement of the number of muons in Auger tanks by the

FADC jump counting method. Technical Report GAP-07-060, Auger Project

Technical Note, 2007. (Cited on page 74.)

http://users.web.lal.in2p3.fr/kegl/research/auger/literature/thesisDornic.pdf
http://www.auger.org/admin/GAP_Notes/GAP2005/GAP2005_prot/GAP2005_101.pdf
http://www.auger.org/admin/GAP_Notes/GAP2002/gap2002_078.pdf
http://www.auger.org/admin/GAP_Notes/GAP1996/GAP_96_011.ps.gz
http://www.auger.org/admin/GAP_Notes/GAP1996/GAP_96_011.ps.gz
http://www.auger.org/admin/GAP_Notes/GAP2003/GAP2003_054.pdf
http://www.auger.org/admin/GAP_Notes/GAP2004/GAP2004_045.pdf
http://www.auger.org/admin/GAP_Notes/GAP2007/GAP2007_060.pdf

162 Bibliography

[62] X. Garrido, B. Kégl, A. Cordier, S. Dagoret-Campagne, D. Monnier-Ragaigne,

and M. Urban. Update and new results from the FADC jump counting method.

Technical Report GAP-09-023, Auger Project Technical Note, 2009. (Cited

on page 74.)

[63] B. Genolini, T. Nguyen Trunc, J. Pouthas, P. Lavoute, C. Meunier, M. Agli-

etta, and C. Morello. Photonis XP1805 and PAO SD bases: e�ects of the

temperature and of the Earth's magnetic �eld. Technical Report GAP-03-

017, Auger Project Technical Note, 2003. (Cited on pages 77 and 78.)

[64] P. W. Goldberg, C. K. I. Williams, and C. M. Bishop. Regression with input-

dependent noise: A Gaussian process treatment. In Advances in Neural In-

formation (NIPS), 1998. (Cited on page 13.)

[65] S. Graf and H. Luschgy. Foundations of Quantization for Probability Distri-

butions. Springer-Verlag, 2000. (Cited on pages 103, 122 and 124.)

[66] R. Gramacy. Bayesian treed Gaussian process models. PhD thesis, UC Santa

Cruz, 2005. (Cited on page 30.)

[67] J. Gratch and G. Dejong. Composer: A probabilistic solution to the utility

problem in speed-up learning. In P. Rosenbloom and P. Szolovits, editors, Pro-

ceedings of the Tenth National Conference on Arti�cial Intelligence (AAAI),

pages 235 � 240, 1992. (Cited on page 26.)

[68] P. J. Green. Reversible jump Markov chain Monte Carlo computation and

Bayesian model determination. Biometrika, 82(4):711�732, 1995. (Cited on

pages 23, 81 and 115.)

[69] H. Haario, E. Saksman, and J. Tamminen. An adaptive Metropolis algorithm.

Bernoulli, 7:223�242, 2001. (Cited on pages vi, 3, 23, 94, 102 and 104.)

[70] P. Hall and C. C. Heyde. Martingale limit theory and its application. Academic

Press, New York, 1980. (Cited on page 144.)

[71] N. Hansen. The CMA evolution strategy: a comparing review. In J.A. Lozano,

P. Larranaga, I. Inza, and E. Bengoetxea, editors, Towards a new evolutionary

computation. Advances on estimation of distribution algorithms, pages 75�102.

Springer, 2006. (Cited on pages 22, 28, 33 and 53.)

[72] P. Hennig and C. J. Schuler. Entropy search for information-e�cient global

optimization. Journal of Machine Learning Research, 2012. (Cited on page 10.)

[73] V. Hess. Observations of the penetrating radiation on seven balloon �ights.

Physik. Zeitschr., 13:1084�1091, 1912. (Cited on page 60.)

[74] G. E. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep

belief nets. Neural Computation, 18:1527�1554, 2006. (Cited on page 31.)

http://www.auger.org/admin/GAP_Notes/GAP2009/GAP2009_023.pdf
http://www.auger.org/admin/GAP_Notes/GAP2003/GAP2003_017.pdf
http://www.auger.org/admin/GAP_Notes/GAP2003/GAP2003_017.pdf

Bibliography 163

[75] S. Hornus and J. Boissonnat. An e�cient implementation of delaunay trian-

gulations in medium dimensions. Technical Report RR-6743, INRIA, 2008.

(Cited on page 18.)

[76] M. A. Hurn, A. Justel, and C.P. Robert. Estimating mixtures of regressions.

Journal of Computational and Graphical Statistics, 12:55�79, 2003. (Cited on

page 99.)

