K. Zeller, A. Jegga, B. Aronow, O. Donnell, K. Dang et al., An integrated database of genes responsive to the Myc oncogenic transcription factor: identification of direct genomic targets, Genome Biology, vol.4, issue.10, p.69, 2003.
DOI : 10.1186/gb-2003-4-10-r69

D. Cruz, S. Xenarios, I. Langridge, J. Vilbois, F. Parone et al., Purification and Proteomic Analysis of the Mouse Liver Mitochondrial Inner Membrane, J Biol Chem, vol.278, issue.42, pp.41566-71, 2003.
DOI : 10.1007/978-1-59745-028-7_7

T. Frickey and A. Lupas, Phylogenetic analysis of AAA proteins, Journal of Structural Biology, vol.146, issue.1-2, pp.2-10, 2004.
DOI : 10.1016/j.jsb.2003.11.020

R. Kamath and J. Ahringer, Genome-wide RNAi screening in Caenorhabditis elegans, Methods, vol.30, issue.4, pp.313-334, 2003.
DOI : 10.1016/S1046-2023(03)00050-1

M. Hoffmann, N. Bellance, R. Rossignol, W. Koopman, P. Willems et al., C. elegans ATAD-3 Is Essential for Mitochondrial Activity and Development, PLoS ONE, vol.17, issue.36, p.7644, 2009.
DOI : 10.1371/journal.pone.0007644.s001

URL : https://hal.archives-ouvertes.fr/in2p3-00025853

B. Gilquin, E. Taillebourg, N. Cherradi, A. Hubstenberger, O. Gay et al., The AAA+ ATPase ATAD3A Controls Mitochondrial Dynamics at the Interface of the Inner and Outer Membranes, Molecular and Cellular Biology, vol.30, issue.8, pp.1984-96, 2010.
DOI : 10.1128/MCB.00007-10

A. Hubstenberger, G. Labourdette, J. Baudier, and D. Rousseau, MSBP, une protéine identifiée comme une cible de la S100B, impliquée dans la distribution subcellulaire des mitochondries ATAD3A and ATAD3B are distal 1p-located genes differentially expressed in human glioma cell lines and present in vitro antioncogenic and chemoresistant properties, Thèse de l'Université J. Fourier, pp.2870-2883, 2006.

M. Schaffrik, B. Mack, C. Matthias, J. Rauch, and O. Gires, Molecular characterization of the tumor-associated antigen AAA-TOB3, Cellular and Molecular Life Sciences, vol.63, issue.18, pp.2162-2174, 2006.
DOI : 10.1007/s00018-006-6200-x

J. He, C. Mao, A. Reyes, H. Sembongi, D. Re et al., protein ATAD3 has displacement loop binding properties and is involved in mitochondrial nucleoid organization, The Journal of Cell Biology, vol.3, issue.2, pp.141-146, 2007.
DOI : 10.1016/j.molcel.2005.05.002

Y. Wang and D. Bogenhagen, Human Mitochondrial DNA Nucleoids Are Linked to Protein Folding Machinery and Metabolic Enzymes at the Mitochondrial Inner Membrane, Journal of Biological Chemistry, vol.281, issue.35, pp.25791-802, 2006.
DOI : 10.1074/jbc.M604501200

D. Bogenhagen, D. Rousseau, and S. Burke, The Layered Structure of Human Mitochondrial DNA Nucleoids, Journal of Biological Chemistry, vol.283, issue.6, pp.3665-3667, 2008.
DOI : 10.1074/jbc.M708444200

A. Hubstenberger, N. Merle, R. Charton, G. Brandolin, and D. Rousseau, Topological analysis of ATAD3A insertion in purified human mitochondria, Journal of Bioenergetics and Biomembranes, vol.4, issue.10, pp.143-50, 2010.
DOI : 10.1007/s10863-010-9269-8

D. Simmons, J. Voss, H. Ingraham, J. Holloway, R. Broide et al., Pituitary cell phenotypes involve cell-specific Pit-1 mRNA translation and synergistic interactions with other classes of transcription factors., Genes & Development, vol.4, issue.5, pp.695-711, 1990.
DOI : 10.1101/gad.4.5.695

D. Sassoon, G. Lyons, W. Wright, V. Lin, A. Lassar et al., Expression of two myogenic regulatory factors myogenin and MyoDl during mouse embryogenesis, Nature, vol.341, issue.6240, pp.303-307, 1989.
DOI : 10.1038/341303a0

T. Hinterberger, D. Sassoon, S. Rhodes, and S. Konieczny, Expression of the muscle regulatory factor MRF4 during somite and skeletal myofiber development, Developmental Biology, vol.147, issue.1, pp.144-156, 1991.
DOI : 10.1016/S0012-1606(05)80014-4

M. Pownall, M. Gustafsson, C. Emerson, and . Jr, Myogenic Regulatory Factors and the Specification of Muscle Progenitors in Vertebrate Embryos, Annual Review of Cell and Developmental Biology, vol.18, issue.1, pp.747-783, 2002.
DOI : 10.1146/annurev.cellbio.18.012502.105758

J. Smith, B. Alderete, Y. Minn, T. Borell, A. Perry et al., Localization of common deletion regions on 1p and 19q in human gliomas and their association with histological subtype, Oncogene, vol.18, issue.28, pp.4144-4152, 1999.
DOI : 10.1038/sj.onc.1202759

A. Correia, C. Pastore, S. Adinolfi, A. Pastore, and C. Gomes, Dynamics, stability and iron-binding activity of frataxin clinical mutants, FEBS Journal, vol.279, issue.14, pp.3680-90, 2008.
DOI : 10.1111/j.1742-4658.2008.06512.x

Y. Shan, E. Napoli, and G. Cortopassi, Mitochondrial frataxin interacts with ISD11 of the NFS1/ISCU complex and multiple mitochondrial chaperones, Human Molecular Genetics, vol.16, issue.8, pp.929-970, 2007.
DOI : 10.1093/hmg/ddm038

O. Gires, M. Münz, M. Schaffrik, C. Kieu, J. Rauch et al., Profile identification of disease-associated humoral antigens using AMIDA, a novel proteomics-based technology, Cellular and Molecular Life Sciences (CMLS), vol.61, issue.10, pp.611198-207, 2004.
DOI : 10.1007/s00018-004-4045-8

C. Geuijen, N. Bijl, R. Smit, F. Cox, M. Throsby et al., A proteomic approach to tumour target identification using phage display, affinity purification and mass spectrometry, European Journal of Cancer, vol.41, issue.1, pp.178-87, 2005.
DOI : 10.1016/j.ejca.2004.10.008

