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Je remercie également tous les gens du JdR, qui se reconnaitront, pour les discussions qu’on a pu
avoir sur ma recherche, qui m’ont souvent permis de mieux formuler mon travail et de le mettre
en perspective, mais aussi simplement pour avoir été là et pour m’avoir fourni sans le savoir une
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Abstract

Large display environments (LDEs) are interactive physical workspaces featuring one or

more static large displays as well as rich interaction capabilities, and are meant to visualize

and manipulate very large datasets. Research about mid-air interactions in such environ-

ments has emerged over the past decade, and a number of interaction techniques are now

available for most elementary tasks such as pointing, navigating and command selection.

However these techniques are often designed and evaluated separately on specific platforms

and for specific use-cases or operationalizations, which makes it hard to choose, compare

and combine them.

In this dissertation I propose a framework and a set of guidelines for analyzing and com-

bining the input and output channels available in LDEs. I analyze the characteristics of

LDEs in terms of (1) visual output and how it affects usability and collaboration and (2)

input channels and how to combine them in rich sets of mid-air interaction techniques.

These analyses lead to four design requirements intended to ensure that a set of interaction

techniques can be used (i) at a distance, (ii) together with other interaction techniques

and (iii) when collaborating with other users. In accordance with these requirements, I

designed and evaluated a set of mid-air interaction techniques for panning and zooming,

for invoking commands while pointing and for performing difficult pointing tasks with lim-

ited input requirements. For the latter I also developed two methods, one for calibrating

high-precision techniques with two levels of precision and one for tuning velocity-based

transfer functions. Finally, I introduce two higher-level design considerations for combin-

ing interaction techniques in input-constrained environments. Designers should take into

account (1) the trade-off between minimizing limb usage and performing actions in paral-

lel that affects overall performance, and (2) the decision and adaptation costs incurred by

changing the resolution function of a pointing technique during a pointing task.

Keywords : large display environments, LDE, ultra-high-resolution displays, feedback

location, task allocation, pan-and-zoom, on-body touch, dual-precision pointing, head

orientation, pointer acceleration, decision, adaptation
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Résumé

Les environnements à grands écrans (Large Display Environments, LDE) sont des espaces

de travail interactifs contenant un ou plusieurs grands écrans fixes et divers dispositifs

d’entrée ayant pour but de permettre la visualisation et la manipulation de très grands jeux

de données. La recherche s’est de plus en plus intéressé à ces environnements durant ces dix

dernières années, et il existe d’ores-et-déjà un certain nombre de techniques d’interaction

correspondant à la plupart des tâches élémentaires comme le pointage, la navigation et

la sélection de commandes. Cependant, ces techniques sont souvent conçues et évaluées

séparément, dans des environnements et des cas d’utilisations spécifiques. Il est donc

difficile de les comparer et de les combiner.

Dans ce manuscrit, je propose un ensemble de guides pour l’analyse et la combinaison des

canaux d’entrée et de sortie disponibles dans les LDEs. Je présente d’abord une étude de

leurs caractéristiques selon deux axes: (1) le retour visuel, et la manière dont il affecte

l’utilisabilité des techniques d’interaction et la collaboration co-localisée, et (2) les canaux

d’entrée, et comment les combiner en d’efficaces ensembles de techniques d’interaction.

Grâce à ces analyses, j’ai développé quatre pré-requis de conception destinés à assurer que

des techniques d’interaction peuvent être utilisées (i) à distance, (ii) en même temps que

d’autres techniques et (iii) avec d’autres utilisateurs. Suivant ces pré-requis, j’ai conçu

et évalué un ensemble de techniques de navigation, d’invocation de commandes tout en

pointant, et de pointage haute-précision avec des moyens d’entrée limités. J’ai également

développé deux méthodes de calibration de techniques de pointage, l’une spécifique aux

techniques ayant deux niveaux de précision et l’autre adaptée aux fonctions d’accélération.

En conclusion, j’introduis deux considérations de plus haut niveau sur la combinaison de

techniques d’interaction dans des environnements aux canaux d’entrée limités : (1) il existe

un compromis entre le fait de minimiser l’utilisation des membres de l’utilisateur et celui

d’effectuer des actions en parallèle qui affecte les performances de l’ensemble ; (2) changer

la fonction de transfert d’une technique de pointage durant son utilisation peut avoir un

effet négatif sur les performances.

Mots clés : environnements à grands écrans, LDE, écrans ultra-haute-résolution, retour

visuel, assignation de tâches, pointage haute-précision, orientation de la tête, fonctions

d’accélération, décision, adaptation
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Introduction

Figure 1: Mid-air interaction in a large display platform: pointing, panning and zooming over a
very large visualization.

Large display platforms are physical workspaces designed to support the exploration and

manipulation of very large datasets. They feature one or more large displays to render

these datasets as well as interaction capabilities. Large display platforms are already in

use, e.g. in control rooms [48], industrial design [38] and by NASA [85]. Some of these

platforms can display several hundred megapixels and make it possible to visualize very

large, heterogeneous datasets in many domains [2, 19, 176]. Astronomers can use them

to display telescope images constructed from hundreds of thousands of frames stitched

together, such as Spitzer’s 4.7 billion (396, 032 × 27, 040) pixels images of the inner part

of our galaxy (Figure 1). Biologists can explore the docking of complex molecules or

280 gigapixel electron micrographs2. Artists can create gigapixel images, such as the 272

gigapixel panorama of Shanghai3 based on 12,000 pictures stitched together. Crisis man-

agement centers can interact with highly detailed maps of very large areas. For example,

2http://v.jcb-dataviewer.glencoesoftware.com/webclient/img detail/201/
3http://www.shanghai-272-gigapixels.com/
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OpenStreetMap4 data range from a view of the world down to street level, resulting in an

image that requires 18 peta (18 · 1015) pixels at its highest level of detail.

This thesis is focused on mid-air interactions in multi-display environments. Research

on this topic has emerged in the past decade, and there is already a number of studies

and interaction techniques available for elementary tasks such as pointing, navigating and

command selection. These works have mainly focused on adapting existing interactions to

physically large displays, but rarely take into account the very high pixel density that such

displays can provide. Also, these techniques are often designed and evaluated separately

on specific platforms and for specific use-cases or operationalizations, which makes them

hard to choose, compare and combine. I believe there is a need for a unified framework

for mid-air interaction in large display environments that would systematically consider

factors such as the display and input capabilities of each platform, the required degree of

collaboration, and the combinations of interactions that are needed during a given work

session. In this dissertation I propose such a framework to inform the design of new

interaction techniques and improve the usability and performance of existing ones, as well

as to help combine them with other user actions.

The contribution of this dissertation is two-fold:

(1) Understanding how the system’s input channels and the human sensory-

motor system can be optimally combined in such platforms. Large display plat-

forms can feature input devices and sensors adapted to their size and usage: motion capture

or tracking [128, 117], touch-enabled displays [29, 22], interactive floors [10], interactive

tables [173], hand-held [40, 41] or wearable devices [96, 80], etc. These input channels

are often novel, at least compared to desktop input devices, and raise the questions of (1)

how to effectively combine available input channels to enable simultaneous, higher-level

mid-air interactions and (2) how can these techniques meet the performance and preci-

sion requirements of large display environments. Among other contributions I present

controlled studies and usability analyses of input channels such as free-hand movements,

on-body touch, head orientation, and number of fingers on a touch-enabled device. I also

propose two meta-analyses, from the results of several controlled experiments, about how

performance is affected by parallelization and limb usage, and how high-precision pointing

strategies affect the users’ sensory-motor system.

(2) Increasing and improving the vocabulary of mid-air input techniques for

general-purpose tasks in wall display environments. While relatively new, interac-

tion with large displays already exists as a research field, with previous work in perception

4http://www.openstreetmap.org/
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[89, 176], collaboration [81] and interaction techniques [119, 128, 153]. However I will

show that existing interaction techniques for navigation, command selection and point-

ing still need to be improved, especially considering the possibly high pixel densities of

large display platforms and the need to be able to walk freely in such environments. I

analyze existing interaction techniques in the light of the constraints of large display plat-

forms, and develop new ones based on my analyses of the available input capabilities and

contexts of use of wall-sized displays. I also propose a set of design requirements that

ensures that interaction techniques for large display environments can be combined and

used collaboratively.

In the first part of this dissertation I analyze the input and output channels typically avail-

able in a large display platform as opposed to on a desktop, and how these input channels

can be used and combined in feature-rich applications. Using this analysis I describe the

design and evaluation of efficient mid-air navigation and command triggering techniques

that can be combined with other interactions. The second part of this dissertation is

dedicated to high-performance, target-agnostic mid-air pointing techniques. I describe a

study of human visual and input acuity and how they affect mid-air pointing. From this

study I introduce a family of pointing techniques that support pointing tasks of virtually

any difficulty. I then implement and evaluate a set of techniques from this family that can

be used either one-handed or in combination with other commands on a hand-held device.
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Part I

Combination of pointing and other
interactions on wall-sized displays
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Chapter 1

Designing Mid-air Interactions for
Large Display Platforms

Large display platforms are collaborative work environments designed to enable the vi-

sualization and manipulation of very large datasets. A number of mid-air interaction

techniques have already been proposed for these environments, mostly for specific needs

or specific tasks studied independently. However, few existing systems and applications run

on such platforms and they have been little studied. As a result, little to no research have

yet focused on characterizing interaction techniques specifically for large display platforms:

How does it compare to desktop environments? How does mid-air interaction affects per-

formance, usability and fatigue? How can common tasks [35] be performed and combined

in such platforms?

In this chapter I will analyze and discuss the core differences between desktop and large dis-

play environments in order to understand their specific constraints. From these I propose

two distinct analyses of (i) the location of visual feedback relative to the manipulated data

and how it affects collaboration and usability, and (ii) the different strategies to associate

interactions with available input channels for multi-task applications. From the results of

these analyses I generate a set of requirements for designing interaction techniques adapted

to large display platforms.

1.1 Desktop Environments VS. Large Display Platforms

Historically, research about interaction techniques has been mainly focused on desktop

environments, and only recently have “new” platforms and environments such as tabletops,

tablets and large display platforms been investigated in depth (e.g. [55]). A majority of

the existing models and interaction techniques were developed for the desktop. Some of
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them have been shown to be applicable and usable as is in large display platforms, such as

Fitts’ law [114] that applies to mid-air pointing techniques [127]. Other techniques do not

match the input and output constraints of large display platforms, such as mouse pointing

when standing in front of a wall-sized display. In this case, the equivalent interactions

have been implemented as new techniques for this platform , e.g. laser pointing [126].

Adjusting existing desktop interaction techniques to large display platforms is not trivial.

Neither is designing new interaction techniques specifically for this context. I identify

a number of fundamental differences between the display, input and user capabilities in

desktop environments and in large display platforms. In this chapter I will show how these

differences impact the adaptation of classical interaction techniques from the desktop to

large display platforms and propose guidelines to develop interaction techniques for the

latter.

1.1.1 Increased display capabilities

The term “large display” has been used in the literature to describe displays whose physical

size is greater than the usual desktop screen or classic TV screen. The term encompasses

a number of types of platforms, all of wich are “large” but differ on a number of charac-

teristics:

Pixel density, pixel size and resolution – pixel density is the number of pixels

contained in a given unit area. It is often measured in pixels per inch (ppi) or pixels

per millimeter (ppmm). Its multiplicative inverse is the physical size of a pixel (here

considered square for simplicity), thus often expressed in inches or millimeters. Pixel size

can also be expressed in angular units, e.g. radians or degrees, when considering their

visual size. This unit implicitly takes the location of the user relative to the display into

account; in this case the pixels can no longer be considered square because of the angular

distortion caused by perspective. Pixel resolution is the number of pixels of a display,

regardless of its physical size. For example, a head-mounted screen, a TV screen and a

3 m diagonal projected screen can share the same resolution with different physical sizes,

resulting in different pixels densities. In the remainder of this dissertation I will refer to

ultra-high-resolution displays as displays featuring more than 10 megapixels.

Display technology – pixel density largely depends on the display technology. A

classic HD projector can display up to (has a resolution of) 1920 × 1080 pixels; when

projected on a rectangle 3 meter in diagonal, it provides a pixel density of 19 ppi. Multiple
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projectors can be combined seamlessly with careful calibration, such as DGP1’s 5 × 1.8-

meter display composed of 6 × 3 projectors and 6144 × 2304 pixels, resulting in a pixel

density of 31 ppi. Unlike projected displays, the pixel density of tiled monitors does not

depend on the distance. Platforms such as Digiteo’s WILD [24, 25] (see Appendix A) or

Calit2’s OptIPresence2 can display respectively 131 and 307 megapixels at approximately

100 ppi.

Projectors can theoretically reach the pixel density of LCD panels, provided they are close

enough from the screen. However, their price is often much higher than LCD screens for

the same number of pixels. Projected displays offer the possibility to be seamlessly tiled,

i.e. with little-to-no visual interruption between one projection and the other. To date,

LCD screens without bezels are almost inexistent and the available screens with very thin

edges usually offer lower pixel density than typical desktop computers. LCD screens thus

offer much higher pixel density but tiling them creates bezels that can hinder readability

of the displayed data. Bi et al. [30] showed that interior bezels are not detrimental to

either pointing or visual search performance (provided that visual objects are not split

across bezels), but affect users’ search strategies and steering behaviors. Ebert et al. [59]

proposed to use projectors to display the missing information on bezels, which proved

promising even though their pixel density is lower; however this additional information

must be front-projected, meaning that it can be occluded by users walking in front of the

display.

Physical size – I consider “large” displays as any single or tiled display whose physical

size is bigger than a desktop screen, i.e. more than approximately 30-inch in diagonal.

They thus include most large TV screens, single or tiled projected displays and tiled

screens, as well as more specific setups such as CAVEs or specific display capabilities such

as 3D stereoscopy. The largest existing large displays range from 5-meter to 10-meter

wide and 1.8-meter to 3-meter high. These sizes are useful to display large quantities

of information, especially when coupled with high pixel densities. However some areas

of the display can become uncomfortable or physically impossible to reach while keeping

a comfortable posture, especially the lower and higher parts. Users can walk to reach

pixels located on the far left or the far right, but physical navigation and the human body

provide few comfortable solutions to bring the eyes lower or higher than their normal

location when standing (apart from crouching and jumping). While this might be of little

importance with low pixel densities or if all interactions are performed at a distance, it

can be problematic with high pixel density displays because of human visual acuity.

1http://www.dgp.toronto.edu/
2http://www.tacc.utexas.edu/resources/visualization/

27



1.1. DESKTOP ENVIRONMENTS VS. LARGE DISPLAY PLATFORMS

To analyze this problem, I will focus on the effect of the vertical distance between a pixel

and the user’s point of view. There is a limit distance beyond which a user with normal

vision can no longer perceive a pixel. The angular height (i.e. vertical width) of a pixel

seen by a user at a distance D from the display is

β = tan−1

(
A+ w

2

D

)
− tan−1

(
A− w

2

D

)
(1.1)

where w is the pixel’s (vertical) width and A the distance between the pixel and the

orthogonal projection of the user’s point of view on the display3, i.e. the pixel directly

facing him (P ′ in Figure 1.1-a). Following the theory of visual acuity [170], β must be

greater or equal to 1
60

◦
(degrees) for a “normal” user (vision of 20/20) to be able to

distinguish this pixel vertically. The solution to this inequality is a half disc of diameter

Ø = w/ tan
(

1
60

)◦
centered on

(
A = 0, D = Ø

2

)
.

Figure 1.1-b shows the corresponding inequality plot for a user with 20/20 vision and

w = 0.25 mm (100 ppi). This user must stand closer than 86 cm to the screen to be able

to distinguish the pixel directly facing him (P ′ in Figure 1.1-a). An interesting reading

of Figure 1.1-b is that regardless of the user’s distance to the display, pixels higher or

lower (or more generally, further away) than 43 cm from the “facing pixel” P ′ stop being

accurately perceivable by users with normal vision on a 100 ppi display.
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Figure 1.1: (a) The user looks at a pixel P at a given altitude A (from his eyes) and from a
distance D to the display. (b) The possible values of D for which the pixels of a 100-ppi screen
can be accurately perceived for a given altitude A. As an example, the thick blue line represents
the range of distances at which the user can accurately distinguish pixels that are 30 cm higher
(or lower) of his projected point of view P ′.

Using the same formula, we can compute the smallest pixel size w that can be accurately

perceived at a given distance by a user facing the screen:

w = 2×D × tan

(
β

2

)
(1.2)

3The point of view of the user is reduced to a point for simplicity.
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Figure 1.2: Display physical size over visualization size, with three typical pixel densities. Above
a certain display size (light gray), parts of the display become physically unreachable. Above a
certain pixel density (dark gray), the human eye can not differentiate pixels, thus can miss some
of the displayed information. Display and visualization sizes are represented regardless of aspect
ratio.

Using a conservative minimal distance D of 30 cm and the normal visual accuracy limit

of 1
60

◦
, this smallest size is w = 0.087 mm. It thus does not make sense to provide pixels

much smaller than this. This pixel size corresponds to a 291 ppi display, i.e. a little below

the latest commercial ultra-high resolution mobile devices4. Even with this tripled pixel

density, displaying the Spitzer image (396, 032 × 27, 040 pixels, see the Introduction) at

full resolution would require a 35 m × 2.4 m display, which is unrealistic and impractical.

Figure 1.2 illustrates several examples of visualization vs. display size: the ordinate of the

intersection between a red line and a dotted line gives the physical size needed to display

the corresponding visualization (dotted line) with a given pixel density (red line). Blue

dots represent the resolution and size of several displays. The quarter space to the left and

to the bottom of a dot represents the visualizations that can be displayed at full resolution.

Figure 1.2 shows that even the smallest of our “professional” examples can not fully fit

existing displays. Ball et al.’s [19] results about physical versus virtual navigation do not

invalidate the need for virtual navigation since some existing datasets are already several

orders of magnitude too large to fit at once on even the largest sized displays.

Equations 1.1 and 1.2 apply when the display is vertical and flat; a solution is to tilt

the top and bottom of the display towards the users to reduce the angular distortion on

the upper and lower parts of the visualization. However this solution forbids cylindrical

4e.g. Apple iPhone 4 (326 ppi) or Samsung Galaxy III (306 ppi)
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display setups, at least with tiled displays, which have been shown to improve performance

and reduce the need for physical navigation [155]. Projected displays can accommodate

both types of curvature at the same time, allowing for spherical surfaces [28].

However the limits of visual acuity do not invalidate the use of high-resolution large dis-

plays. Large displays improve collaboration and performance by allowing users to navigate

physically [19]. Yost et al. [176] showed that the advantages of high pixel density are not

limited by visual acuity. In particular, users were more efficient and sometimes more ac-

curate in information visualization tasks on a display with a pixel density exceeding visual

acuity limitations. Tan et al. [161] showed that regardless of visual angles, physically large

displays improve performance and precision for spatial tasks such as mental rotation, 3D

navigation and mental map formation and memory. They hypothesize that large displays

improve the users’ sense of immersion and presence and bias them into using optimal

cognitive strategies.

1.1.2 Physical navigation

Navigation is the action of changing one’s viewpoint of a given visualization when the cor-

responding dataset is too large to be fully displayed or comprehended at once. Navigation

is used to either (i) focus on a specific area or data point, (ii) get an overview of an area

of the dataset, possibly less detailed, or (iii) translate the viewport in order to explore a

different area of the visualization. I identify three main types of navigation:

Physical navigation is the “natural” way of exploring an image or an environment by

physically moving in front of, or around the object of interest. It can be either by

walking or simply moving the head, similar to when observing a physically large

object (i.e. a wide painting in a museum). It thus needs no learning.

Virtual navigation is a family of interaction techniques that lets users alter the visual

representation of the dataset (e.g. by zooming its content) on the display, without

requiring them to physically rotate their eyes or translate their head. Virtual navi-

gation can be performed in datasets of virtually any number of dimensions, as with

data-mining and visualization softwares. Virtual navigation can be performed in 1D,

e.g. over lists [5], in 2D or 2+1D [68] over maps, graphs or any dataset rendered in

2D [128, 116], or within 3D-rendered worlds such as first person video games [176]

or 3D-rendered datasets.

Mixed navigation techniques combine physical and virtual navigation by altering the

visual representation of the dataset along with users movements, e.g. to provide

content magnification over the user’s Regions Of Interest [79] or to simulate 3D
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navigation [57].

In typical single-screen desktop environments, head movements bring little to no addi-

tional information since the size and pixel density make eye movements efficient enough to

cover the whole display. However head orientation can be useful in multiple-screen desktop

environments [8]. In comparison, one of the main assets of interacting with wall displays

is the possibility to actually walk in front of the displayed data to perform physical nav-

igation, combining head rotation with body translation for more complex and “natural”

navigation. Ball et al. [19] showed that physical navigation is more efficient than, and

preferred to, virtual navigation for spatial visualization tasks on large displays. Finally,

physical navigation does not change the displayed viewport, as opposed to virtual navi-

gation. In collaborative environments, where several users work on different areas of the

same visualization, one user changing the general viewport can conflict with every other

user’s focus and current actions.

1.1.3 Lack of a supporting surface

One of the main differences, in terms of features, between a desktop environment and a

visualization platform is the table, or more generally any stable, fixed-location surface.

Such static surfaces require users to sit or stand still in order to interact with the display,

preventing physical navigation in the room and therefore not taking full advantage of very

large high-resolution displays. This difference induces major changes in the way users can

access and use input devices, which I categorize according to fatigue, physical support and

accessibility of devices.

Fatigue – In a desktop or tabletop environment, users can use the table, the arms of

their chair, or any stable element as support surfaces while interacting or to rest. For

example, pointing with a mouse or trackpad [51] reduces fatigue by putting most of the

arms’ weight on the table or armrests. Keyboards are horizontally set so that users can put

most of the weight of their arm on their forearm and palm while being able to access all

the keys. More generally, input devices are laid on the table and thus require no additional

holding effort when used.

When standing in front of a large display, most input devices must be held at the same time

as they are used, which requires extra effort and limb coordination that could otherwise

be used for input. Users cannot rest their arms on a stable surface while interacting and

sometimes create strategies to minimize fatigue, such as keeping the upper arm still when

performing mid-air pointing, changing the way they hold a tablet over time [167] or putting

some of the tablet’s weight on the abdomen.

31



1.1. DESKTOP ENVIRONMENTS VS. LARGE DISPLAY PLATFORMS

Physical support – In a desktop environment, input devices most often lay on the

table. Most user inputs are either parallel to the horizontal plane, e.g. moving a stylus or

reaching for a key, or normal to it, e.g. pressing a mouse button or a key. This 2+1D input

provides a motor separation between continuous and discrete interactions. Interactions on

a table top can thus take advantage of friction for stability and precision. For example,

pressing a mouse button is orthogonal to the mouse pointing movements and thus does

not impair pointing precision. More generally, keeping the cursor still requires little to

no additional effort with typical desktop pointing devices (i.e. mice, trackpads, styluses),

which gives users more opportunities to recover from fatigue [51].

Mid-air interactions cannot take advantage of a stable object other than the user’s body,

which makes surface-dependent devices such as mice and keyboards less practical or unus-

able. Expressive mid-air devices such as portable trackpads, keyboards and tablets often

need two hands to be operated while standing. Multitouch smartphones can be used for

multiple purposes. They can be held and operated with one hand, however only the thumb

can touch the screen with limited operating range [147]. Gyroscopic mice can be used in

mid-air and provide very precise input. However clicking a button can cause hand tremor

that impacts pointing precision [53]; some devices feature an additional button to immobi-

lize the cursor. Other wearable devices provide more pointing stability and accuracy [53].

However, as for any mid-air pointing device, holding it requires additional effort [51] that

can increase fatigue. It also requires fingers for support and stability which could be used

for other buttons (for instance, gaming mice that can make use of all fingers).

Accessible devices – A tabletop can also be used as a “storage” area for input devices

that are not currently used, e.g. a mouse that can be left aside when the user types text

on the keyboard. Other examples include game controllers like joysticks, or work-related

devices such as Phantom devices5, 3D mice or drawing tablets that can be put away near

the user’s hand for easy access.

The “storing” function of the tabletop has little equivalent in mid-air. Users can quickly

grasp only a limited number of input devices, namely the ones they are able to carry,

unless they interrupt their workflow to go get the device they need. Compared to a

desktop situation, users must be able to perform a maximum number of actions with a

limited number of portable input devices.

Figure 1.3 summarizes the main differences between desktop and large display environ-

ments that affect interaction. Having established the fundamental differences between

desktop and large display environments, I will focus on the design constraints that apply

5http://www.sensable.com/haptic-phantom-omni.htm
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Limb support
vs.

Physical navigation
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Handhelds

Fixed angular size
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Figure 1.3: Main differences between interacting on a desktop and mid-air interaction in a
large display environment, in terms of visual perception (green), accessible devices and types of
interactions (blue) and user movements (red).

to mid-air interaction in the latter case. In Section 1.2, I will analyze how shared and

personal displays can be combined and the associated constraints, namely split attention

and occlusion. The corresponding design space will allow me to classify existing and new

interaction techniques in terms of usability and collaboration in the remainder of this

dissertation.

1.2 Location of the feedback

In his definition of the properties and behavior of an instrument, Beaudouin-Lafon [27]

distinguishes the response of an action on a virtual object, i.e. its direct effect, from

the feedback of the corresponding instrument. For example, most web-based zoomable

interfaces such as Google Maps can be operated with the mouse wheel (or sliding on a

trackpad) but also provide a visual instrument (widget), e.g. a slider, indicating the level

of zoom. Regardless of how the zoom is controlled, the magnification of the map is the

response of the interaction while the change of relative location of the slider knob is the

feedback corresponding to this specific widget. In this section I will focus on the physical

and virtual locations of instruments in large display platforms.

1.2.1 Distance- and visibility-dependence

Shoemaker et al. [153] proposed a design space for mid-air interaction techniques that

features two orthogonal factors, distance-dependence and visibility-dependence:

Distance dependence – A technique is distance-dependent when its response changes

with the distance between the user and the display, such as with ray-casting: the

same gesture (elbow + wrist rotation) will produce cursor movements of greater
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amplitude if the user is farther away from the display. Widgets on a wall-sized dis-

play also are distance-dependent since their readability varies with user distance.

Distance-dependent techniques can only be used optimally within a certain range

because of input precision or output readability [153], or require larger visual feed-

back as the user moves further away from the display.

The output of a distance-independent technique does not depend on this distance.

For example, hand-held or virtual keyboards such as on smartphones or tablets can

be used anywhere in the room. Distance-independent techniques favor location-

independent mid-air interactions by not constraining the user to a physical area.

Visibility dependence – A visibility-dependent technique requires users to refer to vis-

ible feedback (other than the response of the action) during the interaction while

a visibility-independent technique does not. For example, zooming with the mouse

wheel is visibility independent (or eye-free) if the user only refers to the response

of his action (e.g. the map magnification) and does not look at the corresponding

slider. Conversely, the lack of tactile feedback makes typing on a virtual keyboard

visibility-dependent : users need to look at the screen during the whole typing pro-

cess.

Visibility-independent techniques do not require users to switch their visual atten-

tion, but are often more limited in expressiveness (see [53] and Section 3.2 page 72

for an analysis of existing menu techniques).

While eye-free techniques have been shown to improve performance and usability [110,

180, 131], visual feedback is sometimes unavoidable. Switching from visibility-dependent to

visibility-independent interaction is one of the key characteristics of systems that encourage

novice-to-expert transitions, such as WIMP linear menus and their associated keystrokes

or marking menus [179, 150]. Novice interactions often are visibility-dependent as users

need feedthrough [82] to control and learn them. Also, techniques such as pointing perform

poorly without feedback [53].

1.2.2 Occlusion and attention switch

While Shoemaker et al. [153]’s taxonomy accurately describes most pointing-based mid-air

interactions, it ignores an important trade-off between two potential issues for visibility-

dependent techniques: Distraction and Attention switch.

Distraction occurs when a widget or any other interaction feedback is displayed over the

visualized data. It ranges from minor distraction, e.g. a moving cursor, to complete

hiding of a region of the data, e.g. invoking a linear menu over the visualization. A
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user’s actions can cause occlusion over his own Region Of Interest (ROI) but also

over his collaborators’ ROI when several users manipulate the same visualization.

Occlusion problems have been addressed in the literature on multi-touch surfaces

(e.g. [164, 165]) and desktop interactions (e.g. [77]). In their toolkit of group aware-

ness, Hill and Gutwin [82] raised the problem of how shared widgets can occlude

collaborators’ local work areas. They propose remote versions of pull-down menus

that limit this occlusion in collaborative contexts: one transparent and one with

a smaller size (“summary”). Vogel and Casiez [165] proposed a set of geometric

models capturing the shape of hand and forearm occlusion on a multi-touch table

and provided a corpus of corresponding input data. Vogel and Balakrishnan [164]

proposed an algorithm to define what area of the display is hidden by the user’s arm

and hand and what important data is contained in this area, as well as a visual-

ization technique to displace this data in close, non-occluded areas of the display.

This technique has not yet been evaluated with remote or collaborative interactions.

Apart from these examples, collaboration-induced occlusion has not been, to our

knowledge, studied in the literature.

Attention switch occurs when a command or interaction widget is displayed physically

far away from the user’s ROI: the user then has to switch his gaze and focus from

the data to the commands and then back [144]. The amplitude of the attention

switch depends on the distance between the widget and the ROI: moving palettes

located near the ROI on the same display cause a small attention switch, while

controlling widgets on a hand-held tablet when the manipulated data is on a wall-

sized display requires users to move their eyes and head by about 45◦. The observed

effects of gaze shifts vary from negative to neutral: Rashid et al. [143] observed that

the number of gaze shifts is correlated to completion time in mobile device + large

display situations; on the contrary, Cauchard et al. [46]’s results suggest that the

number of eye context switches does not affect performance.

1.2.3 Physical and virtual location of the feedback

In order to assess the causes of these issues I introduce a design space for Feedback Location

that further develops visibility-dependence: if an interaction technique does require visual

feedback to be operated (other than the direct response of the technique), the physical

location of this feedback relative to the user(s) and the virtual location of the feedback

relative to the data have an impact on usability, attention and collaboration.

The physical location of the visual feedback can be either on the Main display or on a

Secondary display :
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The main display is the core display of a large display platform. It is composed of

any stationary display or set of displays (e.g. a wall display [25] or a CAVE) facing

the users. It features the greatest number of pixels in the platform and is meant

to be the primary output for the visualized dataset. In order to be readable at any

distance, interaction feedback rendered on the main display must adapt its size to

the user’s distance. In this case feedback on the main display is distance-dependent6

and may cause more occlusion when the user is far away from the display. Hawkey

et al. [81] observed collaborative benefits when users are positioned close together

in a collaborative task using a large display. However, physically close users are

more likely to share portions of the same ROI and distract each other if interaction

feedback and data are displayed on the main display.

Secondary displays are any displays used within the platform that do not fall into the

first category, such as hand-held interactive screens and tabletops that are not part

of the main display. Rekimoto [145] did an early exploration of Secondary displays

with prototypes of “palettes” used in combination with shared whiteboards. They

observed that displaying too many tools on a palette can degrade mutual awareness

among collaborators, as users spend more time concentrating on their own devices.

Lindeman et al. [112] report that “hand-held windows” can be positioned to allow

the user to work effectively and do not clutter her view.

The virtual location of the feedback describes where it is rendered relative to the visual-

ization. Since part of the data can be displayed on secondary displays, I consider that this

factor is orthogonal to physical location. Virtual location can be either On-data or Fixed :

On-data feedback is displayed near the user’s Region Of Interest (ROI) over the ren-

dered data, either on the main display or on a secondary display featuring a subset

of the dataset. Being displayed over the rendered data, they cause limited cursor

movement and attention switch, similar to WIMP contextual menus and movable

toolboxes. However they also occlude the data underneath, either briefly or con-

stantly, depending on the type of visual feedback. For example, toolboxes are often

always visible and movable over the visualization while pull-down menus disappear

(mostly) after an item is selected. Occlusion can impair the user if the feedback is

displayed on a secondary (personal) display, but it can impact his collaborators if

the feedback is displayed on the main display.

Fixed feedback is always visible and has a fixed location and visible size on the host

display (main or secondary). Examples include toolbars (as opposed to pull-down

menus) and tablets when these do not feature parts of the visualization. Being

6Making Shoemaker et al. [153]’s factors non orthogonal.
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visually separated from the data, they cannot cause occlusion, however they may

decrease the screen real estate dedicated to data visualization of their host display

in hybrid [143] configurations. Fixed feedback may also cause attention switch since

the location of the feedback is no longer related to the user’s ROI, unless a greater

amount of virtual navigation is performed to bring the ROI near the widgets.

In the context of Multi-Display Environments, Wallace et al. [168] studied content redi-

rection, i.e. displaying parts of shared data on personal displays, versus input redirection,

i.e. moving a user’s control focus from one display to another. They found that content

redirection can improve the performance of users in suboptimal seating positions. However

they did not study situations where users can stand and walk. In Rashid et al.’s taxonomy

[143], Hybrid configurations feature subsets of the rendered data on the Secondary display

(a tablet) for direct manipulation while in Large Display configurations the Secondary

display only displays indirect commands. They report that the Hybrid configuration was

worst or equal to worst for map, search and photo search tasks with hand-held smart-

phones, while the Large Display configuration was best or equal to best for all three tasks.

As we consider the main display as the primary output for the manipulated dataset, both

Hybrid and Large Display configurations cause attention switch when users need context

or feedback about their local manipulations.

Physical location
Main display (MD) Secondary display (SD)

Virtual
location

On-data

+ Minimal attention switch
(with MD data)

+ Minimal attention switch
(with SD data)
+ No occlusion on the MD

− Occlusion on the MD
− Occlusion for the user
− Focus switch with MD

− Distance-dependent size

Fixed + No occlusion
− Possible attention switch

Table 1.1: Design space for Feedback Location: pros and cons of the possible physical and virtual
locations of widgets and visible interaction feedback.

Table 1.1 summarizes the pros and cons of the combinations of physical and virtual loca-

tions for interaction feedbacks. We can observe a trade-off between occlusion and attention

switch: no combination of physical location and display location is free of one or both.

The choice of one combination over another depends on the cost of occlusion and atten-

tion switch in a given context. Choosing a combination depends strongly on the required

interactions and collaborative needs of a task. For example, collocated collaborative tasks
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performed on a shared visualization on the main display may suffer from occlusion and

distraction caused by other users’ actions. Repetitive, short-term commands cause mini-

mal attention switch and can be limited in time, thus causing only short-term occlusions;

context-independent tasks such as typing text may take time and thus would cause length-

ier occlusions, but can be performed out of the main display without the need to look at

the main display data before the end of the typing. Non-collaborative environments can

focus less on avoiding occlusions and use on-data feedback to minimize attention switch.

In this section I introduced a design space of Feedback Location that describes and qualifies

the possible combinations of personal and shared displays in large display environments. I

will use this design space in the remainder of this dissertation to classify existing techniques

and assess the usability and collaborative potential of new techniques. From this analysis

of the potential interactions of the visual outputs in large display platforms, I will now

present a taxonomy of how input channels are allocated to interactions when several input

channels must be available for a given task.

1.3 Task allocation strategies

There is a growing number of mid-air interaction techniques in the literature about large

displays, but few articles (e.g. [85, 107]) mention whole applications with multiple tasks or

real setups, except with public displays. Most research articles about interacting with wall-

sized displays and large display platforms focus on specific tasks and interactions. They

are evaluated in controlled experiments with operationalized tasks and controlled envi-

ronment and factors. Controlled experiments are indispensable to understand the precise

correlations and effects between these factors, e.g. interaction techniques, and dependent

variables such as performance, user preference and reaction to a stimulus. “Real” appli-

cations such as the ones on desktop environments are usually more complex than what is

tested in controlled experiments. They allow and require many different interactions an

commands that must be mapped onto the available user capabilities, such as movements

of their limbs. For instance, in desktop environments, interactions and commands are

mostly controlled by cursor movements (e.g. selecting a menu item or drag-and-dropping

an object) and keyboard strokes (e.g. shortcuts and modifiers), which mainly involve

movements of the hand and forearm [51]. However, as pointed out in Section 1.1, users

are more limited in terms of available input devices when standing in front of a wall-sized

display. The lack of a stable surface means that users can have quick access only to the

limited set of devices they are holding or carrying. In particular having no support surface

makes the use of a keyboard cumbersome, which greatly limits the number of discrete

events users can send easily. On the other hand, input is not constrained by a table or
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any supporting surface, thus arms and hand movements can benefit from more degrees of

freedom.

1.3.1 Resource allocation

A user standing in front of a display can move several limbs at once, e.g. fingers, hands,

arms, head, eyes, etc. These movements can be interpreted as interaction inputs via phys-

ical interactors (key, button or mouse wheel events) or tracking systems (location and

orientation of the hands and eyes, postures, etc.). Depending on the sensing capabilities

of a given large display platform, including its input devices, a subset of these movements

can be detected with more or less accuracy. Designing rich applications requires solving

a resource allocation problem: the set of functionalities must be mapped to the morpho-

logically and technologically limited input expressiveness. This expressiveness is formally

defined as the measurable and comfortably usable degrees of freedom of a user’s limbs and

segments. The lack of supporting surface also means that part of the available limbs and

muscular effort must be allocated to holding the input device prior to interacting with

them.

Wagner et al. [167] followed a similar approach with BiTouch, an extension to the kinematic

chain model [73] for touch-based mid-air interactions that takes the support function into

account, whether the device is held by the dominant hand, by the non-dominant hand

or by both hands. They observed that the limb segments used to hold a device are

allocated three ordered functions (Figure 1.4) with decreasing priority, depending on their

physical proximity to the device: (i) Framing is the general positioning of the device

relative to the body and point of view of the user, (ii) Support encompasses holding and

keeping the device stable, and (iii) Interaction covers actually using the device with the

remaining free limbs or segments. For example, when interacting using a single hand with

a smartphone in the dominant hand, the arm and forearm location and orientation set

the general frame of the phone relative to the user, the palm and fingers support the

phone, and the thumb is the only remaining segment able to interact with the screen.

Skipping one of these functions provides more expressiveness for the following one(s) in

the chain: if a user attaches a smartphone to her non-dominant forearm, thus delegating

the Support function to mechanical means, then the palm and fingers of the non-dominant

hand become available for other purposes.

BiTouch does not cover non-touch interactions such as mid-air pointing, however one could

observe that the model of decreasing limb resource still applies, if the Framing function is

no longer constrained to the user only. Consider laser-pointing with an IR-tracked wireless

mouse (as in e.g. [127]). The arm, forearm and hand frame the pointing, i.e. orient the
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Interact

Dominant arm Non-dominant arm
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Two-hand Palm
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Figure 1.4: Examples of the biTouch framework (picture from [167]).

(a) (b)

Figure 1.5: Wireless mouse held in mid-air, seen from below (a) and above (b).

mouse towards the desired location of the cursor. The thumb, ring and pinky fingers are

used for support, so that the mouse does not fall (Figure 1.5-a). The index and middle

fingers are available to interact with the mouse buttons and wheel (Figure 1.5-b). Limbs

such as the head and eyes can also be used to frame an interaction (e.g. [178, 79]) but

provide much less interaction capability compared to the hands and fingers, except maybe

for blinking [9].

1.3.2 Existing strategies

The number of possible combinations of tasks and segments becomes quite high for ap-

plications with numerous interactions and platforms featuring high detection capabilities.

Existing systems exhibit three main strategies to allocate a large number of tasks onto

limited limb movement capabilities:
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Maximizing limb usage: Research on multitouch devices and mid-air interaction has

focused on exploiting unused limb expressiveness and “natural” movements to en-

rich the input vocabulary. Examples include tracking the proximity of the head to

the screen [79] or gaze location [178] in desktop environments, exploiting the large

vocabulary of available finger movements and hand postures on tabletops [12], using

the skin as an interaction device [80, 111] or simply controlling parallel tasks [94]

with both hands [128]. If well designed, these solutions can provide interactions

with a high degree of parallelization and limit the need for visual feedback. However

explicitly using more limbs increases the chances of causing fatigue, especially when

standing [51]. By nature, this approach is also more limited in terms of allocat-

able tasks compared to, e.g., visual menus that can contain hundreds of commands

at once. It also requires advanced tracking capabilities to correctly interpret user

movements, which can be difficult to achieve uniformly across very large areas.

