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Notations

Notations concerning sets:

- Ry is the set {\ € R, A > 0}.

- R* is the set {\A € R, A\ # 0}.

- M, m(R) denotes the set of real n x m matrices.

- M,,(R) denotes the set of real n x n matrices.

- S, denotes the set of symmetric matrices in M,,(R).

- S (resp. S;7*) denotes the set of positive (resp. positive definite) symmetric matrices
in M,,(R).

- Co{F;}iez, for given matrices F; € M,,,»(R) and a finite set of indexes Z, denotes the
convex polytope in M,, ,,(R) formed by the vertices F;, i € Z.

- C%X — Y), for two metric spaces X and Y, is the set of continuous functions from X
to Y.

- L, is the space of square-integrable functions from R* to R™.

- AX, for a scalar A € R and an R vector space X, represents the set {\r, x € X}.

- R*z, with x € R", is the set defined as {y € R", I\ # 0,y = Az},

- | X, is the cardinality of the finite set X.

- P(X) denotes the power set of a set X (i.e. the set of all subsets of X).

Notations concerning matrices:

- M7" stands for the transpose of M € M,, ,,(R).

- M is the pseudoinverse of M € M,, ,,(R).

- A > B (resp. A > B) for matrices A, B € M,,(R) means that A— B is a positive (resp.
definite positive) matrix.

- I is the identity matrix (of appropriate dimension).

- %, in a matrix, denotes the symmetric elements of a symmetric matrix.

- diag(A4,- -+, A,,) is the block diagonal matrix designed by the square matrices A;,i €
{1,---,m}, of any dimension.

- rank(M) is the rank of the matrix M € M,, ,,(R).
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Notations

- Amax (M) (resp. Amin(M)) denotes the largest (resp. lowest) eigenvalue of a symmetric
matrix M € M, (R).

- p(M) denotes spectral radius of M € M, (R).

- ||I-||]2 stands for the operator norm on M,,(R) associated to the norm ||.||2 on R™: for a
matrix M € M, (R), ||[M][|s = supj,,— [|Mz]ls = \/p(MTM).

Notations concerning vectors:

- 27 stands for the transpose of z € R".

- ||.]|2 stands for the Euclidean norm on R": for a vector z € R", ||z = VzTx.
Notations concerning scalars:

- |z is the floor of x € R: the largest integer not greater than z: z — 1 < |z] < z.

- [z] is the ceiling of € R: the smallest integer not less than z: = < [z] <z + 1.

- sgn(x) denotes the sign of the scalar z.

- sat(x) denotes a scalar that is equal to —1 if the scalar x < —1, 1 if x > 1, and =
otherwise.

Notations concerning functions:

- z; (resp. ;) denotes the function in C°([—h, 0] — R™), for a given maximal delay h such
that 2,(0) = z(t +0), V0 € [—h,0] (vesp. i4(0) = (t + 0), VO € [—h,0]).

- ||l is the Lo-norm on Ly: for a function f € La, || fllz, = (Jf,” ||f(t)||§dt)%.

- |||, is the Ho-norm on Lo — Ly: for an operator A : u € Lo — v € Lo, ||Allg, =

SUPyer, |[A(Jw)]], with [A(jw)| = o max_ |A(jw)z||2. It is equal to the Lo-to-Loy
zll2=1, z€C™
Vi
norm: A=Al e, = sup ol
uzo [|ullz,
- A class K function is a function ¢ : [0,a) — [0,400) that is strictly increasing, and such

that ¢(0) = 0.

- A class Ko, function is a class I function such that @ = +00 and lim;_,, o, ¢(t) = +o0.
- A C* function is a function that is infinitely differentiable.

- f(n) = O(g(n)) means that the growth-rate of the sequence f(n), n € N, is dominated
by the sequence g(n), i.e. there exist N € N and K € RY such that for all n > N,
|f(n)] < Klg(n)].

Notations concerning logic:

- A defines the "AND" logic gate.

- V defines the "OR" logic gate.

Other notations:

- r = y means that the term z is denoted as y, or that the term y is denoted as .
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(General introduction

Until the 50s, most systems were controlled using analogical controllers. However, the fast
development of computers led to an increasing use of digital controllers. This is especially
due to their computational power and flexibility. Nowadays, digital controllers have be-
come omnipresent, and enabled the explosion of embedded systems and networked control
systems. They offer several advantages: low cost installation and maintenance, increased
flexibility and re-usability, reduced wiring cost, and ease of programming. Furthermore,
they offer the possibility to control more than one process at a time.

Unlike analogical controllers, digital controllers, due to their nature, introduce discrete-
time signals and discrete-time dynamics, via sample and hold devices |[Astrom 1996].

First, the information sent from the sensors to the controller is sampled, by means
of an analog-to-digital (A/D) converter. Such a conversion of an input signal z(¢) into a

sampled signal x(sy), at sampling instants s, k& € N is shown in Figure 1.

Continuous signal x(t)
N Sampled-data signal x(sk)

\\A\ Ve \\
N\ / N

/
\\/

S0 Sl S2 S3 S4 S5865788 S9 S10 S1§12Sl3 S14 S15 S,16

Figure 1: Analog-to-digital conversion
Moreover, since the control is computed only at discrete instants, it is necessary to use

17



General introduction

a digital-to-analog (D/A) converter (a zero-order-hold), so as to hold the control value
that is sent to the actuators. The conversion of a sampled input signal u(sg) into a

piecewise-constant signal u(t), is shown in Figure 2.

u Sampled-data signal u(sk)
— Piecewise—constant signal u(t)
]
1
— -
| |
| |
h [
|
|
|
t
So 51 523 4555 575 Sg S10 S11 Sihiz S14%15 516 S17

Figure 2: Digital-to-analog conversion

In embedded control applications however, a discrete-time implementation may pro-
duce undesired effects such as delays or aperiodic control executions, due to the interaction
between control tasks and real-time scheduler mechanisms |Hristu-Varsakelis 2005]. The
effects of these discrete-time dynamics brought up new challenges regarding the stability
and stabilization, and new theories and tools have been developed for these sampled-data
systems. In particular, in the last few years, two main problems have been of a great

importance for control theorists:
P1) the stability of sampled-data systems with time-varying sampling;
P2) the dynamic control of the sampling events.

The new trend is to control dynamically the sampling so as to enlarge the sampling

intervals and reduce the computational and energetic costs.

Goals

The work presented in this thesis is concerned with these two problems P1) and P2).

The main objective is to design a sampling law that allows for reducing the sampling

18



frequency of state-feedback control for linear sampled-data systems while ensuring the
system stability.

In order avoid possible scheduling issues, the robustness with respect to time-varying
sampling will also be included. The robustness aspect with respect to exogenous pertur-
bations or delays in the control loop will be considered, so to take into account phenomena
occuring in the real-time control of physical systems. Finally, a co-design of the controller
and sampling law is proposed. Here, in order to reduce the conservatism, the control
gains and the sampling instants will be computed jointly.

Throughout the thesis, different designs of sampling control laws will be presented.
They can be used to compute a simple upper-bound for time-varying samplings, or to

dynamically control the sampling intervals, using online or offline algorithms.

Structure of the thesis

The thesis is organized as follows:

Chapter 1

The first chapter is a literature survey which presents an overview of problems, chal-
lenges, and recent research directions in the domain of sampled-data systems in control
theory. First, the notion of sampled-data systems is defined, and the main open prob-
lems in the literature are presented. Then, some general stability concepts necessary to
the comprehension are recalled. Finally, several research directions, theories, and results
are presented concerning the stability analysis of sampled-data systems with constant or
time-varying sampling, or concerning the dynamic control of the sampling. The strengths
and weaknesses of the different approaches are analyzed, so as to highlight which problems

have already been solved, and what still remains to be done or improved.

Chapter 2

In the second chapter, a state-dependent sampling control is designed for ideal LTI systems
with sampled-data. The goal is to design a sampling law that will take into account the
system’s state, so as to enlarge the sampling intervals, or in other terms, to generate the
sampling events as sparsely as possible. The proposed state-dependent sampling function
takes advantage of an offline design based on LMIs obtained thanks to a mapping of the

state space, polytopic embeddings, and Lyapunov-Razumikhin stability conditions.
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General introduction

Chapter 3

In the third chapter, the robustness aspect with respect to exogenous disturbances is
considered for the design of a state-dependent sampling law. As in the second chapter,
the approach is based on Lyapunov-Razumikhin stability conditions and polytopic embed-
dings. After presenting the main stability results, four different applications are addressed.
The first one concerns the robust stability analysis with respect to time-varying sampling.
The other three applications propose different approaches to the dynamic control of the
sampling with the objective to enlarge the sampling interval. Event-triggered control,
self-triggered control, and the newly introduced state-dependent sampling schemes are

then presented.

Chapter 4

In the fourth and last chapter, an extension to the stability analysis of perturbed time-
delay linear systems is tackled, and the stabilization issue is considered. The objective here
is to design a controller along with the state-dependent sampling law, so as to stabilize the
considered perturbed LTI sampled-data system, and enlarge even further the allowable
sampling intervals. First, the case of a classic linear state-feedback controller is considered.
Then, a new controller is proposed, the gains of which are switching according to the
system’s state. The co-design of both the controller and the state-dependent sampling
function is based on LMIs obtained thanks to the mapping of the state-space presented
in the previous chapters, and thanks to a new class of Lyapunov-Krasovskii functionals

with matrices switching with respect to the system’s state.
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Chapter 1

Sampled-data systems: an overview of

recent research directions

In this chapter, we intend to present several basic concepts and some recent research di-
rections about sampled-data systems. First, a short introduction of sampled-data systems
will be given, along with the main mathematical definitions and problematics. Then, some
general concepts of stability will be recalled, and the sampled-data systems stability and
stabilizability problems will be formulated. Finally, the main recent research directions
and results from the literature will be presented. They will be classified into three main
categories according to their sampling type: constant sampling, time-varying sampling,

and dynamic sampling control.

1.1 Introduction to sampled-data systems

1.1.1 General sampled-data systems

Sampled-data systems are dynamic systems that involve both a continuous-time dynamics

and a discrete-time control. They are mathematically as follows:

Definition 1.1 (Sampled-data system)

w(t) = f(t,z(t), u(t)), vt =0,
u(t) = g(SL’(Sk), Sk), vVt € [Sk, 8k+1), keN,

(1.1)

where t is the time-variable, x : Ry — R"™ the "state-trajectory”, u : Ry — R™ the

"input”, or "control signal”, and the scalars sy, for k € N, are the sampling instants
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Chapter 1. Sampled-data systems: an overview of recent research directions

which satisfy 0 = sg < 51 <--- <8 <--- and lim s, = +00.
k—+o00

The sampling law is defined as

Sk+1 = Sk + Tk, (1.2)

where T, represents the k™ sampling interval.

Such systems can be represented by the block diagram in Figure 1.1, in which the
blocks A/D and D/A correspond to an analog-to-digital converter (a sampler) and a

digital-to-analog converter (a zero-order hold) respectively.

B(t) = f(t x(t), u(t))

> SYSTEM

u(sx) = g(sk, z(sr)) z(sk)
D/A CONTROLLER |« A /Dl

Sk+1 = Sk+Tk

Figure 1.1: Sampled-data system

It is important to note that with these systems, the discrete-time dynamics introduced
by the (digital) controller implies that during the time between two sampling instants
the system is controlled in open-loop (i.e. without updating the feedback information).
Therefore, the sampling period plays an important role in the stability of the system, and

adapted tools have to be used.

1.1.2 Sampled-data linear time-invariant systems

The model of sampled-data systems provided in Definition 1.1 is very general. In this
thesis, we will focus mainly on linear time-invariant sampled-data systems with state-

feedback, which are defined as follows:
Definition 1.2 (Sampled-data linear time-invariant system)

#(t) = Ax(t) + Bu(t), ¥t > 0,
U(t> = _KI(Sk)v vt e [Skask—l—l)v k€ Na

(1.3)
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where t is the time-variable, x : Ry — R"™ the "state-trajectory”, u : Ry — R™ the

"imput”, or "control signal”, and the scalars s, for k € N, are the sampling instants

which satisfy 0 = sg < 81 < ++- < 8, < -+- and klim sk = +00. A € M,(R) is the "state
—+00

matriz”", B € M, ., (R) is the "input gain matriz”, and K € M, ,(R) is the "control

gain matriz”. The sampling law is defined as
Sk4+1 = Sk + Tk, (14)

where 13, represents the k™ sampling interval.

This definition presents the case of "ideal" sampled-data LTI systems, in which no
disturbance nor any other phenomenon is taken into account. Throughout this thesis
however, additional phenomena will be considered like exogenous perturbations or delays
in the feedback control-loop for example. In that case, when these classes of systems are
considered, the associated system equations will be provided.

In the absence of perturbations, the evolution of the system’s state between two con-

secutive sampling instants s and sx is given by

w(t) = e yp(s) + fg_s’“ e*dsBu(sy,)
Aq(t — si)x(sg) + Ba(t — sg)u(sk)

(1.5)
= [Ad(t — Sk) — Bd(t — Sk)K] fIZ(Sk)
= A(t - Sk)x(sk)v Vt € [Sku Sk—i-l]v ke N7
with the matrix functions Ay, By, and A defined on R, as
Ay(o) = €27, By(o) = / eMdsB. (1.6)
0
and .
A(0) = Ag(o) — By(o)K = e — / e dsBIK. (1.7)
0

Using the notation 75 in equation (1.4), for the sampling intervals, it is then possible
to obtain the following associated discrete-time model of the linear sampled-data system

at instants sj:
LTt = Ad(Tk)ZL'k + Bd(Tk)uk = A(Tk)l'k, Vk € N, (18)

with z, = z(sg) and uy, = u(sg). Aq(7k) and By(7y) are called the "state matrix" and the
"input matrix" of the discrete-time model respectively, and A(7) is called the discrete-

time "transition matrix".
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1.1.3 Problematics

From the control theory point of view, due to the existence of both a continuous and
a discrete dynamics, sampled-data systems bring up new challenges. As in the more
general frameworks of delayed-systems [Richard 2003, [Gu 2003], hybrid systems [der
Schaft 2000], [Zaytoon 2001], [Goebel 2009], [Prieur 2011], or reset systems [Nesic 2008],
[Beker 2004], some problems are raised.

- PROBLEM A: Determine if a sampled-data system is stable for any constant
sampling interval 7, = 7 with values in a bounded subset 2 C R, 7

- PROBLEM B: Determine if the sampled-data system is stable for any time-varying
sampling interval 7, with values in a bounded subset 2 C R, ?

Lately, an additional issue has been brought up to light. With the emergence of embed-
ded and networked systems particularly [Zhang 2001c|, [Hespanha 2007], [Richard 2007],
[Chen 2011], control scientists realised that computing the next control at each sampling
time has a cost [Buttazzo 2002], [Cervin 2002], [Brockett 2000], [Nair 2000]. Indeed, the
computations for a new control reduces the limited processor resources, in the case of em-
bedded systems for example. In the case of networked control systems, the transmission
of the sampled-data requires bandwidth, which is also limited. Therefore, a new problem
arose:

- PROBLEM C: Design a sampling law 7, = 7(t, s, x(sk), - - ) that enlarges the
sampling intervals while making the sampled-data system stable?

In this thesis, we will mainly focus on finding solutions to this last particular problem
which concerns the reduction of the number of sampling instants (i.e. for particular
systems with periodic sampling, the reduction of the sampling frequency). We will also
adapt the proposed tools in order to further derive solutions to the other two problems.
During this study, some stability performances will be taken into account, such as the
speed of convergence of the system’s state, or the robustness with respect to possible

exogenous perturbations or delays.

1.2 Classical stability concepts

Before providing an overview of some works from the literature about sampled-data sys-
tems, we recall some fundamental concepts about stability, and some classic stability tools

that will be used throughout the thesis.
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1.2.1 Some stability definitions

Intuitively, stability is a property that corresponds to staying close to an equilibrium
position, when the state is punctually disturbed. Originally, stability is analyzed for
systems that are time-invariant and autonomous (i.e. for which there is no control, or for

a closed-loop system with a given control). Such systems are defined as follows:

Definition 1.3 (Autonomous system) The ordinary differential equation:
o(t) = fla(t)), vVt =0, (1.9)

with f : R® — R™ Lipschitz continuous', is said to be autonomous if f(x(t)) does not

depend explicitely on the free variable t (often regarded as time).
An "equilibrium point" z. represents a real solution of the equation f(x) = 0.
Definition 1.4 ( [Khalil 2002]) An equilibrium point x. of the system (1.9) is

e stable (in the sense of Lyapunov) if Ve > 0, 36 = d(e) > 0 such that

|2(0) — ze|]| < d = ||x(t) — || <€, Vt>0;

e attractive if 3p > 0 such that
2(0) — ]l < p = lim_[lz(t) — ]| = 0;
e asymptotically stable if it is stable and attractive;
e cxponentially stable if there exist three scalars o, 8, 6 > 0 such that
|2(0) = z|| <& = [la(t) = ze]| < af|x(0) - zcfe™™.

For such a scalar (5, called (exponential) "decay-rate”, the equilibrium point is also

said to be "B-stable";

o globally asymptotically stable if it is stable and Vx(0) € R",

lim ||z(t) — .|| =0

t——+o0

LGiven two metric spaces (X,dy) and (Y, dy), where dx denotes the metric on the set X and dy is
the metric on set Y, a function f : X — Y is called Lipschitz continuous (or simply Lipschitz) if there
exists a real constant K > 0 such that for all z1, 2 € X, dy (f(x1), f(22)) < Kdx (1, x2).
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Note that by using a translation of the origin, it is always possible to reformulate the
problem as a stability analysis around x, = 0. Therefore, all the results and stability

properties will now be written while taking z. = 0 as the studied equilibrium point.

1.2.2 Second Lyapunov method

The most common stability tool is the Lyapunov stability approach. It is based on the
fact that a system which trajectory approaches the origin, loses its energy. The Lyapunov
stability approach makes use of a function V' : R® — R, called "candidate Lyapunov
function", which depends on the system’s state, and symbolizes some sort of potential
energy of the system, with respect to the origin. Very often, this function is chosen as a

norm or a distance. The Lyapunov stability theory is described as follows |Khalil 2002|.

Theorem 1.5 Consider the autonomous system (1.9) with an isolated equilibrium point
(xe =0 € Q CR", with Q a neighborhood of x.). If there exist a locally Lipschitz function
V i R™ — R, with continuous partial derivatives and two class K functions®* « and (8 such
that

a(|lz]]) < V(x) < B(|lz]]), Vo € Q,

then the origin x = 0 of the system 1is

e stable (in the sense of Lyapunov) if

Vv (z)
dt

<0, Vx € Q, x # 0;

o asymptotically stable if there exists a class K function ¢ such that

Vv (z)
dt

< —p(lll), Vo € Q, x #0;

e exponentially stable if, moreover, there exist four scalars &, 3, v, p > 0 such that

alllzl) = allzll?, B(l=l) = Blll”, e(lzl) =]zl

In such a case, the equilibrium point x. allows a decay-rate equal to >

There also exists a discrete-time version of the Lyapunov stability theory.

2A class K function is a function ¢ : [0,a) — [0, +00) that is strictly increasing, and such that ¢(0) = 0.
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Theorem 1.6 Consider the discrete-time autonomous system

Ty = flan), (1.10)

with an isolated equilibrium point (v. = 0 € Q C R™, with Q0 a neighborhood of x.). If
there exist a locally Lipschitz function V : R™ — Ry with continuous partial derivatives

and two class IC functions a and B such that
a([lz]) < V(z) < B(z]), Vz € Q,

then the origin x = 0 of the system is

o stable (in the sense of Lyapunov) if
AV(l’k) <0, YV, € Q, T 7é 0

where
AV(zy) = V(zger) — Vizk)

= V(f(zr)) = V(xg);

e asymptotically stable if there exists a class K function ¢ such that

AV (xr) < —@(||lzell), Vo, € Q, x5, # 0;

e exponentially stable if there exist four scalars &, B, v, p > 0 such that

a(llzl) = all=)?, B(l=l) = Bll|, e(lz]) =l

Remark 1.7 The local definitions of the above two theorems are globally valid if the given

functions are class Koo functions® and Q0 = R™.

The function V : R” — R, that verifies the properties in the previous theorems is
called a "Lyapunov function". By abuse of language, especially in the case of linear
systems, a system with a stable and unique equilibrium point is often called a "stable

system". Furthermore, if a system is not stable, we will say that it is "unstable".

3A class K function is a class K function such that a = +o00 and lim;_, o @(t) = +o0.
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1.2.3 Properties of linear time-invariant systems with sampled-

data control

Very interesting properties arise in the context of sampled-data LTI systems, concerning
continuous and discrete-time analysis approaches. One of the first concerns the equilib-

rium’s attractivity, and is formulated as follows:

Theorem 1.8 (From [Fujioka 2009b]) For a given sampled-data LTI system (1.3) with
bounded sampling intervals and a given initial state x(0), the following conditions are

equivalent:
(i) lim; o x(t) =0,
(’L’L) limk_,+oo LL’(Sk) =0.

This property means that the attractivity of the continuous-time system (1.3) is equiv-
alent to the attractivity of the discrete-time system (1.8).

Further analysis [Hetel 2011a| allows for proving that the continuous-time system’s
(asymptotic) stability is equivalent to the discrete-time system’s (asymptotic) stabil-
ity, in the more general case of reset control systems ( |Nesic 2008|, [Beker 2004]| |Tar-
bouriech 2011], [Zaccarian 2005]).

Therefore, it is possible to use both a continuous or a discrete-time approach in order
to study the stability of sampled-data systems.

In the following, we will present an overview of some results from the litterature

regarding the three main studies concerning sampled-data systems:
e the stability analysis regarding a constant sampling (Problem A);
e the stability analysis regarding time-varying sampling (Problem B);

e the dynamic control of the sampling (Problem C).

1.3 Stability analysis under constant sampling

The first and easiest way to study sampled-data systems is to consider the case when the
sampling interval is constant, for a given value T' (see Figure 1.2).
In this case, the system’s stability is usually analysed using the discrete-time LTI
model of the system:
Tpe1 = NT)xg. (1.11)
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1.3. Stability analysis under constant sampling

#(t) = Az(t) + Bu(t)

u(t) = u(sy) 2(t)
> SYSTEM

u(sg) = —Kz(sy) x(sk)
D/Ale CONTROLLER |« A/Dre

Skp1 =Sk + T
Figure 1.2: Sampled-data system with a constant sampling rate

For a given sampling period T, the most common approach to analyse the stability (the
so-called "Schur method") consists in studying the eigenvalues of the transition matrix
A(T). We call A\pax(T') the eigenvalue of A(T') with the largest modulus. We then have
the following properties [Astrém 1996].

Theorem 1.9 The equilibrium z. = 0 of (1.11) is

o Schur-stable (globally asymptotically stable) if and only if [Amee(T)| < 1. In that

case, N(T') is called a Schur matriz;

e cxponentially stable (globally) with a decay-rate o > 0 if and only if |Ama(T)| <

el

Equivalent Linear Matrix Inequality (LMI) stability conditions can also be obtained

using the Lyapunov stability theory for discrete-time systems.
Theorem 1.10 The considered system (1.11) is
o stable (globally) if and only if there exists a matriz P € S} such that

AT)"PAN(T) - P =<0;

o Schur-stable (globally asymptotically stable) if and only if there ezists a matriz P €
S such that
AT)'PA(T) — P < 0;
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o czponentially stable (globally) with a decay-rate o > 0 if and only if there exists a
matriz P € S;* such that

AT)'PNT) — e TP <0.

The discrete-time analysis of sampled-data systems with a given constant sampling
has since long been solved. However, some problems still remain open, since the proposed
solutions remain conservative regarding the continuous-time analysis of such systems, or
regarding the robustness with respect to exogenous perturbations. For more results re-
garding robust stability and optimal control of sampled-data systems both in continuous-
time and discrete-time, we point to the handbooks [Chen 1991] and |[Astrém 1996|. In
the following section, we will consider the robustness aspect with respect to variations in

the sampling interval.

1.4 Stability analysis under time-varying sampling

In the literature, there exist numerous studies about sampled-data systems with a con-
stant sampling interval. In practice however, it may actually be impossible to maintain
a constant sampling rate during the real-time control of physical systems. Embedded
and networked systems for example are often required to share a limited amount of com-
putational and transmission resources between different applications. This may lead to
fluctuations of the sampling interval, because of delays that could appear during the
computation of the control, during the transmission of the information, or because of
scheduling issues [Zhang 2001c|, [Bushnell 2001], [Mounier 2003a|. Such systems are rep-
resented by the block diagram in Figure 1.3.

1.4.1 Difficulties and challenges

From the control theory point of view, these variations in the sampling interval bring up
new challenges since they may have a destabilizing effect if they are not properly taken
into account [Wittenmark 1995|, [Zhang 2001b|, [Li 2010].

Consider for example the system [Zhang 2001b]:

=y 3+ | a0 =0

ul(t) = — [1 6} 2(s1), Vt € [sp,sps1), k € N.

(1.12)
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#(t) = Az(t) + Bu(t)

u(t) = u(sy) 2(t)
> SYSTEM

u(sg) = —Kz(sy) x(sk)
D/Aw CONTROLLER. [« Al

Sk+1 = Sk + Tk
Figure 1.3: Sampled-data system with a time-varying sampling

In the case of a constant sampling rate, one can use a gridding on the sampling step
T and the stability conditions from Theorem 1.9, as shown in Figure 1.4, to find that
the origin of the system is Schur-stable if 7' € [0s, T2 = 0.5937s], and unstable for
T e [T .0.9s] (as well as for higher values).

const?

*
*
&
*
*
*
*
*
*
£
*

Mo D

Figure 1.4: Evolution of the modulus |Ayax(7)| of the maximum eigenvalue of the transi-
tion matrix A(7T'), depending on the sampling period T

Therefore, for constant sampling intervals 77 = 0.18s or T, = 0.54s for example, the
system is Schur-stable, as illustrated by Figure 1.5.

However, if we sample using a sequence of sampling intervals 77 — Ty, — 1) — Ty —
.-+, the system becomes unstable, as we can see in Figure 1.6.

This is due to the fact that the Schur property of matrices is not preserved under
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x(t)

Figure 1.5: Constant sampling rate with 77 = 0.18s (left) and T, = 0.54s (right) - Stable
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Figure 1.6: Variable sampling intervals 77 = 0.18s — 15 = 0.54s — T} — 15 — -+ -
Unstable

matrix product (i.e. the product of two Schur matrices is not necessarily Schur). Indeed,
in this case, the discrete-time equivalent system over two sampling instants can be written

as
Tpyo = A1) A(Th)w, VE € 2N,

which can also be written as
The1 = A(Tl, TQ)ZL’h, Vh € N,

34



1.4. Stability analysis under time-varying sampling

with h representing the 2k sampling, and the transition matrix

AT}, Ty) = A(T)A(Ty) = [0.8069 —3.2721]

0.6133 —2.1125

over two sampling intervals 77 and 75, which is not Schur in this example.

In the case of sampled-data systems with a periodic sequence of sampling intervals,
it is possible to design a stability domain that depends on the sampling sequence. For
instance, Figure 1.7 presents the stability domain (in blue) obtained by using a gridding
on the values of 77 and 75, in the case of a periodic sequence of two sampling intervals,

for the sampled-data system (1.43).

- pmax
., const ) .
0.6 0.7 0.8 0.9

Figure 1.7: Stability domain (allowable sampling interval) for a periodic sampling se-
quence 17 — 15 — 17 — Ty — - - - - first example

In this figure, one can see that there exist unstable sampling sequences made of stable
sampling intervals®, which confirms our earlier remark. Also, one can see that there exist
stable sampling sequences made of both stable and unstable sampling intervals (with
Ty = 0.46s and T, = 0.8s for example).

“by "stable sampling interval", we mean that the transition matrix of the associated sampling interval
is Schur.
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Consider now the example

x(t) = [_02 0%1] z(t) + [O] u(t), vt >0,

u(t) = — [—1 O] x(sg), Vt € [Sk, Sks1), k€N,

(1.13)

and its associated stability domain (see Figure 1.8). Here, one can see that there also

exist stable sampling sequences which are composed solely of unstable sampling intervals.

Figure 1.8: Stability domain (allowable sampling interval) for a periodic sampling se-
quence 17 — Ty — 17 — 15 — - -+ - second example

Let us look at the sampling values 77 = 2.126s and T, = 3.950s for example. The
sampled-data system (1.13) is unstable with both constant samplings 7} and T». However,
as it is shown in Figure 1.9, the system’s transition matrix A(7},73) is Schur-stable under
the periodic sampling 77 — 15, =11 —T5 — - -.

According to the previous observations, it is clear that the existing stability tools for
sampled-data systems with a constant sampling will not provide any guarantee of stability
for sampled-data systems with unknown time-varying sampling that arises in real-time
control conditions. For this reason, considering the difficulty of the problem, several works

in the last decades have been concerned with the stability analysis of sampled-data systems
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0 20 40 60 80 100

Figure 1.9: Variable sampling 77 = 2.126s — T3 = 3.950s — T} — 15 — - -- - Stable

with time-varying samplings with bounded values |[Mirkin 2007|, [Naghshtabrizi 2008|,
|Hetel 2007|, [Fujioka 2009b|, [Seuret 2009|, |[Fridman 2010|, and |Hetel 2011b]. Very
often, the sampling intervals that are considered can take any value in a bounded set
[7,7]. In the rest of this section, we propose a short overview of various notable methods

regarding this issue.

1.4.2 Time-delay approach with Lyapunov techniques

One of the approaches to deal with time-varying sampling was initiated in [Mikheev 1988|,
and consists in considering the discrete-time dynamics induced by the digital controller

as a piecewise continuous delay (see Figure 1.10):
Sp=1— (t — Sk) =t — h(t), Vt € [Sk, Sk+1), ke N,

where h(t) =t — sy, is the induced delay. The LTI system with sampled-data (1.3) is then

re-modeled as an LTI system with time-varying delay

#(t) = Az(t) + Bu(t), Vt >0,

u(t) = —Kx(t — h(t)), Vt >0, (1.14)

and is studied with classical tools designed for time-delay systems |Richard 2003|, |Frid-
man 2003|, [Zhong 2006]|, [Mounier 2003b| which are defined by retarded functional dif-

ferential equations as follows:
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Definition 1.11 (Time-delay system) A time-delay system is described by the follow-

ing functional differential equation:

x(t) = f(t,xy), VE >0,

. (1.15)
Tsy(0) = ¢(s0 + ), YO € [sg — h, s

where f : Ry x C°([—h,0] — R") — R"*, ¢ € C%([~h,0] — R"), with h > 0 the maximal
delay, and x; € C°([=h,0] — R"), which represents the state function® and is defined by:

z4(0) = z(t + 0), V0 € [=h,0]. (1.16)

=t—Sk
N

h(t)

Figure 1.10: Sampling seen as a piecewise-continuous time-delay

It is assumed that there exists a unique solution to the above differential equation
(some Lipschitz conditions for the existence and unicity of solutions for such systems are
provided in |[Gu 2003|), and that there is a unique equilibrium point®: x, = 0 (as in the
delay-free case, if the equilibrium point is not 0, we can come down to it by using a simple
change of coordinates).

In the general case of time-delay systems, it is difficult to apply the classical Lyapunov
stability theory from Theorem 1.5, because the derivative W) will depend on the past

dt
values of the state: x;. To overcome this issue, two different stability approaches, better

suited to time-delay systems, have been developped. Both of them make use of a wider
class of functions or functionals as Lyapunov candidates. The first approach is called
Lyapunov-Razumikhin [Gu 2003|, and makes use of a time-dependent "energy" function
V = V(t,z(t)). The second approach, called Lyapunov-Krasovskii [Gu 2003|, makes use

of a functional V' = V(¢, x;) instead.

®Note that x(t) is the value of the state at 6 = 0: z(t) = z4(0).

6Under existence and unicity of the solution, it can be shown [Dambrine 1994] that the equilibrium
state defined by #(t) = 0 is a constant function x¢(f) = ., thus the expression "equilibrium point" is
justified.
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1.4.2.1 Lyapunov-Razumikhin approach

In this approach, it is considered a function V' = V(¢,z(t)). The originality is to show
that it is not necessary to check the condition V(t,z(t)) < 0 along all the trajectories
of the system. Indeed, it is possible to limit this test to solutions which tend to leave a
neighbourhood V (¢, z(t)) < ¢ of the equilibrium point. The approach is formulated as

follows.

Theorem 1.12 (Lyapunov-Razumikhin (from [Gu 2003])) Consider three contin-
uous non-decreasing functions o, 3, v: Ry — Ry, B strictly increasing, such that o(0)
and B(0) are strictly positive for all @ > 0, and a(0) = 5(0) = 0. Assume that the vector
field f from (1.15) is bounded for bounded values of its arguments.

If there exists a continuously differentiable function V : Ry x R™ — R, such that:
a(llz]) < V(t,z) < B(||z]), vt € Ry, Vo € R", (1.17)
with ||.|| any norm on R™, and if the derivative of V' along the solutions of (1.15) satisfies
V(t,z(t)) < —y(|z(t)|]) whenever V(t + 6, z(t + 0)) < V(t,x(t)), V0 € [~h,0], (1.18)

then the origin of system (1.15) is uniformly stable.