B. Gilquin, B. Cannon, A. Hubstenberger, B. Moulouel, E. Falk et al., The Calcium-Dependent Interaction between S100B and the Mitochondrial AAA ATPase ATAD3A and the Role of This Complex in the Cytoplasmic Processing of ATAD3A, Molecular and Cellular Biology, vol.30, issue.11, pp.2724-2760, 2010.
DOI : 10.1128/MCB.01468-09

H. Fang, C. Chang, S. Hsu, C. Huang, S. Chiang et al., ATPase family AAA domain-containing 3A is a novel anti-apoptotic factor in lung adenocarcinoma cells, Journal of Cell Science, vol.123, issue.7, pp.1171-80, 2010.
DOI : 10.1242/jcs.062034

B. Kornmann, Le complexe ERMES, m??decine/sciences, vol.26, issue.2, 2010.
DOI : 10.1051/medsci/2010262145

B. Kornmann and P. Walter, ERMES-mediated ER-mitochondria contacts: molecular hubs for the regulation of mitochondrial biology, Journal of Cell Science, vol.123, issue.9, pp.1389-93, 2010.
DOI : 10.1242/jcs.058636

T. Hayashi, R. Rizzuto, G. Hajnoczky, and T. Su, MAM: more than just a housekeeper, Trends in Cell Biology, vol.19, issue.2, pp.81-89, 2009.
DOI : 10.1016/j.tcb.2008.12.002

Y. Jiang, X. Liu, X. Fang, and X. Wang, Proteomic Analysis of Mitochondria in Raji Cells Following Exposure to Radiation: Implications for Radiotherapy Response, Protein & Peptide Letters, vol.16, issue.11, pp.1350-1359, 2009.
DOI : 10.2174/092986609789353646

T. Chen, Y. Hung, T. Lin, H. Chang, I. Chiang et al., Human papillomavirus infection and expression of ATPase family AAA domain containing 3A, a novel antiautophagy factor, in uterine cervical cancer, Int J Mol Med, vol.28, issue.5, pp.689-96743, 2011.

K. Zeller, A. Jegga, B. Aronow, O. Donnell, K. Dang et al., An integrated database of genes responsive to the Myc oncogenic transcription factor: identification of direct genomic targets, Genome Biology, vol.4, issue.10, p.69, 2003.
DOI : 10.1186/gb-2003-4-10-r69

S. Li and D. Rousseau, ATAD3, a vital membrane bound mitochondrial ATPase involved in tumor progression, Journal of Bioenergetics and Biomembranes, vol.28, issue.5, pp.10-1007, 2012.
DOI : 10.1007/s10863-012-9424-5

O. Gires, M. Münz, M. Schaffrik, C. Kieu, J. Rauch et al., Profile identification of disease-associated humoral antigens using AMIDA, a novel proteomics-based technology, Cellular and Molecular Life Sciences (CMLS), vol.61, issue.10, pp.1198-207, 2004.
DOI : 10.1007/s00018-004-4045-8

D. Cruz, S. Xenarios, I. Langridge, J. Vilbois, F. Parone et al., Purification and Proteomic Analysis of the Mouse Liver Mitochondrial Inner Membrane, J Biol Chem, vol.278, pp.41566-41571, 2003.
DOI : 10.1007/978-1-59745-028-7_7

D. Cruz, S. Martinou, J. Schetter, A. Morton, D. Gunsaluskc et al., Purification and proteomic 101-16. 22-Piano F Gene clustering based on RNAi phenotypes of ovary-enriched genes in C. elegans Genome-wide RNAi screening in Caenorhabditis elegans Genome-wide RNAi of C. elegans using the hypersensitive rrf-3 strain reveals novel gene functions RNAi profiling of early embryogenesis in Caenorhabditis elegans, Methods Mol Biol. Curr Biol Methods PLoS Biol Nature, vol.432, issue.434, pp.313-334, 2002.

M. Hoffmann, N. Bellance, R. Rossignol, W. Koopman, P. Willems et al., C. elegans ATAD-3 Is Essential for Mitochondrial Activity and Development, PLoS ONE, vol.17, issue.36, pp.7644-7671, 2006.
DOI : 10.1371/journal.pone.0007644.s001

URL : https://hal.archives-ouvertes.fr/in2p3-00025853

B. Gilquin, E. Taillebourg, N. Cherradi, A. Hubstenberger, O. Gay et al., Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels, J Cell Biol, issue.6, pp.175901-175912, 2006.

J. Goetz, H. Genty, P. St-pierre, T. Dang, B. Joshi et al., Reversible interactions between smooth domains of the endoplasmic reticulum and mitochondria are regulated by physiological cytosolic Ca2+ levels, Journal of Cell Science, vol.120, issue.20, pp.3553-64, 2007.
DOI : 10.1242/jcs.03486

URL : https://hal.archives-ouvertes.fr/hal-00195431

S. Chiang, C. Huang, T. Lin, S. Chiou, and K. Chow, An alternative import pathway of AIF to the mitochondria, Int J Mol Med, vol.2012, issue.293, pp.365-72

M. Hoffmann, S. Honnen, E. Mayatepek, W. Wätjen, W. Koopman et al., MICS-1 interacts with mitochondrial ATAD-3 and modulates lifespan in C. elegans, Experimental Gerontology, vol.47, issue.3, pp.47270-47275
DOI : 10.1016/j.exger.2011.12.011

R. Mckay, J. Mckay, L. Avery, J. Graff, L. Burkart et al., C. elegans, Developmental Cell, vol.4, issue.1, pp.131-421085, 2003.
DOI : 10.1016/S1534-5807(02)00411-2

URL : https://hal.archives-ouvertes.fr/in2p3-00001137

T. Kita, H. Nishida, H. Shibata, S. Niimi, T. Higuti et al., Possible Role of Mitochondrial Remodelling on Cellular Triacylglycerol Accumulation, Journal of Biochemistry, vol.146, issue.6, pp.787-96, 2009.
DOI : 10.1093/jb/mvp124

C. Gao, G. Liu, S. Liu, X. Chen, C. Ji et al., Overexpression of PGC-1?? improves insulin sensitivity and mitochondrial function in 3T3-L1 adipocytes, Molecular and Cellular Biochemistry, vol.38, issue.1-2, pp.215-238, 2011.
DOI : 10.1007/s11010-011-0789-2

Y. Guo, T. Walther, M. Rao, N. Stuurman, G. Goshima et al., Functional genomic screen reveals genes involved in lipiddroplet formation and utilization, Nature, issue.7195, pp.453657-61, 2008.