Factorizing task allocation: Another solution consists in allocating many functions to

a single or small set of limb(s) or expressive input device(s). For example, multitouch

tablets now feature as many pixels as typical desktop screens, e.g. the 2048 × 1536

pixels iPad, with high-resolution finger tracking capabilities. They can thus be used

as hand-held toolboxes without the need to display part of the visualized dataset

[145, 143], causing no occlusion, manageable fatigue [167] and offering a high number

of commands and functionalities. However they require both arms at once since the

non-dominant arm and hand cannot do much more than hold the tablet. All widgets

being displayed on the tablet, it is also likely to cause attention switches since users

have no feedback (other than visual) of their location. Finally, such one-handed

interaction style means that most actions will be performed sequentially.

Everything through cursor movement is a particular, visibility-dependent case of

the latter. Desktop-based applications usually allocate many interactions to cur-

sor movements and pointing actions through menus, widgets and modifiers. This

strategy is applicable to large display platforms and requires a limited number of

limbs to control a whole application since only one arm and hand are needed to con-

trol the cursor’s location. However it relies heavily on visible widgets and feedback,

which increases the chances of occlusion as introduced in Section 1.2. Also the cur-

sor is the sole interacting object, which prevents parallel tasks such as bimanually

orienting, moving and scaling an object with two control points as on multitouch

devices.

These strategies can be mixed, as illustrated in Figure 1.6: applications can favor limb

usage for eye-free direct manipulation (e.g. virtual navigation and object manipulation),

expressive personal devices for fine parameter settings or text entry and pointing-based
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Menu

CBA D

FE G

Maximize limb usage

Factorize task allocation

Everything through
cursor movement

Figure 1.6: Examples of task allocation strategies: head orientation defines the object of interest
(blue – Maximizing limb usage) while a tablet-controlled cursor selects an item on a menu (red
– Maximizing cursor usage). The remaining tablet space is dedicated to various control widgets
(green – Factorizing task allocation).

widgets for more general commands.

In this section I introduced a taxonomy of task-to-limb allocation intended to qualify

and predict how multiple interactions can be combined within the limited input channels

available when standing in front of a wall-sized display. Chapters 2 and 3 will explore

this taxonomy with two goals: (1) validate my preliminary assessments about existing

task allocation strategies and (2) enrich its predictive power by investigating complex

combinations of interaction techniques. Section 1.4 will summarize the theoretical findings

of this Chapter by drawing a list of requirements that interaction techniques for large

display environments should meet for optimal usability, performance and collaboration.

1.4 Requirements

Based on the analysis and factors presented in this chapter, I introduce four main require-

ments for designing mid-air interaction techniques in large display platforms:

R1: Human perception – Display technology makes it possible to display ever-growing

datasets at decreasing costs, and yet some recent interaction techniques in the liter-

ature are evaluated in much less constrained conditions. It is often unclear how a

technique designed for “high-resolution large displays” will perform in more recent

and expressive setups. While it is difficult to predict which new display technology

will be available in the future, the capabilities and limits of human perception are

known, and display capabilities are already reaching them.

On the basis that “he who can do more can do less”, I defend that the capabilities
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of mid-air interaction techniques in large display platforms should match the limits of

human perception. Users should not need software magnification or physical naviga-

tion to be able to interact with already visible or readable elements of the visualization

unless necessary ; that is, physical navigation should be instigated by the user’s will

rather than need. A direct application of this requirement is that all targets visible

from a given physical distance should be selectable regardless of task amplitude and

display technology.

R2: Location independence – Walking is a “natural” way of navigating in front of a

large image and has been shown to improve performance in visualization tasks [19].

Even when not necessary, e.g. when virtual navigation does not disturb a user’s

collaborators, she should have a choice between virtual and physical navigation. Con-

versely, equivalent input capabilities should be available anywhere in the platform.

This means that mid-air interaction techniques in large display platforms should be

location-independent: users should be provided the same interaction capabilities wher-

ever they stand, walk or sit in front of the display. In particular, R1 must be true

wherever the user stands. As an example, mid-air interactions constrained to a fixed

location [117] or techniques with fixed-size visual feedbacks [153] are in conflict with

R2.

R3: Input channels – The design of interaction techniques for large display platforms

should take scarcity of input devices and fatigue into account. Users standing and

walking in front of a wall-sized display have access to a smaller set of input devices

compared to a desktop environment. Standing is also more tiring, as is the lack of a

supporting surface for the arms.

Interaction designers should ensure that a single interaction technique does not over-

load the input channels of users and their available input devices. For example, point-

ing by touching, with the dominant hand, a device held in the non-dominant hand

that cannot be used for any other interaction (e.g. invoking a command or a mode)

is likely to be less usable in a real application than expected from the results of a

controlled experiment.

R4: Collaboration – Mid-air interaction techniques in large display platforms should not

impair collaborative work efficiency. As described in Section 1.2, it is possible that

a user’s actions or feedback affects his collaborators negatively, e.g. by changing a

shared virtual viewport.

Several users should thus be able to use the platform simultaneously, and a user’s

interactions must not hinder tasks carried out by other users. For example, the visual

feedback of a given user’s interactions should cause as little occlusion and distraction

as possible on other users’ regions of interest.
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Based on the theoretical findings of this chapter, I suggest that meeting these requirements

when designing interaction techniques will improve the general usability, performance and

collaborative power of large display platforms. In the remainder of this dissertation I

will present the design and evaluation of a set of comprehensive interaction techniques in

accordance with these requirements: Chapter 2 presents an analysis of the input factors

available for pointing, panning and zooming in mid-air, as well as a thorough exploration of

these factors resulting in a set of mid-air pan-and-zoom techniques. Chapter 3 introduces a

design space for highly expressive discrete selection techniques and reports on a controlled

experiment about combined menu and mid-air pointing techniques.
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Chapter 2

Pointing and navigation on
wall-sized displays

1

2.1 Introduction

As discussed in Section 1.1, ultra-high-resolution wall-sized displays can accommodate

very large visualizations that benefit from physical navigation, but do not discard the

need for virtual navigation: some datasets are already several orders of magnitude larger

than existing wall-sized displays. Many interaction techniques have been specifically de-

signed to help users navigate large multiscale worlds on desktop computers, using zooming

and associated interface schemes [54]. However, high-resolution wall-sized displays pose

different sets of trade-offs. It is critical to their success that interaction techniques account

for both the physical characteristics of the environment and the context of use, including

cooperative work aspects. As defined in the previous chapter (Requirement R2), input

should be location-independent and should require neither a hard surface such as a desk

nor clumsy equipment: users should have the ability to move freely in front of the display

and interact at a distance [19, 176]. This precludes the use of conventional input devices

such as keyboards and mice, as well as newer interaction techniques: For example, the

powerful multi-finger gestural input techniques designed by Malik et al. [117] were devised

for interaction with lower-resolution large displays from afar; they require sitting at a desk,

and are thus not optimal for very high-resolution displays that afford more physical forms

of navigation. The recent Cyclostar approach [116] is very elegant, but requires the dis-

play surface to be touch-enabled, a feature that wall-sized displays often lack. Cyclostar is

also not well-suited to wall-sized displays, as it requires users to be within arm’s reach of

the display surface. While this is perfectly acceptable for displays up to 1.5m in diagonal

1A subset of this chapter has been published at the CHI’11 conference [128] and received a Best Paper
Award.
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such as SMART BoardsTM, users of larger displays such as the one in Figure 6.1 (5.8m

in diagonal) would only see a very limited portion of the display while navigating. This

lack of an overview would be a hindrance as navigation is mostly driven by contextual

information.

The work presented in this chapter serves three purposes.

First, our initial goal was to study which input channels available in mid-air can be used

and combined to perform panning and zooming actions on wall-sized displays. More

specifically, we sought to answer questions related to the performance and subjective

preference of users relative to these combinations, including:

• Beyond their almost universal appeal, do gestures performed in free space work

better than those input via devices operated in mid-air?

• Is bimanual interaction more efficient in this context?

• Is it more tiring?

• Do circular, continuous gestures perform better than those that require clutching

(restoring the hand or finger to a more comfortable posture)?

We grounded our work in both theoretical and experimental work on bimanual input

[37, 73, 109], the influence of limb segments on input performance [18, 177], on types of

gestures [124, 172] and on the integral nature, in terms of perceptual structure, of the pan-

zoom task [93]. In particular, we were interested in comparing the following dimensions:

• bimanual vs. unimanual input;

• device-based vs. free-hand techniques;

• degrees of freedom (DOF) and associated kinesthetic and haptic feedback;

• types of movements: linear gestures vs. circular, clutch-free gestures.

Second, at a higher level, I also investigate how three integral tasks, namely panning,

zooming and pointing, behave with the limited set of input channels and devices available

in a large display platform. I integrate this study into the Task Allocation design space

introduced in the previous chapter (Section 1.3 page 40) by exploring two strategies for

task allocation, namely Maximizing limb usage and Factorizing task allocation.

Finally, this work contributes to the vocabulary of navigation techniques available in mid-

air for high-resolution large display platforms.
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2.2 Panning and Zooming in Mid-air

Virtual navigation is meant to displace a user’s viewport on the visualized dataset towards

a remote Region Of Interest (ROI) with a possibly different zoom level, in order to get

either an overview of a region of the scene for general observation or interaction, or a

detailed view of a smaller portion of the scene for precise observation or interaction. Guiard

and Beaudouin-Lafon [74] listed three main virtual navigation techniques: bi-focal, fish-eye

and pan-and-zoom, which we study in this work.

Panning and zooming are usually operated in sequence, as illustrated in Figure 2.12: unless

familiar with the dataset or given additional guidance, a user cannot zoom towards a ROI

that does not appear within his viewport and does not know in which direction to pan

(Figure 2.1.1). In this type of “blind” situation, the usual strategy [74] is to zoom out until

the requested ROI enters the viewport (Figure 2.1.2). The user can then reach his target

ROI with a sequence of zooming and panning actions to adjust the focus (Figure 2.1.3-6).

2 3

Distance to the ROI 0

Zoom

level
ROI

1

2
Navigation

step

6
Viewport

Figure 2.1: A typical sequence of virtual navigation steps. If at first the viewport does not
contain the target ROI (1), the user can zoom out until he sees it (2). He can then pan to center
the ROI near his own physical position (3) and zoom (4). If a lot of zooming is needed, step (3)
can be too imprecise and lead to the ROI almost leaving the viewport while zooming (4). It is
then necessary to repeat the last two steps once or more (5-6).

Pan and zoom is a 2+1 DOF task: the user controls the view’s position (x, y) and its scale

(s). Pan and zoom actions can be mapped to three input channels in numerous ways, and

a large body of literature is devoted to the design and evaluation of input devices that

feature a high number of DOF. The available degrees of freedom have a direct impact

on the ability to parallelize the actions required to achieve the task. For example, 6DOF

input devices can increase the degree of parallelization of docking tasks [177], although

2Figure 2.1 is the counterpart to space-scale diagrams [68]: the y-axis represents the altitude of the
camera as opposed to the scale of the visualization, and the x-axis is centered on the target viewport. This
visualization shows high-altitude panning movements more clearly: they would be too small to be visible
in a classic space-scale diagram.
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studies report limits in terms of human capacity to handle all DOFs simultaneously.

The film industry offers interesting and visually attractive scenarios with movies such as

Minority Report, which show users interacting via freehand gestures to navigate a scene

in a seemingly fluid and efficient way. The technology to achieve this type of interaction

is now available in research laboratories and beyond [181]. However, it remains unclear

how freehand gestures actually fare when compared to device-based input techniques that

take advantage of the human ability to use physical tools [41] and suffer fewer problems

commonly associated with spatial input [83], such as precision and fatigue. Years of

research in virtual reality have demonstrated that devising efficient navigation techniques

for immersive virtual environments is still a challenge.

Our goal is to study families of input techniques that let users pan and zoom from any

location in front of wall-sized displays. Regarding the Feedback Location and Task Al-

location dimensions presented in Chapter 1, we made two design choices for ease of use

and performance: all our techniques are eyes-free and integrate pointing as part of their

control mechanism.

Eyes-free – Pan-and-zoom is a rather simple 2+1D task that, unless aiming for exact

coordinates or numerical zoom level, can be achieved with only the visual response [27] of

the navigation. Its control can thus be visibility-independent [153], e.g. eyes-free, in the

sense that a single user does not need to switch his attention from his ROI when performing

a navigation task. Eyes-free interactions have been shown to improve performance and

usability [110, 180, 131]. We thus applied immediate navigation responses to user’s input,

as opposed to via visual widgets such as in the Google MapsTM interface.

Pointing-based techniques – Navigation often happens before other interactions on

the visualized data, which are likely to require pointing. We chose to make pointing

available in all our pan-and-zoom techniques to simplify later use in real applications. We

thus have three interactions to combine: pointing, panning and zooming. Rather than

separating them completely we tried to improve navigation performance by integrating

pointing into panning and zooming:

Cursor-based panning: We consider panning as a coarse “grab, drag and release” op-

eration similar to applications such as Adobe IllustratorTM or Google MapsTM with

their typical hand-shaped cursor, as opposed to rate-based panning that can be

achieved with joysticks or by pressing a key to trigger camera movements with pre-

defined velocities. Panning from a distance using laser-like pointing is a rather fast

interaction that benefits from direct control: users always have a coarse knowledge of

48



2.3. DESIGN SPACE FOR MID-AIR PAN-AND-ZOOM INPUT

where they are pointing at through proprioception [154], even with very fast move-

ments that make the cursor harder to follow visually; in contrast, rate-based control

relies heavily on visually following the cursor to know when to accelerate or stop the

movement, thus could be less efficient to control panning.

Focused zooming: Pointing plays an important role when zooming, as it specifies the

focus of expansion (zoom in)/contraction (zoom out). Letting users specify this

focus point is very important on wall-sized displays, as they will typically not be

always standing at the same position and be interested in the same areas. A focus

of expansion implicitly located at a fixed location on the screen would make zoom-

ing operations tedious and hard to control as every zoom operation would require

multiple panning actions to compensate drifts induced by the offset focus.

Focused zooming also allows varying the level of zoom while translating its focus

of expansion, which we call dynamic zooming. When the targeted ROI is visible

on screen (i.e. does not require any further zooming out), dynamic zooming can

lower the duration of a navigation task by parallelizing the movement of the focus

of expansion and the zoom-in as illustrated in Figure 2.2.

This integration of pointing into both aspects of pan-and-zoom also reduces the number

of tasks to allocate to the users’ input capabilities (Section 1.3).

We integrated pointing with the control mechanisms of both panning and zooming. Navi-

gation manipulates viewports, i.e. virtual objects with dimensions often much larger than

the actual data that is to be observed and/or interacted with. It is a rather coarse inter-

action at the scale of the display, a preliminary view pointing [74] task intended to set the

frame for more precise actions. We thus chose to use a very simple and direct pointing

technique, laser pointing (simulated with ray-casting), leaving aside pointing facilitation

mechanisms (e.g. [71, 32]) and velocity-based transfer functions [44]. Using the motion

tracking capabilities of the WILD room (Appendix A page 213), the cursor jitter of laser

pointing [126], measured as the standard deviation of the cursor position when the device

is held stationary, was 1.66× 3.87 pixels at a distance of 3 meters from the display with a

simple 10-sample window low-pass filter, which we expect to be precise enough for most

navigation tasks.

2.3 Design Space for Mid-Air Pan-and-Zoom Input

An extensive design and testing phase allowed us to contemplate a number of candidate

techniques and input possibilities. We eventually identified a design space composed of

three key dimensions (Table 2.1), informed by related empirical studies reported in the
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Figure 2.2: With dynamic zooming, expert users can move the focus of expansion as they zoom,
allowing for more integral use of panning and zooming.

literature and refined through prototyping and pilot testing.

FactorsFactors Advantages Disadvantages

Hands One • One hand available for 
other actions

• Pan and zoom are performed 
sequentially

Hands

Two • Pan and zoom can be 
performed in parallel

• No hand available for other 
actions

Gesture Linear • Direct, natural mapping to 
zoom actions

• Potentially requires 
clutching

Gesture

Circular • No clutching (continuous 
gesture)

• Less natural mapping to 
zoom actions

Degree of 
Guidance

1D path
• Input guided by strong 

haptic feedback
• Mainly involves fingers

• Only 1 degree of freedom

Degree of 
Guidance

2D 
surface

• Multiple degrees of freedom
• Mainly involves fingers

• Input guided by limited 
haptic feedbackDegree of 

Guidance

3D free 
hand

• Many degrees of freedom
• No device

• No haptic feedback
• Mainly involves whole hand 

and arms

Table 2.1: Key Dimensions of the Design Space

2.3.1 Unimanual vs. Bimanual Input

In their paper on the perceptual structure of multidimensional input, Jacob and Sibert

claim that panning and zooming are integrally related: the user does not think of them

as separate operations, but rather as a single, integral task such as “focus on that area

over there” [93]. Buxton and Myers [37] and later Bourgeois and Guiard [34] observed

high levels of parallelism for pan-zoom operations, further supporting this argument. The

level of parallelism correlates with task performance and is typically enabled by the use of
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1D path 2D surface 3D free

circularlinear

linear
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interactive
wall

zoom in

zoom out

a) c) e)

b) d) f)

interactive
wall

interactive
wall

interactive
wall

interactive
wall

circularlinear circularlinear

circularlinear

circular

linear

circular

screen projected zoom gesturefocus of zoom, pointing

Figure 2.3: Matrix of the 12 techniques organized according to key characteristics: uni- vs.
bimanual, degree of guidance, linear vs. circular gestures. 1D path involves guiding gestures along
a particular path in space; in 2D surface gestures are made on a touch-sensitive surface; while in
3D free gestures are totally free.

bimanual input techniques [73, 109]. While we expect bimanual techniques to outperform

unimanual ones, we are still interested in comparing their performance, as the latter might

still be of interest in more complex, real-world tasks that require input channels for other

actions.

2.3.2 Linear vs. Circular Gestures

Navigating in the scale dimension (zooming in and out) is a task typically performed

through vertical scroll gestures on, e.g., a mouse wheel or a touchpad. The mapping from

input to command is natural, but often entails clutching as the course of mouse wheels

and touchpads is very limited. An alternative consists in mapping continuous circular

gestures to zooming: clockwise gestures zoom in; counter-clockwise gestures zoom out.

Despite the less natural mapping from input to command, such continuous, clutch-free

gestures have been successfully applied to vertical scrolling in documents [124, 172], and

to panning and zooming on large, touch-sensitive surfaces in CycloStar [116]. Circular

gestures potentially benefit from an automatic Vernier effect [60]: as zooming is mapped

to angular movements, the larger the circular gesture’s radius, the greater the distance
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that has to be covered to make a full circle, and consequently the more precise the input.

2.3.3 Guidance through Passive Haptic Feedback

Two main categories of techniques have been studied for mid-air interaction on wall-sized

displays: freehand techniques based on motion tracking [163, 181]; and techniques that

require the user to hold an input device [23, 41, 112, 119]. Input devices provide some

guidance to the user in terms of what gesture to execute, as all of them provide some

sort of passive haptic feedback: a finger operating a knob or a mouse wheel follows a

specific path; gestures on touch-enabled devices are made on planar surfaces. Freehand

techniques, on the contrary, provide essentially no feedback to the user who can only

rely on proprioception [122] to execute the gesture. We call this dimension the degree of

guidance. Gestures can be guided to follow a particular path in space (1D path); they can

be guided on a touch-sensitive surface (2D surface) ; or they can be totally free (3D free).

These three values correspond to decreasing amounts of passive haptic feedback for the

performance of input gestures.

These dimensions combine into the twelve techniques represented in Figure 2.3, that were

implemented following a set of design choices oriented towards performance (task time and

accuracy) as well as other usability issues, such as fatigue and ease of use.

2.4 Design Choices

2.4.1 Bi-manual interaction

Our bimanual techniques for panning and zooming (Figure 2.3, bottom row) are grounded

in Guiard’s [73] study of asymmetric division of labor in bimanual actions that led to the

Kinematic chain model: motion of the dominant hand typically finds its spatial reference

in the results of motion of the non-dominant-hand.

Zooming out is the first step of an open pan-and-zoom task (step 2 in Figures 2.1 and

2.2). Panning only occurs when the target ROI is visible, either to bring it closer to the

user’s physical location (steps 3 and 5 in Figure 2.1) or to compensate for focus drift

caused by dynamic zooming (final step in Figure 2.2); zooming thus brings context to

panning as well as to any action occurring after the navigation is performed. Controlling

the zoom level is thus assigned to the non-dominant hand in bi-manual configurations, as

is typically the case for bimanual pan-zoom techniques on the desktop [34, 37]. One could

point out that pointing the focus of expansion of the zoom interaction sets the frame of

reference to zooming, thus should be allocated to the non-dominant hand as well. However
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providing the focus point is not the sole purpose of pointing in a zoomable interface: users

often navigate in order to optimize their viewport for further interaction, which is often

performed through pointing. We consider navigation as a preliminary task to facilitate

further interaction, so we allocate pointing to the dominant hand in all configurations. As

it relies on pointing, panning is also assigned to the dominant hand and enabled through

a quasi-mode, i.e. pressing a button.

Pointing and panning with the same hand implements the Factorizing task allocation

strategy of my Task Allocation taxonomy. Zooming with the non-dominant hand in bi-

manual configurations is an example of the Maximizing limb usage allocation strategy. In

uni-manual configurations, zooming is also assigned to the dominant hand, increasing the

“factorization” of task allocation.

2.4.2 Input Gestures via a Device

The main limb segments involved in the input of gestures via a handheld device are the

fingers, palm and, to a lesser extent, the forearm (for the dominant hand). This group of

techniques is illustrated in Figure 2.3, columns 1D path and 2D surface.

Column 1D path illustrates techniques that provide a high degree of guidance for executing

the zooming gestures. The first row corresponds to one handed techniques: the device is

operated by the dominant hand, which also controls pointing via ray-casting. The second

row corresponds to two handed techniques: the dominant hand controls pointing via ray-

casting, while the non-dominant hand controls zoom using the device. linear gestures can

be input using, e.g., a wireless handheld mouse featuring a scroll wheel; circular gestures

using, e.g., any type of handheld knob. Depressing a button on the device activates drag

mode for panning.

Panning and zooming are essentially two continuous tasks: users can virtually access any

zoom level and any location in the visualization depending on the zoom level.

Column 2D surface illustrates techniques that use a touch-sensitive surface for input,

providing a lesser degree of guidance than 1D path. The surface is divided horizontally in

two areas. Users zoom in the upper area either by moving the thumb up and down (linear

case), or by drawing approximate circles (circular case). Touching the lower area activates

drag mode for panning. Users only rely on proprioceptive information to switch between

both areas and do not have to look at the device. These techniques can be implemented

with a touch-sensitive handheld device such as a PDA or smartphone.

1D path techniques employing circular gestures provide more guidance, but do not benefit

from the earlier-mentioned Vernier effect, as input is constrained to one specific trajectory.

53



2.5. EXPERIMENT

However, the range of amplitudes that can be covered with the thumb is limited [147].

This should minimize the trade-off between 1D path and 2D surface in that respect. For

2D surface techniques, rubbing gestures [134] were considered to avoid clutching when

performing linear gestures, but were found to be impractical when performed with the

thumb on a handheld touch-sensitive surface. As a technique designed specifically for

thumb input, we were also interested in MicroRolls [147]. However, these were originally

designed for discrete input. Cardinal MicroRolls would have had to be mapped to first

order of control, which we discarded as discussed earlier, and circular MicroRolls are not

precise enough for zoom control.

2.4.3 Input Gestures in Free Space

The main limb segments involved in performing gestures in free space are the wrist, forearm

and upper arm. This group of techniques is illustrated in Figure 2.3, column 3D free.

The first row illustrates one handed techniques using either linear or circular gestures. The

technique using circular gestures is actually very close to the CycloStar zooming gesture,

but performed in mid-air, without touching any surface. Users perform circular gestures

with the dominant hand and forearm oriented toward the display. As in CycloStar, the

focus of expansion is the centroid of the round shape corresponding to the cursor’s circular

path, here projected on the display surface (dotted arrow in Figure 2.3-e). The technique

using linear gestures consists in pushing the dominant hand forward to zoom in, as if

reaching for something, with the palm towards the target. Turning the hand and pulling

backward (away from the display) zooms out. Users point orthogonally to the palm of

the same hand (blue arrows in Figure 2.3-e, left side), with the arm slightly tilted for

greater comfort. The second row illustrates two handed techniques (Figure 2.3-f). The

linear zooming gestures are similar to the ones above, but are performed with the non-

dominant hand, the dominant hand still being used for pointing and specifying the focus

of expansion. In the circular case, users adopt a potentially less tiring posture, pointing

at the floor with their non-dominant hand and making circular movements. All other

postures and movements being ignored by the system for the non-dominant hand, the user

can easily clutch. Several options can be considered for engaging drag mode: specific hand

postures such as pinching, or using a small wireless actuator (e.g., a button).

2.5 Experiment

We conducted an experiment using a [2×2×3] within-subjects design with three primary

factors: Handedness ∈ {OneHanded, TwoHanded}, Gesture ∈ {Circular, Linear}, and Guid-

54



2.5. EXPERIMENT

ance ∈ {1DPath, 2DSurface, 3DFree} to evaluate the 12 unique interaction techniques de-

scribed above. We controlled for potential distance effects by introducing the Distance

between two consecutive targets as a secondary within-subjects factor. We systematically

varied these factors in the context of a multiscale navigation task within the WILD room

(Appendix A page 213).

Measures include performance time and number of overshoots, treated as errors. Over-

shoots occur when participants zoom beyond the target zoom level, and indicate situations

in which the participant has less precision of control over the level of zoom. A practical

example could be, from an overview of Canada, zooming down to street level in Google

Maps when the user actually wanted to get an overview of Vancouver.

2.5.1 Hypotheses

Based on the research literature and our own experience with the above techniques, we

made the following 7 hypotheses.

Handedness: prior work [34, 37, 74, 109] suggests that two-handed gestures will be faster

than one-handed gestures (H1 ) because panning and zooming are complementary actions,

integrated into a single task [93]. Two-handed gestures should also be more accurate and

easier to use (H2 ).

Gesture: Linear gestures should map better to the zooming component of the task, but

should eventually be slower because of clutching, the limited action space compared to

zoom range requiring participants to repeatedly reposition their hand/finger (H3 ). Prior

work [124, 172] suggests that users will prefer clutch-free circular gestures (H4 ).

Device vs. Free Space: Zhai et al. [177] suggest that techniques using the smaller muscle

groups of fingers should be more efficient than those using upper limb segments. Bal-

akrishnan et al. [18] moderate this observation with findings suggesting that the fingers

are not performing better than forearm or wrist for a reciprocal pointing task. Neverthe-

less, they acknowledge that differences exist in the motor system’s ability to control the

different limb segments. Based on the gestures to be performed and taking into account

the physical size and mass of the segments involved, we predicted that techniques using

fingers (1DPath and 2DSurface conditions), should be faster than those requiring larger

muscle groups (hands and arms, 3DFree conditions) (H5 ).

We also predicted that 1DPath gestures would be faster, with fewer overshoots than tech-

niques with lesser haptic feedback, i.e., 2DSurface and 3DFree (H6 ). Finally, we predicted

that 3DFree gestures would be more tiring (H7 ).
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Figure 2.4: Participant performing the task

2.5.2 Participants

We recruited 12 participants (1 female), ranging in age from 20 to 30 years old (average

24.75, median = 25). All are right-handed daily computer users. None are color-blind.

2.5.3 Apparatus

Hardware.

This experiment was run in the WILD room (see Appendix A page 213): the graphics were

displayed on the wall display and the participants’ gestures were tracked with the VICON

motion tracking system. The Linear 1DPath condition used the wheel of a wireless Logitech

M305 mouse (Fig. 2.3-a,b). The Circular 1DPath condition used a wireless Samsung SM30P

pointing device, normally used for presentations (Fig. 2.3-a,b). All 2DSurface conditions

used an iPod Touch. In order to avoid failures from gesture segmentation algorithms

that would impact task performance in an uncontrolled manner, we used an explicit mode

switch to unambiguously engage drag mode (panning). As mentioned earlier, we used

the device’s main button for 1DPath conditions, and the lower area of the touch-sensitive

surface for 2DSurface conditions. While in real-world applications we would use specific

hand postures such as pinching in 3DFree conditions, for the sake of robustness we used a

wireless mouse button whose activation is seamlessly integrated with the gesture.

Software. The experiment was written in Java 1.5 running on Mac OS X and was imple-

mented with the jBricks [138] library. Touchstone [113] was used to manage the experi-

ment.

The circular gestures of the 2D surface and 3D free conditions were recognized by fitting

an elliptic function to a corpus of points, i.e. finding values for a, b, c, d, e, and f that
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(a) (b)

TARGET HITTARGET HIT

TARGET HIT

TARGET HIT

(c) (d)

Figure 2.5: Task (schematic representation using altered colors): (1) Groups of concentric circles
represent a given position and zoom level. (2) Zooming out until the neighboring set of circles
appears. (3-4) Pan and zoom until the target (green inner disc and circles, dashed for illustration
purposes only) is positioned correctly with respect to the stationary gray ring.

minimized a.x2 + b.xy+ c.y2 + d.x+ e.y+ f for all the coordinates in the corpus. Angular

events were computed from the center of the fitted ellipsis. The velocity of the zoom was

proportional to the average instant velocity of the last five angular events. The circular

gestures were performed eye-free and without visual feedback other than the direct zoom

response of the technique, so we used a few heuristics to improve the behavior of this

algorithm:

1. The recognition only started when the corpus of points contained at least 6 coor-

dinates (≈ 100 ms at 60 Hz) in order to improve the reliability of the initial zoom

movements. This caused a small lag at the beginning of zooming phases, but ensured

that the initial zoom direction and amplitude was under control; we will discuss this

effect in the Results subsection (p. 60).

2. Angular velocities beyond a threshold (> .15 rad.ms−1) were discarded because they

were likely to be caused by recognition errors.

3. Changes in rotating direction, e.g. clockwise to counter-clockwise, were only taken

into account after 10 angular events (≈ 167 ms) in the same direction in order to

prevent zoom direction noise caused by imprecise circular movements.

We carefully tuned these heuristics in order to improve the behavior and performance of

circular techniques.
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2.5.4 Pan-Zoom Task

The task is a variation of Guiard et al.’s multiscale pointing task [74], adapted to take

overshoots into account. Participants navigate through an abstract information space

made of two groups of concentric circles: the start group and the target group. Each group

consists of seven subgroups of 10 concentric circles symbolizing different zoom levels, each

designated by a different color (Fig. 2.5.b). The target group features two additional green

circles (dashed in Fig. 2.5.d) and a central, smaller disc, referred to as D, C1 and C2 from

smallest to largest.

Participants start at the zoom level of the target but centered on the start group (Fig. 2.5.a).

They zoom out, possibly through several subgroups depending on the Distance secondary

factor value, until the neighboring target group appears (Fig. 2.5.b). It may appear either

on the left or right side of the start group. Then they pan and zoom into the target group

until they reach the correct zoom level and the target is correctly centered. A stationary

gray ring symbolizes the correct zoom level and position (Fig. 2.5-(a-d)). Its diameters

are d1 = 1120 pixels (259 mm) and d2 = 5280 pixels (1219 mm). All three criteria must

be met for the trial to end:

1. D is fully contained within the stationary ring’s hole of diameter d1,

2. (C1) is visually smaller than the stationary ring of diameter d2,

3. (C2) is visually larger than the stationary ring.

Overshoots occur when the zoom level is higher than the maximum level required to meet

criteria (2) and (3), in which case participants have to zoom out again (D becomes white

instead of green in that situation). When all conditions are met, the message Target Hit

appears and the thickness of C1 and C2 is increased (Fig. 2.5.d). The trial ends when

the position and zoom level have stabilized for at least 1.2 seconds (all trials must be

successfully completed).

2.5.5 Procedure

The experiment presents each subject with six replications of each of the 12 techniques

at three Distances: 49 920 px (11 529 mm), 798 720 px (184 464) and 12 779 520 px

(2 951 390 mm)3. The experiment is organized into four sessions that each present three

techniques: One combination of the Gesture and Handedness factors and all three degrees

of Guidance. Each session lasts between 30 and 90 minutes, depending on techniques and

3The most difficult of these view pointing tasks [74] has a Fitts’ ID of 13.4 bits. Acquiring a 50 mm
target at such a distance means performing a pointing task of 15.85 bits
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Figure 2.6: Criterion for the practice blocks: a user’s performance is considered stable if the ratio
C = v/a is lower than a given criterion C (here C=30%) in the last N trials (here N=4). v is the
variation of the movement times of the trials, simply computed as MTmax - MTmin within the last
N trials. a is the average of MT within the last N trials. In this example, trials 7 to 10 met the
criterion and trials 11 and 12 were performed as additional practice requested by the participant.

participant. Participants are required to wait at least one hour between two consecutive

sessions, and to complete the whole experiment within four days or fewer, with a maximum

of two sessions per day to avoid too much fatigue and boredom. Participants stand 1.7m

from the wall and are asked to find a comfortable position so they can perform gestures

quickly, but in a relaxed way.

Practice Condition: Participants are given a brief introduction at the beginning of the first

session. Each technique begins with a practice condition, with trials at all three different

Distances. Measures for the experimental condition start as soon as 1) participants feel

comfortable and 2) task performance time variation for the last four trials is less than 30%

of the task time average in that window, as explained in Figure 2.6. This criterion ensures

that the performance of all participants stabilized at least once before starting the mea-

sured trials, regardless of the participant’s previous experience with mid-air interaction,

circular gestures and so on.

Experimental Condition: Each technique is presented in a block of 18 trials consisting

of 6 replications at each Distance. Trials, blocks and sessions are fully counter-balanced

within and across subjects, using a Latin square design.

Measures: We measure movement time MT and number of overshoots for each of 2592

trials: 2 Gesture × 2 Handedness × 3 Guidance × 3 Distance × 12 participants × 6

replications. Participants also answer questions, based on a 5-point Likert scale, about

their perceived performance, accuracy, ease of learning, ease of use, and fatigue. They

rank the techniques with respect to the Guidance factor after each session. When they

have been exposed to both conditions of Handedness or Gesture, they rank those as well.

After the last session, they rank the techniques individually and by factor. Participants
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Figure 2.7: (a): MT per Hands × Guidance. (b) MT per Guidance × Hands. (c) MT per
Guidance × Gesture.

are encouraged to make additional observations and comments about any of the above.

2.5.6 Results and Discussion: Movement Time

Prior to our analysis, we checked the performance for unwanted effects from secondary

factors. We checked for individual performance differences across subjects and found that,

for all 12 participants, movement time and number of overshoots were perfectly correlated

with the overall performance measures.

As expected, movement time data are skewed positively; replications of unique experimen-

tal conditions are thus handled by taking the median (note that taking the mean yields

similar results). In all remaining analyses, we handled participant as a random variable,

using the standard repeated measures REML technique from the JMP 9 statistical pack-

age. We found no significant fatigue effect although we did find a significant learning effect

across sessions. Participants performed about 1.4 s more slowly in the first session and

then became slightly faster over the next three sessions. However, we found no significant

interaction between session orders and main factors. As the factors were counter-balanced,

this created no adverse effects in the analysis.

Table 2.2 details the results of the full factorial anova for the model MT ∼ Hands ×
Guidance × Gesture × Dist × Rand(Participant). We observe that Hands has a signif-

icant effect on MT (Figure 2.7-a4). A post-hoc Tukey test shows that TwoHanded gestures

are significantly faster than OneHanded gestures (avg. 9690 ms vs. 11869 ms). We found

a significant interaction effect of Hands × Guidance (Figure 2.7-a). The interaction does

not change the significance of the post-hoc test, but indicates that the magnitude of the

4Error bars in all the figures represent the 95% confidence limit of the mean of the medians per partic-
ipants (±StdErr × 1.96).
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Factor DF, DFDen F Ratio p

Hands 1,11 24.65 0.0004 *

Gesture 1,11 42.87 < 0.0001 *

Guidance 2,22 58.80 < 0.0001 *

Dist 2,22 228.8 < 0.0001 *

Hands×Gesture 1,11 2.060 0.1790

Hands×Guidance 2,22 4.914 0.0172 *

Gesture×Guidance 2,22 10.38 0.0007 *

Gesture×Dist 2,22 17.27 < 0.0001 *

Hands×Dist 2,22 11.57 0.0004 *

Guidance×Dist 4,44 3.828 0.0094 *

Hands×Gesture×Guidance 2,22 1.127 0.3420

Hands×Gesture×Dist 2,22 0.790 0.4661

Hands×Guidance×Dist 4,44 0.650 0.6301

Gesture×Guidance×Dist 4,44 3.750 0.0104 *

Hands×Gesture×Guidance×Dist 4,44 1.049 0.3929

Table 2.2: Results of the full factorial ANOVA for MT .

difference is greater for 3DFree than for 2DSurface and greater for 2DSurface than for 1DPath

techniques.

Unsurprisingly, performance data strongly support (H1 ): all other conditions being equal,

two-handed techniques are consistently faster than one-handed techniques. An interesting

observation is that using two hands is more advantageous when the degree of guidance for

achieving gestures is low.

Guidance has a significant effect on MT (Figure 2.7-b). A post-hoc Tukey test shows that

1DPath (avg. 9511 ms) is significantly faster than 2DSurface (10894 ms), which in turn is

significantly faster than 3DFree (11934 ms). This time the Hands × Guidance interaction

changes the significance of the test (Figure 2.7-b). The difference is that a post-hoc Tukey

test shows no significant difference between 2DSurface and 3DFree for TwoHanded.

Both hypotheses (H5 ) and (H6 ) are supported: involving smaller muscle groups improves

performance; providing higher guidance further contributes to this. However, this effect

is less pronounced in TwoHanded conditions. This confirms the previous observation that

a higher degree of guidance is especially useful when a single hand is involved.

Gesture also has a significant effect on MT. A post-hoc Tukey test shows that Linear

movements (avg. 9384 ms) performed significantly faster than Circular gestures (12175 ms).

However, we have a strong significant interaction of Gesture × Guidance (Figure 2.7-c).

A post-hoc Tukey test shows that:

(i) for Circular gestures: 1DPath guidance is faster than both 2DSurface and 3DFree with

no significant difference between 2DSurface and 3DFree;
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(ii) for Linear gestures, there is no significant difference between 1DPath and 2DSurface,

but a significant difference between 2DSurface and 3DFree;

(iii) for 1DPath guidance there is no significant difference between Circular and Linear

gestures, but there is a significant difference between Circular and Linear for 2DSurface

and 3DFree guidance.

Surprisingly, Linear gestures are generally faster than Circular ones. (H3 ), which claimed

that Linear gestures should be slower because of clutching, is not supported. Performance

differences between gesture types are however affected by the degree of guidance: Circular

gestures with 1DPath guidance (e.g., a knob) are comparable to Linear gestures with low

guidance. We tentatively explain the lower performance of Circular gestures with 2DSurface

guidance by the difficulty of performing circular gestures with the thumb [147]. The 100-

ms lag at the beginning of a circular zoom gesture (see Apparatus page 56) could also

partially explain this effect, although we observe that the average difference in movement

time greatly exceeds 100 ms in all other conditions (see Table 2.3).

Another interesting observation is that our analogue to CycloStar in mid-air (Circular

gestures with 3DFree guidance) performs poorly. It seems that the lack of a surface to

guide the gesture significantly degrades the usability of this technique. In the OneHanded

condition, this can also relate to the control of the focus of expansion: specifying precisely

the center of a circular gesture performed in mid-air, as with the Circular techniques,

seems harder to control than pulling from or pushing towards a precise location, as with

the Linear techniques. Another factor contributing to the poor performance of Circular in

our study is likely related to overshoots, as discussed below.

As expected, distance to target (Dist) has a significant effect on MT. A post-hoc Tukey

test shows that MT increases significantly with distance. There are several significant

interactions between Dist and the main factors (Fig. 2.8), but none of these change the

relative performance ordering for the main factors. These interactions are due to a change

in the magnitude of the difference across conditions, confirming that the choice of an

efficient technique is of increasing importance as the task becomes harder.

2.5.7 Results and Discussion: Overshoots

As detailed earlier in the description of task design, overshoots correspond to zooming

beyond the target zoom level and are treated as errors. We consider the model Overshoots

∼ Hands × Guidance × Gesture × Dist × Rand(Participant).