[77] F. Hutter. Automated Con�guration of Algorithms for Solving Hard Compu-

tational Problems. PhD thesis, University of British Columbia, 2009. (Cited

on pages viii, 25, 28, 29 and 152.)

[78] A. Hyvärinen and E. Oja. Independent component analysis: Algorithms and

applications. Neural Networks, 13(4�5):411�430, 2000. (Cited on page 35.)

[79] A. Jasra. Bayesian inference for mixture models via Monte Carlo. PhD thesis,

Imperial College London, 2005. (Cited on pages 94, 98, 102 and 115.)

[80] A. Jasra, C. C. Holmes, and D. A. Stephens. Markov chain Monte Carlo meth-

ods and the label switching problem in Bayesian mixture modelling. Statistical

Science, 20(1):50�67, 2005. (Cited on pages 93, 94 and 102.)

[81] T. Joachims. Optimizing search engines using clickthrough data. In Pro-

ceedings of the ACM Conference on Knowledge Discovery and Data Mining

(KDD), 2002. (Cited on pages 47 and 48.)

[82] D. R. Jones. A taxonomy of global optimization methods based on response

surfaces. Journal of Global Optimization, 21:345�383, 2001. (Cited on pages iv,

v, 2, 10, 12, 44 and 151.)

[83] E. Kaufmann, O. Cappé, and A. Garivier. On Bayesian upper con�dence

bounds for bandit problems. In Proceedings of the International Conference

on Arti�cial Intelligence and Statistics (AISTATS), 2012. (Cited on pages viii,

30 and 151.)

[84] B. Kégl and R. Busa-Fekete. Boosting products of base classi�ers. In Interna-

tional Conference on Machine Learning, volume 26, pages 497�504, Montreal,

Canada, 2009. (Cited on page 49.)

[85] B. Kégl, R. Busa-Fekete, K. Louedec, R. Bardenet, X. Garrido, I.C. Mari³,

D. Monnier-Ragaigne, S. Dagoret-Campagne, and M. Urban. Reconstructing

Nµ19(1000). Technical Report GAP-11-054, Auger Project Technical Note,

2011. (Cited on pages 73, 74, 83, 84, 89 and 90.)

[86] B. Kégl, M. Unger, and R. Busa-Fekete. A nonparametric approach to estimate

Xmax using Gaussian process regression. Technical Report GAP-10-034, Auger

Project Technical Note, 2010. (Cited on page 87.)

http://www.auger.org/admin/GAP_Notes/GAP2011/GAP2011_054.pdf
http://www.auger.org/admin/GAP_Notes/GAP2010/GAP2010_034.pdf

164 Bibliography

[87] B. Kégl and D. Veberi£. Single muon response: Tracklength. Technical Report

GAP-09-043, Auger Project Technical Note, 2009. (Cited on pages 75 and 76.)

[88] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio. An empir-

ical evaluation of deep architectures on problems with many factors of vari-

ation. In Proceedings of the International Conference on Machine Learning,

pages 473�480, 2007. (Cited on pages 32, 35, 36, 38 and 41.)

[89] P. Larrañaga and J. Lozano, editors. Estimation of Distribution Algorithms: A

New Tool for Evolutionary Computation. Springer, 2001. (Cited on pages 16,

18, 19 and 27.)

[90] Y. LeCun, L. Bottou, Y. Bengio, and P. Ha�ner. Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11):2278�2324,

November 1998. (Cited on page 31.)

[91] D. Lizotte. Practical Bayesian Optimization. PhD thesis, University of Al-

berta, 2008. (Cited on page 44.)

[92] K. Louedec. Atmospheric aerosols at the Pierre Auger Observatory: char-

acterization and e�ect on the energy estimation for ultra-high energy cosmic

rays. PhD thesis, Université Paris-Sud XI, 2011. (Cited on page 59.)

[93] N. Mahendran, Z. Wang, F. Hamze, and N. de Freitas. Adaptive MCMC

with Bayesian optimization. In Proceedings of the International Conference

on Arti�cial Intelligence and Statistics (AISTATS), 2012. (Cited on page 152.)

[94] J. M. Marin, K. Mengersen, and C.P. Robert. Bayesian modelling and infer-

ence on mixtures of distributions. Handbook of Statistics, 25, 2004. (Cited on

pages 94, 96, 102 and 106.)

[95] A. McHutchon and C. E. Rasmussen. Gaussian process training with input

noise. In Advances in Neural Information (NIPS), 2011. (Cited on page 13.)

[96] S. P. Meyn and R.L. Tweedie. Markov chains and stochastic stability. Springer,

1993. (Cited on page 135.)