If, in addition, v(0) > 0 for all > 0, and if there exists a continuous non-decreasing
function p : Ry — Ry satisfying p(0) > 0 for all v > 0, and such that condition (1.19) is
strengthened to

V(t,z(t)) < —7(|lz(t)|)) whenever V(t+0,2(t+0)) < p(V (£, 2(t))), Y0 € [~h,0], (1.19)

then the function V' s called a Lyapunov-Razumikhin function, and the origin of system
(1.15) is uniformly asymptotically stable.

If in addition lim,_,, « a(s) = +oo, then the origin of system (1.15) is globally uni-
formly asymptotically stable.

In practice, for simplicity, most existing works about Lyapunov-Razumikhin stability
use a linear function: p(0) = ¢f, with a scalar ¢ > 1. Moreover, the Lyapunov-Razumikhin
candidates are very often taken as quadratic and time-invariant: V(z) = 27 Pz, where
P € S§'*. Some works about the Lyapunov-Razumikhin approach for delayed systems
include [Jankovic 2001, [Wang 2007|, [Stamova 2001|, [Jiao 2005|, and [Yu 2004].
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One of the advantages of the Lyapunov-Razumikhin stability theory is that it reduces
the conservatism with respect to the classic Lyapunov stability theory, and it makes
it possible to work with simple Lyapunov(-Razumikhin) functions. Its main drawback
is that it may be difficult to obtain checkable delay (or sampling interval)-dependent
stability conditions, since the delay (or sampling interval) is not explicitely introduced in
the equations. This will be a motivation for employing Lyapunov-Krasovskii techniques

to be presented now.

1.4.2.2 Lyapunov-Krasovskii approach

The Lyapunov-Krasovskii approach is an extension of the Lyapunov theory to functional
differential equations. Here, we are searching for positive functionals V' = V (¢, ;) which

are decreasing along the trajectories of (1.15).

Theorem 1.13 (Lyapunov-Krasovskii (from [Gu 2003])) Consider three continuous
non-decreasing functions o, 5, v : Ry — Ry, such that «(6) and 5(0) are strictly positive
for all @ > 0, and «(0) = B(0) = 0. Assume that the vector field f from (1.15) is bounded
for bounded values of its arguments.

If there exists a continuous differentiable functional V : Ry x C°([—h,0] = R") — R,
such that

a([lo(0))) < V(t, 0) < Bl[olle), (1.20)

with ||.]| any norm on R", ||.|lc its associated norm on C°([—h,0] — R") defined by
16lle = maxge(—p0 [¢(O)]]. and if

V(t,¢) < =1([¢(0)])), (1.21)

then the origin of system (1.15) is uniformly stable.
If in addition ~v(0) > 0 for all 6 > 0, then the functional V is called a Lyapunov-
Krasouvskii functional, and the origin of system (1.15) is uniformly asymptotically stable.
If in addition lim,_,, o, a(s) = +oo, then the origin of system (1.15) is globally uni-
formly asymptotically stable.

The functionals that are being considered usually have the form [Kolmanovskii 1996|:

V(t,6) = 6 (0)P(£)6(0) + 67 (0) ([ Q(t. 5)6()ds) + (S ¢ (5)Q" (1, 5)ds) 6(0)
fﬁf T(s)R(t, s, p)d(p) dsdp—l—f_;lngs (s)gb(s)ds,

(1.22)
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where P, @, R, and S € M,(R). P(t) and S(s) € S;}*, and R satisfies R(t,s,p) =
RT(t,p,s).

It was proved in |Kolmanovskii 1996| that the existence of such a Lyapunov-Krasovskii
functional is necessary and sufficient to ensure the system’s stability in the case of LTI
systems with time-varying delay (i.e. when the system (1.11) is considered with f(t,z;) =
Az(t) + Agz(t — h(t))). An analytical description of fitting matrix functions @, R and S

has also been presented in |[Kharitonov 2003].

In practice (see [Niculescu 2001]), these matrix terms are considered constant, and we

search for functionals of the type:

V(L 6) = 67 (0)Po(0) + 267 (0) (f°; Qo(s)ds) + [ 67 (s)So(s)ds

0 (0 (1.23)
+ f_ﬁ f_ﬁ ¢T(5)R¢(p)d5dp-

Although more conservative, this form of Lyapunov-Krasovskii functionals with constant
matrices allows to derive LMI stability conditions, which makes it easier to look for

solutions (see [Fridman 2004] for instance).

In recent works concerning time-delay systems, the conservatism has been reduced by
considering piecewise-constant matrix functions P, @), R, and S |Fridman 2000|, |Frid-
man 2006], |Gu 1997|, [Gu 2003|.

In the general case of time-delay systems, one of the drawbacks of the Lyapunov-

Krasovskii approach is that the derivative 7dvgt’wt)

often unknown. In the case of sampled-data systems [Fridman 2004], [Naghshtabrizi 2008,

depends on the delay-derivative, which is

[Fridman 2010], [Seuret 2012], there is no such issue since the induced delay has a known
derivative h(t) =1, for all ¢t € sy, Sg4+1), k € N. This particularity enables to simplify the
functionals that are considered and to derive less conservative stability conditions. For
example, it has been shown in |Fridman 2010] that the standard time-independent term
fi)ﬁ ft(jr@ 27 (s)Rx(s)dsdf used in |Fridman 2004| or |[Park 2007| can be advantageously
replaced by the term (s 1 —1) f; iT(s)Ri(s)ds, which provides time-dependent stability
conditions.

One of the advantages of the Lyapunov-Krasovskii approach is that it enlarges, in an
essential manner, the class of Lyapunov candidates. It was shown (in [Driver 1977] for the
constant delay case, and in [Kolmanovskii 1999| for the general time-varying delay case)
that the existence of a Lyapunov-Razumikhin function (LRF) implies the existence of a
Lyapunov-Krasovskii functional (LKF). Furthermore, it makes it possible to explicitely

introduce the delay (or the sampling intervals) in the equations and to obtain delay (or

41



Chapter 1. Sampled-data systems: an overview of recent research directions

sampling interval)-dependent stability conditions. Last, recent advances [Fridman 2010]
are specifically tuned for sampled-data systems and re-open LKF techniques in a way
that they can challenge small-gain approaches, which will be presented in the next sub-
section. Omne of the drawbacks, however, is that the design of the Lyapunov-Krasovskii
functionals may not be very intuitive, which makes it difficult to identify the source of
conservatism of the approach. Also, additional conservatism inherent to this technique is
introduced through (sometimes heavy) upper-bounding techniques. These upper-bounds
are introduced when checking the sign of the derivative V, so to condition the problem in
a tunable and solvable way (e.g. tuning nonlinear into linear matrix inequalities). How-
ever, the approach may be easily extended to control design and to the case of systems

with parameter uncertainties and perturbations.

1.4.3 Small-gain approach

The idea of the small-gain approach is to consider the influence of the sampling as a
perturbation with regard to the continuous control law (w(t) = K (z(t) — z(s¢))), and to

rewrite the system (1.3) as an interconnection between the system

G: R™ — R™

wo o=z,
defined as
i(t) = Agx(t) + Buw(t
o | 0 = Aw(t) + Bu) oy
2(t) = Cx(t) + Dw(t)
where
Aao=A—BK, C=—-KA,and D =—-KB,
and the operator
A: R™ — R™
zZ = ow,
defined by
t
w(t) = (Az)(t) = —/ 2(6)do, vVt € sk, Sk+1), k € N. (1.25)

The stability of the obtained interconnected system (represented in Figure 1.11), can

then be guaranteed by applying the small gain theorem:

Theorem 1.14 ( [Khalil 2002]) Assume that the interconnected system (G, A) is well-
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>
—~

Va)
~—

A

Figure 1.11: Interconnected system

posed and that ||A||p |G|, < 1. Then, the closed-loop system is internally stable.

This approach requires the analysis of the properties of the operator A. The first

important property of A is that it is norm-bounded by a scalar dy,
1Al . < o, (1.26)

that depends on the upper-bound on the sampling interval 7. In [Cao 1998|, it was
shown that 69 < 7. In [Mirkin 2007|, a better approximation of the upper-bound was
found using the lifting technique: 6y < %7". This last upper-bound can be shown to be
exact since it is attained for a constant sampling interval 7, = sy 1 — sp = 7. Other

properties of the operator A can be exploited, such as its commutativity with any linear
map W = R™ — R",

WA =AW. (1.27)
With these properties, the small-gain theorem allows for writing stability conditions

of the form: )
IWGW |, < 5 for any linear map W = W7’ = 0, (1.28)

0

where W can be seen as a free variable. By invoking the Kalman-Yakubovich-Popov
lemma |[Rantzer 1996, it is then possible to derive checkable stability conditions under
the form of LMIs [Cao 1998|, [Mirkin 2007, |[Fujioka 2009b].

Moreover, it is possible to take into account other properties of the operator A such

as its passivity property for example:
+o0o
<Az z>= / ZT(G)(AZ)(G)CZH <0, Vz € Lo, (1.29)
0

as in [Fujioka 2009b]. In this case, the LMI stability conditions can be obtained through

the use of Integral Quadratic Constraints [Megretski 1997|. Taking into account more
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properties of the operator A may lead to less conservative results since it may add some
other free variables in the obtained LMI stability conditions. This is why in this approach,
an important part of the researches are directed to finding new properties of this A

operator.

The small-gain approach for the stability analysis of sampled-data systems with time-
varying sampling is intuitive, and benefits from a large literature about the small-gain
applications in robust control. The sources of conservatism from this approach are also
well identified. Today however, finding new properties for the operator A or a better way
to rewrite the sampled-data system as an interconnected system has proved to be difficult,

and researches are still under progress.

Although no apparent link exists between the Lyapunov-Krasovskii approach and the
small-gain approach, an interesting observation has been made in [Zhang 2001a] (in the
general context of LTI systems with delay), and more recently in [Mirkin 2007] (in the
particular context of LTI systems with sampled-data systems): in some cases, both ap-

proaches may lead to the same LMI stability conditions.

1.4.4 Convex-embedding approach

The convex-embedding approach |[Hetel 2006], |[Fujioka 2009a|, [Cloosterman 2010], |Gie-
len 2010, is based on the property (1.5) describing the evolution of the system’s state

x(t) with respect to the sampled-state x(s;) and the time t — sy
x(t) = A(t — sk)x(sk), YVt € [Sk, Skt1), kK €N,

and on the study of the transition matrix operator A defined in (1.7). In the case of
sampled-data LTI systems (1.3) with time-varying sampling intervals with values in [T, 7],
7 > 0, the classic Lyapunov theory in discrete-time can be used with a simple quadratic
Lyapunov function V(z) = 27 Pz, so to obtain sufficient stability conditions under the

form of parameter-dependent LMIs:
Ao)'PA(o) — P <0, Yo € [1,7]. (1.30)

These stability conditions involve an infinite number of LMIs, since they depend on a
parameter o that takes values in the line segment [z, 7]. The idea of the convex-embedding

approach is to reduce these conditions down to a finite number, by designing a polytopic
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over-approximation of the operator A. The set of matrices:
A={A@)r e 7). (1.31)

can be over-approximated as follows:

N a1
ACCo{Flicpvy =8 Y aiFla=| 1| €Ay, (1.32)
i=1 ax
where F; € M,, .., i € {1,---, N} are suitably constructed matrices, N is the number of
vertices in the polytopic over-approximation, and:
N
A:{aERN|ai20,We{1,~-~,N}, and Zai:1}. (1.33)
i=1

The properties of the over-approximating convex set Co{ F;}ic(1,... vy makes it possible
to derive a finite number of sufficient stability conditions from (1.30), by writing simple

LMIs over the polytope vertices:
F'PF,— P <0, Vic{l,---,N}. (1.34)

Recently, a continuous-time approach to the stability analysis of sampled-data systems
based on convexification arguments has been proposed in [Hetel 2011b|. It is based on

the parameter-dependent LMI:

T
ATP+ PA —PBK

* 0

) A(o)

Ao
I 1

<0, Yo € [1,7], (1.35)

and the same convexification tools.

Several over-approximation methods to design the polytope vertices F; from (1.32)
can be found in the literature. The main techniques are based on gridding and norm-
bounding [Donkers 2009], [Fujioka 2009a], [Skaf 2009], Taylor series expansion |[Hetel 2006/,
|[Hetel 2011b|, [Hetel 2007], real Jordan form decomposition [Olaru 2008|, [de Wouw 2010],
|Cloosterman 2010|, or the Cayley-Hamilton theorem |[Gielen 2010|, |Goebel 2009]. A
short comparison on numerical examples of these different approaches can be found in
[Heemels 2010].

The main advantages of the convex-embedding approach for the stability analysis of
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sampled-data systems is that it is intuitive, and not very conservative when compared to
other methods. Also, it was proved that convex embeddings allow for approaching the
stability condition (1.30) as close as desired, by increasing the computational complexity
of the over-approximating algorithm. The main drawback of the method is that it is
complex to apply, and it may be computationally demanding, depending on the chosen

numerical precision.

1.5 Dynamic control of the sampling: a short survey

In the previous section, which concerned sampled-data systems with time-varying sam-
pling, it was shown that using a sequence of stable constant sampling intervals may desta-
bilize the system, while using a sequence of unstable constant samplings may stabilize it.
This particular behaviour [Wittenmark 1995|, [Zhang 2001b], [Li 2010], very similar to
the one observed in switched systems |Liberzon 1999|, has been intensively studied over
the past decade. In the context of embedded systems and networked control systems par-
ticularly, it raised the following problem: how to control the sampling in order to reduce
the number of sampling instants while stabilizing the system?

In the last few years, an increasing attention has been brought to this question, and
a number of works regarding this issue have been made. Their objective is to reduce the
quantity of information sent from the sensors to the actuators, by controlling the sampling

through a sampling law (see Figure 1.12):
Sk41 = S + 7(t, sk, x(sk), - -+ ), VE e N. (1.36)
In the literature, two main approaches covering this issue can be found:

e In the first approach, the event-triggered control (also called event-based con-
trol or event-driven control in the literature) [Tabuada 2007], [Cogill 2007],
[Heemels 2008], [Lunze 2010], [Mazo Jr. 2011|, [Cervin 2007], [Velasco 2009], [Al-
bert 2004], [Wang 2008], [Frazzoli 2012]|, the sampling is performed only when certain
events occur. These events are usually generated when the system’s state crosses a
frontier in the state space. It may be generated for example when the state is leav-
ing some neighbourhood of the origin, or when the error between the sampled-state
x(sy) and the current state z(t) exceeds a certain bound. A dedicated hardware is

required in order to monitor the plant and generate such events.
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e The second approach, the self-triggered control [Lemmon 2007], [Wang 2009],
[Wang 2010], [Mazo Jr. 2009a|, [Mazo Jr. 2010], [Anta 2010], [Anta 2009], [Anta 2012],
[Dimarogonas 2010], [Araujo 2011], [Tiberi 2010], aims at emulating event-triggered
control without dedicated hardware, by computing at each sampling instant a lower-
bound of the next admissible sampling interval (i.e. an estimation of the next time

an event is going to be generated).

©(t) = Az(t) + Bu(t)

Y

SYSTEM

u(sy) = —Kz(sy) x(sk)
CONTROLLER

D/A

A

A

A/D

A

Spy1 = Sk + T(t, Sp, v(58), - +)

Figure 1.12: Sampled-data system with a dynamic sampling control

Although these two approaches have become very popular in the control community,
it is important to note that there exist other ways of dealing with the dynamic control
of the sampling, using tools from the computer science community. We can mention
the approaches based on adaptive scheduling strategies such as the scheduling (m, k)-
firm [Felicioni 2006], [Felicioni 2008], or the control aware computing strategy [Simon 2012]

for example.

In the following, we present a brief overview of the most notable results of event-
triggered control and self-triggered control from the literature. Note that although these
two approaches are technically very different regarding their real-time implementation,
their aims are the same: the reduction of the sampling rate. That is the reason why in
the following, we will mix both approaches, and present the self-triggered control schemes
(when they exist) as extensions or improvements of their associated event-triggered control

schemes.
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1.5.1 Deadband control approach

The main idea of the first event-triggered controllers was that it is not necessary to update
the control of the system when its state is close enough to the equilibrium point. In these
works (see |Otanez 2002|, or [Cervin 2007| for example), the control is updated only when
the state leaves (or also enters, in some works such as [Cervin 2007|) some neighbourhood

of the origin. Such neighbourhood (say ||x(t) — zo|| < €) is called a deadband.

The system generally considered in this approach is:

Az(t) + Bu(t) + Bw(t), Vt € Ry, (1.37)

=-
—~
= =
I

with z € R the controlled output of the system, and u a saturated control input.(A, B)
and (A, C') are assumed to be respectively stabilizable and detectable. In [Cervin 2007| for
example, the authors aim at designing a controller that reduces the number of actuations,
while guaranteeing that the state stays in a neighbourhood of the origin. In order to
ensure that the disturbances will not make the output drift away from zero, on the one

hand, the control outside the deadband is designed as follows:

u(t) = —sgn(z(t)), Vt > 0. (1.38)
On the other hand, inside the deadband, the control is:

u(t) = —sat(Kz(t)), Yt >0, (1.39)

and is based on a simulation of the ideal evolution of the system, obtained thanks to the
following reset observer (placed on the actuators):

2(t) = A&(t) + Bu(t), Vt € Ry, (1.40)

In this deadband approach, the reset observer’s state is updated only at time s; when
the controlled output z exceeds a certain threshold z,.: the event z(¢) = x(t) is generated
when |2(t)| = zpax-

The controller gain K is designed to assign the closed-loop matrix A — BK the desired
eigenvalues. Note that this observer, which resets the estimated state according to the

actual state value x(sy), suggests a full state-feedback control.

48



1.5. Dynamic control of the sampling: a short survey

Figure 1.13 presents the controlled output z and the control input u with this event-

triggered control scheme for the double integrator [Cervin 2007]:

1) - [8 3] "0 m ult) m w(t).

A(t) = {1 o} (1),

with a controller gain K = [1 2}, a threshold 2z, = 1, and a perturbation w consid-
ered as a white noise process of intensity 0.01. Note that in the absence of exogenous

disturbance, the system is locally asymptotically stable.

0 20 40 60 80 100
t(s)

Figure 1.13: Event-triggered control from [Cervin 2007| applied on a double integrator

One of the advantages of this approach lays in its easy implementation. It guarantees
the ultimate-boundedness of the system in the presence of bounded perturbations, and
its asymptotic stability in their absence. Also, when the system is well known and the
perturbations stay small, the number of updates to be sent to the actuator will also be
very small. Indeed, in that case, the observer will take the role of a predictor. The
drawbacks of the approach are that it is difficult to estimate the instants when the state
leaves or enters the deadband (therefore the self-triggered implementation is not obvious),
and that only ultimate-boundedness is ensured in the presence of perturbations. Also,

dedicated hardware has to be used at both the actuator and sensor’s sides, to compute
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the estimation of the state used in the control input, and to monitor the plant’s state in

real-time.

1.5.2 Lyapunov function levels approach

Another approach to event-triggered control consists in updating the control only when a
chosen Lyapunov function crosses some predetermined energy levels: V(z(t)) = V(¢, z(sk)).
The main idea of the approach is described in [Velasco 2009], in which it is considered

a nonlinear sampled-data system:

#(t) = f(2(t),u(t)), ¥t >0,

(1.41)
u(t) = —g(x(sg)), Yt € [Sk, Sky1), k €N,
with an event generator defined by some levels of a Lyapunov function V:
Vi(x(t)) = nV(x(sk)), (1.42)

for some given scalar 0 <n < 1.

In order to ensure the stability of the system with such an event generator, it is
necessary to guarantee that after each sampling instant s, there will be a time t > s;
for which the event-triggering condition (1.42) will be satisfied. Otherwise, it means that
there will be no more sampling, and therefore the system will be controlled in open-loop
and may become unstable (in the best case, it will be stable, but it will not be attractive).
To guarantee that there will be an infinite number of sampling using the generator (1.42),
the method proposed in |Velasco 2009, consists in computing an upper-bound n* of the
minimal admissible n (i.e. n* is such that if n satisfies 0 < n* < 1 < 1, then for all
x(sx) € R™, there exists t > s, such that (1.42) is satisfied). In the linear case, a method
based on a gridding of the state space can be used to estimate such n*.

To better understand the approach, consider again the double integrator [Velasco 2009]:

x(t) = [8 (1)] z(t) + [(1)] u(t), vt >0

u(t) = — [10 11] z(sk), Vt € [sp, sp41), k€N

(1.43)

For a value of n = 0.8 (see Figure 1.14, left), one sees that the sampling sequence does

x
not stop, and that the state xr = [ !

] converges to the equilibrium point. For a value of
T2
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n = 0.65 (see Figure 1.14, right) on the contrary, the sampling sequence stops (the event-

triggering condition is not satisfied anymore) and the equilibrium becomes unstable.

Figure 1.14: Lyapunov function levels approach to dynamic sampling control [Ve-
lasco 2009] - n = 0.8 > n*, stable (left) and n = 0.65 < n*, unstable (right)

The main advantage of such an event-triggered control scheme is that it is easy to
understand the control process and to guarantee the stability of the system. Furthermore,
the approach can be used in the context of nonlinear sampled-data systems, although no
method is proposed to compute the value of n* in that case. The main drawbacks are
that it is still an open problem to choose or compute a suitable Lyapunov function, and
that the trigger occurs when entering (and not leaving) the region V' (z(t)) < nV(z(sy)),

which means that the sampling occurs unnecessarily.

1.5.3 Perturbation rejection approach

In the literature, one may also find event-triggered control schemes which intend to
take into account exogenous perturbations in the control [Lunze 2010|, [Lehmann 2011]
[Stocker 2011]. These works aim at controlling the disturbed sampled-data systems, while
estimating and rejecting the perturbations, and at the same time enlarging the sampling
intervals. In this case, the sensors usually need to include an observer which estimates
the perturbation, and a piecewise continuous control is used. The event-generator used
for this kind of controller is similar to the one used for deadband control (i.e. information
is sent from the sensors to the actuators only when the state leaves a neighbourhood of
the origin), except that, here, the error generating the trigger is computed with respect

to the estimated state, instead of the equilibrium point. The events are thus generated
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when the measured state z(t) leaves the vicinity
Q) = {zfllz —2@®)|| < e} (1.44)

of the estimated state Z(t), for a given threshold e.

In [Lunze 2010| for instance, it is considered a perturbed sampled-data LTI system:
#(t) = Ax(t) + Bu(t) + Ew(t), (1.45)

with a bounded disturbance [|w(t)|| < wmax- The disturbance is estimated at each sam-

pling instant s; as a piecewise constant function:

o = 0,

Wy = Wi—1 + (A—l (eA(s;g—Skﬂ) _ I) E)+ (ZE(Sk) B i(sg)) ’ (1.46)

and an observer estimates the state while considering a continuous control feedback wu(t) =

—Kz(t) and the estimated disturbance wy:

I(t) = Aqi(t) + By, Vt € [sg, sp41), k €N,

Z(sk) = x(sk), Vk € N, (147)

with Aq = A — BK, the closed-loop state matrix of the system.

This estimated state serves as a reference, as the "ideal" system (i.e. continuous control
and disturbance known), and is used to define the surrounding (1.44) and to generate the

events.

Then, the control input is designed so as to estimate the "ideal" control input u(t) =

—Kua(t) (i.e. when the state is continuously available at the actuator):
u(t) = —Ketat=)p(s) — KA (eAcl(t_sk) — I) By, (1.48)

The main advantage of this approach is that the perturbation is estimated and taken
into account in the control, which means that if the system is well known and the pertur-
bation is constant or slowly varying, the sampling will be very sparse. Also, unlike most
of the event-triggered approaches which do not take into account the perturbation in the
control, this scheme allows the state to converge to its equilibrium even in the case of
large (slowly varying) perturbations. However, these advantages have a cost: the system

requires dedicated hardware since it is needed to compute the control input in real time,
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it is required to monitor the plant in real time to check if the system’s state does not
leave the surrounding (1.44); besides, it is needed to estimate the state in real time, both
at the actuator and at the sensor’s sides; last, because of the complexity of the controller
and the observers, no method has yet been able estimate the instants when the events
are generated. Therefore, there does not exist any self-triggered control scheme adapted

to this approach.

1.5.4 ISS-Lyapunov function approach

ISS Lyapunov functions constitute another popular dynamic sampling control approach
in the literature, used to perform both event-triggered and self-triggered control. It was
initiated by [Tabuada 2007], and further developed in [Mazo Jr. 2010|, [Anta 2010]),
[Anta 2009] and [Anta 2012].

In the general approach proposed in |Tabuada 2007|, it is considered a nonlinear

sampled-data system:

2(t) = f(2(t),g(x(sx))), Yt € [sp, sk41), k€N, (1.49)

rewritten as the reset system
(1.50)

where e : R, — R" is the measurement error between the current state and the last
sampled state (e(t) = x(t) — x(sg)). The considered system is supposed to be ISS-stable
with respect to the measurement error e. The following definition is used, derived from
the one of the general Input-to-State Stability from [Sontag 2004].

Definition 1.15 (Input-to-State Stability, [Tabuada 2007]) A smooth function V :
R™ — Ry is said to be an ISS Lyapunov function for the closed-loop system (1.50) if there

exist four class Ko functions a, &, «, and vy satisfying

a(llz]l) < V(z) < a(llz[]),

v (1.51)
oz (@ 9(z +€)) < —a([lz]l) +~(el]),

for some norm ||.|| on R™. The closed-loop system (1.50) is said to be ISS with respect to

the measurement error e € R™ if there exists an ISS Lyapunov function for (1.50).
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Let us assume that V' is an ISS-Lyapunov function for the system (1.50). The basic

idea of the approach is that if we ensure that:
Y(lle@) < calllz(®)]), Vi =0, (1.52)

for some 0 < ¢ < 1, then we have:

L fagle+ ) < (1 - a ], (1.53)

which guarantees the asymptotic stability of the system. Therefore, in order to ensure
this stability property, one will want to enforce inequality (1.52) by updating the control

when
Y(lle@)) = ca(llz@)])- (1.54)

Given some additional assumptions on the functions f, g, a and ~, one can prove that there
exists a lower-bound 7 on the sampling interval such that v(||e(sg+0)||) < ca(||z(sp+0)|),

for any o € [0, 7]. In the linear case (1.3 ), the ISS stability conditions are:

elelf < V) < el 5

r (A= BK)z — BKe) < —bl|z[l3 + cllel|2]| 22,

and it is possible to compute a lower-bound estimation 7 of the sampling interval such
that y(|le(sk + o)) < ca(]|z(sk + o)), for any o € [0, 7], by analyzing the evolution of
llell2

the term Tels - The event generator in the linear case is similar to the one obtained in the

nonlinear case (1.54). It is defined as:

bllz()]]2 = clle(t)]2- (1.56)

|Anta 2010| proposed an extension to homogeneous systems, state-dependent homo-
geneous systems, and polynomial systems. The idea is that for these classes of systems,
it is possible to define the sampling function 7 : R® — R by using scaling laws along the
homogeneous rays of the state-space. The principle for the "simple" homogeneous case is

the following. Consider a system:
&= f(x,u), (1.57)

such that the control u = g(x) renders the closed-loop system homegeneous of degree

d € R,. Then, one can show that the sampling function 7 defined by the event generator
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(1.56) scales according to the law:
T(\z) = X7 (x), VA €R. (1.58)

The procedure proposed in [Anta 2010] for designing the sampling function 7 for homo-
geneous and polynomial control systems is based on three steps: first, one needs to design
a linear system which trajectories upper-bound the trajectories of the nonlinear system
around the origin; second, compute a lower-bound estimation of the maximal allowable
sampling for the linear system, using the results from |Tabuada 2007| for example; third,
use the proposed scaling law (1.58) for the nonlinear system.

Further developments are proposed in [Anta 2009| and |Anta 2012|, where the notion
of isochronous manifolds is used to design the scaling laws. In these recent works, the
linear over-approximation is not designed over a ball around the system origin, but over
submanifolds of the state-space containing the states for which the execution times remain

constant.

One of the advantages of this ISS-Lyapunov function approach is to make it possible to
compute in advance an estimation of the future maximal allowable sampling times, thus
allowing to use a self-triggered control. Also, [Anta 2009], [Anta 2010], and [Anta 2012]
have shown easy extensions to a wide class of systems, including linear, homogeneous,
or polynomial systems. However, up to now, no method has been proposed to compute
the ISS-Lyapunov function V' so as to optimize the sampling intervals with this scheme,
even in the linear case. Also, no perturbation is taken into account in this approach,
except for potentially constant delay in [Tabuada 2007]. Finally, note that the lower-
bound estimation of the maximal allowable sampling interval obtained in the linear case
is constant. It does not depend on the state, which means that in the linear case, this
approach will at best provide results similar to a robust analysis with respect to time-

varying sampling.

1.5.5 Upper-bound on the Lyapunov function approach

In the approach presented in [Mazo Jr. 2009b| and [Mazo Jr. 2010], the sampling instants
occur when a Lyapunov function crosses a predetermined boundary around the system’s
origin. Unlike the Lyapunov function levels approach, here the sampling occurs when the
state moves away from the equilibrium point. The boundary is chosen as an exponentially

decreasing function, so as to ensure the system’s exponential stability. The approach aims
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at designing a sampling function 7 : R™ — R that enlarges the sampling intervals

Sk+1 — Sk = T(x(sk)), (1.59)
for perturbed LTI sampled-data systems:

z(t) = Az(t) + Bu(t) + w(t), Vt € Ry
u(t) = —Kx(sg), YVt € [sk, Skt1), k € N,

(1.60)

with a disturbance w(t) assumed to be essentially bounded, while ensuring the exponential

input-to-state stability.

In the unperturbed case, the idea is as follows. Let V be a Lyapunov function with

exponential decay-rate A\ for the closed-loop system with continuous feedback #(t) =
(A — BK)xz(t), and define the map 0.(x(s;),t) = V(x(t)) — V(x(s;))e =) for some
0 < A < \g. By enforcing:

dc(x(sk),t) <0, Vt € [sk, Spt1], k€N, (1.61)

the system’s exponential stability is ensured in the absence of perturbation w. Therefore,

the proposed event generator ideally becomes:
de(z(sg),t) = 0. (1.62)

In practice however, this condition can not be checked, and therefore the sampling map
is discretized into 6q(x(sk), 1) = dc(x(sk), 1A + s), with A the step of discretization, and

the new condition becomes:

Sa(x(sy),i) <0, Vi € {0, FH%%H . (1.63)

Then, in order to predict (thanks to the new discretized map) when the event should

occur, one needs to compute the maximal ¢ such that (1.63) holds:
i(r) = melx\lx{iwd(:v, s) <0,Vse{0,---,i}}, (1.64)
1€
and design the sampling function as:

T(z) = i(x)A. (1.65)
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The main advantage of this approach is that it allows to perform a self-triggered con-
trol for perturbed linear systems which is less conservative than most of the self-triggered
works in the literature. It is based on the discretization of the condition (1.61) which
makes it unnecessary to study the Lyapunov function’s derivative, through conservative
upper-bounds. One of the drawbacks is that no method is proposed to choose the Lya-
punov function, since it is only required to render the unperturbed closed loop system
(exponentially) stable. Therefore, neither the perturbations nor the sampling is taken into
account by the Lyapunov function. Furthermore, the sampling function 7 is computed
online, during the real-time control of the system, and, depending on the discretization

step A, the computations may become very heavy.

1.5.6 Lo-stability approach

One last approach, developed in [Wang 2009| and [Wang 2010|, allows one to perform
both event-triggered control and self-triggered control while taking into account both
exogenous perturbations and delays. It is based on the notion of Lo-stability [Khalil 2002]
and involves algebraic Riccati equations.

It is considered a perturbed, delayed, sampled-data system:

i(t) = Ax(t) + Bu(t) + Ew(t), Vt € Ry,

(1.66)
u(t) —BTPl’(Sk), vVt € [tk,tk+1), k e N,

where s;, and t, denote the ™ sampling and actuation times respectively, with a distur-

bance w € Lo, and a matrix P € S satisfying the H,, algebraic Riccati equation
1
0=PA+A"P—PBB"P+1+ —PEE"P, (1.67)
7

for some constant vy > 0.

The aim of the approach is to enlarge the sampling intervals while guaranteeing the
Lo-stability [Khalil 2002| of the system.

Definition 1.16 (L-stability) A linear system F is said to be finite-gain Lo-stable from
w to Fw with an induced gain less than v if ¥ is a linear operator from Ly to Lo and if

there exist positive real constants v and & such that for all w € Lo,
[Fwlle, < Allwlle, + ¢ (1.68)
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In order to analyze the Ly-stability of system (1.66), we consider a positive semi-
definite quadratic function V : R® — R, defined as V(z) = 27 Pz, with the matrix P
solution of the Riccati equation given in (1.67). It is possible to show that this particular

function satisfies the property:
V(a(t)) < =B2|la(@)]3 + 2 lw (@) + e () Me(t) — 27 (sy) Na(sy), (1.69)

for all t € [ty,tx+1) and all k£ € N, for any scalar 8 € (0, 1], with the measurement error
e(t) = x(t) — z(sg), and matrices M and N defined as:

= (1— %I+ PBBTP, w.70)
=1(1—-$°)1+ PBB"P. '
From the inequality (1.69), we can see that if we enforce that:
e (t)Me(t) < 27 (sp)Nw(sp), Vt € [tr trs1), k €N, (1.71)
then we have:
V(z(t)) < =B(lz(@)I5 + 2 lw(®)]3, V¢ € Ry, (1.72)

which guarantees the Lo-stability of the system, with an L£o-gain less than %

Therefore, the system (1.66) with the event generator e? (t)Me(t) = ™ (sp)Nz(sy) is
Ly-stable. Furthermore, by analyzing the evolution of the term e’ (t)Me(t) for t > t,
it is possible to compute at each sampling instant a lower-bound estimation of the next

allowable sampling interval, and thus perform a self-triggered control scheme.

