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RŽsumŽ

Cette th•se traite du suivi temporel de surfaces dŽformables. Ces surfaces sont
observŽes depuis plusieurs points de vue par des camŽras qui capturent lÕŽvolution
de la sc•ne et lÕenregistrent sous la forme de vidŽos. Du fait des progr•s rŽcents en
reconstruction multi-vue, cet ensemble de vidŽos peut •tre converti en une sŽrie de
clichŽs tridimensionnels qui capturent lÕapparence et la forme des objets dans la sc•ne.

Le probl•me au coeur des travaux rapportŽs par cette th•se est de complŽmenter
les informations dÕapparence et de forme avec des informations sur les mouvements
et les dŽformations des objets. En dÕautres mots, il sÕagit de mesurer la trajectoire de
chacun des points sur les surfaces observŽes. Ceci est un probl•me difÞcile car les
vidŽos capturŽes ne sont que des sŽquences dÕimages, et car les formes reconstruites
ˆ chaque instant le sont indŽpendemment les unes des autres. Si le cerveau humain
excelle ˆ recrŽer lÕillusion de mouvement ˆ partir de ces clichŽs, leur utilisation pour la
mesure automatisŽe du mouvement reste une question largement ouverte. La majoritŽ
des prŽcŽdents travaux sur le sujet se sont focalisŽs sur la capture du mouvement
humain et ont bŽnŽÞciŽ de la nature articulŽe de ce mouvement qui pouvait •tre utilisŽ
comme a-priori dans les calculs. La spŽciÞcitŽ des dŽveloppements prŽsentŽs ici rŽside
dans la gŽnŽricitŽ des mŽthodes qui permettent de capturer des sc•nes dynamiques
plus complexes contenant plusieurs acteurs et diffŽrents objets dŽformables de nature
inconnue a priori.

Pour suivre les surfaces de la fa•on la plus gŽnŽrique possible, nous formulons
le probl•me comme celui de lÕalignement gŽomŽtrique de surfaces, et dŽformons un
maillage de rŽfŽrence pour lÕaligner avec les maillages indŽpendemment reconstruits
de la sŽquence. Nous prŽsentons un ensemble dÕalgorithmes et dÕoutils numŽriques in-
tŽgrŽs dans une cha”ne de traitements dont le rŽsultat est un maillage animŽ. Notre pre-
mi•re contribution est une mŽthode de dŽformation de maillage qui divise la surface
en une collection de morceaux ŽlŽmentaires de surfaces que nous nommons patches.
Ces patches sont organisŽs dans un graphe de dŽformation, et une force est appliquŽe
sur cette structure pour Žmuler une dŽformation Žlastique par rapport ˆ la pose de rŽ-
fŽrence. Comme seconde contribution, nous prŽsentons une formulation probabiliste
de lÕalignement de surfaces dŽformables qui modŽlise explicitement le bruit dans le
processus dÕacquisition. Pour Þnir, nous Žtudions dans quelle mesure les a-prioris sur
la nature articulŽe du mouvement peuvent aider, et comparons diffŽrents mod•les de
dŽformation ˆ une mŽthode de suivi de squelette.

Les dŽveloppements rapportŽs par cette th•se sont validŽs par de nombreuses ex-
pŽriences sur une variŽtŽ de sŽquences. Ces rŽsultats montrent quÕen dŽpit dÕa-prioris
moins forts sur les surfaces suivies, les idŽes prŽsentŽes permettent de traiter des
sc•nes complexes contenant de multiples objets tout en se comportant de fa•on ro-
buste vis-a-vis de donnŽes fragmentaires et dÕerreurs de reconstruction.

Mots-clefs : suivi de surfaces dŽformables, multi-vues, sc•ne dynamique, aligne-
ment de surfaces, EspŽrance-Maximisation, EM.
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Abstract

In this thesis we address the problem of digitizing the motion of three-dimensional
shapes that move and deform in time. These shapes are observed from several points
of view with cameras that record the sceneÕs evolution as videos. Using available re-
construction methods, these videos can be converted into a sequence of three-dimensi-
onal snapshots that capture the appearance and shape of the objects in the scene.

The focus of this thesis is to complement appearance and shape with information
on the motion and deformation of objects. In other words, we want to measure the tra-
jectory of every point on the observed surfaces. This is a challenging problem because
the captured videos are only sequences of images, and the reconstructed shapes are
built independently from each other. While the human brain excels at recreating the
illusion of motion from these snapshots, using them to automatically measure motion
is still largely an open problem. The majority of prior works on the subject has focused
on tracking the performance of one human actor, and used the strong prior knowledge
on the articulated nature of human motion to handle the ambiguity and noise inherent
to visual data. In contrast, the presented developments consist of generic methods that
allow to digitize scenes involving several humans and deformable objects of arbitrary
nature.

To perform surface tracking as generically as possible, we formulate the problem
as the geometric registration of surfaces and deform a reference mesh to Þt a sequence
of independently reconstructed meshes. We introduce a set of algorithms and numer-
ical tools that integrate into a pipeline whose output is an animated mesh. Our Þrst
contribution consists of a generic mesh deformation model and numerical optimiza-
tion framework that divides the tracked surface into a collection of patches, organizes
these patches in a deformation graph and emulates elastic behavior with respect to
the reference pose. As a second contribution, we present a probabilistic formula-
tion of deformable surface registration that embeds the inference in an Expectation-
Maximization framework that explicitly accounts for the noise and in the acquisition.
As a third contribution, we look at how prior knowledge can be used when track-
ing articulated objects, and compare different deformation model with skeletal-based
tracking.

The studies reported by this thesis are supported by extensive experiments on
various 4D datasets. They show that in spite of weaker assumption on the nature of
the tracked objects, the presented ideas allow to process complex scenes involving
several arbitrary objects, while robustly handling missing data and relatively large
reconstruction artifacts.

Keywords: deformable surface tracking, multi-view, dynamic scene, deformable
registration, Expectation-Maximization, EM.
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CHAPTER 1

Introduction

Over the last few decades, the cost of image sensors and computing capabilities has
been signiÞcantly cut down. As a consequence, digital cameras have become ubiquitous
and the ability to effortlessly record, store and transmit snapshots of the world has become
a familiar part of our day-to-day lives. However, such uses constitute only a fraction of
the possibilities opened by the available technologies. Beyond the acquisition, storage and
rendition of appearance enabled by photography, there is a need for tools that automati-
cally measure and interpret the world underlying the pictures. Computer vision concerns
itself with these challenges. As such, one might say that while photography emulates the
perceptual process of vision, computer vision strives to replicate our cognitive evaluation
of reality.

A signiÞcant part of computer vision is dedicated to measuring shape from visual data.
In particular, considerable efforts have been made to contrive algorithms that automatically
build three dimensional models of objects that were observed from multiple views. The
problem has been approached from many directions and multi-view 3D reconstruction has
grown into a mature topic in the computer vision community. Yet when applied to mul-
tiple videos of moving and deforming objects, most of the available methods will treat
each frame independently, ignoring the dynamic nature of the observed event and thus the
temporal redundancy in the data.

This way of digitizing dynamic scenes is in fact the 3D extension of the cinemato-
graphic process, that simply records and renders a rapid succession of snapshots of the
scene but does not measure motion itself. The dynamic information is only implicitly rep-
resented and human brain still has to interpret the series of snapshot to recreate the illusion
of continuous motion.

Automatically measuring motion from visual data remains a challenging and funda-
mental task of computer vision. Typically, the movement between two images of a video
sequence is described as a two-dimensional vector Þeld calledoptical ßow. However, be-
cause optical ßow is usually computed from appearance exclusively, it only captures the

11



12 CHAPTER 1. INTRODUCTION

Figure 1.1: In this thesis, we build 4D models from visual data by augmenting the results of
3D reconstruction methods with temporal trajectories for every point of the reconstructed
objects.

displacements of brightness patterns in image space. In their seminal work of 1999, Vedula
et al. [11] introduced the termscene ßowto describe the three-dimensional vector Þeld en-
coding the motion of every point on the observed surfaces. After exploring the connections
between optical ßow and scene ßow, they conclude by hinting that computing scene ßow
without Þrst resorting to optical ßow should a promising path for further research. Indeed,
if more information is available on the scene than its appearance, computing optical ßow
from the appearance alone makes little sense.

The core interest of this thesis is the inference for motion in 3D space. We build on
the recent signiÞcant progress made on passive 3D reconstruction from multiple views that
provide us withsnapshotsof the scene structure, and explore the possibilities opened when
such information is available. Our interest is to simultaneously digitize shape and motion,
that is to advance to a more complete representation of dynamic scenes that complements
the recovered deformable 3D shapes with their temporal evolution. The goal is to automati-
cally reconstruct animated shapes rather than perform series of static shape reconstructions.
We refer to such digital representations of the captured scenes as space-time models, or4D
models.
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1 Applications of 4D Capture

The automatic computation of four-dimensional descriptions of scenes has a wide range
of applications. In this section we list a number of topics which we feel are already im-
pacted or soon to be changed by the recent progress on the subject, among which the
contributions of this thesis.

¥ Content production The recent progress made on 3D reconstruction suggests that footage
need not be processed as series of 2D images. Manipulating directly 3D shapes instead
of their 2D projections indeed allows much more efÞciency and freedom in the artistic
process. For example, this allows to composite an object into a new scene with differ-
ent illumination conditions, then to render the whole from a novel point of view, with a
camera that has a different focal length and depth of Þeld.

Furthermore, CGI artists have needs that exceed the simple acquisition and rendition
of 3D data. They need to edit this acquired content. Consider for example the task of
realistically adding a virtual logo to the shirt of an actor. Editing the 2D video frame-
by-frame to draw the logo would be extremely tedious, as one needs to account for
occlusions, folds of the shirt, self-cast shadows and illumination conditions. Drawing on
a series of 3D meshes frame-by-frame would solve part of these issues but remain very
impractical. If a4D modelof the same performance is available, completing the same
task becomes be much less tedious. Because4D modelscontain the trajectories of each
point of the shirt across time, the logo can be added to the Þrst frame, and its deformation
across time can be automatically computed. In other words, this information allows to
automatically propagate edits through time. Moreover, the possibilities opened by 4D
models for edition are not limited to the appearance of the objects. The geometry itself
can be modiÞed in a temporally consistent fashion and the actor can be made taller or
skinnier [3]. The motion from the captured performance can also be transfered to a new
character [2, 9].

Finally, it also becomes possible to insert the 4D models into dynamic simulations. This
allows for example to capture dynamic objects and make them inßuence simulated par-
ticle systems, or to give an actor virtual long hair or clothing that will interact more
realistically with his captured body.

¥ Compression, transmission, and real-time rendering4D models contain explicit in-
formation on the motion of objects, and therefore on the temporal redundancy in the data.
This exposed redundancy can be compressed, yielding much more compact descriptions
of dynamic scenes. Consider the limit case of the rigid motion of an object. With a series
of 3D models, the scene is spatially discretized at each frame. If a 4D model is available,
one can encode the shape information once, and only transmit one rigid transformation
per frame. Such concise representations are of evident interest suited for storage, trans-
mission over networks and real-time rendering.

¥ Human-Machine interaction Capturing movement at interactive frame rates opens pos-
sibilities for human machine interaction. Measured body poses can be used as user input
to provide intuitive manipulation of virtual objects or natural interaction with virtual
agents. Beyond simple measurement, computed motion cues allow to recognize body
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gestures or complex actions and in some sense to use temporal information to evaluate
the context and semantical content of 4D data.

¥ Medical applications Recovering shape and motion has also many potential medical
applications. For example, measuring the 3D motion of athletes allows for the bio-
mechanical analysis of skilled movement such as a golf swing. It is also useful to mea-
sure the evolution of a gait pattern during physiotherapy or to automatically detect, record
and document the evolution of patients for pathologies such as epileptic seizures. Mo-
tion capture also has applications for the observation of medical personnel. It allows to
automatically document procedures and compare them to established work ßow. This
can save precious time when writing reports and help with the training of new staff. Fur-
thermore, knowing the current stage of a procedure can help predict the end of a surgical
intervention and get the next patient ready so that the usage of the operating room can
be maximized. Other applications of interest include collision avoidance [6] or the esti-
mation of the cumulated exposure to radiation of personnel in contact with x-ray sources
[7] ( our work on the subject is presented in chapter6).