S. Cho, P. Park, E. Shin, J. Lee, H. Chang et al., Proteomic analysis of mitochondrial proteins of basal and lipolytically (isoproterenol and TNF-??)-stimulated adipocytes, Journal of Cellular Biochemistry, vol.51, issue.2, pp.257-66, 2009.
DOI : 10.1002/jcb.21998

B. Newton, S. Cologna, C. Moya, D. Russell, W. Russell et al., Proteomic Analysis of 3T3-L1 Adipocyte Mitochondria during Differentiation and Enlargement, Journal of Proteome Research, vol.10, issue.10, pp.4692-702, 2011.
DOI : 10.1021/pr200491h

M. Kaaman, L. Sparks, V. Van-harmelen, and S. Smith, Strong association between mitochondrial DNA copy number and lipogenesis in human white adipose tissue, Diabetologia, vol.148, issue.12, pp.2526-2533, 2007.
DOI : 10.1007/s00125-007-0818-6

I. Bogacka, B. Ukropcova, M. Mcneil, J. Gimble, and S. Smith, Structural and functional consequences of mitochondrial biogenesis in human adipocytes in vitro, J Clin Endocrinol Metab, issue.12, pp.906650-906656, 2005.

D. Muoio, K. Seefeld, L. Witters, and R. Coleman, AMP-activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle: evidence that sn-glycerol-3-phosphate acyltransferase is a novel target, Biochem

Y. Shi and P. Burn, Lipid metabolic enzymes: emerging drug targets for the treatment of obesity, Nature Reviews Drug Discovery, vol.421, issue.8, pp.695-710, 2004.
DOI : 10.1038/nrd1469

Y. Guo, K. Cordes, R. Farese, . Jr, and T. Walther, Lipid droplets at a glance, Journal of Cell Science, vol.122, issue.6, pp.749-52, 2009.
DOI : 10.1242/jcs.037630

E. Blanchette-mackie, N. Dwyer, T. Barber, R. Coxey, T. Takeda et al., Perilipin is located on the surface layer of intracellular lipid droplets in adipocytes, J Lipid Res, issue.6, pp.361211-361237, 1995.

M. Munday, D. Campbell, D. Carling, and D. Hardie, Identification by amino acid sequencing of three major regulatory phosphorylation sites on rat acetyl-CoA carboxylase, European Journal of Biochemistry, vol.151, issue.2, pp.331-339, 1988.
DOI : 10.1016/0076-6879(83)99039-0

V. Vingtdeux, L. Giliberto, H. Zhao, P. Chandakkar, Q. Wu et al., AMP-activated Protein Kinase Signaling Activation by Resveratrol Modulates Amyloid-?? Peptide Metabolism, Journal of Biological Chemistry, vol.285, issue.12, pp.9100-9113, 2010.
DOI : 10.1074/jbc.M109.060061

V. Vingtdeux, P. Chandakkar, H. Zhao, P. Davies, and P. Marambaud, Small-molecule activators of AMP-activated protein kinase (AMPK), RSVA314 and RSVA405, inhibit adipogenesis, Mol Med, vol.2011, issue.179-10, pp.1022-1052

C. Monge, N. Beraud, A. Kuznetsov, T. Rostovtseva, D. Sackett et al., Regulation of respiration in brain mitochondria and synaptosomes: restrictions of ADP diffusion in??situ, roles of tubulin, and mitochondrial creatine kinase, Molecular and Cellular Biochemistry, vol.76, issue.3, pp.147-65, 2008.
DOI : 10.1007/s11010-008-9865-7

URL : https://hal.archives-ouvertes.fr/inserm-00390936

C. Gao, G. Liu, S. Liu, X. Chen, C. Ji et al., Overexpression of PGC-1?? improves insulin sensitivity and mitochondrial function in 3T3-L1 adipocytes, Molecular and Cellular Biochemistry, vol.38, issue.1-2, pp.215-238, 2011.
DOI : 10.1007/s11010-011-0789-2

W. Xie, J. Hamilton, J. Kirkland, B. Corkey, G. Wsingh et al., Oleate-induced formation of fat cells with impaired insulin sensivitity, Lipids, vol.20, issue.3, pp.267-71, 2006.
DOI : 10.1007/s11745-006-5096-4

A. Bianchi, J. Evans, A. Iverson, A. Nordlund, T. Watts et al., Identification of an isozymic form of acetyl-CoA carboxylase, J Biol Chem, vol.265, issue.3, pp.1502-1511, 1990.

J. Ha, J. Lee, K. Kim, L. Witters, and K. Kim, Cloning of human acetyl-CoA carboxylase-beta and its unique features., Proceedings of the National Academy of Sciences, vol.93, issue.21, pp.9311466-70, 1996.
DOI : 10.1073/pnas.93.21.11466

R. Lu, J. H. Chang, Z. Su, S. Yang, and G. , Mitochondrial development and the influence of its dysfunction during rat adipocyte differentiation, Molecular Biology Reports, vol.98, issue.5, pp.2173-82, 2010.
DOI : 10.1007/s11033-009-9695-z

P. Ducluzeau, M. Priou, M. Weitheimer, M. Flamment, L. Duluc et al., Dynamic regulation of mitochondrial network and oxidative functions during 3T3-L1 fat cell differentiation, J Physiol Biochem, issue.3, pp.67285-96, 2011.

M. Kaaman, L. Sparks, V. Van-harmelen, S. Smith, E. Sjölin et al., Strong association between mitochondrial DNA copy number and lipogenesis in human white adipose tissue. Diabetologia, pp.502526-502559, 2007.

J. He, H. Cooper, A. Reyes, D. Re, M. Sembongi et al., Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis Mitochondrial dysfunction induces triglyceride accumulation in 3T3-L1 cells: role of fatty acid beta-oxidation and glucose, Nucleic Acids Res J Lipid Res, issue.6, pp.461133-461182, 2005.

B. Westermann, D. Chen, S. Lee, and L. Walter, Mitochondrial fusion and fission in cell life and death, Nature Reviews Molecular Cell Biology, vol.264, issue.12, pp.872-84, 2010.
DOI : 10.1038/nrm3013

M. Mccormick, S. Tsai, and B. Kennedy, TOR and ageing: a complex pathway for a complex process, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.19, issue.10, pp.366-156117, 2011.
DOI : 10.1091/mbc.E08-03-0265

E. Rosen, S. Bmgreenberg, A. Coleman, R. Kraemer, F. Mcmanaman et al., Adipocytes as regulators of energy balance and glucose homeostasis The role of lipid droplets in metabolic disease in rodents and humans From unwinding to clamping -the DEAD box RNA helicase family, Nature. J Clin Invest Nat Rev Mol Cell Biol, vol.121, issue.712168, pp.444847-53, 2006.