The main advantages of this dynamic sampling control approach are to ensure the £,-
stability of LTI sampled-data systems in the presence of both perturbations and delays
and to allow for estimating the next allowable sampling interval at each sampling instant.
However, the analytical equations used to estimate the next sampling intervals are very
conservative with respect to the proposed event-triggered conditions. Also, it is important
to note that the Lyapunov function, which is obtained thanks to the Riccati equation
(1.67), does not take into account the sampling nor the delay, and may therefore lead to

conservative results, even in the case of event-triggered control.
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1.6 Conclusion

This chapter has exposed some recent problems encountered in the context of sampled-
data systems, and provided an overview of some important stability and stabilization
results from the literature regarding time-varying sampling and dynamic control of the
sampling.

The studies concerning robust stability with respect to time-varying sampling are not
well fitted for the reduction of the number of sampling instants: they assume that the
sampling law is undergone by the system, disregarding the information coming from the
sensors. In the works about the dynamic control of the sampling, several issues also
remain open. Event-triggered controllers, for instance, require a dedicated hardware to
constantly monitor the plant and generate the events in real-time. In the case of self-
triggered control works, which are based on Lyapunov functions, no method has been
proposed yet to optimize the Lyapunov function while taking into account the effects of
the sampling (nor the perturbations in most approaches in the case of perturbed systems,
nor the delays in the case of delayed systems). Furthermore, the lower-bound estimations
of the next maximal allowable sampling intervals are computed online, during the real-
time control of the system, which often requires a heavy processor load.

In the following chapters we intend to solve these problems by proposing a novel
approach to the dynamic control of the sampling, that we call "state-dependent sampling".
Our point of view is to define a state-dependent sampling law (i.e. a map Tmax : R” = RY)

that allows for enlarging the sampling intervals, following some sampling law

Skr1 — Sk = T(t,x(sk)) € [T, Tmax(z(sk))]-

This map is to be computed offline so as to reduce the online computational cost. It also
must ensure the stability of the sampled-data system, with some additional convergence
or robustness performances. The proposed techniques will make it possible to compute
the Lyapunov functions that are used so as to enlarge the lower-bound 7* of the state-
dependent sampling map (i.e. the maximal sampling that can be used in the worst case,
which can be considered as a state-independent sampling upper-bound), just as in the
works about robust stability analysis regarding time-varying sampling. The robustness

aspects with respect to exogenous disturbances or delays will also be considered.
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Chapter 2

A polytopic approach to dynamic
sampling control for LTI systems: the

unperturbed case

In this chapter, we present a new state-dependent sampling control that allows one to
enlarge the sampling intervals of state-feedback control, in the case of ideal” LTI systems

with sampled-data.

The objective of our approach is to combine the advantages of the works regarding

time-varying sampling:
e maximization of an upper-bound for (state-independent) time-varying sampling;
e design of the Lyapunov function;
e offline computations;

with the advantages of the works regarding dynamic sampling control, especially self-

triggered control:
e control of the sampling;
e consideration of the sampled-state in the sampling design;
e estimation of the next maximal allowable sampling interval.

Computationnally speaking, the approach we introduce here remains tractable, since

it is grounded as an LMI optimization obtained thanks to:

"The next chapters will consider more complex classes.
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e a mapping of the state-space, allowing the design of a maximal state-dependent

sampling function;

e a polytopic embedding design adapted to a continuous-time stability analysis, al-

lowing one to take into account the inter-sample behaviour;

e Lyapunov-Razumikhin-type stability conditions guaranteeing exponential stability

of LTI sampled-data systems for a given decay-rate.

The chapter is organized as follows. To begin with, the next section starts by describing
the system and stating the issue. Then, Section 2.2 provides some generic preliminary
results, while Section 2.3 presents the main tools, and the main stability results. In
Section 2.4 we describe an algorithm that allows for maximizing the state-dependent
sampling function. In Section 2.5, the results are illustrated with numerical examples
from the literature, and for which the number of actuations is shown to be reduced with

respect to the periodic sampling case, before we conclude in Section 2.6.

The proofs of the various propositions, lemmas and theorems can be found in the
Appendix A.1, while the design of the polytopic embedding and the mapping of the

state-space can be found in Appendices C.2 and B respectively.

2.1 Problem statement

Consider the linear time invariant (LTI) system

i(t) = Ax(t) + Bu(t), vt € R,

(2.1)
z(t) = xo, Vt <0,

where x : R — R™ and u : R, — R™ represent the system state and the control function,
and the matrices A and B are constant and of appropriate dimensions. The control is a

piecewise-constant state feedback

u(t) = —Kx(sg), Vt € [sk, Skt+1), (2.2)
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where K is fixed and such that A — BK is Hurwitz®, and where 0 = sy < 51 < --- < 53, <

- are the sampling instants satisfying klim s = oo and defined by
—00
k1 = s + 7(2(s1)), Vk €N, (2.3)

with a state-dependent sampling function 7 : R® — R,. To ensure the well-posedness
of the system, the function is assumed to be lower-bounded by some scalar 6 > 0. This
guarantees that there is no Zeno phenomenon. The existence of such a lower-bound for
our particular design will be proven in Remark 2.6. We denote by S the closed-loop
system {(2.1), (2.2), (2.3)}. For a given sampling function 7, the solution of S with initial
value x¢ is denoted by z(t) = ¢, (¢, zo).

In this chapter, our main objective is to provide a way to enlarge as much as possible
the state-dependent sampling function 7 in (2.3) while ensuring the system’s [-stability,
for a chosen decay-rate [3.

In order to check the system’s [-stability, we use a method based on the Lyapunov-

Razumikhin approach [Kolmanovskii 1992].

Proposition 2.1 Given scalars a« > 1, @ > 0, and 0 < < 1n2(§)’

quadratic function V(z) = 2T Px, P = PT = 0 € M,(R), and a function 7 : R" — R,
0<9d<7(x) <a, such that

(C1): for all x € R™, for all ¢ € [0,7(x)], V(p-(0,2)) + 28V (p,(0,2)) < 0 whenever
aV(e-(o,2)) 2 V(x),

then the origin of S is globally [-stable.

iof there exist a

Remark 2.2 Note that o can be seen as a design parameter that can be freely chosen to
fit some performances. The smaller « is, the less restrictive the stability condition will be.
When « tends to the infinity, one gets a usual Lyapunov stability condition Cil—‘t/ < 0 with
a quadratic Lyapunov function V(z) = 27 Px. When o tends to 1, the stability condition

s relaxed and tends to be sufficient for ensuring stability, but not attractivity.

Remark 2.3 Note that if f = 0 and the inequality V(¢ (o, x)) < 0 in (C1) is reinforced
to be strict, then the classical Lyapunov-Razumikhin [Kolmanovskii 1992] theory ensures

the system’s asymptotic stability.

It is also important to note that all the stability properties in this paper can be

extended to state-dependent time-varying samplings siy1 = sk + 7(Sg, (sk)), Vk € N,

8a Hurwitz matrix (also called asymptotically stable matrix) is a real square matrix, each eigenvalue
of which has a strictly negative real part.
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with a time-varying sampling function 7 : Ry X R™ — R, . The closed-loop system {(2.1),
(2.2)} with such a sampling law is denoted S. Then, Proposition 2.1 becomes:

Proposition 2.4 If there exist functions V' and T satisfying condition (C1) in Proposition
1, then the origin of S is globally B-stable for any time-varying sampling function 7
Ry x R" — Ry satisfying 0 < § < 7(t,z) < 7(x) for allt € Ry and for all v € R™.

These two propositions are proven in the Appendix A.1. Throughout this chapter, we
will focus on solving two main problems. The first problem concerns the design of the
sampling function and is formulated as:

Problem 1: For a given system {(2.1),(2.2)} and a given Lyapunov-Razumikhin

function (LRF) V, we denote 7./

opt () the maximal sampling function such that (C1) holds:

Top () = max 7(z).

7_V

opt (), as large as

Find a lower-bound approximation of this optimal function, 7V, (z) <
possible.

In that formulation, the LRF is supposed to be given, which makes us wonder if there
is a way to choose it. Since the objective is to sample as few times as possible, one will
also want to make sure the minimal sampling interval is as large as possible by solving
the following problem:

Problem 2: For a given system {(2.1),(2.2)}, we denote 77, the maximal lower-

pt

bound of the sampling functions satisfying (C1): 75, = maxinf,egn 7(z).
Find an LRF V ensuring (C1) for a sampling function with a lower-bound 77, < 7, as

large as possible.

2.2 A generic stability property

In order to provide tractable stability conditions from Proposition 2.1, we first introduce

the following Lemma:

Lemma 2.5 Given scalars « > 1, d > 0, and 0 < 3 < h;(;),

P =Pl ~0¢e M,(R), a scalar e > 0, and a function 7 : R* - R, 0 < < 7(x) < 7,
such that for all x € R™, for all o € [0, 7(x)],

iof there exist a matrizc

2" ®(o)z <0, (2.4)
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with .
A(o) A(o)
0] = Q , 2.5
=" ) (2:5)
ATP+ PA P+28P —PBK
* —eP
and .
Ao)=1 —l—/ e*tds(A — BK), (2.7)
0

then the origin of S is globally [-stable.

Remark 2.6 At the sampling instants, ®(0) = (A— BK)TP+ P(A— BK)+¢e(a—1)P+
28P. If the matriz P is such that (A — BK)'P + P(A — BK) < 0 (there exists such P
since A — BK is Hurwitz), we can find € and B as small as needed such that ®(0) < 0.
Since the function that associates the eigenvalues of ®(o) with each time o is continuous
on [0,7(z)], there exists a scalar 6 > 0 such that ®(c) <0 for all o € [0,65]. Therefore,
with these parameters, there always exist sampling functions T that satisfy Lemma 2.5
conditions, and which are lower-bounded by some scalar 6 > 0, hence avoiding any Zeno

phenomenon issue.

Remark 2.7 The use of Lyapunov-Razumikhin type stability conditions is suggested by
the delayed nature of the system, since it uses a Zero-Order-Hold control [Fridman 2004]/.
This method is proved to be less conservative than the usual Lyapunov theory, and the sta-
bility conditions using a quadratic function can be easily computed. Similar stability condi-
tions can also be derived from common quadratic Lyapunov functions (see [Fiter 2011c/f),
input-to-state stable Lyapunov functions, or Lyapunov-Krasovskii functions. All the re-
sults that will follow in this chapter can be reformulated for such functions: all the stability
conditions can be expressed in the form 27 ®(o)x < 0, and only the matriz function ® will

change according to the type of Lyapunov function used.

Remark 2.8 The conditions of Lemma 2.5 are the same for a state x # 0 and for Az,
A € R*. Therefore, it is sufficient to work with homogeneous state-dependent sampling
functions of degree 0 (i.e. satisfying T(Ax) = 7(z) for all x € R™, A € R*) and to check

Lemma 2.5 stability conditions on the unit n-sphere.

65



Chapter 2. A polytopic approach to dynamic sampling control for LTI systems: the unperturbed case

2.3 Main stability results

Lemma 2.5 gives some preliminary stability conditions for a state feedback control system
with a state-dependent sampling. However, one can see that there is an infinite number
of inequalities to check because of both temporal and spatial dependencies in the stability

conditions.

2.3.1 Technical tools

To derive a finite number of stability conditions from Lemma 2.5, a two-step tractable

methodology is proposed:

2.3.1.1 Conic covering of the state-space

First of all, the state-space is covered by a set of ¢ conic regions
R, = {x € R", 27U,z > 0}, ¥, = ¥l € M, (R), (2.8)

for which sampling intervals 7, > 0 are associated. We consider state-dependent sampling

functions of the form

T(x) = max 75, for all x € R™. (2.9)
s€{l,,q} s.t. TERs

The advantage of such a construction is that it allows to reduce the number of stability
conditions from Lemma 2.5 regarding the state variable z to a finite number, by allowing
to check some conditions for the finite number of regions instead of checking them for all
x € R"™.

The choice of this conic covering is motivated by the homogeneity brought up in
Remark 2.8, which says that the only caracteristic about the state that should be taken
into account to design the maximal allowable sampling interval 7(z) is its direction in the
state-space. An illustration of these regions in R? is shown in Figure 2.1.

Two possible constructions of such regions are presented in Appendix B.

e Isotropic covering (see Appendix B.1): the first construction is based on the spherical
coordinates of the state, and is called "isotropic covering" since it considers ¢ conic
regions with the same angle values. For instance, in dimension 2 (see Figure 2.1 for
a graphic representation), the angles of the ¢ conic regions have all the same value %.

This covering can be designed offline, once for all, so that its online implementation
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Figure 2.1: Covering the state-space of dimension 2 with ¢ conic regions R

does not need much computational power (only to compute the spherical coordinates

of the state at each sampling instant).

e Anisotropic covering (see Appendix B.2): the second construction is called "anisotropic
covering' and is based on the discrete-time model behaviour of the system. It is also
designed offline, but its real-time implementation needs some more computations in

order to evalate the position of the state position with respect to the regions.

Each of these two constructions has its own advantages and drawbacks. The advantage
of the isotropic covering is that the online computations are reduced and do not depend
on the number of regions which are considered. The drawback is that, for a given level
of precision, the number of offline computations increases exponentially along with the
system’s dimension. Concerning the anisotropic covering, the situation is reversed: the
offline computations for the anisotropic covering depend linearly on the system’s dimen-
sion, which means that it is better suited for systems of high dimension, but the number
of online computations is larger, and is linearly dependent on the number of regions.

It is important to understand that since the sampling function is defined as constant
on these regions (see (2.9)), the precision of the sampling function is linked to the cho-
sen number of conic regions. Therefore, although the system’s stability is guaranteed
independently of the number of regions, one needs to find a tradeoff between the offline

(in the case of an isotropic covering) or online (in the case of an anisotropic covering)
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computational complexity, and the precision of the state-dependent sampling function.

2.3.1.2 Convex embedding according to time

Let s € {1,---,q}. The matrix function ®(o) is continuous on the compact set [0, 75].
Therefore, it is possible to build a convex polytope defined by a finite set of vertices ®, ,

Kk € Ky (a finite set of indexes), such that for any = € R,
(2@ 52 <0, Vi € Ky) = (2" ®(0)z <0, Vo €[0,7]) . (2.10)

To illustrate the general idea of the approach, a 2D representation of such a convex
polytope is presented in Figure 2.2. Note that in reality, this design is not performed over

a 2D space, as shown in the figure, but over the space of n x n matrices: M, (R).

O(0), o€ 0,74

(I>|/Cs|—1,8

Figure 2.2: 2D representation of a convex polytope around the matrix function ® over
the time interval o € [0, 74

Similarly to the state-space covering, this construction allows to reduce the number of
stability conditions from Lemma 2.5 regarding the time variable o to a finite number, by
allowing to check some conditions on the polytope vertices instead of for all o € [0, 74].

Note that the form of the matrix function ® given by (2.5) enables to build these
vertices as linearly dependent on P, and dependent on the parameters «, €, 3, and &,
which will be very helpful to derive LMI stability conditions later on.

One possible construction of a convex polytope satisfying (2.10) is provided in Ap-
pendix C.2, Lemma C.2 (equations (C.1) to (C.7)). It makes use of the convexification
technique proposed by [Hetel 2006] (presented in Appendix C.1), which allowed to build
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convex hulls around exponential matrix functions using Taylor polynomials. Here, the
major difficulty comes from the fact that the exponential uncertainty A(o) appears in a

bilinear manner in the stability conditions from Lemma 2.5:

T

2T 0 A(o)

A
(IU) x <0, Vr € R" and o € [0, 7(z)]. (2.11)

The design of this convex polytope being quite technical and complex, it has been left to
the Appendix C.2 in order to improve the readability of the manuscript, after presenting

the convex polytope tools from [Hetel 2006], in Appendix C.1.

2.3.2 Stability results in the case of state-dependent sampling

Using these steps, we derive the following Theorem that guarantees the system’s J-

stability for a given sampling function 7.

Theorem 2.9 Let a matrit P = PT = 0 € M,(R), and scalars ¢ > 0, a« > 1, > 0,
and 0 < B < % be given.

Consider the conic regions (2.8), sampling intervals 1, -- , 7, satisfying 0 < 7, < &, and
matrices ®, s satisfying (2.10), for all s € {1,--- ,q}, k € KCs. Let the sampling function
7:R" = R, be defined as 7(x) = 75 for allz € Ry and s € {1,--- ,q}.

If there exist scalars €, s > 0 such that the LMIs

D+ epsWy <0 (2.12)

are satisfied for all s € {1,--- ,q} and k € Ks, then the origin of S is globally -stable.

Theorem 2.9 provides sufficient conditions for Lemma 2.5, which enables to compute
a lower-bound approximation of the optimal sampling function 7

opt (i-€. a solution to
Problem 1).

Remark 2.10 From Theorem 2.9 and Proposition 2.4, similar results can be obtained for
any time-varying sampling function 7 : Ry x R™ — R, satisfying 0 < 6 < 7(t,x) < 7(x)
for all t € Ry and for all x € R™.

2.3.3 Stability results in the case of time-varying sampling

The following corollary proposes a method to analyse the stability in the case of (state-

independent) time-varying sampling. It will be used so as to design the LRF, in order to
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optimize the lower-bound of the sampling function.

Corollary 2.11 Consider a covering of the state-space composed of one single region
R =R". Consider e > 0 a tuning parameter. Let scalarsa > 1, >0, and 0 < g < %,
and matrices ®,; satisfying (2.10), with k € K (the indezes s denoting the regions in (2.10)
are dropped since we consider only one region: R = R"). Let us assume that the sampling
function 7 : R™ — Ry satisfies T7(x) = 7* for all x € R", for a given scalar 0 < 7* < &.

If there exists a matriz P = PT = 0 € M, (R) such that the LMIs ®,, < 0 are satisfied for
all k € K, then the origin of system (2.1) is globally (-stable regarding the control (2.2)

for any time-varying sampling bounded by T*.

Remark 2.12 For a given value of €, one can compute the mazimal 7* (denoted 1) for
which the stability conditions from Corollary 2.11 are satisfied, by using a line search
algorithm on the variable ™ and LMI solvers. Another line search algorithm is then used
on the variable € so as to compute an estimation of the largest upper-bound for time-

varying samplings: T, = SUP.>q T, -

Remark 2.13 The state-independent Corollary 2.11 can be used to compute: an upper-
bound estimation 7}, for time-varying samplings as in the framework of robust control
techniques (i.e. guaranteeing B-stability for any time-varying sampling bounded by 77,,),
which is also a lower-bound estimation of 7, (i.e. a solution to Problem 2); the LRF

V(x) = 2T Pz used for the state-dependent sampling design (in Theorem 2.9).

2.4 General algorithm to design the sampling function

Theorem 2.9 and Corollary 2.11 may be used to solve Problems 1 and 2 respectively.
While Corollary 2.11 gives a way to compute the LRF parameters P and £ maximizing an
estimation of the lower-bound 7* of the sampling function 7 under the stability conditions
of Proposition 2.1, Theorem 2.9 gives a way to approximate the sampling function ngt
on state regions, for given P and . A method to apply the proposed technique is the
following:

Step 1: First, use Corollary 2.11 and the polytopic description (C.2) with v = 0. Then,

the research for P is an LMI problem, and we may optimize the search of a lower-bound
estimate 77, of 75, as well as its associated ¢ using the technique proposed in Remark
2.12.
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Step 2: Next, we compute the value v assigned to the obtained P and e, and we
evaluate the matrix inequalities ®,, < 0 in Corollary 2.11 so as to obtain the value 73, <
7o Which satisfies the stability conditions.

Step 3: Finally, the LMI conditions from Theorem 2.9 are used with the computed
values of P, € and v to approximate the maximal state-dependent sampling function 7‘3&
(i.e. 7V (z) = maxT,, Vo € Ry, s € {1,---,q}, such that the LMIs (2.12) hold). Note
that it is possible to solve the LMIs to maximize the sampling times 75 on each region

separately.

Remark 2.14 This algorithm provides a practical method to build a lower-bound approx-

imation 1), of the optimal sampling function T,

opt- A8 most of the numerical methods,

there is no a priort evaluation of the gap between the obtained function and the optimal
function. Howewver, the benefits of this technique are shown for some benchmarks from the

literature in Section 2.5.

2.5 Numerical examples

2.5.1 Example 1

Consider the following system from [Hetel 2011b]:

N T N Y
x(t)—[ . 3'5] (0 HKU),

K = [—1.02 5.62} .

After setting the polynomial approximation degree term N = 5, the number of polytopic
subdivisions [ = 100, and the number of equal conic regions ¢ = 100 (isotropic covering
on the unit sphere z = ¢, § € [—n, 7], see Appendix B.1), we can obtain a mapping of
the state-space that gives the maximal allowable sampling interval for each state for a
given decay rate 8 > 0 thanks to Corollary 2.11 and Theorem 2.9. For each f3, after fixing
7, we set the LRF performance parameter o« > 1 (see Remark 2.2) as small as possible
and such that g < % The state-dependent sampling functions obtained offline and
ensuring the (-stability of the system for different decay rates § are presented in Figure
2.3.

For a constant sampling greater than 7772% = 0.469s the discrete-time dynamic matrix

is not Schur anymore, so the system becomes unstable. However, with the proposed
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Tinax ()

0 (rad)

Figure 2.3: Example 1: State-angle dependent sampling function 7 for different decay
rates [

technique, we can go beyond the limit 77525 for some regions of the state-space (up to 1s
for g =0).

Figure 2.4 (resp. Figure 2.5) shows simulation results with 5 = 0 (resp. 5 = 0.05) and
a random initial state. It first shows the sampling intervals (the blue piecewise-constant
curve), with the lower-bound of the offline computed state-dependent sampling function
(the red horizontal line), and the limit 7702 of the periodic case (the green horizontal
line), before showing the LRF evolution. The sampling times are represented by the red
dots on each graph. Note that the evolution of the LRF illustrates the conservatism of the
(sufficient) stability conditions from Theorem 2.9. For 5 = 0, for instance (see Figure 2.4),
the triggering condition from Proposition 2.1 should be V(z(t)) = W ~ V(z(sk)),
when V(z(t)) > 0 (a was set to 1.001). Thus, the gap between V (z(sz)) and V (z(t)) at

the triggering instants in the simulation represents the conservatism of the method.

In Figure 2.4 (8 = 0), one can see that the number of actuations over the 20s time

interval is 31 instead of 43 with T2 . For any (tested) initial condition in the simulation,

the average sampling time converges to Tyyerage = 0.7265 o~ 155%T02% .

For a given decay-rate § > 0, the maximal constant sampling ensuring [-stability is
given by T5% (3) = argmax {T >0, —w > B} < T where Apax is the eigen-
value of A4(T") with greatest modulus. In the simulation of Figure 2.5 (8 = 0.05), we can
observe that Tyierage over 20s(8 = 0.05) = 0.486s > T 2% = 0.469s > T2 (8 = 0.05) =
0.457s.

This means that it is possible to sample less in average than with the maximal periodic

sampling 7752% while still ensuring asymptotic or exponential stability. Although we can

72



2.5. Numerical examples

T(x(t,)

V(x(®)

0.5

L[] F rIl

0 5 10 15 20
t

0 5 10 15 20

Figure 2.4: Example 1: Inter-execution times 7(z(s;)) and LRF V(z) = 27 Pz for a decay

rate =0

T(x(t)

5 10 15 20

Figure 2.5: Example 1: Inter-execution times 7(z(s;)) and LRF V(z) = 2T Px for a decay

rate § = 0.05

not guarantee that this will always be the case, the state-dependent sampling presents

some advantages compared to periodic sampling:

- It ensures some convergence performance (/-stability for a given decay-rate 3, or asymp-

totic stability if 5 = 0), whereas constant sampling with 7/22% only ensures marginal

const

stability and doesn’t give any hint about the inter-sampling state behaviour.
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- It guarantees robustness regarding possible fluctuations of the sampling period, which
is inherent to practical applications (due to scheduling issues for example). The state-
dependent sampling approach ensures the system’s S-stability for any time-varying sam-
pling period satisfying 0 < 6 < 7(¢t,z) < 7(x), for all t € R, and for all z € R" (see
Remark 2.10).

Note that in many numerical examples, the lower-bound 77, of the sampling function
is usually not far from the value of 7732% . In the worst case scenario, we can take a constant
sampling interval equal to 7. Also, since Remark 2.10 ensures asymptotic stability for
any time-varying sampling bounded by the designed function 7 with 5 = 0 (i.e. any time-
varying sampling with values under the blue curve in Figure 2.3), it is also interesting to
compare the lower-bound 7, = 0.329s (computed using Corollary 2.11) of the designed
state-dependent sampling function with the maximum upper-bounds obtained in recent

papers about (state-independent) time-varying sampling, as shown in Table 2.1.

[Naghshtabrizi 2008] | [Seuret 2009] | [Fujioka 2009b] | [Fridman 2010] | Corollary 2.11
0.165s 0.198s 0.204s 0.259s 0.329s

Table 2.1: Example 1: Maximum upper bounds 7, for time-varying samplings, allowable
on the whole state space

2.5.2 Example 2

Consider the Batch Reactor system from [Mazo Jr. 2009al:

138 —020 6.71 —5.67 0 0
—0.58 —429 0 067 567 0
#(t) = (t) + u(t),
1.06 427 —6.65 5.89 113 —3.14
0.04 427 134 —2.10 113 0

—0.1006 0.2469 0.0952  0.2447
—1.4099 0.1966 —0.0139 —0.0823|

We use the same parameters N = 5 and [ = 100 as in the previous example, along with
o = 1s and ¢ = 30 conic regions built using the method proposed in the Appendix B.2,
and design the mapping of the state-space for § = 0. Figure 2.6 shows a representation
of this mapping with respect to the angular coordinates of the state. This state-space
mapping (in dimension 3 if we consider only the angular coordinates and omit the radius

of the state) provides a precise knowledge of the sampling function 7 (which varies from
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Top = 0.4409 t0 0.9883 < 7). In comparison, the value of the maximal allowable constant
sampling T703% is 0.5534s. Using this mapping, we obtain the simulations shown in Figure
2.7.

Figure 2.6: Example 2: Mapping of the state-space (regarding the angular coordinates)
for =0 - The redder, the larger the maximal allowable sampling interval
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1t
= — I
X 05F —
=
0 1 1 1 1 J
0 2 4 6 8 10
t
0.01¢
¥ 0.005
>
0 1 1 1 1 J
0 2 4 6 8 10

Figure 2.7: Example 2: Inter-execution times 7(z(s;)) and LRF V(z) = 27 Pz for a decay
rate 5 =0

The number of actuations over the first 10s time interval (see Figure 2.7) is 17, which
can be compared to the number of updates presented in [Mazo Jr. 2009a] (32 in the best
presented case), and the obtained average sampling time is Tjyerage = 0.5898 > T702% .

This example can also be treated via the isotropic conic covering presented in Appendix
B.1. With 8000 conic regions, one obtains 21 updates over the first 10s.

2.6 Conclusion

In this chapter, we have introduced an LRF based design for a state-dependent sampling
function 7 ensuring the exponential stability with a given decay-rate for ideal LTI sampled-
data systems. The proposed method can be seen both as an offline self-triggered control
scheme and as a new time-varying sampling analysis leading to a state-dependent sampling
design. A lower-bound estimation of the maximal sampling function is proposed. The

method presents several advantages:
e [t makes it possible to maximize the lower-bound 7* of the proposed function;
e [t provides the associated LRF parameters;

e The real-time implementation takes advantage of an offline designed mapping of the

next sampling interval with respect to the past sampled-state value.
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Chapter 3

A polytopic approach to dynamic
sampling control for LTI systems: the

perturbed case

In the previous chapter, it was presented a state-dependent sampling control for ideal
LTI sampled-data systems, and it was shown the benefits of the polytopic embedding ap-
proach for some benchmarks from the literature. In practice however, during the real-time
control of a dynamical system, perturbations may appear: exogenous unknown inputs,
parametric uncertainties, measurement noises, computation and actuation delays, un-
modeled dynamics, etc. Such disturbances may destabilize the system, and thus it is
necessary to analyse this robustness aspect. In this chapter, we will propose methods for
robust stability with respect to perturbations in continuous-time, using convex embed-
dings. Note that although a large amount of works have been presented on convex embed-
dings [Donkers 2009|, [Fujioka 2009a|, [Skaf 2009], [Hetel 2006|, [Hetel 2011b], [Hetel 2007/,
[Olaru 2008|, |[de Wouw 2010|, [Cloosterman 2010], |Gielen 2010|, |[Goebel 2009], none of
them has included robustness with respect to perturbations. In fact, including exogenous
unknown perturbations in the stability analysis is not a simple matter.

In this chapter, we propose to include this robustness aspect with respect to un-
known exogenous perturbations that are state-bounded (i.e. the perturbation w satisfies
lw(t)]]? < W||z(ty)||?, for some constant scalar W), and we provide tools to perform robust
stability analysis regarding time-varying sampling, event-triggered control, self-triggered
control, and state-dependent sampling. For each of these applications, we ensure the
system’s [-stability for a given decay-rate (3, thanks to Lyapunov-Razumikhin stability

conditions and convexification arguments.
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The chapter is organized as follows. First, we state the problem in Section 3.1 and
propose the main stability analysis in Section 3.2. Then, Sections 3.3 to 3.6 provide tools
for the robust stability analysis regarding time-varying sampling and for the design of
the different dynamic sampling controllers. Finally, some simulation results are shown in
Section 3.7 before concluding in Section 3.8. As in the previous chapter, all the proofs
are given in the Appendix A.2, and the proposed technical construction for the convex

embedding can be found in Apendix C.3.

3.1 Problem statement

In this chapter, we consider the perturbed LTT system
#(t) = Az(t) + Bu(t) + Ew(t), Vt € Ry, (3.1)

where x : R, — R" u: Ry — R™, and w : R, — R™ represent respectively the system
state, the control function, and the exogenous disturbances. The matrices A, B, and F
are constant with appropriate dimensions.

Similarly to the case presented in Chapter 2, the control is assumed to be a piecewise-

constant state feedback
u(t) = —Kx(sg), Vt € [sg, s541), Vk EN, (3.2)

where K is fixed and such that A — BK is Hurwitz® (i.e. it is assumed that the system
(3.1) without perturbation is asymptotically stable with the continuous state feedback
u(t) = —Kux(t)).

Moreover, the sampling instants 0 = sg < s1 < - -+ < 5 < - -+ verify kh_}rgo Sp = 00, and

the sampling intervals are set to satisfy
Sk1 — Sk = T(Sk, T(sk)) = 75 € [0, Tmax(z(s8))], Vk €N, (3.3)

with a scalar § > 0 that ensures the well posedness of the system (no Zeno phenomenon
issue), a sampling function 7 : R, x R” — R, , and a maximal sampling map 7. : R” —
R,. This sampling map defines the upper-bound of the sampling intervals and can be

seen as a maximal time-invariant sampling function.

%a Hurwitz matrix (also called stable matrix) is a real square matrix for which each eigenvalue has a
strictly negative real part.
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The exogenous disturbance is assumed to be state-bounded in a similar way as in
[Wang 2009]:

I > 0, w2 < Wa(si)|2, VEE [sp si), VE € N. (3.4)

Such a perturbation can represent model uncertainties, local nonlinearities, or measure-

ment noise for example.

We denote by S the closed-loop system {(3.1), (3.2), (3.3), (3.4)}. For given sampling

function 7 and disturbance w, the solution of § with initial value z( is denoted by
l’(t) = @T,w(ta xO)' (35)

Our main objective is to provide a way to enlarge as much as possible the maximal
sampling map Tyax from (3.3) while ensuring the the system’s S-stability for a chosen

decay-rate [3.

In order to check the S-stability of S, as in the unperturbed case, we use a Lyapunov-
Razumikhin approach [Kolmanovskii 1992] which we formulate for a wider class of per-

turbed systems as:

Proposition 3.1 Consider the switched nonlinear system
(t) = fr(t,z(t), x(sk), w(t)), VYt € [Sk, Sk+1), Yk €N, (3.6)

with switching instants sy satisfying (3.3), and an unknown exogenous perturbation w :
R, — R™ which is supposed to be locally essentially bounded [Mancilla-Aguilar 2005].
The functions fr : Ry x R x R® x R™ — R" are assumed to be locally Lipschitz with
respect to their second variable, x(t). For given sampling function T and disturbance w,
the solution of system {(3.3),(3.6)} with initial value xo is denoted by x(t) = ¢r.(t, xo).
Consider scalars o > 1, 7 >0, >0, and 0 < § < %, and a map Tpe @ R* — Ry,

0 <9 < Thae(x) < 7. If there exist a continuously differentiable function V : R™ — R,
and scalars 0 < Y7 such that

For all x € R", Allz|)5 < V(z) < 7|5, (H1)
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and

For all x € R™, for all o € [0, Tyae()],

V(QSTmaz,w(a, x)) + 18V (pr (0, x)) < 0 whenever aV (¢, w(o,z)) > V(x), (H2)

then the origin of the switched nonlinear system {(3.3),(3.6)} is globally (-stable.