We observe significant simple effects on Overshoots for Gesture (F1,11 = 21.04, p = 0.0008)

and Guidance (F2,22 = 53.80, p < 0.0001), and one significant interaction effect for Gesture
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Figure 2.8: MT per Dist × Gesture, for each Guidance

× Guidance (F2,22 = 8.63, p = 0.0017). Circular gestures exhibit more overshoots than

Linear gestures (1.65 vs. 2.71). 2DSurface gestures exhibit more overshoots than 1DPath

and 3DFree gestures (3.75 for 2DSurface vs. 1.52 for 1DPath, and 1.26 for 3DFree). There

is a significant difference between Linear and Circular gestures for 2DSurface and 3DFree,

but not 1DPath. Moreover, overshoots exhibit the same interaction effect for 2DSurface

gestures: Circular 2DSurface result in significantly more overshoots than Linear 2DSurface

(4.68 vs. 2.82).

The observed higher number of overshoots for Circular techniques helps explain the gen-

erally lower MT performance measured for this type of gestures. The best-fitting ellipse

algorithm involved in the recognition of Circular gestures has an inherently higher cost of

recovery, introducing a delay when initiating a zoom and reversing its course. The poor

performance of our analogue to CycloStar is at least partially due to this. In addition,

there seems to be a major difference between the zooming experiment reported in [116]

and the present one: we included overshoots in our task design, whereas the CycloStar

experiment apparently did not (there is no report of such a measure in the task design nor

analysis of results).

2.5.8 Results and Discussion: Subjective Results

Quantitative subjective data confirms our results. Participants generally preferred TwoHanded

to OneHanded techniques (8/12) and Linear to Circular gestures (10/12). Subjective pref-

erences about degree of guidance were mixed, with 4 participants preferring the high

degree of guidance provided by 1DPath techniques, only 1 for both of 2DSurface and 3DFree

techniques, and all others expressing no particular preferences. Looking at the details of

answers to our 5-point Likert scale questions about perceived speed, accuracy, ease of use
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and fatigue, significant results (p < 0.002) were obtained only for degree of Guidance,

with 1DPath being consistently rated higher than 2DSurface and 3DFree; and for Hands,

TwoHanded techniques being considered less tiring than OneHanded techniques (p < 0.03).

Comments from participants suggest that in the OneHanded condition, zoom gestures in-

terfere with pointing as they introduce additional hand jitter and consequently lower ac-

curacy. Some participants also commented that pointing and zooming were confounded

in the OneHanded conditions, making the techniques difficult to use (H2 ). However, two

participants strongly preferred one-handed gestures, arguing that they were less complex

and less tiring. They assumed their performance was better (even though it was not),

probably because they experienced more overshoots in the two handed condition, which

may have led to their conclusions. One of them mentioned that for the one handed con-

dition there was “no need for coordination”, techniques were “more relaxed” and made it

“easier to pan and zoom”.

Linear gestures were preferred to Circular ones. Participants commented that circular

gestures were difficult to perform without guidance, that circular gestures for zooming

interfered with linear gestures for panning, and that circular gestures were hard to map

to zoom factor. All but one participants preferred linear gestures overall although one

commented that he liked “the continuity of circular gestures”. Others commented that

“making good circles without a guide is hard” and did not like having to turn their hands.

These findings contradict our hypothesis that users would prefer clutch-free circular ges-

tures (H4 ). This hypothesis was based on observations made for techniques operated on a

desktop, not in mid-air, and involved different limb segments. In many of our conditions,

the gestures had to be performed with the thumb, and were thus more complex to achieve

than when using, e.g., the index finger in conjunction with hand or forearm movements.

Several participants commented on this interaction effect: “[It is] too hard to do circle ges-

tures without a guide”, “Linear movements are easier on the iPod” and “[Is it] impossible

to do circular movements on a surface, maybe with some oil?”.

Finally, as hypothesized (H7 ), participants found 1DPath guidance least tiring while 3DFree

caused the most fatigue.

2.5.9 Results and Discussion: Individual Techniques

The analysis of variance for the model MT ∼ Hands × Guidance × Gesture × Dist ×
Rand(Participant) does not show a significant triple interaction between the three main

factors (Table 2.2). Formally, we cannot say more than the above about the ranking of

the twelve techniques. However, based on the results about MT above, we can observe
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Group Hands Gesture Guidance Figure MT (ms)

Gr1 TwoHanded Linear 2DSurface 2.3-d 8 100
TwoHanded Linear 1DPath 2.3-b 8 377

Gr2 OneHanded Linear 1DPath 2.3-a 9 160
TwoHanded Circular 1DPath 2.3-b 9 168
TwoHanded Linear 3DFree 2.3-f 9 185
OneHanded Linear 2DSurface 2.3-c 9 504

Gr3 OneHanded Circular 1DPath 2.3-a 11 340
TwoHanded Circular 2DSurface 2.3-d 11 591
TwoHanded Circular 3DFree 2.3-f 11 718
OneHanded Linear 3DFree 2.3-e 11 981

Gr4 OneHanded Circular 2DSurface 2.3-c 14 380
OneHanded Circular 3DFree 2.3-e 14 851

Table 2.3: Groups of techniques according to MT

four distinct groups of techniques, shown in Table 2.3. As a side note, if we consider the

model MT ∼ Group × Rand(Participant), the anova shows a significant effect of Group

(F3,33 = 65.35, p < 0.0001) and a post-hoc Tukey test shows a significant difference between

each groups.

Gr1 contains the two fastest techniques with similar MT : TwoHanded, Linear gestures

with either 2DSurface or 1DPath degrees of guidance. Optimal performance in terms of

movement time implies the use of two hands and a device to guide gestural input.

Gr2 contains the four techniques that come next and also have close MT : the OneHanded

version of the two fastest techniques, the TwoHanded Circular 1DPath and the TwoHanded

Linear 3DFree techniques. Techniques in this group are of interest as they exhibit a rela-

tively good level of performance while broadening possible choices for interaction designers:

all the values of our main factors are represented at least once. For instance, the uniman-

ual techniques in this group leave one hand available to perform other actions. The 3DFree

technique is also of interest as it does not require the user to hold any equipment and is

generally appealing to users.

Gr3 contains techniques that again have very close MT but about 2.3 s slower than the

techniques in Gr2. This group consists of OneHanded Circular 1DPath, TwoHanded Circular

2DSurface and 3DFree, and OneHanded Linear 3DFree. Techniques in this group are of lesser

interest, except maybe for the OneHanded Linear 3DFree technique, which is the fastest

unimanual technique using gestures performed in free space.

Gr4 contains the 2 techniques performing worst, OneHanded Circular 2DSurface and 3DFree.

These are significantly slower than all others, about 3 s slower than the techniques in Gr3

and about 6 s slower than the techniques in Gr1. Our data suggest that these techniques
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should be rejected.

2.6 Summary and Discussion

We have shown how the input channels available in mid-air can be used to manipulate

a viewport for virtual multi-scale navigation. We studied location-independent, mid-air

input techniques for pan-zoom navigation on wall-sized displays. These techniques must

be usable with the input sources available in such platforms, thus we paid very careful

attention to the combination of the resulting input channels. An extensive exploratory

design phase allowed us to identify three key factors for the design of such techniques:

handedness (uni- vs. bimanual input), gesture type (linear or circular), and level of guid-

ance (movements restricted to a 1D path, a 2D surface or free movements in 3D space).

We systematically evaluated each combination of these factors through a controlled ex-

periment in which participants performed pan-and-zoom navigation in an abstract, very

large multiscale environment, with distances up to 12 million pixels. The contribution of

this work is two-fold:

First, we describe a comprehensive design space of combined input characteristics with

specific advantages and drawbacks, including how these characteristics combine or interfere

with each other and with direct pointing:

1. Physical guidance increases accuracy as opposed to gestures performed in free space;

the latter is generally less efficient and makes users tired more quickly, but can be

more appealing to users, benefiting from a “cool” effect. It is interesting to note that

free-space gestures benefit from much more movement amplitude (approximately

30 cm, as opposed to less than 5 cm with 1DPath and 2DSurface) yet end up being

less precise, due to the fact that finger movements are much more precise than hand

movements.

2. Bimanual input performs very well. It provides more control over the two param-

eters of targeted zooming, namely the zoom level and the location of the focus of

expansion. The critical importance of the latter makes unimanual input less precise

since all zoom input causes hand tremor. However bimanual input also prevents

users from holding other input devices for task-specific interactions. For situations

where such tools are needed, some unimanual combinations of inputs still provide

good performance.

3. Circular gestures perform less well than linear gestures, even though they do not

need clutching for large-amplitude movements. Highly constrained circular gestures

performed on a physical knob can still perform reasonably well if held in the hand
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that does not control the location of the focus of expansion.

These results can probably be applied to tasks other than panning and zooming. Bimanual

input has already been shown to improve performance and control in a number of situa-

tions. Our results about physical guidance are more novel and can probably be extended

to other types of control. All combinations of Linear and 1DPath and 2DSurface factors

belong to the two best performing groups of techniques, from which we infer that guided

physical movements are the most efficient combinations when they cognitively match the

expected virtual movement (here, bringing the camera nearer or further away from the

user). Circular input is much harder to control and can only compete with Linear when

using physically constrained movements performed with a dedicated hand, even though

our criterion for the end of the training sessions required that participants’ performance

stabilized for all conditions. The fact that Circular movements, despite being clutch-free,

performed poorly may also be due to the fact that zooming is inherently a linear move-

ment of the camera relative to the scene. It might be interesting to evaluate Linear versus

Circular movements for a circular task such as defining an orientation or choosing a value

within a circular range such as a color hue.

Second, we propose a set of six mid-air pan-and-zoom techniques with good performance

and with input characteristics that match the capabilities of a large display platform.

An extensive design and tuning phase was necessary to map our design space, and the

resulting techniques are usable beyond the scope of the controlled experiment presented

here:

TwoHanded-Linear-1DPath is on average the fastest technique while at the same time the

simplest to implement since it only requires calibrating the effect of a mouse wheel

tick on the zoom level. The remaining mouse buttons can be used for a small

number of application-specific actions, but more complex vocabularies need more

input expressiveness.

TwoHanded-Linear-1DPath is less than 300 ms slower in average (i.e. less than 5% of the

total movement time). It is a bit more expensive and possibly less simple to im-

plement since it requires a hand-held tactile screen, but could accommodate more

additional commands depending on the available screen real estate.

OneHanded-Linear-1DPath and 2DSurface are the one-handed counterparts of the two best

techniques. They are equally simple to implement. They are also the only single-

handed techniques with good performance, therefore they should be preferred if the

task requires users to hold specific tools in their non-dominant hand.

TwoHanded-Linear-3DFree is the only usable free-hand technique. It is more tiring than the
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other TwoHanded-Linear techniques but also possibly more entertaining for demos and

/ or public applications. It also requires very limited input (i.e. a button) in addition

to motion capture.

The performance groups presented in Section 2.5.9 coincide with the Task Allocation tax-

onomy from Chapter 1 (Section 1.3). Recall that two-handed techniques match the Maxi-

mizing limb usage strategy by allocating panning to the dominant arm and zooming to the

non-dominant arm, i.e. two different limbs. Conversely, one-handed pan-and-zoom tech-

niques fit the Factorizing task allocation by assigning the control of panning and zooming

to the dominant arm. One of the results of the experiment is that “Maximizing” techniques

have proven more efficient and were preferred over “Factorizing” techniques. Furthermore,

being one-handed actually caused a systematic shift down in the performance results, as

shown in Figure 2.9: for every combination of the Gesture and Guidance factors, the

one-handed (Factorized) technique is systematically in the group below the two-handed

(Maximized) technique. This observation emphasizes the performance gap between the

two Task Allocation strategies. I hypothesize this gap is caused by the simultaneous con-

trol of zoom level and focus of expansion interfering with each other in the one-handed

condition.

Nevertheless, the Factorizing task allocation strategy worked well for combining pointing

and panning5. This is probably because participants never had to perform diverging

pointing and panning tasks, i.e. pointing a target while panning towards a different region

of the scene.

In the next chapter I will explore another combination of interactions, namely mid-air

pointing and invoking commands. Similar to this chapter, pointing and command invoca-

tion will be combined following the Task Allocation taxonomy introduced in Chapter 1.

However pointing will not be functionally linked to command invocation, as opposed to

with panning and zooming in this chapter, which should provide additional data on the ef-

fects of task allocation strategies on usability and performance. The next chapter will also

explore mid-air command invocation, which will contribute to the vocabulary of techniques

usable in large display environments.

5Though we did not compare it to other solutions.
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Figure 2.9: Technique performance depending on groups (Section 2.5.9) and on the Task Al-
location taxonomy (Section 1.3). Arrows represent combinations of Gesture and Guidance
going from two-handed (left) to one-handed (right). The left and right intersections with the MT
(movement time) axis represent respectively the two- and one-handed average MT as reported in
Table 2.3. The light areas on the MT axis represent the range of average MT for a given group.

69



2.6. SUMMARY AND DISCUSSION

70



Chapter 3

Device-less Discrete Selection in
Large Display Platforms

3.1 Introduction

Existing real-world applications provide a number of discrete commands, actions and mode

switches; extreme cases such as Autodesk Maya1 can feature more than 1000 different

items [107]. Some of these commands are general purpose and application-independent,

e.g. selecting a target, copying a previously selected object or undoing an action; others

are task- and sometimes software-specific. These items are often organized semantically

into menus, sub-menus and groups. In single-user desktop environments, very large vo-

cabularies of such commands can be used with pull-down menus and keyboard shortcuts.

However in large display platforms, where several users may navigate physically in front of

the display, new constraints apply that discard these solutions as discussed in Section 1.1.

The main problem I address in this chapter is menu breadth (the maximum number of

items in a menu’s hierarchical level) as opposed to menu depth (the maximum number

of hierarchical levels). Snowberry et al. [156], Kiger [98], Landauer and Nachbar [108]

and Jacko and Slavendy [91] have shown that breadth should be preferred over depth for

learning and memorizing. Beaudouin-Lafon [26] observed the number of items in Bryce 2

and reports an average of 12.5 items in the first level and of 3.9 in sub-menus. Bailly [11]

did the same observation on a more recent set of applications composed of Office Word

2003, Office Excel 2003, Adobe Reader 7, Mozilla Firefox 2.0, Mozilla Thunderbird 0.9 and

Photoshop 7.0, and reports corresponding averages of 12.4 and 5.5 items. He also observed

that 23.9% of menus contain more than 17 items. Linear or more recent menu techniques

available on the desktop such as Flower Menus [13] can easily accommodate these numbers

1http://usa.autodesk.com/maya/
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of items. The next section uses the Feedback Location design space introduced in Chapter 1

to analyze list of existing discrete command selection techniques (menus and lists) that

were developed for large display platforms or that can be used in mid-air. I will pay

particular attention to their theoretical or evaluated breadth and show that the Main

display × On-data point of this design space is poorly addressed.

From this analysis I propose on-body touch as an eye-free, device-less input channel for

high-breadth discrete selections or grouping. Formally, on-body touch is the action of

touching one’s body parts. It benefits from proprioception, i.e. the conscious knowledge

of the location of one’s body parts, which allows eye-free input: users can reach their

body parts easily with high precision [135, 136]. On-body touch can also benefit from

physical mnemonics, i.e. “ways to store/recall information relative to the body” [122]. As

for tactile surfaces, on-body touch can be used for selecting specific locations, performing

gestures or chords, or even indirect pointing provided proper sensing is available. In

this chapter I will present a morphological design space for on-body touch interactions

that I will use to illustrate the expressiveness of this input. I will then show how this

space can be used to design discrete selection techniques. I will also report the results

of an exploratory controlled experiment where body parts were evaluated in terms of

performance, reachability, comfort and social acceptance.

3.2 Related Work

This section focuses on discrete selection techniques that can be used in mid-air and on

on-body interaction.

Three families of discrete selection techniques are usable in mid-air: Cursor-based tech-

niques, Device-based techniques and techniques that exploit Unused input channels. I will

describe these families using the Feedback Location design space from Chapter 1 and il-

lustrate them with corresponding related work (see Table 3.1). A particular case of this

design space, Main display × Fixed , will not be considered in this chapter since it vio-

lates the “Location independence” requirement (R2) when applied to discrete selection

techniques: a widget fixed on the main display can no longer be reached or even be seen

if a user stands near the display but far from this widget. Techniques such as Frisbee [97],

the Vacuum [29] or Drag-and-Pop [22] all make remote targets accessible so they can be

interacted with. However these techniques were all designed for direct touch input on the

main display, but on a very large display perspective distortion can make remote targets

hard or impossible to read from a distance, making these techniques much less usable.
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3.2.1 Cursor-based techniques

Cursor-based techniques use the pointing cursor to acquire menu items that are displayed

on the Main display and over the visualized data (On-data). They provide contextual and

visually close access to commands and thus cause minimal attention switch2. Since their

feedback is unconstrained (On-data) on the Main display , they are not strongly limited by

the size of the display; they can thus contain high numbers of items. However as discussed

by [56] and following Requirement 2 (Location independence), items must be selectable

regardless of the user’s distance to the display. This requires either distance-dependent

item sizes, which can cause more occlusion as users go far away from the display, or harder

selection tasks.

In desktop environments, the main types of cursor-based menus are linear and radial menus

[39], the latter having been improved with marking menus [106, 179]. These designs

have been evaluated in mid-air on large displays as control conditions by Bailly et al.

[15] (8 items in each hand) and Chertoff et al. [50] (9 items, one-handed), showing good

performance against newer designs. Chertoff et al. [50], in particular, showed that radial

menus were faster and most preferred. Cursor-based menus in 2D were also evaluated as an

Immersive Virtual Reality (IVR) solution in 3D environments. The No Haptics × World-

Fixed combination of the design space presented by Lindeman et al. [112] corresponds

to a classic 2D linear menu adapted to 3D. It proved slower and generally less precise

than the other menu designs evaluated in this article. Floating menus [36] are another

3D version of pull-down menus where the top-level menus are always visible in the user’s

field of view. Pull-down menus and item selection are triggered by “occlusion selection”.

Floating menus were proven efficient in IVR (max 8 items in a hand), yet less so than the

new technique introduced in this article, TULIP, which I describe further in a subsequent

section (Section 3.2.3 page 74). Finally, Wesche [171] introduced a full 3D, intersection-

based selection + menu technique. A pencil-shaped 3D cursor with up to 8 distinct

segments along the pen is used to select both the action (menu item) and its target object:

the user manipulates the cursor to make the object and action intersect in 3D and then

activates the item by clicking a side-button.

3.2.2 Device-based techniques

Device-based techniques integrate the set of items into input devices such as game con-

trollers or Secondary displays such as tablets and smartphones. Some of these devices,

e.g. tablets, can accommodate a large number of items and still keep input space available

2Apart from the attention needed to find an item in a very large list or tree, see [151].
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for other interactions, as illustrated by Rekimoto [145]. However these techniques often

require both hands to hold and interact with the device: even smartphones lose significant

expressiveness when interacted with single-handedly [147]. Repetitive interaction with a

Secondary display can also cause problems due to attention switch (see Section 1.2). The

Haptics × Hand-Held condition evaluated by Lindeman et al. [112] uses a handheld phys-

ical board to embody an interactive command surface in IVR. It proved faster and more

precise than other conditions.

Touch-based menu techniques designed for handheld devices can often be used in a large

display platform. Because of the limited screen real estate of such devices, most device-

based menus were designed as On-data menus. However they can also be used without

data below. In this case they can be either Fixed or On-data if the device also contains

part of the visualized dataset. Linear and 2D matrix menus are already widely featured

in most mobile operating systems: the latest Android and iOS smartphones display 20+

items on their home-screens. Circular designs were presented by Huot and Lecolinet [87]

and improved by [65] with up to 6 items per hierarchical level. Spiral designs [86] allow

virtually any number of items but need constant visual attention, which precludes eyes-

free expert mode. Barrel Menus [64] display menu items on three hierarchical levels of

virtually any breadth, but can only display five items at a time at each level. Leaf menus

[14] use stroke curvature to invoke menu items. The technique can differentiate up to 7

curvatures, and a selection gesture can start from any of the four corners of the device for

increased expressiveness.

3.2.3 Unused input channels

Unused input channels such as pressure or unused fingers can be used to augment the

vocabulary of a discrete selection technique and sometimes make it combinable with other

interactions, as discussed in Section 1.3. Being mostly movement-based, they do not need

an input device and their feedback is often on the Main display , similarly to Cursor-

based techniques. An exception to that is the VisionWand [41], a 3D-tracked input device

that combines ray-casting for pointing and other motion channels such as proximity to

the display, orientation and back-and-forth gestures for simultaneous, possibly discrete

interaction. These techniques are usually designed to provide eye-free interactions that

can be performed in parallel with other ones in some conditions. However we will see that

these input channels are often limited in their expressiveness, even when used in parallel,

resulting in smaller breadths.

BiPad [167] takes advantage of the few remaining degrees of freedom of the non-dominant

hand when holding a tablet, using the fingertips showing past the tablet. It can be used
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in parallel with touch-based interaction using the dominant hand; examples of use include

invoking discrete commands. However the movement range of the non-dominant fingers is

small: only three items were selectable in the evaluation. [175] showed that users can input

up to 10 levels of pressure on a handheld device when given feedback. TULIP [36] is an

IVR menu system using finger pinch: the selected item depends on which finger is reached

by the thumb; for menu structures with more than four items, the pinky finger’s function

is to display the next three or four items. In a similar vein, Finger-Count Menu [15] uses

visual recognition to count the number of fingers showed by users to trigger commands;

each hand can thus trigger up to five items. With Rotary menus [50] users rotate their

wrist to trigger commands. The technique was evaluated successfully with 9 items.
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D(5): Barrel menu [64]
D(7): Leaf menu [14]
U(10): Pressure-based menus[175]

(All these designs can be used
as locally Fixed on the secondary
display)

F
ix

ed

(Impractical in a large display platform) D(N): “Palettes” [145]
D(8): IVR tablet [112]
U(3): BiPad [167]
U(4): TULIP3 [36]

Table 3.1: Menu techniques available for mid-air interaction according to the Feedback Location
design space. The first letter stands for the type of technique (C-Cursor, D-Device, U-Unused);
the number in parentheses is the highest breadth of the technique, either theoretical or evaluated.
Techniques are listed in the On-data or Fixed row depending on how they were primarily designed.

As shown in Table 3.1, the only technique that supports more than 10 items available

at once on the Main display is linear or matrix-shaped menus. However, as discussed in

Sections 1.2 and 1.4, visual items that are selected by pointing need to be wide enough to

be seen and acquired easily, which can lead to important occlusion of the visualized data.

3Being designed for IVRs, TULIP does not exactly fit into Main or Secondary display . However users
have to look at their hands in novice mode, similar to using a tablet, so I chose to put it in the Secondary
display column in Table 3.1.
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3.2.4 On-body interaction

On-body interaction has three advantages for mid-air interaction: kinesthetic memory,

haptic perception and proprioception.

Kinesthetic memory is the recollection of movement, weight, resistance, and position

of parts of the body. It can be used to associate functions or virtual objects to

specific body parts for quick recollection.

Haptic perception is the process of recognizing objects through touch.

Proprioception is the real-time knowledge of the location and posture of body parts

using muscular and haptic feedbacks. It can be used to design eyes-free interactions.

Gustafson et al. [76] found that users retain spatial memory of the location of icons they

habitually select on a mobile touch screen. They can transfer this knowledge to accurately

select the associated locations of these icons on the palms of their hands. Angesleva [3]

found that certain body locations have special significance and are easier to remember,

specifically hip pockets, the stomach, the head and the heart.

I am interested in specific types of mid-air interaction that identify the user’s gestures

with respect to their own body. For example, Harrison et al. [78] use infra-red and depth

cameras mounted on the user’s shoulder to track arm and hand positions. Skinput [80]

uses bio-acoustic fingerprinting to detect touches on the forearm. Lin et al. [111] use

an ultrasonic sensor mounted on the user’s wrist to track up to seven different input

locations. They found that haptic feedback increases the accuracy of on-body touches and

that users can discriminate among six distinct locations on the forearm. PinStripe [96]

detects pinching and rolling gestures with clothing made of smart fabrics. All of these

techniques require the user to wear specific clothing or hardware and are often limited to

specific body parts.

Like the early videoplace [105], Shoemaker et al. [154] extract the user’s silhouette to

provide visual feedback about the user’s body position. Users can select menu items by

pointing a Wii remote controller at specific parts of the body, such as the torso, without

touching them. The authors argue that the associated proprioception enhances perfor-

mance, with important implications for the design of body-centric interfaces to large dis-

plays. However, proprioceptive and haptic senses work together and Voisin et al. [166]

show that removing one or the other may degrade performance.

Touching one’s body parts can provide a very rich vocabulary. Ethnological studies

[135, 136] showed that body parts-based tally systems could use up to 74 different body

positions. These systems are used eye-free to communicate numbers between people and
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Figure 3.1: Body-part tally system of the Fasu, Southern Highlands Province. The numerals go
from the pinky finger to the nose (central number) and continue increasing symmetrically to the
opposite pinky finger, for a total of 36 numbers. From [136].

show how efficient proprioception can be when trained. Since they already know the lo-

cations of these targets, they can attend to the display without being forced to shift their

attention to a hand-held device. Users can thus treat their own bodies as a sort of key-

board, pressing known spots to produce different results. When combined with pointing,

users can achieve the equivalent of “control” keys that modify other commands.

3.3 Design space for on-body touch interactions

This section explores the action of touching body parts to trigger commands in large

display environments. Such actions can be performed while sitting, standing or walking

and do not require additional input devices. I study these commands as secondary actions,

similar to right-clicking to invoke a menu in the context of the hovered item. In the context

of a user standing in front of a wall-sized display and performing a specific task with (at

least) her dominant hand, invoking a command has to be performed with the non-dominant

hand. In the following the touching hand (i.e., the non-dominant hand) is called the body

pointer and the touched body part is the body target.

One of the potential drawbacks of interacting by touching one’s body is the “immersion

syndrome” described by Baudel et al.[21]: some natural user actions such as scratching can

be perceived as commands by the system. The vocabulary of systems using on-body touch

should be designed so that the recognizer can accurately discriminate between command

gestures and natural actions.

I propose the following morphological factors to characterize on-body touch:

Target locations can have an effect on performance and comfort. We expect the time to
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reach a body target to depend on the physical distance between the initial position

of the body pointer and the target. However, this effect could be reduced if users

move both the body target and the body pointer to make the reaching faster. Body

targets located on lower limbs can be harder to reach: users need to either bend their

body or lift their leg, which requires suppleness and balance. Other body targets

such as the crotch, chest, face and so on should probably be discarded for social

awkwardness. Finally, users’ movements may disable some body locations at a given

time, e.g. walking probably discards all body targets located on the legs. Owens

[135, 136] describes body part tally systems with up to 74 locations that use the

whole body, including feet and toes. The most common number of numerals they

observed is 27, which are always performed without using body parts below the

navel (see Figure 3.1 for a 36-target example). One can also expect that touching

one’s limbs can achieve higher precision if the user does not rely on proprioception

only but is also provided with real-time visual feedback. An on-body touch can also

include more than one target location, resulting in a gesture rather than a touch.

As shown in the previous chapter, one could expect that providing physical support

(here the body) to perform gestures could improve their precision and stability.

Touch dynamics represents the temporal component of a given touch. A simple touch

is a tap on a single position on the body. The only input channel is the location of

the release event. A dwell happens on a single position but uses the duration of the

touch as an additional input, e.g. for validating a critical command or specifying a

continuous value. Dwell usually increases the input vocabulary by a factor 2: any

tap event can have a corresponding dwell event. A rhythm is a temporal sequence

of simple touches where additional input is given by the rhythm of the taps. Ghomi

et al. [70] showed that users can accurately input 30 different rhythmic patterns and

memorize up to 14.

Contact represents the parts of the body pointer that are used to perform the touch. In

the default condition, no importance is given to the contact type: it can be one or

several fingers, the palm, etc. The number of fingers [15] that perform the touch

can be combined with the body target location to convey additional information and

multiply a touch’s expressiveness by 6 (including the palm). Similarly, the finger(s)

that are used can be assigned different roles: different commands can be attached

to, e.g., the forefinger and the middle finger, and even the palm. These roles can

also be combined: the expressiveness of a touch event can be increased by a factor

of 6 with only one command per finger and palm, by
(

6
2

)
+ 6 = 21 if commands are

assigned combinations of two fingers, and up to 63 if all combinations of fingers +

palm are used. Users can perform chords [20] i.e. a spatial arrangement of finger
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Figure 3.2: Morphological design space of on-body touch interactions.

contacts. Finally, pressure can be used as a discrete or continuous additional input

channel with appropriate hardware, e.g. pressure-sensitive gloves [162], increasing

the expressiveness of the touch by a factor of 10 [175] with feedback and by a factor

of 4 [142] without.

These factors, illustrated in Figure 3.2, can of course be combined to provide high-breadth

selection techniques. As an example, if we use the tally system described in Figure 3.1,

considering that a user cannot touch targets located on his body pointer arm and discarding

the targets on the face, we can expect a theoretical 14 on-body targets. Considering

only non-temporal events (i.e. no dwell nor rhythm nor gesture) and without identifying

individual fingers, we can obtain a theoretical 14 (body targets) × 6 (number of fingers

+ palm) = 84 items in a tap-based on-body touch discrete selection technique. Using

rhythms, chords or differentiated fingers allow for an even higher number of items.

Other, non discrete combinations of touch dynamics and contact types are possible. For

example, the abdomen can become a wide touch area for rhythmic patterns, gestures

or chords. Other body parts could be used for the same input purpose with different

semantics, e.g. the abdomen can be dedicated to manipulation commands while the back

of the hand can be used for navigation commands. Body parts can also be used for item

groups, i.e. semantic groupings of items within a menu’s hierarchical level [13].

The expressiveness of these factors are of course limited by the available sensing technology

available. Infra-red camera systems such as VICON’s (see Appendix A) provide tracking

with very high spatial and temporal resolution but, being camera-based, are dependent on

occlusion, either from a user’s collaborators or her own limbs. Kinect-based systems have
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been shown to provide less resolution and are less accurate, but cost much less. Camera-

based systems combined with interactive gloves [169, 162] can be used to detect which

fingers are used for the touch, chords and pressure. Finally, one could imagine sensitive

clothes that accurately detect and locate touch.

The combinations of factors evoked in this section have advantages beyond menu breadth.

Body locations can be used to group similar targets; symmetric limbs or locations can hold

targets with opposite effects; critical commands can be set on locations harder to reach or

less likely to be touched by accident. Designers can also assign functions to semantically

related limbs [72], e.g. “Save” and “Open” on the head to symbolize memory. Such

associations could improve memorization with large command sets. Contact type can

help differentiate commands from “natural” gestures such as scratching, e.g. by only

considering touches performed with more (or less) than three fingers. It can also trigger

related commands from the same body location, e.g. “Save” with one finger on the temple

and “Save as” with two fingers, again possibly easing memorization. Touch dynamics

can also differentiate intended commands, e.g. by tapping twice or dwelling, and make

continuous gestures possible along limbs.

Menus or lists as large as those evoked above (84 items) are obviously not meant to be

memorized entirely. The feedback of touch-based menus thus needs to minimize occlusion

(Requirement 4: Collaboration) while remaining clear, such as a proxy of the user’s

body that would appear when she brings her non-dominant hand close to an “active”

limb. Items could highlight as the hand hovers different body parts. An even smaller

feedback could consist in using the non-dominant hand as a hovering scanner: a fixed-

sized window appears on the Main display and displays the body part facing the user’s

palm with the corresponding commands. The user could then zoom in and out by moving

her hand nearer or further away from her body to explore the set of available commands.

In both cases the visual feedback would be triggered by a short dwell time while hovering

close to the body, similar to Marking menus [179]. “Expert”, feedback-less selection would

then happen when the user does not wait for this timeout.

Most factors of this design space have already been evaluated in previous work, although

often in a different context: pressure [175, 142] in desktop and mobile menu systems,

rhythm [70] with tactile devices, number of fingers [15] and their nature [36], both in

mid-air. However, what seems to be the most expressive factor, target location, has not.

Together with Julie Wagner, Sean Gustavson, Stéphane Huot and Wendy Mackay we

designed and ran a controlled experiment to evaluate which body parts are efficient and

acceptable to use as input and how a simple static on-body tap interaction combine and

interferes with mid-air pointing.
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3.4 Experiment4

This section reports on an experiment designed to study how on-body touch can be per-

formed on the whole body, alone (Body only) or in combination with mid-air point-

ing (Pointing+Body). Although pointing has been well-studied in the literature (e.g.

[119, 163]), we know little of the performance and acceptability trade-offs involved in

touching one’s own body to control a multi-surface environment. Because it is indirect,

we are particularly interested in on-body touch for secondary tasks such as confirming a

selection, triggering an action on a specified object, or changing the scope or interpretation

of a gesture.

Participants were asked to touch specific locations on their own body (On-Body Touch

conditions), sometimes after having performed a pointing task on the wall display, i.e.

moving a cursor inside a circular target (Pointing conditions). In this experiment we

investigate two questions:

Q1. Which on-body targets are most efficient and acceptable? Users can take advantage

of proprioception when touching their own bodies, which enables eyes-free interaction

and suggests higher performance. However, body targets differ both in the level of

motor control required to reach them, e.g., touching a foot requires more balance than

touching a shoulder, and in their social acceptability, e.g., touching below the waist

[96].

Q2. What performance trade-offs arise with compound body-centric interaction techniques?

Users must position themselves relative to a target displayed on the wall and stabilize

the body to point effectively. Simultaneously selecting on-body targets that force

shifts in balance or awkward movements may degrade pointing performance. In ad-

dition, smaller targets will decrease pointing performance, but may also decrease

on-body touch performance.

3.4.1 Method

3.4.1.1 Participants

We recruited sixteen unpaid right-handed volunteers (13 men, average age 28); five had

previous experience using a wall-sized display. All had normal balance and wore comfort-

able, non-restrictive clothing.

4An article featuring a subset of this experiment section has been accepted at the CHI’13 conference
(not yet in the proceedings).
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(a) (b)

Figure 3.3: Apparatus of the experiment: passive infrared markers were mounted on several
sports gear (a) to track the position of each body part of the participant with high precision (b).

3.4.1.2 Apparatus

Participants stood in front of the WILD wall-sized display (Appendix A). Participants’

postures were tracked by the VICON system through a wireless mouse held in the user’s

dominant hand5 for ray-casting, on the index finger of the non-dominant hand for on-body

touches, and on protective sports gear – belt, forearms, shoulders and legs – to track on-

body targets. The latter were adjustable to fit over the participants’ clothing, as shown

in Figure 3.3.

Based on pilot studies, we defined 18 body target locations distributed across the body

(Fig. 3.4), ranging in size from 9 cm on the forearm to 16 cm on the lower limbs, depending

upon location and density of nearby targets, grouped as follows:

Dominant Arm (Darm) 4 targets: upper arm, elbow, forearm, wrist

Dominant Upper Body (Dupper) 4 targets: thigh, hip, torso, shoulder

Non-dominant Upper Body (NDupper) 4 targets: thigh, hip, torso, shoulder

Dominant Lower Leg (Dlower) 3 targets: knee, tibia, foot

Non-dominant Lower Leg (NDlower) 3 targets: knee, tibia, foot

In On-Body Touch conditions, participants wore an infrared-tracked glove on the non-

dominant hand with a pressure sensor in the index finger. When a threshold pressure level

was detected, the system computed an orthogonal projection from the index finger to the

touched limb segment using a skeleton-based model (Figure 3.3-b) to calculate the body

target closest to the index finger.

5All subjects were right-handed, so “dominant” refers to the right hand or side.
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Dominant Arm (Darm)

Dominant Upper (Dupper)

Dominant Lower (Dlower)

Non-Dominant Upper (NDupper)

Non-Dominant Lower (NDlower)

Dominant Non-Dominant

Upper

Lower

Figure 3.4: 18 body targets are grouped into five categories.

Wall pointing tasks varied in difficulty from easy (diameter of the circular target was

1200 px or 30 cm) to medium (850 px or 21.25 cm) to hard (500 px or 12.5 cm). Wall

targets were randomly placed 4700 px (117.5 cm) from the starting target.

3.4.1.3 Measures

We collected timing (Figure 3.5) and error data for each trial, as follows:

Trial Time:

From trial start to completion.

Pointing reaction time:

From trial start to “initial” cursor displacement of more than 1000 px.

Pointing movement time:

From initial cursor movement to entry into goal target.

Cursor readjustment time:

From leaving goal target to final reentering goal target.

Body reaction time:

From appearance of trial stimulus to leaving starting position.

Body pointing time:

From leaving start position to touching on-body target.

Body errors:
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Figure 3.5: Timeline of the three main conditions: Pointing only (top), Body only (bottom)
and Pointing+Body (both). The “Click” event at the end of the Pointing only timeline
only occurs in the Pointing only condition. Every other Pointing only events also occur in
Pointing+Body.

Number of incorrect touches detected on body target6; includes list of incorrect

targets per error.

We debriefed participants at the end of the experiment and asked them to rank, on a Likert

scale: (i) perceived comfort of each body target according to each Pointing condition

(‘1=very uncomfortable’ to ‘5=very comfortable’); and (ii) social acceptability of each

on-body target:“Would you agree to touch this body target in a work environment with

colleagues in the same room?” (‘1=never’ to ‘5=certainly’).

3.4.2 Procedure

Each session lasted about 60 minutes, starting with a training session, followed by blocks

of trials of the following conditions, counter-balanced across subjects using a Latin square.

Body only: Non-dominant hand touches one of 18 on-body targets (atomic technique −
18×5 replications = 90 trials)

Pointing only: Dominant hand points to one of three target sizes (atomic technique −
3×5 replications = 15 trials)

Pointing+Body: Combines touching an on-body target with selecting a wall target (com-

pound technique − (18×3)×5 replications = 270 trials)

6Includes both system detection and user errors.
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interactive
wall

easy
1200 px

medium
850 px

difficult
500 px

interactive
wall

easy
1200 px

medium
850 px

difficult
500 px

a) Start b) Body onlyc) Pointing only d) Pointing+Body

Figure 3.6: a) Starting position b) Body only c) Pointing only d) Pointing+Body Starting
position: non-dominant hand at the hip and/or dominant hand points to a starting target on the
wall display.
Body only and Pointing only are atomic conditions; Pointing+Body is compound: a body
touch triggers the selected wall target.

Participants were thus exposed to 75 unique conditions, each replicated five times, for a

total of 375 trials. Body only and Pointing+Body trials were organized into blocks of

six, with the location of body targets randomized. No two successive trials involved the

same body target group. Pointing only trials were organized into blocks of five trials and

all wall pointing trials were counterbalanced across difficulty. The two atomic interaction

techniques, Body only and Pointing only serve as baseline comparing performance with

the compound interaction technique, Pointing+Body. Participants were instructed to

perform trials as quickly and accurately as possible.

Body only – (Fig. 3.6b): The starting position involves standing comfortably facing the

wall display, with the non-dominant hand at the thigh (Fig. 3.6a). The trial begins when a

body-target illustration appears on the wall. The participant touches that target with the

index finger of the non-dominant hand as quickly and accurately as possible. Participants

were asked to avoid crouching or bending their bodies, which forced them to lift their legs

to reach lower-leg targets. The trial ends only when the participant successfully selects

the correct target; all intermediate incorrect selections are logged.

Pointing only – (Fig. 3.6c): The starting position involves standing comfortably facing

the wall display and using the dominant hand to locate a cursor within a circular target

displayed in the center of the wall. The trial begins when the starting target disappears

and the goal target appears between 0.5s and 1s later, to reduce anticipatory movements

and learning effects. The participant moves the dominant hand to move the cursor to the

goal target and selects by pressing the left button of the mouse bearing the optical marker

used for pointing. The trial ends only when the participant successfully clicks the mouse

button while the cursor is inside the goal target.
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Pointing+Body – (Fig. 3.6d): The starting position combines the above, with the non-

dominant hand at the thigh and the dominant hand pointing to the starting target on

the wall. The trial begins with the appearance of a body-target illustration and the goal

target on the wall display. The participant first points the cursor at the goal target, then

completes the trial by touching the designated on-body target. The trial ends only when

the on-body touch occurs while the cursor is inside the goal target on the wall.

3.4.2.1 Training

Participants began by calibrating the system to their bodies, visually locating, touching

and verifying each of the 18 body targets. They were then exposed to three blocks of

six Body only trials, with the requirement that they performed two on-body touches in

less than five seconds. They continued with three additional blocks to ensure they could

accurately touch each of the targets. Next, they were exposed to all three levels of difficulty

for the Pointing only condition: easy, medium and hard, in a single block. Finally, they

performed three additional blocks of the compound Pointing+Body technique.