2 4D Capture: Beyond Marker-based Skeletal Animation

The research presented in this dissertation was for the most part supported byDeutsche
Telekom Laboratoriesand linked to itsFree View-Point TVactivities. Because of this link to
industrial requirements, most of our studies were steered towards the problem of animated
3D content production.

Limitations of marker-based motion capture The established pipelines for the produc-
tion of animated 3D content are currently marker-based. This means that they compute
the trajectories of a restricted set of optical markers that are relatively easy to detect and
track along sequences. In Þgure1.2 we show a typical motion capture environment used
in the production of movies and games. The tight black suits worn by the actors show that
marker-based techniques come with a number of drawbacks:

¥ Attaching markers is tedious and requires to be done before each acquisition.

¥ Markers can interfere with the movement.

¥ Markers prevent thesimultaneous acquisition of appearance, shape, and motion.

As such, marker-less motion capture has been the subject of a large body of work, mostly
focused on human motion [8, 10].

Limitations of skeletal models The vast majority of human motion capture system eval-
uate body movement in terms of joint angles on a kinematic tree representing the human
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Figure 1.2: Optical Motion Capture on the set of LA Noire (c! Rockstar Games).

skeleton. The limited expressive ranges of these articulated structures confers a lot of ro-
bustness to the inference of body poses by constraining the solution space. But it also
severely narrows the nature of motions that can be recovered. In particular, capturing the
deformation of loose clothing such as skirts is beyond reach. Fine deformations of the
human body are also lost, which can signiÞcantly hinder the realism of the recovered ani-
mation. The limitations of thinking of the human body as an articulated structures are for
instance exposed inThe Illusion of Life: Disney Animation[4]. In this book, two animators
recall the introduction of live footage in the animation process at the Disney Studios. Each
frame of the Þlm was printed to a sheet and these sheets were pinned together to the pegs
of an animation desk so that the animator could ßip through them and study the movement.

We were amazed at what we saw. The human form in movement displayed
far more overall activity than anyone had supposed. It was not just the chest
working against hips, or the backbone bending around, it was the very bulk of
the body pulling in, pushing out, stretching, protruding.

Frank Thomas and Ollie Johnston

They explain how this conÞrmed what they had previously empirically discovered as one
of the keys to drawing life-like animations.

The loose ßesh on a Þgure, [...] will move at a slower speed than the skeletal
parts. This trailing behind in an action is sometimes called Òdrag,Ó and it gives
a looseness and a solidity to that Þgure that is vital to the feeling of life.

Frank Thomas and Ollie Johnston

Because of the limitations of skeletal-based motion capture, such small yet valuable details
are lost during the performance capture, and usually have to be re-synthesized in later stages
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Figure 1.3: The Ball sequence from INRIA illustrates the need for non skeletal-based
data-driven mesh animation methods, as the movement and deformation of the ball are of
interest but can not be modeled by an articulated structure.

of production from databases of previous observations or by physical simulation techniques

More fundamentally, skeletal methods are limited to capturing humans or other rare
articulated structures. They were not designed to handle more complex scenes involving
several objects of arbitrary nature. A complete spatio-temporal description of the scene
presented in Þgure1.3 for example should include the motion and deformation of the two
persons, but also of the ball. Skeletal-based methods are insufÞcient in these more elabo-
rate settings, which motivates our research for new, more general solutions to marker-less
motion-capture.

Objectives and technical context The work presented in this thesis neither uses markers
nor articulated models. The goals are to avoid the tedious fastening of markers, to allow as
much freedom as possible in terms of what kind of objects and movements can be captured,
and to minimize the overall need for user intervention . In the long run, digitizing the 3D
structure and temporal evolution of an event should be as easy as it is today to capture its
appearance in a video. Our part in the ongoing research on the subject is the contribution
of a set of developments aimed at:
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Figure 1.4: The Grimage plateform.

¥ the concurrent capture of the appearance, shape and motion in the scene.

¥ the capture of scenes involving several objects of different nature.

Our developments contribute to a body of research on the uses of multi-camera setups.
These setups combine several cameras that are arranged around a volume of interest and
that synchronously acquire videos of the scene from multiple points of view. The per-
spectives opened by such systems were identiÞed more than 15 years ago, and one notable
pioneering experiment was the CMU3D dome[5] that recorded data on analog VCRs.
Since then, the improvements in camera technologies and storage capacity have been in-
tegrated in the development of several digital multi-view studios. We had access to three
of them: the Grimage Platform in INRIA Rh™ne-Alpes, which is displayed in Þgure1.4,
a similar multi-camera system deployed at Deutsche Telekom Laboratories in Berlin, and
a smaller scale system deployed a the Technical University of Munich. Such systems are
relatively inexpensive to deploy and allow an unintrusive capture of performances from
multiple views. Today, the progress on passive 3D reconstruction makes them emerge as
a competitive solution to 3D content production [1]. Our goal in this thesis is to advance
the state of the art to a point where these systems can be used for the full 4D digitization of
performances.
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3 Challenges and Contributions

The objectives that were established in the previous section delineate the desired out-
come of our research, as well as its technical context. In this section, we identify the main
scientiÞc challenges to be met, and introduce the corresponding contributions of our work.

Visual data As previously stated, our data originally consists of images acquired in a
multi-camera setup, and we rely on a number of existing reconstruction algorithms to obtain
an estimation of the scene 3D structure. These reconstructions are not only degraded by
noise and occlusion, they are also heavily biased by the simpliÞed models used in low-
level treatment of the image information and by the shortcomings of 3D reconstruction
algorithms themselves. As such, our developments should robustly handle the artifacts that
commonly arise in these pre-processing stages.

¥ Visual data isinherently fractionalbecause of occlusion. Occlusion not only degrades
the signal: it actually results in the absence of information on some parts of the shape.
This raises considerable challenges when trying to track points of a deformable surface,
as some parts of the surface might be observable at a certain time frames and not at
others.

¥ Visual data isoften ambiguous. By ambiguity we mean that points on the surface rarely
have discriminative appearances. In Þgure1.3, pretty much all the points on the fatherÕs
t-shirt have the same uniform black appearance. In the same Þgure, it can also be seen
that a point on the ball will greatly vary in appearance over time because of the strong
specularity of the material. It clearly is a hard problem to follow points in space and time
from images if their appearance varies so sharply and if large parts of the surface tend to
have a uniform color.

¥ The information can be degraded in processing stages that precede the motion estima-
tion. A typical example in the multi-view studio setting is thesegmentationstage that
separates the objects of interest from the background and sometime mislabels parts of
the images.3D Reconstruction algorithmsalso have shortcomings when the appearance
of objects is too ambiguous and can output shapes with signiÞcant artifacts.

Deformable models This thesis uses amodel-basedapproach to recover motion. The
role of a model in a surface tracking context is not only to parametrize the deformation of
surfaces, but more importantly to deÞne what is a plausible conÞguration of a deformable
object. In other words, the deformable model encodes prior knowledge that allows the
tracking algorithm to conÞne the search for surface evolution to the space of plausible
conÞgurations, and to steer its output towards more likely conÞgurations. This effectively
allows to increase robustness with respect to the challenges that come with visual data.
One of the key issues explored by this thesis is the trade-off that deformable models offer
between expressiveness and robustness. If they are too constraining or object-speciÞc like
articulated structures, they limit the nature of objects that can be tracked and the range of
deformations that can be recovered. If they are too permissive or too general, they stop
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playing their regularizing role: they no longer compensate effectively for ambiguous data
and also can fail to prevent the over-Þtting of erroneous data.

Contributions This dissertation is organized around two main complemental contribu-
tions aimed at recovering 4D models from multiple videos. The Þrst contribution consists
of a generic mesh deformation and numerical optimization framework that builds on ideas
from the Þeld of interactive deformation in computer graphics. This framework makes no
assumption on the nature of the object and simply represents a reference surface as a col-
lection of small surface elements, or patches to which the vertices of the original mesh are
attached. These patches are each associated to a rigid transformation and organized in a
deformation graphthat controls the deformation with respect to the reference mesh. We
show that while allowing large and complex deformations, this representation of the geom-
etry and parametrization of the deformation are robust tools to tackle the recovery surface
deformation from visual data. The inference for deformation beneÞts from the averaging
effects of visual cues over each patchÕs surface. Furthermore, elastic forces are emulated
on the deformation graph to constrain and regularize the recovered deformation when faced
with fractional, ambiguous or erroneous data.

However, because this mesh deformation framework is generic and makes only weak
assumptions on how the object deforms, we show as a second contribution that the deforma-
tion model can be complemented with a Probabilistic model of the data acquisition process
that accounts for its uncertainty and errors. The surface tracking problem is then cast as the
3D registration of surfaces that we embed in an Expectation- Maximization framework. We
show that this probabilistic formulation effectively manages artifacts in 3D reconstructions
and has improved convergence properties.

Extensive experiments on various 4D datasets show that these two ideas allow to ro-
bustly handle missing data and relatively large reconstruction artifacts. More importantly,
the novelty of our work appears through our results on complex scenes involving several
objects of arbitrary nature, where previous art in the multi-camera setting had mostly aimed
at tracking a single human actor. We additionally evaluate our approach on these simpler
scenes, compare our results to these of methods that make much stronger assumptions on
the nature of the object, and show that we perform comparatively well.

4 Thesis Outline

The remainder of this dissertation is structured as follows:

Chapter 2 recalls the technical and scientiÞc background our work builds upon. Then an
overview of the related works that address deformable surface tracking in multi-view
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setups is presented. In other words, this section presents the prior art on our problem
and puts our contributions in perspective.

Chapter 3 provides an overview of state-of-the-art methods on mesh manipulation and
deformation. Then, our numerically robust mesh deformation framework is pre-
sented, as well as applicative cases that demonstrate its usefulness for the purpose
data-driven mesh deformation and tracking.

Chapter 4 presents our developments on the animation of 3D surfaces by probabilistic
registration. These developments build on the generic deformation model of the
previous chapter to allow the tracking of complex scenes involving several objects
of arbitrary, and a priori unknown nature. Furthermore, this chapter formalizes the
problem in a Bayesian framework that increases the robustness to reconstruction
artifacts.

Chapter 5 explores the applicability of the developments from the previous chapter to the
tracking of articulated objects, and compares the results of our generic patch-based
method with more constraining tracking algorithms. More speciÞcally, this chapter
looks at skeletal-based tracking and at an extension of mesh deformation model of
chapter3 that accounts for rigid clusters in the object.

Chapter 6 presents our conclusions, as well as a number of works that are already im-
pacted by the presented developments, and discusses the perspectives for further re-
search.
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CHAPTER 2

Related Works
This chapter presents the technical and scientiÞc context around the research
reported by this dissertation. We articulate our discussion around three main
topics. The Þrst part is dedicated to shape, and presents the data acquisition
studio and 3D reconstruction pipeline. In a second part, we address motion
and present existing methods for establishing temporal correspondence be-
tween images or between 3D shapes. These methods can be integrated as
building blocks for our purpose, and have been used by previous works that
directly address surface tracking in multi-view setups. In the third part of this
chapter, we discuss how these works have performed this integration and try
to outline their limitations as well as the ideas that were the key to their suc-
cesses. This allows motivate our choices of research direction and to put in
perspective the contributions presented in the remainder of the thesis.

1 Inferring Shape

As explained in the introduction, the developments of this thesis are mostly targeted
at multi-camera environments such as the Grimage Platform developed in INRIA Rh™ne-
Alpes. In its latest version, Grimage can count up to 32 cameras that are distributed around
a volume of interest. However most of our experiments were performed on smaller scale
systems with 8 to 16 cameras. These cameras are calibrated, which means that their intrin-
sic characteristics and relative poses in spaces are known. A whole segment of the com-
puter vision litterature is dedicated to calibration and several software packages [20, 39]
are open-source. These cameras are also synchronized, which means that the snapshot pro-
vided by one frame acquired by the system consists of a set of images all taken at the same
time.

23
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In the next paragraphs, we give a brief overview of possible 3D reconstruction pipelines.
Although the contributions of this thesis are not directly on this topic, our work heavily re-
lies on 3D data as input and is therefore directly impacted by the performance, precision
and limitations of static 3D reconstruction methods.

Background subtraction is in the majority of cases the Þrst step of the reconstruction
pipeline when dealing with data captured in a multi-camera studio. As shown in Þgure1.3,
the scene is often surrounded by painted walls and ßoor. Using blue or green as color allows
to easily differentiate the background from skin-color for example and makes chroma-
keying possible. It is also possible to use more elaborate background subtraction methods
such as [18] and to learn from a sample of background frames a statistical model for the
distribution of brightness and chromaticity components at each pixel. This can particularly
help to handle the case of shadows which can be incorrectly segmented as foreground.