Note that if 3 = 0 and the inequality V (¢, (0, 2)) < 0 in (H2) is reinforced to be
strict, then the classical Lyapunov-Razumikhin |[Kolmanovskii 1992] theory ensures the
system’s asymptotic stability.

For simplicity, in this chapter, we will only consider the case of quadratic LRF V(x) =
2T Pz, for which we derive the following stability condition:

Proposition 3.2 Consider scalars « > 1,5 >0, 0< 8 < 1112(;), and W >0, and a map
Tmaz * R" = Ry, 0 <0 < Tpae() < 7. If there exists a quadratic function V(x) = 27 Pz,
P € S} such that

For all x € R, for all o € [0, Tpas(T)],

. H3
V{(Prmaw(0, %)) + 20V (07000, 7)) <0 whenever aV(pr, ., (0, 7)) = V(z), )

then the system S is globally B-stable.

As in the unperturbed case presented in the previous chapter, we will focus on solving
two main problems. The first problem concerns the design of the LRF V' and is formulated
as:

Problem 1: Given the system {(3.1),(3.2),(3.4)}, find an LRF V such that there
exists a sampling map Ty, satisfying (H3) with a minimum value 7% = inf cgn Tax () as
large as possible.

The objective of Problem 1 covers the ones in the works about robust analysis regarding
time-varying sampling (see Chapter 1, Section 1.4), since it is about searching for an LRF
that allows for a larger upper-bound 7* on (state-independent) time-varying sampling.
The second problem concerns the design of the sampling map 7.« and is formulated as:

Problem 2: Given the system {(3.1),(3.2),(3.4)} and an LRF V, design a lower-

7V (1) = max Ty () such that (H3)

bound approximation of the optimal sampling map 7,

holds.
This formulation covers the problems of most works about dynamic sampling control
(see Chapter 1, Section 1.5).
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By combining the results from these two problems (i.e. designing the sampling map
of Problem 2 thanks to the LRF designed in Problem 1), it is possible to design a robust
sampling law for which the lower bound of the sampling map (i.e. the maximal sampling
in the worst case scenario) is optimized. Note that although the works in the literature
about dynamic sampling control bring a particular attention to prove the existence of
a strictly positive lower-bound on the sampling map, they do not address this issue of

maximization of the lower-bound.

3.2 Main stability results

In this section, our aim is to derive sufficient stability conditions from Proposition 3.2
that depend solely on the time variable ¢ and on the sampled-state x.

First, we introduce the dynamics of the studied system S in (H3) and propose conditions
that are equivalent to the ones of Proposition 3.2. It represents an extension of Lemma

2.5 to the case with perturbations.

h;(;‘), and W > 0, and a map

Tmaz * R" = R., 0 <6 < Tee(x) < 7. If there exist a matriz P € S} and a scalar e > 0
such that for all x € R, and all o € [0, Tpas(x)],

Lemma 3.3 Consider scalars « > 1, ¢ > 0, 0 < 8 <

Aoz + Ju(@)] [A@)e + Ju(o)
x Q x <0, (3.7)
w(o) w(o)
with the matrices .
Ao) =1+ / eAds(A — BK), (3.8)
Ju(o) = /00 e Bw(s)ds, (3.9)

and
ATP + PA+4eaP+2B8P —PBK PE

0= « —eP 0 |, (3.10)

* % 0

then the system S is globally (-stable.

Note that in (3.7) appear the sampled state x(s;) = = and the time ¢ — s, = o, but

also other terms that result from the unknown exogenous disturbance, w(o) and J,(0),
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and which need to be removed. Ideally, the aimed stability conditions have the form
2'T(0)z <0, Vo € R", Vo € [0, Tmax()]. Such a form is adapted for the four considered

techniques:

e For robust stability analysis with respect to time-varying sampling, this form al-
lows for removing the state-dependency and derive a parameter-dependent matrix
inequality II(c) < 0.

e For event-triggered control, it makes it possible to derive a simple event-generator
that can be checked in real-time, of the form x(s;,) TI(t — si)z(sx) = 0.

e For self-triggered control, it allows one to compute at each sampling instant s
a lower-bound estimation of the next maximal sampling interval, by studying the

evolution of the term x(s;,)TTI(t — sg)x(sy).

e For state-dependent sampling, the form z”Tl(c)z =< 0 is adequate to provide a

stability analysis over conic regions of the state-space.

In the following theorem, we derive the central stability conditions by bounding the

effects of the perturbations on the system’s evolution, using the assumption (3.4).

Theorem 3.4 Consider scalars a« > 1, 6 > 0, 0 < g < @) " ond Wo> 0, and a map

2
Tmaz * R" = Ry, 0 < < pae() < 0.
Then, the system S is globally (-stable if there exist scalars € > 0, n > 0, and p > 0,
matrices P, ®1, ®y € SI*, and O3 € S;*, such that

O3 —nl Mg
Ole—i-(I)l—l—(I)gj,u[, jO, (311)
k —@2
and
2'(0)x <0, Vo € R™, Vo € [0, Thae(T)], (3.12)
with

(o) = A(o)"MA(oc) — A(o)" PBK — KTBTPA(0) — P
+ My () ®7 My(0) + My(0)T @5 My(a) + Wil + oW pidas( ETE) fa(0)1,

where

M, = AP + PA+eaP + 2P, My(c) = —PBK + M;A(0),
M3 = PE, M4(O') = ETPTA(O'),
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and

1 Amaz(A+AT)o ; T
fale) = | o (A = 1) i A+ AT) 2.0,

o otherwise.

(3.15)

The sufficient stability conditions from Theorem 3.4 will be used as a stability basis
throughout the rest of the work, for robust stability analysis with respect to time-varying
sampling, event-triggered control, self-triggered control, and state-dependent sampling.

They involve a few LMIs (3.11) as well as the more complex set of conditions: z”TI(0)x <
0, Vo € R™, Vo € [0, Tax(x)].

Remark 3.5 In Theorem 3.4, P corresponds to the LRF matriz, € comes from the appli-
cation of the S-procedure to rewrite in a more convenient way the LRF stability conditions,
and the scalars n and p, as well as the matrices ®; correspond to degrees of freedom used
in the majorations of the perturbations w(o) and J,(o) from Lemma 3.3. One easy way
to deal with these free matrices would be to use identity matrices. However, this would
remove the degrees of freedom that were gained, and it could well result in overly con-
servative stability conditions. In the next section, an algorithm to efficiently compute all

these parameters will be presented.

Remark 3.6 Similarly to the unperturbed case, for any given state x # 0, the condition
(3.12) from Theorem 8.4 remains the same for any state y = \x, X € R*. Therefore, it is
sufficient to work with homogeneous sampling maps of degree 0 (i.e. satisfying Tma(Ax) =

Tmaz(x) for all z € R™, X € R*) and to check condition (3.12) over the unit n-sphere.

In the next sections, we show how to adapt the obtained stability conditions and how
to reduce their number, so as to perform a robust analysis with respect to time-varying

sampling, or a dynamic control of the sampling.

3.3 Robust stability analysis with respect to time-varying

sampling - Optimization of the parameters

In this section, we study the stability for (state-independent) time-varying samplings and
provide tools to compute the parameters that appear in Theorem 3.4. We consider a

constant (i.e. state-independent) sampling map:

Tmax (T) = riglobal) vy = R7 (3.16)

max

83



Chapter 3. A polytopic approach to dynamic sampling control for LTI systems: the perturbed case

and look for a stability analysis and an algorithm that allow us to compute:

e astate-independent upper-bound estimation 762" = 7* for time-varying sampling

as in the framework of robust control techniques (i.e. guaranteeing [-stability for

any time-varying sampling bounded by 7*),

e the associated LRF V(x) = 27 Pz (as well as additional parameters ®;, ®,, @3, ¢,
n and p), thus solving Problem 1.

With this aim in mind, we need to reduce the number of conditions from (3.12) in
Theorem 3.4 from an infinite number in both the time ¢ and state x variables, to a
finite number that is independent of the state x. Also, in order to compute the various
parameters, we want to remove the inverse terms ®;' and ®;', and write this finite

number of conditions in the form of LMIs.

Lemma 3.7 The condition (3.12) in Theorem 3.4, with the sampling map (3.16), is
satisfied if and only if the parameter-dependent LMI

R(o) My(o)" My(o)”
Alo) = | =« — P, 0 | =0 (3.17)

is satisfied for all o € [0, T,(,‘f’é;bal)], with
R(o) = A(0)"MA(o) — A(0)'PBE — KTBTPA(o) — P

(3.18)
+Wnl + oW pdpas(ETE) fa(o)I.

In order to reduce the number of conditions regarding the time-variable, we propose
the following convex embedding method:

Convex embedding according to time: The matrix function A is continuous on the
compact set [0, Tr(ﬁ%?(bal)]. Therefore, similarly to the unperturbed case, given Tr(ng;?(bal) <0,
it is possible to build a convex polytope defined by a finite set of vertices around A(co), for
o €0, Tr(ﬁ%?(bal)]. For the sake of generality, and to define notations that can also be used
in the other applications presented in this chapter, we will consider the set of vertices as

a function of the maximum sampling interval considered

Av: [0,6] = Mo, (R)

lobal 7 lobal
Tr(r%a?(a) — An(Trglga,?ca))-
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Similarly, we consider the set of indexes for the vertices as a function of the time

K: [0,5] — PK)

lobal lobal
TIgnga?( ) — K(Trgnga?( a,))’

where K is a finite set of indexes. In that description, P(K) denotes the power set of K

and means that K(n&e™) C K, for all &™) € [0, 7).

Figure 3.1 presents a 2D illustration of such a polytopic design for two different values

of 78 5 and o3 (0 < 0¥ < % < 7). Here, one can see that the number of vertices
as well as their value/position changes with respect to the value of Tr(ri‘%?(bal). Remember

that this figure shows only an intuitive representation of the convex embedding, since the
function A evolves in the (2n + n,) x (2n + n,) matrices space, and thus can not be

represented in a 2D space.

< N,
< >

o€ [0,07]

A
\ 4

o €0, 03]

Figure 3.1: Illustration of the convex embedding design
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(global)
X

With these notations, and for a given Tmax ~, we can build the convex embedding

such that the following property is satisfied:

(Ba(r8) 2 0, ¥ € K(HEM))

\ (3.19)
<A(0) <0, Vo e [o,Télg;?{ba”]) .

Note that the form of the matrix function A given by (3.17) enables to build these
vertices Aﬁ(réﬂiba”) as linearly dependent on P, ®;, ®3, 1, and p, and dependent on the
parameters «, ¢, #, and 6. One possible construction of a convex polytope satisfying
(3.19) is provided in the Appendix C.3.

This convex embedding approach allows for obtaining the following theorem.

Theorem 3.8 Consider € > 0 a tuning parameter. Let a scalar 0 < T,(,Lgé(;bal) < 7 and the

, . _ In(a)
constant sampling magi defined in (8.16). Let scalars o > 1,5 > 0,0 < f < 5=, and
W >0, and matrices AR(T%‘;MD) satisfying (3.19), with k € IC(T%(;MD).

If there exist matrices P, ®1, &y € S, &3 € S;*, and scalars n > 0 and p > 0, such
that the LMIs (3.11) and AH(T,(,%ZMD) = 0 are satisfied for all k € IC(T%(;MD), then the

system (3.1), subject to perturbations (3.4), is globally B-stable with respect to the control

(8.2) for any time-varying sampling bounded by Tiglobal),

Remark 3.9 This theorem provides a stability analysis for systems with time-varying
sampling upper-bounded by agtobal) e tuning parameter € can be optimized by using a
line-search algorithm and LMI solvers. The idea is the following.

For a given value of €, one can compute the mazimal 750 (denoted Tagiobal) (¢)) for which
the stability conditions from Theorem 3.8 are satisfied, by using a line search algorithm
on the variable 792" and LMI solvers. Then, another line search algorithm is used on
the variable € so as to compute an estimation of the largest upper-bound for time-varying

o lobal
sampling intervals: " = sup. e a)(é).

Using the following algorithm, it is possible to compute a lower-bound estimate of
the maximal allowable sampling interval for time-varying sampling. Here, we use the
polytopic description (C.14) (in Appendix C.3), which is based on Taylor series approx-
imations. This approximation induces an estimation error which can be upper-bounded
by a scalar v, defined in (C.21).

Algorithm:
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3.4. FEvent-triggered control

Step 1: First, we use Theorem 3.8 and the polytopic description (C.14) considering
that the upper-bound on the estimation error v = 0. The search for P, &, ®,, &3, n and
/¢ is then an LMI problem, and we may optimize the search of the largest ri&e ™" (denoted

7*) and its associated parameter € by using the method proposed in Remark 3.9.

Step 2: Then, we compute the value of the upper-bound v that corresponds to the
obtained parameters P, ¢, ®1, &5, ®3, n and p. Using this value, it becomes possible
to evaluate the matrix inequalities A, (n&e"®) < 0 in Theorem 3.8 so as to obtain an
estimation of the largest upper-bound for time-varying samplings 7* < 7* which satisfies

the stability conditions.

Step 3: The maximal sampling map is then defined as
Tmax(T) = 77, YV € R".

Remark 3.10 Using the LRF V (x) = 2T Px together with the parameters e, Ui, Wy, Wy,
n, b and v obtained thanks to this algorithm allows for designing sampling maps that are
lower-bounded by T* in the case of dynamic sampling control (i.e. event-triggered control,

self-triggered control, and state-dependent sampling).

3.4 Event-triggered control

In event-triggered control, the sampling occurs when some event is generated by the
system’s smart sensors. In this section three different event-triggered control schemes are
presented. The first one is based on the stability conditions from Theorem 3.4, which
will be used to design the self-triggered control and state-dependent sampling schemes.
The last two approaches, less conservatives, allow to take into account the effects of the
perturbation on the system while taking advantage of the results from the previous section,

about robust stability analysis with respect to time-varying sampling.

3.4.1 Over-approximation based event-triggered control scheme

The first event-triggered control scheme is based on Theorem 3.4, which allows to define

the event-generator condition for the (k + 1)™ sampling as

(t > sp+7) A ((@(se) " I(t — sp)a(sg) =0) V (t = s+ 7)),
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with parameters P, e, ®;, 5, 3, n, 1 and v obtained with the algorithm reported in

Section 3.3. This event-generator enables to design a maximal sampling map
Tmax(z) = min (min{o > 7*| 2"1I(0)z = 0},5)

during the real-time control of the system.

Note that there is no need to check the event-generator’s condition during the time
interval [sg, sy + 7*] since Theorem 3.8 ensures that x(s;)?TI(t — s)z(sg) < 0 for all
t € [sg, sk + 7°]. Also, note that this event-triggered control scheme does not take into
account the real evolution of the perturbed system & since it is based on the conditions
from Theorem 3.4, which are set to be satisfied for any perturbation satisfying (3.4). This
scheme will be used as a referential for a comparison, in order to check the conservatism

introduced in the self-triggered control and state-dependent sampling schemes.

Since event-triggered control allows to monitor the system’s state at all time (and thus
take into account the effect of the exogenous disturbance on the system’s state evolution),
we present two other approaches. One is based on the stability conditions from Lemma
3.3 (obtained before the majorations dealing with the exogenous perturbations), and the

other one is based directly on the Lyapunov function for the discrete model of the system.

3.4.2 Perturbation-aware event-triggered control scheme

The second event-triggered control scheme we present is based on the following stability

property, wich is derived from Lemma 3.3:

Lemma 3.11 Consider W >0, a>1,6>0,0< <29 >0 and Pe S If

20 7

[I(t)] 9) [x(t)] <0, Vt € [sg, snp1], k€N, (3.20)
z(sk) z(sk)

with
ATP + PA+ecaP +2B8P+ PEETP  —PBK
* —eP+WI

Q= : (3.21)

then the sampled-data system {(3.1),(3.2),(5.4)} with sampling intervals satisfying sg+1 —
sk € [6,0] is globally 5-stable.
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3.5.  Self-triggered control

In order to guarantee the stability conditions from Lemma 3.11, the event-triggered gen-

erator condition for this scheme is thus defined as

(t>sp+7%)A [z(t))] Q[z(t)lzo V(t=sg+0)],

x (s x(sg)

with parameters P and ¢ computed with the algorithm given in Section 3.3. Note that
unlike the previous event-triggered scheme, here we use the value of the state x(t), and
thus take into account the effect of the perturbations on the system’s state evolution from
si to t. Also, unlike the previous scheme, this scheme does not enable to design a maximal
mapping during the real-time control of the system since the event generator condition

involve x(t), which evolution also depends on the perturbation.

3.4.3 Discrete-time approach event-triggered control scheme

The third event-triggered control scheme fully takes into account the perturbations on
the system, and thus allows to reduce the conservatism even more, with respect to the
previous schemes. It is based on a discrete-time analysis of the system. The event-

generator condition for the (k + 1)"™ sampling is defined as
(t>se+7)A(V(z(t) = e_w(t_sk)V(x(sk))) ,

with the LRF V computed with the algorithm in Section 3.3. Note that just like the
previous scheme, this scheme does not enable to design a maximal mapping during the
real-time control of the system since the event generator condition does not depend only
on the time variable and on the sampled state, but also on the perturbation and its

evolution.

3.5 Self-triggered control

Self-triggered control aims at emulating event-triggered control without resorting to ded-
icated hardware to monitor the plant, by computing at each sampling instant a lower-
bound estimation of the next maximal allowable sampling interval. In this section, we
present a self-triggered control scheme derived from the stability conditions in Theorem
3.4 with the convexification arguments (3.19).

This self-triggered control scheme is based on an interesting property of the convex
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embedding design with polytopic subdivisions we have proposed in (C.13) and (C.14) (in
the Appendix C.3) for the matrix function A (see equation (3.17)). We recall that in this
design, which is based on Taylor series approximations, it was considered two integers N
and [, which represent the order of the Taylor approximations, and the number considered

of subintervals of [0, 5] of length § respectively.

The particular property of this design is that the set of indexes in this design is

expanding along with the value of the sampling interval upper-bound:
V(o1,03) € (0,5, o7 < 03 = K(07) € K(03),
which means in particular that
Vo* € [0,5], K(o*) C K(5) ={0,--- ,N} x {0,--- ,I—1} =K.

Furthermore, for certain discrete values of the sampling interval upper-bound, the asso-

ciated polytope vertices can be obtained directly from vertices designed for ¢* = &

Vo*
Ay(o%)

ET € [0, 5], for some integer j € {0,--- ,1 — 1},
A() VKGK(U*):{O,,N}X{O,,j}gK

Figure 3.2 illustrates these points. Indeed, one can see that for any integer j €
{0,---,1 — 1}, the convex polytope CO(i,j)e{o,---,N}x{o,---,j}{A(i,j)@)} embeds the matrix

function A(o) for all values of ¢ in [0, 3%15'].

This property is interesting because it shows that with only one set of vertices A, (),

with k € K = K(&), it is possible to check the stability for different values of the upper-

bound on the sampling interval (namely o* € {5, , L 11)0 7}), by computing the maxi-

mal index j* for which the LMIs A; ; are satisfied for all (i, j) € {0,--- , N} x{0,---, j*}.

If such a j* is found, the stability is ensured for any time-varying sampling in [0,0* =

J* 41 =
l

(this may be the case for small values of [, i.e when the considered subdivisions of the

d]. Otherwise, if no such j* can be computed, one can not conclude with the stability

interval [0, 7] are too large).

It is important to note that unlike the situation of the robust stability analysis with
respect to time-varying sampling in Section 3.3, which was a state-independent analysis,
here we need to use equations in which the state x explicitely appears, like (3.12). To
this aim, the convex embedding will be designed around the matrix function IT (equation

(3.13)) instead of A (equation (3.17)). As it will be shown however, such a convex polytope

90
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Figure 3.2: [llustration of the property of the convex embedding design with subdivisions
from Appendix C.3 around the matrix function A

can be obtained by a simple adaptation of the one presented for A in the Appendix 3.3.
In a more general context than with the particular convex embedding design presented

in the Appendix C.3, one may use the following property in order to design a self-triggered

control scheme.

Theorem 3.12 Consider scalars o > 1,3 > 0, 0 < f < 12(;‘), W >0,e>0,n>0,

p >0, a sampling map Tnaz, 0 < 0 < Tpa(x) < 7, and matrices P, &, & € S;F*,

3 € S, such that the LMIs (3.11) hold.

Assume that there exist matrices I, € M, (R), with k € K a finite set of indexes, and a

function K : R" — P(K) such that for all x € R",

<xTH,§:E <0, Vk € l@(a:)) (3.22a)
4
(z"(o)z <0, Yo € [0, Tma(2)]) - (3.22b)
Then, if the triggering condition (3.22a) is satisfied for all x € R™, the system S with
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the sampling map Tpae 15 globally B-stable.

Remark 3.13 The main advantages of such a formulation are that the triggering condi-
tions for a given sampled state x are reduced to a finite number (see (3.22a)), and that
the matrices 11, do not depend on , and can be thus computed offline, for all k € K, once
and for all.

In the following, we provide one possible method to design the different elements
involved in this theorem, and propose an adapted self-triggered control scheme. This
method is based on the polytopic embedding that was proposed previously for the robust
stability analysis (see Appendix C.3), and which was designed thanks to Taylor series
approximations. We call N the order of the approximation, and we consider that the
interval [0, 5] is divided into [ subintervals of length §.

Step 1: First, in order to maximize the value of Trf;?{bal) (i.e. the lower-bound of the
sampling map) up to 7%, we consider the parameters P, e, ®;, ®,, ®3, 1, 1 and v obtained
using the algorithm in Section 3.3.

Step 2: Then, we compute the matrices A,(5), with x € K(o) using the polytopic
construction (C.13) and (C.14) (in the Appendix C.3). Note that these matrices take the

form
A,(f’l) A’(_61,2) Afg,g)

A@) =1 = AZ?Y g
* * A,(f”g)

Step 3: Now, we design the matrices 11, as

Hn — A[({l,l) . A[({l,2)[A22,2)]—1[A(1,2)]T _A(1,3)[A£3,3)]—1[A21,3)]T’ (323)

K

and we consider a set of indexes function K : R* — P(K), with K = () = {0,--- , N} x
{0,---,1— 1}, of the form:

K(z)={0,--- N} x {0, ,j*(x)}, (3.24)
with ) )
iy 4 ms{ieg@t it gw 2
—1 otherwise ,
and

J@) = {e{lF] 71—1}\$Tﬂu,j>x§9a
Wi, 5) € {0, N} {[ ], )}
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3.6. State-dependent sampling

Here, the indexes of K are composed a pair of parameters. The first parameter is linked
to the Taylor approximation, whereas the second one is linked to the interval subdivision
considered. For a given state x, the aim is to search for j*(z), which represents the
highest subdivision for which the inequalities 2”TI; jjz < 0 are satisfied for all (¢,7) €
{0, N} x {0, -+, 5" (2) ]

Step 4: Following this construction, the sampling map for the proposed self-triggered

control scheme is designed as

" 1
T () = max (%a T*) . (3.25)

Using arguments similar to the ones used to prove that (3.19) is satisfied with the
vertices (C.14) (see Lemma (C.3)), one can show that the matrices II,; defined in (3.23),
with the set of indexes K = K(5) = {0,--- , N} x {0,--- ,1 — 1}, and the set of indexes
function K defined in (3.24) satisfy (3.22), with the sampling map (3.25).

Remark 3.14 With this construction, the self-triggering condition during the real-time
control of the system amounts to computing the value of the integer 7*(x) for each sampled-
state x. Note that with the parameters considered in Step 1, Theorem 3.8 ensures that if
[%lj > 1, then I ;) < 0 for all (i,5) € {0,--- ,N} x {0,-- -, L%J — 1}, which explains

why it is not necessary to check the inequatilies ' I1; jyz < 0 for j < L%J

Remark 3.15 The precision of the sampling map Tyq. 1S linked to the value of the integer
[, which defines the number subdivisions of the time interval [0, 7] used in the construction
of the convex polytope (C.14): the larger the integer [, the more precise the sampling map.
The number of online computations required to compute j*(z) is upper-bounded by n(n +
(N +1) (1= [Zt]) maultiplications and (n+1)(n—1)(N+1) (I — | Zt]) additions. The

online complexity is in O(n>N1). It is comparable to the one obtained in the self-triggered

control scheme from [Mazo Jr. 2010] for example. Here some computations are saved
thanks to the optimization in Step 1 of the lower-bound T of the sampling map (see

Remark 3.14).

3.6 State-dependent sampling

The state-dependent sampling aims, as introduced in the previous chapter, at emulating
self-triggered control while trading online computations for offline computations, thus

reducing the processor load during the real-time control of the system.
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In this formulation, the sampling map is defined over regions of the state-space as

Tmax(2) = T8 Vo € Ry, Vs € {1,---,¢}. (3.26)

Here, the homogeneity brought up in Remark 3.6, which is due to the linearity of the

system, motivates us for working with conic regions of the form
Re = {x € R" 27U, > 0}, ¥, = UL € M, (R). (3.27)

Possible constructions of these conic regions using the spherical coordinates of the state
or the discrete-time behaviour of the system, are presented in the Appendix B. We have
the following stability property:

In(a)

%
and W > 0 be given. Let matrices ®1, @y € S, &3 € S;*, and scalars n > 0 and p > 0,

such that the LMIs (3.11) are satisfied. Consider the sampling map (3.26) defined on

conic regions (3.27), with sampling intervals 775113,;, e ,7',(,3295 satisfying 0 < & < e < 6.

Theorem 3.16 Let a matriz P € ST, and scalars € > 0, a > 1,5 >0,0< 8 <

n 7’

Assume there ezist matrices AH(T,(,fgw), with Kk € IC(T,(,;*,EI) a finite set, satisfying for all
se{l,---,q}, and ps >0,

A S\IIS O S
(An(ﬂ%) + |7 0 <0, Vk € IC(ﬂ%gz))
*
\’ (3.28)
psPs 0

(A(U) +

with A(o) introduced in (3.17).

<0, Vo € [o,ﬁ,f@]) ,
* 0

psVs
*

foralls e {l,--- ,q} and k € K(T,(,fgz), then the system S is globally B-stable.

If there exist scalars ps > 0 such that the LMIs A,{(Tr(,fgw) +

0
0] =< 0 are satisfied

Theorem 3.16 provides sufficient conditions for Theorem 3.4, which enable to analyse
the stability of the system for a given sampling map 7,,.x defined on conic regions.

One possible construction for the matrices AK(Tr(Ing), K € IC(TI(nng), is the one proposed
in (C.13) and (C.14), in the Appendix C.3. Indeed, one can show, using the same proof
as the one used in Lemma C.3, that these matrices satisfy the condition (3.28) for all

se{l,---,q} and ps > 0.
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A method to compute a lower-bound approximation of the optimal sampling map,
solution of Problem 2, is proposed. The idea is to use the LMI conditions from Theorem
3.16 (with the values of P, e, ®1, &9, 3, 1, p and v computed using the algorithm in
Section 3.3), in order to maximize the sampling intervals ) on each region, using a
line search algorithm. Then, we design a lower-bound estimation of the optimal sampling

map 7., as proposed in (3.26):

Timax (T) = rrﬂfgx, Ve € Rs, s€{l,--,q}.

Remark 3.17 The online complexity of the state-dependent sampling approach depends
on the design of the conic covering. With the anisotropic covering proposed in Ap-
pendiz B.2, the online complexity is O(qn?) (at most (¢ — 1)n(n + 1) multiplications
and (¢ — 1)(n — 1)(n + 1) additions). It can be shown that for the same precision, the
number of computations in that case is divided by N compared to the self-triggered con-
trol case (Section 3.5). With the isotropic covering proposed in Appendiz B.1, the online
complexity becomes O(n) (In — 7 elementary operations (additions, multiplications and
divisions), 1 square-root, n — 1 arccosine, and n — 2 sine), which allows for saving even
more computational power. Additionally, in that latter case, the online complexity does

not depend on the number of regions (i.e. on the precision).

3.7 Numerical example

Consider the system from |Tabuada 2007|:

o |0t (0] e
it)=|_, 3] (1) Hmm

K=[-1 4],

In the following, we set the polynomial approximation degree term N = 5 and the num-
ber of polytopic subdivisions [ = 100. For a given [, after fixing &, we set the LRF
performance parameter o > 1 (see Proposition 3.2) as small as possible and such that
g < % Then, we use the algorithm proposed in Section 3.3 to perform a robust sta-
bility analysis with respect to time-varying sampling for different values of parameters (3
and . The obtained upper-bounds for time-varying samplings 7* (see the set of values
provided in Figure 3.3, as well as the ones in Table 3.1, which presents a comparison with

some upper-bounds obtained in the literature, without perturbation) can then be used as
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lower-bounds to the designed maximal sampling maps for the dynamic sampling control.

[Naghshtabrizi 2008] | [Seuret 2009] | [Fujioka 2009b] | [Fridman 2010] | Theorem 3.8
B=0 0.2740s 0.3122s 0.3316s 0.4221s 0.5402s
B8 =0.1 - 0.2795s - 0.3934s 0.4404s
=03 - 0.1778s - 0.3350s 0.3709s

Table 3.1: Maximum upper-bounds 7* for time-varying samplings, for different decay-
rates /3, without perturbation (W = 0)

Since the sampling maps for event-triggered control and self-triggered control are built
online, we only show the ones obtained for state-dependent sampling, which are built
offline. First, we set a number ¢ = 100 of equal conic regions (isotropic partition on the
unit sphere r = e, § € [~ 7], see the design in Appendix B.1). Using the method
proposed in Section 3.6, we build the maximal sampling maps for different parameters
B and W, as shown in Figure 3.3. Recall that for each parameter set, [-stability is
ensured for each state-dependent sampling (potentially time-varying) with values under
the respective curve in Figure 3.3 (i.e. satisfying (3.3)). In the figure, the obtained upper-
bounds 7* for time-varying samplings (i.e. the lower-bounds of the sampling maps) are
also provided for each parameter set.

For a constant sampling greater than T73% = 0.5947s the discrete-time dynamic
matrix of the ideal system (without perturbation) is not Schur anymore, so the system
becomes unstable. However, with the proposed sampling maps, we can go beyond the
limit 7702% for some regions of the state space (up to 1.2s for 5 =0 and W = 0, or 0.9s
for f = 0.3 and W = 0 for example). Figure 3.4 shows that it is even possible to sample
in average less than with the constant sampling 772X = 0.5947s (which only ensures
marginal stability), and still guarantee exponential stability. It presents simulation results
obtained for a given a decay rate § = 0.3, without perturbations (W = 0). It first shows
the sampling intervals (in blue), with the lower-bound of the offline designed sampling
map (in red), and the limit 7;22% of the periodic case (in green), before showing the LRF
evolution. The sampling times are represented by the red dots on the graph. The average
inter-sampling time during this 20s simulation is Tyyerage = 0.7203s = 121%T202% (there
are 28 updates, while there would be 34 updates with T%2% ).

Finally, in Figure 3.5, we present the inter-execution times obtained in simulations
for f = 0.1, W = 0.04 (i.e. with perturbations ||w(t)|l2 < 20%||x(sk)]|2), and an initial

bt
condition z(0) = [3], with the first event-triggered control scheme, the self-triggered
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——— W=0.04 (20%), T =0.27
——— W=0.09 (30%), 1'=0.14
W=0.16 (40%), T'=0.03

e TN N

1.2

0.8

——— W=0 (0%), T'=0.44
——— W=0.0025 (5%), T =0.41
W=0.01 (10%), T =0.34
——— W=0.04 (20%), '=0.18
——— W=0.09 (30%), 1'=0.05

0.8

0.2

——— W=0 (0%), 1'=0.37

——— W=0.0025 (5%), T =0.28
W=0.01 (10%), T'=0.16

——— W=0.0225 (15%), T'=0.05

Figure 3.3: State-angle dependent sampling map 7., for different decay-rates () and

perturbations (W)

control, and the state-dependent sampling, which are all based on stability conditions

derived from Theorem 3.4.
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- inIninaininfctninnins .

Figure 3.4: Inter-execution times Tyax(2(s)) and LRF V(z) = 27 Pz for a decay rate
g =0.3 and W = 0 - State-dependent sampling

0.35[
0.3
0.25
=
5% 0.2F4
£
-
0.15
event-triggered control 1 — 67 updates — T =0.2952s
average
0.1r self-triggered control — 69 updates — T =0.2904s
average
state—dependent sampling — 70 updates — T =0.2872s
0.05F average
0 1 1 1 J
0 5 10 15 20

Figure 3.5: Inter-execution times Tyax(z(sg)) for a decay rate § = 0.1 and W = 0.04

(lw(®)]l2 < 20%||z(sk)]|2) - First event-triggered control scheme, self-triggered control,
and state-dependent sampling

These simulations show that all the proposed methods have very close results, although

they are very different in their application. This illustrates the low conservatism intro-
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duced by the convex-embeddings (3.19) (used in both the self-triggered control scheme
and the state-dependent sampling scheme) and the conic regions (3.27) (used in the state-
dependent sampling scheme).

The second and third event-triggered control schemes, which both take into account
the real value of the perturbation, provide naturally less updates (and therefore a larger
average inter-execution time). With the same simulation conditions, we obtain 42 updates
with the second event-triggered scheme (T,yerage = 0.4581s), and 33 updates with the third
event-triggered scheme (Tyerage = 0.60275).