3.4.3 Results

We conducted full factorial ANOVAs with Participant as a random variable using the

standard repeated measures REML technique from the JMP 9 statistical package. We

found no fatigue or learning effects.

3.4.3.1 On-body touch only

We found a main effect of Body target group on Trial Time (F4,60 = 21.20, p < 0.0001).

A post-hoc Tukey test revealed two significantly different groups: body targets located on

the upper torso require less than 1400 ms to be touched whereas targets on the dominant

arm and on the lower body parts require more than 1600 ms (Figure 3.7).

We found a significant effect of Body target on Trial Time, since body targets located on

the lower parts of the body require more time to be touched. Distributions in Figure 3.77

also shows that Trial Time is consistent for targets belonging to the same group. In fact,

grouping by Body target group reveals a significant effect of Body target on Trial

Time only for the Dupper (F3,45 = 5.33, p = 0.0031) and NDupper groups (F3,45 = 3.4,

7Error bars in all figures represent the 95 % confidence limit of the mean of the medians per participants
(±StdErr × 1.96).
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Figure 3.7: Mean Trial Time is lower for body targets on the upper torso (Dupper and
NDupper) than for other targets and consistent across body targets. Horizontal lines indicate
group means.

p = 0.0257), showing that the target on the dominant thigh takes more time to be touched

than the ones on the dominant shoulder and torso and that the target on the non-dominant

hip takes more time to be touched than the one on the non-dominant side of the torso.

We found 7.6 % of trials with at least one error in the Body only condition. We identified

two main types of erroneous touches:

Vicinity (94.5 %) The participant’s hand touched the frontier between the goal target

and a nearby target.

Dominant arm position (5.5 %) The participant kept the dominant arm close to her

torso, making it difficult for the system to distinguish between the torso and arm

targets.

We found a main effect of Body target on error rate F17,255 = 2.32, p = 0.0027, but a

post-hoc Tukey test shows no difference among Body targets. We also found a main

effect of Body target group on error rate (F4,60 = 6.60, p = 0.0002). A post-hoc Tukey

test shows that targets on the dominant arm are more error prone than those in other

groups (14.8 % against about 6 % for dominant and non-dominant upper, and 2.9 %

for non-dominant lower). Similar to Trial Time, we tested the consistency of error rate

within Body target group and found a significant difference only in the Dupper group

(F3,45 = 4.42, p = 0.0083): the dominant hip caused more errors than the dominant shoulder.

These results partially answer Q1 about the performance of On-Body Touch: participants

were able to quickly acquire targets on their body with an acceptable accuracy of 92.4 %

at first try. As expected, performance degrades for the lower body parts. This is not

surprising since these targets are further away from the default body position and require
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more complex movements to be touched. However, the difference is small, about only

300 ms.

3.4.3.2 Combined task

Pointing only – We first analyze the Pointing only results to have a baseline for

how on-body touch affects pointing performance. We found a main effect of pointing

difficulty on Trial Time (F2,30 = 40.23, p < 0.0001). A post-hoc Tukey test shows that

only difficult pointing tasks are significantly slower (1545 ms) than medium (1216 ms)

and easy (1170 ms) pointing tasks (see Figure 3.8). Only 1.8 % of the trials required to

relocate the cursor inside the target before validating the selection. This occurred mostly

during difficult pointing tasks: 15 % readjustments against 1.2 % for easy and medium

difficulties. Consequently, for Cursor readjustment time, the ANOVA shows an effect

of the difficulty (F2,30 = 8.02, p = 0.0016), Cursor readjustment time being significantly

higher for difficult tasks (77.3 ms) than for medium (3.8 ms) and easy (2.2 ms) ones.

Trial time – The ANOVA with the model Pointing[easy / medium / difficult] ×Body

target group shows a significant effect of Pointing difficulty on Trial Time (F2,30 = 48.51,

p < 0.0001), with the same significant difference than the Pointing only baseline: Trial

Time is significantly slower for difficult Pointing (2545 ms) than both medium (1997 ms)

and easy (1905 ms) (see Fig. 3.8). Body target group also has an effect on Trial

Time (F4,60 = 34.10, p < 0.0001) showing the same significant groups as in Body only:

Trial Time is significantly faster when touching body targets on NDupper (1794 ms)

and Dupper (1914 ms) than on NDlower (2267 ms), Dlower (2368 ms), and Darm

(2401 ms).

3.4.3.3 The impact of On-Body Touch on Pointing

Pointing time – We performed an ANOVA with the model Pointing[easy/medium/difficult]

×On-Body Touch[none/Body target group]. For Pointing movement time, the ANOVA

reveals significant effects of Pointing (F2,30 = 100.53, p < 0.0001) and On-Body Touch

(F5,75 = 17.22, p < 0.0001), and a significant Pointing × On-Body Touch interaction

(F10,150 = 3.9, p < 0.0001). A post-hoc Tukey test shows that Pointing movement time

is significantly higher for difficult pointing tasks (830 ms) than for medium (556 ms) and

easy (496 ms) ones. For Body target group, Pointing movement time is significantly

higher for Dlower and NDlower (707 ms) than for all other groups of targets and than

Pointing only (551 ms). Pointing movement time is also significantly higher for Darm
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Figure 3.8: Trial Time for all tasks (pointing only, body only, combined pointing + body) by
pointing difficulty.

(634 ms) than for the Pointing only baseline, and than Dupper and NDupper (580 ms).

Interestingly, these last groups are not significantly different than the body-only condition.

These results suggest that touching targets on the Dupper and NDupper groups does not

affect Pointing movement time as much as targets on the pointing arm or on the legs.

When associated with the effect of Pointing difficulty we can explain the interaction effect:

while only Dlower and NDlower have a strong negative effect on Pointing movement

time with the easiest difficulty, the other groups also have a negative impact when the

pointing difficulty increases, especially for targets located on the Darm (see Figure3.9).

Cursor readjustments – The impact of On-Body Touch on the Pointing task does

not only impact the movement phase but also the cursor readjustments. For the combined

Pointing+Body task, 31 % of the trials required the participants to relocate the cursor

inside of the target before validating the selection with a body touch, compared to only

6 % for Pointing only. Thus, we found significant effects of Pointing (F2,30 = 59.64,

p < 0.0001), Body target group (F5,75 = 23.03, p < 0.0001) and Pointing×Body target

group (F10,150 = 8.45, p < 0.0001) on Cursor readjustment time. As shown in Figure 3.10,

Cursor readjustment time increases significantly for each level of difficulty of Pointing

but selecting body targets on some Body target group, especially in Dlower and Darm,

affects the body configuration and requires even more time to relocate the cursor inside

of the on-screen target. We draw two interpretations from these results and our own

observations during the experiment:
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Figure 3.9: Interaction Pointing×On-Body Touch on Pointing movement time.

1. Touching the dominant arm while pointing affects the precision of pointing. Even

though users know that a force will be applied to their pointing arm, the cursor still

twitches. Users have to use “force-balance”, i.e. resist to this force, but sometimes

they could not prevent the cursor from leaving the target. This relates to the touch

detection method we used, that required a certain pressure to be applied to the

on-body targets.

2. Touching targets on the lower body parts affects the precision of pointing as well.

Users were instructed to keep their back straight so they had to lift a leg, which

affected their balance and thus their whole body posture, ultimately hindering their

pointing precision. Touching lower limbs requires “movement-balance”.

Overall, since the impact of both Dlower and Darm is similar, we observe that main-

taining force-balance is as difficult as maintaining movement-balance during the pointing

task.

In summary, these results confirm and explain our hypothesis about the degradation of

performance of Pointing while selecting on-body targets (Q2). Besides the expected

overall time penalty of performing two tasks simultaneously (about 1 s in the worst case),

the On-Body Touch task significantly impacts performance of the whole pointing task,

and not only the Pointing movement times. Obviously, this drop in performance mostly

affects the last step of the task, the selection phase, because the task involved body target

selection after the pointing phase. However, our results also reveal that On-Body Touch

on the lower parts of the body significantly impairs the movement phase of pointing, and

that the overall negative impact increases with the difficulty of the pointing task, especially
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Figure 3.10: Effect of Pointing difficulty and Body target group on Cursor readjust-
ment time.

when selecting a target on the pointing arm.

3.4.3.4 The impact of Pointing on On-Body Touch

Similarly, we studied the effect of Pointing on On-Body Touch by performing an ANOVA

with the model Pointing[none/easy/medium/difficult]×Body target group.

Body pointing time – We found a significant effect of Body target group (F4,60 =

38.69, p < 0.0001), of Pointing (F3,45 = 78.15, p < 0.0001) and a significant Pointing×Body

target group interaction (F12,180 = 2.28, p = 0.01) on Body pointing time. The main effect

of Body target group is similar to the Body only condition: NDupper and Dupper

significantly faster than all other groups. The main effect of Pointing is also similar

to those observed before, showing that difficult pointing tasks make simultaneous body

touching slower than medium or easy pointing tasks. Obviously, all Body pointing time

are significantly slower than in the Body only condition.

More interestingly, the Pointing × Body target group interaction effect reveals the

actual impact of Pointing on On-Body Touch. As shown in Figure 3.11:

1. Body pointing time increases with the difficulty of the pointing task. In fact, despite

the fact that our task required body target selection to be the last action, the reaction

times indicate that both tasks start almost simultaneously (On-Body Touch even

before Pointing);
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Figure 3.11: Interaction Pointing×On-Body Touch on Body pointing time.

2. This increase in difficulty does not affect the performance ordering of the groups of

targets, but amplifies these differences. NDupper and Dupper are still the group of

targets that require less time to be touched.

Body target has more impact on Body pointing time in this body + pointing condition

than it had on Trial Time in the body-only condition:

1. Targets on the feet and the tibias are now slower to touch than targets on the knees.

In fact, the lower the target is, the more it requires to change the body balance to

be reached, and participants were more careful in order not to impair their pointing

precision;

2. For the Darm group, the target located on the upper arm is touched around 400 ms

faster than the one located on the forearm, suggesting that participants were taking

care to not displace the cursor by touching their forearm too precipitately.

These effects increase with the difficulty of the pointing task.

Error rate – Body target group and Pointing also have an effect on the On-Body

Touch error rate (F4,60 = 12.77, p < 0.0001 and F3,45 = 3.41, p = 0.0253). Post-hoc Tukey

tests show that difficult pointing tasks caused significantly less body pointing errors (5.2 %)

than easy and medium (mean 8.1 %) ones, with the Body only condition in between, not

significantly different from any other conditions (7.3 %). Although surprising, this lower

On-Body Touch error rate with difficult pointing tasks can be explained by an increased
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attention of the participants due to the difficulty of the primary task. For Body target

group, a post-hoc Tukey test shows that targets on the dominant arm are more error prone

than those in others groups (15.6 % against about 6 % for dominant and non-dominant

upper, and 2.7 % for non-dominant lower). This result is similar to the Body only baseline

and suggests that targets on the dominant arm were the least reliable in both conditions,

probably because of detection problems due to their proximity. We classified the errors

into five groups:

Vicinity (57 %) and Dominant arm position (33.3 %), as described previously.

Symmetry (4.2 %): the participant misinterpreted the stimulus and touched the mir-

rored target, e.g. the dominant shoulder instead of the non-dominant one.

Default target (1.3 %): the participant repeatedly pressed the default position target

after the stimulus appeared, either consciously or as a result of a detection failure.

Completely wrong (4.2 %): none of the above, i.e. no easy explanation.

There were more dominant arm position errors than in the Body only condition, mostly

on the Darm and Dupper target groups. We observed that participants were keeping their

dominant arm close to their torso in order to help stabilize the cursor when touching body

targets, likely causing more recognition errors when the body target was on the dominant

arm or the torso. We also observed a few Symmetry and Completely wrong errors that

did not occur in the Body only condition, probably because participants were sometimes

confused by performing two tasks simultaneously. We expect these errors to decrease with

experience.

In conclusion, our hypothesis about the impact of Pointing on On-Body Touch is par-

tially verified (Q2): the difficulty of the primary task has a strong effect on the body

pointing time and on the difference of performance between body targets. Indeed the least

convenient targets on the lower body parts are even more difficult to acquire because users

have to maintain body balance while pointing. Concerning errors, the primary task does

not increase error rate but adds new error types and increases the number of Dominant

arm position errors.

3.4.3.5 Body Targets Preference and Social Acceptance

We analyzed the subjective data about preference and social acceptance as ordinal data

using nonparametric comparisons for each pair with the Wilcoxon method.

Participants generally felt more comfortable touching targets on the upper body than on

the lower body or the dominant arm involved in Pointing (see Figure 3.12). For the most
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Figure 3.12: Medians of participants ranking preference and social acceptance of body targets in
all conditions.

part, participants’ assessments of preference for and within each Body target group

are consistent with their performance in the experiment. Wilcoxon tests show significant

differences in the preference of each Body target group: groups on the upper body are

preferred over lower body parts, groups on the non-dominant side are preferred over groups

on the dominant side, and in particular over the dominant arm.

Finally, as shown in Figure 3.12, participants clearly ranked targets on the upper body

part as more socially acceptable than targets on the lower body parts, in accordance

with previous studies [96]. Regarding Q3, these subjective results show that while being

generally well-accepted by the participants, touching certain body parts while performing

an interactive task could decrease perceived comfort of use and impair the performance of

the main task.

3.5 Conclusion

In this chapter I introduce a morphological design space for on-body touch techniques

that takes body location, touch dynamics and contact shape into account, resulting in

theoretical vocabularies of hundreds of commands. The most expressive factor of this

design space, body locations, has been seldom studied in the literature. I reported on an

exploratory controlled experiment investigating the performance and acceptability of 18
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on-body targets located on the trunk, legs and dominant arm for discrete selection. This

experiment also explored how invoking commands using simple on-body touch affects

simultaneous actions (here mid-air pointing) and conversely.

Participants were most effective with targets on the torso and least effective with targets

on the lower body and on the dominant arm, especially in the Pointing+Body condition:

reaching targets on the lower legs requires additional balance and touching the dominant

arm impairs the precision of mid-air pointing because of the force applied on the pointing

arm. Users consistently preferred on-body targets located on the upper body.

These results suggest three guidelines for designing on-body interactions:

D1 Task difficulty : Designers should place on-body targets on the most stable locations,

such as the upper torso, when a simultaneous task requires precise or highly coordi-

nated movements.

D2 Body balance: Designers should detect anticipatory movements, such as shifts in bal-

ance to accommodate corresponding perturbations in a primary task, e.g. freezing an

on-screen cursor. The precision of a pointing task can be adversely affected if the user

must also touch an on-body target that requires a shift in balance or coordination, in

particular, touching the dominant arm while it is performing a separate task.

D3 Interaction effects: Designers should consider which body parts negatively affect users’

comfort while touching an on-body target. Designers should also consider side effects

of each task, such as reduced attention or fatigue that may lead to unexpected body

positions or increases in error rates.

Regarding the Target location factor of the design space presented in Section 3.3, this ex-

ploratory experiment tells us that tap-based on-body interactions are faster and preferred

on the most static body parts, namely the shoulders and trunk. The non-dominant lower

leg (NDlower group), while among the slowest in both Body only and Pointing+Body

conditions, caused fewer errors than other groups. It could thus be used for critical com-

mands. The dominant arm, while heavily studied in previous work about on-body touch,

showed lower performance and is highly sensitive to “external” movements. The number

of targets in this experiment was limited by our sensing system: seven objects were tracked

in real time with an optical system, which caused occlusions and mis-recognitions in some

(limited) body configurations. A future step of this work could be to explore the limits of

human accuracy when touching one’s body parts, with or without feedback, with touch

events detected by sensors located on the user’s body, as opposed to computed from dis-

tant cameras. The combinations of the factors of the on-body touch design space should

also be evaluated in detail. Finally, touching the dominant arm before mid-air pointing
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could improve pointing stability, as when holding a gun8.

Regarding the Task Allocation taxonomy presented in Section 1.3, the Pointing+Body

condition was an example of the Maximizing limb usage strategy since mid-air pointing

and on-body touch were assigned to respectively the dominant and non-dominant arm

and hand. This combination proved less efficient than when mid-air pointing or on-body

touch were performed alone, but still had acceptable performance. A notable exception

is when the on-body targets were located on the dominant arm, which was used for two

distinct interactions. This situation was an involuntary instance of Factorizing task allo-

cation and showed the lowest performance, in accordance with the results from Chapter 2:

simultaneous actions interfere with each other when they are controlled with the same

limbs.

8http://www.hciforpeace.org/
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Conclusion of Part I: Parallelism
and Limb Usage

In the first chapter of this part, I presented an analysis of the differences between “classic”

desktop environments and large display platforms in order to understand the constraints

that apply to mid-air interaction in the latter. I then introduced a design space about Feed-

back Location that helps classify interaction techniques and understand how they impact

collaboration and usability. I also introduced a taxonomy of Task Allocation strategies

that describes how existing systems assign interactions to limbs in order to study how

to combine interaction techniques in environments with limited input capabilities such as

large display platforms. This taxonomy features three categories: Maximizing limb usage,

Factorizing task allocation, and a specific case of the latter, Maximizing cursor usage.

These categories can be combined to design rich, multi-task applications.

In Chapters 2 and 3, I studied mid-air interactions in combination: pointing and virtual

navigation, and pointing and command invocation. These studies covered two items of

the Task Allocation taxonomy:

Maximize limb usage: In Chapter 2, pointing/panning and zooming were assigned to,

respectively, the dominant and non-dominant hands in the two handed conditions

(Figure 3.13-a). Similarly, pointing and discrete selection were assigned to the dom-

inant and non-dominant hands in Chapter 3 (Figure 3.13-b).

Factorize task allocation: In Chapter 2, pointing and panning were systematically as-

signed to the same limb, i.e. the dominant hand and arm (Figure 3.13-c). In the

one handed conditions, zooming was assigned to the dominant hand as well (Fig-

ure 3.13-d). In the Pointing+Body conditions of Chapter 3, some on-body targets

were located on the dominant, pointing arm (Figure 3.13-e). This arm was then used

for mid-air pointing and as a target for on-body touch, making it a particular case

of Factorizing task allocation.

The corresponding results can be analyzed by correlating performance with degree of
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Figure 3.13: Trade-off between limb usage, performance and parallelization of interactions, within
the Task Allocation taxonomy developed in Chapter 1. one handed and two handed refer to the
corresponding conditions from Chapter 2. Pointing only, Body only and Pointing+Body
refer to the corresponding conditions from Chapter 3. “Pointing & Panning” refers to the sequential
arrangement of pointing and panning in Chapter 2.

parallelization. Two-handed pan-and-zoom (a) performed better than single-handed pan-

and-zoom (d) because users had trouble varying the zoom level while keeping the focus of

expansion steady in the single-handed condition. Conversely, panning was never used in

parallel with pointing and zooming (c) and thus never interfered with them. Performance

of on-body touch decreased when used simultaneously with mid-air pointing (b), especially

when both interactions used the same limb (e).

We can see a pattern appear: In both studies, performance of simultaneous actions with the

same limb was worse (one handed in Chapter 2 and Darm in Chapter 3) than with different

limbs. Conversely, simultaneous actions with several limbs performed better. Actions

performed in sequence with the same limb performed less well than simultaneously with

other actions, as shown by pointing stability in Chapter 2 and lower general performance

when combining on-body touch and mid-air pointing in Chapter 3.

This reveals a trade-off between maximizing performance, minimizing limb usage and

designing parallel interactions (summarized in Figure 3.13):

(1) Maximizing performance while using a limited set of limbs will likely require interac-

tions in sequence, as with our pointing and panning tasks (Chapter 2).

(2) Conversely, maximizing performance with parallel tasks requires a greater number of
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limbs, e.g. both arms must be used, as with the bi-manual conditions in Chapter 2

and the simultaneous pointing and on-body touch condition in Chapter 3.

(3) Performing several tasks in parallel with a limited set of limbs can decrease perfor-

mance, as with the uni-manual condition in Chapter 2.

(4) Maximizing performance of interactions controlled in parallel while using a limited

number of limbs remains a challenge.

This trade-off underlines the impact of simultaneity between interactions. Performing ac-

tions in parallel (Figure 3.13-2) is clearly a key factor to better performance in general

as it can interleave their completion time. However we observed that simultaneous inter-

actions can also increase errors and have negative effects on users’ comfort and opinion

of the technique under certain conditions. The experimental results of Chapters 2 and 3

indicate that allocating simultaneous interactions to different limbs is an efficient strategy

to design parallel interaction techniques. Within this trade-off, minimizing limb usage

follows Requirement 3 (Input channels): interaction techniques should avoid using too

much of a user’s input capabilities if they are to be combined in an application.

Generally, the limited input expressiveness of fewer limbs often can not accommodate a

seamless integration of parallel input movements. These results provide useful guidelines

for the design of application using several interaction techniques in large display envi-

ronments: designers should prioritize the need for high performance, parallel actions and

input requirements, and choose Task Allocation strategies accordingly (see Figure 3.13).

Regarding the design of interaction techniques for large display platforms, I proposed four

requirements that I believe increase the usability, performance and potential for collab-

oration based on an analysis of the specificities of such platforms. I also developed two

morphological design spaces (Sections 2.2 and 3.3) that explore new input channels for

mid-air interactions. Finally, I contributed new techniques to the corpus of available and

evaluated interaction techniques for large display platforms.
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Part II

Dual-Precision techniques

101





In Part I, I analyzed how several mid-air interaction techniques can be combined consid-

ering the limited input expressiveness available when standing or walking in front of a

wall-sized display. I presented a taxonomy of strategies to allocate multiple interactions to

the user’s limbs. Preliminary hypotheses from this taxonomy were validated through con-

trolled experiments with multiple interactions. The results of these experiments revealed

a trade-off between minimizing limb usage, maximizing performance and parallelization

of actions: favoring two of them is always at the cost of the third one when combining

interactions.

Mid-air pointing was involved in both experiments of Part I because it is an elementary

interaction for direct manipulation when users need to navigate physically in front of the

display. For simplicity it was always implemented as simple ray-casting, which is enough

for coarse pointing tasks such as view pointing (Chapter 2). However, large displays now

feature very high pixel densities (up to 100 dpi) that create new challenges for pointing

techniques as discussed in Section 1.1 (page 25).

I will now present a theoretical analysis of pointing mechanisms and define a family of

target-agnostic pointing techniques called Dual-precision techniques. These techniques

support pointing tasks with target sizes at the limit of human visual acuity, therefore

meeting Requirement 1 (Human perception). I will first design and evaluate Dual-

precision pointing techniques within the Maximizing limb usage strategy of task allocation

defined in Section 1.3: all the techniques presented in Chapter 5 can be used single-handed

with the dominant hand in order to enable other interactions or devices to be controlled

with the non-dominant hand. I will then design and evaluate Dual-precision pointing

techniques within the Factorizing task allocation strategy: all the techniques introduced

in Chapter 6 are used on hand-held tactile surfaces that can accommodate other widgets.
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Chapter 4

The limits of single-precision
techniques

1

4.1 Introduction

Pointing at large displays from a distance has been studied in various contexts, ranging

from low resolution displays to high-resolution back-projected walls. However, it has been

less studied in the context of ultra-high resolution walls that can display much smaller

visual elements that users can still see. In a typical desktop situation with a resolution

of 1920× 1200 pixels, the maximum pointing amplitude is
√

19202 + 12002 = 2264 pixels

and the minimum target size is one pixel. Not taking edge pointing [6] into account, the

corresponding, most difficult pointing task has a Fitts’ ID of log2(2265) = 11.15 bits. In

comparison, the technically highest pointing amplitude on an ultra-high resolution display

like the WILD room (Appendix A) is 21,457 pixels. It would corresponds to a Fitts’ ID

of 14.4 bits if users could see every pixels. I showed in Section 1.1 that users with normal

visual acuity cannot distinguish pixels at 100 dpi when standing further away than 86 cm.

However a pointing task could start out of the pixel-perceptive range of a user (provided

that the cursor is perceivable) and end in front of her.

My goal is to make any visible target acquirable by pointing techniques, regardless of the

amplitude of cursor movement, the distance of the user to the display and the pixel density

of the display (Requirement 1). As said before, there is a maximal pixel density (≈ 300 ppi)

above which the human eye cannot differentiate pixels at more than a reasonable reading

distance distance (30 cm in my example page 28). Providing displays with greater pixel

density thus makes little sense.

1A subset of this chapter has been published in an Inria technical report [127].
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Figure 4.1: The interactive wall-sized (5.5m × 1.8m) ultra-high-resolution (20 480 × 6 400 = 131
million pixels) display used for our studies. Inset: magnification of a 9cm × 5cm area.

In this chapter I will address Requirement 3 (Input channels) by investigating distant

pointing techniques that can be used with a single hand, in order to allow other interactions

such as what was evaluated in Part I with the remaining hand. This discards, among other

things, techniques that need the non-dominant hand to support an input device such as

a tablet or phone like ARC-Pad does [119]. I also define a specific 5th requirement for

mid-air pointing techniques: they should be Eyes-free, i.e. users should not need to look

at the input device that controls pointing, either punctually or during the whole pointing,

when pointing control is indirect. For example, moving a cursor on a wall-sized display

using a hand-held smartphone as a trackpad does not require users to look at the tablet

during pointing. Conversely, pointing a target on the tablet obviously requires looking at

its screen, but is a direct control.

This chapter addresses the problem of existing target-agnostic, single-handed, mid-air and

eye-free high-precision pointing on ultra-high resolution wall displays: given the very high

pixel density, do existing pointing techniques enable users to efficiently select both large

and small targets from a distance using a single hand and without switching their attention

away from the wall display? I investigate this question by first identifying the limits of

modeless devices in a theoretical study, then assessing these limits in a formative user

study.

4.2 Matching the limits of human perception

Over the past ten years, a number of physical input devices have been explored for pointing

on large displays. As with desktop pointing, some techniques map the absolute position
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of the input device to the cursor’s position, while others use its relative motion to control

cursor displacements.

We are specifically interested in techniques that allow users to point from afar, while

walking in front of the display, and that do not require both hands. Therefore direct

techniques that use a pen [75] or direct touch [38, 160] are not considered since they

require users to stand within physical reach of the display. Similarly, we do not consider

systems that can work from afar but that require users to seat at a table. For example,

Malik et al. [117] introduce a vision-based system for whole-hand gestural interactions

performed on a constrained tabletop area. The system supports precise target acquisition

on a back-projected wall-sized display from afar using asymmetric interactions, but is

designed for people seated at a table. The rest of this section therefore focuses on single-

handed techniques that can be used in mid-air.

4.2.1 Absolute mid-air pointing devices

Absolute pointing devices or techniques map a single input state, e.g. the location and

orientation of a hand-held device, to a single cursor location on the display. Techniques

based on the absolute position of the input device include the family of ray-casting tech-

niques, also called laser pointing [126, 132, 133]. These techniques extend the user’s finger,

arm, or hand-held device with an imaginary ray whose intersection with the wall display

is highlighted (Figure 4.5.a).

While intuitive, ray casting is essentially angle-based and thus degrades quickly with dis-

tance to the display because hand tremor and involuntary motion due to fatigue are

amplified as the user is farther away from the display surface [126, 132]. It is therefore

not adapted to small targets on ultra-high-resolution displays. Olsen and Nielsen [133]

adapted existing interaction techniques to the limitations of this technology. Both Chen

and Davis [49] and Oh and Stürzlinger [132] designed collaborative pointing devices based

on laser pointers, enabling several users to interact with the display simultaneously. The

latter also compared a laser pointer to a conventional mouse in a pointing task. The

laser performed significantly worse than the mouse on a 1.83m × 1.22m low-resolution

back-projected screen, but was preferred by users.

Myers et al. [126] studied the effect of human body limitations on laser pointing. They

compared the pointing performance of a laser pointer, a regular mouse, a touch-sensitive

SmartBoardTM and Semantic snarfing. With the latter, users point with a stylus on a

handheld that displays a copy of a region from the main screen. The technique requires

users to look at the handheld device, creating a division of attention. Direct input standing
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in front of the SmartBoard was the most efficient technique, followed by Semantic Snarfing.

Laser pointer was the worst technique. Except for the SmartBoard which required direct

contact, other conditions were performed seated about 1.52m away from the display.

Another ray-casting technique consists in holding a device at arm-length in front of the eyes

so that the target is aligned with the tip of the device [137]. The technique is interesting

as it resembles aiming, but our own tests (see Appendix B) revealed its limitations: it is

more tiring and less precise than laser pointing, it causes visual occlusion, and it requires

users to repeatedly switch between two very different focal lengths.

Some techniques use absolute input but focus more on the interaction vocabulary than

on pointing performance. For example, VisionWand [41] tracks the position of a wand

in 3D using two low-cost cameras. The two ends of the wand have different colors and

can be distinguished by the vision system. While it does not improve distant pointing

performance, it enables interactions such as tap, tilt, flip and rotate gestures. Other works

use vision-based techniques to enable freehand pointing. Nickel and Stiefelhagen [130]

recognize pointing gestures with two cameras. They introduce new pointing techniques

using information such as head and forearm orientation, but focus on the recognition

of relevant gestures among a sequence of arbitrary movements rather than precision of

pointing gestures. With Shadow Reaching [152], users reach distant objects through the

shadow of their body cast on the display surface by a light source. Because of projection

perspective, the regions that can be reached depend on both the setup and the user’s

distance to the display.

Absolute mappings can also be used in combination with a small hand-held device. With

the Touch projector [33], users manipulate objects located on a distant display using a

smartphone (iPhone) through a live video feed showing that display.

Finally the Wiimote and other game controllers have also been studied as general-purpose

pointing devices. Campbell et al. [40] evaluated a Wiimote operated as a zero-order or

first-order pointing device, and found that participants were roughly 2.5 times faster in

the zero-order condition. Natapov et al. [129] compared remote pointing with a Wiimote,

a classic gamepad’s joystick, and a mouse operated on a desk as baseline. They found

that the mouse had the best throughput, followed by the Wiimote and the joystick, and

reported that hand tremor and small movements greatly affected accuracy in the Wiimote

condition for small targets.
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4.2.2 Motion-based mid-air pointing devices

Techniques that map relative device motion to cursor displacements can be based on

position control or rate control (zero or first order of control). Previous studies [40, 129] and

our own tests show that techniques based on rate control are faster and more comfortable

for coarse pointing across large distances, but perform poorly during the final precise

pointing phase. MacKenzie and Jusoh [115] compared a regular mouse to a gyroscopic

mouse2 held on a table and then in mid-air, and to a handheld isometric joystick. The

task was performed 1.52m away from a 15” screen. The joystick and the gyro-mouse

held in mid-air performed poorly compared to the mice. Finally, Casiez and Vogel [45]

evaluated rate-controlled pointing techniques with isometric and elastic devices and with

several CD gains. The results are instructive, but they did not evaluate their designs

against control-based techniques. Therefore we only consider zero-order techniques in the

following.

Position-based pointing techniques require a resolution function [42] mapping input (de-

vice motion) to output (cursor motion). The most common resolution function uses a

Control-to-Display (CD) gain, defined as the ratio between cursor movement and input

variation. The CD gain can be constant or, more often, depends on the velocity of input

motion3. Multiplying the magnitude of the input device motion by the CD gain gives

the amplitude of cursor motion. Since a gain is theoretically without unit, both input

and output amplitudes must be expressed in the same, or comparable, units. However,

some techniques or devices map input and output of different natures. For example, a

gyroscopic mouse transforms angular movements into cursor translations. In such cases

the “gain” has a unit, such as length.angle−1 in this example. For the sake of simplicity

and since the same computational mechanism is applied whether the multiplier has a unit

or not, we also refer to such values as CD gains.

The value of a CD gain is not necessarily constant over time. Most major operating

systems use transfer functions between the input velocity and the CD gain, from the

principle that slow inputs occur when precise cursor movements are intended and that

fast inputs occur when coarse cursor movements are intended. This specific velocity-based

relative technique is called Pointer Acceleration [44] (PA). However, the literature about

such functions is rather scarce, and existing functions were not designed for wall-sized,

ultra-high resolution displays.

The set of relative pointing techniques and devices that are likely to work for high-

resolution wall displays can be refined by analyzing the devices’ characteristics using the

2A mouse that uses gyroscopic sensors, also called gyro-mouse.
3The CD gain typically increases with input velocity according to the so-called Pointer Acceleration.
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framework defined by Casiez et al. [43]. The framework provides formulae to compute

upper and lower bounds for the CD gain, noted CDmax and CDmin . A gain below CDmin

requires clutching which is likely to decrease performance. A gain above CDmax creates

precision problems because of hand tremor and/or device quantization. If CDmin is greater

than CDmax (Fig. 4.2), these problems are compounded: any CD gain value will trigger

at least one of them, or both.

CDmax

CDmin Precision
problems

Clutch
problems CD gain

a)

CDmax

CDmin

Precision
problems

Clutch
problems CD gain

b)

Figure 4.2: (a) Problems that arise when the CD gain value is lower than CDmin or larger than
CDmax . (b) When CDmin is greater than CDmax , no CD gain value can avoid both problems.

These formulae are based on the minimum target width of the tasks (W min), the maximum

distance between targets (Amax ), the pixel density of the display (Screenres), the device’s

morphological characteristics —operating range (OR) and input resolution (Deviceres)—

and human motor precision (Hand res). All these parameters must be expressed in the

same distance unit, e.g., millimeters or inches, but not in pixels because display pixels and

device ticks (or minimal input) often have different physical sizes. A CD gain used with

a 600 dpi mouse on an 80 ppi screen should have the same effect than with a 1600 dpi

mouse on a 100 ppi screen.

The formulae from Casiez et al. [43] use Deviceres and Screenres expressed as densities

in dots per inches (ppi), which forces all other parameters to be expressed in inches or

to convert units. We chose to use the multiplicative inverse of these measures instead,

i.e., the physical size (ps) of pixels, so that they can be expressed in any length unit:

Deviceps and Screenps . Our formulation of CDqmax (explained below) is thus written as

the multiplicative inverse of the one described in [43] but has the same result4:

4We assume that Screenps and Deviceps are non null.
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CDmin =
Amax

OR
(4.1)

CDmax = min(CDqmax ,CD lmax ) (4.2)

CD lmax =
W min

Hand res
(4.3)

CDqmax =
Deviceres
Screenres

=
Screenps

Deviceps
(4.4)

Following this labeling, Hand res should also be renamed Handps for it represents a “point

size”, i.e. the smallest input that users can perform. However since we do not change its

value, as opposed to Screenps and Deviceps , we will keep this labeling for consistency with

[43].

CDmin (Equation 4.1) is the ratio between the largest amplitude of a pointing task on

a given display (Amax ) and the largest device input movement (OR); it represents the

minimum CD gain below which clutching is bound to occur, i.e., the maximal input that

can be used to move the cursor by the maximal pointing amplitude in a single movement.

If the CD gain is lower than this value, the input movement needed to make the cursor

go through Amax is larger than the operating range of the technique / device. Clutching

is thus necessary.

CD lmax (Equation (4.3)) is the ratio between the smallest target size for a given task

(W min) and the smallest human input (Hand res), i.e. the maximal human precision; it

represents the maximum CD gain beyond which human precision problems start to occur,

i.e., the minimal input that can be used to keep the cursor stable within the smallest

targets. If the CD gain is higher than this value, acquiring targets of W min requires more

precision than normally available.

CDqmax (Equation (4.4)) is the ratio between the smallest display output (Screenps) and

the smallest device input (Deviceps); it represents the maximum CD gain beyond which

quantization problems start to occur, i.e., the minimal input that can be used to move the

cursor by one pixel. If the CD gain is higher than this value, the smallest device input

results in a movement bigger than one pixel, thus some pixels become unreachable [7].

In the context of an ultra-high-resolution wall display and especially at a distance, it is

not always necessary, or feasible, to reach every single pixel of the screen. In order to

relax this constraint on CDqmax , we replace Screenps by W min , the minimum target size.

The resulting formula is the maximal CD gain beyond which targets of this size become

unreachable:

CDqmax =
W min

Deviceps
(4.5)
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This is equivalent to Casiez et al.’s original formula when W min is the size of one pixel.

In addition to relaxing the constraint that every pixel must be reachable, our formulation

can also be used to model sub-pixel targets, e.g., when using lenses [7].

Using equations (4.2), (4.3) and (4.5), we can rewrite CDmax as follows:

CDmax =
W min

max(Hand res ,Deviceps)
(4.6)

Fitts’ law [157] is an empirical model that predicts movement time (MT ) as a function of

movement amplitude (A) and target width (W ):

MT = a+ b× log2(1 +A/W )

where a, b are determined empirically and depend on factors such as input device and

user population, and log2(1 + A/W ) is called the index of difficulty (ID) of the task and

is measured in bits. Equations (4.1) and (4.6) allow us to compute a theoretical Fitt’s

index of difficulty, IDmax , beyond which CDmin cannot be lower than CDmax for a given

technique:

CDmin < CDmax

⇐⇒ Amax

OR
<

W min

max(Hand res ,Deviceps)

⇐⇒ Amax

W min
<

OR

max(Hand res ,Deviceps)
(4.7)

⇐⇒ IDmax = log2

(
1 +

OR

max(Hand res ,Deviceps)

)
(4.8)

This equation provides a theoretical limit for the Fitts’ index of difficulty (IDmax ) of a

pointing task beyond which a given technique starts causing clutching and/or precision

problems (Figure 4.2). Note that the max subscript in IDmax represents the maximum

index of difficulty for the technique being considered, while in Amax it represents the

estimated highest amplitude of the pointing task.

The intermediate equation 4.7 provides another reading of Casiez et al. [43]’s formulae.

Expoutput = Amax/W min represents the number of possible target locations on a 1D in-

terval: a punctual cursor on this interval can be over Amax/W min different targets of size

W min (Figure 4.3-a). Expinput = OR/max(Hand res ,Deviceps) is the number of different

input locations that a user with a given motor precision Hand res can input within a phys-

ical operating range OR with a device precision Deviceps (Figure 4.3-b). Applying a CD
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(a) (b)

Wmin

Amax

ExpOutput

OR

max(Handres, Deviceps)

ExpInput

CDmin

CDmax

CDmin

CDmax

(c) (d)

Figure 4.3: The expressiveness paradigm. (a) The output expressiveness Expoutput =
Amax/W min . (b) The input expressiveness Expinput = OR/max(Handres ,Deviceps). (c) Range
of mappings (CD gains) between Expinput and Expoutput when Expinput ≥ Expoutput . (d) Possible
mappings (CD gains) between Expinput and Expoutput when Expinput < Expoutput .

gain matches a given Expinput to a task Expoutput . When Expinput ≥ Expoutput (Figure 4.3-

c), the user and input device have enough expressiveness to acquire targets of the required

difficulty. The CD gain can then be set so that either OR matches Amax (Equation 4.1,

Figure 4.3-c, top), max(Hand res ,Deviceps) matches W min (Equations 4.6, Figure 4.3-c,

bottom), or any value in between. When Expinput < Expoutput (Figure 4.3-d), no CD gain

value can match OR to Amax and max(Hand res ,Deviceps) to W min at the same time. If

set so that the cursor can move as far as Amax in a single movement (Figure 4.3-d, top),

targets of W min will not be reachable. If set so that W min is acquirable (Figure 4.3-d,

bottom), users will have to clutch to perform cursor movements of Amax .

Based on these formulae, we analyze four candidate devices with relative input that are

one-handed, position-controlled and usable in mid-air (Table 4.1):

1. Soap [23] wraps the tracking system of a mouse in a hull made of fabric. Users

control the cursor by moving the tracking system inside the fabric, like a piece of

soap in the hand. Relative motion of the hull enables both precise positioning of the

cursor and moving across large distances. The resolution is that of a regular mouse

(600 to 800 ppi), but the operating range without clutching is much smaller (about

3.5 cm).

2. Some one-handed trackballs can be operated in mid-air. Their operating range is

rather small5. The best commercial, desktop trackballs have a resolution of 1000 ppi

5Some of these trackballs can be “thrown”, i.e., the user can initiate a fast rotation in the direction of
the target and let the ball roll until it approaches the target or stops by itself. In our understanding this
use of a trackball is not covered by Casiez et al.’s formulae. However this is a rather coarse way of using a
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Device Deviceps OR Handres IDmax CDmin CDmax

Trackball 32 µm (800 ppi) 40 mm 0.2 mm 7.65 79.7 35
Soap 32 µm (800 ppi) 35 mm 0.2 mm 7.46 91.1 35

Trackpad 51 µm (498 ppi) 51 mm 0.2 mm 8 62.5 35
GyroMouse 15.47× 10−3 deg 90 deg 0.18 deg 8.98 35.41 mm/deg 41.61 mm/deg

Table 4.1: Device characteristics for relative pointing techniques. Red entries have CDmin �
CDmax and are therefore impractical.

and an operating range of approximately 4 cm.