Shape-From-Silhouette is arguably the simplest paradigm for reconstruction from multi-
view data. The idea is to look for the largest 3D volume consistent with the silhouettes of
the object in the different views. This volume is named thevisual hull [24] and although
it only approximates the shape of interest, the estimate it provides is good enough for a
number of purposes. Once textured for example, the visual hull is often a good geometry
proxy that allows for convincing renderings. It is also a very good initialization point for
more precise reconstruction algorithms as it provides a coarse estimate of the geometry and
of the self-occlusions.

The main strengths of shape-from-silhouette are linked to its conceptual simplicity.
First, basic algorithms are very straightforward to implement. Second, these simple ap-
proaches make no assumption on the nature or the smoothness of the observed object. This
means that there is very little need for parameter tweaking beyond the foreground segmen-
tation stage. The third and most important attractive characteristic of shape-from-silhouette
methods is that several implementations [26, 12, 46, 23] were shown to be real-time capa-
ble.

Shape-from-silhouette algorithms however come with a number of restrictions. The
main limitation appears when dealing with concavities in objects. Concavities such as the
inside of a cup for example are not observable in a silhouette, regardless of the point-of-
view on the object. Figure2.1 shows a simple 2D example in which the shown concavity
can not be recovered, no matter how many cameras are added to observe the object. A
second limitation is the robustness of the visual hull computation to erroneous input. Not
making assumptions on the smoothness of the observed shape confers a lot of genericity
and limits the addition of artifacts by regularization terms but it also means that errors that
arose in the pre-processing are not compensated for. Although some work has been done
to increase the robustness of shape-from-silhouette [11, 34], more elaborate methods lose
the simplicity and real-time capability that make these approaches attractive.

Some of the results presented in chapters4 and 5 have been obtained using visual
hulls as shape input data. We implemented a basic volumetric algorithm to perform recon-
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(a) Shape-from-silhouette techniques can not re-
cover concavities that do not appear in the silhou-
ettes of the object.

(b) Too few cameras around the scene can result in
reconstruction artifacts. In this situation the visuall
hull contains an additional connected component
that does not correspond to any object in the scene.

Figure 2.1: Limitations of shape-from-silhouette reconstruction methods. In these exam-
ples, the real 3D object is in blue, the cones corresponding to is silhouettes in green, and
the visual hull in red.

struction from silhouettes. This algorithm simply processes every voxel of a 3D grid in a
bounding box and checks whether its projection falls in or out of every silhouette. Because
of errors in the background subtraction like those of Þgure2.2 however, some of the re-
constructions obtained by this simple approach exhibit consequent artifacts. The basketball
sequence presented in Þgure4.8 of the results section in chapter4 is a particularly good
illustration of the range of artifacts that can occur: it contains toplogical collapses, missing
geometry due to erroneous segmentation and bad camera calibration, as well as outlying
geometry due to non-recoverable concavities.

Stereo reconstruction methods do not limit themselves to the purelygeometricsilhouette
information, but considerphotometricinformation, which consists of the observed inten-
sity values in the images. Stereo builds on the idea ofphotoconsistency. For example, if
reßections are ignored, and a Lambertian model is assumed for the reßectance of the ob-
served object, a 3D point of its surface should appear with the same color in every view
and a matching score can be deÞned as the sum of squared (or absolute) differences (SSD,
SAD) on a small image patches. More robust photoconsistency scores such as normalized
cross-correlation (NCC) or mutual information (MI) can also be used [16].

Under the hypothesis of a calibrated binocular setup, the search for correspondence is
traditionally constrained using a result from epipolar geometry: for a given point in the
Þrst image, a corresponding point in the second image necessarily lies on a well deÞned
line called the epipolar-line [see14, for an extensive study of epipolar geometry]. Thus,
efÞcient algorithms reduce their search for correspondences to 1D scans along scanlines
that can be aligned in memory in a rectiÞcation stage for even greater speedups. The
computation of disparity is usuallyregularized, which means that the algorithm tries to
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(a) The silhouette of the little boy gets incorrectly segmented as foreground. However, because of the redun-
dancy brought by 16 cameras, these errors do not signiÞcantly impact the visual hull reconstruction for this
particular frame, as shown on the right.

(b) The variation of illumination under the ball is large enough to create a background subtraction error in
most of the cameras. In that case, parasite geometry appears in the reconstruction.

Figure 2.2: Examples of typical foreground segmentation artifacts in multi-view studios.
The silhouettes are shown for two cameras and illustrate the limitations of background
subtraction in areas that are weakly illuminated.
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favor some consistence in the depth estimations of neighbouring pixels (see the survey of
Scharstein and Szeliski [32] for more details). Challenges then arise to handle texture-
less objects, object boundaries, and occlusion. Several regularization schemes have been
proposed, and the most successful approaches balance data Þdelity and regularization in a
global optimization on the whole image. In particular, a number of works have formulated
the depth estimation problem as a labeling task, and given it a Bayesian modelisation by
considering the depth images as Markov Random Fields (MRF). The labeling can then be
run in approximate inference [40] algorithms based on graph-cuts or belief-propagation.

When many views of the object are available, it becomes possible to reconstruct a com-
plete 3D model instead of a single depth-map. The problem is known asMulti-View Stereo,
involves much longer baselines than binocular conÞgurations, and therefore requires care-
ful handling of occlusion. Seitz et al. [33] provide a recent and rather complete survey and
taxonomy of the Þeld. More recent and notable results for multi-camera studio usage were
mostly linked to volumetric approaches using global optimizations with graph cuts [38] or
gradient descent of convex energies [22, 47].

Some of the results presented in in chapters4 and5 have been obtained using the output
of the multi-view stereo algorithm of Starck and Hilton [37]. This algorithm Þrst computes
the visual hull. It then performs a global optimization based on volumetric graph-cuts inside
the visual hull to maximize photoconsistency and surface smoothness while respecting a
number of edge features detected in the images.

2 Inferring Motion

The previous section has presented how 3D shape could be recovered from the multi-
view studio. However, the focus of this thesis is motion: we are interested in establishing
dense temporal trajectories for every point at the surface of deforming objects, as shown
in Þgure1.1. As such, the key issue can be thought of as Þnding reliablecorrespondence
between two observations of a deformable object at different times.

Finding correspondence in images, 3D shapes or any other type of visual data is a fun-
damental task of computer vision. The computation of correspondences is actually found
at the heart of most computer vision problems. As we have seen in the previous section,
stereo reconstruction for example requires correspondences between multiple views of a
scene. Similarly, motion estimation requires correspondences between two frames of a
temporal sequence.

The rest of this section is organized around a brief overview of the existing paradigms
for establishingsuch correspondences. We begin with methods that try to establish dense
correspondence from the appearance of the object directly. Then we look at methods that
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match geometry, and do so globally. They offer a top-down point of view on the problem
by matching 3D shape as a whole to later obtain dense correspondences. We Þnally adopt
a bottom-up point-of-view by considering methods that match sparse points between two
images or two shapes, relying on following regularization mechanisms whose role is to
prune erroneous matches and diffuse the sparse correspondence information to obtain a
dense correspondence between the two surfaces.

2.1 Dense appearance matching

Let us consider the sequences of images provided by each camera. The dense cor-
respondence between two consecutive images from each of these videos is known in the
litterature asoptical ßow. As we already recalled in the introduction, the optical ßow is
a 2D vector Þeld in the image plane that describes the movement of brightness patterns
between two frames. If we make the assumption that a surface point will project with the
same brightness in both images the optical ßow can be identiÞed with the 2D motion ßow
that is the projection of a 3D vector Þeld describing the motion of surfaces in 3D space
[43]. This vector Þeld is known asscene ßowand is the information we are interested in.

The computation of optical ßow has been the subject of signiÞcant research effort over
the last decades and the resulting advances are well summarized in the recent survey of
Baker et al. [2]. Despite the impressive progress that was made on optical ßow computation
however, computing a reliable scene ßow from multiple videos is not as straightforward
as backprojecting the optical ßow of every camera using the equations of [43]. This is
explained by two reasons: Þrst, optical ßow only measures variations of appearance, and
not the projection of scene ßow directly. These variations of appearance can be caused by
a multitude of factors such as illumination, surface orientation and reßectance properties
and radiometric properties of the camera. Second, optical ßow algorithms constrain their
output by enforcing regularity properties on the ßow Þeld. However this regularization
happens in 2D and does not account for the structure of the 3D scene, where the physical
events underlying the observations take place. As reported by [2], a number of algorithms
use robust norms in their penalization of irregularities to account for sharp variations of
appearance in the image and prevent oversmoothing at occlusion boundaries. To some
extent, this process amounts to obtain more precise regularity constraints by trying to guess
information on the scene structure from its appearance.

In our case, we have access to the scene structure. It is therefore tempting to avoid the
effects of potentially error-prone 2D regularizations and regularize the scene ßow directly
in 3D. For example Pons et al. [30] compute the scene ßow from the appearance and 3D
structure of the scene and propose in a continuous formulation to minimize the harmonic
energy of the ßow over the known surfaces. WeÕll discuss in chapter3 other regularization
energies that have been proposed to control the deformation of discrete meshes. Here, we
note that regularization models can only help whith ambiguous appearance information up
to a point. As already mentioned in the introduction, objects are rarely textured, and they
tend to have large portions of their surfaces with uniform colors. Furthermore, the appear-
ance of each point also varies from one frame to the next. Modeling for some lighting
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Figure 2.3: The correspondence problem in the deformable case, between two successive
temporal frames. This Þgure contain the information that is available as input in our con-
text: input images, indendent 3D reconstructions, and the reconstructions painted with col-
ors sampled in the input images. The correspondences can be searched for in these images
directly, or on the reconstructed surface. Note that the black t-shirt offers little distinctive
photometric feature, and that there is also no geometrically characteristic feature in the
middle of the chest. It is thus difÞcult to establish precise correspondence in this region.
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effects by taking the orientation of the surface with respect to a light source is possible for
reasonnably simple environments [43, 7]. Handling the case of specularities or (self-)cast
shadows for examples is much more complex. Becausephotometric informationis so am-
biguous, we turn in the next paragraph to methods which are mostly concerned with match-
ing somegeometricproperties of surfaces. The other photometry-matching approaches that
will be reviewed do not concern themselves with dense appearance, illumination or precise
image-formation model but limit themselves to the sparse matching of areas where sharp
variation of color occur.

2.2 Establishing correspondence in embedding spaces

Global shape matching algorithms have mostly been developed for shape retrieval,
where an input object is used to query a database for similar objects. This usually hap-
pens by mapping the shape space to a feature space where a similarity measure is deÞned
and where the actual matching happens. Popular geometric descriptors include the spin
images of Johnson and Hebert [21] or the shape context descriptor of Belongie et al. [4].
This type of descriptors allows to match shapes and have invariance properties with respect
to rigid transformations ( with an extension in the case of shape context descriptors). How-
ever, once two shapes have been matched, these methods do not allow to establish dense
correspondence between the matched surfaces because the shapes were treated as a whole
and and mapped it to a single feature descriptor. They are not structure-preserving in that
there is no way to map part of this shape descriptor back to the constitutive elements of the
original shape that were voxels or vertices.

In this subsection, our interest goes to structure-preserving embedding techniques.
Here again, the shape is mapped to an intermediate representation that provides some
invariance with respect to a class of transformation, like rigid motion in some cases or
non-rigid deformations in other. Contrary to global shape descriptors, these embeddings
preserve the structure of the shape, in that the vertices of the mesh and their connectivity
are also mapped to the embedding space and can be matched there. The work of Starck and
Hilton [35] for example establishes dense correspondence between two temporally adjacent
reconstructions by mapping them to a spherical domain where the correspondence is com-
puted, using both shape and appearance cues. One limitation of this embedding however is
that the surfaces have to be of genus zero for the spherical mapping to be performed.