3.8 Conclusion

We have introduced a Lyapunov-Razumikhin-based design for a maximal state-dependent
sampling map 7., ensuring the exponential stability with a given decay-rate for perturbed

linear state feedback systems. The proposed method can be used to perform:
e a robust stability analysis with respect to time-varying sampling,
e an event-triggered control scheme,
e a self-triggered control scheme,
e a state-dependent sampling scheme.

For each of these approaches, lower-bound estimation of the maximal sampling map is

proposed. As in the unperturbed case, the method presents several advantages.

e [t makes it possible to maximize the lower-bound 7* of the proposed map, whatever

the sampling technique.
e [t provides the associated LRF parameters.

e The state-dependent map of the next maximal sampling interval with respect to the
past sampled state value can be designed offline (state-dependent sampling), which

helps reducing the processor load.
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Chapter 4

A Lyapunov-Krasovskii approach to

dynamic sampling control

In the previous two chapters, it was considered the problem of designing a sampling law
that enlarges the sampling intervals while guaranteeing the stability of LTI sampled-data
systems for a given controller. In this chapter, we want to go further and design at the
same time a controller that will stabilize the considered LTI sampled-data system, with
the objective to enlarge the sampling intervals in mind.

First of all, in the framework set in the previous chapters, we consider the stabil-
ity issue, and design a state-dependent sampling function that maximizes the sampling
intervals under some Lo-stability conditions for perturbed linear sampled-data systems,
for a given controller. An extension to systems with delays in the feedback loop is also
proposed. Then, in the delay-free case, it will be proposed an algorithm for the design of
the stabilizing feedback gain matrix either as a constant K, or as a state-dependent one
K(xy).

The proposed design has the same advantages as the state-dependent sampling controls
presented in the previous two chapters. Indeed, unlike the self-triggered control approach,

it makes it possible:

e to reduce the number of sampling instants obtained in the worst case scenario, i.e.
to increase the lower bound 7" of the largest state-independent admissible sampling
interval while taking into account the perturbations and the sampling (and the

delays in case of time-delay systems),

e to design offiine, once for all, the state-dependent sampling function Ty, (z) >

77,z € R" maximizing the sampling intervals for each state of the state space.
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However, this new design also has its own advantages, since it makes it possible:

e to design a controller adapted to state-dependent sampling,

e to design a state-dependent sampling function even for some systems which are both

open-loop and closed-loop (with continuous feedback) unstable,

e to adapt the controller gains depending on the state space region, to allow even

larger samplings.

The stability analysis and stabilization tools in this chapter are based on a new class
of Lyapunov-Krasovskii functionals (LKF) with state-dependent matrices. Just as we
compute the maximal sampling 7., () depending on the sampled state xy, the matrices
of the LKF will switch in relation to the state space region that contains this sampled state.
The obtained LMI conditions allow to compute the LKF switching matrices ensuring the
largest state-dependent sampling intervals.

The robustness study considers an exogenous perturbation w in L£5. Note that no
other assumption is made. In particular, the perturbation is not required to be bounded
or state-bounded (i.e. there is no need for a scalar 6 > 0 such that [|w(t)|]2 < 0 or
llw(t)||2 < 0||x(t)]]2), as it was assumed in the previous chapter.

In the case of systems with time-delay, we assume that the control inputs are received
by the actuator in the order they are sent (or that the packets are rearranged upon
reception, as proposed in |?] for instance). However, no additional assumption regarding
the actuation times is needed. In particular, the actuation times are not required to occur
before the next sampling times, which means that the transmission delays can be larger
than the sampling intervals, unlike in [Wang 2009| or [Wang 2010).

Concerning the stabilization issue, we design the state feedback gain so as to allow
larger sampling intervals. An extension to the stabilization problem with a more gen-
eral class of switching piecewise-linear controllers (with matrix gains that are switching
according to the system’s state) is also provided.

The chapter is organized as follows: First, Section 4.1 formulates the problem. Then,
Section 4.2 presents the stability results, while Section 4.3 provides the stabilization re-
sults. An algorithm allowing to build off-line the adequate state-dependent sampling
function is provided in both of these sections. Finally, Section 4.4 shows some simulation

results, and Section 4.5 summarizes the contributions in this chapter.
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4.1.  Problem formulation

4.1 Problem formulation

We consider the linear time-invariant system

x(t) = Ax(t) + Bu(t) + Bw(t

(t) = Ax(t) + Bu(t) <>},Wzo, (1)
where z(t) € R” is the state vector, w(t) € R™ is an exogenous disturbance in Lo,
u(t) € R™ is the control input, and z(t) € R is the controlled output. A, B, C, D,
and F are constant matrices of appropriate dimensions. The control is designed as a

piecewise-constant state feedback:
u(t) = —Kx(sg), Vt € [t thsr), (4.2)

with K a given feedback matrix gain, and with s, and ¢, the k"™ sampling time and the
k™ actuation time respectively.

For now, it is considered the case where there is no delay between the sampling and
the actuation times, and thus that ¢, = s;. Later, in Subsection 4.2.2, the robustness
aspect with respect to unknown time-varying delays h(t) in the feedback control loop will
be treated.

The sequence of sampling times (Sk)kzo is assumed to satisfy 0 = sp < 51 < --- < 8 <

- and klim sk = 00, and the sampling law is defined as
—00

Sk+1 = Sk + Tk, (4.3)

with a variable sampling step 7, we aim to control. We denote S, the closed-loop system

{(4.1),(4.2),(4.3)}.
Due to the unknown exogenous disturbances, the system S is studied from the Lo-

stability point of view, which is recalled in the following definition:

Definition 4.1 A linear system F is said to be finite-gain Lo-stable from w to Fw with
an induced gain less than ~v if ¥ is a linear operator from Ly into Lo and there exist

positive real constants v and & such that for all w € Lo,
[Fwlle, < vllwlle, + & (4.4)

The work in the present chapter aims at designing, off-line, a state-dependent sampling
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function 7. : R™ — R which enlarges the sampling intervals

Skl — Sk = Th = Tmax(7(s1)), (4.5)

while ensuring the finite-gain Lo-stability of S from w to z, with a gain less than a fixed
v = 0.

To this aim, we will use the following lemma:

Lemma 4.2 Assume there exist a real constant v > 0 and a positive definite continuous
function V : t € RT — V(t) € RY, differentiable for all t # ty, k € N, that satisfy

V) + 27 ()z(t) — Y (Hw(t) <0 (4.6)
along S. Then, S is Lo-stable from w to z with a gain less than 7.
Proof: Let £ > 0 and N € N such that t € [ty,ty11). Integrating (4.6) over [0, ¢] gives

V()= V(ty) + Vity) = Vity-1) + -+ V(L)
—V(0) + [y (z7()2(s) = y*w (s)w(s)) ds < 0.

Since V(t) > 0 and V(t,) = V(¢t;) for all £ € N (V is assumed to be continuous), we get:

/ot 2 (s)a(s)ds < ° /Ot w! (s)w(s)ds + V(0).

Using the positivity of 27 (s)z(s), one can show that 2 = Sw € Ly, and by having t — oo
one can see that the Lo-stability condition (4.4) is satisfied, with £ = \/V(0). |}
As in the previous chapters, in the framework of state-dependent sampling control, we

assume that the state space is covered by a set of ¢ conic regions (not necessarily disjoint)
Ry ={x e R", 2"V, > 0},V, € S,,0€{1,--,q}, (4.7)

for which maximal sampling intervals 7 will be defined. The two possible constructions
presented in the previous chapters, and described in the Appendix B, may be used to
design these conic regions.

Here, the sampling interval sequences (7, = Sg11 — Sk) k>0 are set to satisfy the condi-

tion:

VkeN,Jo € Z(x(sy)), 7 < <70, with Z(z) = {oc € {1,--- ,q¢},x € R,}, (4.8)
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with a given minimal sampling interval 7= > 0 (this guarantees that there is no Zeno
behaviour). Z(z) denotes the set of the regions R, in which = belongs. Note that since
the regions R, are not necessarily disjoint, x can belong to more than one region at a
time. The condition on the samplings (4.8) ensures that at each sampling instant sy, there
is at least one region in oy € Z(z(sy)) for which the next sampling interval 7, satisfies
T <7 <1,

Our objective in this chapter is to compute the largest sampling intervals 7,7 for each
subspace R,,0 € {1,---,q} which ensure the expected Lo-stability for a fixed v > 0.
The state-dependent sampling function (4.5) will then be built from:

Timax(T) = org%};) T.h,Vr € R™. (4.9)

We will first provide a stability analysis of the system for a given feedback matrix gain

K and a given sampling function 7,,x (with an extension to systems with delays in the
feedback control loop), before proposing a stabilization method to compute a feedback
matrix gain K adapted to ensure stability for a given sampling function 7.x (with an
extension to the design of control laws with matrix gains that are switching according to

the system’s state).

In both analysis and design, we provide algorithms that allow to maximize both the
largest admissible state-independent sampling interval T = mingeqs ... o 7,7 and the state-
dependent sampling function Tme (4.9) according to the obtained stability or stabilization

conditions.

All these studies are based on a quite general class of LKF (with state-dependent
matrices), which take into account the delays (in the case of delayed systems), the pertur-
bations and the sampling. The proposed algorithms allow to compute the LKF matrices

so as to optimize the state-dependent sampling function 7., (4.9).

4.2 Main Lo-stability results

In this section, we start by proposing in Subsection 4.2.1 a stability analysis of system S
for a given feedback matrix gain K and samplings satisfying (4.8). Then, in Subsection
4.2.2, we give an extension to systems with delays in the feedback control loop. Finally,
in Subsection 4.2.3, we provide an algorithm to enlarge the sampling function 7,,,, under

the obtained stability conditions.
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4.2.1 Stability analysis of the perturbed system

We consider the following LKF, which depends on the sampled-state value z(sy), the
actual state x(t), and the delayed derivatives of z, i; (defined for a maximal delay h as
i(0) = 2(t +0), VO € [—h,0]):

Vit 2(t) 30 k) = xT<t>Px<t>+<sk+1—t>[M] 2, [M]

(1) (sk)
+(sei1 — 1) [1 37T (5) Ui (8)ds + (spp1 — )(t — si)2T (1) S (s,
(4.10)
defined for all ¢ € [sg, sk+1) and k € N, with the matrices ,,0 € {1,---,q} defined as:
Xo+XT X, + X,
0, = 2 7 ; o7 (4.11)
*« =Xy, — X{,+ 202

Matrices P, U,, S,, X,, X1, are of appropriate dimensions, and parameter o, can be
any element o € Z(x(sg)) satistying 7= < 7, < 7.

The new aspect of the LKF (4.10) compared to previous works on systems with time-
varying samplings ( [Fridman 2010], [Seuret 2009], [Jiang 2010b]) is the fact that it involves
elements that are switching according to the system state. Indeed, note that the matrix
term U,, is switching at times s; according to the region the sampled state z(sy) belongs
to (ox € Z(z(sg))). This state-dependent switch is possible thanks to the fact that the
functional V' is continuous at times sg: V (sg, x(sk), &s,, k) = lim,_, - V(t,x(t), &4,k —1) =
27 (sp) Px(s).

This new type of switched LKF is well adapted to the stability analysis of systems with
state-dependent sampling, but it also provides some advantages regarding the stability
analysis of systems with (state-independent) time-varying sampling, as it will be shown
in the Example 2 of the Numerical Examples Section 4.4.2.

In the following, as in [Fridman 2010], we denote

V(t) =V (t,x(t), ¢, k), for all t € [sg, sk41), k € N. (4.12)

The Lo-stability analysis is based on Lemma 4.2 and is divided into two main steps.

e First, we prove that V is continuous over R* and differentiable for all ¢ € [sy, sp41),

and provide conditions for its positive definiteness.
e Then, we differentiate V, upper-bound the obtained result and derive the L,-
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stability conditions.

4.2.1.1 Continuity, piecewise differentiability, and positivity conditions of the

Lyapunov-Krasovskii Functional
To begin with, we propose the following lemma, which ensures the function’s continuity,

piecewise differentiability, and positivity properties.

Lemma 4.3 The function V defined in (4.12) is continuous over R* and differentiable
for all t # sg, k € N. If its matriz parameters satisfy P € S*, U,, S, € St, X,
X1, € My n(R), and if there exist q scalars e, > 0 such that, for all o € {1,--- ,q}:

0

0 0
+ 70 — &, =0, (4.13)
0 v,

then V is also positive definite, and there exists a scalar 8 > 0 such that V (t) > B||z(t)]/3
forallt > 0.

Proof: V, is defined on R*, differentiable over each time interval [sy, sp,1), and is
designed to satisfy V(s;) = lim,_, - V(t) = x(s)T Px(s) for all k € N. It is therefore
continuous on Rt and differentiable over RT\{s, k € N}.

Now, assume that U,, S, € ST, with o € {1,---,¢}. V is positive definite if, and only
if, for all k € N, t € [sg, Sg41):

x(t)

(sk)
with equality if and only if z(¢) = z(s;) = 0.

Note that 0 < s —t < 7‘;;. Remarking that the middle matrix term in the left part

T
P 0

0 0 + (Sk—i-l - t)QO'k

z(t) ] > 0, (4.14)

(tx)

of (4.14) is linear with respect to A = sg1 —t, one can use Theorem D.8 (in the Appendix
D) and show that a sufficient condition for V to be positive definite is that, for all £ € N,

te [Sk, 8k+1)2

o7 (t) Pz (t) > 0, for all x(t) # 0, (4.15)
and .
Lx(it:) J; g + 75, ;(it:)] > 0, for all Lx(it:)] # 0. (4.16)
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(4.15) is ensured by assuming that P is positive definite. Since z(sy) € R,, (i.e.
27 (s3)W,, x(s;) > 0), the lossless version of the S-procedure [Boyd 1994] (see Theorem
D.3 in Appendix D) ensures that (4.16) is fulfilled for all & € N if and only if there exist
q scalars £, > 0 such that (4.13) is satisfied for all o € {1,--- ,¢}.

Furthermore, if P > 0 and the condition (4.13) is satisfied for all o € {1,--- , ¢}, then

there exists ¢ scalars 5, > 0,0 € {1,---,q}, such that for all k € N and t € [sg, Sk41),
P 0 1 0 _
0 0 +(Sk+1—1)Q0,, = Po, [0 O] , and thus V(¢) > B, ||z(t)]|3, for all t € [sy, s;11) and

k € N. Therefore, there exists a scalar 8 = minge(y ... o 85 > 0, such that V (t) > B||z(?)]|3
for all ¢ > 0, which ends the proof. |}

4.2.1.2 L,-stability conditions

Conditions to ensure V’s continuity, differentiability, and positivity have been proposed.
In order to analyse the Lo-stability of system S, we will now refer to Lemma 4.2. It is

needed to provide conditions to satisfy
V() + 2T (0)2(t) — 2w (Bw(t) < 0, Vt £ sy, Vk € N. (4.17)

In order to analyse this Lo-stability condition, we study the restriction of V on any interval

[sk, Sk+1), k € N. We compute:

V(t) = 28T(O)Pz(t) + ((ske1 — su) — 2(t — s1))2T (58) S0, 2(s5)

. [x(t)]TQ (1) x(t)] w1
w(sk)| 7" |@se) z(sr,)

+(spp1 — 1)L (1)U, (1) f T (s)U,, 2(s)ds,

+ 2(8k+1 — t)it‘T(t>QLok

with
Xo, +XT
D, = [7'@; L Xy, +X170k] : (4.19)
Using the Jensen inequality |Gu 2003| (see Theorem D.4 in Appendix D), we compute an

upper bound of the integral term:

—/ i (8)Uy, 2 (s)ds < —(t — sp)v’ ()Uy, v(t), (4.20)

Sk

with

o(t) = — /z(s)dSZM. (4.21)

t—Sk
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v(t) is well defined by continuity in ¢ = s, since when ¢ — sg, v(t) — @(sg). Using
majoration (4.20) in equation (4.18) leads to

% (t) + 2T (1) 2(t) — YwT (w(t) < 22T (#)Px(t) + 27 (#)2(t) — Y*wT (t)w(t)

. [x(t)]TQ [x(t)
w(s)] 7 L)

—(t = si)v" (U, v (1) + ((sh1 — i) = 2(t = si))a" (s) S (sk).

+ 2(8pp1 — )3T (1) Q1 4, + (spr1 — )2t (t)U,, 2(2)

(4.22)

Let us introduce the augmented state vector ¢(t) € R w:
¢ (1) = [27(8), 2" (s), V' (1), w'(1)]. (4.23)
Then, there exist matrices M; and NV; such that

[5(8:)] _ [ﬁ () = Nyo(t), v(t) = Mso(t), w(t) = Mug(t),

i(t) = (AMy — BKMs + EMy)$(t) = Nig(t), 2(t) = (CMy — DKMy)¢(t) = Nag(t).
(4.24)

Using these notations, we can rewrite (4.22) as

V(t) + 27 (t)2(t) — Y*wT (H)w(t) < ¢T(t)[NT PMy, + M PNy + (sp1 — t)N{ Uy, Ny
—(t — sp)MIU, Mz + ((Sgs1 — sx) — 2(t — s1,))MI'S,, M,
— N3 Qo N3+ 2(sp11 — ) N{ Q1.5 N3 + Ny Ny — > M My]o(t).
(4.25)
The relation (4.21) between v(t), x(t), and z(s;) can be written as H(t)¢(t) = 0 with
H(t) = (t — sg) M3 — My + Ms. Therefore, by applying the Finsler’s lemma [Fang 2004]
(see Theorem D.2 in Appendix D) one can include this relation into (4.25) and obtain

that for any matrices Y,, € Msuin,.n(R):

V(t)+ 2" (t)2(t) — yY*w' (t)w(t) < ¢" (t)[N] PMy + M{ PNy + (sp41 — t)N{ Uy Ny
—(t — sp)MIU, Ms + ((sp1 — sk) — 2(t — sp)) ML Sy, My
—NIQy N3+ 2(spy1 — t)NTQy o, N3 + NI Ny — 42 M M,
+Y5, ((t — sp)Ms — My + My) + ((t — sp)Ms — My + My)TY ! ]o(1).
(4.26)
Since equation (4.26) is linear in the variable ¢, it is possible to reduce the number of
conditions to be checked to a finite number by applying Theorem D.8 (in the Appendix

D), with the variable A = ¢ € [sg, sk41]. Then, the two obtained inequalities are both linear
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in the variable sx,1 — si. Thus we can use once again Theorem D.8 (in the Appendix D)

with the variable A = s;41 — s € [77, T;;] to prove that if the 4 inequalities ¢Z; 5, £ <0

are satisfied for all £ € R¥*t™v with Z,; ;,, defined as

Eite =EZo + Tio [N{ U, Ny + My Sy Ms + N Qo N3 + Ny Qf ,N1], (4.27)
Sino = S0+ Tip [—M5 Uy My — My S, Mo + Y, Mz + M Y]], (4.28)
EU :N?PM1+M3PN1+NEN2—72MEM4 (4 29)
+Y, (=M + My) + (—My + My)'YT — NI'Q, N3, '
with
Tl,o = T1 =7 and TQJ = T;_, (430)

then V(t) + 27()2(t) — v*wT (H)w(t) < 0 for all ¢ € [Sky Ska1)-

Note that here, we considered any sampling sequence satisfying 7, = spi1 — sp €
[77,75.]. Therefore, the L,-stability results we will obtain will be valid for any sampling
sequence satisfying (4.8).

Eventually, since we know that z(s;) € R,, (i.e. we have z7(s;)U,, z(s5) > 0), we
can use the lossless version of the S-procedure [Boyd 1994] (see Theorem D.3 in Appendix
D) on each of the 4 obtained inequalities to show that, if there are scalars ¢; ;, > 0 such
that the LMIs

Eijo + EijoMy WU, My <0, (4.31)

hold for ¢ = oy, then condition (4.17) is satisfied. Therefore, we have the following

theorem:

Theorem 4.4 Consider scalars v > 0 and 7~, and a set of q¢ conic regions covering the
state space R, = {z,27V,x > 0}, ¥, € S,, o € {1,---,q}, with mazimal sampling
intervals T .

The perturbed system S is finite-gain Lo-stable from w to z with a gain less than ~ for
any sampling sequence satisfying (4.8) if there exist matrices P € ST*, U,, S, € ST, X,
Xio € Mun(R), Y, € Mspin,n(R), and scalars ¢; ;, > 0 such that (4.13) and (4.31)
are satisfied for all o € {1,--- ,q} and (i,7) € {1,2}>.

Remark 4.5 Ifw satisfies 27 (t)z(t) —y*w™ (t)w(t) > 0, and if the LMIs (4.31) are strict,
the sampled-data system S is asymptotically stable for any sampling sequence satisfying
(4.8). Indeed, in such a case, V is negative definite and there is a B > 0 such that
V(t) > Blz@)||2 for allt >0, k € N and v € R". In the unperturbed case w(t) = 0, it is
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sufficient to verify that V(t) < 0, and thus the term 2T (t)z(t) = ¢* (t)NL Nyg(t) and the

rows/columns corresponding to w(t) are removed from the LMIs (4.31).

Remark 4.6 When searching for solutions of LMIs (4.13) and (4.31), one needs to re-
move the zero rows/columns that may appear in (4.31) since LMI solvers search for strict

solutions. Indeed, one can see that =Z; ; , s independent of v if j =1 or T , = 0.

Theorem 4.4 provides stability conditions for the perturbed system S with a given
state feedback matrix K and samplings satisfying (4.8). However, in a large variety of
control implementations, delays are present in the feedback control loop. They may be
induced by network communications, heavy computations, or various physical phenomena.
As it has been shown in numerous works, these delays may render the system unstable.
Therefore, in order to propose a state-dependent sampling law that is robust to these
kind of disturbances, we propose in the following subsection an extension of the present

stability results for this large class of systems.

4.2.2 Stability analysis of the perturbed system with delays

Here, we consider systems including a delay in the feedback control loop. The control law

is now defined as:
u(t) = —Kx(sk), Vt € [tk tge1), (4.32)

with a constant feedback matrix gain K, s; the k"' sampling time (when the k™ input
is computed) and ¢, the k" actuation time (when the & computed input is received by
the actuators).

The sampling and actuation times are linked by the relation
sk =ty — h(ty), (4.33)
with a delay h(t) assumed to satisfy:
Vt >0, h(t) € [hy, hy), and A(t) € [ey, es], (4.34)

for given scalars 0 < hy < hg and e; < ey < 1.
Note that since spyq — s, > 0, it implies that ¢, — ¢, > % >0, due toe; <1
and thus the control inputs are received by the actuator in the same order as they are

sent.
The closed-loop system {(4.1),(4.32),(4.3),(4.33),(4.34) } will be denoted Sq.
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Here, we consider the LKF:
Va(t, zy, @y, k) = Vit 2y, @) + Va(t, 2, 04, k), (4.35)
defined for all ¢t € [ty, tx41) and k € N, with

Vilt, 2, d0) = [, aT(s)Qua(s)ds + [T a7 (5)Qaa(s)ds + [} 2T (s)Qsx(s)ds
+fth ()(Rl+(h()—t+3)32)'()d3
+ /0 ft+9 (s) Ry (s)dsd + [ [\, &7 (s)Ryir(s)dsdo),
(4.36)
consisting of classical terms used for delay systems |Fridman 2001a], |Richard 2003],
[Jiang 2010a|, |Jiang 2010b], and an additional term

n(te) n(te)

H(tkrr — 1) i 0T (U (s)ds + (tsr — £)(E — te)nT () Son(tr),
(4.37)

similar to the switching LKF used in the non-delayed case, with the vector n(t):

n(t) = [ ( =(t) ] , (4.38)

x(t — h(t))
and the matrices Q,,0 € {1, -+, ¢} defined as:
Q, = e X+ X1 (4.39)
Tl v =Xy, - X7, 4 XX -

The matrices P, Q1, Q2, @3, Ri, Ra, Rs, R4, U,, S,, X,, X1, have appropriate
dimensions, and the parameter oj, can be any element o € Z(x(s;)) satistying 7= < 7, <

7.5 (there exists at least one, according to assumption (4.8)).

Similar to what we had with the previous simple LKF, we note that the term (4.37)
is composed of matriz terms Q,,, Uy, , and Sy, which are switching at times ty, according
to the region x(sy) belongs to. This state-dependent switch is possible thanks to the fact
that Va(ty, x4, , v, k) = limt_% Vo(t, g, @4,k — 1) = 0, which ensures the continuity of
V5. This function with state-dependent matrices is a natural extension of the works with
LKFs on systems with delays [Fridman 2001a], [Richard 2003], [Jiang 2010a], sampling
|[Fridman 2010|, [Seuret 2009], or both delays and sampling [Jiang 2010b)].

112



4.2. Main Lo-stability results

Just as we did in the delay-free case, we analyse the system’s Ly-stability by checking

the conditions of Lemma 4.2 with the function
Va(t) = Vy(t, 2y, @4, k), for all t € [ty, tpy1) and k € N, (4.40)

with V, defined in (4.35). Before providing the lemma ensuring this function’s continuity,
differentiability, and positivity, as in the non-delayed case, we introduce the following
scalars
Tlo :T1 :maX{T_ +h1 —hg,%},
’ N (4.41)
T27o- = min{Tj +h2 — hl, T },

(o
1—e2

which are set to satisfy for any actuation step k£ € N:
Tg, <tpg1—tp < Togp. (4.42)

Indeed, since tg11 —t = (Skr1—Sk) + (h(trs1) —h(tg)), one has 77 +hy —hy <t — 1t <
T(;: -+ hg — hl. AlSO, since 61(tk+1 - tk) S h(tk+1) - h(tk) S 62(tk+1 - tk) and €1 S ey < 1,

+
- To .
one has 12—61 Sl — U < 125 which ends the proof.

Lemma 4.7 The function Vy defined in (4.40) is continuous over RY and differentiable
for all t # ty,, k € N. If its matriz parameters satisfy P € S*, Q1, Qa, Q3, Ri, Ro, Rs,
Ry € SF, U,, S, € S, Xy, X1.o € Mapon(R), and if there exist q scalars e, > 0 such
that, for all o € {1,--- ,q}:

0 0
+ Ty eQy — o - 0, (4.43)
0 0,

then Vy is also positive definite, and there exists a scalar 3 > 0 such that Vy(t) > Bllz(t)]|3
for allt > 0.

Proof: The proof is very similar to the one in the non-delayed case. The new term
V; is obviously differentiable and positive provided that the matrix terms in the integrals
are positive. ||

We introduce the matrices M;cqi.... 113 € My 11in4n, (R) and Miz € My, 11040, (R):
MP - M| =1, (4.44)
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and define the matrices Njc.... 73

N1 = AMl - BKM4 + EMlg, N7 == CMl - DKM4,

M- N M. N M, 4.45
HoNg= | U =T N = L and N = |0 (4.45)
N, M,

N, =
M2 4 9

The use of these matrices is very similar to the one in the previous simplified case and
will be explained in (4.62) and (4.63).

The following theorem provides Ly-stability conditions for the system Sq. They take
the form of (11n+n,) x (11n+n,,) LMIs that depend on the LKF (4.35) matrices, on the
conic regions description (4.7), and on some scalars (g4, €; j10.,) and matrices (Y;,, Y2,
Y5 ») resulting from the use of the S-procedure [Boyd 1994| (see Theorem D.3 in Appendix
D) and Finsler’s Lemma |Fang 2004] (see Theorem D.2 in Appendix D) respectively.

Theorem 4.8 Consider scalars v > 0, hy, ho, €1, ea, 77, and a set of q conic regions
covering the state space R, = {x, 27V, x > 0}, ¥, € S,, 0 € {1, ,q}, with mazimal
sampling intervals 7,7. The perturbed and delayed sampled-data system Sq is finite-gain
Lo-stable from w to z with a gain less than ~y for any sampling sequence satisfying (4.8)
if there exist matrices P € S3*, Q1,Q2,Q3, R, Ry, R3, Ry € S}, Uy, S, € S5, X, X5 €

Moy on(R), Y1, € Mz on(R), Yo, Y5, € Mz, n(R) and scalars €4,€; 5100 > 0 such that
(4.43) and (4.46) are satisfied for all o € {1,--- ,q} and (i, j,1,0) € {1,2}*:

Sijhoo + EijroeM] Y, My <0, (4.46)

with
Eijite = Zije + o [Nf SoNa+ N§ U;N3 + Ny QN5 + NI Qf N3] (4.47)
Eijize = Zijo + Do [=NT SeNy — NT Uy N + Y1 o No + NE YL (4.48)

Eijo = N3 PNy+ N PNs+ M QM + M (Qs— Q1) Ms — M Q3Mj
+NT(Ry + hjRy + hoRs + (hg — ha) Ry) Ny — 2= M7 R My
+(1 = &) M3 (Q3 — Q2) My — - (My — M3)"((1 — ¢;) Ry + Ry) (M, — M)
—(hj — hy) M (1 — e2) Ry + Rz + Ry)Myg — (ho — hj) M (R3 + Ry) My,
—NIQ, N5 + NF Ny — MMy + Y1 o(—Ny 4+ Ny) 4 (=Ny + Ny) 'Y
+Y35((h; — h1)Myg — M5 + My) + ((hj — hy)Myg — Ms + My)YS
+Y3,((hg — hyj)Myy — My + Mg) + ((ha — hj) My — Mo + Mg)TY

3,07

(4.49)
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Q=[S X, 4+ X, (4.50)

YVLU Ya,a

}7170 = c M11n+nw72n(R), and Yaﬁ = € M11n+nw,n(R), a < {2, 3} (451)

Proof: Lemma 4.7 ensures that Vj is positive definite and satisfies the required conti-
nuity and differentiability properties. As in the non-delayed case, we only need to verify
that the condition

Vat) + 27 (8)2(t) — Yw (Hw(t) < 0, V¢ # t, Vk € N, (4.52)

from Lemma 4.2 is satisfied in order to ensure the system’s Lo-stability. In order to do

so, we study the restriction of ‘Zz on any interval [t tr1), k € N. We compute

f/d(t) + 251 z2(t) — YwT (Ow(t) = I + I, + I3 + Iy + 27 (t)2(t) — 2wt (H)w(t)
20" () P(t) + 2" (1) Qux(t) + 2 (t — hi)(Q2 — Q1) (t — hy) — 2 (t — ha)Qsa(t — ha)
+(1 = h(1)x"(t = h(t))(Qs — Q2)a(t — h(t)) — (1 — h(t))i™ (t — h(t)) Rud(t — h(t))
+iT(t)(Ry + h(t)Ry + hoR3 + (hy — hy)Ry)&(t) + ((trrr — te) — 2(¢ — t&))n" (t) Ss,m(tr)

g (i) [ _ n(t)
H(tpar — AT (U, (1) ln(tk)] Q, n(t) + 2(ti1 — 0T ()0, n(tk)]’
(4.53)
where
- —Lk crkn )d
12 = ft w © (8)R2i(s)ds, (4.54)
= —ft B Rgx( )ds,
14 =— " hh; " (s) Ry (s)ds.

Using the Jensen inequality [Gu 2003] (see Theorem D.4 in Appendix D), we can compute

an upper bound of I:

h= = [ Unis)ds < ~(t =t OV (0 (4.55)
with ) . . .
nt) = 7= /t ﬁ(s)ds:%:;fk). (4.56)

For an upper bound on the other integral terms, one writes:

L+ I3+ 1y = Jy+ J3 + Jy, (4.57)
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with
——L @ (5)((1= h(£) Ry + Rs)i(s)ds,
Js=— [ ’” @7 (s)((1 — h(t)) Ry + Ry + Ry)i(s)ds, (4.58)
Iy = j_,j;@ iT(s)(Rs + Ry)i(s)ds.
Then, using the Jensen inequality |Gu 2003| (see Theorem D.4 in Appendix D), one
obtains
Jo < —EvE(#)((1 = h(t) Ry + Rs)a(t),
Js < —(h(t) = ha)vd (t)((1 = h(t)) Ry + Rs + Ra)vs(t) (4.59)
< —(h(t) = h) I () (1 — e2) Ry + Ry + Ry)vs(t),
Ji < —(ha — h(t)v] (t)(Rs + Ra)ra(t),
with:

va(t) = z(t) — z(t — hy),
o 1 t—h1 . z(t—h1)—z(t—h(t))

v3(t) = O t_h(%) 1(s)ds = ﬁ(t) , (4.60)
. 1 t—h(t) . z(t—h(t))— (t h2)

va(t) = T2 —h(0) Jt—ho i(s)ds = ha—h(?) =

Note that v4(t) (respectively vs(t) and v4(t)) is well defined by continuity in ¢ =
(respectively h(t) = hy or h(t) = hy) since when t — t; (respectively h(t) — hy or h(t) —
hy), one has v (t) — n(ty) (respectively vs(t) — —i(t — hy) and vy(t) — —&(t — he)).