3. A one-handed, thumb-operated handheld trackpad can be implemented using a touch-

sensitive device such as a PDA or smartphone. We tested an iPod Touch running

a full-screen trackpad application on its 51× 76 mm surface. This corresponds to a

theoretical resolution of 498× 334 ppi.

4. A gyroscopic mouse (GyroMouse) converts angular movements of a mouse held in

mid-air into conventional mouse events. Users can clutch using a button that freezes

the cursor. We used a Logitech MX Air and, through informal testing, considered

that the constraint on wrist motion limited its operating range to about 90 degrees.

In order to compute CDmin and CDmax for each of the above, we have to define the

corresponding operating range (OR) and the hand, screen and device resolutions (Hand res

and Deviceps). For the Trackpad, Trackball and Soap, we used Casiez et al.’s estimation

for Hand res (0.2 mm) and the device resolution for Deviceps . For GyroMouse we adapted

the formulae to obtain CD gains expressed in mm/deg. The corresponding Hand res value

(0.18 deg) is the standard deviation of the device orientation when a user holds the device

and tries to keep its projection (through ray-casting) still. We used conservative values for

the smallest target size (W min = 32 pixels or 7 mm) and largest amplitude (Amax = 13800

pixels or 3187 mm), resulting in a maximal Fitts’ index of difficulty of 8.76 bits.

Table 4.1 summarizes the CD gain computations for the selected devices. The first three

have a CDmin much larger than their CDmax (Figure 4.4). This is also indicated by their

IDmax, which is smaller than the maximal Fitts’ index of difficulty of the task. They are

therefore very likely to create clutching and/or precision problems if used with constant

CD gains. Had we taken more extreme values for the smallest target size, such as 10

pixels, and 20,000 pixels for the largest amplitude, differences would have been even more

striking. We informally confirmed this assessment by trying various handheld trackballs

and trackpads, concluding that only GyroMouse (Figure 4.5.b) could be a candidate for

trackball: if the target is far away from the cursor, the angular precision of the throw is reduced and the
user may have to re-throw the trackball in the right direction. It also seems rather difficult to find and
interpret hardware parameters that influence this type of input, e.g. trackballs may have different degrees
of resistance to such movements. We leave the analysis of such throwing techniques for future work.
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CD gainTrackball
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Trackpad

SOAP

50 100

CD gain
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GyroMouse

Figure 4.4: Theoretical CDmin and CDmax for the four selected devices. Arrows go from CDmin

to CDmax . Red arrows indicate that CDmin is greater than CDmax .

our worst-case pointing difficulty.

(a) (b)

Figure 4.5: RayCasting (a) and Gyro (b).

4.3 Experiment: Limits of single-mode Techniques

The following formative user study was conducted to identify the limits of the two viable

candidates identified in the previous section: an absolute technique, RayCasting , and

a relative one, Gyro. We included two variants of the latter: the classic version with a

constant CD gain, and GyroAcc, which dynamically adjusts the CD gain according to input

device velocity. As explained before, we could not find any related work on how to tune

an acceleration function depending on the pointing task parameters at the time where

the study was conducted6. We designed one by choosing a simple shaped configurable

function, namely a generalized logistic function of the form f(x) = a + b
1+eλ×(x−M) , and

hand-tuned its parameters in an iterative design phase depending on the task’s Amax and

W min .

6Since then, Roussel et al. [148] introduced a method to tune acceleration functions.
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Figure 4.6: The platform used for the experiment: thirty-two 100 ppi screens (left picture),
VICON cameras and VICON markers (white dots on the foreground object, right picture).

4.3.1 Participants

Twelve unpaid volunteers (2 female) served in the experiment, aged 24 to 43 (mean 29.5,

std dev. 5.76), all right-handed, with normal or corrected-to-normal vision. All partici-

pants were familiar with remote interaction, having previously used at least a WiiMote.

4.3.2 Apparatus

The experiment was run in the WILD room (see Appendix A). All three techniques used

a passive device with markers tracked by the motion-capture system.

The experiment was written in Java 1.5 running on Mac OS X and was implemented with

the open source jBricks toolkit [138].

We chose to take into account the space behind bezels, making the cursor behave as if

there were pixels under them, since a recent study found no effect of bezels on pointing

performance [30].

We implemented the gyroscopic mouse by tracking the angular movements of the passive

device. This gave us full control over Pointer Acceleration whereas both the operating

system and the Logitech MX Air device driver feature native Pointer Acceleration functions

that could neither be canceled nor finely tuned. A wireless mouse was attached to the

passive device so that users could easily reach its left button to click. The maximum CD

gain value of GyroAcc (35.41 mm/deg) was set so that users could move across the display

without clutching. The minimum CD gain value (2.41 mm/deg) was set to allow enough

precision to acquire the smallest targets (see target Width below) while being close enough

to the maximum CD gain value. Through pilot testing, we fine-tuned a logistic transfer
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(1) (2) (3) (4) (5)

500 ms click

Figure 4.7: (1) The target (green dot) and dwell zone (blue circle) are both visible at the beginning
of the trial. Participants have to keep the cursor (red cross) in the dwell zone for 500 ms (2) before
it disappears (3). Then they click the target (4) and the next, symmetric trial starts (5). The
background of the experiment was black but is shown here in white for clarity.

function based on the input velocity v in order to obtain a smooth transition between the

minimum and maximum values of the gain:

CD(v) = 2.41 +
33

1 + e−16×(v−.13)
(4.9)

4.3.3 Task and Procedure

The task was a Fitts reciprocal pointing task. Participants were asked to click targets

located alternatively left and right from the center of the display. Targets were presented

as bright green disks on a black background. When the cursor was inside the target, the

target was highlighted white. An additional, wider green circle appeared (Fig. 4.7-(4)) so

that participants could see the feedback unambiguously even for very small targets.

Before each trial, participants had to move the cursor inside a dwell zone using ray-casting

(Fig. 4.7-(2)) and leave it there for half a second before the target appeared. The goal

was to recalibrate the relative position and orientation of the hand-held device and the

cursor at each trial so that the successive offsets caused by the relative techniques would

not accumulate, causing undesired clutching. The dwell zone was a 500-pixel-wide circular

area centered on the previous target. It disappeared at the end of the dwell time, signaling

the start of the trial.

Participants stood at a distance of 2 meters from the display. This distance gave partici-

pants a good overview of the display while avoiding problems of visual acuity7.

In this formative study, we were mainly interested in evaluating the limits of the three

techniques in terms of precision. We thus always presented targets in decreasing order

of width, stopping the experiment for each technique on a per-participant basis: if a

given target was not selected after ten seconds, the trial timed out; When four successive

7The smallest target sizes were 12.7’ of arc and 6.35’ of arc in our two experiments, which is above point
acuity (1’ of arc, [170]) and minimum decipherable symbol height (5’ of arc, [163])
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Figure 4.8: (a) Misses and (b) Pointing Time per Technique × Width.

TimeOuts occurred, we considered the task too difficult for the current Technique and

switched to the next technique, resetting Width to the largest size. This was logged as a

Withdrawal . In order to avoid edge-pointing effects [6], we set the targets at a distance of

956 mm (11/2 screen width) from the left and right sides of the wall display. The distance

between targets was thus fixed at 3187 mm (equivalent to the width of 5 screen tiles).

4.3.4 Design

The main factors were Technique (RayCasting , Gyro, GyroAcc) and target Width (118,

59, 30, 15, 7 mm). We checked that each participant could see all targets. We used

a 3 × 5 repeated measures within-subject design with 10 replications, i.e., 1800 trials

(3 × 5 × 10 × 12 participants). For each participant, we grouped trials into 15 blocks

(Technique ×Width). The presentation order for Technique was counterbalanced across

participants using a Latin square. For each technique, participants were asked to practice

using 118 mm targets until they felt comfortable before starting actual measurements.

A trial started as soon as the dwell phase ended. For each trial, we logged the time to

click the target (Pointing Time), the number of clicks outside the target (Misses) and the

number of times the cursor exited the target (Crossings).

At the end of the experiment, participants were asked to rank the three techniques, and

to rate them for Mental Effort, Accuracy, Speed, Fatigue, Comfort and Overall Easiness

on 5-point Likert scales.

4.3.5 Results

We analyzed the data using multiway ANOVAs, accounting for repeated measures using

the REML procedure, and performed Tukey HSD post-hoc tests for pairwise comparisons.

We used the mean for Misses. As expected, the distribution of Pointing Time was left-

skewed for each condition, so we used the median instead as a simple method to discard

outliers. We verified that there was no significant effect of Technique presentation order
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and observed that learning and fatigue effects were not significant. We now report the

results relevant to assessing the limits of each technique, i.e., task time and mean number

of errors (Figure 4.8)8.

Timeouts and Withdrawal We observed no Withdrawal for Width greater than

15 mm. Only RayCasting caused Withdrawals for Width = 15 mm (1 participant). For

Width = 7 mm, GyroAcc, Gyro and RayCasting caused Withdrawals for 1, 3 and 9 par-

ticipants respectively. Width= 7 mm was too difficult for RayCasting and Gyro. We

removed the corresponding blocks from all subsequent analyses.

In the remaining blocks, we observe significant effects on TimeOuts for Technique (F2,20.92 =

4.46, p < .025), Width (F3,31.62 = 10.84, p < 0.0001) and Technique×Width (F6,61.1 = 7.03,

p < 0.0001). GyroAcc (mean 1%) causes significantly fewer TimeOuts than RayCasting

(mean 6%), Gyro being in between. Significantly more TimeOuts are observed at Width

= 15 mm (mean 12%) than 30 mm (mean 1%), 59 mm (mean 1%) and 118 mm (no Time-

Outs). For Width = 15 mm, GyroAcc (mean 2%) causes significantly fewer TimeOuts

than Gyro (mean 13%) and RayCasting (mean 22%).

We removed the trials with TimeOuts for all further analysis (3.14%).

Misses We observe a significant effect on Misses for Technique (F2,22 = 40.38, p <

0.0001), Width (F3,33 = 90.64, p < 0.0001) and Technique×Width (F6,66 = 15.42, p <

0.0001). Not surprisingly, Misses increase significantly as Width decreases, except for

Width = 59 mm and Width = 118 mm (Figure 4.8-a) which are not significantly different.

The interaction does not change the significance of the post-hoc test, but indicates that

the magnitude of the difference increases as target Width decreases. For Width = 15 mm,

RayCasting (mean 1.78) causes significantly more Misses than Gyro (0.93) which causes

significantly more Misses than GyroAcc (.5).

Crossings There is a significant effect on Crossings for Technique (F2,22 = 48.37, p <

0.0001), Width (F3,33 = 88, p < 0.0001) and Technique×Width (F6,66 = 41.13, p < 0.0001).

RayCasting (mean 1.97) caused significantly more Crossings than Gyro (1.04), which

caused significantly more Crossings than GyroAcc .63). Crossings significantly increased

when Width decreased, except for Width = 59 mm and Width = 118 mm which are not

significantly different. For Width = 15 mm, RayCasting (mean 4.94) causes significantly

more Crossings than Gyro (2.85) which causes significantly more Crossings than GyroAcc

8Error bars in all figures represent the 95% confidence limit of the mean of the medians per participants
(±StdErr × 1.96).
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(1.18). RayCasting with Width = 30 mm causes significantly more Crossings than any

other technique with Width ≥ 30 mm.

Pointing Time We observe a significant effect on Pointing Time for Technique (F2,22 =

15.17, p < 0.0001), Width (F3,33 = 59.59, p < 0.0001) and Technique×Width (F6,66 = 16.36,

p < 0.0001). GyroAcc (mean 3061 ms) is significantly faster than Gyro (3537 ms) and

RayCasting (3902 ms). Unsurprisingly, Pointing Time increases significantly when Width

decreases (Figure 4.8-b), and the interaction does not change the significance of the post-

hoc test, but indicates that the magnitude of the difference increases as target Width

decreases.

Subjective Results Pearson chi-square test shows that there is a significant effect on

Accuracy , Speed and Overall Ranking for Technique. 7 participants felt that GyroAcc

was more accurate than the other techniques, 4 ranked it ex-aequo with one or both other

techniques, and only 1 participant felt that RayCasting was more accurate than both other

techniques. 9 participants felt that GyroAcc was faster than the other techniques, 2 ranked

it ex-aequo with RayCasting and 1 felt that it was the slowest technique. 9 participants

ranked GyroAcc best, one ranked RayCasting best and two participants could not rank any

of the three techniques, feeling they were equivalent. 5 participants ranked Gyro second, 4

participants ranked RayCasting second and one ranked GyroAcc second. One participant

felt that the maximum speed of GyroAcc was way too fast. When asked, this participant

reported using a low Pointer Acceleration setting in his daily use of personal computers.

4.3.6 Discussion

The above results show that Pointing Time, Misses, Crossings, TimeOuts and participants

preferences are strongly correlated. They also show the respective limits of each technique:

• RayCasting is not accurate enough to select targets such as those found on a map

displayed on an ultra-high-resolution wall (Figure 4.1): Due to hand tremor and

input resolution, the accuracy of this technique makes it difficult to acquire or keep

the cursor stable within targets smaller than 30 mm (128 px) at a distance of 2

meters from the display. 59 mm is the smallest target width that caused less than

0.5 misses in average, corresponding to a Fitts’ ID of 7.78 bits which we consider is

the limit of this technique for usability.

• Relative techniques such as a Gyro mouse can be made precise enough by choosing a

sufficiently low CD gain, making it possible to acquire targets 15 mm wide. However,
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the high number of TimeOuts (12%) shows that it is not really usable for such widths

with a 3-meter amplitude. 30 mm is the smallest target width that caused less than

0.5 misses in average, corresponding to a Fitts’ ID of 6.74 bits which we consider is

the limit of this technique for usability.

• GyroAcc alleviates this problem by dynamically adjusting the CD gain as a function

of input device velocity, allowing users to control the tradeoff between speed and

precision. It can be made efficient for pointing targets that are both distant and

small. GyroAcc was precise enough to acquire the smallest targets (7 mm), while fast

enough to move across more than 3 meters. While GyroAcc performed relatively well,

Withdrawal also started to appear for 7 mm targets, suggesting that our prototype

is reaching its limits at that difficulty (ID= 8.83 bits). Furthermore, for higher

differences between Amax and W min , the CD gain range of the transfer function

will increase and we expect the resulting, much steeper, slope to become harder to

control.

4.4 Conclusion

We investigated the problem of eye-free single-handed pointing on large ultra-high-resolution

(100+ million pixels, 100 ppi) wall displays from a distance. We first explored the limits of

existing single-mode remote pointing techniques, both absolute and relative. We showed

that targets smaller than 30 mm (128 px on a 100 ppi display) could not be reached reli-

ably with a 3m amplitude if a single static CD gain was used: precise pointing required a

low gain, which caused too much clutching to cross large distances. With a dynamic gain

(GyroAcc), the practical limit improved to about a quarter of this size.

We will now propose a framework for pointing techniques that can accomodate virtually

any pointing task.
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Chapter 5

Dual-precision
1

5.1 Introduction

In the previous chapter we established the limits of existing single-mode, mid-air point-

ing techniques that can be used one-handed and eye-free. Being single-mode, they all

use a single resolution function (whether it is a constant CD gain or a velocity-based

transfer function). A pointing technique should adapt to the hardware and performance

requirements of a task (Requirements 1 and 3). In particular, it should provide fast cursor

movements for large amplitudes and precise control for small targets2. While these two as-

pects are well covered in the literature about pointing techniques in desktop environments,

the results of Chapter 4 show that existing techniques hit a performance ceiling with very

high Fitts’ IDs such as the ones that can be reached on a ultra-high resolution wall display.

Even GyroAcc, a technique that varied the CD gain with input velocity, caused TimeOuts

and Withdrawals in the previous experiment while the targets were still easily visible,

failing to meet Requirement 1. While this could be due to our ad-hoc transfer function,

we believe it reveals a limitation of the human sensory-motor system.

In this chapter we investigate an alternative solution. The first phase of a pointing task,

especially with a high amplitude, has been shown to be a ballistic phase [121] in which

users control the orientation and velocity of the cursor but only have a limited control of

its location. The second phase of a pointing task consists in bringing the cursor within

the target and may require high precision when the target is small, thus a finer control

over the cursor location and a lower velocity. These two phases make users focus on two

different aspects of motor and cursor movement, and the transition between them can be

1A subset of this chapter has been published in an Inria technical report [127].
2Other aspects can be considered, such as how a given technique allows accurate path following. Here

we only consider pointing difficulty as modeled by Fitts’ ID.
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challenging with difficult pointing tasks.

Following these observation and using the parameters of Fitts’ law, we propose a family

of target-agnostic pointing techniques that explicitly divide pointing tasks in two phases

of different velocities:

• a coarse phase in which users quickly approach the target by traversing most of the

task amplitude with no or minimal clutching,

• a precise phase in which they can acquire nearby targets of virtually any visible

Width.

Dual-precision pointing techniques thus feature two modes, Coarse and Precise, with ex-

plicit mode switches.

Such techniques have already been studied in the literature. With HybridPointing [63],

users can reach distant objects by switching from absolute to relative pointing. However

the technique still requires direct contact of the pen with the display surface, failing to

meet Requirement 2.

ARC-Pad [119] uses a touch-sensitive mobile device for cursor positioning on large displays.

When the user taps the screen, the position of the tap is mapped to the entire display,

enabling coarse but fast repositioning of the cursor. When the user drags on the touch

surface, the finger movements are interpreted as relative input, allowing precise adjust-

ments to the cursor’s position. Tapping vs. dragging is a practical way of differentiating

the user’s intention between coarse and precise cursor control, and was proven efficient on

a 52” screen with a resolution of 1360×768 pixels. However, this approach does not scale:

when mapping a 7 cm input device to a 5 meter display, a 1 millimeter error in the tap

location corresponds to a 7.5 cm error on the display, resulting in multiple dragging ges-

tures to reach the target. Since we are interested in eye-free techniques (Requirement 5),

the error in the initial tap location is likely to be much larger, exacerbating the problem.

Preliminary tests confirmed this hypothesis, so we did not include ARC-Pad in our study.

Vogel and Balakrishnan [163] use a high-precision 3D motion tracking system to develop

and evaluate three techniques: pure ray casting, relative pointing with clutching, and

ray-to-relative pointing, which combines absolute and relative pointing using two different

hand postures. We adapted the latter to our environment and tested it in Exp. 2.

The family of adaptive techniques including PRISM [67], Adaptive Pointing [103] and

Smoothed Pointing [69] are good candidates for this task. However only PRISM was

published at the time of this study and was originally defined as a 3D pointing technique.
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A

Cursor
(Ø=L)

Target

d ≤ L/2

Mode switch

(c)(b) (d)(a)

Figure 5.1: Typical use of a dual-precision technique: In Coarse mode the cursor features a circle
indicating the range of the precise mode, L (a). The user brings the area cursor close over the
target (b), i.e. at a distance d ≤ L

2 , then switches to Precise mode (c). She finishes the task in
Precise mode (d).

5.1.1 Key Parameters

The design of dual-precision techniques relies on four key parameters: the resolution func-

tions used in each phase, the point at which the user is expected to switch modes and the

mode switch mechanism.

In order to be optimal, the mode switch should occur when the target is within the range of

the precise mode, a distance we denote L. To assist users, we propose to visually represent

this limited operating range by surrounding the cursor with a circle of diameter L when

in coarse pointing mode (Figure 5.1-a). The coarse pointing phase can then be seen as an

area cursor pointing task [95] that consists in bringing the cursor’s circle over the target

(Figure 5.1-b), while the precise pointing phase is a regular target acquisition task with a

distance d lower or equal to L/2 (Figure 5.1-c,d).

As mentioned before, Fitts’ law is expressed as a linear model of an Index of Difficulty

(ID) computed from the task Width and Amplitude:

MT = a+ b× log2(1 +A/W ) (5.1)

In our case, the Coarse phase corresponds to bringing the cursor close enough to the target

to be within reaching range of the Precise mode. The corresponding index of difficulty is

IDC = log2(1 + A/L) (5.2)

Similarly, the Precise phase consists in bringing the cursor from the location of the mode

switch to the target, thus through a distance d supposedly lower or equal to L/2. The

corresponding index of difficulty is

IDP = log2(1 + d/W) (5.3)

We cannot predict the value of d, so we use a higher bound for the Precise phase’s ID:

IDP = log2(1 + L/2W) (5.4)
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The movement time of the two modes can be expressed as follows (the subscripts P and

C indicate values for the Precise and Coarse modes, respectively):

MTC = aC + bC × log2

(
1 +

A

L

)
(5.5)

MTP = aP + bP × log2

(
1 +

L

2W

)
(5.6)

Parameters aC , aP , bC and bP depend on a number of task characteristics such as the user,

the pointing devices, the pointing techniques, etc. If we make no assumption on these

values and just assume that parameters a and b are the same in both phases, pointing

time will be optimal if both phases have the same difficulty, i.e.:

A

L
=

L

2W
⇐⇒ L =

√
2A×W (5.7)

We are interested in target-agnostic techniques, so we cannot know precisely A and W for

each target. However if we use the worst-case values from Casiez et al. [43]’s formulae

(W = W min and A = Amax ), Equation (5.7) becomes:

L∗ =
√

2Amax ×W min (5.8)

Equation (5.8) provides a safe estimate of the value of L when we have little knowledge

about pointing amplitudes and target widths.

We can now compute the bounds of L for single-CD gain techniques.

(i) The coarse phase of a pointing task consists in reaching a target of width L from a

distance A. Casiez et al.’s equations for CDmin,C and CDmax,C are:

CDmin,C =
Amax

ORC
CDmax,C = min(CDqmax,C ,CD lmax,C)

CDqmax,C =
L

Deviceps,C
CD lmax,C =

L

Hand res,C

We want CDmin,C to be lower than to CDmax,C :

CDmin,C < CDmax,C

⇐⇒ Amax

ORC
<

L

max(Deviceps,C ,Hand res,C )

⇐⇒ L > Amax
resC
ORC

, with resC = max(Hand res,C ,Deviceps,C ) (5.9)
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This lower bound maps the operating range of the coarse mode (ORC ) to the estimated

maximum amplitude of the pointing tasks (Amax ). It ensures that L is larger than the

smallest cursor movement in coarse mode, and that the user can cover a distance of at

least Amax without clutching in coarse mode. If L is smaller than this bound, users may

have to either clutch to reach a target further than Amax away in coarse mode, or move

the cursor by more than L/2 in precise mode.

(ii) The precise phase of a pointing task consists in reaching a target of width W from a

distance supposedly smaller than L/2. Casiez et al.’s equations for CDmin,P and CDmax,P

are:

CDmin,P =
L

2ORP
CDmax,P = min(CDqmax,P ,CD lmax,P )

CDqmax,P =
W min

Deviceps,P
CD lmax,P =

W min

Hand res,P

We want CDmin,P to be lower than CDmax,P , i.e.:

CDmin,P < CDmax,P

⇐⇒ L

2ORP
<

W min

max(Hand res,P ,Deviceps,P )

⇐⇒ L < W min
2ORP

resP
, with resP = max(Hand res,P ,Deviceps,P ) (5.10)

This higher bound maps the smallest input movement of the precise mode (resP ) to the

smallest target size (W min). It ensures that, in precise mode, a user can reach a target as

small as W min within an area of diameter L without clutching. If L is greater than this

bound, users may have to clutch to reach the target or the target may be too small to be

reachable.

By combining Equations (5.1), (5.9) and (5.10) we can compute IDmax , the Fitts’ index

of difficulty above which, in theory, a dual-precision technique cannot be used without

clutching:

Amax
resC
ORC

< L < W min
2ORP

resP

⇐⇒ Amax

W min
<

2ORC ×ORP

resC × resP

⇐⇒ IDmax = log2

(
1 +

2ORC ×ORP

resC × resP

)
(5.11)
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Again, the max subscript in IDmax represents the maximum index of difficulty for the

technique being considered, while in Amax it represents the estimated highest amplitude

of the pointing task. Note also that Equations (5.9) and (5.10) are applicable only if the

corresponding mode is relative, since they are inferred from CD gain formulae. However,

if we consider that an absolute mode has a fixed CD gain of 1 and an operating range

equal to the size of the display, we can still compute IDmax using Equation (5.11).

Finally, we can compute the limit CD gain for each phase (if it uses a relative mode).

In the coarse pointing phase, the goal is to cover amplitude A as fast as possible. Users

should be able to cover Amax in a single gesture, i.e., within the operating range of the

coarse mode, ORC . In the precise pointing phase, the target is at a distance smaller or

equal to L/2. This distance should be reachable within the operating range of the precise

mode, ORP . The limit CD gains for coarse and precise mode are thus:

CDC* =
Amax

ORC
(5.12)

CDP* =
L

2ORP
(5.13)

For any given technique, Equations (5.8), (5.12) and (5.13) give the key parameters, while

Equations (5.9), (5.10), and (5.11) allow us to test that the dual-mode technique meets

the constraints for the task. Note that Equations (5.9), (5.10), (5.11), (5.12) and (5.13)

were based on Casiez et al. [43]’s formulae for single-CD gain techniques. It thus applies

primarily to pointing modes using constant resolution functions.

5.1.2 Techniques

As defined in the previous chapter, we are interested in location-independent (Require-

ment 2), high-precision (R1) techniques that are single-handed (R3) and eye-free (R5).

In the following experiment, we compare the most efficient technique from our formative

experiment, GyroAcc, to three techniques that implement our dual-precision framework:

Laser+Position (Figure 5.2), Laser+Gyro (Figure 5.3) and Laser+Track (Figure 5.4). All

three techniques use RayCasting as their Coarse mode, because it is known to be intuitive

and does not require clutching. The value of L given by Equation 5.8 only depends on

task parameters (Amax and W min). It is thus the same for all techniques: 160 mm.

Laser+Position (Figure 5.2) is an adaptation of Vogel’s free-hand RayToRelative technique

[163]. Instead of detecting hand gestures for mode switching and clicking, we use the

buttons of a wireless mouse. Laser+Position combines RayCasting for coarse pointing
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(a) (b) (c) (d)

Figure 5.2: Laser+Position. RayCasting for coarse pointing (a). Switching to precise mode by
pressing a button (b). Relative translational movements control cursor movements (c). Switching
back to coarse mode by releasing the button (d). Click performed with left button.

and relative translational movements of the hand/device for precise pointing. In relative

mode, the hand’s translation is taken into account in a plane orthogonal to the orientation

of the hand-held device at mode switch time (Figure 5.2-b). Precise pointing is activated

by keeping a button depressed. A second button is used for clicking. Users can clutch in

precise mode by releasing the first button and repositioning their hand quickly: If they

press the first button again within less than 600 ms (tuned through pilot testing), the

technique doesn’t switch back to Coarse mode. Informal testing showed that an operating

range of 300 mm for the Precise mode was large enough without causing too much fatigue.

The theoretical limit of difficulty (Equation 5.11) for Laser+Position is approximately

18.2 bits, i.e., much higher than needed for a task that does not involve zooming or lenses

(A/W ≈ 300, 000).

(a) (b) (c) (d)

Figure 5.3: Laser+Gyro. RayCasting for coarse pointing (a). Switching to precise mode by
pressing a button (b). Relative rotational movements control cursor movements (c). Switching
back to coarse mode by releasing the button (d). Click performed with left button.

Laser+Gyro (Figure 5.3) combines RayCasting for coarse pointing and relative rotational

movements for precise pointing. Compared to Laser+Position, which mainly involves up-

per limb segments (forearm up to shoulder) in relative mode, Laser+Gyro mainly involves

the wrist and/or elbow and is potentially less tiring. Clutching, clicking and mode switch-

ing are identical to the Laser+Position technique. Our tests showed that an operating

range of π/2 rad was large enough for the Precise mode while not causing too much fa-

tigue. The theoretical limit of difficulty (Equation 5.11) for Laser+Gyro is approximately
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19 bits.

(a) (b) (c) (d)

Figure 5.4: Laser+Track . RayCasting for coarse pointing (a). Switching to precise mode by
touching the surface (b). Controlling cursor movements by moving the thumb (c). Switching back
to coarse mode by releasing the thumb (d).

Laser+Track (Figure 5.4) combines RayCasting for coarse pointing and relative transla-

tional movements of the thumb on a touch-sensitive surface (PDA, smartphone, etc.) for

precise pointing. The surface is divided into two areas (Figure 5.5): an upper zone (1) for

tracking and a lower (smaller) zone (2) for clicking. Switching between the two zones can

be achieved easily using proprioceptive information and does not require the user to look

at the device after a short learning phase. Touching zone (1) switches to precise mode.

Switching back to coarse mode only happens 300 ms (tuned through pilot testing) after

the thumb has been released, thus enabling clutching. This clutching timer is reset each

time a click occurs, so that users can stay in Precise mode if the click was a miss by going

back to zone (1). To compensate for unintended finger movements at release time, we

retrieve the coordinates of the click 200 ms before the finger-up event. The theoretical

limit of difficulty (Equation 5.11) for Laser+Track is approximately 18 bits.

1
2

Figure 5.5: Zones used for the Laser+Track technique: (1) is for relative pointer movements and
(2) is for clicking.

For all three techniques, the cursor is a crosshair surrounded by a circle (Figures 5.2-5.4).

The circle’s diameter is equal to the value of L for that technique. In Precise mode, the

circle is decoupled from the crosshair and displayed as a ghost at the position where the

cursor will be when the user switches back to coarse mode (Figure 5.6). This is because

coarse mode is absolute and the cursor jumps when transitioning back from precise mode.

The opacity of the ghost is inversely proportional to its distance to the crosshair so as to

minimize visual interference, with a maximum value of 25%. This double cursor mechanism
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(a) (b) (c) (d)

Figure 5.6: The dual-mode techniques cursor (a). The circle disappears when the user switches
mode (b). In Precise mode (b to d), the circle is decoupled from the crosshair to indicate where
the Coarse mode would be pointing. Opacity increases with distance to the crosshair (c and d).

has also been used in a more recent work by Debarba et al. [58], with a somewhat more

elaborate opacity mechanism.

All dual-precision techniques support clutching in their relative mode (Figure 5.7). When

the user releases the button or finger that controls relative mode, an animation shows how

much time is left until the technique switches to absolute mode (Figure 5.7.b): four short

strokes perpendicular to the cross’ branches move from the center to the end of the cross.

The user can use this time to clutch and continue moving in relative mode. When the

four strokes reach the end of the cross, clutching times out and the technique switches to

absolute mode.

(a) (b)

(c.1)

(c.2)

Figure 5.7: Visual feedback of the remaining time before a release event triggers a switch from
precise mode (a) to coarse mode. When the user releases the mode activator (b), the technique
does not switch back to coarse mode but moving lines appear on the branches of the cross to
indicate the remaining time. If the user presses the mode activator before the moving lines reach
the end of the cross (c.1), the technique stays in precise mode. If they do reach the end of the
cross, the technique switches back to coarse mode (c.2).
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5.2 Experiment: Dual-Precision Techniques

5.2.1 Participants, Apparatus and Task

The 12 participants of our formative user study (Chapter 4) served in this experiment,

with at least a two-day interval between the two.

RayCasting was implemented as in Exp. 1 using the VICON motion tracker. Both

Laser+Gyro and Laser+Position used a wireless mouse that was attached to a passive

device equipped with retroreflective markers. The right button was used for mode switch-

ing and clutching, the left button for clicking. A mouse was also used for GyroAcc: the

right button was used for clutching and the left button for clicking. Laser+Track used an

Apple iPod Touch as a touch-sensitive surface.

The main factors were Technique, Amplitude and target Width. The values of Width

were 30, 15, 7 and 4 mm. We checked that all participants could actually see all the

targets. The values of Amplitude were 637, 1912 and 3187 mm.

According to Casiez et al.’s literature review in [43], the highest Fitts’ Index of Difficulty

(ID) tested prior to their article was 7.6 bits in a desktop context (a= 30 cm, w= 1.5 mm).

In this same article they report a univariate (1D) Fitts’ experiment with IDs as high as

9 (a= 4.5 m, w= 9 mm) on a 25-ppi projected display. The highest ID tested in the

following studies is 9.64 in bivariate tasks (2D) tasks, a difficulty never evaluated, to our

knowledge.

For the three dual-mode techniques, L was computed using Equation (5.8): L = 160 mm.

It was within the range defined by equations (5.10) and (5.9) (limit cases). The CD gain

of each precise mode was computed using equation (5.13): CDP* = 3.07 for Laser+Track ,

0.51 for Laser+Position and 0.89 mm/deg for Laser+Gyro3. The maximum and minimum

CD gains for the transfer function of GyroAcc were computed using equations (5.12) and

(5.13): CDC* = 35.41 mm/deg and CDP* = 0.89 mm/deg 3. We used the following

logistic function:

CD (v) = 0.89 +
34.52

1 + e−16×(v−.13)
(5.14)

3The CD gains of Laser+Gyro and GyroAcc are ratios between angular inputs (expressed in degrees)
and linear outputs (in millimeters), hence the unit.
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5.2.2 Design

We used a 4 × 4 × 3 repeated measures within-subject design with three independent

variables. For each participant, we grouped trials into 48 blocks, one per Technique,

Amplitude and Width. The presentation order for Technique, Amplitude and Width

was counterbalanced across participants using a Latin square. Each time a new Technique

began, participants had the opportunity to train with Amplitude = 1912 mm and Width

= 7 mm. The actual trials started when the participant felt ready and their pointing time

stabilized, i.e., when the task time difference between the slowest and fastest trials among

the last four was within 30% of the mean of these trials.

To summarize, we collected 4 Technique × 4 Width × 3 Amplitude × 5 replications

× 12 participants = 2880 trials. The task was the same as in Exp. 1. For each trial,

in addition to Misses and Pointing Time, we logged the time to acquire the dwell zone

(Recalibration), the time to enter the target (Reaching), the time to perform the first click

(Clicking), the time taken to perform the first switch to precise mode (Switch Time), the

distance from the first mode switch to the target (MS Distance) and the number of times

the cursor left the target (Crossings).

At the end of the experiment, participants were asked to rank the techniques and rate

them for Mental Effort, Accuracy, Speed, Fatigue, Comfort and Overall Easiness on 5-

point Likert scales.

5.2.3 Predictions

The Precise modes of Laser+Gyro and Laser+Position are similar and are controlled

by the same limbs (forearm, wrist and hand). We expect them to have similar perfor-

mance (prediction P1 ). However, Laser+Position should be more tiring since rotations

are controlled more naturally than translations (prediction P2 ). Laser+Track is the only

dual-mode technique whose Precise mode does not require moving the hand-held device,

so we expect it to be faster for Recalibration (prediction P3 ). The minimum CD gain for

GyroAcc’s transfer function had to be lowered compared with the first experiment because

the targets are smaller. This means that there is a higher amplitude of CD gain to man-

age through the transfer function, which should negatively affect the performance of the

technique (prediction P4 ). Finally, the value of L does not depend on the target Width,

so the time spent in Coarse mode should not be affected by the target Width (prediction

P5 ).
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Figure 5.8: (a) Misses and (b) Pointing Time per Technique × Width.

5.2.4 Results

We analyzed the data using multiway ANOVAs, accounting for repeated measures using

the REML procedure, and performed Tukey HSD post-hoc tests for pairwise comparisons.

We used the mean for Misses and Crossings. As expected, the distributions of time

measurements per condition were left-skewed, so we used the median. We verified that

there was no significant effect of Technique presentation order and observed that learning

and fatigue effects were not significant. All reported results are significant at least at the

p < 0.001 level unless noted otherwise.

Timeouts 3% of the trials were TimeOuts. There is a significant effect on the number of

TimeOuts for Technique (F3,33 = 13.63, p < 0.0001), Amplitude (F2,22 = 4.67, p = 0.0204),

Width (F3,33 = 25.44, p < 0.0001) and Technique×Width (F9,99 = 8.44, p < 0.0001). As ex-

pected, larger amplitudes and smaller widths cause more TimeOuts. Laser+Track (mean

0.06) and GyroAcc (0.04) cause significantly more TimeOuts than Laser+Position (0.01)

and Laser+Gyro (0). The effect increases with smaller widths: for Width = 4 mm,

Laser+Track and GyroAcc caused significantly more TimeOuts than the two other tech-

niques.

Misses There is a significant effect on Misses for Technique (F3,33 = 13.19, p < 0.0001),

Width (F3,33 = 43.21, p < 0.0001) and Technique×Width (F9,99 = 15.47, p < 0.0001). As
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expected, Misses increased with smaller widths. GyroAcc (mean 0.44) causes significantly

more Misses than the other techniques (means from 0.16 to 0.26). The effect was even

stronger with Width = 4 mm (mean 1.36).

Clutching We found a significant effect on clutch for Technique (F3,33 = 281.01, p <

0.0001), Width (F3,33 = 3.66, p = 0.0222) and Width×Amplitude (F6,66 = 2.24, p = 0.0497).

Smaller widths slightly increase the amount of clutching (the only significant difference

is between Width = 4 and Width = 30 mm). Laser+Track (mean 2.27) causes signif-

icantly more clutch than Laser+Gyro and Laser+Position (1.01 and 0.98) which cause

significantly more clutch than GyroAcc (0.02).

Crossings There is a significant effect on Crossings for Technique (F3,33 = 19.57, p <

0.0001), Amplitude (F2,22 = 3.48, p = 0.0488), Width (F3,33 = 79.66, p < 0.0001) and

Technique×Width (F9,99 = 19.9, p < 0.0001). As expected, smaller widths cause more

crossings. The effect of Amplitude is a bit surprising, with more Crossings for the medium

amplitude. GyroAcc and Laser+Track (resp. 1.13 and 1.03) cause significantly more

Crossings than Laser+Position and Laser+Gyro (resp. 0.7 and 0.61). GyroAcc causes

almost twice as many Crossings than the second worst condition for Width = 4 mm.

Dwell Time There is a significant effect on Recalibration for Technique (F3,33 = 7.35,

p = 0.0007), Amplitude (F2,22 = 65.42, p < 0.0001), Width (F3,33 = 10.42, p < 0.0001),

Technique×Amplitude (F6,66 = 3.83, p = 0.0024) and Amplitude×Width (F6,66 = 3.87,

p = 0.0023). As expected, Recalibration increases with Amplitude. Recalibration takes

significantly more time with GyroAcc (mean 1722 ms) than with all other techniques

(1504 ms to 1417 ms), especially for the larger Amplitudes.

Reaching Time We found a significant effect on Reaching for Technique (F3,33 = 3.65,

p = 0.022), Width (F3,33 = 308.06, p < 0.0001) and Amplitude (F2,22 = 134.3, p < 0.0001).

As expected reaching time increases with task difficulty. Laser+Track (mean 2710 ms)

is significantly slower to reach the target than GyroAcc (2428 ms), with the other two

techniques in between.

5.2.5 Pointing Time

There is a significant effect on Pointing Time for Technique (F3,33 = 13.09, p < 0.0001), Am-

plitude (F2,22 = 71.14, p < 0.0001), Width (F3,33 = 140.52, p < 0.0001) and Technique×Width
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(F9,99 = 8.56, p < 0.0001). As expected, pointing time increases with task difficulty.

Laser+Track (mean 4268 ms) is significantly slower than the other techniques (means

from 3519 to 3847 ms). For Width = 4 mm, GyroAcc is the slowest.

Modeling Pointing Time As described earlier, the task of pointing with a dual-mode

technique consists of two phases, coarse and precise, with a mode switch in between. We

expect the movement time of each pointing phase (MTC and MTP ) to follow Fitts’ law

and assume that the mode switch takes a constant time MTS dependent on the technique.