M. Hoffmann, N. Bellance, R. Rossignol, W. J. Koopman, P. H. Willems et al., C. elegans ATAD-3 Is Essential for Mitochondrial Activity and Development, Distelmaier, C. elegans ATAD-3 is essential for mitochondrial activity and development, p.7644, 2009.
DOI : 10.1371/journal.pone.0007644.s001

URL : https://hal.archives-ouvertes.fr/in2p3-00025853

K. I. Zeller, A. G. Jegga, B. J. Aronow, K. A. O-'donnell, and C. V. Dang, An integrated database of genes responsive to the Myc oncogenic transcription factor: identification of direct genomic targets, Genome Biology, vol.4, issue.10, p.69, 2003.
DOI : 10.1186/gb-2003-4-10-r69

A. Hubstenberger, G. Labourdette, J. Baudier, and D. Rousseau, ATAD 3A and ATAD 3B are distal 1p-located genes differentially expressed in human glioma cell lines and present in vitro anti-oncogenic and chemoresistant properties, Experimental Cell Research, vol.314, issue.15, pp.2870-2883, 2008.
DOI : 10.1016/j.yexcr.2008.06.017

URL : https://hal.archives-ouvertes.fr/inserm-00407709

M. Schaffrik, B. Mack, C. Matthias, J. Rauch, and O. Gires, Molecular characterization of the tumor-associated antigen AAA-TOB3, Cellular and Molecular Life Sciences, vol.63, issue.18, pp.2162-2174, 2006.
DOI : 10.1007/s00018-006-6200-x

S. Da-cruz, I. Xenarios, J. Langridge, F. Vilbois, P. A. Parone et al., Proteomic Analysis of the Mouse Liver Mitochondrial Inner Membrane, Journal of Biological Chemistry, vol.278, issue.42, pp.278-41566, 2003.
DOI : 10.1074/jbc.M304940200

S. Da-cruz and J. C. Martinou, Purification and Proteomic Analysis of the Mouse Liver Mitochondrial Inner Membrane, Methods Mol. Biol, vol.432, pp.101-116, 2008.
DOI : 10.1007/978-1-59745-028-7_7

F. Piano, A. J. Schetter, D. G. Morton, K. C. Gunsalus, V. Reinke et al., Gene Clustering Based on RNAi Phenotypes of Ovary-Enriched Genes in C. elegans, Current Biology, vol.12, issue.22, pp.12-1959, 2002.
DOI : 10.1016/S0960-9822(02)01301-5

R. S. Kamath and J. Ahringer, Genome-wide RNAi screening in Caenorhabditis elegans, Methods, vol.30, issue.4, pp.313-321, 2003.
DOI : 10.1016/S1046-2023(03)00050-1

L. Bot, S. Moreno, and M. Sohrmann, Systematic functional analysis of the Caenorhabditis elegans genome using RNAi, Nature, vol.421, pp.231-237, 2003.

F. Simmer, C. Moorman, A. M. Van-der-linden, E. Kuijk, P. V. Van-den-berghe et al., Genome-Wide RNAi of C. elegans Using the Hypersensitive rrf-3 Strain Reveals Novel Gene Functions, PLoS Biology, vol.395, issue.1, p.12, 2003.
DOI : 10.1371/journal.pbio.0000012.st003

J. Alleaume, P. Artelt, E. Bettencourt, and . Cassin, Fullgenome RNAi profiling of early embryogenesis in Caenorhabditis elegans, Nature, vol.434, pp.462-469, 2005.

J. He, C. C. Mao, A. Reyes, H. Sembongi, M. Di-re et al., protein ATAD3 has displacement loop binding properties and is involved in mitochondrial nucleoid organization, The Journal of Cell Biology, vol.3, issue.2, pp.141-146, 2007.
DOI : 10.1016/j.molcel.2005.05.002

D. F. Bogenhagen, D. Rousseau, and S. Burke, The Layered Structure of Human Mitochondrial DNA Nucleoids, Journal of Biological Chemistry, vol.283, issue.6, pp.3665-3675, 2008.
DOI : 10.1074/jbc.M708444200

S. Li, Yeast-based production and purification of HIS-tagged human ATAD3A, A specific target of S100B, Protein Expression and Purification, vol.83, issue.2, pp.211-216, 2012.
DOI : 10.1016/j.pep.2012.04.005

URL : https://hal.archives-ouvertes.fr/inserm-00696304

A. Hubstenberger, N. Merle, R. Charton, G. Brandolin, and D. Rousseau, Topological analysis of ATAD3A insertion in purified human mitochondria, Journal of Bioenergetics and Biomembranes, vol.4, issue.10, pp.143-150, 2010.
DOI : 10.1007/s10863-010-9269-8

M. O. Assard, S. Fauvarque, O. Tomohiro, J. Kuge, and . Baudier, The AAA+ ATPase ATAD3A controls mitochondrial dynamics at the interface of the inner and outer membranes, Mol. Cell. Biol, pp.30-1984, 2010.

B. Gilquin, B. R. Cannon, A. Hubstenberger, B. Moulouel, E. Falk et al., The Calcium-Dependent Interaction between S100B and the Mitochondrial AAA ATPase ATAD3A and the Role of This Complex in the Cytoplasmic Processing of ATAD3A, Molecular and Cellular Biology, vol.30, issue.11, pp.30-2724, 2010.
DOI : 10.1128/MCB.01468-09

J. W. Wallis, G. Chrebet, G. Brodsky, M. Rolfe, and R. Rothstein, A hyper-recombination mutation in S. cerevisiae identifies a novel eukaryotic topoisomerase, Cell, vol.58, issue.2, pp.409-419, 1989.
DOI : 10.1016/0092-8674(89)90855-6

C. L. Kuo and J. L. Campbell, Cloning of Saccharomyces cerevisiae DNA replication genes: isolation of the CDC8 gene and two genes that compensate for the cdc8-1 mutation., Molecular and Cellular Biology, vol.3, issue.10, pp.1730-1737, 1983.
DOI : 10.1128/MCB.3.10.1730

D. R. Gietz and A. Sugino, New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites, Gene, vol.74, issue.2, pp.527-534, 1988.
DOI : 10.1016/0378-1119(88)90185-0

C. C. Wu, N. Bal, J. Pérard, J. Lowe, C. Boscheron et al., Catty, A cloned prokaryotic Cd 2+ P-type ATPase increases yeast sensitivity to Cd 2+, Biochem. Biophys. Res. Commun, pp.324-1034, 2004.