Other approaches try to respect the topology of the matched shapes more closely and
actually use this topological information for the matching. These methods are interested in
intrinsic characteristic of the shape, and notably in geodesic distances on its surface or in
its volume. The geodesic distance between two points is indeed invariant to a large class
of non-rigid deformations, while their distance in Euclidean space can vary greatly. Hilaga
et al. [15] propose to compute for each point of the surface the geodesic integral, which is
the average geodesic distance to all other points. Then they build the Reeb Graph [5] of
this scalar function on the manifold described by the mesh. These graphs are much more
compact representations of the topological characteristics of the shape and the matching is
much more efÞciently performed on them. Other works [28, 31] search for an alignment
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(a) Variation of the geodesic distance between two points

(b) Variation of the geodesic integral, which is computed at each point as the average geodesic distance to all
the other points. It can be seen that the left hand is a detectable extremum in the left mesh but not in the right
one.

Figure 2.4: Changes of topology are common in sequences of meshes reconstructed from
visual data. They result in large variations of the shapeÕs intrinsic characteristics. This
limits the reliability of these characteristic for matching. This example shows a frequent
toplogical collapse that happens when the left arm occludes the side of the body.
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in the spectral domain. In the work by Mateus et al. [28] for example, the topological
and metric characteristics of the shape are studied through the eigenfunctions of the of
the graph Laplacian of the original geometry. The shapes are aligned in the space deÞned
by the Þrst eigenfunctions, where the protrusions are very distinct. However, and even
though some works have explored more robust characteristics such as the heat diffusion
distance [6], these methods are inherently very sensitive to changes of topology. The output
of 3D reconstruction algorithms exhibits such topology changes, that are mostly due to
occlusions. In Þgure2.4for example, a human actor goes from having his arm up to having
it along his body, and this changes intrinsic properties of the shape dramatically. More
importantly, this topological change happens locally but impacts some intrinsic properties
globally.

2.3 Sparse feature matching on the surfaces

To deal with geometry acquired from real data, and to increase the robustness of the
matching to occlusion and partial reconstructions, it is reasonable to try to Þnd matches
between points of the two surfaces instead of matching the surfaces as a whole directly.

2.3.1 Finding and describing features

To match points between two surfaces, a similarity measure must be deÞned. This is
commonly performed by Þrst buildingfeature vectorsthat describe geometric or photomet-
ric characteristics on a spatial neighborhood of each point. Measuring similarity between
these feature vectors, or descriptors allows to evaluate the quality of point-wise matches.

Point-wise geometry descriptors typically describe the geometry of the surface around
a point. The idea is well illustrated by the spin images of Johnson and Hebert [21]. These
spin images are location histograms of the surface created around a point by spinning a
half-plane about the surface normal and accumulating in 2D bins on that half-plane when
the surface intersects it. These histograms can be matched using cross correlation or other
more robust statistical measures. A similar descriptor called shape context was proposed
by Belongie et al. [4]. It consists of a histogram of the distribution of the relative log-
polar coordinates of the other points. This logarithmic sampling in distance decreases
the inßuence of distortions that happen far away from the point where the descriptor is
computed. In [13], an extension of the descriptor to 3D is presented, as well as harmonic
shape context which keep the lowest frequency component of the harmonic representation
of the shape context and grants it some rotational invariance properties. These methods
work rather well to describe and match rigid shapes but when applied to non-rigid matching,
the radius of the neighborhood on which the descriptors are computed offers a trade-off: if
the radius is too small, the features become very local and less discriminant because of self
similarities. If the radius is too big, the features become global and non-rigid deformations
become a problem.
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Point-wise intrinsic geometry descriptors are built from intrinsic characteristics of the
shapes. For instance, the extrema of the geodesic integral, or protrusions, are distinctive
features that are rare enough to be matched [42, 41]. In the case of humans typically, these
would be the hand, feet and the head. The precision obtained on the localization of these
extrema can however suffer from small topological or reconstruction artifacts. For example,
if part of the foot disappears in one frame, the geodesic extrema might switch from the toe
to the heel and cause an erroneous match between these two points. While this would have
little incidence on a very coarse skeletal tracking method, it can in the case of dense surface
tracking cause a local ßip of the surface in the area of the leg.

For other points that are less distinctive than geodesic extrema, Starck and Hilton [36]
propose to match geodesic histograms that bin for a point of interest the geodesic distance
to all other points on the surface. These point-wise descriptors however suffer from the lim-
itations that were already mentioned for their global topology matching counterparts. For
example in the right mesh of Þgure2.4, the extremum of the geodesic integral correspond-
ing to the left hand does not disappear completely but its magnitude becomes too small for
the protrusion to be detected. It is also easy to see that this local change of topology affects
the geodesic histogram at every other point of the surface.

Point-wise photometry descriptors describe the color, or reßectance properties of the
object. They are a very well studied topic in computer vision, because of the widespread
need for image correspondences. The survey by Mikolajczyk and Schmid [29] offers a
good overview and comparison of several region detectors and descriptors in images. In
the context of 3D deformable surface tracking, the most used approaches have been the
Scale Invariant Feature Transform (SIFT) by Lowe [27] and the more recent and speed-
focused Speeded-Up Robust Features (SURF) by Bay et al. [3]. SIFT and SURF are quite
similar and detect interesting regions in both space and scale. Because they aim at scale and
rotation invariance, these approaches deÞne a sampling grid that is aligned with the domi-
nant gradient orientation and scaled to match the scale at which the region of interest was
detected. The descriptors are then built as histograms of gradient orientation and location.
In the case of SIFT, the resulting descriptor has 128 dimensions, because the sampling grid
is of size 4x4 and because the orientations are split in 8 bins. The 3D locations of these
features on the surfaces are simply obtained by back-projecting the 2D key-point on the
reconstructed surface.

Scale invariance is a very important trait for purely image-based algorithms that need
to Þnd key-points from objects in images regardless of the distance of the object to the
camera. When 3D information is available however, resorting to such algorithms amounts
to ignore the fact that the 3D size of a photometric feature is known. In this case, descriptors
should be build to encode how the color varieson the surfacerather than how it variesin
an image. This idea has been developed by recent work such as [45, 48]. Wu et al. [45]
build a SIFT descriptor on oriented 3D patches, and therefore remove its dependence on the
point-of-view. Zaharescu et al. [48] go further and directly consider the manifold sampled
by the mesh as an image domain, and treat color intensities as scalar functions deÞned on
this domain. Similar to the original 2D photometric detectors/descriptors, their approach
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detects key-points in scale space and builds the feature from histograms of gradient. The
key difference is that the whole process happens on the surface itself instead of the image
domain.

2.3.2 Feature-space coherence

As it was mentioned for geometric descriptors, the precision-recall performance of
point-wise features offers a trade-off linked to their locality. If the features are computed on
a wide neighborhood, the matching has a bad recall performance when confronted to occlu-
sions or partial reconstructions. The matching can also suffers from non-rigid deformations
if the features do not describe intrinsic characteristics. If the neighborhood is too small, the
matching looses its speciÞcity and becomes sensitive to noise and self-similarities in the
object.

SpeciÞcity is a crucial issue as we want to avoid false positives, or outliers, as much
as possible. The Þrst solution to this problem is to exclusively build descriptors in re-
gions that are expected to be discriminant. This is what the detector part of SIFT does for
example. However, this decision is often made locally and does not account for symme-
tries or repeated structures. Therefore, other heuristics are used to prune correspondences
from as many outliers as possible. When matching a feature against a database, one can
check that closest match is isolated enough in feature space, that is that there a no other
very close candidates. This ensures that the correspondence is distinctive. When matching
points between two surfaces, one can also check the consistency of the forward-backward
correspondence and make sure two corresponding features are each otherÕs best matches.

The problem is that even with aggressive thresholding, none of these methods can guar-
antee an outlier free output. Figure2.5 shows the result of the surface-based photometric
matching of [48] where there are remaining outliers in the sparse matches, even after ap-
plying the presented pruning heuristics. One of the main limitations of these methods is
that the coherence in 3D space is lost when the points are mapped to the feature space:
even though two neighboring points on the surface will most likely have correlated move-
ment in 3D space, they can be mapped to remote locations of a high dimensional feature
space (recall the 128 dimensions of SIFT). Moreover, distant points in 3D space like the
left and right foot of Þgure2.5can get mapped to the same positions in feature space where
temporal matching will be ambiguous, even though each foot hardly moved at all in 3D
space.

2.3.3 3D-space coherence

Assuming that the surface points will have spatially coherent displacements can help re-
ject outliers and disambiguate point-wise correspondences by considering the shape match-
ing from a global perspective in 3D space. For a rigid object typically, this is done by
considering that there can not be more than 6 degrees of freedom to the set of 3D point
displacements. Given three or more matches from the set of candidate correspondences, it
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Figure 2.5: Result of the photometric feature matching of Zaharescu et al. [48]. In spite of
outlier rejection, there are remaining matches between the left foot and arm and the right
foot and arm.

is possible to compute a rigid motion [17] and to evaluate how well the rest of the candi-
date correspondences agree with it. This is the idea of the RANdom SAmple Consensus
(RANSAC) algorithm by Fischler and Bolles [10]. Candidate rigid motions can be built
from randomly picked subsets of matches until a signiÞcant part of the candidate matches
agrees with the candidate rigid motion. RANSAC is a very effective method provided a can-
didate model can be built from a small subset of matches, and provided that the proportion
of outliers is sufÞciently low. It is extensively used for example in Structure-From-Motion
problems [14] where it is combined with epipolar geometry to bring two images of a rigid
scene into correspondence.

For the non-rigid deformations that we consider however, RANSAC is difÞcult to apply.
First, non-rigid deformations have too many degrees of freedom to be simply constrained
by a limited subset of sparse matches, and it would require too large a subset to build
a candidate deformation to test the rest of the matches against. Furthermore chances of
picking an outlier-free subset would decrease in a combinatorial way as the size of the
required subset would increase.

Instead of trying to build one model that the majority of the candidate matches should
agree with, other approaches consider more local pairwise spatial relationship between
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correspondences. The method by Leordeanu and Hebert [25] builds an sparse symmet-
ric afÞnity matrixA that has as many dimensions as there are candidate correspondences.
A[i, j ] measures if feature numberi and feature numberj respect a given geometric con-
straint when considered together. Then the method computes the eigenvector ofA corre-
sponding to the largest eigenvalue. This vector measures the strength of the association
between each correspondence and the strongest connected cluster in the graph of all corre-
spondences. The Þnal subset of accepted correspondences is essentially this cluster, with
additional constraints preventing one-to-many or many-to-one correspondences. The key
question to be answered when using this spectral method resides in the deÞnition of the
afÞnity measure between two correspondences, that is of the geometric constraint the pair
of matches must respect. This afÞnity measure can be the preservation of the geodesic
distance [19] when the deformation is large. If the correspondence is established between
subsequent frames of a temporal sequence, the simpler variation of Euclidean distance can
also be used [8].

The method by Starck and Hilton [36] casts the task of Þnding a coherent subset of
matches as a discrete labeling problem. In their work, they build the graph formed by
the points of interest on the Þrst shape, considering that two points are neighbors in the
graph if they are within a given geodesic distance of each other on the mesh. For every
point of interest, the goal is then to Þnd an optimal label in a set of labels formed by
possible endpoints on the second shape. The pairwise consistency between the labeling
of two neighboring interest points is deÞned as the preservation of the geodesic distance,
and the graph is labeled by processing it as a Markov Random Field in a Loopy Belief
Propagation algorithm. This method allows to put into correspondence two observations
of a deformable object in very different conÞgurations. Furthermore it is robust to some
variations of topology because it only considers the geodesic distance locally. However,
this method is computationally quite involved.

3 Dense surface tracking

Inferring dense correspondence between two shapes from the motion cues that were
reviewed until now is a regularization problem. There are two aspects to this regularization:
Þrst, the motion needs to be interpolated to the whole surface, particularly when using
sparse motion cues. Second, the regularization must prevent the over-Þtting of erroneous
motion cues. As such, the task resembles a smoothed interpolation problem. We have
seen in the case of sparse matching that outlier rejection heuristics and algorithms enforce
geometric constraints based on prior knowledge on the way points on the surface should
move with respect to each other. Similarly here, the regularization should account for some
prior knowledge on how the surface deforms. Furthermore, and as it was motivated the
discussion of optical ßow and scene ßow, the regularization should take place in 3D, where
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the physical processes that underlie the observations happen, rather than in image space.