We obtain the following model for the global pointing task time (MTT ):

MTT = MTC + MT S + MTP (5.15)

= (ac+MT S +ap)+bc log

(
1+

A

L

)
+bp log

(
1 +

d

W

)
(5.16)

= a+ bc IDC + bp IDP (5.17)

Remember that the value d = L/2 used in Equation 5.4 is a higher bound. In our analyses

we observed that lower values for d fit our data better. We used d = L/8 and computed

the following regressions and goodness of fit:

Model Technique Parameters r2 AICc

Laser+Gyro 560 + 424× IDC + 1070× IDP .94 172
Our model Laser+Position 349 + 446× IDC + 1183× IDP .96 173

Laser+Track 1393 + 385× IDC + 986× IDP .94 174

Laser+Gyro −60 + 512× ID .87 179
Fitts’ law Laser+Position −328 + 564× ID .87 181

Laser+Track 779 + 475× ID .87 177

The goodness of fit (r2 = .94 for Laser+Gyro, .96 for Laser+Position and .94 for Laser+Track)

is consistently better than when modeling the global task time with Fitts’ law (r2 = .87,

.87 and .87 respectively). Since this could be due to our model having two parameters

instead of one, we computed the Akaike Information Criterion with correction (AICc)4[1].

The results confirm that our model provides a better fit. We also note that the intercepts

for two of the Fitts models are negative, and quite large in the case of Laser+Position,

which typically indicates a problem.

Regarding our model, the constants in the regressions confirm that Laser+Gyro and

Laser+Position are similar (prediction P1 ), with a slight advantage for Laser+Gyro in

the precise phase. They also show a high intercept (a) for Laser+Track , indicating that

4This criterion measures the relative goodness of fit of a statistical model and assesses overfitting, i.e.,
increasing the number of free parameters to improve the goodness of the fit.
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participants had problems with this technique. We also observe that bp is consistently

higher than bc, which contradicts our assumption that Fitts’ law parameters a and b are

the same in both phases (Section 5.1.1, page 125). Users seemed to have more difficulty

with the Precise mode, maybe due to mental readjustment caused by the change of input

modality from Coarse to Precise. This discrepancy could affect the computation of L,

which could itself affect overall performance. It is also consistent with the empirical value

d = L/8 that provided the best fit with our model (Equation 5.17): a smaller L would

probably have led to more time spent in coarse mode and less time spent in precise mode.

However such adjustments probably depend on the techniques used in each mode and on

individual user performance.

5.2.6 Mode Switches

These analyses were only performed on Laser+Gyro, Laser+Position and Laser+Track .

In some cases and despite our instructions, participants chose not to switch modes and

perform the task in Coarse mode only (5 %). We call this behavior “coarse-only”. We

observe a significant effect of Width (F3,33 = 4.13, p = 0.0136), Amplitude (F2,22 = 5.8,

p = 0.0095) and Width×Amplitude (F6,66 = 5.12, p = 0.0002) on the number of such trials.

Unsurprisingly, participants performed more pointing tasks “coarse-only” with the largest

targets Widths (30 mm) than with the two smallest ones (4 and 7 mm), Width=15 re-

maining not significantly different in between. More interestingly, participants finished

more trials “coarse-only” with the smallest Amplitude (637 mm) than with the two other

Amplitudes. Finally, the combination (Amplitude = 637,Width = 30) caused signifi-

cantly more of this behavior than any other condition. In the following analyses of mode

switch occurrences we removed the trials with no mode switch. Switch Time and MS

Distance are measures related to the first mode switch. In order to discard data from

erroneous first mode switches we also excluded the trials with MS Distances greater than

3× L (13 %).

We observed no significant effect of Technique on Switch Time. Unsurprisingly, Switch

Time increases significantly with Amplitude (F2,20.86 = 147.96, p < 0.0001). However we

also found a significant effect of Width (F3,32.33 = 8.84, p = 0.0002), in contradiction with

prediction P5. This is surprising since the size of the Coarse mode “target”, L, does not

depend on the actual target Width. The post-hoc test reveals that users took more time

to switch modes with target Widths of 4 and 7 mm than of 15 and 30 mm.

Similarly, we did not observe any effect of Technique on MS Distance. However, we did

observe one for Width (F3,32.69 = 4.72, p = 0.0076) and Amplitude (F2,21.99 = 9, p = 0.0014).
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Figure 5.9: Mosaic plot of the subjective results for Exp. 2. The height of a box represents
the number of participants that used this grade or rank overall (regardless of the technique). The
width of a box represents the proportion of a particular grade or rank for a given technique.

Participants switched modes further away from the target with Amplitudes of 3187 and

1912 mm than with the smaller Amplitude 637 mm. Participants also switched modes

further away with the largest target (30 mm) than with the two smallest (4 and 7 mm),

Width=15 remaining not significantly different in between.

We computed the time spent in precise mode as Precise Time = Pointing Time - Switch

Time and found a significant effect of Technique (F2,19.19 = 11.57, p = 0.0005) and Width

(F3,28.33 = 81.48, p < 0.0001). Unsurprisingly, Precise Time with targets of 4 mm were

slower than targets of 7 mm, which were slower than targets of 15 and 30 mm. More inter-

estingly, Laser+Gyro caused shorter Precise Time than Laser+Position and Laser+Track .

Finally, we observed that Switch Time follows Fitts’ law with the model Switch Time = a+

b×log2

(
1 + Amplitude

L

)
with goodnesses of fit equal5 to 1 for Laser+Gyro and Laser+Position

and 0.99 for Laser+Track .
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5.2.7 Subjective results

A Pearson χ2 test shows that there is a significant effect on Mental Effort, Accuracy,

Comfort, Easiness and Ranking for Technique. 6 participants graded mental effort for

Laser+Track as High or Too high, and all 12 graded all other techniques Normal (3) or

below. 6 participants graded precise pointing with Laser+Track and GyroAcc as Difficult

or Very difficult and 9 graded it Easy or Very easy with Laser+Gyro and Laser+Position.

10 participants graded Laser+Track Uncomfortable or Very uncomfortable. 10 and 7

participants respectively graded Laser+Gyro and Laser+Position as Comfortable or Very

comfortable, partially supporting prediction P2. 10 participants graded Laser+Position

and Laser+Gyro as Easy or Very easy and 10 graded Laser+Track as Normal (3) or

below. Finally, 8 participants preferred Laser+Gyro overall, 2 preferred Laser+Position,

2 preferred GyroAcc and none preferred Laser+Track . Overall, these results are consistent

with the quantitative analysis.

5.2.8 Discussion

5.2.8.1 Coarse and Precise phases

Based on our results, we hypothesize that users adapt their Coarse pointing phase depend-

ing on the expected difficulty of the Precise phase in order to optimize general pointing

time. Indeed, despite being functionally unrelated to target Width, the Coarse phase

lasted longer with, and ended closer to, the smaller targets. We suppose this behavior was

intended to make smaller targets easier to acquire by lowering the amplitude of the Precise

phase. Participants also switched modes closer to the target when they had smaller Am-

plitude to go through, possibly capitalizing on a normally shorter Coarse phase to switch

modes closer to the target.

Despite comparable Switch Time and MS Distance, participants spend less time in Precise

mode with Laser+Gyro than with the other two dual-precision techniques. We hypothesize

this is due to the angular control of the precise mode of Laser+Gyro, which is closer to

the Coarse mode (ray-casting) than with Laser+Position and Laser+Track . Similarly,

participants sometimes avoided switching mode with small Amplitude and large target

Widths. We hypothesize they tried to minimize pointing time by neither switching modes

nor adapting their input to the Precise phase control.

5Rounded at two decimals.
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5.2.8.2 Techniques

GyroAcc was generally perceived as imprecise, which is consistent with the quantitative

results. More precisely, despite the fact that it was the fastest technique to reach the

target, contradicting prediction P4, it caused more crossings and clicks outside the target

than the other techniques, especially with very small targets. This indicates that users

could easily perform fast, coarse pointing but that stabilizing the cursor over a small target

was too difficult. GyroAcc was also the worst for Recalibration, i.e., the offset between

the hand-held device and the cursor often became quite large. This means that in real

situations users will probably have to recalibrate the position of the cursor to the input

device, i.e., clutch and loose time when going back from a precise pointing task to a coarse

one. However, GyroAcc performed well in both speed and accuracy for Widths of 7 mm

and higher, indicating that pointing tasks of this difficulty can be performed without

explicitly trading speed for precision. From both the quantitative and qualitative results,

we suggest that GyroAcc be used when targets are consistently larger than 7 mm (about

18 pixels on a 100ppi display).

Laser+Track was the slowest and least preferred technique overall. Despite having the

same coarse mode as the other dual-mode techniques, it was the slowest for Reaching and

caused the most clutch; it also caused many Crossings, meaning that the Precise mode is

neither precise nor fast enough to compete with other dual-mode techniques. In addition,

it was not better for recalibration time, contradicting prediction P3 (we expected that its

precise mode would cause smaller displacements of the absolute cursor). These results are

consistent with participants’ opinion: hard to use, imprecise and uncomfortable. Part of

this may be due to the following problem: 5 participants reported that lifting the finger

from the tracking zone of the device (zone 1) caused a loss in precision despite our finger-

release adjustment, and that they would have preferred a physical button. An improvement

could be to implement the precise mode of Laser+Track with an input device that couples

finger tracking with physical actuators, such as Apple’s Magic Mouse or Microsoft’s Touch

Mouse.

Laser+Gyro and Laser+Position had very similar results, supporting prediction P1. They

caused almost no TimeOuts, meaning that they were able to withstand very difficult tasks

such as those in the experiment. They were also the most stable (best for Crossings) and

fastest techniques overall. They were both perceived as precise, comfortable and easy to

use. Laser+Gyro was the preferred technique and had a slight advantage when pointing

at very small targets, which is consistent with prediction P2.

It is interesting to note the sudden decrease in performance of GyroAcc for the smallest

targets. This supports our hypothesis (Section 4.3.6, page 120) that there is a limit to
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the output range of continuous transfer functions above which the steepness of the curve

makes it difficult to control the transition between fast and precise movements. While this

particular theory should be evaluated further, we can at least observe that dual-precision

techniques do not have such a limitation since the transition between modes is discrete.

Equation (5.11) shows that, in most cases, the theoretical limit of difficulty of dual-mode

techniques (18.97 for Laser+Gyro, i.e., targets of 0.01 mm on a 5.5-meter wall display) is

higher than human visual acuity.

5.2.9 Comparing single- and dual-mode techniques

In order to demonstrate the effectiveness of dual-precision techniques with respect to

single-mode ones, we compared the techniques in Exp. 1 and Exp. 2 for Pointing Time

and Misses for the conditions common to the two experiments: Amplitude = 3187 mm

and Width ∈ {7, 15, 30} mm. For both measures we found a significant effect (p <

0.0001) of Technique, Width and Technique×Width. Measures for GyroAcc are reported

separately as GyroAcc1 for Exp. 1 and GyroAcc2 for Exp. 2 because the more challenging

conditions in Exp. 2 called for different transfer functions in order to make smaller targets

reachable (see Sections 4.3.2 and 5.2.1).
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Figure 5.10: Pointing Time (a) and Misses (b) for all Techniques and for similar difficulties.

As expected, Misses and Pointing Time increase significantly when Width decreases. As

shown in Figure 5.10.a, RayCasting and Gyro are significantly slower than all other tech-

niques (means 6846 and 6018 ms). The next slowest technique is GyroAcc1 (4527 ms),

although Laser+Track (4152 ms) is not statistically different from it and from the remain-

ing techniques. The pattern for misses is similar (Figure 5.10.b). RayCasting (mean 1.84)
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causes the most misses, and Gyro and GyroAcc1 (means .95 and .61) cause significantly

more misses than the techniques in Exp. 2. For Width = 7 mm, the techniques in Exp. 2

significantly outperform those in Exp. 1 for both time and error. For Width = 15 mm,

RayCasting and Gyro significantly underperform compared to all other techniques.

These results show that techniques that either are absolute or use a constant transfer

function (CD gain) are less efficient than dual-mode techniques or those using dynamic

gains, even for easily reachable targets. It may be surprising that dual-mode techniques

with an explicit mode-switch perform better than RayCasting or GyroAcc for Width

= 30 mm since Exp. 1 showed that RayCasting had enough precision to reach those

targets. Based on the error rates of both experiments and on the Crossings measured in

Exp. 2, we suggest that switching to the Precise mode makes the click more stable: it

reduces the impact of the tremor caused by clicking as well as the crossings and clicks

outside the target.

5.3 Implications for design

Pointing techniques focus on increasing the speed and precision of a single task, target

acquisition. However, as for desktop environments or mobile devices, interacting with a

large wall display requires users to perform additional actions. For example, it must be

possible to select a target once it has been acquired, to specify an arbitrary area of the

display, to invoke and interact with visual widgets, or to navigate a large scene by panning

and zooming. Integrating such actions with a mid-air pointing technique requires careful

design in order to retain the benefits of the pointing technique while keeping the other

interactions simple and effective. The rest of this section analyzes several approaches for

this integration, as well as the compatibility of our dual-mode techniques with existing

pointing facilitation techniques.

5.3.1 Integration with other basic interactions

Some pointing techniques embed their own specific action triggers, e.g. the VisionWand

gestures [41]. For others, such as ray-casting, the selection mechanism depends on the

devices at hand such as wireless mice, Wii remotes, etc. With the latter, interaction de-

signers may still have to define how to perform these vocabularies of actions with sometimes

limited input channels, while not hindering performance and user preference.

Invoking commands before, during or after pointing in mid-air can be achieved by a variety

of techniques:
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• Hand positions [21, 163] can be mapped to a set of commands. Current vision-based

approaches are easy to set up and allow large vocabularies, however the recognition

algorithms are not perfect, requiring techniques to disambiguate or correct input.

Moreover, changing the position of the hand can hinder pointing precision unless

a separate input channel, such as a hardware button, is used to segment pointing

from position detection. These approaches also require the interaction space to be

fully covered by the cameras, with high-enough resolution to detect hand positions

accurately. In the context of large high-resolution displays where multiple users may

walk around the interactive room, a full yet precise coverage of the whole area can

be hard to achieve, especially because of visual occlusion.

• Hand or cursor gestures, such as pigtails [84], also support large vocabularies that can

help remembering the corresponding command, e.g., a pinching gesture for rescal-

ing. However users must learn the gestures and the recognition algorithms must be

sufficiently accurate. In addition, performing such gestures after the pointing move-

ment requires additional time and can be tiring when performed many times with a

stretched arm. As with the previous approach (hand positions), this approach also

typically requires a separate channel, such as a hardware mode switch, to segment

gestures from pointing movements.

• Dwelling [125] can be used to trigger several commands, e.g. depending on the

duration of the dwelling action. It uses no additional input channel and causes minor

hand tremor, however the vocabulary is more limited than for the other approaches.

It also requires extra time and can sometime be confused with a user hesitation

or slow movement, the latter being common when pointing at very small targets.

Choumane et al. [52] addressed this problem and propose Buttonless Click, a method

based on trajectory and kinematic gesture analysis to discriminate selection, pick and

release tasks.

• Crossing [4] uses the trajectory of the movement to trigger targets, and therefore does

not require another input channel. However, crossing techniques are by definition

target-aware since the system needs to know the position of the targets to determine

which ones, if any, are crossed. Crossing is therefore outside the scope of this paper.

• Mobile touch screens such as smartphones can accommodate a number of virtual

buttons, sliders and other widgets controlled with the thumb. However the number

of such widgets that can be reached easily without looking at the device is limited.

In addition our results show that interacting on a hand-held touch screen device

whose location is tracked for pointing causes pointing tremor.

• Physical devices, e.g., mice and remote controllers such as the WiiMote, feature
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Figure 5.11: Trade-off between reliability and number of commands for one-handed selection and
other pointing-related commands. Number of commands are rough estimates. The purple dotted
line represents (informally) the corresponding front.

multiple physical buttons and wheels that take very little time to operate and work

reliably anywhere in the room. However some of these devices can be cumbersome

to hold, especially for long periods of time, and they prevent the use of other devices

in the pointing hand.

We observe a trade-off between expressiveness and reliability for these different approaches,

as illustrated in Figure 5.11: dwelling and physical buttons cause little to no pointing

tremor and are very reliable, but they accommodate a limited vocabulary of commands.

Hand and thumb gestures can offer many more commands but depend on the accuracy

of the recognition algorithms. They also cause hand tremor and some of them require an

additional input channel to distinguish between pointing and triggering commands.

In most of our techniques we chose to use mice buttons for target acquisition and mode

switching because our studies were performance-driven: buttons generate very little hand

tremor and can be triggered quickly. Because they are so widely used, mouse buttons

require no learning and can be mapped to commands as in desktop environments. Since

one button must be dedicated to the mode switch, applications that require dual-mode

pointing and more than two other discrete commands cannot be controlled with a regular

3-button mouse without using one of the above techniques6. In order to give access to

larger command sets, interaction designers can use dual-precision pointing techniques with

any of the above trigger mechanisms, which they should select according to the trade-off

between speed, precision and size of the command set.

6 Note however that many mice on the market, designed for games, feature more than three buttons.
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5.3.2 Compatibility with pointing facilitation mechanisms

As for most target-agnostic pointing techniques, dual-mode techniques can be combined

with pointing facilitation mechanisms, i.e. techniques that attempt to decrease movement

time either by reducing the task amplitude, increasing the target width, or a combination

of both. Zoom-and-pick [62] uses hand-held projectors to make accurate selections by

locally distorting the region around the cursor. Foehrenbach et al. [61] tried to enhance

freehand pointing with tactile feedback but had limited success. The WorldCursor [174]

uses a special wand and a laser projector that provides feedback about where the system

thinks the user is pointing. Both Frees et al. [67] and König et al. [103] transpose the idea

of dynamic control-display gain adaptation to ray casting, the former – called PRISM – in

the context of 3D object selection in immersive virtual environments, the latter for large

displays.

Except for Drag-and-pop [22] and the Vacuum [29], most target-aware pointing facilitation

techniques have been designed for the desktop [17]. Since they often make few assumptions

about the physical input device used for pointing, they can be adapted to facilitate distant

pointing. For example, the Bubble cursor [71] uses proximity to differentiate between

potential targets. Combined with a dual-precision technique, it could prevent the use of

the Precise mode in areas with few potential targets, thus avoid mode-switch and mental

adjustment times. Other techniques that could be considered include Expanding targets

[120], the Adaptive Hybrid Cursor [146] and DynaSpot [47]. The present work focuses on

generic, target-agnostic pointing techniques, thus all of our resulting techniques could be

coupled with efficient pointing facilitation mechanisms.

5.4 Conclusion and Future Work

In this chapter we investigated a family of dual-precision pointing techniques. We intro-

duced a model for predicting pointing time, a method to calibrate the techniques and

formulae to compute the theoretical limits for their usage. We implemented three one-

handed techniques and thoroughly detailed their design and settings. We compared their

performance, error rate and user preference, and showed that targets as small as 4 mm

(16 px) can be acquired reliably when standing 2 meters away from the display. In com-

parison, the smallest targets studied in previous work were at least four times as large.

Our results show that dual-mode techniques perform better than classical techniques for

targets smaller than 30 mm (15 mm for GyroAcc), and that a good precise mode is cru-

cial for both performance and user acceptance. The best techniques combined ray-casting

with either device rotational (Laser+Gyro) or translational (Laser+Position) movements
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in precise mode, with a slight participant preference for Laser+Gyro.

Finally we presented recommendations for the integration of our pointing techniques with

other basic interactions such as clicking, dragging and invoking widgets, as well as with

existing pointing facilitation techniques.

All the dual-precision techniques developed and tested in this chapter had similar modes:

Coarse pointing was performed using ray-casting and Precise pointing was using a constant

CD gain. However ray-casting is perspective-dependent and thus looses accuracy with high

eccentricities. Similarly, as shown in the experiment in Chapter 4, Pointer Acceleration

performs better than constant CD gains for identical input channels. One could thus

wonder if precise mode could not be made more efficient by using Pointer Acceleration. I

will investigate these questions in the next chapter.

This chapter studied one-handed pointing techniques that favor the Maximizing limb usage

strategy of the Task Allocation taxonomy from Chapter 1, on the basis that in both

combinations of techniques studied in Part I, separating pointing from other simultaneous

interactions performed best. The next chapter will be dedicated to another strategy of

this taxonomy, Factorizing task allocation. It will explore touch-based pointing techniques

performed from hand-held devices, such as tablets and smartphones, that allow other

widgets to be displayed on the same input surface.
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Chapter 6

Dual-Precision Techniques on
Touch Devices

1

6.1 Introduction

Touch input on a tablet or a smartphone screen has been evaluated and used for pointing

in a number of previous studies [119, 140, 33]. Some of these works have successfully

investigated mid-air pointing with a touch-screen for large displays but were often limited

to low-resolution ones. For example, ARC-Pad [119] enables both absolute and relative

pointing on a large display via the touch-screen of a mobile device. Alternatives include

using sensors on the mobile device, such as tilt [140] or the phone’s camera [33]. With

Touch Projector [33], users aim the camera at the display of interest and manipulate its

content by touching and dragging content on the screen. The techniques we have designed

use some of these approaches for remote control of the cursor.

In Chapter 4 we showed theoretically that a smartphone screen does not provide enough

input resolution to acquire small (visible) targets on an ultra-high-resolution wall-sized

display, at least with a static CD gain; this is also true for tablets: even the latest tablet

displays feature almost 45 times fewer pixels than a display such as WILD (Appendix A).

We intend to use the smallest possible input area from a tablet or smartphone to allow for

other interactions, so we expect that users will need several levels of CD gain. To address

this problem we investigate three ways to augment the input expressiveness of a touch

area: using additional input channels, using two modalities for touching the handheld,

and using tuned velocity-based transfer functions.

1A subset of this chapter has been published at the CHI’13 conference (not yet in the proceedings)).
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Figure 6.1: Interacting with a wall-sized display using a tablet that features both control widgets
and an area dedicated to high-precision remote pointing (top-left).

6.2 Techniques

We consider contexts of use where the primary purpose of the handheld device is to

accommodate widgets for the advanced control of objects selected via pointing. The

physical area dedicated to pointing on the device, or pointing zone, should therefore not

be too large. However, if too small, pointing will be inefficient. Our goal is to identify the

best trade-off between screen real-estate allocation and good pointing performance.

In the previous two chapters, we investigated two approaches to provide fast and high-

precision pointing. Pointer Acceleration functions dynamically adjust the control-display

(CD) gain based on the velocity of the user’s movements. Dual-precision pointing lets

users explicitly switch between different CD gains, typically between a Coarse mode that

allows fast repositioning of the cursor across large distances, and a slower but more Precise

mode that users can engage when they want to adjust the cursor position to acquire a

very small target.

We showed in these chapters that the main challenge when designing dual-precision tech-

niques is to seamlessly integrate the two modes so that the mode switch minimizes cognitive

and/or motor costs. All the techniques presented in this chapter assign the Precise mode

to single-finger drag gestures performed with the dominant hand in the pointing zone.

Given our Requirement 2 (Location independence), and since the non-dominant hand

will typically hold the device [167] in a way considered comfortable by the user, this leaves

two main options for the Coarse mode:
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• Use the dominant hand in both modes but in two different configurations that are

easily differentiable by the system;

• Use a different body part for the Coarse mode, that does not impair the control of

the Precise mode.

We experimented with several options. Eventually, we identified a subset of two viable

assignments through iterative design, prototyping, piloting and tuning: double-finger drag

gestures with the dominant hand in the handheld’s pointing zone, and head orientation.

Both approaches are detailed below.

6.2.1 Two-finger pad-based coarse pointing

This approach is inspired by ARC-Pad [119] (Absolute+Relative Cursor Pad), a pointing

technique that provides users with an absolute and a relative pointing mode. A typical

ARC-Pad pointing task is composed of a tap (press-release) on a touch-sensitive handheld

device, followed by a dragging gesture. The tap gesture coarsely positions the cursor on

the large display according to an absolute mapping of the handheld device’s surface to

the large display. The following drag gesture is interpreted as relative movements of the

cursor to adjust its position. The original technique was designed for, and evaluated on,

much lower-resolution large displays than those considered here. It proved very difficult to

use on ultra-high-resolution walls, mainly because in that context the absolute mapping is

far too imprecise and often requires either several attempts (taps) in coarse mode to move

the cursor close enough to the target, or several relative-mode drag gestures to adjust

the cursor’s position, causing much clutching in the second phase. We thus adapted the

original technique so that users can adjust the location of their cursor in absolute mode.

We named this variation of the original technique ARC-Pad2.

ARC-Pad2 distinguishes between absolute and relative pointing by the number of fingers

involved in performing the pointing gestures rather than by the type of gesture performed.

A single-finger drag gesture controls the cursor in relative mode (as before); a drag gesture

performed with two conjoined fingers [99] is interpreted as absolute positioning of the

cursor. As opposed to the original method that relied on tap gestures for absolute mapping,

users can now adjust the cursor position in absolute mode by dragging with the two fingers,

and then switch to relative mode for more precise, relative adjustments of the cursor

position. The switch from absolute to relative mode is triggered whenever at least one of

the fingers is lifted from the pad’s surface. This means that users can either lift a single

finger at the current location and continue dragging, or they can lift both fingers, adjust

their hand position relative to the pad, and touch anywhere on the surface with a single
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finger. This second option can be very useful when pointing at a target near the edges

of the display, as it allows users to initiate relative drag gestures from the center of the

pointing zone, in any direction.

We considered the symmetric approach, i.e. one finger for coarse pointing and two for

precise pointing, but preliminary tests showed that lowering a second finger in order to

switch to precise mode may cause the finger to fall out of the input area when the target is

near the display borders. This has either no effect if the finger did not reach an interaction

widget outside the pointing area, or it can trigger unwanted commands. In both cases users

may wonder why lowering their finger did not have the expected effect and look at the

input device, thus loosing their focus (going against Requirement 5). Leaving the input

area when using two fingers is less likely to happen in Coarse mode since it uses an absolute

mapping: users always have a feedback of their fingers’ location on the input area through

the position of the cursor on the display.

6.2.2 Head-based coarse pointing

The second viable approach that we identified for Coarse control makes use of the natural

head movements that occur when remotely pointing at targets on a wall.

Object selection is often preceded by a visual search when the target is not located in the

user’s immediate field of view. Head orientation provides a good approximation of where

a user is looking [158, 66, 130]. Head movements can also be exploited in conjunction with

any positioning device used in the environment [100, 130] and has been shown to support

a variety of interaction techniques [100, 123, 102]. Our approach integrates head motion

with cursor selection. It was inspired by Ashdown et al. [8], who use head orientation for

positioning a cursor on the monitor of interest, thereby reducing mouse trips in a multi-

monitor setup. We provide a framework for designing target selection techniques that

use head orientation, based on the results of a study of head and body orientations when

acquiring targets in mid-air on a wall-sized display (Appendix C).

Stellmach and Dachselt [159] took a similar approach using gaze instead of head orienta-

tion. They introduce four techniques that follow a common design guideline: gaze suggests,

touch confirms. While their results are promising, they did not compare their design to

existing techniques, and only evaluated it in desktop environment. Wall-sized displays fea-

ture much greater sizes than desktop screens, regardless of pixel density. While desktop

screens can often be skimmed through with minimal movement other than the eyes’, wall-

sized displays may require much larger head rotations. Confirming prior work [92, 178],

we observed in the study described in Appendix C that users consistently stabilize their
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Figure 6.2: Varying angular motor size with ray-casting (a) can be fixed using an indirect absolute
mapping (b).

gaze and lock it on the target while acquiring it. While tracking the users’ gaze is not a

practical option in our context, we found head orientation to be a good coarse indirect

indicator of where users are looking2, and thus a good predictor of the rough location of

the next target on the wall display.

Our technique controls the cursor’s location in Coarse mode through an absolute but

indirect mapping of head orientation to cursor position on the wall. We favored an in-

direct mapping over direct ray-casting (or laser pointing) for two reasons. First, being

perspective-based, this method would have caused targets of the same size on the display

to have noticeably different motor sizes depending on their location with respect to the

user’s physical position, as illustrated in Figure 6.2-a (this effect gets amplified as users

get closer to the display). We also wanted to optimize the users’ input operating range,

within the limits of comfortable neck positions.

As illustrated in Figure 6.2-b, we addressed these issues by mapping a location-independent,

fixed-size angular operating range centered on the orthogonal projection of the user’s loca-

tion on the flat display surface. This ensures that when users move in front of the display,

looking straight ahead always sets the cursor exactly in front of them. As they look fur-

ther away, the cursor is progressively offset from the direction of the head (up to 12.5◦,

see Figure 6.3), accounting for the extra rotation of the eyes. This offset makes it possible

to point at targets on the sides of the wall comfortably while maximizing accuracy in the

central area.

This is an absolute yet indirect technique with a constant resolution function [42]: all

targets with the same display size have the same motor size. Its precision directly depends

on the operating range of the input channel, which cannot be endlessly extended. The

limit is the angular range users can reach with their neck with minimal discomfort and

minimal difference between eye and head orientation. Increasing the angular operating

range makes small targets easier to acquire, but amplitudes become larger. This solution

2When a target is off-centered relative to the default head position, users rotates their head in order to
minimize the effort put on ocular muscles [66].
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Figure 6.3: Angular abscissa of the cursor depending on the horizontal orientation of the head.
Offset represents the difference between the head orientation and the cursor angle.

favors mid-air interactions since target motor sizes no longer depend on distance.

6.2.3 Cost of Switching

In the previous chapter we observed that the Precise phase of a pointing task affects how

users’ behavior perform in Coarse mode. Participants typically spent more time adjusting

the location of the mode switch when the Precise phase looked challenging (i.e. smaller

targets) or when the Coarse phase looked easy (i.e. small pointing amplitude). In the

easiest cases they even skipped the Precise phase and achieved the selection in Coarse

mode only. However this optimization behavior occurred in only 5 % of the trials and we

did not find significant evidence of improved performance. The Coarse phase was originally

designed to embody the initial, ballistic phase of a pointing task. While fast, unconstrained

Coarse movements showed signs of accuracy optimization and thus of additional cognitive

cost.

This raised a question that we had not anticipated: beyond minimizing the motor cost

of switching between modes, is it possible to minimize the cognitive cost associated with

making the decision to switch between the two modes?

We explored an approach where the cognitive load is transferred to the perceptual system,

hypothesizing that this would significantly reduce the switching cost. We designed vari-

ations of the above techniques that artificially limit the precision of the Coarse pointing

mode: users approach the target fast and know when to switch to precise mode simply be-

cause there is no other option. We discretized the wall display according to its constituent

30” LCD panels arranged in an 8×4 matrix. In Coarse mode, users could only jump
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from screen to screen. We call this process discretization to emphasize that the pointing

resolution in Coarse mode is artificially degraded while keeping the same physical input

resolution.

The resulting technique, when coupled with Head control, is somewhat reminiscent of the

Rake cursor [31, 141] and similar multi-cursor desktop pointing techniques that use eye

gaze to select the active cursor in a matrix of cursors all controlled with the same input

device, such as a mouse. However we chose to always relocate the cursor at the center of the

currently head-pointed screen when in Coarse mode, as opposed to keeping its last Precise

location relative to the screen. We expected users to always remember where they had

left their cursor when they last switched to Coarse mode and to be able to take advantage

of it. Preliminary tests showed otherwise, and we found that having the Precise cursor

start at a constant location (relative to the screen where the mode switch occurred) yields

better performance and is less cognitively demanding. Having the Precise mode start at

the center of the screen also provides a constant average distance between the cursor and

any target in that screen. Jumping to another screen thus puts the cursor at the center of

that screen, and users have to switch to Precise mode to reposition the cursor within it.

6.2.4 Cursor Feedback

Figure 6.4: Cursor of the Discrete techniques in coarse mode. The precise cursor (red cross) is
located at the center of the screen currently pointed at, which is highlighted (white, 5% translu-
cency). A translucent proxy (white circle, 2% additional translucency) indicates the location of
the continuous pointing input in order to enable users to anticipate when the pointed screen will
change.

We use a red cross for the cursor and additional feedback in coarse mode. For the Contin-

uous techniques we simply surround the cursor by a red circle. As in Chapter 5, the size

of the circle gives users an indication of how far from the target they can bring the cursor

in precise mode.

For the Discrete techniques, in coarse mode the visible cursor is a red cross always located
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at the center of the pointed screen and the currently pointed screen is slightly highlighted

(Fig. 6.4). Preliminary tests showed that users also need to know how close they are

to switching screens. If not, screen flickering may happen that can cause imprecise mode

switch location. A translucent disc (Fig. 6.4) is added to provide feedback about the exact,

continuous location pointed by the coarse technique so that users know how close they are

to leave the current screen. We tried other feedbacks such as highlighting the border of

the screen when the user is about to change screen, but these indirect feedbacks require

more attention to be understood than a simple proxy of the pointed location. The screen

highlight and the proxy of the continuous pointing location are meant to be background

feedback, thus their opacity is low (5% for the screen combined with 2% for the proxy).

6.2.5 Four dual-precision pointing techniques

We eventually narrowed our design down to four pointing techniques by combining the

two coarse input control techniques (pad-based vs. head-based) with two coarse mode

input precisions (continuous vs. discretized). As mentioned earlier, all four techniques use

the handheld device’s pointing zone to control the cursor in Precise pointing mode with

optimized CD-gain transfer functions.

• ARC-Pad2 + Continuous = ContPad: two conjoined fingers in the handheld’s point-

ing zone activate Coarse mode (absolute mapping of the zone to the wall); a single

finger activates Precise mode (relative cursor displacements).

• ARC-Pad2 + Discrete = DiscPad: same as above but pointing precision in Coarse

mode is artificially restricted: the cursor can only get positioned at the center of any

given LCD panel, requiring a switch to Precise mode for any further cursor position

adjustments.

• Head + Continuous = ContHead: head orientation provides Coarse control of the

cursor, without any artificial restriction on pointing precision. Touching the point-

ing zone on the handheld automatically switches to Precise mode (relative cursor

displacements).

• Head + Discrete = DiscHead: same as above, but pointing precision in Coarse mode

is artificially restricted. Head orientation can only make the cursor jump to the

center of any given LCD panel, as in the case of DiscPad.

With ARC-Pad2 techniques, the cursor only moves if one or two fingers touch the screen,

allowing users to easily perform clutch and tap gestures. However Coarse mode is the

default mode for Head techniques: as long as the user does not touch the handheld’s

screen, the cursor follows the user’s head movements. Head-based techniques thus feature
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Figure 6.5: The four dual-precision techniques. (A) The three combinations of device and pointing
zone used in our experiments: tablet with large zone (Experiments 1 and 3), smartphone with small
zone (Experiment 2) and tablet with small zone (Exp. 3). (B) The four coarse (absolute) modes,
combinations of Head vs. ARC-Pad2 and Discrete vs. Continuous. (C) In all cases, using a single
finger in the pointing area switches to precise (relative) mode.

a 500 ms delay after finger release from the handheld’s surface before switching back to

coarse mode, letting users perform clutch and tap gestures.

6.3 Control-Display Transfer Functions

All the techniques introduced above use relative pointing in either or both modes. As

mentioned earlier in this chapter, a simple absolute mapping from the handheld device

to a ultra-high-resolution wall display does not work, because one pixel on the handheld

maps to several dozen pixels on the wall, even if we were to make the pointing zone full-

screen. Pointer Acceleration consists in applying a transfer function to the Control-Display

(CD) gain based on the dynamics of the users’ movements. We showed in Chapter 5

that mid-air angular relative pointing, if tuned appropriately, could be a viable candidate

for high precision pointing on wall displays. We expect touch-sensitive tablets to also

enable users to point precisely with carefully tuned Pointer Acceleration functions. As

mentioned earlier, optimizing the transfer function that controls Pointer Acceleration for

ultra-high-resolution wall displays is challenging and the previous literature about tuning

a transfer function in a specific context (here ultra-high resolution wall-sized displays) is

scarce3. The acceleration functions implemented in major operating systems have been

parameterized for desktop environments [44]. They work for single- and multi-monitor

display configurations, but are not adapted to ultra-high-resolution walls, which typically

3A recent study from Roussel et al. [148] partially addresses this problem, but was published after the
work described here was conducted.
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Figure 6.6: An example of logistic sigmoid curve (large zone RelaLarge). In this example Vmin=
0.006, Vmax= 0.37, CDmin = 0.22, CDmax = 43.1, λ = 20 and ratioinf= 0.5.

feature a 200 to 400 inches diagonal and a very high resolution, e.g., 20 480 × 6 400 for

the WILD room (Figure 6.1). Beyond recent work by Casiez et al. [44, 43] that provides

a general framework but does not address contexts such as ours, the only documented

calibration methods are those related to PRISM [67] and its subsequent refinements [104,

69]. These calibration methods, however, were designed to support absolute-to-relative

transfer functions that enable pointing techniques that feature an implicit switch between

absolute and relative pointing. While we later compare our techniques with the latest

developments in this area, their calibration methods are of little use for tuning our transfer

functions.

In this section, we propose a method to calibrate those functions. In our context, Pointer

Acceleration must be adapted to enable relocation of the cursor across the display (corre-

sponding to amplitudes of up to 22 000 pixels) at high input speeds, minimizing clutching

by setting the CD gain to a high value. Conversely, CD gain must be set to a low value

at low input speeds so as to enable high-precision cursor control.

Some operating systems use sigmoid transfer functions [44, 43] that are characterized by a

slope that smoothly gets steeper before decreasing again, as illustrated in Figure 6.6. The

lower slopes at both ends of the curve enable higher precision at low input velocities and

bound cursor speed.

To model such curves, we use a simple form of the generalized logistic function:

CD(x) =
CDmax − CDmin

1 + e−λ(x−Vinf )
+ CDmin (6.1)

where

Vinf = ratioinf .(Vmax − Vmin) + Vmin.

This function can be tuned with six parameters:
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Figure 6.7: Examples of curves with the same values for Vmin, Vmax, ratioinf , CDmin and
CDmax , and a varying λ. The red, blue and green curves feature decreasing values for λ. The
values of the function at the extremities of the input range (small circles) illustrate the effect of λ
on the reachability of CDmin and CDmax .

• Vmax and Vmin bound the input range of the function by specifying lower and upper

velocities beyond which accurate control becomes difficult. Defining the curve outside

of this range makes little sense since it represents velocities harder or even impossible

to reach precisely.

• ratioinf positions the function’s inflection point within this range: 0 sets the inflexion

point above Vmin, 1 sets it above Vmax and 0.5 sets it in between. We preferred using a

ratio rather than absolute values because the input velocity range is already defined.

• CDmax and CDmin are asymptotic values that define the output range of the func-

tion. They depend on the task (Amax and W min) and on users’ perceptions.

• λ defines the curve’s slope at its inflection point:

CD′(Vinf ) =
λ× (CDmax − CDmin)

4
(6.2)

λ = 0 yields a constant function, λ =∞ a step function.

λ is a trade-off between the smoothness of the curve and how close to CDmin and CDmax

the resulting transfer function can go within the input range [Vmin;Vmax]. Low values (Fig-

ure 6.7, green) make for smoother curves but CDmin and CDmax are harder to approach.

High values (Figure 6.7, red) increase the effective output range of the function but make

it steeper, and thus possibly harder to control around the inflexion point.

We tune these parameter values as follows:

1. Vmin and Vmax are respectively the 90th quantile and the median of two corpora of

velocities corresponding to voluntarily slow and fast finger movements on a tablet;

2. CDmin maps a lower bound for input movement amplitude that is considered usable
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for selecting a target (the equivalent of 100 input pixels) to the minimum target size

W min :
W min

100× resdevice

The initial value for CDmax is the maximum pointing amplitude, i.e. Amax for mode-

less techniques or the expected Precise mode amplitude L (see Chapter 5) for precise

modes, mapped onto the input zone width:

Amax or L

widthinput

3. ratioinf defines how “early” (or “late”) the inflexion happens in the user’s velocity
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earlier (low value) means that more of the input velocity
range (higher part, blue) is dedicated to fast cursor move-
ments, making them more controllable than precise ones;
users must be able to finely control their slowest input
motions (red) so that small targets are still reachable.
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later (high value) means that more of the input ve-
locity range (lower part, blue) is dedicated to precise
cursor movements, making them more controllable than
fast ones; users must be able to perform movements fast
enough (red) to travel through the highest amplitudes.

4. λ is directly proportional to the curve’s maximum steepness (Equation 6.2, Fig-

ure 6.7). It should be as low (smooth) as possible while allowing cursor move-

ments both fast and slow enough to perform the worst-case pointing tasks without

clutching. If this output range cannot be achieved without resulting in a step-like

function around the inflexion point, go to step 5.

5. In the most constrained cases, lowering CDmax decreases the range of the function’s

output. This solution makes it easier to smoothen the curve but lowers the cursor’s

maximum velocity.

Step 1 is rather informal and results in somehow coarse values. However it is tricky to
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define an effective input velocity range, as users will likely adapt their movement to the

transfer function. We rather use this coarse, initial velocity range as a starting point

for tuning transfer functions. A tuning process is considered over when (1) users can

perform the most difficult task (largest amplitude, smaller target width) and (2) no further

parameter tweaking can improve pointing performance or the users’ subjective perception

of smoothness and precision.