I. Marenholz, C. W. Heizmann, and G. Fritz, S100 proteins in mouse and man: from evolution to function and pathology, Biochem. Biophys. Res. Com, vol.322, pp.111-1122, 2004.

H. Y. Fang, C. L. Chang, S. H. Hsu, C. Y. Huang, S. F. Chiang et al., ATPase family AAA domain-containing 3A is a novel anti-apoptotic factor in lung adenocarcinoma cells, Journal of Cell Science, vol.123, issue.7, pp.1171-1180, 2010.
DOI : 10.1242/jcs.062034

C. Osman, D. R. Voelker, and T. J. Langer, Making heads or tails of phospholipids in mitochondria, The Journal of Cell Biology, vol.265, issue.1, pp.7-16, 2011.
DOI : 10.1002/yea.320110602

I. Tarassov, P. Kamenski, O. Kolesnikova, O. Karicheva, R. P. Martin et al., Import of Nuclear DNA-Encoded RNAs into Mitochondria and Mitochondrial Translation, Cell Cycle, vol.6, issue.20, pp.2473-2477, 2007.
DOI : 10.4161/cc.6.20.4783

T. Hayashi, R. Rizzuto, G. Hajnoczky, and T. P. Su, MAM: more than just a housekeeper, Trends in Cell Biology, vol.19, issue.2, pp.81-88, 2009.
DOI : 10.1016/j.tcb.2008.12.002

S. Li and D. Rousseau, ATAD3, a vital membrane bound mitochondrial ATPase involved in tumor progression, Journal of Bioenergetics and Biomembranes, vol.28, issue.5, pp.10863-10875, 2012.
DOI : 10.1007/s10863-012-9424-5

C. Osman, D. R. Voelker, and T. Langer, Making heads or tails of phospholipids in mitochondria, The Journal of Cell Biology, vol.265, issue.1, pp.7-16, 2011.
DOI : 10.1002/yea.320110602

B. A. Marcinkiewicz, D. Gauthier, A. Garcia, and D. L. Brasaemle, The Phosphorylation of Serine 492 of Perilipin A Directs Lipid Droplet Fragmentation and Dispersion, Thephosphorylationofserine492of perilipinadirectslipiddropletfragmentationanddispersion, pp.11901-11909, 2006.
DOI : 10.1074/jbc.M600171200

G. Achleitner, B. Gaigg, A. Krasser, E. Kainersdorfer, and S. D. Kohlwein, Association between the endoplasmic reticulum and mitochondria of yeast facilitates interorganelle transport of phospholipids through membrane contact, European Journal of Biochemistry, vol.142, issue.2, pp.545-553, 1999.
DOI : 10.1074/jbc.273.6.3327

G. Albringm and A. , Associationofaproteinstructureofprobablemembrane derivationwithHeLacellmitochondrialDNAnearitsoriginofreplication, ProcNatlAcadSciUSA, vol.74, issue.4, p.134852, 1977.

C. Alexander, M. Votruba, U. E. Pesch, D. L. Thiselton, and S. Mayer, OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28, OPA1,encoding adynaminrelatedGTPase,ismutatedinautosomaldominantopticatrophylinkedtochromosome 3q28, pp.211-215, 2000.
DOI : 10.1146/annurev.bi.50.070181.002025

R. Bartz, W. H. Li, B. Venables, J. K. Zehmer, M. R. Roth et al., Lipidomics reveals that adiposomes store ether lipids and mediate phospholipidtraffic Dynamic activity of lipid droplets: protein phosphorylation and GTPmediated protein translocation Distribution and dynamics of mitochondrial nucleoids in animalcellsinculture, J.LipidRes. J. ProteomeRes.Exp.Biol, vol.488378476, 1996.

S. B. Berman, Y. B. Chen, B. Qi, J. M. Mccaffery, E. B. Rucker et al., BclxLincreasesmitochondrialfission,fusion,and biomassinneurons, Subcellular compartmentalizationof ceramide metabolism: MAM(mitochondriaassociated membrane)and/or mitochondria, pp.527-533, 2004.

Q. Cai and Z. Sheng, Moving or Stopping Mitochondria: Miro as a Traffic Cop by Sensing Calcium, Neuron, vol.61, issue.4, pp.493-496, 2009.
DOI : 10.1016/j.neuron.2009.02.003

C. Sauvanet, L. Arnaunépelloquin, C. David, P. Belenguer, and M. Rojo, ChanDC.Mitochondria:dynamicorganellesindisease,aging,anddevelopment, MEDECINE/SCIENCES, vol.26125, p.8239124152, 2006.

C. R. Chang and C. , CyclicAMPdependentproteinkinasephosphorylationof Drp1regulatesitsGTPaseactivityandmitochondrialmorphology, J.Biol.Chem, vol.282, p.2158321587, 2007.

H. Chen and D. Chan, Mitochondrial dynamicsfusion, fission, movement, and mitophagyin neurodegenerativediseases, p.16976, 2009.

H. Chen, S. A. ²detmer, A. J. Ewald, E. E. Griffin, S. E. Fraser et al., Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development, The Journal of Cell Biology, vol.114, issue.2, p.189200, 2003.
DOI : 10.1016/S1357-4310(98)01293-3

S. Clark and . Jr, Cellular differentiation in the kidneys of new born mice studies with the electron microscope, Autophagy:manypathstothesameend.Mol.Cell.Biochem, vol.3263, p.5572, 2004.

Z. Cui, J. Vance, M. Chen, D. Voelker, and D. Vance, Cloning and expression of a novel phosphatidylethanolamineNmethyltransferase, Aspecificbiochemicalandcytologicalmarkerfora uniquemembranefractioninratliver.JBiolChem268:16655¨C16663. DaumG,VanceJE(1997)Importoflipidsintomitochondria.ProgLipidRes36, pp.103-130, 1993.

D. Brito, O. M. Scorrano, and L. , Mitofusin 2 tethers endoplasmic reticulum to mitochondria, Nature, vol.2, issue.7222, p.605610, 2008.
DOI : 10.1038/nature07534

C. Delettre, G. Lenaers, and J. Griffoin, Nuclear gene OPA1, encoding a mitochondrial dynaminrelatedprotein,ismutatedindominantopticatrophy, Hum.Genet, vol.26109, pp.1-584591, 2000.