Deformable model The prevalent way of describing the motion Þeld between two shapes
is to deform a mesh of one of them with the motion cues obtained from the data. This al-
lows to have Lagrangian speciÞcation of the ßow Þeld, where the discrete structure used
for computations follows the deformations of the object through time (as opposed to the
Eulerian speciÞcation that describes the ßow of matter through a Þxed grid). More impor-
tantly, this mesh structure is useful to deÞne the regularization of the motion Þeld. Indeed,
in absence of prior knowledge on the nature of the discretized shape, the connectivity of the
mesh offers a good indication on the connectivity of the object. This was already mentioned
in the outlier rejection algorithms for sparse matches: if two points are close to each other
geodesically, they will most likely have coherent motion. As such, the motion Þeld can be
regularized by making sure that these local neighborhoods are preserved. Many methods
exist to deform meshes while preserving the local geometry as much as possible. The Þrst
part of chapter3 will discuss these works in details. What is of importance in this chapter is
how these deformable models are of use when tracking the temporal evolution of surfaces
through long sequences.

Some works do not explicitly deform the mesh but simply use it as support to compute
and regularize the ßow Þeld. We already mentioned the work by Pons et al. [30] who use
the Laplace-Beltrami operator deÞned by the mesh reconstructed at framet to deÞne and
penalize the harmonic energy of the ßow Þeld. Similarly, Ahmed et al. [1] establish dense
correspondence between two surfaces without resorting to a mesh deformation framework.
Their idea is to create a local parametrization of the surface by localizing a point with his
distance to the sparse features on the surface. In place of expensive to compute geodesic
distances, they pre-compute on the mesh the values of one harmonic function per sparse
feature. Then any given point on the Þrst surface can be deÞned by the values of the
harmonic functions associated to the K closest sparse feature. The corresponding point
on the second surface is obtained by intersecting the isolines of the K harmonic functions
of the matched sparse features. Because it only considers the closest sparse matches, this
method offers some robustness to small and localized topology changes. It should also be
expected that the redundancy of using K closest features instead of only three would help
in the case of remaining outliers in the sparse correspondences. However, this methodÕs
performance is very dependent on homogeneously sampled sparse feature matches and the
effects of outliers are not really adressed in the paper. More importantly, the presented
results show the Þrst mesh of the sequence deformed across the whole sequence. This
Þrst mesh is used as model to regularize once more the computed dense frame-to-frame
correspondence during the propagation of deformation. This seems to be the real key to
the robustness of the method, which would otherwise yield drifting in the trajectories if the
frame-to-frame matches were simply accumulated.

Using a unique reference mesh to regularize the motion during the whole sequence is
not only a convenient way to obtain a temporally consistent sampling of the shape. It also
prevents the accumulation of tracking error because the geometric variations of the local
neighborhoods on the surface are always compared to the same reference template. How-
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ever, this robustness comes with a drawback: the topology of the mesh can not evolve.
The work of Varanasi et al. [42] explores this compromise. In this work, the Þrst mesh of
the sequence is iteratively deformed through the sequence, but allowed to change topol-
ogy. In practice, the mesh that was obtained as solution at timet is roughly aligned to the
independently reconstructed surface fromt + 1 using sparse photometric and geometric
features and a Laplacian mesh deformation method (1.4.3). Then amesh morphingstep
involving smoothing, local edge ßips, vertex insertion and deletion as well as handling of
self-intersections is run to guarantee a clean sampling of the second surface. This method
provides a good estimate of the movement over short periods, and effectively allows to pro-
cess sequences that involve changes of topology. However, the precision of the recovered
point trajectories over more than one or two seconds is subject to drifting, which makes
this approach unsuited for the purpose of building consistent 4D representations of longer
sequences.

If one is willing to accept the limitation of a Þxed topology, deforming a unique refer-
ence mesh for the whole sequence is a powerful way to constrain the trajectories of surface
points. The works by Vlasic et al. [44] or de Aguiar et al. [8] provide good illustrations
of this idea, as well as impressive results. In [44], the critical part of the registration is
accomplished using an articulated tracking algorithm that aims at Þtting the visual hulls
with a skeleton. The dense surface correspondence is then obtained by Þrst deforming the
template mesh with this articulated pose, then deforming it to Þt the silhouettes while pre-
serving local geometric properties with respect to the reference mesh . As such, in this
work, the general body motion is regularized by the skeletal model while the mesh de-
formation is more of an interpolation step. A parallel can be established with [8] where
a coarse volumetric mesh is Þrst deformed to obtain a rough registration of the template
mesh with the observed data. Then the reference template itself is deformed with an Óas-
rigid-as-possibleÓ mesh deformation method to Þt Þner shape cues such as stereo data. The
common point between these methods is that the registration stage Þrst happens at a coarse
level where the deformation is decorrelated from the complexity of the surface geometry.
This means that the deformation is spatially sampled at a coarser level of detail than the
geometry, which effectively reduces the number of degrees of freedom in the optimization
and improves the robustness of these methods.

Importance of silhouettes Another common point found in many of the works that tackle
surface deformation in multi-camera studios is the importance of silhouettes in the infer-
ence for motion. At Þrst sight, this can seem counter-intuitive as silhouettes are purely
geometric information and do not explicitly contain any motion data, as opposed to photo-
metric feature matches for example. However, they are very constraining in terms of where
the surface can or can not be. Furthermore, they are the most reliable information available
in studio environments because the lighting and background can be controlled.

For example, the work by de Aguiar et al. [9] deforms a reference template using optical
ßow as motion cue, but relies heavily on silhouettes to Þlter out erroneous optical ßow
vectors by checking that their endpoints lie inside the segmented silhouette of the object.
In following work [8], SIFT features matches between frames are used as motion cues to
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drive the deformation of the template mesh. However the process described in the paper
is more complicated than simply feeding positional constraints into a mesh deformation
framework. The mesh is not constrained by the endpoint positions of the feature matches
directly but these constraints are instead progressively displaced towards the endpoints,
making sure that the silhouette reprojection error decreases at each step. So in effect,
although the SIFT matches are used to drive the deformation, it appears that the silhouette
reprojection error is what is being minimized. This makes sense if we consider that there
potentially still are outliers or noisy correspondence in the sparse correspondence set, even
after pruning.

4 Conclusions

In the light of these previous works, it appears that sparse feature matches can be used
to build hypothesis on local surface motion, but that their reliability makes them difÞcult to
work with. In particular, they are difÞcult to use when building continuous energy functions
that should have their minimum at the solution we are looking for. One has to account for
the imprecision and the possible outliers in sparse correspondences. One of the questions
addressed by this dissertation is whether sparse feature matches are absolutely required or
if geometric information such as silhouettes, combined with a deformation prior, are sufÞ-
ciently constraining to recover meaningful surface deformations in multi-camera systems.
We therefore explore two aspects of the problem: in the next chapter we look into the de-
formation prior and into generic, efÞcient and robust numerical tools to deform meshes
from visual data. In chapter4, we propose a method to register a template mesh to a se-
quence of independently reconstructed meshes, and show on numerous experiments that
pure geometric registration can very consistently yield very convincing results.
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CHAPTER 3

A Robust Mesh Deformation
Model

In this chapter we address the problem of deÞning a numerically robust mesh
deformation framework for the purpose of data-driven mesh deformation, which
is an essential component of this dissertation. The chapter begins with a dis-
cussion of the existing representations of shape and presents a survey of the
state-of-the art on mesh manipulation and deformation that spawns over the
Þelds of computer vision and computer graphics. Although these two Þelds
have different objectives and applications, parallels can be drawn between
their respective developments and we show that recently proposed deforma-
tion models for interactive mesh editing are of interest in the context of data-
driven tracking of deformable surfaces. We introduce a patch-based mesh de-
formation framework that builds on these recent developments, and detail its
integration in contexts that require data-driven mesh deformation. We present
an evaluation of its behavior in various applications such as interactive defor-
mation, 3D tracking of a deformable cloth from monocular image data, and
silhouette Þtting.

1 Representing and Deforming 3D Shapes

In this section, we present an overview of deformable models in computer vision and
computer graphics. There is considerable overlap between the problems addressed by these
two Þelds and their developments on surface deformation have mirrored each other for
the last 25 years. Within computer graphics, our focus goes mostly to interactive editing
techniques, which have in most cases no access to the precise mechanical properties of the
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objects they operate on, but still aim at emulating real-world physical behavior. The recent
attention that was given to this topic and the resulting advances are of particular importance
in the scope of this dissertation, as they provide crucial insight into the challenges posed
by deformable surfaces, as well as theoretical developments and practical experience on
computationally efÞcient machinery to handle them. Our review of deformable models in
computer vision is conducted in parallel to emphasize the shared ideas between the two
Þelds. While computer graphics concentrate on synthesizing plausible and aesthetically
pleasing images of deformed objects, computer vision algorithms try to solve the inverse
problem and recover the deformations of surfaces from visual data. Much like in interactive
editing, they rarely have access to physically correct models and resort to simpliÞed models
of deformation. However, the goal in this case is to infer the most probable deformation
that explains the observed data. The deformable model then not only constrains the result
to a space of plausible deformation: it acts asregularizer and allows to solve ill-posed
problems in the case of missing data or to Þght the over-Þtting of noisy information.

In the following pages, we Þrst justify our choice of the 3D mesh as discrete represen-
tation of temporally evolving 3D surfaces, then discuss the available computational tools
to deform and manipulate these structures. This helps put our work into perspective and
motivates our choices for the deformation model presented at the end of the chapter. Our
review is organized around a classiÞcation similar to that of Salzmann and Fua [54], and
identiÞes three main paradigms for the deÞnition ofplausibledeformation.

¥ The Þrst class of approaches is referred to asdata-based, and contains the methods that
learn the space of acceptable conÞgurations of a deformable object from a corpus of
previous observations.

¥ The second class of approaches consists ofintrinsically regularized models. These meth-
ods design speciÞc parametrizations of the deformation to guarantee that the output shape
will be a valid deformed instance of the object.

¥ The third class of approaches uses prior knowledge to favor some deformed conÞgura-
tions over others. This prior knowledge is usually associated with less constrained, more
expressive parameter spaces. We refer to this third class asextrinsically regularized
models.

1.1 Representing 3D shapes

The representation of static 3D surfaces is a well studied subject and the available op-
tions can roughly be categorized asimplicit representationsor explicit representations. We
brießy recall here key concepts on these two options, and discuss how these representations
have advantages and drawbacks in the context of surfaces that deform over time.

Implicit representations deÞne the surface as the zero set of a scalar function that op-
erates on a higher dimensional space. For example many 3D surfaces can be represented
as:

S = { x " R3|f (x) = 0 } , wheref : R3 #$ R.
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.

In some case cases such scalar functions, and thus the corresponding shapes, can be
manipulated through a mathematical deÞnition off . For example the 3D sphere of ra-
dius r centered at the origin can be described as the zero set of the polynomial function
f : (x, y, z) #$ x2 + y2 + z2 % r 2. Varying the value ofr allows to express a sub-set of
the possible deformations of the sphere, namely to obtain spheres of different radii. The
beneÞt of such models resides in the relatively small number of parameters needed to de-
Þne the shape and the possible smoothness properties inherited fromf . Their signiÞcant
drawback however is their limited expressive range, even when more elaborate models such
as superquadrics [3] are used.

An alternative and more ßexible option is to directly manipulate the scalar values off
on volumetric grids. The evolution of the function values is then commonly governed by a
Eulerian partial differential equation (PDE) that assumes and enforces a number of differ-
entiability and smoothness properties onf and thus on the surface. This idea constitutes
the foundation of thelevel-set method, introduced by Osher and Sethian [47]. This method
allows to represent a vast variety of smooth surfaces, and has the advantage of naturally
handling topology changes during the evolution of the surface. This is an essential feature
if the topology of the shape is not known a priori, as it occurs in 3D reconstruction tasks
for example. However, it can also be argued that in some cases where a strong prior model
is available, the topology should not be free to evolve. Furthermore, if we look at surface
evolution in the level-set method using terminology from ßuid mechanics, it appears that
this representation and the PDEs that control its evolution are closely tied to an Eulerian
speciÞcation of the ßow Þeld. This means that the point of view is attached to the grid and
not to the ßowing matter, as it is in a Lagrangian speciÞcation. As such, it is difÞcult to
maintain point correspondence as the shape evolves. Even though some works [50] have
attempted to solve this issue, explicit methods are much better suited to describe the ßow
Þeld from a Lagrangian point of view, that is to describe the trajectories of surface points,
which is precisely the focus of this dissertation.

Explicit Representations directly map a set of variables to a 3D surface. We Þrst present
parametric surfaces, then motivate the use of the 3D mesh as discrete representation of
temporally evolving 3D surfaces.