Using majorations (4.55) and (4.59) in equation (4.53) leads to

Va(t) + 27 (8)2(t) — v*wT (t)w(t) < 27 (8)2(t) — v*w” (t)w(t)
+2nT () Pn(t) + 27 (1) Qux(t) + 2T (t — h)(Qa — Q1)x(t — hy) — 2T (t — he)Qzx(t — hy)
(

t
+(1 = h(t)2" (t = h(t)(Qs — Qa)z(t = h(t)) — (L — h(t))E" (t — h(t)) Rii(t — h(1))
( )

+37(t)(Ry + h(t)Ry + hoR3 + (ho — hy)Ra)&(t) + ((tpe1 — tx) — 2(t — t3))n" (t) S, n(ts)
oo [aw] e ) n(t)
ik =07 OUi) = | "0 Qo | B0 | 20tk = 0 (0 n(tk)]

—(t = te)vf (OYUs (1) — 53 (£)((1 = h(t)) Ry + Ry)ra(t)

—(h(t) — h)vE(#)((1 — e2) Ry + R3 + Ry)vs(t) — (ha — h(t))vl (t)(R3 + Ry)va(t).
(4.61)

We introduce the augmented state vector ¢(t) € RU1ntnw:

oT(t) = [n" (@), 0" (), a7 (t = ), 2" (t — ha),

e (4.62)
(1= h@®)a"(t = h(t), vi (t), v5 (t), vi (1), wh ()],
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and use the notations (4.44) and (4.45) to write

o | [Miew)]
n(t) = L(t B h(t))__ = [M2¢(t)] = Nyo(t),

| @(te) _ Msp(t) _
) = Lw] _M4¢<t>] et
x(t _‘hl) = Ms¢(t), z(t — hy) = Mso(t),
(1= h(t)z(t — h(t)) = Mp(t),

Mg B B B

n(t) = MJ P(t) = Noo(t), va(t) = (My — M5)p(t), (1.63)

v3(t) = Miog(t), va(t) = Muo(t), w(t) = Miag(t),
&(t) = (AMy — BKMy + EMi5)¢(t) = N1¢(t),

) x(t) Nio(t)
= . = = N3 )
() (1 —h(t)z(t — h(t))] [M7¢(t)] olt)

0] [No]
lnuk)] B [Nmm] Nage),
2(t) = (CM, — DEM)@(t) = Neg(2).

Using these notations, one can see that the equations (4.56) and (4.60) about vy, vs,
and vy can be written as H;(t)p(t) = 0 with Hy(t) = (t — tx)Ng — No + Ny, Hs(t) =
(h(t) — h1) Mg — M5+ My and Hy(t) = (he — h(t)) M1 — My + Mg, respectively. Therefore,
by applying the Finsler’s lemma |Fang 2004| (see Theorem D.2 in Appendix D) to include
these relations in (4.61), one obtains that for any matrices Y; ,, € Mz, 9,(R), Ya,,, and
Y5, € Mz, a(R):

Va(t) + 27 (8) () — v2w” ()w(t) <
¢T(t)[N§FPN2 + NQTPN?, + M1TQ1M1 + M5T(Q2 — Q1) M;5 — MéFQ?,Mb‘

+(1 = h(t))MI(Qs — Q2)My + NI(Ry + h(t)Ry + hoRs + (hy — h1)Ry) N,
= M{ Ry M7 — N§' Qg N5 — 7=(My — M5)" (1 — h(t)) Ry + Rs)(M, — Ms)

_l—e
—(h(t) — hl)MlTO((l —e9)Ry + R3 + Ry)Myg — (hy — h(t))MlTl(Rg + Ry) My
+(tpr1 — t)(N§ Uy N3 + NTQy 5, N5 + NTQT . N3)

170k
+((terr — te) — 2(t — te) ) NS So, Ny — (t — ti)N§ Uy, Ng + NI Nz — 2 M, My,
+Y10, ((t = t,)Ne — Np + Nu) + ((t — tx) Ng — Ny + No)TY ]

10k

+Y5 0, ((h(t) = ha) Mg — Ms + Ma) + ((h(t) — hq)Mig — M5 + Ms)"Yy!

2,0

+Y3,0, ((ha — h(t))Myy — My + M) + ((hy — h(t)) My — My + M) V3!, o ().

(4.64)
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As in the delay-free case, we obtain a stability condition under the form of a parametric
equation (4.64), which is linear in the variables A(t), h(t), t and t4q — tz. In order to
reduce the number of conditions to be checked to a finite number, we use Lemma D.8
(Appendix) on (4.64) with, successively, the variables A = h(t) € [e1,e5], A = h(t) €
[hi,hal, A =t € [teytir1], and X\ = tpy1 — tx € [Ty, T20,), to show that if the 16
inequalities {7Z; 5, ,,,.& < 0 are satisfied for all ¢ € R""™w  with =, ;,,,, defined in
(4.47) and (4.48), then Vy(t) + 27 (£)2(t) — v?*wT ()w(t) < 0 for all ¢ € [ty, tps1).

Since we know that z(sg) € R,, (i.e. a7 (s1)¥,, z(sr) > 0), we use once again the
lossless version of the S-procedure [Boyd 1994] (see Theorem D.3 in Appendix D) on each
of the 16 obtained inequalities to show that, if there are scalars €;j;, > 0 such that
(4.46) holds for o = oy, then condition (4.52) is satisfied. Therefore, if (4.46) is satisfied
for all o € {1,---,q}, (4.52) and Lemma 4.2 allow for concluding the proof. |]

Remark 4.9 Setting hy = 0 reduces the size of the LMIs and the number of variables,
since the state x(t — hy), the matrices Q1 and Ry, and the integral term Jo (in (4.57)) are

not needed anymore.

Remark 4.10 Similar to the delay-free case, if w satisfies 27 (t)z(t) — v2wT (H)w(t) > 0,
and if the LMIs (4.46) are strict, the delayed sampled-data system Sq is asymptotically
stable for any sampling sequence satisfying (4.8). In the unperturbed case w(t) = 0, it is
sufficient to verify that \_/(t) < 0, and thus the term 27 (t)z(t) = ¢ (t) NI Nz (t) and the

rows/columns corresponding to w(t) are removed from the LMIs (4.46).

Remark 4.11 As in the non-delayed case, when searching for solutions of LMIs (4.43)
and (4.46), one needs to remove the zero rows/columns that may appear in (4.46) since
LMI solvers search for strict solutions. Indeed, one can see that Z; ;. ts: independent

of v1 if o=1 or 1T, = 0; independent of vs if j = 1; independent of vy if j = 2.

4.2.3 Algorithm to design the state-dependent sampling function
Tmax for a given feedback matrix gain K

Figure 4.1 provides a three-step algorithm to build a state-dependent sampling function

maximizing the sampling intervals using the stability conditions from Subsections 4.2.1

and 4.2.2. This algorithm is based on a computation of the Lyapunov-Krasovskii Func-

tional in two steps.
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e First, we compute the constant ("global") LKF matrices, that allow to maximize
the lower bound 71 of the sampling function, which leads to a classic robust anal-
ysis of perturbed (and possibly delayed) sampled-data systems with time-varying

samplings.

e Then, we compute the switching ("local") LKF matrices so as to maximize the
allowable sampling intervals 7, for each region, which leads to a self-triggering
algorithm except that all computations are made offline, and that the switching

part of the LKF is computed at the same time as the maximal samplings 7.

Keep in mind that all steps in the algorithm are made off-line.

STEP 1

o Work with a single region R", or ¢ conic regions R, covering the state space
¢ Fix the minimal sampling 7~

Theorem 4.4 (resp. 4.8 with delays) LMIs + | line search algorithm on 7

A 4

o Compute the largest admissible state-independent sampling 7% (common to every region)
o Compute the constant (i.e. global) LKF matrix P
(as well as the matrices Q1, Q2, @3, R1, R2, R3, R4 in the delayed case)

STEP 2

o Work with ¢ conic regions R, covering the state space

¢ Use the same minimal sampling 7~ as in Step 1
¢ Use the LKF matrix P, (as well as the other global matrices Q1, Q2, @3,
Ry, Ry, R3, Ry in the delayed case) computed in Step 1

line search algorithm on 7,

Theorem 4.4 (resp. 4.8 with delays) LMIs + for each region R o
(o}

A 4

o Design the mapping of the largest admissible sampling 7, > 71 for each region R,
o Compute the switching (i.e. local) LKF matrices U,, Sy, Xy, X1, for each region R,

STEP 3

Design of the state-dependent sampling function
Tmax(T) = MaXe7(y) Th > 71T, Ve e R"

Figure 4.1: Algorithm to design the state-dependent sampling function 7.« () for a given
feedback matrix gain K

Note that one can compute the largest admissible state-independent sampling 7

(Step 1) by working with a single region (R™), and using the proposed LKF with constant
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matrices, or by working with more regions R,, and using the LKF with state-dependent
matrices switching according to the sampled state. Although the second choice is more
complex, it can greatly reduce the conservatism, as it will be illustrated in Example 2.
For the same reason, if the first step was proceeded with only one region R", it is possible
that one obtains in the second step mingei .. g3 7,7 > 77, which means that even the
largest state-independent sampling obtained can be increased by using the LKF with

state-dependent matrices.

Also, note that very often the works are carried with a minimal sampling interval 7~
set to 0, as in [Wang 2009]|, [Wang 2010| or [Fujioka 2009b], or as in the polytopic approach
presented in the previous two chapters. Enabling 7= > 0 allows to consider systems which
are unstable with a continuous feedback control, but which are stable with sampling inter-
vals that are lower bounded (see Example 3 for an illustration). Furthermore, enabling a
larger minimal sampling makes it possible to increase the obtained maximal sampling 7.
with the proposed technique, since the stability conditions we obtained ensure stability
for any sampling satisfying (4.8): 77 <7, < 7.

The final step of the algorithm to design the state-dependent sampling function deals
with the possible regions overlapping issue, since the regions R, are not necessarily dis-

joints.

Remark 4.12 Unlike with the polytopic method presented in the previous two chapters,
it s very difficult to design an event-triggered or a self-triggered control scheme with this
LKF approach. This is due to the fact that here, the stabilty conditions are obtained
through the wuse of an augmented state in which appear both the delays and the state
derivatives. Therefore, it is difficult to isolate the sampled-state x(sy) along with the

time-variable t — ty in the otained stability conditions.

Remark 4.13 Unlike with the polytopic approach, here it is simple to include the minimal
sampling interval 7= in the stability conditions. Although it would still be possible with
the previous approach (in the delay-free case), the complexity would be very high. Indeed,
one would have to design a polytope with respect to the variable t € [sy, Sk41], which would
result in N +1 vertices with the convex embedding approach presented in the Appendiz C.1
(N being the order of the Taylor series approzimation), and for each of these vertices, one
would need to build another polytope with respect to the variable syy1 — Sk € [T7, Tmae()],

which would result in a complex design of (N + 1)? vertices.
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4.3 Main Lo-stabilization results

In this section, we propose a way to design the control input, allowing to enlarge even more
the state-dependent sampling function 7,,x. Remember that the objective of this work
is double: we want to maximize both the lower bound 71 of the state-dependent sam-
pling function (which ensures stability for any state-independent time-varying sampling
sequence in [77,77]), and the sampling function 7,y itself.

In Subsection 4.3.1, we consider the case of a classical piecewise-constant feedback
control u(t) = —Kuz(s) and provide tools to compute an adequate feedback gain K
allowing to enlarge the lower bound 77 of the sampling function. This analysis can be
seen as a robust stabilization method regarding state-independent time-varying sampling.
Once this feedback gain is computed, it is possible to build its associated optimal sampling
function 7, using the algorithm presented in Subsection 4.2.3.

In Subsection 4.3.2, we go a step further and design a piecewise-constant feedback
control with matrices that switch according to the sampled state (u(t) = —K,, x(sk)),
which allows to enlarge even further the sampling function 7., (4.9). Indeed, with this
type of controller, one can design the feedback gains K, so as to enlarge the maximal
allowable sampling 7.1 for each region R,.

Eventually, in Subsection 4.3.3, we provide an algorithm to be used with either ob-
tained stabilization results, to enlarge the sampling function 7,,, while computing the
adequate controller matrix K (or matrices K, ).

For simplicity, in this section we assume that D = 0.

4.3.1 Stabilization using a piecewise-constant feedback control
u(t) = —Kx(sg)

Here, we want to compute the feedback matrix K that maximizes the lower-bound 7+ of

the sampling function. we provide the following stabilization theorem:

Theorem 4.14 Consider scalars v > 0, and 0 < 7= < 7. The perturbed system S
(with D = 0) is finite-gain Lo-stabilizable from w to z with a gain less than ~y for any
sampling sequence with values in [7~, %] if there exist matrices P € Si*, U, S € S},
Q € M, ,(R) invertible, M € M, ,(R), Vi, Y, Vs, X, X, € M,n(R), and a scalar §

such that the inequalities

P 0
0 0

1] =0 and Z;; < 0 (4.65)
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Lys =Yl —0BM, Lys=YI +Ys+ 2, —Z

. X4+ XT -
_ 4t ,and Z; =

XT+ X,

The stabilizing feedback matriz gain is provided by K = MQ™'.
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are satisfied for all (i,7) € {1,2}%, with
-E1,1 jzl,z + TgZ E1,3 E QTCT-
x £272+7}0 £273+7}(—X+X1) oF 0
E= | x % Lys+T;8 0 0o |, (4.66)
* * * —~2T 0
* * * * —1I
-le 1 ﬁ1,2 E1,3 T]Y/lT E QTCT-
* [A/272 [A/273 T‘]Y/QT oF 0
. x % Lys—T;8 T,YT 0 0
Sy, = e : (4.67)
* * * -T;U 0 0
* * * * -2 0
| x * * * * —1I |
Liy ==Y =Y+ AQ+ QA" = Z, L1, = P =Y, = Q+ Q" A",
El,g = - BM+Y! -Y;+ X - X, E2,2 = —0Q" - 4Q, (4.68)
(4.69)

Proof: We work with a single region: R™ and with the LKF (4.10) designed for the

delay-free case. Using arguments very similar to the ones used to obtain equation (4.26),

which leads to Theorem 4.4, we can show that
V() + 27 (1) 2(t) — V2wl (t)w(t) < 28T (t)Px(t) + (spy1 — t)aT () Ui (t)
x(t) 7 x(t)
Q o(s) + 2(spy1 — )2 (£) x(sk)] (4.70)

—(t = s () Uv(t) — " ] [
z(sr,)
+((sk41 = 51) = 2(t = si))2" (s)Sz(s1) + 2T () CTCx(t) — y*w” (t)w(t)

+2(aT (VY + 3T ()Y + 2T (sp) VS ) ((E = si)v(t) — a(t) + 2(si)),

for any matrices Y3, Y2, Y3 € M, ,(R).

We use Finsler’s lemma [Fang 2004| (or the descriptor method [Fridman 2001b]) to

include the relation #(t) = Ax(t)—BKx(s;,)+Ew(t), (by adding the term 0 = 2(z” () PJ +
i ()Pl (=i (t)+Ax(t)— BKxz(sy)+Ew(t)) to the previous inequality) and the augmented
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state vector
o (t) = [z (1), & (1), =" (sk), V7 (1), w(2)], (4.71)

S, =0 (4.72)
are satisfied, with
Ly Lio+T;Z Lis P'E
= * [_/272+7—‘]'U [_/273+7—‘](—X—|—X1) P3TE
2, - : , (473
* * Lys+ 155 0
* * * —~2T

Ly L Ly TYS PIE]
* L272 L273 T‘]YVzT P3TE

Soj=| * x Ls3—T;S T,V 0 |, (4.74)
* * * -T;U 0
* * * * —~2I

El’l:CTC_}/;T_K+P211A+ATP2_Z7 E1,2:P_}/2_P2T+ATP37
Lig=-P/BK+Y" —Ys+ X = X1, Lyy = —P; — P, (4.75)
E273:}ZT_P§BK7 E3,3:}/:3T+}/3+Zl—z,

Z:X%XT, 7= X!+ X, (4.76)
and matrices Py, Ps, Y7, Ys, Y3 € M, ,(R), then the stability condition (4.6) is always
satisfied.

We need to compute a feedback matrix gain K satisfying these conditions. In or-
der to do so, we consider the case where P; = 0P, with P, invertible, and 6 € R.
Then, we multiply the previous matrix inequalities by diag(Py ", ---, Py, 1) to the left,
and diag(Py ', -+, Py, I) to the right, and use the Schur complement [Boyd 1994] (see
Theorem D.1 in Appendix D) to obtain Theorem 4.14 stabilization conditions (where
the notation @ denotes P, ', and the notation F denotes the multiplication of a matrix

F € M, (R) from left and right by P;7 and P;': F = Py TFPY. |}

Remark 4.15 Note that the second inequality in (4.65) is not an LMI. It can be solved

by LMI solvers however, by including a line search algorithm on the variable 9.
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Remark 4.16 [t is possible to include constraints to avoid having an unacceptable high
gain K = MQ~'. In order to do this, one can add the LMIs

kol MT I
i <0 and |9 = 0, (4.77)
* -7 * kol

which ensure that ||| K|||2 < /Eamkg-
Indeed, using the Schur complement, one can show that the LMIs in (4.77) imply that

Q™ < kol

O < ol , (4.78)

MTM < kI, and {

and thus

11M[[la = V/p(MTM) < /R, and ||Q 7|2 = Vp(Q-TQ™Y) < Vp(Q T)p(Q 1) < ko
(4.79)

Therefore, since K = MQ™' and the property of the matriz norm |||.|||2 ensures that
K]z < NM/Q 7|2, one has [[|K]||2 < v/Earka.

Using this theorem, it is possible to compute the feedback matrix gain maximizing the
lower bound 77 of the state-dependent sampling function. The algorithm to compute the

optimal gain K along with the associated sampling function 7.y is proposed in 4.3.3.

4.3.2 Stabilization using a switching piecewise-constant feedback
control u(t) = — K, x(sk)

The previous theorem enables to compute a feedback matrix gain K that maximizes the
lower bound of the state-dependent sampling function 7,,,.. However, it seems natural
to think that it may be better to adapt the control gain according to the value of the
state, in order to enlarge even further the state-dependent sampling function 7. Here,

therefore, we work with a more general feedback control law
u(t) = —K,, x(s), (4.80)

with feedback matrix gains K, that switch according to the region of the state space the
sampled state is in (at each sampling step, oy is set to satisfy (4.8)). Using the previous
stability and stabilization analysis, we can extend the obtained results to this class of

systems and to show the following theorem:
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Theorem 4.17 Consider scalars v > 0 and 7= > 0, matrices P € SI*, P, P3 €
M, ,(R), and a set of q conic regions covering the state space R, = {z,2"V,z > 0},
U, € S,, 0 €{l, - ,q}, with mazimal sampling intervals 7,;7. The perturbed system S
(with D = 0) with control input (4.80) is finite-gain Lo-stabilizable from w to z with a
gain less than v for any sampling sequence satisfying (4.8) if there exist scalars €; j» > 0
and matrices Uy, Sy € S, Y14, Yoo, Yas, Xy Xio € Mun(R), and K, € M, n(R)
such that the LMIs (4.13) and Z; ;, < 0 are satisfied for all (i,7) € {1,2}?, with

-El,l,o E1,2,o + T 02y E1,3,o PzTE-
Sge=| T et Tl Lot T Xt %00) BB (4.81)
e x x Lsso+ TjoSe+ €10V, 0 | '
| x * * —7*1 |
(Lo iz Lige T;,Yi, PIE]
* L2,2,a [_1273,0 TJUY2TU P?,TE
S0 = * * L33, —Tj0S, +62,0%, Tgayng 0o 1, (4.82)
* * * ~T1;,Us 0
* * * * —y21

ELLU :CTC—YE;—Y&J—FP;A—'—ATPQ—ZU, ELQJ :P—Y*ZU—PQT‘i‘ATPg,
E1,3,U = _P2TBKJ + Yyljjg - YE’),J + XO' - Xl,aa E2,2,U = _PS - P3T>
E2,3,a = YVQF{U — PgBKm E3,3,a = Yv,To +Ys5,+ 210 — Zs,

X+ X7
2
The stabilizing feedback matriz gains are directly provided as the LMI variables K, with

ZCT ) Zl,cr = qu;‘a' + Xl,cru (484)

the switching law o satisfying (4.8).

Proof: The proof is very similar to the one in the non-switching case to get the matrix
inequalities (4.72), except that we are now using the LKF (4.10) with matrices switching
on the conic regions defined in (4.7). |

Remark 4.18 Here again, one can include constraints to avoid having unacceptable high

gains K, by adding the LMIs
—kl KT
=<0 (4.85)

x =

which ensure that ||| Ky|||2 < k.
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Indeed, using the Schur complement, one can show that the LMI (4.85) imply that

K, 2 kI (4.86)
KT < kI’ '
and thus
Kol = V(KT K,) < v/ p(KD)p(K,) < k. (4.87)

Remark 4.19 Here, the matrice P from the LKF and the matrices Py and Ps introduced
by the application of Finsler’s Lemma (or the descriptor method) in the proof of Theorem
4.14 are supposed to be given, (computed using Theorem 4.14 for example, which would
give Py = Q7 Y, Py =0P,, and P = P2T}~7P2). It is necessary to use a two-steps algorithm
(one to compute Py, Ps, and one to compute the matrices K, ) because one can not search
for Py and Ps at the same time as the matrices K,. Indeed, the inequalities Em,o =0 from
Theorem 4.17 would then result in BMIs, and the tricks used in the proof of Theorem /.14
would leave us with a term QTY,(Q which can not be removed using a Schur complement

for example, because of the non-positivity and non-negativity of V.

4.3.3 Algorithm to design the state-dependent sampling function
Tmax and its associated feedback matrix gain K (or gains
K,)

Figure 4.2 provides a four-step algorithm to build a state-dependent sampling function
enlarging the sampling intervals using the stabilization conditions from Subsections 4.3.1
and 4.3.2 while computing the adequate LKF function (4.10) and controller gain K (or

gains K, ). Keep in mind that all steps are made off-line.

Remark 4.20 Step 2 in the case of switching matriz gains provides less conservative
results than Step 1, since the condition Py = 0Py assumed in theorem 4.14 is not valid

anymore. Indeed, in Step 2, the obtained Py and Ps can be any matrices in M, ,(R).

Remark 4.21 Similar stabilization tools and algorithm can be obtained in the case of
delayed systems such as the ones presented in Subsection 4.2.2. We chose not to present
this study however because it concludes with LMIs of size (13n+ny,) x (13n+ny,), which

are too large.
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STEP 1

o Work with a single region R"
¢ Fix the minimal sampling 7~

line search algorithm on §

Theorem 4.14 LMIs + line search algorithm on 77
y

o Compute the largest admissible state-independent sampling 7
o Compute the associated (global) feedback matrix gain K

STEP 2

— Case u(t) = —Kxz(sg): use Algorithm from Subsection 4.2.3 with the computed K and stop
— Case u(t) = —K,, z(sg):
o Work with a single region R™, or ¢ conic regions R, covering the state space
¢ Use the same minimal sampling 7~ as in Step 1
¢ Use the feedback matrix gain K computed in Step 1

Theorem 4.17 LMIs + line search algorithm on 77

A 4

o Compute a better value for 7
¢ Compute the associated (global) matrices P, P, and Ps

STEP 3

o Work with ¢ conic regions R,
¢ Use the same minimal sampling 7~ as in Step 1
¢ Use the matrices P, P, P3 computed in Step 2

Theorem 4.17 LMIs + line search algorithm on 7,
v

o Design the mapping of the largest admissible sampling 7.5 > 77 for each region R,
o Compute the switching (i.e. local) LKF matrices U,, Sy, Xy, X1, for each region R,
¢ Compute the optimal matrix gain K, for each region R,

STEP 4

Design of the controller’s switching law
O = argmaxaez(m(sk))n,
and of the state-dependent sampling function
Tmax(2Z) = MaX,cz() TF > 7T,Vr € R" (Tmax(z(sk)) = 7';;)

Figure 4.2: Algorithm to design the state-dependent sampling function 7. (z) and its
associated feedback matrix gain K (or gains K,)
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4.4 Numerical examples

4.4.1 Example 1 - State dependent sampling for systems with

perturbations and delays

We consider the system:

. ~3 0 1 ,
x(t) [ 0 1] x(t) — L] Kx(s) +w(t), fort € [tg,try1), with K = [—1 4] ,
2(t) = x(t).

The state-dependent sampling function (4.9) will be designed in four successive cases:
1. no delay nor perturbations (w = 0, h = 0, asymptotic stability);
2. perturbations on the delay-free system (w # 0, h = 0, Lo-stability with v = 1/10);

3. unperturbed system with delays a(t) € [107%,107"] and A(t) € [-0.2,0.6] (w = 0,
h # 0, asymptotic);

4. perturbed system with the same class of delays (w # 0, h # 0, v = 1/10).

We set a number of ¢ = 100 conic regions R,, take 7= ~ 0, and use the algorithm
of Subsection 4.2.3 to build the mapping that maximizes the sampling interval for each
state. We work with the isotropic covering described in the Appendix B.1, and design the
conic regions using the polar coordinates (p,6) of the state x = pel?, for the particular
value p = 1 (the unit circle). Computed off-line in each of the 4 cases, Figure 4.3 presents
the admissible sampling interval as a function of the state angle § € [—7, 7). The longest
state-independent sampling intervals (the lower bound of the state-dependent sampling

function) we found in the four cases are presented in Table 4.1.

w=0h=0lw#0,h=0|w=0,h#0|w#0,h#0
0.535s 0.445s 0.169s 0.145s

Table 4.1: Example 1: Lower-bound 7 of the state-dependent sampling function

Note that since 7~ has been fixed near to zero, the system Lo-stability (or asymptotic
stability) is guaranteed for any sampling intervals less than 77. This result corresponds
to that of a classic robust stability analysis regarding (state-independent) time-varying

sampling. Thanks to the mapping we built (in each of the four cases), we can extend that
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Figure 4.3: Example 1: Mapping of the maximal admissible sampling intervals 7,7 with
or without perturbations w and/or delays h

stability result to any state-dependent time-varying sampling with values bounded by the

obtained sampling function 7, (i.e. with values below the curve presented in Figure

4.3), which allows for larger sampling intervals.

Figure 4.4 shows simulation results for a system with or without time-varying delays,
with a sinusoidal disturbance w(t) set to satisfy ||w(t)||s = %||z(t)||2 ~ 32%||z(t)||2- It
presents the state x(t), the sampling intervals 7, = Tax(2(sk)) and the delays hy = h(t)

(in the delayed case).

4.4.2 Example 2 - Conservatism reduction thanks to the switched

LKF

To show the conservatism reduction brought by the LKF with state-dependent matrices,

we consider the system from |[Hetel 2011b|:

3t) = [—0.5 0

2(t) = x(t).

0 3.5] o) -

1
1] Kx(sy), fort € [sk, Sgt1), with K = [—1.02 5.62] ,
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Figure 4.4: Example 1: Left side: delayed case (delays up to 0.1s). Right side: delay-free
case. In both sides, the perturbation satisfies ||w(t)||s = %Hz(t)”g ~ 32%||z(t) ||

We set 77 ~ (. Considering the results given by the step 1 of the algorithm described in
Subsection 4.2.3 and taking only one region R", the longest state-independent sampling
interval 77 (i.e. admissible no matter the state) obtained is equal to 0.267s, whereas we
obtain 0.309s with ¢ = 100 regions R,. This corresponds to a robust stability bound that

can be compared to the ones obtained in the literature, as shown in Table 4.2.

[Naghshtabrizi 2008] | [Seuret 2009] | [Fujioka 2009b| | [Fridman 2010] | Algorithm Section 4.2.3
0.165s 0.198s 0.204s 0.259s 0.309s

Table 4.2: Example 2: Maximum upper bounds 77 for time-varying samplings, allowable
on the whole state space

4.4.3 Example 3 - State-dependent sampling for systems which
are both open-loop and closed-loop (with a continuous feed-

back control) unstable

Here, we consider a system from [Gu 2003|:

oo o
I(t)_[—z 0.1] i [1

z(t) = x(t).

Kux(sy), for t € [sg, Sgr1), with K = [—1 O} ,
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This system is asymptotically stable for a constant sampling step 722X = (0.25s. However,

const

it is unstable in open-loop, and unstable in closed-loop with a continuous state feedback
(A and A — BK are both not Hurwitz).

The stability tools proposed in Section 4.2 can not provide any solution for a minimal
sampling interval 7~ that is too small, since the system is unstable for small sampling
intervals. However, for larger values of 7=, the proposed algorithms find solutions and
allow to build state-dependent sampling functions, which is not possible in classical self-
triggered works for this class of continuous closed-loop unstable sytems. The sampling
functions presented in Figure 4.5 (on the left) have been obtained with a number ¢ = 100
conic regions and different values for the minimal sampling inverval 7=. On the right of

the figure are shown simulation results obtained for 7= = 0.25.

0 10 20 30 40 50 60
t
25}
21
157
05 ]
1H
05F
olu I I I I I I 0 I I I I I ]
-3 -2 -1 0 1 2 3 0 10 20 30 40 50 60

6 (rad) t

Figure 4.5: Example 3: Mapping of the maximal admissible sampling intervals for different
minimal sampling intervals 7= (on the left) and simulation results using the sampling
function obtained with 7= = 0.25 (on the right)

4.4.4 Example 4 - State-dependent sampling controller for per-

turbed systems

Here, we consider a system from |Tabuada 2007| to which we added a switching controller:

z(t) = [_02 Zl’l x(t) — [(1)] Ko x(s) +w(t), with z(t) = x(t), for t € [sk, Sg+1)-

The feedback gain matrices K, are computed along with the maximal admissible sampling

intervals 7,7 for every conic region of the state space using the algorithm proposed in
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Subsection 4.3.3. Figure 4.6 presents the sampling functions obtained for various £, gains
~ with the proposed controller with switching matrices K,, and with a classic controller
with a constant matrix gain K. It shows the advantages of the switching rule on the
controller. These results have been obtained with ¢ = 100 conic regions (isotropic design

from Appendix B.1), and a lower bound on the samplings 7= ~ 0.

0.8f W=0 (y=00), K _
w=0 (y=0), K
0.71¢ y=5, Ko
| V=5, K
0.6f V2. K
=2, K
05} ¥=2
I V=12, K
o
o ooall - V12K
0.3f ;},\
0.2f
0.1f
0 1 1 1 1 1 1 1
-3 -2 -1 0 1 2 3

Figure 4.6: Example 4: Mapping of the maximal admissible sampling intervals for different
Lo gains vy, with or without switching controller

Using the mapping we designed for both the maximal sampling intervals 7,7 and the

feedback gain matrices K,, we can run the simulations presented in Figure 4.7.

4.5 Conclusion

This chapter has proposed both a stability and a stabilization analysis allowing to design
a state-dependent sampling that reduces the number of actuations, while ensuring the Lo-
stability for perturbed linear state feedback systems. Extensions to the stability analysis
of delayed systems, and to the stabilization analysis for systems with switching feedback
matrix gains are also provided.

The study is based on a new class of Lyapunov-Krasovskii functionals with state-

dependent matrices that reduce the conservatism for both state-dependent sampling and
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Figure 4.7: Example 4: State z(t) and sampling intervals 7, = Tpax(2(sx)) for the con-
trolled system without perturbation (on the left) and with a perturbation satisfying

lw(®)ll2 = Jllz(@)], v =2 (on the right)

time-varying (state-independent) sampling.

The proposed method can be used as a self-triggered control, as a new time-varying

sampling analysis leading to a state-dependent sampling design, and as a stabilizing tool.

We think it presents three main advantages, since it makes it possible:

e to compute the matrix gain K (or matrix gains K, along with the switching rule o

in the case of switching matrix gains) adapted to the system and sampling;

e to maximize the minimal sampling interval 77 = inf, cgn Tax(z) of the state-

dependent sampling function, and to compute the associated Lyapunov-Krasovskii

function matrices that ensure the system Ls-stability;

e to design off-line a mapping of the state space with a maximum allowable sam-

pling time for each subspace. Therefore, as in most contributions in this thesis, no

additional computation is required online during the control of the system.
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This PhD thesis was dedicated to the robust stability analysis and stabilization of systems
with time-varying sampling. A particular attention was given to the dynamic control of
the sampling events. Its main objective was to design sampling laws that allow for reducing
the number of sampling instants of state-feedback control for LTI sampled-data systems.

In this work, we have provided the foundations to a novel approach for the dynamic
control of the sampling, which we called "state-dependent sampling”. It consists in an
offline design of a state-dependent sampling function enlarging the sampling intervals of
state-feedback control, thanks to LMIs based on a mapping of the state-space. One of
the main advantages of this offline design is that it allows for reducing the number of on-
line computations required to estimate in real-time the next maximal allowable sampling
interval. Furthermore, it makes it possible to optimize the lower-bound of the sampling
function by computing the optimal Lyapunov parameters, meaning that the maximal sam-
pling allowed in the worst case will be optimized. This lower-bound of the state-dependent
sampling function can be used as an upper-bound for the classical problem concerning
the robust stability with arbitrary time-varying sampling.

First, the case of ideal LTI sampled-data systems was considered. In this context,
an extension of the common Lyapunov-Razumikhin theory to guarantee the exponential
stability of sampled-data systems was proposed. A convex embedding design adapted to the
continuous-time stability analysis was then applied to derive the LMIs used in the design
of the state-dependent sampling function. The approach was illustrated by numerical
examples from the literature for which the number of actuations is shown to be reduced
with respect to the periodic sampling case. This shows that our state-dependent sampling
combines the robustness property (since shorter time intervals also stabilize the system)
with some realism (remember that periodic sampling constitutes an idealistic assumption
in real-time control situations).