Three volunteers were asked to test the techniques in an informal iterative design process

of 800 pointing trials per user on average. Table 6.1 gives the parameter values that we

obtained after an extensive phase of pilot testing, for the two pointing zones that served

in the experiments reported later: a large zone that fits within a tablet device in portrait

mode, and a small zone that fits within a smartphone in landscape mode.

Size Technique CDmax λ ratioinf

Large
zone
148 × 49

(mm)

ContHeadL 9.9 19.9 0.4

ContPadL 6.6 17.5 0.4

DiscHeadL
12.9 17.5 0.4

DiscPadL
RelaLarge 43.1 20.0 0.5

Small
zone
75 × 26

(mm)

ContHeadS
6.3 26.5 0.4

ContPadS
DiscHeadS

16.4 26.5 0.7
DiscPadS
RelaSmall 83.0 22.5 1.0

Large zone: Vmin = 0.006m/s, Vmax = 0.37m/s, CDmin = 0.22
Small zone: Vmin = 0.003m/s, Vmax = 0.19m/s, CDmin = 0.27

Table 6.1: Transfer function parameter values.

Generally-speaking, Vmin and Vmax are lower for the small zone because users have less

physical (motor) space at their disposal for pointing, and thus less amplitude to accelerate.

Similarly, the small zone features a higher CDmax, allowing for faster cursor movements to

compensate for the smaller operating range. Discrete techniques feature a higher CDmax

than Continuous ones to compensate for the larger distance between the target and the

point where mode switching is performed.

6.4 Comparing the Dual-Precision Techniques

We conducted two experiments to evaluate the performance of the four dual-precision

pointing techniques introduced above, ContHead, ContPad, DiscHead and DiscPad, and
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to assess the cost of mode switching. The two experiments followed the same design but

involved two different devices and input sizes: we used a tablet with a large pointing zone

in the first experiment, and a smartphone with a small pointing zone in the second one.

For the sake of clarity, we use subscripts L (Large) and S (Small) when referring specifically

to their tablet and smartphone implementation, e.g. ContHeadL and ContHeadS .

Our hypotheses are as follows:

(H1) Discrete techniques lower the cognitive (and thus overall) cost of mode switch-

ing by leaving no choice to users about when to switch mode, leading to a shorter

coarse pointing phase than Continuous techniques.

(H2) Head-based techniques make mode switching cognitively less demanding, as

they use different body parts to control the two modes. Pad -based techniques use

the fingers in both modes and for mode switching. With Head-based techniques, a

mode switch is triggered when the finger comes into contact with the pointing zone.

Related to (H1), we expect an effect of forcing the mode switch with Discrete techniques

on the time spent in the precise phase, since this often entails engaging Precise pointing

mode significantly farther away from the target than with Continuous techniques.

We also expect to observe relative differences between the two experiments due to the

smaller pointing zone used in the second one: we expect Head-based techniques to be at

an advantage in the second experiment, as the smaller size of the pointing zone will hinder

performance of Pad -based techniques in Coarse mode.

6.4.1 General Design and Procedure

6.4.1.1 Apparatus.

Both experiments were conducted in the WILD room (seen Appendix A) and developed

with the jBricks [138] library. We used the VICON motion-capture system to track pas-

sive IR retroreflective markers and provide the 3D coordinates of the participant’s head.

Participants stood up, 2 meters away from the display. Given this position and the size of

the wall, the operating range of the head was π/2 × π/5 rad.

6.4.1.2 Trials.

The task consisted in acquiring circular targets of width w. Participants first had to dwell

for half a second in a dedicated zone in coarse mode, and could then acquire the target,

positioned at a distance a from the cursor’s position. Experimental conditions combined
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Figure 6.8: Location of the six targets in all three experiments depending on the task amplitude.
Colors were changed for readability: the experiment background was black and all targets were
green. Targets are also represented much larger than they were in the experiment.

one of two target widths (w): 18 pixels (4.16 mm), 80 pixels (18.48 mm), and one of three

movement amplitudes (a): 2760 pixels (width of one LCD panel, 0.637 m), 8280 pixels

(width of 3 LCD panels, 1.912 m), 13 800 pixels (width of 5 LCD panels, 3.187 m).

As discussed in Chapter 5, and according to Casiez et al.’s literature review in [43], the

highest Fitts’ Index of Difficulty (ID) tested prior to their article was 7.6 bits in a desktop

context (a= 30 cm, w= 1.5 mm). In this same article they report a univariate (1D) Fitts’

experiment with IDs as high as 9 (a= 4.5 m, w= 9 mm) on a 25-ppi projected display. The

highest ID tested in the following studies is 9.54 in bivariate tasks (2D) tasks, a difficulty

never evaluated to our knowledge (except in Chapter 5).

For each movement amplitude a, we used six combinations of starting and ending screens

around the wall’s geometrical center (see Figure 6.8) so that the dwell zone was never

located in the same screen as the previous target. Targets were pseudo-randomly posi-

tioned inside a screen so that the average distance from the center of that screen to the

target was about 600 pixels (150 mm). We chose this value so as to neither advantage

nor disadvantage Discrete techniques (relative to the size of a screen), given that those

techniques position the cursor at the center of the most recently visited LCD panel.

6.4.1.3 Design and Procedure.

Both experiments use a 4× 2× 3 within-subject design with factors Tech (technique), w

and a. We blocked by Tech and used a latin square to balance the presentation order

of techniques among participants. At the beginning of each block of a Head technique,

participants were asked to stand still and stare at the center of the display for 5 seconds to

calibrate the center of their head’s operating range, in order to balance the angular offsets

described earlier. Each block started with a training session composed of two parts. In the

first part, w and a were set to their largest values. The operator explained the technique
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and asked participants to practice until their performance had stabilized. Performance was

considered stable when they managed to perform six consecutive trials with a movement

time (MT) variation below 40 % of their average, similar to Chapter 2. Participants were

allowed to practice longer if they needed to. Then the second training phase started,

consisting of three blocks whose purpose was to put participants in conditions closer to

the actual trials to be performed next: largest w and largest a, smallest w and medium a,

smallest w and smallest a. The remaining Tech blocks were measured and decomposed

into six sub-blocks composed of six replications of each of the w × a conditions described

earlier. For both experiments, sessions lasted 40 minutes on average. At the end of a

session, participants answered a questionnaire about their preferences and were encouraged

to make comments.

6.4.1.4 Participants.

The same 12 participants (2 female; 24 to 38 year-old, avg. 29.6, med. 28.5) served in both

experiments. All had normal or corrected-to-normal vision and were right-handed. All

were daily users of personal computers and smartphones. Only two used tablets regularly.

6.4.1.5 Measures.

We measured movement time MT – from the moment participants stop dwelling to the

first successful press event on the target – and error rate. We split MT into movement

time of the coarse phase, CMT, and movement time of the precise phase, PMT, according

to the time of the last switch to precise mode. To evaluate the cost of mode switching,

we also measured VPT, the time between the last event in coarse mode and the peak in

velocity in the subsequent precise phase.

6.4.2 Tablet Experiment

In this first experiment, we used a tablet with a resolution of 768 × 1024 (Apple iPad,

weight: 680 g, dimensions: 19× 24.3× 1.3 cm, screen diagonal: 24.6cm). Participants had

to hold the tablet vertically. The pointing zone used the top 768×256 pixels (148×49 mm)

yielding an input resolution of 5.2 dot/mm. The transfer functions are shown in Figure 6.9.

6.4.2.1 Quantitative-objective Results.

We removed a few outliers, 0.69 % of the data (trials with an unreasonable residual/predicted

ratio). These outliers were mainly due to Wi-Fi transmission problems. As expected, MT
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Figure 6.9: Transfer functions used for the tablet experiment (see Table 6.1 for parameter values).
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Figure 6.10: MT for each Tech for the tablet experiment. The black intermediate lines in the
bars show the time to the last mode switch to precise mode.

distributions per condition are skewed. We thus perform our analyses using median values,

per participant, on the model Tech × w × a × Rand(Participant). Figure 6.10 graphs

MT for each technique4.

A multiway anova reveals a significant effect5 of Tech on MT (F3,33 = 11.4, p < 0.0001, η2 =

0.14). A post-hoc t-test with Bonferroni correction shows that ContHeadL is significantly

faster than all other techniques (all p’s < 0.001): 9 % faster than ContPadL, 15 % faster

than DiscPadL, and 14 % faster than DiscHeadL. The only other significant difference is

between ContPadL and DiscPadL, the former being 6 % faster.

4In all our barplots, the mean is taken over the medians of each experimental condition (including
Participant). Error bars represent the corresponding 95 % confidence limit.

5We report the “generalized-partial” η2 [16] that reflects effect size: 0.01 is a small effect size, 0.06 is
medium, and 0.14 is large. Note, however, that these values should be considered with caution, see [16].
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We also observe, as expected, significant effects of target width w (F1,11 = 459, p < 0.0001,

η2 = 0.41) and movement amplitude a (F2,22 = 43.8, p < 0.0001, η2 = 0.24) on MT, partic-

ipants being faster with the larger target and the smallest distances. We do not observe

any interaction effect Tech × w or Tech× a.

The overall error rate is 5.9 %. A multiway anova reveals no effect of Tech on the error

rate (F3,33 = 0.61, p = 0.6151, η2 = 0.015) and no significant interaction. Again, as expected,

we find a significant effect of w on error rate (F1,11 = 11.5, p = 0.0061, η2 = 0.051): 8.4 %

for the small target and 3.4 % for the larger one. We also measure a significant effect of

a, tough the effect size is very small (F2,22 = 0.69, p = 0.0240, η2 = 0.005): 4.9 % for the

largest amplitude, 6.9 % for the medium one and 5.9 % for the small distance.

As illustrated in Figure 6.10, the time spent in the coarse phase is slightly shorter with

Discrete techniques than with Continuous techniques. However, this difference is not

statistically significant – (H1) is not supported – and is not large enough to make Discrete

techniques more efficient than Continuous ones. Indeed, the time spent in precise mode

is far longer with the Discrete techniques. We tentatively attribute this to the fact that

the last mode switch is performed 150 mm away from the target on average with Discrete

techniques, compared to 67 mm with ContHeadL and 71 mm with ContPadL.

ContHeadL and ContPadL feature very similar coarse pointing times (CMT) and distance-

to-target at mode-switch time. ContHeadL’s shorter task time is mainly due to perfor-

mance improvements during the precise pointing phase. We observe that peaks in velocity

occur earlier with ContHeadL than with ContPadL (average VPT of 462 ms vs. 735 ms

for not significantly different mean velocities: 0.23 and 0.30 m.s−1). The distances from

the mode switch to the target are similar for Head- and Pad-based techniques, and their

acceleration curves have the same input characteristics (Vmin, Vmax and ratioinf ). We thus

expected the velocity peaks of ContHeadL and ContPadL to occur at similar times, yet

participants required more time to go “full-speed” with ContPadL. This could be caused

by the cognitive cost of switching between two very different control-display ratios while

using the same input. This supports (H2), suggesting that the cost of the mode switch is

indeed lower for Head-based techniques than for Pad-based ones.

Note also that with the Pad techniques, participants removed two fingers for mode switch-

ing (vs. removing only one finger and continuing pointing) in about 54.5 % of all cases

(52.8 % for ContPad and 56.1 % for DiscPad). This might also explain the higher mode

switch cost for Pad-based techniques.
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Figure 6.11: Transfer functions used for the smartphone experiment (see Table 6.1 for parameter
values).

6.4.2.2 Quantitative-subjective Results.

Overall, participants preferred to use Head-based techniques (10 out of 12) and Continuous

techniques (8 out of 12). 7 participants ranked ContHeadL first, 4 ranked DiscHeadL

first and 2 ranked ContPadL first. However, there were no strong complaints about any

particular technique, except for one participant who clearly stated that he disliked Discrete

techniques.

Several participants complained about the lack of tactile feedback, that made it difficult

to know when the fingers where leaving the pointing zone. They expressed the need for

some sort of physical border, such as the border of a touchpad on a laptop. Only one

participant answered that holding the tablet for 40 minutes was indeed a cause of fatigue

when we inquired about this potential issue.

6.4.3 Smartphone Experiment

This second experiment used a smartphone with a resolution of 480 × 320 (Apple iPod

Touch, 115 g, 11 × 6.2 × 0.8 cm, screen diagonal: 8.9 cm). Participants had to hold the

device horizontally. The pointing zone used the top 480×166 pixels (75×26 mm), yielding

an input resolution of 6.4 dot/mm. The transfer functions are shown in Figure 6.11.

We took participant feedback about the lack of tactile feedback into account, and stuck an

easily-removable and slightly protruding tape delimiting the pointing zone (3 mm wide,

0.8 mm thick, see Figure 6.14). Preliminary tests showed that the tape made it much
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Figure 6.12: MT for each Tech for the smartphone experiment. The black intermediate lines in
the bars show the time to the last mode switch to the precise mode.

easier to find the input zone eye-free and to know in advance when the finger is about to

leave the input zone while pointing.

Results are very similar to those of the tablet experiment. We get similar error rates, and

an overall subjective preference for ContHeadS . The anova reveals a significant effect

of Tech on MT (F3,33 = 12.1, p < 0.0001, η2 = 0.19) and, as in the first experiment, no

interaction of Tech with w, a and w × a. A post-hoc t-test with Bonferonni correction

shows that ContHead is significantly faster than all the other techniques (all p’s < 0.0001),

with a speed up of 13 % against ContPad, of 12 % against DiscHead and of 16 % against

DiscPad. Regarding w and a we find results similar to the smartphone experiment for

MT. Movement time, split between the coarse and precise phases, is shown in Figure 6.12

using the same scale as in Figure 6.10.

Regarding the coarse pointing phase, this time we observe a significant effect of Tech

(F3,33 = 5.39, p = 0.0039, η2 = 0.11). ContHeadS is significantly faster than all other tech-

niques, and DiscPadS and ContHeadS are significantly faster than ContPadS (considering

Coarse phase only). With the smaller pointing zone used in this experiment, we do observe

the hypothesized advantage for discrete techniques (H1). However, the time gained during

the coarse phase is again not significant enough to make Discrete techniques faster than

Continuous ones.

Regarding the precise (and post mode-switch) phase, we could first note that the distance

to the target at the last mode switch is about 83 mm and 88 mm for ContHead and

ContPad, and about 149 mm and 179 mm for DiscHead and DiscPad (with DiscPad, in

a number of trials, the participant switched to the precise mode in a screen that does

not contain the target). The difference between continuous and discrete techniques shows

that the time saved in the coarse phase by the discrete technique does not lead to better
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performance for the full pointing task.

In the case of ContHead and ContPad the above distances are very close, but ContHead

is faster than ContPad (though using the same transfer functions), enlarging the gap that

already exists in the coarse phase. As in the tablet experiment, it seems that the cost

of the mode switch is higher for ContPad than for ContHead. Indeed, as in the case of

the tablet experiment, the velocity peak comes earlier in the precise phase with ContHead

than with ContPad (485 ms vs 773 ms for peaks of 0.33 and 0.29 m.s−1). As in the tablet

experiment (H2) is supported.

6.4.3.1 Subjective Results.

In this experiment 8 participants (out of 12) ranked the ContHead technique first, 3 par-

ticipants ranked DiscHead first and one participant ranked DiscPad first. This is similar

to the tablet experiment, however no participant preferred ContPadS in this experiment

while two of them ranked ContPadL first in the tablet experiment (where DiscPad was

not ranked first). As in the tablet experiment only one participant (not the same) found

that holding the smartphone during 40 minutes caused fatigue.

Surprisingly, this experiment was considered more tiring by participants. Despite the

smartphone being lighter and smaller, it required a different grip and the body could not

be used to hold a part of the device’s weight, as in the tablet experiment.

6.4.4 Discussion on Both Experiments

Since we did not counterbalance the order of pointing zone sizes (all participants per-

formed the tablet experiment first), and since we added tactile feedback using tape to

delimit the zone in the second experiment, we cannot formally compare overall perfor-

mance across both experiments. However, we can make three informal observations. First,

the movement time difference between ContHeadS and ContPadS is larger for the smart-

phone (13 %) than for the tablet (9 %). Second, ContPadS is not significantly faster

than DiscPadS , as opposed to ContPadL vs. DiscPadL. Third, Figures 6.10 and 6.12

suggest that DiscHead performed better with the smartphone than with the tablet, rel-

ative to ContPad and DiscPad. These observations suggest that as we had anticipated,

Head-based techniques are at an advantage with smaller pointing zones.

In Chapter 5, we hypothesized that participants implicitly paid more attention to the

proximity of their mode switch to the target when either (1) the Precise phase seemed

difficult (small target), or (2) the Coarse phase was fast enough to spend extra time
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to switch modes closer to the target. We expected this unconscious mechanism to be

cognitively demanding and time consuming. We investigated Discrete techniques that

simplify the decision of switching modes by leaving the user little or no choice about the

switch location. However in both the Tablet and Smartphone experiments the effect of

discretization on dual-precision pointing performance was either neutral or negative. This

suggests that the “natural” movement time optimization observed in Chapter 5 is somehow

more efficient than forcing the location and time of the mode switch. However, we studied

only one size of discretization: participants could only point at screens in Coarse mode

with Discrete techniques. Future works could include a more thorough investigation of the

size of discretization similar to the theoretical analysis of L in Chapter 5.

6.5 Comparison with State-of-the-Art Techniques

Among the four techniques studied in the previous section, ContHead is both the fastest

and the preferred technique. Having identified this technique, we wanted to compare it

with state-of-the-art remote pointing techniques that do not necessarily require holding

a tablet. While such techniques cannot accommodate widgets used for other purposes

than pointing, our primary goal was to evaluate the potential cost of pointing with a

handheld device and put our results in a more general context. There are two families of

candidate techniques for this task, briefly discussed earlier: purely relative techniques that

use a transfer function to provide Pointer Acceleration, and other dual-precision techniques

described in the literature.

We noticed during our early pilot studies that purely relative pointing techniques can

actually be viable candidates if they use a properly tuned acceleration function. We thus

decided to include such a technique in our evaluation. We implemented RelaSmall and

RelaLarge, two purely relative, trackpad-like techniques using different input sizes, each

with its own optimized transfer function. As mentioned before, the literature on calibrating

transfer functions for relative pointing techniques is scarce [44, 43]. The functions used

by major operating systems do not meet the requirements of ultra-high-resolution wall-

sized displays in terms of speed and precision. We therefore used the transfer function

calibration method initially developed for our dual-precision techniques. We tuned two

transfer functions, one for each of the two pointing zones used in previous experiments

(see Figure 6.13).

Compared to the functions used in the first two experiments, these two functions fea-

ture a much higher CDmax that allows traveling much larger distances without too much

clutching, but also drastically increases their maximum slope. To avoid introducing a con-
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Figure 6.13: Transfer functions used for the third experiment (see Table 6.1 for parameter values).

Figure 6.14: The two input zones delimited by thick removable tape.

found due to the device itself, we decided to use ContHeadS on the tablet (see Fig. 6.5-A)

as suggested by the very similar performance observed in the first two experiments with

respect to the size of the pointing zone. This makes sense beyond this laboratory study,

since using a smaller pointing zone on a tablet means that the device can accommodate

more widgets for other purposes.

We compared the three above techniques, which use a handheld device at least partially

for pointing, with two techniques from the literature: LaserGyro and SmoothPoint.

LaserGyro, presented earlier in this dissertation (Chapter 5), is a mid-air dual-precision

technique that uses ray-casting as coarse mode and relative angular motion as precise

mode [127]. This technique was originally inspired by Vogel et al.’s work on distant

freehand pointing [163]. A difference with Chapter 5 is that we computed a transfer
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function for the Precise mode of LaserGyro using the same process (Section 6.3). Its

parameter values are reported in Table 6.1.

SmoothPoint [69], also combines ray-casting and relative pointing. However, the transition

between the two modes is progressive, based upon a transfer function that depends on

input motion velocity. The authors propose a method to tune this function, but pilot tests

in our environment revealed that this method does not scale to pixel densities such as

those typically encountered on ultra-high-resolution wall displays: the difference between

the minimum and maximum CD gain values is too high, causing the precise mode to be

far too jerky to select small targets such as those considered here. We transposed the

calibration method described in [69] to our context6 to the best of our abilities, iterating

until the technique eventually enabled us to achieve the pointing tasks considered in our

experiments.

In this experiment, we tested five techniques (Tech): ContHeadS , RelaSmall, RelaLarge,

SmoothPoint and LaserGyro. The apparatus, design, and procedure were exactly the same

as in the previous experiments. We added a physical border around the large and small

pointing zones on the tablet to limit the need to look at the input device by providing

tactile feedback when the fingers were about to leave the zone. We used a 5×5 latin

square to balance the techniques. 15 participants served in the experiment (10 of them

had participated in the previous experiments, 5 were new and assigned to the same Latin

square).

6.5.0.1 Quantitative-objective Results.

As in the previous experiment we removed a few outliers (1.28%). Figure 6.15 shows

movement time MT by w and a. For ContHeadS the results are very close to those of

the previous experiments. We observe that SmoothPoint performs poorly compared to all

the other techniques (significantly so, for each w and a condition). For brevity, we do not

report the results of SmoothPoint in post-hoc tests, even though it was of course included

in those tests.

An anova reveals a significant effect of Tech on MT (F4,56 = 20.5, p < 0.0001, η2 =

0.25). A post-hoc t-test with Bonferonni correction shows that ContHeadS , LaserGyro

and RelaLarge are all significantly faster than RelaSmall (with speed-ups of 5.4%, 8% and

9%, respectively). We find no significant difference between ContHeadS , LaserGyro and

RelaLarge.

This time, the anova reveals significant interactions Tech × w (F4,56 = 5.90, p = 0.0005,

6We did not use our logistic function because the function described in [69] is part of its contribution.
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Figure 6.15: MT for each Tech by w and by a for the last experiment.

η2 = 0.04) and Tech × a (F8,112 = 2.60, p = 0.0122, η2 = 0.03) on MT. One cause for

these interactions is SmoothPoint, which is slower for small targets than for larger ones,

and faster for the largest amplitude. We can also observe on Figure 6.15 that the two

relative techniques, RelaSmall and RelaLarge, are faster for the small width and the small

amplitude. Indeed, post-hoc tests show that (i) for small targets, the only significant

result is that RelaLarge is faster than RelaSmall, and for large targets, ContHeadS and

LaserGyro are also significantly faster than RelaSmall; (ii) for the small amplitude the

only significant results are that RelaLarge is faster than RelaSmall and ContHeadS , while

for the large amplitude the only significant results are that both RelaLarge and ContHeadS

are significantly faster than RelaSmall.

The overall error rate is 9.6%. ContHeadS , RelaSmall and RelaLarge feature low error

rates (3.90%, 3.52% and 4.04%) with only marginal differences between large and small

targets (2.5% vs 5.17%). LaserGyro and SmoothPoint also feature low error rates for large

targets (0.70% and 5.60%), but the error rate rises dramatically for small targets: 25.6%

and 43.0%. Based on our pilot studies, we did not expect such an increase in error rate.

The problem turned out to come from the fact that clicking with the handheld wireless

mouse caused small hand movements which, in turn, caused small cursor displacements

that were sometimes large enough to make the cursor leave the target. This led users to

click multiple times in quick succession to acquire the target. We furthered our analysis by

measuring the time to first click (instead of first click on the target). This did not change

the results for LaserGyro. However, results were slightly different for SmoothPoint, which

remained slower than RelaSmall in all conditions but not significantly so for the small

target + large amplitude condition.

6.5.0.2 Quantitative-subjective Results.

At the end of the experiment, we asked participants to rank the techniques on a five-

point Likert scale in terms of preference, fatigue and perceived performance. Figure 6.16
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Figure 6.16: Preference, fatigue and (self-reported) perceived performance for each Tech on a
five-point Likert scale (5 is best, 1 is worst). Bold lines show the median, boxes show the lower
and upper quartiles and the whiskers show the 1.5 × inter-quartile range.

summarizes the results in a boxplot. Kruskal-Wallis tests revealed a significant effect of

Tech on Preference (χ2
4 = 28.5, p < 0.0001) and Performance (χ2

4 = 23.4, p = 0.0001), but

not on Fatigue. Post-hoc tests using Mann-Whitney tests with Bonferroni correction show

that (i) ContHeadS and LaserGyro were preferred to both RelaSmall and SmoothPoint; (ii)

RelaLarge was preferred to SmoothPoint; (iii) ContHeadS , LaserGyro and RelaLarge were

perceived as faster than SmoothPoint; and (iv) LaserGyro (and ContHeadS) was perceived

as (marginally) faster than RelaLarge.

6.5.1 Discussion and Design Guidelines

Results show that using a handheld device for high precision pointing enables users to

point at least as efficiently as state-of-the-art mid-air pointing techniques in terms of both

speed and accuracy, while leaving a large portion of the handheld’s surface available for

additional, application-specific widgets.

The three techniques that perform best in terms of movement time and preference are

RelaLarge, ContHead and LaserGyro. While there is no significant speed difference between

them, each technique has its own strengths and limitations, making it suitable in specific

contexts of use.

While relative pointing is not novel, making it work efficiently in such challenging contexts

is an interesting result. Indeed, existing functions, even elaborate ones such as that of

SmoothPoint, were designed for lower-resolution environments, and fare poorly with the

high Fitts’ IDs considered here. I suspect this is because SmoothPoint uses a sine-based

function that does not allow to control the abscissa and slope of its inflexion point: for
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a given input and output range, the corresponding method provides a single function

that, when the output range is much larger than the input range, can be very steep.

Indeed, the cursor was much jerkier with SmoothPoint than with any other technique

evaluated in Section 6.5. RelaLarge, based on the simple CD transfer function tuning

method introduced in this paper, provides pointing performance that matches that of more

elaborate techniques. It is straightforward to implement and does not require elaborate

equipment to track spatial position and orientation.

RelaSmall is also quite an achievement, considering that it provides enough precision

to perform bivariate pointing tasks of difficulty seldom evaluated (up to 9.5), requiring a

pointing zone of 20 cm2 only (approximately 1/4th of RelaLarge’s surface area). Given that

the pointing zone dimensions of RelaLarge preclude its use on smartphones, RelaSmall can

be seen as an interesting option. Indeed, the technique will only incur a 5-to-10-percent

performance cost when compared to more efficient techniques, which can be considered

an acceptable tradeoff when only small handheld devices are available, or when a large

portion of the handheld’s screen real-estate should be allocated to additional interface

widgets.

This performance decrease can be avoided by using ContHead, which achieves the same

level of performance as RelaLarge but on a much smaller input area, equivalent to that

of RelaSmall. ContHead should be considered when the tasks and context of use require

many additional interface widgets or when only smartphones are available, provided that

tracking the location and orientation of the head is possible.

Finally, LaserGyro causes many more errors than other techniques for small values of w,

as the tremor caused by pressing a physical button, even if comparatively small, is large

enough to severely hinder acquiring very small targets. This problem does not happen

with tablet-based techniques since their tapping mechanism is algorithmically decoupled

from their pointing mechanism. Another drawback of this technique is that it cannot

accommodate additional interface widgets on the input device. However, LaserGyro leaves

the non-dominant hand free to perform other interactions, making it a relevant option when

the task requires operating additional input devices, provided that pointing task IDs are

lower than 9.

6.6 Conclusion

This chapter investigated the use of handheld devices for very difficult remote pointing

tasks on wall displays, where only a portion of the device’s touch surface is dedicated

to pointing. The goal is to leave the larger part of the handheld device’s screen for the
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display of task-specific widgets, following the Factorizing task allocation strategy defined

in Section 1.3. It is complementary to the techniques studied in Chapters 4 and 5 that were

all single-handed, enabling other input devices in the non-dominant hand and following

the Maximizing limb usage strategy also defined in Section 1.3.

We designed and evaluated techniques that use various input channels to improve the effi-

ciency of pointing at very small targets across large amplitudes. Discrete Coarse pointing

was expected to minimize the cognitive load of deciding where and when to switch modes.

However we found that its effect on performance ranges from neutral to negative. Head

orientation proved very efficient for Coarse pointing despite expected neck fatigue and

lower accuracy. However it depends strongly on specific tracking capabilities: the system

must know the absolute orientation and location of the user’s head, which can be difficult

to perform without expensive hardware or with multiple users. Satoh et al. [149] proposed

a low-cost method to track users’ heads in mid-air with acceptable accuracy. It could be

interesting to evaluate Head-based techniques with such simpler sensors. Finally, we used

the number of fingers touching the device to discriminate between Coarse and Precise

pointing. Head-based coarse pointing performed better and was preferred by participants.

However Pad -based techniques worked well and do not require additional hardware, they

should thus be evaluated further.

Our most successful design, ContHead, lets users perform pointing actions at two levels

of granularity: coarse pointing uses the natural movements of the head when moving the

cursor across large distances; precise pointing uses a small pointing zone on the handheld

device to perform relative pointing movements via finger gestures. The technique performs

well including for indices of difficulty beyond those tested in most previous work, even when

compared with state-of-the-art techniques that are not constrained by our requirements.

ContHead was also rated as one of the best techniques overall in terms of subjective

preference and perceived performance.

Purely relative techniques using only the touch surface of the handheld device performed

better than we had originally anticipated. This led us to carefully investigate Control-

Display transfer functions that enable both very fast pointing across large amplitudes

while minimizing clutching, and precise cursor adjustments to acquire targets only a few

millimeters in diameter. We showed that with a large-enough pointing zone and proper

tuning, such a relative technique competes with the most efficient dual-mode techniques.
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In this Part, I investigated mid-air pointing techniques for location-independent interaction

on ultra-high-resolution wall-sized displays. These environments enable very large datasets

to be visualized and manipulated by several users at once. However their large physical

size and high pixel density also create new constraints for interaction: users may have to

acquire very small targets from relatively far away (Requirement 2, Section 1.4), and other

interactions must remain possible with the input devices at hand (Requirement 3).

In Chapter 4 I explored the limits of existing pointing techniques and devices. I used

Casiez et al.’s [43] formulae to develop a theoretical testbed for techniques with fixed CD

gain. I ran a controlled experiment with “simple” pointing techniques and devices and

showed that fixed CD gains indeed reach a performance limit around Fitts indexes of

difficulty (IDs) of about 6.7 bits. This limit is raised with Pointer Acceleration, a pointing

technique that adapts the CD gain of a (relative) technique using input movement velocity.

However, to date, no precise method has been proposed to calibrate the resolution function

of Pointer Acceleration: I could only assess its performance through an ad-hoc transfer

function.

As discussed in Chapter 4, the core problem of fixed CD gain techniques is that the input

expressiveness of either the device’s or the user’s movements fails to match the difficulty of

possible pointing tasks. Pointing techniques thus need to provide means to vary their CD

gain, as demonstrated by the improved performance of Pointer Acceleration. In Chapter 5

I described Dual-precision techniques, a family of techniques that provide two modes, each

with a specific range of CD gains for either coarse or precise control. Switching between

these modes is an explicit action so that users can fully control the movements of their

cursor, as opposed to Pointer Acceleration where this transition is implicit. I provide

a theoretical analysis of such techniques as well as a method to calibrate the CD gain

of each mode. In Chapters 5 and 6, I implemented dual-precision techniques that work

either one-handed or on a small area of a hand-held device. In the former I varied the
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input channels used for the Precise mode, and in the latter the input channels used for

the Coarse mode. These techniques proved equivalent or better than existing ones despite

their limited input channels (single-hand or small input area), meeting Requirement 3.

I also developed a method for tuning the transfer functions of Pointer Acceleration tech-

niques, based on the capabilities of both the user and the input device(s) as well as the

pointing task’s characteristics. The resulting transfer functions showed performance sim-

ilar to dual-precision techniques’, and even tended to be better for the “easiest” tasks,

probably because of the constant mode-switch time and associated cognitive load of dual-

precision techniques, as discussed below. The shape of the resulting curve is reminiscent

of SmoothPoint’s. Yet SmoothPoint proved much less efficient with very difficult point-

ing tasks. As discussed in Chapter 6, I hypothesize this is because the inflexion point of

SmoothPoint’s transfer function cannot be tuned, as opposed to the calibration method I

introduced in the same chapter.

One could hypothesize that the explicit mode switch, which is almost systematically re-

quired when using dual-precision techniques, is a clear disadvantage in terms of attention

cost: users need to know and/or choose which mode they are using all along the pointing

action. Indeed, using pointer acceleration techniques is a continuous process that does not

require any additional, explicit action to switch from fast to precise cursor movements.

However dual-precision techniques were designed to mitigate this cost through several

simultaneous mechanisms and feedbacks:

1. The CD gain at any given time should leave little to no doubt about

the current mode: dual-precision techniques are designed for very difficult tasks,

thus the CD gains of the coarse and precise modes should be very different. This

difference provides an all-time, implicit indication of the current mode.

2. The Coarse mode is the default mode, the Precise mode is a quasi-mode:

users must keep a button depressed or a physical contact to maintain the technique in

Precise mode. This ensures that they are always aware of the current mode, possibly

at a semi-conscious level. In other words, the Precise mode is a way to increase the

precision: if the default (Coarse) mode is too fast to acquire a given target, users

can “buy” more precision by temporarily invoking the Precise mode.

3. Finally, the visual representation of the cursor indicates the current mode

of the technique, as illustrated in Figure 5.1 page 125.

Dual-precision techniques performed at least as well as pointer acceleration in the con-

trolled studies described in Chapters 4, 5 and 6 and were marginally preferred, however

they remain to be evaluated within full-fledged, feature-rich applications. From the anal-
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Figure 6.17: Illustration of Decision and Adaptation after a continuous transition (a) and during
an explicit switch (b).

yses and studies reported in Chapters 4, 5 and 6 I also gathered general insights about

high-precision pointing techniques that I summarize and discuss below.

Decision and Adaptation

The results of the experiments ran in Chapters 5 and 6 highlight two cognitive mecha-

nisms induced by changing resolution functions during pointing: Decision and Adaptation

(Figure 6.17).

Decision is the cognitive cost incurred by explicitly breaking the continuity of a pointing

task, e.g. by changing its resolution function. It occurs when users have to decide whether,

when and where they apply this change, depending on the pointing task parameters (width

and amplitude) and the technique.

For example, we observed in Chapter 5 that the width and amplitude of a dual-precision

pointing task had an effect on the duration of its Coarse phase and on the proximity of

the mode switch to the target. In a few easier cases participants even tried to select the

target in Coarse mode only, without switching mode.

My hypothesis, introduced in Chapter 5, is that the process of deciding where and when to

switch modes was part of a higher-level, partly unconscious process of time optimization.

Participants took more time and were more careful about the location of the mode switch

(i) when the Coarse phase seemed easy, leaving “spare” time that could be used to ease the

Precise phase, or (ii) when the Precise phase seemed difficult, i.e. when the target width

was small: more time was spent in Coarse mode to lower the amplitude of the Precise

phase. The no-switch behavior is an extreme case of this optimization process in which

the Coarse mode is able to bring the cursor so close to the target that the time needed to

switch modes then acquire the target with the slower Precise mode might appear greater
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than the time needed to acquire the target with the less precise Coarse mode.

Similar effects have been observed in previous studies. For example, Mandryk and Lough

[118] studied the effect of the intended use of the target on the performance of pointing

tasks with the same ID. The task they evaluated consisted in acquiring a target (first

subtask), then performing a second subtask that could be either click, click and acquire

a second target, press and “throw” the target towards an edge of the screen, or drag the

target onto another target. They observed that the changes in movement time can be

attributed to the differences in the secondary, precise pointing phase, and not the initial

ballistic phase. In accordance with our results, they hypothesize that the movement time

increases with the precision of the objective, and that the motor planning and control for

the second subtask is encapsulated within the second phase of the first subtask. Quinn

et al. [139] observed a similar effect when studying multiple trajectory pointing methods.

Participants did not perform better with methods that shorten the trajectory to a target,

e.g. cursor wrapping [88] or Ninja cursors [101]. The authors suggest that selecting the

best trajectory among several possibilities caused search and decision times that eventually

overwhelmed any potential advantage in performance.

Adaptation is the cognitive and motor adjustment to a change of resolution function.

It occurs after a sudden change of control that requires the user to adapt to a resolution

function that is “different enough” from the previous one. This difference can be input-

wise, e.g. switching between two input devices or modes to control cursor displacements,

or scale-wise, e.g. transitioning between very different CD gains.

I formulate three hypotheses about what affects Adaptation:

H1 Higher slopes in transfer functions require more cognitive and motor adjustments be-

tween their lower and higher levels – We observed in Chapter 6 that the higher the

slope, the lower the performance. Indeed, SmoothPoint was the worst technique for

all measures, followed by RelaSmall for movement time.

H2 Different resolution functions are better controlled with different limbs – When con-

trolled with one hand, switching from one resolution function to another constrains the

starting point of the latter to the last point of the former. Users thus have a limited

operating range and must adapt their movement accordingly, e.g. by clutching. In the

Tablet experiment in Chapter 6, participants spent more time in Precise mode with

the Pad-based techniques than with the Head-based techniques, despite the morpho-

logical similarity between the Coarse and Precise control of the Pad-based techniques.

In both experiments of Chapter 6, participants also took more time to reach their

peak velocity in Precise mode with ContHead than with ContPad, despite the similar
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proximity of the cursor to the target at mode switch time.

H3 When controlled with the same limb, different resolution functions are better controlled

with similar input channels – For example, switching from angular to linear control

is more cognitively demanding than if the whole pointing movement is angular or

linear. We observed in Chapter 5 that users spent less time in Precise mode with

Laser+Gyro than with Laser+Position and Laser+Track while the average amplitudes

of the Precise sub-task were not significantly different. Indeed, angular control (Precise

mode of Laser+Gyro) is morphologically closer to ray-casting (Coarse mode of all

three techniques) than mid-air position control and touch input (Precise modes of

Laser+Position and Laser+Track respectively).

The controlled experiments in Chapters 5 and 6 were intended to evaluate morphological

factors and input techniques, not to investigate cognition and dynamic motor control.

My hypotheses are thus backed by indirect proofs and should be evaluated specifically in

future work.

179



CONCLUSION OF PART II: DECISION AND ADAPTATION

180



Conclusion and Perspectives

Large display environments feature one or more large display(s) and rich input capabilities

to visualize and manipulate very large datasets. However they also constrain the design

of interaction techniques: users can walk around the visualization and need similarly rich

interaction capabilities; they can see very small visual elements in very large visualizations

and need to interact with them; they can work collaboratively on a shared display and

must not disturb each other; they can carry only a limited number of input devices and can

become tired, but may need very large vocabularies of possible commands and actions.

Existing research on large display environments usually focused on one or two of these

constraints, seldom more than that.

The goals of this thesis were (1) to better understand the constraints of large display

platforms and how to design interaction for these environments, and (2) to contribute a

set of efficient and combinable techniques for “classical” interaction in mid-air: virtual

navigation, command selection and pointing.

Contributions

The contributions of this dissertation are of several types:

Design of interaction techniques for large display environments: In Chapter 1,

I analyzed the fundamental differences between desktop and large display environments.

From these differences, and the corresponding constraints, I introduced a design space

for Feedback Location that provides insights in the collaboration capabilities of interac-

tion techniques and their usability. The design space emphasizes the compromise between

occlusion and attention switch: (1) displaying feedback on a shared display can distract

other users and occlude underlying data; (2) separating feedback from visualized data

makes users switch their attention from one to the other. Based on the points of this

design space I also introduced a taxonomy of limb allocation. This taxonomy explores
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how multiple tasks and interaction techniques can be assigned to the limited input capa-

bilities available when standing in front of a wall-sized display. Based upon both these

classifications I introduced a set of requirements for interaction techniques in large display

environments to ensure that a set of interaction techniques can be used (i) at a distance,

(ii) with other interaction techniques and (iii) when collaborating with other users.

New input channels: The input capabilities of users being limited when standing or

walking in a large display environment, I explored which unused input channels could

be used alone or in combination to improve users’ expressiveness. This dissertation thus

features analyses and morphological design spaces about mid-air input (Chapter 2), on-

body touch (Chapter 3) and head orientation (Chapter 6). All these input channels were

evaluated in controlled experiments. The results of these experiments provided insights

into how to use these channels for efficient mid-air techniques. As discussed, e.g. in

Chapter 3, some of these input channels and design spaces could be explored further in

future work.