Parametric surfaces are explicit surface representations that map sets ofR 2 to 2-manifolds
in R 3. As such, the point correspondence is directly maintained via the parametrization.

S :
!
u
v

"
#$

#

$
x(u, v)
y(u, v)
z(u, v)

%
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For example, the paraboloidS(u, v) = ( u, v, au2 + v2) is a parametricsurface whose
deformation isparametrizedby the scalara. The parametric function can be algebraically
deÞned in the case of quadrics. It is again also possible to use superquadrics to design
more complex surfaces. A third option is to use polynomials functions with Þnite support.
This idea is at the core of B-Spline surfaces and is more convenient to use at it resorts
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to 3D control-points that provide very intuitive control of the surfaceÕs deformation. We
return later to these models in our discussion of interactive modeling tools. The most in-
teresting trait of these representations appears when the mapping has good differentiability
properties. It is then possible to use the tools of differential geometry [18]. This means
that concepts such ascurvature, surface normals, orientability, and the notion of differ-
entiability for functions deÞned on the surface are well deÞned. This allows for princi-
pled mathematical modeling when evolving the surface in variational energy-minimization
frameworks. However, these models have limited expressive range and the description of
complex shapes often requires a delicate smooth stitching of several elementary pieces of
surface.

Polygonal meshes are arguably a more versatile and popular discrete representation of
3D surfaces. Although it is possible to use different types of polygons, we favor heretrian-
gular meshesthat exclusively use triangles and yield a simple and uniform representation
of the surfaceÕs connectivityM :

M = ( !, " ),

where! is a set of vertices and" a set of triangles. The conÞguration of the surface in
space is then encoded by a position functionx : ! #$ R3 mapping each vertex to a 3D
coordinate.

x : v #$

#

$
x(v)
y(v)
z(v)

%

&

This function is commonly linearly interpolated in the triangles using barycentric coordi-
nates. The deformation of the surface is completely controlled by a vector that contains the
value of positionx for each vertex and is therefore very intuitive to manipulate.

Meshes suffer from two major limitations: Þrst, they are discrete structures that do
not allow for a straightforward transposition of concepts of differential geometry. Com-
puting curvature. surface normals, gradients and Laplacian of scalar functions deÞned on
the surface requires care when points are not inside of the triangles. This is because the
position function is piecewise afÞne and thus not differentiable on edges and vertices. The
second limitations is linked to topological changes. As the vertex coordinates evolve, self-
intersections can appear. Figure2.4 displays such a situation, where two meshes of the
same actor in different poses have different topologies. Evolving one of the mesh to an-
other by simply moving vertices is thus impossible. If the algorithm that drives the mesh
evolution needs to garantee that the mesh samples a closed 2-manifold, some processing
would be required to maintain a well conditionned sampling of the surface. This is currently
an very active Þeld of research [78, 49, 14, 76]. However, and as motivated in chapter2, we
leave in this thesis the problem of topology changes aside. We assume that we have access
to a mesh that can be used as reference for tracking all along the sequence.

In this dissertation, we use the triangular mesh as discrete representation of the deform-
ing surfaces. Our choice is mainly motivated by our need to maintain point-correspondence
when the shape deforms, as the temporal trajectory of points is what we are interested in.
Furthermore, meshes handle open surfaces and boundaries naturally, which allows to de-
scribe shapes such as simple pieces of cloth. Finally, and although meshes do not provide
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a continuous representation of the surface, there are methods to approximate a number of
differential properties on them, provided that the sampling is reasonably uniform spatially.
As we will see in our discussion of mesh deformation, this is of importance because these
differential properties appear in the equations of elasticity.

1.2 Data-based deformable models

Our review of deformable models starts with data-based approaches which often are a
natural choice in computer vision. Indeed, data can be easily acquired, and provided some
work force to manually register and annotate it, large databases of deformed shapes can be
built. Data-based approaches deal with these samples of the deformed object in different
conÞgurations (keyframes) and try to infer the structure of the space of deformed shapes
from the training set.

1.2.1 Blend-shapes

Given a rest mesh and a reasonnably small database of the same mesh in deformed
conÞgurations, one of the simplest things that can be done is to synthesize new poses by
linear blending of the vertices position in the keyframes. This is the idea of blend shapes
[48] that directly interpolate the vertex displacements of several sample poses and allow to
create new poses by manipulating the blending weights.

An interesting extension called Pose Space Deformation (PSD) can be found in the
work of Lewis et al. [41] that uses blend shapes to correct the mesh obtained by skeletal-
based deformation. They build a database of manual corrections to the output of the articu-
lated mesh deformation algorithm and automatically blend these corrections during synthe-
sis. For instance, this means that artists can manually input a keyframe shape that indicated
that the biceps should bulge when the elbow is bent. Then for a given pose of the descrip-
tive model, a distance to that sample can be computed -i.e. how much is the elbow bent-
yielding a blending weight for the correction of vertices positions. This idea is extended
and successfully applied to data-driven facial deformation in the work of Bickel et al. [6]
where the Þne scale wrinkles of the face are blended from a database, using the infered
local surface streching of a coarse deformation graph as a feature vector.

The work Sumner et al. [66] called Mesh IK represents every keyframe as a high di-
mensional feature vector. This vector that encodes not the vertices positions, but the spatial
variation of these positions on the mesh for every given keyframe. The blending operates
on these features rather than the vertex coordinates directly. In their work, the blending
weights are computed by measuring how well each feature vector (and thus sample shape
in the database) Þts a set of positional constraints. In the work by White et al. [75], MeshIK
is used to recover the shape of moving pieces of cloth from a set of color markers printed on
it. The beneÞt of the approach is in this context is that Mesh IK can convincingly interpolate
occluded parts of the surface by using the database of previous observations.
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1.2.2 Dimension reduction

When the database of samples is large enough, it becomes impractical to associate a
weight to every single keyframe. It is however possible to try to extract a low dimensional
parameter space automatically. The goal is then to feed the training data into a dimension-
reduction algorithm, hoping that it will infer some meaningful structure of the deformation
space. Principal Component Analysis (PCA) has been used extensively to this end but
recent works [64] have tried to capture the non linearities of the deformation space by us-
ing non-linear dimension reduction methods. Dimension reduction techniques have limited
interest for human guided synthesis because the inferred parameter space may not have
semantical value and therefore can end up being difÞcult to interpret and manipulate. How-
ever, when no semantical value is sought after, dimension reduction methods are a powerful
tool to constrain the deformation space and limit the complexity of the search. For example
they have recently been used to learn from physically simulated data a low-dimensional
model of how clothing moves with respect to body pose and dynamics for fast synthesis
in interactive environments [25]. In computer vision, the constrained and low-dimensional
deformation space that they yield makes them a key component of many data-driven mo-
tion/deformation recovery algorithms.

If there is little variation of the viewpoint on the deformable object, the learning of
deformation models can be cast as the learning of point distribution models in 2D. A notable
example of such an approach is the Active Shape Model (ASM) of Cootes et al. [23]. In
ASM, a PCA is run on a database of 2D points sets that usually describe the contour of
an object. Given an image where an instance of the shape is to be localized, the shape is
expressed as a linear combination of the principal directions. The weights are optimized
for iteratively so that the points of the current approximation will better Þt the observation.
This work was later extended as Active Appearance Model (AAM) [22] where the texture
information is warped to a common shape and is run through PCA to Þnd principal modes
of appearance. This approach was in particular shown to be quite effective at capturing the
variability of human faces.

Similar dimension-reduction techniques also have been successfully applied to full 3D
representations. The work by Blanz and Vetter [8] tackles the variability of human faces in
neutral expression. The database built for this purpose contains 200 complete 3D models
of the head acquired by laser scanning. These models are all registered together, so that
a unique mesh can be used to sample all of them, leaving only the vertices positions as
variable. As with AAMs, the principal modes of shape (3D coordinates) and texture (RGB
coordinates) are extracted by PCA. Given an illumination and reßectance model, the pa-
rameters of this morphable model can automatically be ajusted to Þt a single image and
recover the full 3D shape of the face. In following work [7] this model was extended to
handle principal modes of facial expressions and allowed to reanimate single pictures after
the Þtting process. In other work on capturing the variability of human bodies, Anguelov
et al. [1] deÞne one transformation matrix per triangle of their template mesh and run PCA
on the vectors created by concatenating the 9 parameters of every triangle of a shape.

Principal modes of deformation are not necessarily learned from a database of real data
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brought into correspondence. The work by [56] sample the possible deformations on a
synthesized database. It samples the space of inextensible triangular meshes by varying the
parameters of angles between adjacent triangles of mesh representing a piece of cloth. PCA
is then applied to this sampled data and modes are extracted. An interesting result brought
to light in this work is that even though the training data contains no instances of stretched
mesh, the resulting low dimensional PCA space does. This is an important reminder that
in spite of the success of PCA-based methods, the space of deformed conÞguration of a
mesh should in general be expected to be non-linear. This suggests that non-linear dimen-
sion reduction techniques should be applied to build more faithful parametrizations of the
deformation space.

1.2.3 Other machine learning techniques

Learning the behavior of parts The deformation space of an object needs not be learned
globally. If all parts of the object are assumed to obey similar elementary deformation rules,
one can attempt to learn these rules. The work by Salzmann et al. [57] illustrates this idea,
and assumes that every small surface patch on the surface obeys the same deformation
model. The probability density function of shape conÞgurations for a patch from a sheet of
paper is learned using Gaussian Process Latent Variable Model. The deformation is guided
by edge and texture information from a single image, and the global deformation of the
whole sheet of paper is constrained by a product of experts that each assess the probability
of the deformations of local patches.

Discriminative learning The approaches presented up to now can be labeled asgenera-
tive. This means that the distribution of deformed shapes is learned from the training set,
and that new samples can be resynthesised for comparison with an actual observation. An-
other branch ofdata-basedmethods does nott concern itself with modeling the distribution
of deformed conÞgurations, but instead learns to differentiate observations directly. Such
approaches are calleddiscriminative. Contrary togenerativeapproaches, they have the
signiÞcant advantage of not requiring a good initialization.

For example Huang et al. [33] use shape retrieval techniques and global shape descrip-
tors to discriminate between different poses of the same object, rather than the original
purpose that was to discriminate between multiple objects. In their work, the database of
deformed instances is made of independently reconstructed meshes that contain no explicit
dense correspondence information. However, given an extensive database of deformed in-
stances of a shape put in dense correspondence, this type discriminative method could be
used as a deformation model.

Another good illustration of discriminative learning for pose estimation is the recent
work by Shotton et al. [60]. However, it does not deal with mesh data directly, but tackles
instead human pose estimation. In this work, the range of human poses in depth images
is captured with a forest of decision trees. The task is cast as pixel classiÞcation in range
data, where each pixel gets associated to a class that represents a body part. The approach
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represents each pixel with a feature vector encoding the relative depth of two pixels in its
neighborhood. For each of the node, the dimension of the feature vector along which the
split is to be made is chosen as the one that discriminates the most classes in the training
data. This algorithm manages to classify most pixels correctly. The joint locations, and
thus the pose of the object can be recovered in a second step by looking for centers of
clusters of pixels labeled as a body part. In following work, Girshick et al. [30] replaced
classiÞcation forest with regression forest. This means that for a given pixel run through
a tree, we do not Þnd a label when reaching a leaf, but instead Þnd a set of votes for the
relative 3D positions of joints.

1.2.4 Automatic skinning

For articulated structures, the dimensionality of the deformation space can be signiÞ-
cantly reduced by automatically computing an underlying skeletal model, performing what
is called mesh skinning. Baran et al. [2] align a deÞned articulated skeleton with a static
model using only its shape in the inference. More generic approaches by James and Twigg
[35], Ladislav Kavan [40] take an animated mesh as input and automatically infer a set of
bones (each of which moves rigidly), as well as blending weights linking each vertex to a
small subset of these bones. Not only do these methods work particularly well for artic-
ulated structure, they also display results on more intricate deformations such as these of
cloth. This shows that smoothly blending several local rigid transformations with respect
to a rest pose can be applied rather generally to represent deformations, provided a sufÞ-
ciently dense set of bones. This idea is at the core of the patch-based deformation model
that we present in this chapter.