D. J. Milner, M. Mavroidis, N. Weisleder, and Y. Capetanaki, Desmin Cytoskeleton Linked to Muscle Mitochondrial Distribution and Respiratory Function, The Journal of Cell Biology, vol.107, issue.161, pp.20001283-1297, 2000.
DOI : 10.1016/S0092-8674(00)81017-X

H. Ding, N. Jiang, H. Liu, X. Liu, D. Liu et al., Response of mitochondrial fusion and fission protein gene expression to exercise in rat skeletal muscle, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1800, issue.3, pp.1800250-256, 2010.
DOI : 10.1016/j.bbagen.2009.08.007

S. J. Harvey, L. M. Galli, A. Lichtenstein-ebneth, R. Godemann, K. Stamer et al., Lipid bodies: cytoplasmic organelles important to arachidonatemetabolisminmacrophagesandmastcells Overexpression of tau protein inhibits kinesindependent trafficking of vesicles, mitochondria, and endoplasmicreticulum:implicationsforAlzheimer'sdisease, pp.2965-2976777, 1983.

. Elachourig, . Vidonis, . Zannac, . Pattyna, . Boukhaddaouih et al., OPA1 links human mitochondrial genome maintenance to mtDNA replication anddistribution, GenomeRes, vol.21, issue.1, p.1220, 2011.

A. English, N. Zurek, G. Voeltz, C. Frezza, S. Cipolat et al., Peripheral ER structure and function, Current Opinion in Cell Biology, vol.21, issue.4, p.177189, 2006.
DOI : 10.1016/j.ceb.2009.04.004

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2753178

G. Csordas, C. Renken, and P. V´arnaietal, Structuralandfunctionalfeaturesandsignificanceof thephysicallinkagebetweenERandmitochondria, JournalofCellBiology, vol.174, issue.7, pp.915-921, 2006.

G. Szabadkai, K. Bianchi, and P. V´arnai, channels, Lossof the intermembrane space protein Mgm1/OPA1 induces swelling and localized constrictions along the lengthsofmitochondria, pp.901-91118792, 2004.
DOI : 10.1091/mbc.E05-08-0740

H. Ploegh, A lipidbased model for the creation of an escape hatch from the endoplasmic reticulum, pp.448435-438, 2007.

M. Haghnia, V. Cavalli, S. Shah, K. Schimmelpfeng, R. Brusch et al., Dynactin is required for coordinated bidirectional motility, but not for dynein membraneattachment, pp.2081-2089, 2007.

M. Haghnia, V. Cavalli, S. Shah, K. Schimmelpfeng, R. Brusch et al., Dynactin is required for coordinated bidirectional motility, but not for dynein membraneattachment, pp.2081-2089, 2007.

P. Hajek, A. Chomyn, and G. Attardi, Identification of a Novel Mitochondrial Complex Containing Mitofusin 2 and Stomatin-like Protein 2, Journal of Biological Chemistry, vol.282, issue.8, pp.5670-5681, 2007.
DOI : 10.1074/jbc.M608168200

X. J. Han, Y. F. Lu, S. A. Li, T. Kaitsuka, and Y. Sato, CaM kinase I?????induced phosphorylation of Drp1 regulates mitochondrial morphology, The Journal of Cell Biology, vol.23, issue.3, pp.573-585, 2008.
DOI : 10.1242/jcs.02537

H. W. Heid and . Keenan, Molecularmechanismsandphysiologicfunctions ofmitochondrialdynamics, Intracellularoriginandsecretionofmilkfatglobules.EurJ HidenoriOteraandKatsuyoshiMihara. J.Biochem, vol.84149, issue.3, pp.245-258241, 2005.

P. Hollenbeck and W. Saxton, The axonal transport of mitochondria, Journal of Cell Science, vol.118, issue.23, pp.5411-5419, 2005.
DOI : 10.1242/jcs.02745

J. S. Hom, M. Sheu, J. R. Musclecells-hom, J. S. Gewandter, L. Michael et al., Thapsigargininducesbiphasic fragmentation of mitochondria through calciummediated mitochondrial fission and apoptosis, JMolCellCardiol J. Cell.Physiol, vol.46212, issue.6, pp.81120498-508, 2007.

S. Hoppins, L. Lackner, and J. Nunnari, The Machines that Divide and Fuse Mitochondria, Annual Review of Biochemistry, vol.76, issue.1, p.75180, 2007.
DOI : 10.1146/annurev.biochem.76.071905.090048

S. Hoppins, J. Horner, C. Song, J. M. Mccaffery, and J. Nunnari, Mitochondrial outer and inner membrane fusion requires a modified carrier protein, The Journal of Cell Biology, vol.8, issue.4, pp.569-581, 2009.
DOI : 10.1083/jcb.200209015

S. Hoppins and J. Nunnari, The molecular mechanism of mitochondrial fusion, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1793, issue.1, pp.20-26, 2009.
DOI : 10.1016/j.bbamcr.2008.07.005

N. Ishihara, Y. Eura, and K. Mihara, Mitofusin 1 and 2 play distinct roles in mitochondrialfusionreactionsviaGTPaseactivity, J.CellSci, vol.117, p.65356546, 2004.

N. Ishihara, M. Nomura, A. Jofuku, H. Kato, and S. O. Suzuki, Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice, Nature Cell Biology, vol.134, issue.8, pp.958-966, 2009.
DOI : 10.1083/jcb.38.1.1

R. Istvan, L. A. Boldogh, and . Pon, Mitochondria on the move Molecular and cell biology of phosphatidylserine and phosphatidylethanolamine metabolism, Trends Cell Biol.Prog.NucleicAcidRes.Mol.Biol, vol.17, issue.10, pp.7569-111, 2003.

M. Jendrach, S. Pohl, M. Vo¨thvo¨th, A. Kowald, P. Hammerstein et al., Morpho-dynamic changes of mitochondria during ageing of human endothelial cells, Mechanisms of Ageing and Development, vol.126, issue.6-7, pp.813-821, 2005.
DOI : 10.1016/j.mad.2005.03.002

W. K. Ju, Q. Liu, K. Y. Kim, J. G. Croston, and J. D. Lindsey, Elevated hydrostatic pressuretriggersmitochondrialfissionanddecreasescellularATPindifferentiatedRGC5cell, Invest. Ophtalmol.Vis.Sci. JürgenBereiterHahnandMarinaJendrach,MitochondrialDynamicsJ.Biol.Chem, vol.48284, pp.2145-2151, 2001.