New interaction techniques: This dissertation presents the design and evaluation of

a set of new interaction techniques for large display environments. Chapter 2 features

six efficient pan-and-zoom techniques adapted to different input requirements: one- or

two-handed interaction, level of physical guidance, and the path of input movements.

Chapter 3 introduces several designs for discrete selection techniques that can be used

while pointing. These techniques can theoretically accommodate a large number of items,

e.g. 84 items in a simple example using on-body touch and the number of contact fingers

(see page 79), but remain to be formally tested.

In Part II, I formally defined dual-precision pointing techniques, a family of target-agnostic

techniques that can accommodate pointing tasks with very high difficulties. Such tasks

are typically found when interacting with ultra-high-resolution wall-sized displays. These

techniques solicit the user’s sensory-motor system sequentially by allowing two (or more)

phases of different velocities and precision depending on the proximity and size of the

target. I implemented and evaluated a set of dual-precision techniques with two usability

constraints: being one-handed or usable on small touch areas. From these analyses and

studies I propose three high-precision techniques that can perform tasks of difficulties as

high as 9.5 bits: Laser+Gyro, ContHead and DiscHead. This level of difficulty was, to my

knowledge, never evaluated in bivariate pointing studies.

Finally, in Chapter 6 I introduced a novel method to calibrate velocity-based transfer

functions for Pointer Acceleration pointing techniques. Techniques using this method
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showed performance levels as good as the best existing pointing techniques, including

those introduced in this dissertation.

Human performance in constrained situations: From the results of seven controlled

experiments (Chapters 2, 3, 4, 5 and 6), I introduced two higher level considerations about

human performance in constrained environments.

The conclusion of Part I introduced a trade-off between performance, simultaneity and

input requirement of combined interactions. Simultaneity usually is an asset for perfor-

mance, and techniques should require as few limbs as possible in order to be combined

in environments with limited input expressiveness. However I observed that optimizing

two of these factors usually impairs the third. Application designers should thus organize

their requirements hierarchically in order to provide the best compromise to their users,

depending on the interaction needs and on the input capabilities of the platform.

Second, as discussed in the conclusion of Part II, varying the resolution function of a

pointing technique is necessary for difficult pointing tasks. However it adds cognitive

costs that impair performance. I observed empirical evidence of two phenomena: (1)

explicit changes in the resolution function causes partially unconscious adjustments of

cursor velocity and precision, that seem intended to minimize pointing time and effort; (2)

sudden, noticeable changes in the resolution function require mental and motor adaptation

that in turn may cause longer task completion times.

The hypotheses about human performance were inferred from indirect results and require

further exploration and more specific studies. It would also be interesting to investigate if

these phenomena apply to other interactions.

Perspectives

The work presented in this dissertation had two goals: understanding the constraints of

large display environments, and designing interaction techniques with the best perfor-

mance possible. The corresponding results have two limitations: (1) they were gathered

in only one type of environment, while some of them can probably be generalized to other

environments, and (2) they were gathered during controlled experiments only, which may

limit their external validity, e.g. regarding learning and expert behavior.
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Applicability to other environments

Part I features general considerations about (1) the effect of feedback location on usability

and collaboration (Chapter 1) and (2) how to physically combine interaction techniques

with limited input capabilities (Chapters 1, 2 and 3). These conclusions were drawn from

results gathered in large display environments, but could probably be applied to other

situations such as virtual and augmented reality platforms. This would probably cause a

shift in the constraints when compared with those described in Chapter 1. For example,

virtual and augmented reality are less sensitive to occlusion and distraction caused by

collocated users since parts of the interaction feedback can be displayed only to the user

on head-mounted personal displays. Augmented reality also features one or more shared

visual elements in the real world and are probably more prone to occlusion caused by

collocated users’ bodies than when the only shared display is a flat surface, as in large

display environments. Finally, augmented and virtual reality can be used while sitting at

a desktop with head-mounted displays, which provides an interesting combination of limb

and device support (see Section 1.1) as well as very large visual environments. Studying

environments such as these would help generalize our conclusions about feedback location

and combined interactions to other platforms and contexts. This could in turn lead to

more robust and general design guidelines for interaction in multi-surface and multi-display

environments.

Similarly, the Decision and Adaptation effects observed with high-precision pointing in

large display platforms (Part II) describe general phenomena caused by changing the

resolution function of an interaction technique during its use. As such, they are likely

applicable to other environments and tasks, which could be interesting to investigate. For

example, zooming with two (or more) levels of precision could enable faster completion

times in pan-and-zoom tasks, with very large ranges of zoom levels and regardless of the

environment.

Novice and expert performance

All controlled experiments reported in this dissertation featured practice phases intended

to train the participants for the tested tasks and techniques. While this training can pro-

vide insights about expert usage, it is not always equivalent to an actual, extensive use of a

given technique in a particular environment. Also, while gaining interest [48, 38, 85], large

display platforms remain new environments for which novice use and novice-to-expert

transitions have been much less studied than in desktop environments. A development

of this work could be a more thorough analysis of these aspects: How do standing and
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walking affect the novice-to-expert transition of a technique, as opposed to sitting at a

fixed location? How precise can highly trained users become at controlling their angular

precision (Chapter 6) and stability (Chapter 3)? Such work would improve our under-

standing of novice and expert behavior in constrained environments, and could result in

more precise guidelines for designing and combining interaction techniques in large display

environments.

More generally, I discuss briefly in Section 6.3 (page 155) how users will likely adapt their

movement to the resolution function of a given technique. This phenomenon could be

interesting to study in more detail: How does the resolution function affect the dynamics

of users’ movements, i.e. their velocity and acceleration, for difficult tasks? How does the

resolution function affect users’ performance ceiling? Such a study, along with a deeper

understanding of the Adaptation effect described in the conclusion of Part II, could lead to

the design of co-adaptive algorithms that would smoothly adapt the resolution functions

to the users’ movement and level of performance.
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[34] Frédréric Bourgeois and Yves Guiard. Multiscale pointing: facilitating pan-zoom

coordination. In CHI ’02 EA, pages 758–759. ACM, 2002. 50, 52, 55

[35] D.A. Bowman, Doug A. Bowman, Larry, and L. Houges. Formalizing the design,

evaluation, and application of interaction techniques for immersive virtual environ-

ments. Journal of Visual Languages and Computing, 10:37–53, 1999. 25

[36] Doug A. Bowman and Chadwick A. Wingrave. Design and evaluation of menu

systems for immersive virtual environments. In VR ’01: Proceedings of the Virtual

Reality 2001 Conference (VR’01), pages 149+, Washington, DC, USA, 2001. IEEE

Computer Society. ISBN 0-7695-0948-7. URL http://portal.acm.org/citation.

cfm?id=835855. 73, 75, 80

[37] W. Buxton and B. Myers. A study in two-handed input. SIGCHI Bull., 17(4):

321–326, 1986. 46, 50, 52, 55

[38] William Buxton, George Fitzmaurice, Ravin Balakrishnan, and Gordon Kurtenbach.

Large displays in automotive design. IEEE CG&A, 20(4):68–75, 2000. ISSN 0272-

1716. doi: http://dx.doi.org/10.1109/38.851753. 19, 107, 184

[39] J. Callahan, D. Hopkins, M. Weiser, and B. Shneiderman. An empirical comparison

of pie vs. linear menus. In Proceedings of the SIGCHI conference on Human factors

in computing systems, CHI ’88, pages 95–100, New York, NY, USA, 1988. ACM.

ISBN 0-201-14237-6. doi: 10.1145/57167.57182. URL http://doi.acm.org/10.

1145/57167.57182. 73

[40] Bryan A. Campbell, Katharine R. O’Brien, Michael D. Byrne, and Benjamin J.

Bachman. Fitts’ law predictions with an alternative pointing device (wiimote R©).

Human Factors and Ergonomics Society Annual Meeting Proceedings, 52(19):1321–

1325, 2008. 20, 108, 109

[41] Xiang Cao and Ravin Balakrishnan. Visionwand: interaction techniques for large

displays using a passive wand tracked in 3d. pages 173–182, 2003. doi: 10.1145/

193

http://doi.acm.org/10.1145/985692.985758
http://portal.acm.org/citation.cfm?id=835855
http://portal.acm.org/citation.cfm?id=835855
http://doi.acm.org/10.1145/57167.57182
http://doi.acm.org/10.1145/57167.57182


BIBLIOGRAPHY

964696.964716. URL http://doi.acm.org/10.1145/964696.964716. 20, 48, 52,

74, 108, 142

[42] Stuart K. Card, Jock D. Mackinlay, and George G. Robertson. A morphological anal-

ysis of the design space of input devices. ACM Trans. Inf. Syst., 9(2):99–122, April

1991. doi: 10.1145/123078.128726. URL http://doi.acm.org/10.1145/123078.

128726. 109, 151, 232

[43] G. Casiez, D. Vogel, R. Balakrishnan, and A. Cockburn. The impact of control-

display gain on user performance in pointing tasks. HCI, 23(3):215–250, 2008. URL

http://dx.doi.org/10.1080/07370020802278163. 110, 111, 112, 126, 128, 132,

156, 161, 168, 175
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Appendix A

General apparatus: the WILD
platform

All development and experimental work described in this document was conducted in the

WILD1 room [24, 25], an experimental high-resolution, interactive platform for conduct-

ing research on collaborative human-computer interaction and the visualization of large

datasets. It is located in the PCRI building of Université Paris-Sud in Orsay, France. The

WILD room is composed of:

(a)

An ultra-high-resolution 5.5×1.8-meter display made of 8×4
tiled 30” desktop screens at approximately 100 ppi; it pro-
vides a unified 20480× 6400 pixels display, or 22080× 7360
pixels if we consider “virtual” pixels under the screen bezels.

(b)

A VICON2 motion-capture system with 8 to 10 200 Hz cam-
eras that track passive IR retro-reflective markers with sub-
millimeter accuracy; the location and orientation of physical
objects mounted with these markers can thus be tracked very
precisely.

(c)

A cluster of 16 computers that communicate via a dedicated
high-speed network through a front-end computer; each has
two high-end nVidia 8800GT graphics cards and drives two
screens of the wall display.

1http://insitu.lri.fr/Projects/WILD
2http://www.vicon.com
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THE WILD PLATFORM

(d)
A 2 × 1 meter interactive table with FTIR technology that
can track up to 32 simultaneous contact points with an out-
put 1920 × 1080 resolution.

All the interaction techniques and corresponding experiments presented in this document

were implemented in Java (1.4 to 1.7) using the jBricks [138] framework that enables

multi-scale vector graphics and smooth integration of virtually any input source. Input

devices other than the ones listed above, such as smartphones and tactile tablets, were

used thanks to this library.

WILD is supported by a Région Île-de-France / Digiteo grant and by Université Paris-Sud,

INRIA, CNRS, ANR and the INRIA-Microsoft joint laboratory.
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Appendix B

Preliminary Experiment with
Single-Mode Pointing Techniques

In this experiment we compare the performance and ease of use of three single-mode

techniques (Figure B.1):

• RayCasting uses the location and orientation of a hand-held device;

• Eye-Tip also uses ray-casting but between the location of the user’s eyes (estimated

with a tracked hat) and the tip of a hand-held device;

• GyroMouse is a relative technique that maps angular movements of a hand-held

device into cursor displacements.

A B

x

ax

RayCasting Eye-Tip GyroMouse

Figure B.1: The RayCasting , Eye-Tip and GyroMouse techniques evaluated in this experiment.

B.1 Participants

Twelve unpaid volunteers (11 male, 1 female), age 24 to 35 (mean 26.9, std deviation 2.23),

all right-handed but one, participated in the experiment. The left-handed participant uses

his right hand for pointing and used our techniques accordingly. Most participants were
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B.2. APPARATUS

familiar with the concept of remote interaction thanks to the WiiMote1. Two of them

had already used computer-performed RayCasting techniques and one had already tried

GyroMouse.

B.2 Apparatus

The experiment was conducted on the WILD platform (Appendix A). The graphics and

behavior of the tasks and techniques were developed with jBricks [138]. The design and

runtime of the experiment were developed with Touchstone [113].

The RayCasting and Eye-Tip techniques were implemented by attaching reflective markers

tracked by the VICON system onto passive devices. The GyroMouse was the Logitech

MX Air described earlier. The bias of the tracking system causes some twitching. We

measured the standard deviation of the cursor position with the RayCasting technique

when the device is held stationary 3 meters away from the display and found a value of

3.57 pixels horizontally 9.12 pixels vertically. We lowered these values to 1.66 and 3.87

pixels using a low-pass filter with a window size of 10 samples. Clicks were performed

using a regular mouse in the non-dominant hand for all three techniques.

B.3 Task

The task was based on the ISO9241-9 standard [90]. Targets were laid out in a circular

pattern. The order of appearance forced participants to perform pointing tasks in every

direction. The target was presented as a bright green circle on a black background, and

was always surrounded by an additional concentric circle of the same color to reduce visual

search time. The target was highlighted in white when the cursor was over it. If the target

was not selected after ten seconds, the trial was considered a miss (time-out).

The main factors were Technique and Gap, the distance between the participant and the

display. The values of Gap were 75 (”Close”), 187.5 (”Medium”) and 300 cm (”Far”).

Secondary factors were the target’s Width and the screen distance between consecutive

targets: movement Amplitude. The values of Width were 80, 236 and 514 pixels. The

values of Amplitude were 1024, 3000 and 6500 pixels. We chose these values for Width

and Amplitude so that we could have more than one occurrence of Fitts’ ID values. A

few 514-pixel-wide targets were partially overlapped by the bezels, but in such cases at

least 80% of their surface was visible.

1
http://www.nintendo.com/wii/what/controllers
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B.4. PREDICTIONS

We used a 3 × 3 × 3 × 3 repeated within-subject measures design with four independent

variables. For each participant, we grouped trials into 9 blocks, one per Technique and

distance to the wall (Gap), so as not to disturb them with too many changes between

techniques. The presentation order for Technique and Gap was counterbalanced across

participants using a Latin square. Within each block, Width and Amplitude were also

counterbalanced using a Latin square. Each combination of Technique × Gap was pre-

ceded by two training blocks of 12 trials. To summarize, we collected 3 Technique ×
3 Gap × 3 Width × 3 Amplitude × 12 replications × 12 participants = 11664 trials

for analysis. The experiment lasted approximately one hour. For each trial we logged the

movement time (MT) and the number of clicks outside of a target (Outside Clicks). At the

end of the experiment, each participant was asked to rank the three techniques according

to four criteria: perceived efficiency, ease of use, fatigue and overall preference.

B.4 Predictions

Since GyroMouse is a relative technique, we expect it to be more precise, i.e., to cause fewer

errors with small targets (1), and to be slower for large Amplitudes (2) because of the need

to clutch. We also expect Eye-Tip to be more precise than RayCasting (3) as users can

increase angular precision by extending their arm. Finally we expect a negative effect of

Gap on accuracy for the two absolute techniques, because the precision is angle-dependent

(4).

B.5 Results

We analyzed the collected data with one-way ANOVAs, and performed Tukey HSD post-

hoc tests for pairwise comparisons, accounting for repeated measures using JMP’s REML

procedure. We checked that Technique presentation order did not have any significant

effect. The only TimeOuts occurred in the Eye-Tip × Far condition (0.08% of all trials).

B.5.1 Movement Time

For this analysis we removed the trials that timed-out. We considered that Outside Clicks

were a part of the pointing adjustment and included them in the analyses.

As expected for a pointing task we found significant effects on MT for Width (F2,22 =

819.52, p < 0.0001), Amplitude (F2,22 = 847.65, p < 0.0001) and Width × Amplitude

(F4,44.01 = 10.28, p < 0.0001). We also found a significant effect of Gap on MT (F2,22 = 29.83,
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0
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Figure B.2: Movement time (MT) per Gap × Technique.

p < 0.0001). Selections were significantly slower when the participants were Far (mean

1977ms) than when they were at Medium distance (1805ms) or Close (1791ms) to the

display (Fig. B.2).

We found a significant effect on MT for Technique (F2,22 = 3.58, p = 0.045), but a Tukey

post-hoc test showed no difference among the techniques. This prompts for a further

analysis of interaction effects.

The following interaction effects were significant for MT: Technique × Gap (F4,44 = 4.19,

p = 0.0058), Technique × Width (F4,44 = 7.7, p < 0.0001) and Technique × Amplitude

(F4,43.99 = 26.56, p < 0.0001). RayCasting is faster than Eye-Tip for any Gap, while

GyroMouse is the slowest for Close and Medium but fastest for Far . There is no significant

difference between the three techniques for small targets and GyroMouse is significantly

slower than RayCasting for medium and large targets. Finally there is no difference among

techniques for Amplitude = 1024 and 3000 pixels while GyroMouse is significantly slower

than RayCasting and Eye-Tip for Amplitude = 6500 pixels, supporting prediction (2).

B.5.2 Error Rate

We now consider Outside Clicks as errors. We found a significant effect on error rate for

Technique (F2,21.99 = 24.33, p < 0.0001): RayCasting (mean 44.5%) and Eye-Tip (38.1%)

generate more errors than GyroMouse (24.0%), supporting prediction (1).

We found a significant effect for Gap (F2,22 = 60.92, p < 0.0001), Width (F2,22 = 177.51,

p < 0.0001) and Amplitude (F2,22 = 52.36, p < 0.0001). The number of errors significantly

decreases with Gap (means 46.9, 33.6 and 26.1%), when target Width increases (means

77, 21.2 and 8.4%) and when Amplitude decreases (means 48.1, 32.6 and 25.9%).

We found a significant interaction effect for Technique × Gap (F4,43.97 = 7.56, p < 0.0001)

(Fig. B.3). There is no difference between techniques for Gap = Close. The only sig-

nificant differences are that RayCasting is less precise for Gap = Far than Medium and
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Figure B.3: Error rate (Outside Clicks) per Gap × Technique.

Close; and that Eye-Tip is less precise for Gap = Far than Close. These results partially

support prediction (4). There is no significant evidence that Eye-Tip causes less errors

than RayCasting . Prediction(3) is thus not validated.

We found a significant interaction effect for Technique × Width (F4,43.99 = 21.64, p <

0.0001). There is no difference between the three techniques for large and medium targets.

For small targets, participants made significantly more errors with RayCasting (mean

99.7%) and Eye-Tip (84.8%) than with GyroMouse (46.5%). These very high rates confirm

that these techniques cannot be used as is for high-precision distant pointing.

Finally we found a significant interaction effect for Technique × Amplitude (F4,44.02 =

14.23, p < 0.0001). There is no difference between the three values of Amplitude for the

GyroMouse. Means for GyroMouse are always below those of the two other techniques.

Participants made significantly more errors with the large Amplitude (64.2% for RayCast-

ing and 53.8% for Eye-Tip) than in any other condition.

B.5.3 Fitts’ law

We computed the Fitts’ Index of Difficulty (ID) of the task for each trial with no Outside

Clicks (92%) and performed linear fits for MT. The resulting r2 for GyroMouse, RayCast-

ing and Eye-Tip are respectively .95, .94 and .97, supporting the fact that distant pointing

with these techniques follows Fitts’ law. In particular, we note that clutching did not seem

to affect the fit for GyroMouse.

The equations of the fitting lines show very similar slopes, with a small advantage for

RayCasting :

Eye-Tip: MT (ms) = −327 + 451 ∗ ID
GyroMouse: MT (ms) = −489 + 498 ∗ ID
RayCasting : MT (ms) = −310 + 430 ∗ ID
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B.6. SUMMARY

B.5.4 Subjective results

We found no effect for Technique on Perceived efficiency and Overall preference. Eye-Tip

was perceived as the most tiring technique, followed by RayCasting and then GyroMouse.

RayCasting was perceived as the easiest technique and GyroMouse the hardest one ; Eye-

Tip was in-between but not significantly different from either of them.

B.6 Summary

In summary, we found that the gyroscopic mouse is more precise, making it possible to

acquire smaller targets, but also slower for large amplitudes. Eye-Tip is consistently slower

than ray-casting but is also more precise. These results support Forlines et al.’s findings

[63] that absolute techniques are faster for large movements and that relative techniques

are better for small targets.
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Appendix C

Head and Chest Orientations

This study was a preliminary work for the project I describe in Chapter 6. The goal of

this study was to observe how head movements in a pointing task on a high resolution

wall display correlate with pointing. To assess whether we can exploit head position as a

natural trait for coarse pointing, we sought to answer the following questions:

Q1 How close is the head’s position relative to the user’s area of interest (or

target position) before selection occurs?

This will inform us about the viability of head and chest orientations as input channels

for a pointing technique, as well as give us an appropriate size for the Coarse mode

cursor (parameter L in our framework).

Q2 How quickly does head movement take place with respect to upper limb

movement in a target pointing task?

Answering this question can assist us in determining whether switching from head po-

sitioning to another hand-based pointing mode results in a significant time overhead.

This can assist us in producing the appropriate visual feedback to inform partici-

pants of the cursor movements if we observe a high difference between head and hand

movements.

Q3 How precise are users with their head orientation without feedback?

Answering this question can help us design techniques using head orientation without

adding visual disturbance about this head orientation.

Participants were asked to perform a reciprocal pointing task with two simple pointing

techniques: RayCasting emulated laser pointing by putting the cursor at the intersection

between the ray-casting of the device and the display, and Pointer Acceleration trans-

formed angular movements of the device into relative cursor displacements using a transfer
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C.1. PARTICIPANTS

Figure C.1: Apparatus of the experiment: participants wore a hat and a backpack mounted with
passive infrared markers. A handheld device was also tracked for pointing.

function. We chose a linear transfer function for simplicity:

CD (v) = 264× v + 1754

with CD expressed in pixels per radians and v in radians per seconds. Pointer Acceleration

is a relative technique so a difference may appear between the hand-held device orientation

and the cursor position. In order to prevent this difference to accumulate over trials, each

trial started with a calibration phase where users were asked to physically reorient their

device towards the location of the previous target.

In the first half of the experiment, users were free to move their head and body as they felt

comfortable and we only asked them not to move their feet. In the second half, we asked

them to move their head during the pointing task as if they were also pointing with it, but

without additional feedback. The instruction was to have their head oriented towards the

target when they clicked; whether their head movement preceded their hand movement or

not was up to them.

C.1 Participants

We recruited 12 right-handed participants, 10 male and 2 female, aging from 25 to 36

(mean 28, stdev 1.23) from the IT field. All the participants that needed eye-correction

(8) were using it.
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A

Dwell zone
W

Ecc
Target

Figure C.2: The task parameters we varied in the experiment: A is the angular distance between
the dwell zone and the target, Ecc is the angular distance between the sagittal plane of the user
and the angular middle of the dwell zone and the target, and w is the angular width of the target.
w was constant during the experiment.

C.2 Apparatus

Participants wore a hat and a backpack (Figure C.1) which were both tracked with a

VICON tracking system to understand the physiological mechanisms involved with head

movement while pointing. Participants also held a wireless mouse in their dominant hand

which was tracked with the same system (the events from the optical system of the mouse

were discarded). We used the display of the WILD room (Appendix A).

In order to have constant visual sizes during the trials, the location and dimensions of the

targets were defined in angular units, as shown in Fig. C.2. Participants were displayed

ellipses whose width and height were visually equal, depending on the eccentricity of the

target from the center of the screen, in order for them to always perceive circular targets1

(see Figure C.3). The same visual transformation was applied to the cursor.

C.3 Task

At the beginning of a trial, a blue circle of visual diameter π/48 radians (the dwell zone)

was displayed. Participants were asked to move their cursor inside it using simulated laser

pointing and stay within for half a second. Then this dwell zone disappeared and the

actual target, a green disc of visual diameter π/64 radians, was displayed. Users were

then to acquire this disc using the current technique and click it using the left button of

the wireless mouse. When the cursor was over the target, the target became white and

1We limited our perspective correction to the width and height of the ellipse and did not distort the
ellipse itself.

225



C.4. DESIGN

(a) (b)

Figure C.3: The targets were displayed so that participants saw circular (rather than elliptic)
targets when standing precisely where instructed to (a). However we checked that slight changes
in head location did not change the perspective effect too much: image (b) was taken 20 cm to the
left of the instructed head location. We added the green squares and rectangles in this figure to
account for the perspective effect induced by the screen bezels; all squares (a) and rectangles (b)
are the same size in their respective image.

and additional green circle was displayed around it. The trials ended until the participant

clicked the target. Then the dwell zone and the target switched positions, the target was

hidden and the dwell zone revealed.

C.4 Design

We varied the Technique, Instruc, A and Ecc. Ecc is the horizontal angle of the point

located between the dwell zone and the target (see Figure C.2).

We used two techniques (Technique ∈ {RayCasting ; Pointer Acceleration}), two instruc-

tion conditions (Instruc ∈ {Instruction ; NoInstruction}), three amplitudes (A): Large

(3π
10 rad, 54◦), Medium (3π

20 rad, 27◦) and Small (3π
40 rad, 13.5◦), three eccentricities (Ecc):

Center (0 rad), Left (−.13π rad, −23.4◦) and Right (.13π rad, 23.4◦) and two pointing

directions (PointDir): right to left and left to right. Fig. C.2 shows the Ecc and A

factors.

Instruc was always in the order NoInstruction then Instruction, Technique and Ecc

were counterbalanced using latin square designs and A was randomized.
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C.5 Measures

We measured the time needed to complete a trial (movement time MT) and whether a trial

contained clicks outside the target (ErrorRate). At the end of each trial we also logged the

angle of the cursor (CursorPos), the orientation of the head (HeadPos) and of the torso

(BodyPos).

At the end of the experiment we asked the participant to rate the two techniques for both

Instruction and NoInstruction on five-level Likert scales for comfort, speed and accuracy.

C.6 Results

C.6.1 Subjective Results

The differences in ages, gender and eye correction made no significant difference in the

subjective results.

Ordinal logistic anova’s for the model Technique×Instruc reveal a significant effect of

Technique for each ordinal measure comfort, speed and accuracy (χ2
1,1 = 11.7 p = 0.0006,

χ2
1,1 = 10.6 p = 0.0011, χ2

1,1 = 6.14 p = 0.0132). RayCasting was evaluated more comfortable,

faster and more accurate than Pointer Acceleration. The anova reveals no significant

effects of Instruc.

The above confirm the hypothesis that RayCasting is preferred over Pointer Acceleration

in front of a wall display for acquisition of large targets. Moreover, adding a constraint on

head accuracy does not seem to affect user preference.

C.6.2 Movement Time & Errors

Figure C.4 shows the movement time and the error rate for each technique with and

without instruction. We analyzed these measures in the full factorial model:

Instruc×A×Ecc×Rand(Participant)

for each techniques (we did not wanted to compare the techniques at this level).

Without surprise, the anova reveals an effects of A on MT for both RayCasting and

Pointer Acceleration (F2,22 = 344, p < 0.0001 and F2,22 = 185, p < 0.0001) – MT grows with

the amplitude. These are the only simple significant effects on MT, and there is only

one significant interaction: for RayCasting , there is a significant interaction Instruc×A
(F2,22 = 3.45, p = 0.049). This interaction comes from the fact that participants were 54
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Figure C.4: Movement time (right) and error rate (left) for each technique, with and without
instruction.

ms faster with instruction for large distance, but 40 ms slower for small distance. For

Laser, participants were significantly faster with instruction for large A and slower for

small A. This might be caused by the fact that for small distance participants had to force

themselves to move their head, while this might be more natural for large distances.

Regarding errors rate, for RayCasting we have a significant effect of A (F2,22 = 5.14,

p = 0.015) and a significant interaction A×Instruc (F2,22 = 3.92, p = 0.035). Indeed

we measured a significantly worse error rate (17%) for large distance without instruction

than for all other A×Instruc conditions (about 8%). For Pointer Acceleration the only

significant result is an effect of Ecc (F2,22 = 5.14, p = 0.020). There are fewer errors when

the targets are on the left of the screen.

Overall, we did not measure any significant results showing that instruction degrades

performance or accuracy. Also we did not measure any effect of eccentricity.

C.6.3 Head position vs Cursor Position

We are interested in comparing the position of where the head looks at on the screen and

the position of the cursor. For simplicity we restrict ourselves to the x axis and we consider

the angle from the participant to the point of the screen in front of him and the cursor,

or the point where the head points on the screen.

Table C.1 provides the correlation CursorPos = a.HeadPos + b for (i) all the data; (ii) by

participant (see Figure C.5 for an example) and then averaged; and (iii) by participant

with a direction correction term and then averaged.
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Instruc RayCasting Pointer Acceleration

No/Yes a b r2 a b r2

all data

No 0.862 -0.021 0.599 0.929 -0.045 0.597

Yes 0.888 -0.031 0.800 0.940 -0.061 0.781

by participant and then average

No 1.173 -0.065 0.797 1.246 -0.082 0.782

Yes 1.079 -0.059 0.926 1.100 -0.089 0.892

direction correction, by participant and then average

No 1.034 -0.199 0.888 1.102 -0.242 0.916

Yes 1.024 -0.097 0.944 0.997 -0.179 0.945

Table C.1: CursorPos = a.HeadPos + b correlation for all the data, by participant and then
averaged and by participant with a direction correction term and then averaged
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Figure C.5: An example of a correlation between the Head Screen Position (radian) and the
cursor screen position at click time (participant 10, RayCasting with instruction, a = 0.960, b =
0.094, r2 = 0.977.
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Figure C.7: Head undershoot by A × Instruc

Note that whichever the method, the b parameter is always negative, indicating that

HeadPos is smaller than CursorPos on average. We computed the head Undershoot

as the horizontal, angular difference between the head orientation and the target angle

(Undershoot = TargetAngle − HeadPos), PointDir-wise. Undershoot is significantly af-

fected by Instruc (F1,11 = 7.43, p = 0.0197), Technique (F1,11 = 4.91, p = 0.0487) and

Amplitude (F2,22 = 27.48, p < 0.0001), but not by Ecc not PointDir. Post-hoc tests

revealed that head Undershoot was higher (i) without instruction and (ii) with Pointer

Acceleration, as shown in Figure C.6. Undershoot also increased significantly with A

(Figure C.7).

We want to compute a natural “size” for a head area cursor. For this propose we compute

the error (difference) from the real data and the prediction given by the correlation (par-

ticipant by participant). This leads to distributions (Technique × Instruc) as shown in

Figure C.8. Then, we want 95 % of the clicks to be inside the head area cursor. This gives

the following size in radian (degree):

Instruc RayCasting Pointer Acceleration

No 0.542 (31.1) 0.613 (35.1)

Yes 0.364 (20.9) 0.461 (26.4)
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Figure C.9: Example of device, head and body velocities during a trial.

These rather large angles show that head orientation is not very precise without visual

feedback, at least with a precision criterion as high as 95 %. This size remains to be

computed with visual feedback.

C.6.4 Kinematics

For each of the tracked body parts we identified the maximum angular velocity value of

each trial: Device Velocity Peak , Head Velocity Peak and Body Velocity Peak , and the

normalized time when they occurred: Device Peak Time, Head Peak Time and Body Peak

Time as shown in Fig. C.9.

The angular movement amplitude of the cursor during a trial (Cursor Movement) is sig-
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nificantly affected by Device Velocity Peak (F1,11.33 = 29.64, p = 0.0002) and Head Velocity

Peak (F1,12.23 = 54.54, p < 0.0001).

We also observed when the head velocity peak occurred respectively to the device velocity

peak. We call Head Earliness the difference Device Peak Time−Head Peak Time. Positive

values indicate that the head main movement occurred before the device main movement.

We first observe that head is globally as often in advance as it is late: 51.23% of the

trials have a negative Head Earliness. Head Earliness was significantly lower in trials

with NoInstruction: −0.066 in average against −0.034 for Instruction trials (F1,11 = 8.65,

p = 0, 0134). Head Earliness also decreased significantly (F2,22 = 80.98, p < 0.0001) with A:

0 for Large A, −0.052 for Medium and −0, 1 for Small in average.

C.7 Summary

In this preliminary experiment we showed that:

1. In accordance with Freedman and Sparks’ [66] results, head orientation always un-

dershoots the actual (horizontal) orientation of the target;

2. Head orientation can be used to infer target location, although with low accuracy;

3. This accuracy increases if participants are considered independently, which implies

that calibration could improve the precision of the estimate of the target location;

4. Head rotation occurs roughly at the same time as the equivalent pointing gesture.

All these results apply only when no feedback is given about the orientation of the head.
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Glossary

Cave Automatic Virtual Environment (CAVE) immersive virtual reality environ-

ment where projectors are directed to three, four, five or six of the walls of a room-

sized cube.

27, 35, 230

clutching when users reach the limits of their motor operating range, they can clutch, i.e.,

temporarily decouple the input device from the cursor position so as to reposition the

body part (finger, arm, ... ) actuating the device in a more suitable configuration.

46, 51, 53–55, 62, 64, 66, 67, 109, 111–114, 116, 117, 121, 124, 126–132, 135, 139,

140, 149, 154, 156, 158, 168, 174, 178, 217, 219, 230

Control-to-Display (CD) gain multiplicative gain between input variation (Control)

and cursor movement (Display); multiplicative inverse of CD ratio.

108–117, 120, 121, 123, 126–128, 132, 133, 142, 146–148, 154–156, 159, 170, 172,

175, 176, 178, 230–232

Fitts’ Index of Difficulty (ID) continuous measure of the difficulty of a pointing task;

it has several mathematical expression, the most common and only one used in this

dissertation being the Shannon [114] expression: ID = log2

(
1 + A

W

)
, with A being

the amplitude of the task and W the width of the target.

58, 105, 112, 120, 121, 123, 125, 132, 161, 172, 173, 175, 178, 216, 219, 230

pixel density number of pixels in a given surface unit; expressed in Points Per Inches

(ppi) or Points Per Millimeters (ppm).

20, 26–31, 103, 105, 106, 110, 150, 170, 175, 230, 231

Pointer Acceleration (PA) specific resolution function where the CD gain varies with

the input velocity, on the basis that slow input are meant for precise movements and

fast input for fast movements.

109, 116, 120, 146, 148, 155, 156, 168, 175, 176, 182, 230
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Points Per Inch (ppi) unit of pixel density; number of points per inch.

26, 28, 105, 110, 113, 114, 116, 121, 132, 139, 161, 213, 230, 231

Region Of Interest (ROI) portion of a visualization that a user is currently focused

on.

30, 34–36, 46–49, 52, 230

resolution function mapping from an input domain set, e.g. mouse, touch or 3D events,

to an output domain set, e.g. cursor movements [42]; the most common resolution

function used for pointing is Control-to-Display (CD) gains.

109, 123, 124, 128, 151, 175, 177–179, 183–185, 230, 231

WILD Wall-sized Interaction with Large Datasets, see Appendix A.

26, 49, 54, 56, 82, 105, 116, 147, 155, 160, 216, 222, 230

WIMP Windows, Icons, Menus and Pointing: style of interaction using these elements.

34, 36, 230
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Mathieu Nancel

Designing and Combining Interaction Techniques
in Large Display Environments

Abstract :
Large display environments (LDEs) are interactive physical workspaces featuring one or more static large displays
as well as rich interaction capabilities, and are meant to visualize and manipulate very large datasets. Research
about mid-air interactions in such environments has emerged over the past decade, and a number of interaction
techniques are now available for most elementary tasks such as pointing, navigating and command selection.
However these techniques are often designed and evaluated separately on specific platforms and for specific use-
cases or operationalizations, which makes it hard to choose, compare and combine them.
In this dissertation I propose a framework and a set of guidelines for analyzing and combining the input and output
channels available in LDEs. I analyze the characteristics of LDEs in terms of (1) visual output and how it affects
usability and collaboration and (2) input channels and how to combine them in rich sets of mid-air interaction
techniques. These analyses lead to four design requirements intended to ensure that a set of interaction techniques
can be used (i) at a distance, (ii) together with other interaction techniques and (iii) when collaborating with other
users. In accordance with these requirements, I designed and evaluated a set of mid-air interaction techniques for
panning and zooming, for invoking commands while pointing and for performing difficult pointing tasks with limited
input requirements. For the latter I also developed two methods, one for calibrating high-precision techniques with
two levels of precision and one for tuning velocity-based transfer functions. Finally, I introduce two higher-level
design considerations for combining interaction techniques in input-constrained environments. Designers should
take into account (1) the trade-off between minimizing limb usage and performing actions in parallel that affects
overall performance, and (2) the decision and adaptation costs incurred by changing the resolution function of a
pointing technique during a pointing task.

Keywords : large display environments, LDE, ultra-high-resolution displays, feedback location, task allocation,
pan-and-zoom, on-body touch, dual-precision pointing, head orientation, pointer acceleration, decision, adaptation

Résumé :
Les environnements à grands écrans (Large Display Environments, LDE) sont des espaces de travail interactifs con-
tenant un ou plusieurs grands écrans fixes et divers dispositifs d’entrée ayant pour but de permettre la visualisation
et la manipulation de très grands jeux de données. La recherche s’est de plus en plus intéressé à ces environ-
nements durant ces dix dernières années, et il existe d’ores-et-déjà un certain nombre de techniques d’interaction
correspondant à la plupart des tâches élémentaires comme le pointage, la navigation et la sélection de comman-
des. Cependant, ces techniques sont souvent conçues et évaluées séparément, dans des environnements et des cas
d’utilisations spécifiques. Il est donc difficile de les comparer et de les combiner.
Dans ce manuscrit, je propose un ensemble de guides pour l’analyse et la combinaison des canaux d’entrée et de
sortie disponibles dans les LDEs. Je présente d’abord une étude de leurs caractéristiques selon deux axes: (1) le
retour visuel, et la manière dont il affecte l’utilisabilité des techniques d’interaction et la collaboration co-localisée,
et (2) les canaux d’entrée, et comment les combiner en d’efficaces ensembles de techniques d’interaction. Grâce
à ces analyses, j’ai développé quatre pré-requis de conception destinés à assurer que des techniques d’interaction
peuvent être utilisées (i) à distance, (ii) en même temps que d’autres techniques et (iii) avec d’autres utilisateurs.
Suivant ces pré-requis, j’ai conçu et évalué un ensemble de techniques de navigation, d’invocation de commandes
tout en pointant, et de pointage haute-précision avec des moyens d’entrée limités. J’ai également développé deux
méthodes de calibration de techniques de pointage, l’une spécifique aux techniques ayant deux niveaux de précision
et l’autre adaptée aux fonctions d’accélération. En conclusion, j’introduis deux considérations de plus haut niveau
sur la combinaison de techniques d’interaction dans des environnements aux canaux d’entrée limités : (1) il existe
un compromis entre le fait de minimiser l’utilisation des membres de l’utilisateur et celui d’effectuer des actions
en parallèle qui affecte les performances de l’ensemble ; (2) changer la fonction de transfert d’une technique de
pointage durant son utilisation peut avoir un effet négatif sur les performances.

Mots clés : environnements à grands écrans, LDE, écrans ultra-haute-résolution, retour visuel, assignation de
tâches, pointage haute-précision, orientation de la tête, fonctions d’accélération, décision, adaptation


	Introduction
	I Combination of pointing and other interactions on wall-sized displays
	Designing Mid-air Interactions for Large Display Platforms
	Desktop Environments VS. Large Display Platforms
	Location of the feedback
	Task allocation strategies
	Requirements

	Pointing and navigation on wall-sized displays
	Introduction
	Panning and Zooming in Mid-air
	Design Space for Mid-Air Pan-and-Zoom Input
	Design Choices
	Experiment
	Summary and Discussion

	Device-less Discrete Selection in Large Display Platforms
	Introduction
	Related Work
	Design space for on-body touch interactions
	Experiment
	Conclusion

	Conclusion of Part I: Parallelism and Limb Usage

	II Dual-Precision techniques
	The limits of single-precision techniques
	Introduction
	Matching the limits of human perception
	Experiment: Limits of single-mode Techniques
	Conclusion

	Dual-precision
	Introduction
	Experiment: Dual-Precision Techniques
	Implications for design
	Conclusion and Future Work

	Dual-Precision Techniques on Touch Devices
	Introduction
	Techniques
	Control-Display Transfer Functions
	Comparing the Dual-Precision Techniques
	Comparison with State-of-the-Art Techniques
	Conclusion

	Conclusion of Part II: Decision and Adaptation

	Conclusion and Perspectives
	Bibliography
	Appendices
	General apparatus: the WILD platform
	Preliminary Experiment with Single-Mode Pointing Techniques
	Participants
	Apparatus
	Task
	Predictions
	Results
	Summary

	Head and Chest Orientations
	Participants
	Apparatus
	Task
	Design
	Measures
	Results
	Summary


	Glossary
	Glossary