1.2.5 Conclusions on data-based deformation models

Learning from data is a powerful way to generate a parameter space of limited dimen-
sion and to constrain the space of outputs. However, for databases involving signiÞcant
deformations, simple blending or PCA do not capture the non-Euclidean structure of the
space of deformed conÞgurations. In this thesis, we wish to process deforming objects of
unknown nature and need to handle large deformations. This a priori unknown nature of
the objects precludes largely the use of data-based methods, except for machine-learning
techniques that would capture elementary deformation rules for small localized surface el-
ements as in [57]. We will see in our discussion of extrinsically regularized deformation
models that emulating such rules for these small elements can also be done efÞciently and
convincingly using the equations of elasticity.

1.3 Intrinsically regularized deformable models

We discuss here methods that use carefully designed parameter space to ensure that any
point of this space maps to an acceptable instance of the deformed model. We differentiate
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in this class of approaches two subgroups that mostly differ on their deÞnition of what an
acceptable deformation is. On one hand, we label asdescriptivethe approaches that deal
with a speciÞc real object for which a human has designed a speciÞc set of deformation
parameters, using his perception, experience and understanding of how the object deforms.
On the other hand, we consider more general approaches for which the validity of a defor-
mation is linked to geometric constraints which are enforced through the parametrization.

1.3.1 Descriptive deformable models

In the case ofdescriptivedeformable models, a human manually deÞnes the parameter
space. Because this process typically involves a semantical component, the resulting set
of parameters is often more intuitive to interpret and manipulate than those produced by
data-basedapproaches. As a large part of the developments on such deformation models
was driven by the need to synthesise, capture and edit compelling animated performances
of humans, we illustratedescriptivemodels on the problems of body and face animation.

Articulated structures are a straightforward example of simpliÞed deformation model,
routinely used to render convincing animations of the human body without resorting to a
complex anatomical dynamic simulation of bones, joints and muscles. The process usually
requires to performcharacter skinning, that is to attach a mesh of the human body to an
underlying skeletal structure. The deformed body can then be animated by manipulating a
small number of joint angles directly. A possible extension consists in deÞning degrees of
freedom for the skeleton from which the joint angles can be computed, usually as simple
linear mappings. Articulated models are extensively used in computer vision, mostly for
marker-based and marker-less motion capture of human performances. This parametriza-
tion alone already greatly constrains the deformation, and allows to express reasonably
realistic poses for the body, provided some additional constraints such as limited angular
range of articulations or minimization of self intersections of the body. We return in chapter
5 in details on articulated 3D models.

Facial animation is another Þeld where descriptive approaches have been successfully
employed. Among the parametrization of human expressions, one of the most inßuential is
the Facial Action Coding System of Ekman and Friesen [27] that was originally designed
to allow human annotators to label sequences. It consists of a vocabulary made of action
units that describe elementary movements on the face, such as a wrinkled nose for example.
Although this parametrization emerged in research on psychology, the work of Rydfalk [52]
linked the concept of action units with a deformable polygonal model of the human face
that allowed to synthesize expressive faces from this restricted vocabulary. This polygonal
model was quickly used for tracking purposes in Li et al. [42].
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1.3.2 Geometric design tools

Early mathematical methods for the manipulation of deforming shapes were linked
to Computer Aided Design(CAD) tasks. Even if some of these methods are not strictly
speaking model-based deformation methods, they have been used in computer vision and
their limitations will motivate the discussion of extrinsic regularizers.

Parametrized shape primitives allow to quickly generate a variety of shapes from a
restricted set of parameters, and to use these shape as basis before further reÞnements.
We cite here the family of superquadrics as an interesting example because of its wide
expressive range[3], and the possibilities opened by applying further deformations to them
such as tapering, bending and twisting [4]. Superquadrics were also used for automatic 3D
reconstruction (e.g. [61]) but only provide rather crude approximations when the shapes
are complex. It was however shown that this limitation can to some extent be alleviated
by combining them with more expressive deformation models [69] that further reÞne the
parametric shape in a post-processing step.

Smooth interpolation Another group of CAD techniques deals with interpolating smooth
curves and surfaces respecting a given set of positional constraints. This problem needed to
be solved for the drawing of models in the automobile, aircraft and shipbuilding industries.
It is in that context that Bezier curves -and later surface patches [51]- were developed in the
early 1960s, soon to be followed by their B-spline and NURBS extensions. The original
Free-Form Deformation(FFD) approach by Sederberg and Parry [58] essentially transposes
these ideas to 3D by embedding the deformed object into a parallelepipedical solid whose
deformation is driven by control points placed on a lattice. This provides designers with an
intuitive shape manipulation tool: the control points are moved by the user and the resulting
smoothly interpolated deformation Þeld is transfered to the embedded object.

In computer vision, B-Splines, FFD and other smooth interpolation methods have also
been used extensively for motion estimation and 2D and 3D image registration (e.g. [67]).
Here also, an embedding structure is overlaid on the object or the space on which the defor-
mation Þeld is to be computed. However an inverse problem is solved, and the positions of
the control points that parametrize the motion Þeld are automatically computed from data
instead of being manually deÞned by a user. In effect, the motion cues in the data are inte-
grated in the neighborhood of each control point and their contributions weighted with the
smooth interpolation functions. These methods originally designed for interpolation thus
act as regularizer in two ways: Þrst, they intrinsically guarantees the smoothness of the
deformation Þeld, which is inherited from the basis spline functions it builds on. Second.
for sufÞciently coarse control grid, there are large averaging effects in the image domain
which can prevent the over-Þtting of noisy motion cues.

One signiÞcant limitation of these methods is linked to the topology of the control
grid: enforcing smoothness on a parallelepipedical grid can often produce strange looking
results if different parts of the object are close in the reference pose and get deformed
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together when they should move independently. Coquillart [24] showed that manually
deÞned control lattice topologies, tailored for the embedded object, could alleviate this
problem and provide more natural looking deformations.

These methods were initially aimed at modeling from a basis shape rather than deform-
ing a reference shape. As such, it was assumed that positional constraints could be deÞned
densely by the modeler trying to input detailed deformations. The only responsibility of
the interpolating algorithm is to output a smooth surface, no matter how far the control
points are pulled apart. This however does not reßect at all how real-life objects deform.
If we pull a point of a piece of cloth, it is expected that the rest of that piece of cloth will
move with it, including other potential control points. This marks the difference between
interactive modeling tools and the interactive deformation tools that we will discuss later.

Smooth interpolation methods are used for computer vision applications but only play
part of theregularizer rolethat is awaited from a deformation model. For example, [67]
discusses how this appears clearly when trying to compute optical ßow. When there are
untextured areas in the image, the overall computed deformation might not move control
points that lie in these areas, while the surrounding control points move because they have
motion cues in their region of inßuence. This can lead to unlikely deformations and there-
fore requires the introduction of an additional regularizer force that maintains an overall
coherence between the motion of the control points.

As such, to deform a reference model in a realistic manner, we need more than simple
interpolation. We need smoothing splines rather than interpolating splines. These objects
introduce a regularization that balances Þnite external external forces and the internal strain
of the deformed object. This brings to the next category of deformation models which use
extrinsic regularizers.

1.4 Extrinsically regularized deformable models

Extrinsically regularized approaches constitute the third branch of our taxonomy of
deformation models. Here, parameter spaces with a broader expressive range can be used
to describe the objectÕs deformations, and prior knowledge on the plausibility of each point
of this space is encoded either as a probability density function or an energy function.
Extrinsic regularizations are often combined with data-based or intrinsically regularized
parameter spaces. The role of this additional, external regularizing term is to favor some
conÞgurations of the shape over others.

For computer vision, this translates in practice into a regularization energy term in an
energy minimization problem:

argmin Edata (shape) + Ereg(shape) (3.1)

Such equations can often be looked at from a probabilistic point of view by considering
that they represent a generative model that can draw samples of observations from the
distribution characterized by the energies.Edata then encodes for the log-likelihood of
the observed visual data conditioned on a realization of the shapeÕs conÞgurations, while
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Ereg encodes for a prior on the likelihood of that conÞguration. This Bayesian interpreta-
tion then makes the energy minimization equivalent to Þnding the Maximum A Posteriori
(MAP) shape deformation parameters. Therefore, extrinsic regularization can be looked
at a way of accounting for prior knowledge on the distribution of the deformation of the
shape of interest. Whiledata-baseddeformable models had the option of estimating such
a distribution from a corpus of previous observations, the challenge here is to encode for
the deformation priors analytically. This model should of course reßect some meaning-
ful distribution of the possible conÞgurations, but must also be convenient to minimize in
equation (3.1).

1.4.1 Physics-based Models

How do real-world objects deform ? Because of the need for plausible and compelling
animations that resemble real-world physical behavior, computer graphics and computer
vision scientists started looking towards physical models in the 1980s. Among the no-
table early works, the research of Terzopoulos and Witkin [71] introduced simpliÞcations
of the PDEs of elasticity theory and structural mechanics into the Þeld of computer graph-
ics. Since then, physically based deformable models have emerged as a major subject of
research and drawn a lot of attention, as shown by the recent survey of Nealen et al. [46].
Physical simulation mostly deals with the simpliÞcation, discretization and solving of the
PDEs of continuum mechanics. Currently, the most widespread tool for discretizing and
solving these PDEs is the Finite Element Method (FEM), combined with temporal integra-
tion schemes in the case of dynamic simulations. Such simulations constitute a vast Þeld
of computer science, that extends well beyond computer graphics and deals with problems
such as elasticity, plasticity, fracture or ßuid dynamics.

In this thesis, we restrict our discussion to elasticity, which means that the surface is as-
sumed to always comes back to its rest conÞguration once its not under load. Furthermore,
we notice that even though we deal with dynamic scenes, it is difÞcult to link our observa-
tions to underlying physical meaning because we assume no prior on the nature or mass of
the observed object, and have no information on the external and internal mechanical forces
applied to it. Therefore, we can not really infer anything about quantities such as inertia
or damping and full blown dynamic models are out of scope. That being said, and even if
we ignore the temporal evolution, the PDEs of elasticity and their FEM discretization still
constitute valuable insight on how real-world materials deform.

If we assume small displacements with respect to the rest pose, the Þnite element
method allows to discretize the object of interest and to compute a constantstiffness ma-
trix K . Then, given a set of external forcesf applied to the object, the problem becomes
that of a Þnding a small displacementu with respect to the rest-pose that corresponds to
an equilibrium, or steady-state. The discretization allows to solve this problem through a
linear system:

K u = f.
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The potential energy stored by the object in this deformed conÞguration is then:

1
2

uT K u

It should be noted that for large deformations that lie outside of the realm of inÞnitesimal
strain theory,K becomes a non-linear function of the conÞguration.

Physics-inspired tracking When tracking elastic objects,Ereg is generally chosen as the
potential energy associated to a conÞguration of the object. This strain energy can be used
to prevent minimizations of the type of equation (3.1) from reaching incorrect deformation
states. In essence, this amounts to favoring conÞgurations with low potential energy, which
in the case of elasticity are the conÞgurations close to the rest state of the object, or rigidly
transformed versions of it.

If a speciÞc object is to be tracked, and if there is a priori knowledge on its properties,
it is possible to precisely compute the strain energy by using a mechanical model of the
object. However, such models are complex and except for some rare attempts [34], very
few works go to the trouble of using a Finite Element discretization for disambiguating
visual data. This can be in part explained by the computational load of the FEM once
large deformations bring non-linearity into play. Another explanation is that building an
elasticity prior to favor the rest state over every other -and possibly valid- conÞguration is
from the start a somewhat ßawed approximation, and that there is as such no incentive to
reÞne it with a precise energy computation. From a probabilistic point of view, the elasticity
prior can be considered a ßawed approximation because there is no reason for us to expect
the object to be in its rest state in the images we get. In fact we should expect it not to
be in this rest conÞguration since the images are supposed to be interesting. Nonetheless
the elasticity assumption is very effective at penalizing grossly erroneous conÞgurations,
and we will see in the next paragraphs how simpler approximations of the strain energy are
actually sufÞcient for this purpose.

As a side note, we remark that accurate modeling of physics still is of interest for
vision-based force measurement, and that this seems to have driven most of the recent
developments on combining precise physical models with visual data. Vision-based force
measurement is particularly sought after for its unintrusiveness, and has found applications
in the analysis of micro-electromechanical systems [73, 31].

1.4.2 Smoothing splines

The work of Terzopoulos et al. [70] was seminal in the Þelds of computer graphics. In
this work, it is argued that the mathematical properties of objects as computed by differ-
ential geometry can be used to deÞne Òa reasonable strain energy for elastic bodiesÓ. For
example, the resistance of a parametrized curvex(s) : R #$ R3 to stretching and bending
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Figure 3.1: Comparison of membrane (left) and thin-plate (right) energy minimization
under positional constraints (set on the borders and a 4x4 block in the middle).