K. K. Buhman, H. C. Chen, R. V. Farese, and J. Theenzymesofneutrallipidsynthesis, The Enzymes of Neutral Lipid Synthesis, Journal of Biological Chemistry, vol.276, issue.44, pp.40369-40372, 2001.
DOI : 10.1074/jbc.R100050200

A. Khan and J. Pessin, Insulin regulation of glucose uptake: a complex interplay of intracellular signallingpathways, Diabetologia.Nat, vol.452, issue.11, pp.20-24, 2000.

S. Kingsj, Dynactinincreasestheprocessivityof thecytoplasmicdyneinmotorAnER mitochondriatetheringcomplexrevealedbyasyntheticbiologyscreen, Nat, vol.2, issue.325, pp.477-481, 2009.

C. Kukat, C. Wurm, H. Spåhr, M. Falkenberg, N. Larsson et al., Superresolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently containasinglecopyofmtDNA, ProcNatlAcadSciUSA, vol.16108, issue.33, p.135349, 2011.

E. Kyle, M. P. Miller, and . Sheetz, Axonal mitochondrial transport and potential are correlated, :howaneutrallipidenters lipiddroplets, pp.9338-352, 2004.

. Landest, . Leroyi, and . Bertholeta, OPA1(dys)functions, LangfordGM.MyosinV,aversatilemotorforshortrangevesicletransport, vol.213, pp.5938859-865, 2002.

M. Lebiedzinska, G. Szabadakai, A. W. Jones, J. Duszynski, and M. R. Wieckowski, Interactions between the endoplasmic reticulum, mitochondria, plasma membrane and other subcellular organelles, The International Journal of Biochemistry & Cell Biology, vol.41, issue.10, pp.1805-1816, 2009.
DOI : 10.1016/j.biocel.2009.02.017

Y. J. Lee, S. Y. Jeong, M. Karbowski, C. L. Smith, and R. J. Youle, Roles of the Mammalian Mitochondrial Fission and Fusion Mediators Fis1, Drp1, and Opa1 in Apoptosis, Molecular Biology of the Cell, vol.15, issue.11, pp.5001-5011, 2004.
DOI : 10.1091/mbc.E04-04-0294

R. Lehner, Z. Cui, and D. E. Vance, Subcellullar localization, developmental expression andcharacterizationofalivertriacylglycerolhydrolase, pp.761-768, 1999.

M. Liesa, M. Palacin, and A. Zorzano, Mitochondrial Dynamics in Mammalian Health and Disease, Physiological Reviews, vol.89, issue.3
DOI : 10.1152/physrev.00030.2008

P. Lipskyng, Sphingolipid metabolism in cultured fibroblasts: microscopic and biochemical studies employing a fluorescent ceramide analogue., Proceedings of the National Academy of Sciences, vol.80, issue.9, pp.2608-2612, 1983.
DOI : 10.1073/pnas.80.9.2608

K. G. Lyamzaev, O. Y. Pletjushkina, V. B. Saprunova, L. E. Bakeeva, B. V. Chernyak et al., Selective elimination of mitochondria from living cells induced by inhibitors of bioenergetic functions, Biochemical Society Transactions, vol.32, issue.6, pp.1070-1071, 2004.
DOI : 10.1042/BST0321070

M. Wältermann, A. Hinz, H. Robenek, D. Troyer, R. Reichelt et al., Mechanism of lipidbody formation in prokaryotes: howbacteriafattenup, Mol.Microbiol, pp.55750-763, 2005.

N. Matsuda, S. Sato, K. Shiba, and K. Okatsu, PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy, The Journal of Cell Biology, vol.19, issue.2, pp.211-221, 2010.
DOI : 10.1073/pnas.0802814105

S. Meeusen, J. Mccaffery, and J. Nunnari, Mitochondrial fusion intermediates revealed in vitro.Science305,174752, Meléndez,A.andLevine,B.AutophagyinC.elegans, 2004.

R. C. Melo, H. D. Avila, H. C. Wan, P. T. Bozza, A. M. Dvorak et al., Lipidbodies ininflammatorycells:structure,function,andcurrentimagingtechniques, pp.540-556, 2008.

T. Misaka, T. Miyashita, and Y. Kubo, Primary Structure of a Dynamin-related Mouse Mitochondrial GTPase and Its Distribution in Brain, Subcellular Localization, and Effect on Mitochondrial Morphology, Journal of Biological Chemistry, vol.277, issue.18, pp.15834-15842, 2002.
DOI : 10.1074/jbc.M109260200

N. Mizushima, Y. Ohsumi, and T. Yoshimori, Autophagosomeformationinmammaliancells, 2002.

K. P. Mouli, G. Twig, and O. S. Shirihai, Frequency and Selectivity of Mitochondrial Fusion Are Key to Its Quality Maintenance Function, Biophysical Journal, vol.96, issue.9, pp.3509-3518, 2009.
DOI : 10.1016/j.bpj.2008.12.3959

D. J. Murphy, The biogenesis and functions of lipid bodies in animals, plants and microorganisms, Progress in Lipid Research, vol.40, issue.5, pp.325-438, 2001.
DOI : 10.1016/S0163-7827(01)00013-3

N. Nakamura, Y. Kimura, M. Tokuda, S. Honda, and S. Hirose, MARCHV is a novel mitofusin 2 and Drp1binding protein able to change mitochondrial morphology, EMBO Rep, vol.7, p.10191022, 2006.

D. Narendra, A. Tanaka, D. F. Suen, and R. J. Youle, Parkin is recruited selectively to impaired mitochondria and promotes their autophagy, The Journal of Cell Biology, vol.84, issue.5, pp.795-803, 2008.
DOI : 10.1073/pnas.0711845105

O. M. De-brito, L. S. Okamoto, K. Shaw, and J. , Mitofusin 2 tethers endoplasmic reticulumtomitochondria Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes, Nature OlgaMartinsdeBritoandLucaScorrano, vol.45639, issue.7222, pp.605-610503362715, 2008.

A. Olichon, L. Baricault, N. Gas, E. Guillou, A. Valette et al., Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochromecreleaseandapoptosis, J.Biol.Chem, vol.278, p.77437746, 2003.

I. Oliver and . Wagner, Mechanisms of Mitochondria?Neurofilament Interactions. The JournalofNeuroscience,Volume23,Number27, 2004.

. Olofsson, Cytosolic lipid droplets increase in size by microtubuledependent complex formation, Arterioscler.Thromb.Vasc.Biol, vol.25, pp.1945-1951, 2005.

Y. Y. Park, S. Lee, M. Karbowski, A. Neutzner, R. J. Youle et al., Loss of MARCH5 mitochondrialE3ubiquitinligaseinducescellularsenescencethroughdynaminrelatedprotein1and mitofusin1, J.CellSci, vol.123, pp.619-626, 2010.