[97] J. Mockus, V. Tiesis, and A. Zilinskas. The application of Bayesian methods

for seeking the extremum. In L.C.W. Dixon and G.P. Szego, editors, Towards

Global Optimization, volume 2, pages 117�129. North Holland, New York,

1978. (Cited on page 10.)

[98] M. Muja and D. G. Lowe. Fast approximate nearest neighbors with automatic

algorithm con�guration. In International Conference on Computer Vision

Theory and Applications (VISAPP), 2009. (Cited on page 27.)

[99] V. Nannen, S. Smit, and Eiben A. Costs and bene�ts of tuning parameters

of evolutionary algorithms. In Parallel Problem Solving from Nature (PPSN),

2008. (Cited on page 27.)

http://www.auger.org/admin/GAP_Notes/GAP2009/GAP2009_043.pdf

Bibliography 165

[100] G. Pagès. A space quantization method for numerical integration. Journal of

Computational and Applied Mathematics, 89:1�38, 1997. (Cited on pages 103

and 123.)

[101] P. Papastamoulis and G. Iliopoulos. An arti�cial allocations based solution to

the label switching problem in Bayesian analysis of mixtures of distribution.

Journal of Computational and Graphical Statistics, 19:313�331, 2010. (Cited

on pages 94, 97 and 102.)

[102] P. Papastamoulis and G. Iliopoulos. On the convergence rate of random per-

mutation sampler and ECR algorithm in missing data models. Methodology

and Computing in Applied Probability, 2011. (Cited on page 97.)

[103] N. Pinto, D. Doukhan, J. J. DiCarlo, and D. D. Cox. A high-throughput

screening approach to discovering good forms of biologically inspired visual

representation. PLoS Comput Biol, 5(11):e1000579, 11 2009. (Cited on

pages iii, iv, 1, 26, 32 and 35.)

[104] F. P. Preparata and M. I. Shamos. Computational Geometry, an Introduction.

Texts and Monographs in Computer Science. Springer-Verlag, 1988. (Cited

on page 18.)

[105] C. Pryke. Geometrical design studies for water Cherenkov detectors via sim-

ulation. Technical Report GAP-96-008, Auger Project Technical Note, 1996.

(Cited on page 74.)

[106] C. Pryke. Performance simulations of a 10 m2 water Cherenkov detector and

comparison with experiment. Technical Report GAP-97-004, Auger Project

Technical Note, 1997. (Cited on page 74.)

[107] C. Pryke. Self calibration of the water Cherenkov tanks: Simulation. Technical

Report GAP-97-026, Auger Project Technical Note, 1997. (Cited on page 74.)

[108] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine

Learning. MIT Press, 2006. (Cited on pages v, viii, 12, 13, 21, 28, 37, 47, 48,

54, 87 and 152.)

[109] S. Richardson and P. J. Green. On Bayesian analysis of mixtures with an

unknown number of components. Journal of the Royal Statistical Society,

Series B, 59(4):731�792, 1997. (Cited on page 102.)

[110] C. P. Robert and G. Casella.Monte Carlo Statistical Methods. Springer-Verlag,

New York, 2004. (Cited on pages iv, 2, 15, 17 and 74.)

[111] G. Roberts, A. Gelman, and W. Gilks. Weak convergence of optimal scaling

of random walk Metropolis algorithms. The Annals of Applied Probability,

7:110�120, 1997. (Cited on pages vi, 3, 102 and 104.)

http://www.auger.org/admin/GAP_Notes/GAP1996/GAP_96_008.ps.gz
http://www.auger.org/admin/GAP_Notes/GAP1997/GAP_97_004.ps.gz
http://www.auger.org/admin/GAP_Notes/GAP1997/GAP_97_026.ps.gz
http://www.gaussianprocess.org/gpml
http://www.gaussianprocess.org/gpml

166 Bibliography

[112] G. O. Roberts and J. S. Rosenthal. Optimal scaling for various Metropolis-

Hastings algorithms. Statistical Science, 16:351�367, 2001. (Cited on pages vi,

3, 102 and 104.)

[113] G. O. Roberts and J. S. Rosenthal. Coupling and ergodicity of adaptive

MCMC. Journal of Applied Probability, 44:486�475, 2007. (Cited on pages 118

and 153.)

[114] G. O. Roberts and J. S. Rosenthal. Examples of adaptive MCMC. Jour-

nal of Computational and Graphical Statistics, 18:349�367, 2009. (Cited on

page 102.)

[115] A. Roodaki. Signal decompositions using trans-dimensional Bayesian methods.

PhD thesis, Supélec, 2012. (Cited on page 94.)

