K. Akutagawa, Convergence for Yamabe metrics of positive scalar curvature with integral bounds on curvature, AB03] K. Akutagawa and B. Botvinnik, Yamabe metrics on cylindrical manifolds, pp.307-335, 1996.
DOI : 10.2140/pjm.1996.175.307

G. [. Akutagawa, R. Carron, and . Mazzeo, The Yamabe problem on stratified spaces, Geometric and Functional Analysis, vol.12, issue.4, 2012.
DOI : 10.1007/s00039-014-0298-z

URL : https://hal.archives-ouvertes.fr/hal-00747322

]. M. And97 and . Anderson, Extrema of curvature functionals on the space of metrics on 3-manifolds, Calculus of Variations and Partial Differential Equations, vol.5, pp.199-269, 1997.

]. T. Aub98 and . Aubin, Some nonlinear problems in Riemannian geometry, 1998.

]. E. Aub07 and . Aubry, Finiteness of ? 1 and geometric inequalities in almost positive Ricci curvature, Annales Scientifiques de l'Ecole Normale Supérieure, Quatrième Série, vol.40, issue.4, pp.675-695, 2007.

D. [. Bahuaud and . Helliwell, Short-Time Existence for Some Higher-Order Geometric Flows, Communications in Partial Differential Equations, vol.325, issue.12, 2010.
DOI : 10.1080/03605302.2011.593015

F. [. Bakas, D. Bourliot, M. Lüst, and . Petropoulos, Geometric flows in Ho??ava-Lifshitz gravity, Journal of High Energy Physics, vol.102, issue.4, 2011.
DOI : 10.1007/JHEP04(2010)131

]. M. Ber02 and . Berger, A panoramic view of Riemannian Geometry, 2002.

J. Bourguignon, The " magic " of Weitzenböck formulas, Variational methods, Progr. Nonlinear Differential Equations Appl, pp.251-271, 1988.

]. T. Bra00 and . Branson, Kato constants in Riemannian geometry, Mathematical Research Letters, vol.7, issue.2-3, pp.245-261, 2000.

]. S. Bre03 and . Brendle, Global existence and convergence for a higher order flow in conformal geometry, Annals of Mathematics, issue.2, pp.158-323, 2003.

. Ccd-+-10-]-m, G. Caldarelli, Z. Catino, A. Djadli, C. Magni et al., On Perelman's dilaton, Geometriae Dedicata, vol.145, pp.127-137, 2010.

D. M. Calderbank, P. Gauduchon, and M. Herzlich, Refined Kato Inequalities and Conformal Weights in Riemannian Geometry, Journal of Functional Analysis, vol.173, issue.1, pp.214-255, 2000.
DOI : 10.1006/jfan.2000.3563

URL : https://hal.archives-ouvertes.fr/hal-00987720

H. Cao, Y. Shen, and S. Zhu, The structure of stable minimal hypersurfaces in $I\!\!R^{n+1}$, Mathematical Research Letters, vol.4, issue.5, pp.637-644, 1997.
DOI : 10.4310/MRL.1997.v4.n5.a2

]. G. Car98 and . Carron, Une suite exacte en L 2 -cohomologie, Duke Mathematical Journal, vol.95, issue.2, pp.343-372, 1998.

M. [. Carron and . Herzlich, The Huber theorem for non-compact conformally flat manifolds, Commentarii Mathematici Helvetici, vol.77, issue.1, pp.192-220, 2002.
DOI : 10.1007/s00014-002-8336-0

URL : https://hal.archives-ouvertes.fr/hal-00987710

E. [. Carron and . Pedon, On the differential form spectrum of hyperbolic manifolds, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze. Serie V, vol.3, issue.4, pp.705-747, 2004.

Z. [. Catino and . Djadli, Conformal deformations of integral pinched 3-manifolds, Advances in Mathematics, vol.223, issue.2, pp.393-404, 2010.
DOI : 10.1016/j.aim.2009.07.015

]. A. Cgy02a, M. J. Chang, P. C. Gursky, and . Yang, An a priori estimate for a fully nonlinear equation on four-manifolds, Journal d'Analyse Mathématique, vol.87, pp.151-186, 2002.

W. [. Chen, On the Calabi flow, American Journal of Mathematics, vol.130, issue.2, pp.539-570, 2008.
DOI : 10.1353/ajm.2008.0018

URL : https://hal.archives-ouvertes.fr/hal-00830746

]. J. Che70 and . Cheeger, Finiteness Theorems for Riemannian Manifolds, American Journal of Mathematics, vol.92, pp.61-74, 1970.

D. [. Chow and . Knopf, The Ricci flow : an introduction, 2004.
DOI : 10.1090/surv/110

]. P. Chr91, Semi-global existence and convergence of solutions of the Robinson-Trautman (2- dimensional Calabi) equation, Communications in Mathematical Physics, vol.137, issue.2, pp.289-313, 1991.

]. A. Der83 and . Derdzi´nskiderdzi´nski, Self-dual Kähler manifolds and Einstein manifolds of dimension four, Compositio Mathematica, vol.49, issue.3, pp.405-433, 1983.

]. D. Det83 and . Deturck, Deforming metrics in the direction of their Ricci tensors, Journal of Differential Geometry, vol.18, pp.157-162, 1983.

]. S. Gal88 and . Gallot, Isoperimetric inequalities based on integral norms of Ricci curvature, Astérisque, vol.157158, pp.191-216, 1988.