R. Rizzuto, P. Pinton, and W. Carrington, Close Contacts with the Endoplasmic Reticulum as Determinants of Mitochondrial Ca2+ Responses, Science, vol.280, issue.5370, pp.1763-1766, 1998.
DOI : 10.1126/science.280.5370.1763

. Rebeccal and . Frederickandjanetm, MovingMitochondria:EstablishingDistribution ofanEssentialOrganelle. Traffic2007, pp.11668-1675, 2007.

C. Renken, C. E. Hsieh, M. Marko, B. Rath, A. Leith et al., Structure of frozen???hydrated triad junctions: A case study in motif searching inside tomograms, Journal of Structural Biology, vol.165, issue.2, pp.53-63, 2009.
DOI : 10.1016/j.jsb.2008.09.011

R. Rizzuto, P. Pinton, W. Carrington, F. S. Fay, K. E. Fogarty et al., Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2þ responses, pp.1763-1766, 1998.

M. Rojo, F. Legros, D. Chateau, and A. Lombes, Membrane topology and mitochondrial targeting of mitofusins,ubiquitousmammalianhomologsofthetransmembraneGTPaseFzo, p.166374, 2002.

D. Ron and P. Walter, Signal integration in the endoplasmic reticulum unfolded protein response, Nature Reviews Molecular Cell Biology, vol.300, issue.7, pp.519-529, 2007.
DOI : 10.1038/nrm2199

A. Rusinol, Z. Cui, M. Chen, and J. Vance, A unique mitochondriaassociated membrane fractionfromratliverhasahighcapacityforlipidsynthesisandcontainspreGolgisecretoryproteins includingnascentlipoproteins, pp.27494-27502, 1994.

S. Cases, S. J. Stone, P. Zhou, E. Yen, B. Tow et al., Cloning ofDGAT2,asecondmammaliandiacylglycerolacyltransferase,andrelatedfamilymembers, J.Biol

B. Soltys and R. Gupta, Interrelationships of endoplasmic reticulum, mitochondria, intermediate filaments, and micromicrotubules?a quadruple fluorescence labeling study, Biochem, vol.70, pp.1174-1186, 1992.

T. Hayashi and T. P. Su, Sigma-1 Receptor Chaperones at the ER- Mitochondrion Interface Regulate Ca2+ Signaling and Cell Survival, Cell, vol.131, issue.3, pp.596-610, 2007.
DOI : 10.1016/j.cell.2007.08.036

R. Hayashi, G. Rizzuto, T. P. Hajnoczky, and . Su, MAM: more than just a housekeeper, Trends in Cell Biology, vol.19, issue.2, pp.81-88, 2009.
DOI : 10.1016/j.tcb.2008.12.002

T. Simmen, E. M. Lynes, K. Gesson, G. T. Thomas, J. E. Simmen et al., Oxidative protein folding in the endoplasmicreticulum:tightlinkstothemitochondriaassociatedmembrane(MAM), PACS2 controls endoplasmic reticulummitochondriacommunicationandBidmediatedapoptosis TheEMBOJournal, pp.1465-1473717, 2005.

N. Taguchi, N. Ishihara, A. Jofuku, T. Oka, and K. , Mitoticphosphorylationof dynaminrelatedGTPaseDrp1participatesinmitochondrialfission, J.Biol.Chem, vol.282, p.1152111529, 2007.

C. Tanw, . Vdacclosureincreasescalciumionflux, and . Biochimbiophysacta, Thomson M (2003) Does cholesterol use the mitochondrial contact site as a conduit to the steroidogenicpathway?Bioessays25, pp.252-258, 2007.

. Tobiasc, . Waltherandrobertv, . Faresejr459466, G. Twig, A. Elorza et al., Fissionandselective fusiongovernmitochondrialsegregationandeliminationbyautophagy, Thelifeoflipiddroplets.BiochimBiophysActa.EMBOJ, vol.27, issue.6, pp.1791433-446433, 2008.

J. Wakabayashi, Z. Zhang, N. Wakabayashi, Y. Tamura, M. Fukaya et al., The dynamin-related GTPase Drp1 is required for embryonic and brain development in mice, The Journal of Cell Biology, vol.19, issue.257, pp.805-816, 2009.
DOI : 10.1038/ng1341

K. Wang and D. Klionsky, Mitochondria removal by autophagy, Autophagy, vol.12, issue.3, 2011.
DOI : 10.4161/auto.6.2.10901

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3359476

P. H. Willems, J. A. Smeitink, W. J. Koopman, E. D. Wong, J. A. Wagner et al., Mitochondrialdynamicsinhuman NADH:ubiquinoneoxidoreductasedeficiency Is a component of a protein complexthatmediatesmitochondrialfusion, Int.J.Biochem.CellBiol.J.CellBiol, vol.41160, pp.1-303, 2003.

. Xuc and R. Baillymaitreb, Endoplasmicreticulumstress:celllifeanddeathdecisions, JClin, vol.115, pp.2656-2664, 2005.

K. Yiguo, R. Cordes, . Faresejrandtobiasc, R. Walther-yonashiro, S. Ishido et al., Lipiddropletsata glance.JournalofCellScience122,749752Anovelmitochondrialubiquitinligase playsacriticalroleinmitochondrialdynamics, EMBOJ, vol.25, p.36183626, 2006.

R. Yonashiro, A. Sugiura, M. Miyachi, T. Fukuda, N. Matsushita et al., Mitochondrial ubiquitin ligase MITOL ubiquitinates mutant SOD1 and attenuates mutant SOD1induced reactive oxygen species generation, Mol. Biol. Cell, vol.20, p.45244530, 2009.

Y. Yoon, E. W. Krueger, B. J. Oswald, and M. A. Mcniven, The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin likeproteinDLP1, Mol.Cell.Biol, vol.23, p.54095420, 2003.

Y. Yoon, K. R. Pitts, and M. A. Mcniven, Mammalian dynaminlike protein DLP1 tubulates membranes, Mol.Biol, vol.12, pp.2894-2905, 2001.

M. Zeviani, V. Tiranti, and C. Piantadosi, Mitochondrial disorders, Medicine, 1998.

R. Zunino, A. Schauss, P. Rippstein, M. Andradenavarro, and H. M. Mcbride, The SUMO protease SENP5 is required to maintain mitochondrial morphology and function, Journal of Cell Science, vol.120, issue.7, p.11781188, 2007.
DOI : 10.1242/jcs.03418