[116] A. Roodaki, J. Bect, and G. Fleury. Summarizing posterior distributions in sig-

nal decomposition problems when the number of components is unknown. In

IEEE Int. Conf. Acoust., Speech, Signal Processing (ICASSP), Kyoto, Japan,

2012. (Cited on pages 94 and 102.)

[117] R. Y. Rubinstein and D. P. Kroese. The Cross-Entropy Method: A Uni�ed Ap-

proach to Combinatorial Optimization, Monte Carlo Simulation and Machine

Learning. Springer, 2004. (Cited on pages 15, 16 and 19.)

[118] R. E. Schapire and Y. Singer. Improved boosting algorithms using con�dence-

rated predictions. Machine Learning, 37(3):297�336, 1999. (Cited on page 45.)

[119] W. E. Slater, A. Tripathi, and K. Arisaka. A GEANT3 simulation of Pierre

Auger Surface Detector response to muons. Technical Report GAP-02-063,

Auger Project Technical Note, 2002. (Cited on page 74.)

[120] J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian optimization of

machine learning algorithms. In Advances in Neural Information Processing

Systems (NIPS), 2012. (Cited on pages iv, 2, 10, 13, 29 and 38.)

[121] M. Sperrin, T. Jaki, and E. Wit. Probabilistic relabelling strategies for the la-

bel switching problem in Bayesian mixture models. Statistics and Computing,

20:357�366, 2010. (Cited on pages 94, 99, 102 and 115.)

[122] N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Gaussian process optimiza-

tion in the bandit setting: No regret and experimental design. In Proceedings

of the 27th International Conference on Machine Learning, 2010. (Cited on

pages viii, 10, 12, 30 and 151.)

[123] M. Stephens. Dealing with label switching in mixture models. Journal of the

Royal Statistical Society, Series B, 62:795�809, 2000. (Cited on pages 93, 94,

97, 98, 100, 102 and 110.)

http://www.auger.org/admin/GAP_Notes/GAP2002/gap2002_063.pdf

Bibliography 167

[124] D. Supanitsky and X. Bertou. Semi-analytical model of the three-fold charge

spectrum in a water Cherenkov tank. Technical Report GAP-03-113, Auger

Project Technical Note, 2003. (Cited on page 74.)

[125] H. Terashima-Marín, P. Ross, and M. Valenzuela-Réndon. Evolution of con-

straint satisfaction strategies in examination timetabling. In Proceedings of

the Genetic and Evolutionary Computation Conference (GECCO), pages 635

� 642, 1999. (Cited on page 27.)

[126] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Auto-weka: Auto-

mated selection and hyper-parameter optimization of classi�cation algorithms.

Technical Report TR-2012-05, University of British Columbia, Department of

Computer Science, 2012. (Cited on pages iv, 2 and 29.)

[127] B. A. Tolson and C. A. Shoemaker. Dynamically dimensioned search algorithm

for computationally e�cient watershed model calibration. Water Resources

Research, 43, 2007. (Cited on page 27.)

[128] E. Vazquez and J. Bect. Convergence properties of the expected improvement

algorithm with �xed mean and covariance functions. Journal of Statistical

Planning and Inference, 140(11):3088�3095, 2010. (Cited on page 153.)

[129] J. Villemonteix, E. Vazquez, and E. Walter. An informational approach to

the global optimization of expensive-to-evaluate functions. Journal of Global

Optimization, 2006. (Cited on pages 10, 12 and 14.)

[130] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. A. Manzagol. Stacked

denoising autoencoders: Learning useful representations in a deep network

with a local denoising criterion. Machine Learning Research, 11:3371�3408,

2010. (Cited on page 31.)

http://www.auger.org/admin/GAP_Notes/GAP2003/GAP2003_113.pdf

Abstract

Inference and optimization algorithms usually have hyperparameters that require to

be tuned in order to achieve e�ciency. We consider here di�erent approaches to e�-

ciently automatize the hyperparameter tuning step by learning online the structure

of the addressed problem. The �rst half of this thesis is devoted to the problem of

hyperparameter tuning in machine learning, where recent results suggest that with

current generation hardware, the optimal allocation of computing time includes

more hyperparameter exploration than has been typical in the literature. After

presenting and improving the generic sequential model-based optimization (SMBO)

framework, we show that SMBO successfully applies to the challenging task of tun-

ing the numerous hyperparameters of deep belief networks, outperforming expert

manual tuning. To close the �rst part, we propose an algorithm that performs

tuning across datasets, further closing the gap between automatized tuners and

human experts by mimicking the memory that humans have of past experiments

with the same algorithm on di�erent datasets. The second half of this thesis deals