D. [. Gallot, J. Hulin, and . Lafontaine, Riemannian geometry, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00002870

D. [. Gallot and . Meyer, Opérateur de courbure et laplacien des formes différentielles d'une variété Riemannienne, Journal de Mathématiques Pures et Appliquées, vol.54, pp.259-284, 1975.

]. D. Gli03 and . Glickenstein, Precompactness of solutions to the Ricci flow in the absence of injectivity radius estimates, Geometry & Topology, vol.7, pp.487-510, 2003.

]. M. Gur94 and . Gursky, Locally conformally flat four-and six-manifolds of positive scalar curvature and positive Euler characteristic The Weyl Functional, de Rham Cohomology, and Kähler-Einstein Metrics, Indiana University Mathematics Journal Annals of Mathematics, vol.43, issue.32, pp.747-774, 1994.

C. [. Gursky and . Lebrun, On Einstein Manifolds of Positive Sectional Curvature, Annals of Global Analysis and Geometry, vol.17, issue.4, pp.315-328, 1999.
DOI : 10.1023/A:1006597912184

J. [. Gursky and . Viaclovsky, A new variational characterization of three-dimensional space forms, Inventiones Mathematicae, vol.145, issue.2, pp.251-278, 2001.
DOI : 10.1007/s002220100147

R. Hamilton, Three-manifolds with positive Ricci curvature, Journal of Differential Geometry, vol.17, issue.2, pp.255-306, 1982.
DOI : 10.4310/jdg/1214436922

]. E. Heb96 and . Hebey, Sobolev spaces on Riemannian manifolds, Lecture Notes in Mathematics, vol.1635, 1996.

M. [. Hebey and . Vaugon, EffectiveL p pinching for the concircular curvature, Journal of Geometric Analysis, vol.4, issue.4, pp.531-553, 1996.
DOI : 10.1007/BF02921622

]. G. Hui85 and . Huisken, Ricci deformation of the metric on a Riemannian manifold, Journal of Differential Geometry, vol.21, issue.1, pp.47-62, 1985.

]. S. Kim10 and . Kim, Rigidity of noncompact complete Bach-flat manifolds, Journal of Geometry and Physics, vol.60, issue.4, pp.637-642, 2010.
DOI : 10.1016/j.geomphys.2009.12.014

B. Kleiner and J. Lott, Geometrization of three-dimensional orbifolds via Ricci flow, 2011.

]. R. Kul72 and . Kulkarni, On the Bianchi identities, Mathematische Annalen, vol.199, pp.175-204, 1972.

R. [. Kuwert and . Schätzle, The Willmore Flow with Small Initial Energy, Journal of Differential Geometry, vol.57, issue.3, pp.409-441, 2001.
DOI : 10.4310/jdg/1090348128

]. Lab05 and . Labbi, Double forms, curvature structures and the (p, q)-curvatures, Transactions of the, pp.3971-3992, 2005.

]. C. Leb04 and . Lebrun, Curvature functionals, optimal metrics, and the differential topology of 4-manifolds, Different Faces of Geometry, 2004.

J. [. Li and . Wang, Weighted Poincaré inequality and rigidity of complete manifolds, Annales Scientifiques de l'Ecole Normale Supérieure, Quatrième Série, vol.39, issue.6, pp.921-982, 2006.

S. [. Li and . Yau, Curvature and holomorphic mappings of complete Kähler manifolds, Compositio Mathematica, issue.2, pp.73-125, 1990.

]. J. Lot07 and . Lott, On the long-time behavior of type-III Ricci flow solutions, Mathematische Annalen, vol.339, issue.3, pp.627-666, 2007.

C. Mantegazza, Smooth geometric evolutions of hypersurfaces, Geometric And Functional Analysis, vol.12, issue.1, pp.138-182, 2002.
DOI : 10.1007/s00039-002-8241-0

]. C. Mar98 and . Margerin, A sharp characterization of the smooth 4-sphere in curvature terms, Communications in Analysis and Geometry, vol.6, pp.21-65, 1998.

]. M. Oba72 and . Obata, The conjectures on conformal transformations of Riemannian manifolds, Journal of Differential Geometry, vol.6, pp.247-258, 1972.

G. Perelman, The entropy formula for the Ricci flow and its geometric applications, 2002.

]. J. Pet09 and . Petean, Isoperimetric regions in spherical cones and Yamabe constants of M × S 1, Geometriae Dedicata, vol.143, pp.37-48, 2009.

]. P. Pet98 and . Petersen, Riemannian geometry, 1998.

G. Simonett, The Willmore flow near spheres, Differential Integral Equations, vol.14, issue.8, pp.1005-1014, 2001.

]. J. Str08 and . Streets, The Gradient Flow of M |Rm| 2, Journal of Geometric Analysis, vol.18, pp.249-271, 2008.

J. [. Tian and . Viaclovsky, Moduli spaces of critical Riemannian metrics in dimension four, Advances in Mathematics, vol.196, issue.2, pp.346-372, 2005.
DOI : 10.1016/j.aim.2004.09.004

]. P. Top06 and . Topping, Lectures on the Ricci Flow, 2006.

]. J. Via06 and . Viaclovsky, Conformal geometry and fully nonlinear equations, Nankai Tracts in Mathematics, vol.11, pp.435-460, 2006.

]. Yau75 and . Yau, Harmonic functions on complete Riemannian manifolds, Communications on Pure and Applied Mathematics, vol.28, pp.201-228, 1975.