Second, the robustness aspect with respect to exogenous disturbances was introduced.

In this context, the method was developed so as to allow the use of the convex-embedding
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approach in the presence of unknown perturbations. Several possible cases of sampling
functions were proposed, each of which was leading to a different kind of application.
The first application concerned the robust stability analysis with respect to time-varying
sampling, which allows one to compute an estimation of the maximal allowable upper-
bound of time-varying sampling, while taking into account both sampling and perturbations.
The other three applications proposed different approaches to the dynamic control of the
sampling with the objective to enlarge the sampling interval: event-triggered control,
self-triggered control, and the newly introduced state-dependent sampling. Fach of the
proposed dynamic sampling control schemes takes advantage of the results about the robust
stability analysis with respect to time-varying sampling, since it allows to optimize the
lower-bound of the sampling function in each case.

Finally, an extension to the stability analysis of perturbed time-delay linear systems
was proposed, and the stabilization issue was considered. In this context, we developed
several tools to design a controller along with the state-dependent sampling law, so as to
stabilize the considered perturbed LTI sampled-data system, and enlarge even further
the allowable sampling intervals. Two different controllers were proposed: a classic linear
state-feedback controller, and a new controller for which the gains are switching accord-
ing to the system’s state. The co-design of both the controller and the state-dependent
sampling function was based on LMIs obtained thanks to a mapping of the state-space,
in the framework of state-dependent sampling, and thanks to a new class of Lyapunov-
Krasovskii functionals with matrices switching with respect to the system’s state. This
state-dependent switch on the functional matrices allows for adapting the Lyapunov-
Krasovskii functional to each region of the state-space, and thus enables to reduce the
conservatism in the design of the state-dependent sampling function. Moreover, this new
class of Lyapunov-Krasovskii functionals may also reduce the conservatism even in the
case of state-independent time-varying sampling, as it is shown with a numerical example.

We are convinced that the perspectives that emerge from the works presented in this
thesis are multiple.

First of all, an interesting research direction would be the extension of the proposed
results to a larger class of sampled-data systems, like homogeneous systems or polyno-
mial systems for example. In that case, the dynamic sampling control would then take
advantage of both the state-dependent sampling approach presented in the linear case
in this thesis, and of scaling properties for the sampling function like the ones expressed

in [Anta 2010] for example, which are particular to the classes of systems considered.

Another research direction would be to extend the results obtained with the proposed

136



state-dependent sampling approach to a larger class of control types and control perfor-
mances. For instance, extensions to output-feedback control or observer-based control
would be very useful for a wide variety of systems for which using a state-feedback con-
troller is not physically possible. As well, the design of a perturbation-rejection control
would also be interesting, so as to allow the convergence of the system state toward the
equilibrium point in the case of systems with constant or slowly varying perturbations.
Finally, it would be interesting to extend the stability and stabilization results pre-
sented for systems with a state-dependent sampling to the case of systems with state-
dependent delays. The study of such systems is mainly motivated by applications that
may arise in Networked Controled Systems (see |Briat 2010| for the modeling of internet
congestion, and |Donkers 2009 for the interaction between control tasks and scheduling
algorithms for example). In this context, it would be interesting to design stability tools
with respect to a known state-dependent delay 7(z), or even to propose scheduling tools

that would allow for controlling this state-dependent delay so as to obtain the stability.
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Résumé étendu en francais

Introduction générale

Jusqu’au milieu des années 50, la plupart des systémes étaient commandés au moyen de
controleurs analogiques. Cependant, le développement rapide des ordinateurs a cette péri-
ode poussa a une utilisation de plus en plus importante des controleurs numériques. Ce
nouvel essor était dii notamment a la puissance de calculs de ces derniers, ainsi qu’a leur
flexibilité, et leur facilité de mise en ceuvre. De nos jours, les controleurs numériques sont
devenus omniprésents, et ont permis la naissance et le développement de nouveaux sys-
temes de commande, tels les systémes embarqués et les systémes commandés par réseaux.
Ils offrent de nombreux avantages: faible coiit d’installation et de maintenance, flexibilité
accrue, possibilité d’utilisation pour différents types d’applications, coit de cablage ré-
duit, et facilité de programmation. Ils offrent de plus la possibilité de commander plusieurs
systémes a la fois.

Contrairement aux controleurs analogiques, les controleurs numériques introduisent
naturellement des signaux et des dynamiques en temps discret, de par la présence de mé-
canismes tels que des échantillonneurs-bloqueurs (sample and hold devices) [Astrom 1996].
Ainsi, durant la commande de systémes en temps-réel, de nouveaux phénoménes font leur
apparition.

Tout d’abord, 'information transmise par les capteurs au controleur est échantillonnée,
a l'aide d’un convertisseur analogique numérique (A/N). Une telle conversion d’un signal
d’entrée z(t) en un signal échantillonné z(sg), aux instants d’échantillonnage si, k € N,
est montrée dans la Figure 1. De plus, puisque la commande est calculée seulement a
des instants discrets, il est nécessaire d’'utiliser un convertisseur numérique analogique
(N/A) (un bloqueur d’ordre zéro), de sorte que la valeur de la commande qui est envoyée
aux actionneurs reste constante entre deux échantillonnages. La conversion d’un signal
d’entrée échantillonné u(sg) en un signal constant par morceaux u(t), est montrée dans

la Figure 2.
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Signal continu x(t)
N Signal échantillonné x(sk)

N/
N/ |

S0 S1 SZ S334 S58637 S8 S9 SlO Sl§_12 s13 S14 S15 sl§l7

Figure 1: Conversion analogique numérique
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—
1
- -
| |
| |
h [
|
|
|
t
So 51 523 $455% 5755 Sg S10 S Si%iz S14815 516 S1v

Figure 2: Conversion numérique analogique

Dans les applications de commande embarquée cependant, une implémentation en

temps discret peut provoquer l'apparition d’effets indésirables tels que des retards, ou

une exécution apériodique de la commande, dis a l'interaction entre les taches de com-

mandes, et les mécanismes d’ordonnancement temps-réel [Hristu-Varsakelis 2005]. Les

effets de ces dynamiques en temps-discret ont donné naissance a de nouveaux défis en ce

qui concerne la stabilité et la stabilisation de tels systémes, et de nouvelles théories ainsi

que de nouveaux outils ont été développés spécialement pour ces systémes dits échan-
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tillonnés. En particulier, ces derniéres années, deux problémes principaux ont retenu

I’attention des automaticiens:
P1) la stabilité des systémes échantillonnés avec un pas d’échantillonnage variable;
P2) le controle dynamique des instants d’échantillonnage.

La derniére tendance concerne le controle dynamique de I’échantillonnage dans le but
d’élargir les intervalles d’échantillonnage, et ainsi réduire les cotlits en termes de charge de

calcul, de bande passante de réseau, ou de consommation d’énergie.

Objectifs

Le travail présenté dans cette thése se concentre sur la résolution de ces deux problémes
P1) et P2). L’objectif principal est de modéliser une loi d’échantillonnage qui permette de
réduire la fréquence d’échantillonnage pour les systémes linéaires a temps invariant dans
le temps (LTI) commandés par retour d’état, tout en assurant leur stabilité, et certains
critéres de performance.

Pour éviter tout probléme d’ordonnancement, la robustesse vis-a-vis de la variation
du pas d’échantillonnage sera également considérée. Les aspects de robustesse vis-a-
vis de perturbations extérieures ou de retards dans la boucle de commande seront de
méme considérés, de sorte a prendre en compte des phénoménes qui apparaissent lors
du controle en temps-réel de systémes physiques. Enfin, un co-design du controleur
et de la loi d’échantillonnage sera proposé. Ici, pour réduire le conservatisme et of-
frir des pas d’échantillonnage encore plus longs, les gains du controleur et les instants
d’échantillonnage seront calculés en méme temps.

Tout au long de cette these, différentes lois de controle de 1’échantillonnage seront
proposées. Elles peuvent étre utilisées pour calculer une simple borne supérieure de
I’échantillonnage, dans le cas d’un échantillonnage variable dans le temps, ou pour con-
troler dynamiquement 1’échantillonnage, au moyen d’algorithmes pouvant étre mis en

place soit hors-ligne, soit en-ligne.

Structure de la thése

Le document est organisé comme suit:
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Chapitre 1

Le premier chapitre présente une vue d’ensemble des différents problémes, défis, et récents
axes de recherche dans le domaine des systémes échantillonnés en automatique. Tout
d’abord, la notion de systéme échantillonné est définie, et les principaux problémes ou-
verts dans la littérature sont présentés. Ensuite, quelques concepts de stabilité généraux
nécessaires a la compréhension du travail sont rappelés. Enfin, de nombreux axes de
recherche, théories, et résultats sont présentés concernant ’analyse de stabilité des sys-
temes échantillonnés avec échantillonnage a pas constant ou variable dans le temps, ou
concernant le controle dynamique de I’échantillonnage. Les forces et faiblesses des dif-
férentes approches sont analysées, de facon a mettre en lumiére les problémes qui ont
déja été résolus, et ceux qu’il reste encore a résoudre, ou encore les points qu’il reste a

améliorer.

Chapitre 2

Dans le deuxiéme chapitre, un controle par échantillonnage dépendant de I’état est présenté

pour le cas de systémes LTI définis par

#(t) = Ax(t) + Bu(t),Vt € Ry,
u(t) = —Kx(sk), Yt € [Sk, Skt1)-

L’objectif est de concevoir une loi d’échantillonnage qui va prendre en compte I’état x(sy,)
du systéme, de maniére a élargir les intervalles d’échantillonnage, ou en d’autres termes,
de générer les événements d’échantillonnage aussi peu fréquemment que possible. Pour

cela, on considere la loi d’échantillonnage
Sk+1 — Sk = T(sk, T(sk)) = 7 € (0, Tmax(z(sk))], Vk €N,

OU Tmax(z) représente I’échantillonnage maximal associé a l'état =, avec une fonction
d’échantillonnage dépendant de I'état 7. : R — R que I'on va chercher a maximiser.
L’intérét de cette formulation est qu’ici, ’échantillonnage considéré peut étre controlé (il
dépend de 'état), mais il peut aussi varier en fonction du temps. Ainsi, la stabilité est
garantie pour tout pas d’échantillonnage variable dans le temps, et borné par la fonction
d’échantillonnage 7,,x. Notons que dans le cas particulier ou la fonction d’échantillonnage
est constante (Tmax((sk)) = 7%), 'étude se résume a une analyse de stabilité robuste

classique vis-a-vis d’un échantillonnage variable.
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L’objectif est alors double: nous allons chercher & maximiser la borne inférieure de
la fonction d’échantillonnage maximal T,,,, qui correspond a une borne supérieure de
stabilité robuste dans le cas d’échantillonnage variable, mais non dépendant de 1’état, et
nous allons aussi chercher a maximiser la fonction d’échantillonnage pour toute valeur de
létat x(sy).

La fonction d’échantillonnage dépendant de I’état que nous proposons bénéficie d’'une
construction hors-ligne basée sur des LMIs obtenues grace a une cartographie de 1’espace
d’état réalisée par un recouvrement de régions coniques R, = {x € R", 27U,z > 0} (voir

Figure 3).

Figure 3: Recouvrement de I'espace d’état de dimension 2 par g régions coniques R

La fonction d’échantillonnage est alors construite sur chacune des régions, de par la
loi

Tmax(T) = Ts, Vo € Rg, s € {1,---,q}.

Les outils utilisés dans la conception de cette fonction d’échantillonnage dépendant
de I’état sont I’approche par polytopes convexes [Hetel 2006] adaptée pour permettre
I’analyse de stabilité du systéme en temps continu, et la théorie de stabilité de Lyapunov-
Razumikhin adaptée pour garantir la stabilité exponentielle pour le cas de systémes échan-
tillonnés, avec un taux de convergence donné.

Grace a des exemples classiques de la littérature, nous montrons qu’il est possible

avec cette nouvelle approche d’échantillonnage dépendant de 1’état d’échantillonner moins
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souvent en moyenne qu’avec un échantillonnage périodique, tout en garantissant des per-

formances supplémentaires de stabilité, ou de rapidité de convergence.

Chapitre 3

Dans le troisiéme chapitre, I’aspect de robustesse vis-a-vis de perturbations extérieures est
considéré pour la conception de la loi d’échantillonnage dépendant de I’état. On considére
alors le systéme

t(t) = Az(t) + Bu(t) + Ew(t),Vt € Ry,

u(t) = —Kux(sy), Vt € [sg, sp11),

avec une perturbation w supposée bornée en norme par rapport a I’état du systéme:
lw()]l3 < Wlz(si)ll3, Vt € [sks sk41)-

Comme dans le deuxiéme chapitre, I’approche est basée sur des conditions de stabilité
exponentielle de type Lyapunov-Razumikhin et des polytopes convexes.
Aprés avoir présenté les résultats de stabilité principaux, quatre applications dif-

férentes sont proposées.

e La premiére concerne 1’analyse de stabilité robuste vis-a-vis des variations du pas

d’échantillonnage.

e Les trois autres applications proposent différentes approches de controle dynamique
de I’échantillonnage, avec pour objectif I’élargissement du pas d’échantillonnage.

Ces approches sont présentées avec un degré de conservatisme croissant.

— La moins conservative, mais la plus coiiteuse en pratique en terme de calcul
en ligne est la technique dite d’event-triggered control. Dans cette approche,
les instants d’échantillonnage ont lieu lorsqu’une certaine condition analytique
n’est plus satisfaite. Pour assurer la stabilité du systéme cependant, il est
nécessaire de vérifier cette condition en temps réel, ce qui nécessite un matériel

dédié pour analyser I’état du systéme en temps quasi-continu.

— La deuxiéme approche de controle dynamique de I’échantillonnage que l'on
propose est ’approche dite de self-triggered control, dans laquelle on essaie
d’estimer en ligne a chaque pas d’échantillonnage le prochain pas maximal

admissible.
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— Enfin, le troisiéme et dernier algorithme proposé est le nouveau controle par
échantillonnage dépendant de ’état, dans lequel une fonction estimant le prochain
pas d’échantillonnage maximal admissible en fonction de I’état du systéme est
construite hors ligne, grace a des LMIs, pour réduire le nombre de calculs en

ligne.

Chacune de ces applications de controle dynamique de 1’échantillonnage bénéfi-
cie des résultats de l'analyse de stabilité robuste vis-a-vis des variations du pas
d’échantillonnage, puisque les pas d’échantillonnage obtenus dans chacune de ces
trois approches sont minorés par la borne supérieure de stabilité robuste calculée

dans le cas de systéme avec échantillonnage variable mais non dépendant de 1’état.

Il est montré grace a des exemples de la littérature que la méthode proposée réduit le
conservatisme par rapport aux travaux les plus récents, et que les résultats obtenus par
les controles de type event-triggered, self-triggered, et d’échantillonnage dépendant de
I’état que nous proposons, sont tres proches, bien qu’ils soient de degrés de conservatisme

croissant.

Chapitre 4

Dans le quatriéme et dernier chapitre, une extension a l’analyse de stabilité pour les
systémes perturbés avec des retards variables est traitée. Le systéme considéré (présenté

dans la Figure 4) est défini par

avec un controle échantillonné retardé
u(t) = —Kx(sg), YVt € [tg, trs1)-
Les instants d’échantillonnage s; et d’actuation ¢, sont liés par la loi
s =tk — h(ty),

avec un retard h(t) borné, et & dérivées bornées.
Tout d’abord, une loi d’échantillonnage dépendant de 1’état assurant la stabilité £, du

systeme échantillonné perturbé et retardé est construite, grace a des LMIs, de la méme
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#(t) = Az(t) + Bu(t) + Ew(t)
w(t) ) " m Sk41 = 5 + 7(sk, 2(sk))
u(t) SYSTEME »A/N >
»N/A >
z(sg)

u(ty) = —Ka(sk)

CONTROLEUR

Retard hy,

Figure 4: Systéme LTI échantillonné avec perturbations et retards

maniére que dans les deux précédents chapitres.

Ensuite, le probléme de stabilisation dans le cas non retardé est considéré. L’objectif
ici est de concevoir un controleur en paralléle avec la loi d’échantillonnage dépendant de
I’état, de sorte a stabiliser le systéme LTI échantillonné perturbé, et élargir encore plus
les pas d’échantillonnage admissibles. Tout d’abord, le cas d’un controle par retour d’état

linéaire classique est envisagé:
u(t) = —Kx(sg), Yt € [sk, Sk+1)-

Puis, un nouveau controleur dont les gains vont commuter en fonction de I'état du systéme
est proposé:
u(t) = —Ko(a(s)Z(Sk); Yt €[Sk, Sps1)-

Le co-design du controleur et de la fonction d’échantillonnage dépendant de 1’état est
basé sur des LMIs obtenues grace a la cartographie de l'espace d’état présentée dans
les précédents chapitres, et grace a une nouvelle classe de fonctionnelles de Lyapunov-

Krasovskii dont les matrices commutent en fonction de I’état du systéme:
Vak (ta xt7 l’t) = I'T(t)PZE(t) _l_ %(t7 L, xt) + ‘/2,0'(17(8;“)) (ta xt) it)a
avec un terme prenant en compte le retard,
t
‘/1(15, T, J}'t) = / ,TT(S)R,T(S)CZS -+ .. y
t—h(t)
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et un terme prenant en compte I’échantillonnage,

t
%,a(m(sk)) (ta T, $t) = (tk—l—l - t) / xT(S)UU'(.L(bk)>x(S)dS ey
tg
avec des matrices dépendantes de I’état.
Il est important de noter que cette nouvelle classe de fonctionnelles de Lyapunov-
Krasovskii réduit le conservatisme introduit pour le cas d’échantillonnage dépendant de
I’état, mais aussi dans le cas d’échantillonnage variable mais non dépendant de 1’état,

comme il est montré dans un des exemples traités.

Conclusions et perspectives

Cette thése a été dédiée a ’analyse de stabilité robuste et a la stabilisation de systémes
avec des pas d’échantillonnage variables. Une attention particuliére a été donnée au
controle dynamique du pas d’échantillonnage. L’objectif principal était de construire des
lois d’échantillonnage permettant de réduire le nombre d’instants d’échantillonnage pour
les systéemes LTT controlés par retour d’état linéaire.

Dans ce travail, nous avons proposé une toute nouvelle approche de controle dynamique
de I’échantillonnage, que nous avons appelée "échantillonnage dépendant de [’état”. Elle
consiste en la construction hors-ligne d’une fonction d’échantillonnage dépendant de I’état
qui permet d’¢largir les pas d’échantillonnage de la commande par retour d’état, grace
a des LMIs basées sur une cartographie de [’espace d’état. Un des avantages majeurs
de cette construction hors-ligne est qu’elle permet de réduire le nombre de calculs en-
ligne nécessaires pour estimer en temps-réel le prochain pas d’échantillonnage maximal
admissible. De plus, cette approche permet d’optimiser la borne inférieure de la fonction
d’échantillonnage en calculant les parametres de Lyapunov optimauz, ce qui signifie que
le pas d’échantillonnage maximal calculé dans le pire des cas sera optimisé. Cette borne
inférieure de la fonction d’échantillonnage dépendant de 1’état peut aussi étre utilisée
comme une borne supérieure pour le probléme classique de stabilité robuste de systémes
échantillonnés avec un pas d’échantillonnage variant dans le temps.

Tout d’abord, le cas de systéme échantillonné LTI idéal (sans aucune forme de per-
turbations ni d’incertitudes) a été considéré. Dans ce contexte, une extension de la
théorie classique de Lyapunov-Razumikhin pour garantir la stabilité exponentielle des sys-
temes échantillonnés a été proposée. Une construction d’enveloppe convexe adaptée pour

l'analyse de stabilité en temps continu a ensuite été appliquée afin d’obtenir les LMIs util-
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isées dans la construction de la fonction d’échantillonnage dépendant de I’état. L’approche
a été illustrée par des exemples numeériques tirés de la littérature pour lesquels il a été
montré que le nombre de mises a jour de la commande est réduit par rapport au cas
d’échantillonnage périodique. Un autre avantage est que ’échantillonnage dépendant de
I’état que nous proposons associe des propriétés de robustesse (puisque des intervalles
d’échantillonnage plus courts stabiliseraient également le systéme) avec du réalisme (nous
rappelons que I’échantillonnage périodique est une hypothése idéaliste, et impossible a

réaliser dans les situations de controle temps-réel).

Ensuite, 1’aspect de robustesse vis-a-vis de perturbations externes a été introduit.
Dans ce contexte, la précédente méthode a été améliorée et développée de facon a per-
mettre 'utilisation d’une approche par polytopes convexes en présence de perturbations.
Plusieurs fonctions d’échantillonnage ont alors été proposées, chacune étant associée a un
type d’application particuliére. La premiére application consiste en une analyse robuste de
stabilité vis-a-vis d’un échantillonnage a pas variable dans le temps, qui permet de calculer
une estimation de la borne mazimale admissible de [’échantillonnage dans le cas d’un pas
échantillonnage aléatoire variant dans le temps, tout en prenant en compte la présence de
perturbations. Les trois autres applications proposent différentes approches de controle dy-
namique de ’échantillonnage, avec pour objectif d’élargir les intervalles d’échantillonnage:
event-triggered control, self-triggered control, et le nouvel échantillonnage dépendant de
[’état. Chacune de ces approches de controle dynamique de [’échantillonnage profite des
résultats obtenus grace a l’analyse de stabilité robuste vis-a-vis d’un échantillonnage a pas
variable dans le temps, puisque ces derniers permettent d’optimiser la borne inférieure de

la fonction d’échantillonnage dans chacune des trois applications proposées.

Enfin, une extension a l'analyse de stabilité des systémes LTI avec perturbations et
retards a été proposée, et la question de la stabilisation a été traitée. Dans ce contexte,
nous avons développé plusieurs outils permettant de construire un contréleur en paralléle
avec la fonction d’échantillonnage dépendant de [’état, de maniére & stabiliser le systéme
LTI perturbé et a retard considéré, et élargir encore plus les intervalles d’échantillonnage
admissibles. Deux controleurs différents ont été proposés: un controleur classique par
retour d’état linéaire, et un nouveau contréleur dont les gains commutent en fonction de
[’état du systéme. Le co-design du controleur et de la fonction d’échantillonnage dépendant
de I'état est basé sur des LMIs obtenues grace a une cartographie de l'espace d’état,
dans le cadre de la méthode d’"échantillonnage dépendant de I’état" proposée, et grace
a une nouvelle classe de fonctionnelles de Lyapunov-Krasovskii (LKF) dont les matrices

commutent en fonction de [’état du systéeme. Cette commutation sur les matrices de la
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fonctionnelle permet d’adapter la LKF a chaque région de l'espace d’état. De plus, cette
nouvelle classe de LKF permet également de réduire le conservatisme méme dans le cas
d’une analyse de stabilité robuste vis-a-vis d'un échantillonnage a pas variable, mais ne
dépendant pas de I’état, comme cela est montré a ’aide un exemple numérique.

Pour conclure, nous sommes convaincus que les perspectives qui émergent des travaux
présentés dans cette thése sont multiples.

Tout d’abord, un axe de recherche intéressant serait l'extension des résultats pro-
posés a une classe plus large de systémes échantillonnés, comme les systémes homogénes
ou polynomiaux par exemple. Dans ce cas, le controle dynamique de I’échantillonnage
pourrait bénéficier a la fois des avantages de ’approche par échantillonnage dépendant
de I'état présentée dans le cas linéaire dans cette thése, et des avantages des propriétés
d’homogénéité (ou de mise a I’échelle, suivant la classe de systéme considérée) des fonc-
tions d’échantillonnage dévoilées dans |[Anta 2010| par exemple.

Un autre axe de recherche qu’il serait intéressant d’étudier serait I’extension des ré-
sultats proposés sur I’échantillonnage dépendant de I’état a une plus large classe de con-
troleurs, ou en incluant d’autres types de performances de commande. Par exemple, des
extensions aux cas de controle par retour de sortie ou de controle basé observateur seraient
trés utiles pour une large variété de systémes pour lesquels un controle par retour d’état
n’est physiquement pas possible. De méme, la mise en place d’un controle avec rejet de
perturbations serait trés intéressante, pour permettre la stabilisation de I’état d’'un sys-
teme vers le point d’équilibre dans le cas de systémes avec des perturbations constantes
ou a variation lente.

Enfin, il serait intéressant d’étendre les résultats de stabilité et de stabilisation présen-
tés pour les systémes avec un échantillonnage dépendant de 1’état aux systémes avec re-
tards dépendant de l’état. L’analyse de tels systémes est principalement motivée par
les applications qui apparaissent dans le cadre des systémes commandés par réseaux
(voir [Briat 2010] pour la modélisation de la congestion sur internet, et [Donkers 2009]
pour l'interaction entre les taches de commande et les algorithmes d’ordonnancement par
exemple). Dans ce contexte, il serait intéressant de construire des outils pour analyser la
stabilité vis-a-vis d’un retard dépendant de ’état 7(z), ou méme de proposer des algo-
rithmes d’ordonnancement qui permettraient de controler ce retard dépendant de 1’état,

de facon a obtenir la stabilité.
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Appendix A

Proofs

A.1 Proofs from Chapter 2

Proof of Propositions 2.1 and 2.4: Let « > 1, > 0 and § > 0 be given. If
there exist a quadratic function V(z) = 2" Pz, P = PT = 0 € M,(R) and a function
7:R*" - Ry, 0 <d < 7(x) < g, satisfying the conditions of Proposition 2.1, then
the usual LRF theory [Kolmanovskii 1992] adapted to sampled data systems ensures the
asymptotic stability of the system origin for both Propositions 2.1 and 2.4.

Let us take such parameters satisfying (C1), and consider a time-varying sampling
function 7 : Ry x R" — R, defining sampling instant sequences by the law s;.; =
sk + T(Sk, x(sk)), k € N and satisfying 0 < § < 7(t,z) < 7(z) for all £ € R, and z € R™.

During a sampling interval [0, 7(0, x)) with initial state x, two cases may occur.

e The first case is that during that time interval, V (¢, (0, x)) never goes below @
Then, the differential inequality V (¢-(c, ) + 28V (¢, (0, z)) < 0 is satisfied for all

o € 10,7(0, 7)) according to (C1) and therefore V (,(7(0, ), 7)) < e 2702V (7).

e In the other case, V(p,(0,z)) manages to go below @ during that time interval.
According to (C1), V(p,(0,2)) < 0 over the set T, = {y € R", V(y) > @},

and one can show as in the framework of |[Blanchini 1999] that the set T, = {y €

R™ V(y) < @} is positive invariant. Therefore, if V (¢, (0, x)) goes below V((f),

one will have V (o, (7(0,z),z)) < Y2 Moreover, if 3 satisfies 3 < 2 then we

« 20 7

get V(o (7(0,2),2)) < e 27V (z) < e 25700V (1),

Therefore, for any initial state xg, for any t € Ry, t € [sg, Sg11) for some k € N, one
has V(z(t)) < V(z(sk)) < e 2825 T2V (20) = e 205V (29) < e 2P0V (24). As
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)\max(P) ﬁ_
)\min(P) € 7

B-stability of both Propositions 2.1 (with 7(¢,z) = 7(x) for all t € R, and = € R") and
2.4

Proof of Lemma 2.5: Let us take a quadratic function V(z) = 27 Pz, P = PT »~
0 € My(R), scalars @ > 1, 5 > 0, and 0 < 8 < 22 and a function 7 : R* — Ry

20

a consequence, one can show that [|z(t)||s < ( ) e P|zo||2, which proves the

upper-bounded by &, and let us rewrite the propositions used in the stability condition of

Proposition 2.1.

T .
T ) - P O T ) .
Rewrite aV (o, (0, x)) > V(z) as #r(0,2) “ #r(0,2) <0, and V(p (0, x))+
x 0 P T
T i
or(o,x) ATP + PA+2BP —PBK| |¢,(0,7) _
28V (¢r(0,2)) <0 as < 0. Usin
BV (prlr2) [ ’ e T et .

the lossless version of the S-procedure [Boyd 1994| (see Theorem D.3), the stability con-
dition from Proposition 2.1 is satisfied if and only if there exists € > 0 such that

[907(0, x)]TQ [sor(a, )

X

] < 0, with © given in (2.6). One can finally derive Lemma
T

2.5 stability conditions after expressing the evolution of the system state: ¢,(o,x) =
(I +/ eAds(A — BK)) r=A(o)x. |}
0

Proof of Theorem 2.9: Let x be in R™. There exists a region Ry as in (2.8) such
that x € R, and 7(z) = 7,. Using the lossless version of the S-procedure |Boyd 1994]
(see Theorem D.3), one can see that for any x € K the condition z7®, x < 0,z € R, is
satisfied if and only if there exists a scalar €, s > 0 such that ®, ;+¢, Vs < 0. Therefore,
if the condition @, ; + ¢, sV, =< 0 is satisfied for all s € {1,---,¢} and k € K, then
for all x € R™, for all o € [0, 7(x)], 27 ®(0)z < 0, according to (2.10), and the stability
conditions from Lemma 2.5 are satisfied. |

Proof of Corollary 2.11: This comes naturally from Theorem 2.9 and Proposition

2.4 when working with a single region: R™ itself. |

A.2 Proofs from Chapter 3

In(a)

rg

Proof of Proposition 3.1: Consider scalars @« > 1, r > 0,6 >0 and 0 < § <
a map Tmax : R” = Ry, 0 < 6 < Ta(x) < 7, and a sampling function 7 : R, X
R™ — R, satisfying (3.3). Consider a continuously differentiable function V' : R" —
R, and scalars 0 < v < 7 satisfying (H1) and (H2). Assuming that the functions

fr are locally Lipschitz in their second variable and that the perturbation w is locally
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essentially bounded guarantees the existence and uniqueness of solution for the differential
equation (3.6) (see the framework of [Mancilla-Aguilar 2005]). The usual LRF theory
[Kolmanovskii 1992| then ensures the asymptotic stability of the considered switched
nonlinear system.

In order to analyse the convergence rate of the system’s state, we analyse the evolution
of V(x(t)) over each time interval [sy, sx11) between two consecutive switches. During such
a time interval, one has () = ¢, (t, 20) = Orw(t — Sk, 2(Sk)) = Grw(0, T) = Orypo (0, T),
with the notations o =t — s; and = = x(s;). With these notations, studying V' (x(t)) for
t € [Sk, Sk+1) amounts to studying V(¢s,..w(0,x)) for o € [0, 7(sk, z)). During that time

interval, two cases may occur.

e In the first case, aV(¢n,. w(o,z)) > V(z) for all o € [0,7(sx,x)). According
to (H2), since 7(sp, ) < Tmax(z), the differential inequality V(¢ (0, z)) +
BV (Prpeew(0: ) < 0 is then satisfied for all o € [0, 7(sg, x)), and thus, one will
have V (¢, w(0, 7)) < e ™7V (z), for all o € [0, 7(sp, 7).

e In the second case, there exists o € [0,7(sg,x)) such that aV (¢, w(o,2)) <
V(z). Let us denote o* = inf{o € [0,7(sg,2))|aV(prpw(o,z)) < V(x)}. For
o € [0,0%), using the same arguments as in the previous case allows for proving that
V(Prpuew(0, 7)) < eV (x). Let us now see what happens for o € [0*, 7(sg, x)).
According to (H2), V(¢r,.. (0, x)) < 0 over the set T, = {y € R*, aV (y) > V(z)},
and one can show as in the framework of |[Blanchini 1999] that the set T, = {y €
R™ aV(y) < V(z)} is positively invariant. Therefore, for o € [0*, 7(s, x)), one has
AV (¢rmaew(0, 7)) < V(z). Then, since f < 2@ and with the assumption that
the sampling map is upper-bounded by & (and thus ¢ < &), one can show that
V(rumw(0,2)) < 77V (2) < e7V (@)

Therefore, for any initial state xq, for any t € R, (t € [sg, sk+1) for some k € N), one
has V(z(t)) < oAl T(si@(si)))—i—(t—sk)]V(ZEQ) = e "'V (xy). As a consequence, using

(H1), one can show that ||z(t)|2 < <1) ' e P!||xg||2, which proves the S-stability. |}
v

Proof of Proposition 3.2: This is a particular case of Proposition 3.1, with the
sampled-data system S which can be seen as a subclass of the switched nonlinear system
{(3.3),(3.6)}, with the assumption (3.4) which ensures the perturbation w is locally essen-
tially bounded, and with V' (z) = 2" Pz, P € S}, r = 2,7 = Anin(P), and 7 = Anax(P). |
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Proof of Lemma 3.3: Consider a quadratic function V(z) = 2T Pz, P € S;*, scalars

n

: R™ — R, upper-bounded by

2’ Y
0. Let us rewrite the prop031tions from (H3) using the dynamics of the system S.

T w ) - P O T w 9

Rewrite oV (¢r...w(o,2)) > V(z) as [SO s (7 x)] “ P x)] <0,
T * P T
T
ngmaxyw (07 x) R gOTmaxyw (07 x)

and V(7o w(0, 7)) + 28V (¢rpew(0, 7)) <0 as T Q x <0,

w(o) w(o)

ATP +PA+23P —PBK PE
with Q = * 0 0 |. Now note that the evolution of the state
* * 0
satisfies

SOTmaxyw(O-7 x) = @Tmaxyo((j’ x) + Jw(o-)7 (A]‘)

where the term ¢, o(0,2) = A(o)z, with A(o) defined in (3.8), corresponds to the evo-
lution of the state without perturbations, and where the term .J,(o), defined in (3.9),
represents the effect of the disturbance on the system’s evolution.