with adaptive Markov chain Monte Carlo (MCMC) algorithms, sampling-based algo-

rithms that explore complex probability distributions while self-tuning their internal

parameters on the �y. This second part starts by describing the Pierre Auger ob-

servatory (henceforth Auger), a large-scale particle physics experiment dedicated to

the observation of atmospheric showers triggered by cosmic rays. These showers

are wide cascades of elementary particles raining on the surface of Earth, resulting

from charged nuclei hitting our atmosphere with the highest energies ever seen. The

analysis of Auger data motivated our study of adaptive MCMC, since the latter can

cope with the complex and high-dimensional generative models involved in Auger.

We derive the �rst part of the Auger generative model and introduce a procedure to

perform inference on shower parameters that requires only this bottom part. Our

generative model inherently su�ers from permutation invariance, thus leading to

label switching. Label-switching is a common di�culty in MCMC inference which

makes marginal inference useless because of redundant modes of the target distribu-

tion. After reviewing previously existing solutions to the label switching problem,

we propose AMOR, the �rst adaptive MCMC algorithm with online relabeling. We

empirically demonstrate the bene�ts of adaptivity and show how AMOR satisfy-

ingly applies to the problem of inference in our Auger model. Finally, we prove

consistency results for a variant of AMOR. Our proof provides a generic framework

for the analysis of other relabeling algorithms and unveils interesting links between

relabeling algorithms and vector quantization.

	Introduction
	I On the automatic tuning of machine learning algorithms
	Sequential model-based optimization
	Introduction
	Sequential model-based optimization
	The paradigm
	Gaussian processes
	The expected improvement criterion

	A mixture cross-entropy algorithm
	The cross-entropy method
	Introducing mixtures into the CEM
	Initialization via triangulation

	Experiments
	Benchmarking the mixture CE algorithm
	A comparison on single EI steps: the setup
	A comparison on single steps: comments

	Conclusion

	A review on hyperparameter tuning
	Introduction
	Model-free tuning
	Common optimization heuristics
	Sophisticated grid searches
	Racing

	Model-based tuning
	Linear regression
	Neural network regression
	Gaussian process regression
	Bagging of regression trees

	Where do the contributions of this thesis fit?
	Conclusion

	Self-tuning deep learning
	Introduction
	Optimizing EI on the DBN hyperparameter space
	Building up on the mixture CEM
	A tree-structured Parzen estimator approach
	Details of the Parzen Estimator

	Random search as the new baseline
	Benchmarking SMBO for hyperparameter tuning in DBNs
	Validating surrogate modelling on the ``Boston housing'' dataset
	Parallelizing sequential search

	Results and discussion
	Conclusion

	Surrogate collaborative tuning
	Introduction
	The quality function and its prior
	A fictitious generative model
	A deconvolution method
	Collaborative tuning
	On the choice of a surrogate-based ranking algorithm

	A case study on AdaBoost
	Setup
	Experiments
	Results
	Computational issues

	Conclusion

	II On adaptive MCMC algorithms, with applications to the Pierre Auger experiment
	The Pierre Auger experiment
	Ultra-high energy cosmic rays
	A brief history of cosmic rays
	Looking inside an air shower
	Astrophysical questions raised by cosmic rays

	The Auger detector
	The surface detector
	The fluorescence detector
	Latest results

	Conclusion and reading map

	Inferring muons
	Introduction
	A model for the Auger tank signal
	The formal tank signal
	The signal given the expected photoelectron count
	The distribution of the expected PE count in time
	Priors and features of the tank signal model

	Going large-scale: counting muons in a shower
	The lateral distribution function
	An empirical Bayes setup

	Conclusion

	A review on relabeling MCMC algorithms
	The label switching problem
	Relabeling algorithms
	Imposing an identifiability constraint
	Pivotal relabeling
	Constraining the allocation
	Learning the constraint
	Probabilistic relabeling strategies
	Permutation invariant loss functions

	Conclusion and reading map

	AMOR: adaptive Metropolis with online relabeling
	Introduction
	The AMOR algorithm
	The algorithm
	An illustrative example

	Application to Gaussian mixtures
	Application to the Auger tank signal model
	Conclusion

	On the convergence of AMOR
	Main results
	A stable AMOR algorithm
	Convergence of stable AMOR

	Proofs
	A preliminary result
	Differentiating the cross-entropy term in (10.1.11)
	The Lyapunov function
	Proof of Proposition 1
	Regularity in of the Poisson solution
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4

	Conclusion

	Closing remarks
	Notations
	Bibliography