Using these notations, one can use the lossless version of the S-procedure [Boyd 1994] (see
Theorem D.3) to show that the stability condition (H3) from Proposition 3.2 is satisfied if
and only if there exists € > 0 such that (3.7) is satisfied for all z € R™ and o € [0, Tax(2)].

Proof of Theorem 3. 4 Consider a quadratic function V(z) = 27 Pz, P € S}*, scalars

2, , and W > 0, and a sampling map 7., : R" — R, upper-
bounded by 0.
The idea of the proof is to find an upper-bound independent of the perturbation w for

the left part of equation (3.7). The left part of equation (3.7) is equal to

Gylo,z) = LL’T(A(O')TMlA(O') — A0)'PBK — KTBTPA(0) — eP)x
+Juw(0) T My (o) + Ju(0)T Moz + 27 MT J,(0) (A.2)
+Jw(0)TM3w( ) +w(o)" M3 Ju(0) + w(o) Myx + 2" M w(o).

In order to upper bound this term independently of the perturbation, we use the inequality
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in Theorem D.5, which shows that for any matrices ®, ®; € S;*, and ®3 € S;'*, we have

Gu(o,z) < a7 [A(o)"MiA(o) — A(o)TPBK — KTBTPA(0)
—eP + My(0)T" @7 Ms(o) + My(0)T @5 My(0)] « (A.3)
+w(o)T [M] ;' Ms + 3] w(o) 4+ Ju(0)" [My + ©1 + Do) Ju(0).

Using a classic inequality and assumption (3.4), the term w(o)” [M{®;"Ms + @3] w(o)

from equation (A.3) can be bounded as follows:

w(o)T [MT®; My + @3] w(o) < Apax(MT Dy M + O3)w(o) w(o) (A1)
< W hmax(M] @5 M; + @3)a”x '
Oy —nl My . .
Let a scalar n > 0 be such that o =< 0, as assumed in (3.11). Using
* — P2

the Schur complement, one can show that this is equivalent to Mg)TCDQ_lMg + &3 <X nl.
Therefore, (A.4) leads to

w(o)" [My &5 Mz + @3] w(o) < Wha'z. (A.5)

We denote Q = M; + ®; + ®,. The other term from (A.3), J,(0)TQJ,(c), can be written

i Jul0) T Qu(o) = ( | eA<f’—s>Ew<s>ds)T Q ( | eA<U-S>Ew<s>ds) .

Let us assume that @) > 0 (we can choose ®; and ®; so as to satisfy this condition. Using

Jensen’s inequality (Theorem D.4), one gets

Jo(@)TQJ,(0) < U/OU w(s)TET (eA("_S))T Q (eA(”_s)) Fw(s)ds.

Then, using the inequality in Theorem D.6 along with some other classic inequalities, as

well as assumption (3.4), one gets

Ju(0)7QJu(0) < oAnax(@Q) [ w(s)"ET (A=) (A=) Buw(s)ds

Amax (Q) fo" 0(0=5) Amax (A+AT) w(s)TETEw(s)ds

max<Q>Amax<ETE f y (7 Pmax (AN (s)3ds
s (Q) A (BT (f" R O

)
maX(Q))‘max( )fA( )

IAIA A IA
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with f4(o) defined in (3.15). If @) also satisfies Q < pf, for a certain p > 0, then one has:
Ju(@)'QJy(0) < oW pidmax(ETE) fa(0)z" . (A.6)

Implementing inequalities (A.5) and (A.6) in (A.3), it is clear that G, (o, z) < 271I(0)z,
with TI(o) defined in (3.13), and therefore, if 27TI(c)x < 0 for all z € R™ and for all
o € [0, Tmax()], then the stability conditions from Lemma 3.3 are satisfied, which ends
the proof. |}

Proof of Lemma 3.7: Since the sampling map is state-independent, one can remove
the state-dependency in (3.12) by rewriting the inequality under the form of a parameter-
dependent LMI: TI(c) < 0, Vo € [0, Tﬁiﬁbal)]. Then, applying the extended version of the
Schur complement allows to remove the inverse terms <I>1_1 and <I>§1 that appear in the
equation (3.13) of II(c) and ensures the equivalence between II(c) < 0 and (3.17). |
Proof of Theorem 3.8: If the condition A.(mi82") < 0 is satisfied for all k €
K(r8%)Y | (3.19) ensures that A(o) < 0 for all ¢ € [0, Tmax(2)]. Therefore, by using
the result from Lemma 3.7, we show that the stability conditions from Theorem 3.4 are
satisfied, and thus the system S is globally g-stable. |}

Proof of Lemma 3.11: It is clear that for the sampled-data system {(3.1),(3.2),(3.4)}
with sampling intervals satistying sx,1 — s € [0, 7], the stability conditions from Lemma
3.3 can be adapted by replacing in their statement x by x(s;), @rue..w(0, ) by 2(t), and
o by t — s, and by verifying the conditions for all ¢ € [sg, sg41] and k € N instead of
veryfying them for all z € R™ and o € [0, Tyax(x)]. From this, by rewriting the inequality
(3.7) from Lemma 3.3, one can see that the studied system is globally S-stable if for all

t € [sk, sk+1], k€N,
(1) ]
(sk)

Using the same tools (Theorem D.5) as in the proof of Theorem 3.4, it is possible to upper

T
x(t) ATP + PA+ceaP +23P PBK

x(sg) * eP
+2(t)TPEw(t) + wt)'ET Px(t) < 0.
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bound the crossed term in the left part of this expression as follows:

()T PEw(t) + w(t)TET Px(t) ()T PESLET Px(t) + wl' (t)Dw(t)

<
< z(t)TPE®'ETPx(t) + Wlmax(®) 2T (51)2(s%),

with any matrix ® € S;'*. Setting ® = I and using this majoration shows that if (3.20)
is satisfied, then the system is globally S-stable. |

Proof of Theorem 3.12: If the sampling map Tax and the function K : R* — P(K)
are such that he assertion (3.22) and the triggering condition (3.22a) are satisfied for all
xz € R", it is clear that the condition (3.12) from Theorem 3.4 is satisfied for all x € R"
and all 0 € [0, Tmax(z)]. Then, the other assumptions and conditions guarantee that all

the stability conditions from Theorem 3.4 are satisfied. |]

Proof of Theorem 3.16: Consider scalars p; > 0 such that the LMIs AH(TQX) +

S\IIS 0 . S
P =< 0 are satisfied for all s € {1,--- ¢} and & € IC(TI%QX). Let x € R". There
*
. ) ps¥s 0
exists s € {1,---, ¢} such that z € R,. According to (3.28), one has A(o)+ 0 <0
*

for all o € [O,Tr(rfgx]. Thus, using the construction of A (equation (3.17)) and the Schur
complement, we get that II(o) + ps¥, <0 for all o € [0, 7}(52,(], with II defined in (3.13).
Since z € R, = {x € R", 27W .z > 0}, the S-procedure |Boyd 1994| (see Theorem D.3)
then ensures that 27TI(o)z < 0 for all o € [0, e = Tmax(Z)]. Therefore, one can see that

the conditions from Theorem 3.4 are satisfied, which ends the proof. |}
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Appendix B

Construction of the conic regions

covering

B.1 Isotropic state-covering: using the spherical coor-

dinates of the state

The first conic covering consists in designing sectors that describe entirely the unit n-

sphere. Here, the parametrization we propose uses the generalized spherical coordinates

of the state z in R™: (r,6;,---,0,_1), provided by the relations
rooo= |zl
T = rcosty,
T = rsinf;coshs,
Tp—1 = rsinfy...sinb,_scosl,_1,
Ty = rsinb; .. .sinb,_ssinb,,_1,

with 61,0,,...,0, 2 € [0,7], and 0,1 € [—7,w]. Each region R, of the covering is

associated to some range of the (n — 1) angular coordinates 6;:

(zeR,) & (Vie{l,---,n—1},0, € 16,6/ .

1,87 71,8

An illustration of such conic regions in R? is shown in Figure B.1.

Then, in order to build the matrices ¥, defining these regions R (2.8), one can use
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A

Figure B.1: Covering the state-space of dimension 2 with g conic regions R

some geometric arguments: if x € R, then for 9;; €0,%),

2.2 2 2
r;tan“ 0, <ax; 4+ --+x
Vie{l,---,n—2}, : he = it no (B.1)
zitan® 0, > ai -+
and
Tp_1 > tanf _, .z,
b= L (B.2)
Tnoy < tan |z,

Similar conditions can be obtained for 9;; € (5, 7. The design of the conic forms W,
from (B.1) and (B.2) is then trivial.

Note that with this covering, the state position is characterized by its only n — 1
angular coordinates 6y, --- ,6,_1. Thus, situating z € R" in this conic covering is easy,
which is important since it has to be done in real-time. The computational complexity
to calculate the angular coordinates and find the right region is linear in the system’s
dimension (O(n)), and does not depend on the number of regions. More precisely, one
can show that 9n — 7 elementary operations are required (additions, multiplications and
divisions), added to 1 square-root, n — 1 arccosine, and n — 2 sine. Also, note that the
smaller the ranges [0, 0] of each conic region, the closer the obtained state-dependent

1,87 71,8

sampling function will be from the optimal sampling function.

A drawback of this covering technique is that the number of regions to be considered
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exponentially increases with the dimension n of the system. If one divides each angular
coordinate range in m equal sectors (what we call "isotropic covering"), this provides a

n—1

precision of ~rad for each angle and one needs m™™" conic regions. This means that a

tradeoff between the offline computational complexity and the accuracy of the approxi-
mation has to be achieved. Furthermore, there is a link between the conservatism of the

proposed solution and the accuracy of approximation.

B.2 Anisotropic state-covering: using the discrete-time

behaviour of the system

A second covering technique involves the dynamics of the discrete-time system. Assume

that the conditions from Corollary 2.11 are satisfied for a given 7* = 7. Then, there
exists a matrix P = PT = 0 such that
2" (AT (7*)PA(T*) — e " P)z <0 (B.3)

is satisfied for all z € R", with A the transition matrix function defined in (2.7).
The conic regions will be obtained by using the regions described by (B.3) for values

of 7 larger than 7*. For a given scalar ¢ > 7%, consider the following set of sampling times

To=71"+ (s — 1)‘_;__T1*, se{l,---,q} (" < T, <), and design the conic regions as:

R, = {x € R, 27 (AT(T,) PA(T,) — e #T> P)x < 0}.

Such regions ensure that the function V(z) = 27 Px is decreasing at sampling times along

the solutions of the discrete-time model

Trr1 = A7(2r)) Tk, Sk1 = Sk + T(2),

when 7(2) = maX,e(1,... g} st. zer, s, Vo € R

Using Theorem 2.9 allows us to guarantee the decay of the Lyapunov-Razumikhin
function such as in Proposition 2.1 for the solution of the continuous-time model S. Note
that the case s = 1 corresponds to Ry = R".

In this construction, the division is achieved on the time-variable 7T, rather than on
angular coordinates. The advantage is that the number of regions does not depend on

the dimension of the system and is proportional to the numerical precision, whereas in
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the previous covering construction, it was an exponential function. The drawback is that
more online computation is needed for situating the sampled state in its corresponding
conic region: the inequalities 7 (AT (T,)PA(Ty) — e 2T P)x = 27 (=W, )z < 0 have to
be checked. Thus, with this second construction, the tradeoff moves to offline/online
computational effort. At each sampling instant, the number of additions required to find
the region is at most (¢ — 1)(n — 1)(n + 1), and the number of multiplications is at most

(¢ — 1)n(n + 1). The computational complexity is in O(gn?).
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Appendix C

Contruction of a polytopic embedding

based on Taylor polynomials

C.1 General contruction for polynomial matrix func-

tions

The polytopic embedding approach used in this thesis is based on the results from
|Hetel 2007] and [Hetel 2006|, for which convex polytopes are designed around matrix
exponentials using their Taylor polynomial approximation. The construction for polyno-

mial matrix functions is based on the following property:

Theorem C.1 ( [Hetel 2007]) Consider the matriz polynomial function
L(o) = Lo+ Lio + -+ Lyo™

such that the variable o is bounded and positive: 0 < o <o < 0.
Then we can find a convex polytope formed by N + 1 vertices which enveloppes the matriz

polynomial function L(o), i.e. there exists an indexed family of scalars p;(c) > 0, i €

N
{0,---, N}, verifying ZM(U) =1, and such that
i=1
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where the matrices U; represent the vertices of the polytope and are given by

Uy = Lo+oli+0*Lo+---+c"Ly
Uy = Lo+l +0*Lo+---+c"Ly
U = Lo+l +06*Ly+---+0NLy

Uy = Lo+6L, +6*Lo+---+6NLy

C.2 Case of unperturbed LTI systems (Chapter 2)

Here, we propose a construction of the convex polytope satisfying (2.10) for the ideal LTI
sampled-data system (2.1). Let s € {1,---, ¢} be the index of the considered region of the
state-space. The polytope design we propose is based on a Taylor series approximation of
order N performed on [ subdivision intervals of [0, 5]. The idea behind these subdivisions
is to build small convex polytopes locally for each time interval subdivision, in order to
refine the precision of the convex embedding. A 2D representation of the proposed convex
polytope design is shown in Figure C.1. Note that each local polytope subdivision is com-
posed of N +1 vertices, since each of them is designed using a Taylor series approximation
of order N.

A
Y

1| =
el oclil o oe|lEl

Figure C.1: 2D representation of the convex polytope design using polytopic subdivisions
around the matrix function ® over the time interval o € [0, 7]
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In this construction, we define the set of vertex indexes

Tl

lcsz{o,---,N}x{0,---,{7”, (1)
o
with integers N > 0 and [ > 1, and design the vertices ®; ;) ; as

¢(i7j)78 = ®(ivj)75 _I— VI’ (C2)

with

A

Py = (Shoo L (§)7) i < [24],

. : ok (C.3)
Diiirs = ( Dopeo L (Ts — ]TU) ) otherwise,
LO,j = Hg’jﬂlﬂg,j —eP — Hg’jng — HgH&j,
Li;= H:{j(H1H3,j 1) + (Hg‘;jﬂip - H2T)H4,j, (C.4)
k—1IN\T _ .
Lysoy = T}V (I — T0,) + (I3, 10T — TI5) 4210
f— AT k—i—1
+H£j <Zz’:11 ( il : Hlfék—i)! ) Iy j,
II, = ATP + PA+¢caP +2B8P, 1I, = PBK, (C.5)
Ils; = I + M;(A — BK), Tl,; = N;(A — BK), '
i
M, :/ et*ds, N; = AM; + 1, (C.6)
0
and an upper-bound of the approximation error
V> max  Apax <<I> <a’ - rg> — <I>N7T(a’)) : (C.7)
a'€[0,9], [
re{0,,1—1}
defined with the function
al &
Dy (") = kz_o Ly ;0™ 0" €10, -] (C.8)

Lemma C.2 Consider a vector x € R", a scalar ¢ > 0, integers N > 0 and [ > 1,
parameters P = PT = 0 € M,(R), a > 1,0 < 3 < (@) ond e > 0, and a sampling

25
interval 75 > 0. If the condition x7®; ;) x < 0 is satisfied for all (i,7) € Ky (with
Q;5),s and Ky defined in (C.2) and (C.1) respectively), then for all o € [0,7,], one has

)

2T ®(0)x <0, with ® defined in (2.5).

Proof:
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1. First, we divide the time interval [0,d] into { subdivisions and take a time o < 74
into one of these subdivisions. The aim of this step is to make preparations to
compute a precise estimation of the matrix function ® by building [ small convex

embeddings around it instead of building one big one, as shown in Figure C.1.

2. Then, we compute a polynomial approximation of ® for the chosen time interval

subdivision.

3. Afterwards, we bound the error term from this polynomial approximation with a

constant term.

4. Finally, we build a convex polytope around the polynomial approximation and the
error term bound, using the method proposed in [Hetel 2006] (described in the
Appendix C.1), to obtain the desired finite number of conditions.

Step (1):  Let us divide the time interval [0,5] into ! subdivisions [j%,(j + 1)%],
with j € {0,---,1 —1}. Let o € [0,7,]. There exists j € {0,---,|Zt|} such that
j§ <o < (j+1)§. Then define 0’ = 0 — j$ (¢/ € [0,x], with x = §if j < [%lj, and
X ="Ts — % otherwise).

Step (2): We define I, = ATP+ PA+eaP +23P and I, = PBK. From equations
(2.5) and (2.6), we deduce that

(o) = Ao) T A (o) — AT (0)Ty — TIEA(0) — eP. (C.9)

In order to derive a useful expression of A(o) (defined in (2.7)) as a function of o/, we use

the property expressed in Theorem D.7

a+b a b a
/ e¥ds = / e¥ds +/ e ds (A/ e3ds + I) ,
0 0 0 0

which is satisfied for any scalars a and b, to obtain

_ (7 eAsds N _
Ao) =T+ (Mj: e dij) (A— BK) .10
= H37j -+ fO eASdsHM,
with Mj = fOJ% eASds, Nj = AMJ + [, H37j =1+ MJ(A — BK), and H47j - N](A - BK)
Then, note that

/ [oe} i—1

7 A -
As _ 1
/0 e’ds = g T (C.11)

i=1
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Combining equations (C.9), (C.10) and (C.11), one gets ®(c) = >_,2 Ly ;0'%, with the
matrices Ly, ; defined in (C.4). It is then possible to express a polynomial approximation
of order N of ® on the interval [, (j +1)9] as

! (C.12)

Step (3): Let us denote the approximation error term Ry ;(0’) = ®(0) — Oy ;(0’). If
we can compute a bound with a scalar v independent of ¢’ such that Ry ;j(¢0') < vI then
the condition 27 (®y ;(0’) + vI)x < 0 will imply that 27®(o)x < 0. Since Ry (o) =
(o) — Dy, (0’) is symmetric, then if we denote A\, the maximal eigenvalue of Ry ;(o”),
we have Ry ;(0') < AI. As a consequence, Ry ;(0’) =< vI with v a constant defined in

(C.7).

Step (4): Since the function @y ;(.) + vI : [0,x] = M,(R) is polynomial, we can
use the convex polytope envelope given in |[Hetel 2006 (described in the Appendix C.1),
to prove that if a7 (.0 < 0 for all § € {1, ,n}, with B4 = (Shog LX) +v1,
then 27 (®y ;(0’) + vI)x < 0 and therefore 27 ®(o)z < 0. |

C.3 Case of perturbed LTI systems (Chapter 3)

Here, we propose a construction of the convex embedding satisfying (3.19) that is based
on the results from [Hetel 2007], for the perturbed LTI system (3.1).

Consider a scalar 0 < ¢* < 7. In this construction, we define the set of vertex indexes

K(0) = {0, , N} x {o , V*ZJ } (©.13)

g

with integers N > 0 and [ > 1, and design the vertices A j)(o*) for all (i, ) € K(o%), as:

>

@) (@) = By (o) + I, (C.14)

with

Ay (o) = (Cico D) (?)k> if j < [Z], (C.15)

A * 1 i\ k .
A(i,j)(a ) = Zkzo A(k,j) (U — ]7) ) otherwise,
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Lo; —KTBTP+TT,M{ TT,PE

Apjy=| = - 0 ;
* * —(I)g
Py ) (C.16)
Ly, T3 W yT 1] @ pE
Apz1g) = | * 0 0 :
* * 0
Fl,]:I—FN](A—BK), FQJZN]/(A—BK), (C 17)

Nj = [IT etsds, Nt = AN, +1,

and
I'T.MTIy; —eP+Wnl -7, PBK — KTBTPTy ; + Ly,

(T MT — KTBTP)T'y; + Ly, (C.18)
KTBTP)A Ty '

LO,j ==
lej - F%jj(erlj - PBK)
1y AN (M — PBK) + (T7, M7 —

i—1 i
+T7, (z’f M A ) T+ Ly

i=1 il

L2 =

If Mpax(A + AT) = 0, the matrices Ek,j are defined as

Loj = Widma(ETE) (j
L1j = 2W i max(ETE)j
L27j = W pdmax (ETE),
Liss; = 0.

)1
5 (C.19)

g
J7
e
l

Otherwise, if Apax(A + AT) £ 0, they are defined as

Loj = WaseslEpj8 <e max(A+AT)IF _ 1) I,
Ly = WitgeslE (a0 (1 (A + A7) 1) 1

T max é '5’ )\lllax A AT All].a,){ A AT

Lizaj = Wpisihe s (j S R ) L

v > ma}g} )\max< (U +7“7) 2% ) (C.21)

e,
TE{O, 71_1}

(C.20)

e

Finally,

Lemma C.3 Consider a scalar 0 < 0* < 7. The vertices A j(0*) defined in (C.14)
if the condition Ag j(0*) = 0 is satisfied for all (i,j) €

satisfy the property (3.19):
| 2]}, then A(o) <0 for all o € [0,07].

K(g*):{o’...’N}x{O’...’
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C.3. Case of perturbed LTI systems (Chapter 3)

Proof: The idea of the proof is similar to the one used in the construction of the
convex polytopes in the unperturbed case, in the Appendix C.2. It follows the following

steps:

1. First, we divide the time interval [0, 5] into [ subdivisions and take a time o < o*
into one of these subdivisions. The aim of this step is to make preparations to
compute a precise estimation of the matrix function A by building [ small convex

embeddings around it instead of building one big one.

2. Then, we compute a polynomial approximation of A for the chosen time interval

subdivision.

3. Afterwards, we bound the error term from this polynomial approximation with a

constant term.

4. Finally, we build a convex polytope around the polynomial approximation and the
error term bound, using the method proposed in [Hetel 2006] (see Appendx C.1),

to obtain the desired finite number of conditions.

Step (1): Let us divide the time interval [0, ] into [ subdivisions [j§, (j + 1)§], with
j €{0,---,1—1}. Let o € [0,0%]. There exists j € {0,---,|Z!]} such that j¢ <o <
(j +1)%. Then define o’ = 0 — j% (¢’ € [0, x], with x =

=~|Qi

if j < [%J,andxza*—%
otherwise).

Step (2): In this step, as in the unperturbed case, we want to compute the Taylor
expansion of the matrix function A(o) defined in (3.17) and (3.18) in order to design
the convex polytope. Note that it is possible compute the Taylor approximation around
the matrix function A bloc by bloc, by using the following property: for any C* matrix

functions of appropriate dimensions F', G, H and L, the Taylor expansion of the matrix

function can be written as

(C.22)

k [ZZO:O Fyo* ZZio Gro®

k=0 > oo Heo® 3702 Lo

Therefore, in order to compute the Taylor expansion of A defined in (3.17), one needs
to compute the Taylor expansions of R defined in (3.18), as well as the ones of M, and
M}, defined in (3.14).
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Appendixz C. Contruction of a polytopic embedding based on Taylor polynomials

All three functions involve the term A(o) defined in (3.8). As in the unperturbed case,

we use the property expressed in Theorem D.7 to rewrite this term as a function of o’
Ao) = I+ (Nj + [ eAsdsN]’-> (A — BK)

= Fl,j -+ foal eASdSFQJ' (023)
iy + 2052 A 0"Tay,

with N; = [J7 eAsds, N/ = AM; + I, Ty ; = I + N;(A — BK), and T ; = N/(A — BK).

Therefore, one has:

MQ(O')T = —KTBTP —|— A(O’)TMl (C 24)
—KTBTP +T7T M, + 32, T, @00 6o, '
My(0)T = A(o)TPE
4(0) ;a) R (C.25)
= I, PE+ Y2 1T Y PEs",
and
R(o) = A(o)"MiA(c) — A(o)" PBK — KTBTPA(o) — P
+Wnl + oW pdmax (BT E) fa(o)I (C.26)
= ZZOZO LkJOJk,
with the matrices L; ; defined as
Loj =TT,MI'y; —eP+Wnl —TT,PBK — K"B"PT'y; + Ly, (C.27)
Li; =T% (MTy; — PBK)+ ('] ,M] — K"B"P)s; + L., (C.28)
and
Liss; = T3 0(MTy; — PBK) + (IT,MT — KTBTP)AT, .29)

fe— AT k—i—1 s
+F2TJ <Zi:11 ( il : M, fzk—i)! ) Ly j 4 Lij-

The matrices [~/;w- that appear in the previous equations come from the Taylor expan-

sion of the term oW pdyax(ETE) fa(o)I. Two cases may occur.

In the first case, Apax(A + A7) = 0, and thus

W i Amax(ETE) fa(0)] = Widmax(ETE)I (2 + o')?
= Wi (ETE)I (j%)° + 2W phma ETE) 0" (C.30)
+W A max(ETE) 0"
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C.3. Case of perturbed LTI systems (Chapter 3)

Therefore, one has

L = Wpdmax (BT E) I ( ) ,
Fr) = 2W i (ETE)L
Izz,j = WIU)‘maX(ETE)Ia

Ek23,j == O

xe
l

a
1

(C.31)

In the second case, Apax(A + AT) # 0, and thus

oW pdmax (ETE) fa(o) I

_ Amax (ETE)
o W )\111ax(A+AT)]

max E E
= VW e ETE)

) AmaX(AJ’_AT).] T e)\ma.x(A'i‘AT)O', _ 1)

_'_
max( A+AT ( dme(A+ATIT 1) (C.32)
+ (AP ADIT (14 TN (A + AT)) ~1) o

J
o0 T g g >\max A AT )\max A AT k—1
43000 eAmes(4+AT) 107( (ArAT)" 4 e+ 210 >Uﬂ-

.

—
<.
~|Q =|QI

—_

Therefore, one has

max(E E) =g )\max A AT 2
Lo, Wumljf( “r )“—1>,

Ll,j = W IR T (AmmAHATIT (14 A (A + AT)) ~ 1), (C.33)

T max E E max A AT 5 e )\max A+AT )\ma.x A+AT
Lizz; = W“Amax(AJrAT [etnex(A+AT)IT (97( (k! v + 4 ((k ! I )

Using the obtained equations, one can write that A(o) = Y232, A 0™, with the
matrices Ay ;) defined in (C.16).
With this, a polynomial approximation of order N of A on the interval [j%, (j + 1)9]
can be expressed as N
v (0) = D Ay, ¥o' € o, ﬂ . (C.34)
k=0
Step (8): The approximation error term Ry ;)(0’) = A(o) —Z ;) (0”) can be bounded
using the relation Ry jy(0’) < vI, with v a constant scalar defined in (C.21). With this
majoration, it is clear that if Sy ;(0’) + v <0, then A(o) <0
Step (4): Since the function Z(y ;)(.) + vI : [0,x] = M,(R) is polynomial, we can
use the convex embedding design from |Hetel 2006] (see Appendx C.1), to prove that
if Agjy(o*) <0 forallie {1,---,n}, with Ay (%) = (ZZZO A(k,j)xk) + vI, then
Ew,j(0’) +vI 20, and therefore A(o) < 0. |
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Appendix D
Some useful matrix properties

Theorem D.1 (Schur complement [Boyd 1994|) Let Q and R be symmetric matri-

ces. Then, the following are equivalent:

Cj Z] =0 (resp. [Cf Z] =0),

(i) R=0, Q—SR™'ST =0 (resp. R=0, Q— SRTST =0, S(I - RR*)=0),

(i)

where RT is the pseudo-inverse of R.

Theorem D.2 (Finsler’s Lemma [Fang 2004]) Let x € R*, Q € S,.(R), and B €
My.m(R) such that rank(B) < n. The following statements are equivalent.

(i) 27Qx < 0 (resp. 27Qx <0) for all Bt =0, x # 0,
(ii)) BX QB+ <0 (resp. BX QB+ =<0),
(iii) there exists a scalar p € R such that Q — uB"B <0 (resp. Q —uBTB <0),

(iv) there exists a matric X € My ,(R) such that Q + XB + BTXT < 0 (resp. Q +
XB+ BTXT <0),

where Bt is a basis for the null space of B (i.e. all x # 0 such that Bx = 0 is generated
by some z # 0 in the form x = B*z).

Theorem D.3 (S-procedure [Yakubovich 1977], [Boyd 1994]) Let F; € M,(R),
i€{0,---,p}. Then, if
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p
(i) there exist scalars ¢; > 0, i € {1,---,p}, such that Fy — ZsiFi > 0 (resp. Fy —

» =1
Y e >0),
=1
then

(ii) ETFE > 0 (resp. ETEFE > 0) for any € € R™ satisfying ETEE > 0 for all
ie{l,---,p}.

For p =1, these two statements are equivalent.

Theorem D.4 (Jensen’s Inequality [Gu 2003]) For any matriz R € S;7*, scalar r >

n 7’

0 and vector function w : [0,7] — R™ such that the concerned inequalities are well defined,

(/OTW(S)ds)TR (/Orw(s)ds) <r (/OTW(SVRW(SMS) | o)

Theorem D.5 ( [Cao 1998]) For any matriz R € S;7* and any scalars (z,y) € R"xR",

one has

eTy +yTe <2"R7'2 4+ y"Ry. (D.2)

Theorem D.6 ( [Loan 1977]) For any matric R € M, (R) and scalar t > 0, one has

(R+RT))t

Amaz
e[l < e ( ’ (D.3)

Theorem D.7 ( [Fujioka 2008]) Consider scalarsa, b € R", and a matriz A € M, (R).
Then, the following equality holds:

a+b a b a
/ et*ds = / e**ds +/ e**ds (A/ et ds + [) . (D.4)
0 0 0 0

Theorem D.8 (Adapted from [Boyd 1994]) Consider x € R", two matrices I'y and
[y in S, and two scalars \= < \T. The following statements are equivalent:

(i) VA € (A7, AT], 2T (T + Aly)z < 0,

(ii) 2T (T; + A Ty)x <0 and 27 (T + ATTy)z < 0.

Proof: Let z € R™ and A € [A7,A\T]. Remarking that I'; + \['y = /\’\f%/\’\,(f‘l + A7 y) +

A—A— n - - At—A A—A— "
5= ('t + ATT'2) achieves the proof since 3—== and 5== are positive. ||
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Résumé

Cette these est dédiée a I’analyse de stabilité des systémes a pas d’échantillonnage variable et a la com-
mande dynamique de ’échantillonnage. L’objectif est de concevoir des lois d’échantillonnage permettant
de réduire la fréquence d’actualisation de la commande par retour d’état, tout en assurant la stabilité du
systeme.

Tout d’abord, un apercu des récents défis et axes de recherche sur les systémes échantillonnés est présenté.
Ensuite, une nouvelle approche de controle dynamique de ’échantillonnage, "échantillonnage dépendant
de I’état", est proposée. Elle permet de concevoir hors-ligne un échantillonnage maximal dépendant de
I’état défini sur des régions coniques de 'espace d’état, grace a des LMIs.

Plusieurs types de systémes sont étudiés. Tout d’abord, le cas de systéme LTI idéal est considéré. La
fonction d’échantillonnage est construite au moyen de polytopes convexes et de conditions de stabilité
exponentielle de type Lyapunov-Razumikhin. Ensuite, la robustesse vis-a-vis des perturbations est in-
cluse. Plusieurs applications sont proposées: analyse de stabilité robuste vis-a-vis des variations du pas
d’échantillonnage, controles event-triggered et self-triggered, et échantillonnage dépendant de I’état. En-
fin, le cas de systéme LTI perturbé a retard est traité. La construction de la fonction d’échantillonnage est
basée sur des conditions de stabilité Lo et sur un nouveau type de fonctionnelles de Lyapunov-Krasovskii
avec des matrices dépendant de ’état. Pour finir, le probléme de stabilisation est traité, avec un nouveau
controleur dont les gains commutent en fonction de I’état du systéme. Un co-design controleur/fonction
d’échantillonnage est alors proposé.

Mots-clés: Systéme commandé par réseau, systéme échantillonné, systéme & retard, échantillonnage
variable, échantillonnage dépendant de I'état, self-triggered control, stabilité/stabilisation, inégalité ma-
tricielle linéaire

Abstract

This PhD thesis is dedicated to the stability analysis of sampled-data systems with time-varying
sampling, and to the dynamic control of the sampling instants. The main objective is to design sampling
laws that allow for reducing the sampling frequency of state-feedback control for linear systems while
ensuring the system’s stability.

First, an overview of the recent problems, challenges, and research directions regarding sampled-data
systems is presented. Then, a novel dynamic sampling control approach, "state-dependent sampling", is
proposed. It allows for designing offline a maximal state-dependent sampling map over conic regions of
the state space, thanks to LMIs.

Various classes of systems are considered throughout the thesis. First, we consider the case of ideal LTI
systems, and propose a sampling map design based on the use of polytopic embeddings and Lyapunov-
Razumikhin exponential stability conditions. Then, the robustness with respect to exogenous pertur-
bations is included. Different applications are proposed: robust stability analysis with respect to time-
varying sampling, as well as event-triggered, self-triggered, and state-dependent sampling control schemes.
Finally, a sampling map design is proposed in the case of LTI systems with perturbations and delays.
It is based on Ls-stability conditions and a novel type of Lyapunov-Krasovskii functionals with state-
dependent matrices. Here, the stabilization issue is considered, and a new controller with gains that switch
according to the system’s state is presented. A co-design controller /sampling map is then proposed.

Keywords: Networked control system, sampled-data system, time-delay system, time-varying sampling,
state-dependent sampling, self-triggered control, stability /stabilization, linear matrix inequality
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