(we ignore twisting here) can be emulated by minimizing the following energies:

Erod =
'

#(s)&
$x
$s

&2ds (3.2)

Ebeam =
'

%(s)&
$2x
$s2 &2ds. (3.3)

The Þrst order term penalizes stretching, while the second order penalizes bending. For
example setting%(s) to zero at one point allows the snake to develop a corner.

This energy has counterparts for shells (2D) and volumes. In the case of a parametrized
shell, similar simpliÞed energies can be deÞned to penalize stretching and bending. In the
survey of Botsch and Sorkine [13], these energies are deÞned as follows:

Emembrane =
' '

&
$x
$u

&2 + &
$x
$v

&2dudv (3.4)

Eplate =
' '

&
$2x
$u2 &2 + 2&

$2x
$u$v

&2 + &
$2x
$v2 &2dudv (3.5)

The Þrst order term favors membrane (rubber sheet) behavior while the second-order term
makes the surface act like a thin plate (metal sheet) (see Þgure3.1).

Cubic and Thin-Plate Splines are related to this physical modeling are mostly found in
a whole different branch of the literature concerned with function regression and regular-
ization. In the 1D setting typically, and given a set of samples{ (x i , yi )} , these approaches
seek a functionöf that minimizes the following functional:

E [f ] =
(

(yi %f (x i ))2 + &
'

(
$2f
$x2 )2dx (3.6)
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This equation is very similar to equation (3.1) where the regularization term is the beam
(or plate) energy from equation (3.3). With variational calculus, it appears thatöf is a linear
combination of basis functions{ f i (x)} that satisfy:

$4f i

$x4 (x) = ' (x %x i ) (3.7)

These are GreenÕs functions of the4th order linear differential operator!
4

!x 4 . In 1D these ba-
sis functions are cubic splines|x%x i |3. In 2D they are thin-plate splines&x%x i &2 log&x %x i &.
In 3D they are simply the absolute distance to the sample point&x %x i &.

Bookstein [9] introduced the thin-plate-spline as a useful regularization tool for image
processing and computer vision tasks in general. He insists on the physical interpretation of
this model, which solves for the deßection on the z axis of a xy sheet of metal submitted to
punctual external loads. The regularization term minimizes then the total bending energy
of the metal sheet. He replaces the deßection function with two 1D displacement func-
tionsx(x, y) andy(x, y) that are smoothed with the framework, and combines them with
a global afÞne function. The parameters of this deformation model are thus the weights of
the thin-plate basis functions{&x %x i &2 log&x %x i &} and of the afÞne warp. The whole
is referred to in the literature as TPS-warp and has been used to regularize image warpings
or the deformations of sheets of paper from monocular data [5] for example. The resulting
deformation is intrinsically smooth because of the basis functions, and allows for a conve-
nient expression of the extrinsic regularizer that has a closed-form solution for a given set
of data constraints and a given lambda. TPS-warps as a deformation model is of interest
because they have been used to parametrize and regularize the non-rigid registration of 2D
and 3D point clouds [21], which will be addressed in chapter4.

However, these methods have two main issues: Þrst, it must be noted that in the 3D
extension of TPS, the basis functions are not differentiable at the sample points. Second,
these basis functions do not have compact support like the piecewise polynomial splines
for example, and they actually grow as&x % x i & increases. Intuitively, this means that
there is no notion of locality in the deformable model and that a data pointx j , far from
x i will inßuence the weight off i in the solving process. In practice this means that the
linear systems that appear in the solving process are not sparse. Moreover, the assumption
of smoothness of the deformation over the whole 3D domain makes TPS-warps unsuited
for our setting: a hand moving away from the thigh should not result in a movement of the
thigh, even if they were close in the reference shape. This is a common problem with space
deformation methods, already mentioned for FFD. However, we saw that FFD had been
extended to use lattice topologies adapted to the object. DeÞning arbitrary domains and
boundary conditions is not as easy with the TPS formalism. Finally, the non-locality of the
parametrization is an even bigger issue as a movement of the hand would induce signiÞcant
changes for the weights of the basis functions associated to all the sample points in space.

Discrete Splines We have seen that the TPS formulation originated from the minimiza-
tion of a functional that was translated to a PDE. Then fundamental solutions for the dif-
ferential operator ( or GreenÕs functions) were superposed to satisfy the whole PDE. Other
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spline formulations adopt a different method to solve PDEs, that resemble more the FEM
or Finite Differences.

Extrinsically regularized discrete splines were quickly identiÞed as interesting for com-
puter vision purposes, and used early on as shape regularizers for segmentation tasks. The
seminal work of Kass et al. [37] introduced a deformation model called snakes, that uses
the simpliÞed elastic deformation model of equation (3.3) to penalize the stretching and
bending of a 2D curve, and uses a Þnite difference approximation of the energy. The image
data is then used to deÞne a potential energy, and the combination of these two energies
is minimized in a variational framework to a state that should delineate the structures of
interest in the image. Also named Active Contour Model, this idea has also been extended
to 3D segmentation and reconstruction tasks. Other spline parametrizations are closer to
the FEM such as the already mentioned [67] that use basis functions that are compactly
supported polynomials on the discretized domain

1.4.3 Differential mesh Representations

Since deformation energies are closely tied to differential properties, differential mesh
manipulation methods handle differential representations of the surfaces directly. This
means that the geometry is encoded with differential coordinates that allow for an easy
expression of the deformation energies. The surface can be reconstructed from this repre-
sentation by integration, given sufÞcient boundary constraints. The following paragraphs
present recent developments on these topics. The energies that are presented resemble
these of equation (3.5) but do not penalize absolute stretching and curvature: they penalize
variations with respect to a rest pose of the surface.

Gradient-based representations of meshes such as the work of Yu et al. [77] were in-
spired by gradient-domain image editing. The idea is to preserve local details of the surface
S by preserving the gradients of the coordinate functionx : S #$ R (resp. y, z). This is
done by using as reference the scalar Þeldsx0, y0, z0. With at least a vertex position Þxed
as constraint, the new position can be recovered as Þnding the functionsx (resp.y, z) that
minimize the energy functional:

EG(x) =
'

S
&' x % ' x0&2dS (3.8)

Laplacian-based approaches such as that of Sorkine et al. [63] were developed concur-
rently. These methods try to preserve the mean curvature at each point of the manifold
rather than the gradient. Instead of preserving this scalar Þeld directly however, they pre-
serve the Laplacian of the position function whose norm is precisely the mean curvature,
which results in minimizing the following functional:

EL (x) =
'

S
&( Sx % ( Sx0&2dS, (3.9)

where( S is the Laplace-Beltrami operator.
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Discretization Translating these equations from their continuous formulation to the dis-
crete case must be handled with care. The differentiable manifoldS is now approximated
by a mesh(!, " ), that is by a discrete graph represented by a set of vertices! and a set
of triangles" that encode for its topology. The main problem which such a discretization
is that the mesh is a piecewise linear approximation of the surface, therefore not differen-
tiable at vertices and edges. Meyer et al. [45] and Wardetzky et al. [74] provide discussion
on the choice of discretization for the continuous Laplace-Beltrami operator. Following
their conclusions, the Laplacian matrixL on the graph of vertices is usually built using the
cotangent weights. The mesh in its reference pose can be encoded by three|! | ) 1 vectors
! 0

x , ! 0
y and! 0

z obtained by applying the operator to the coordinates vectorsx0 , y 0 , z0 of
the reference mesh.

! 0
x = Lx 0 . (3.10)

This leads to a discrete formulation of equation (3.9):

EL (x) = &Lx %! 0
x &2. (3.11)

Since the Laplacian operator is invariant to translations,L is rank-deÞcient and a positional
constraint on one vertex per connected component needs to be added to the minimization
so that the mesh can be rebuild from the differential coordinates.

Local rotations However, differential coordinates, whether Laplacian or gradient, are en-
coded in the global coordinate system and therefore not invariant to rotations. This means
that if 3 vertices of a mesh are rotated around the the origin and then used as positional con-
straints, the reconstruction from the Laplacian coordinates brought by the minimization of
the energy of equation (3.11) will be not be the whole shape rotated. This problem has been
addressed by a number of works [59, 44, 39] that have proposed rotation-invariant mesh
encodings. However, these encodings lose the simplicity of the linear system in equation
(3.11) and have to perform large-scale non-linear optimizations to reconstruct the mesh
from the rotation-invariant coordinates. To the best of our knowledge these representations
have not been used in computer vision.

Differential coordinates on the other hand have been very popular, but the algorithms
built around them had to be modiÞed to account for the local rotations of the surface: in
the case of gradient representations, Yu et al. [77] simply propose to have the user deÞne
local changes of frame and scale on the constrained vertices, then to explicitly propagate
these frame changes to the unconstrained vertices using blending weighted by functions of
the geodesic distance. In the same direction, Zayer et al. [79] replace these weights with
an interpolation scheme based on harmonic Þelds. In the case of Laplacian representations,
Sorkine et al. [63] propose to Þrst solve equation (3.10), then to solve for a linearized ver-
sion the local transformations, and Þnally to solve a modiÞed version of equation (3.10)
again, that accounts for the implicitly computed local frames. The linearization however
restricts the method to small rotations. In a following work, Sorkine and Alexa [62] implic-
itly evaluate the local rotations on 1-rings around every vertex. For each each vertexv, the
values[' x (v), ' y(v), ' z(v)] are obtained by applying this rotation to[' 0

x (v), ' 0
y (v), ' 0

z (v)].
The modiÞed equation (3.11) then becomes:

EL (x) = &Lx %! x &2. (3.12)
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This formulation allows to handle large transformations by alternatively solving for the
local rotations ( and thus the rotated original Laplacian vectors ) and the vertices positions.
This boils down to performing a non-linear optimization by iteratively minimizing equation
(3.12) which is a local quadratic approximation of the true bending energy that depends
non-linearly on the current vertices positions.

Usage in computer vision The Laplacian-based energy of equation (3.9) has been exten-
sively used as regularizing term for computer vision purposes used over the last few years.
This success is largely explained by the ease of implementation of [62], and the fact that
this method requires only one costly factorization ofL T L . Moreover, the method behaves
very well for its original purpose, that is for interactive mesh deformation.

However, the use of this energy as regularizer for computer vision is questionable.
Firstly, and as noticed by others [75], Laplacian-based methods do little to penalize strain.
If we consider a ßat mesh, and scale it isotropically, we introduce no bending and the
energy from equation (3.11) remains null. Secondly, equation (3.12) is only a quadratic
approximation of the true bending energy to which we have no access. This approximation
depends on the evaluation of the local rotations of the surface, which can be erroneous if
the vertices positions were brought to an aberrant state. These two issues have little impact
in an interactive mesh deformation setting. However, when the effects of potentially noisy
data terms that need to be balanced, it is more reassuring to be able to check that we are
effectively decreasing a well deÞned energy, and that the local quadratic approximations of
it that we build are precise.

If we look at works directly related to ours, such as the methods of Vlasic et al. [72],
Gall et al. [29] or de Aguiar et al. [26], we notice that they do not use the Laplacian de-
formation framework on the surface as their main regularization tools. For [72, 29] the
strong regularizer of the template deformation is an articulated model. The bending en-
ergy of the surface is only use in a later stage to regularize adjustments destined at Þtting
the silhouettes. In the case of [26] the preservation of Laplacian coordinates is used on a
coarse volumetric tetrahedral mesh. The surface bending energy is there again only used
during reÞnements to match silhouettes and stereo information. Our own experience with
the framework [15, 17] is that this smoothing energy effectively had to be helped by a
coarser elastic model that penalized strain.

1.4.4 Embedded deformation

The methods presented until here manipulated the mesh directly by considering the
original geometry as variables: vertices, faces, or local frames. In contrast,space deforma-
tion methodsdeform the ambient space in which the original geometry is embedded. This
is particularly advantageous in terms of computational cost and scalability, as it allows to
decouple the complexity of the deformation from that of the shape. In other words, the basis
shape and its deformation Þeld can be sampled with different spatial resolutions. A sec-
ond advantage of these methods is that they can handle low-quality non-manifold meshes
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and even allow deformations of point clouds, polygon soups or volumetric representations.
However, and as it was already discussed for FFD and TPS warps, one of the limitations of
embedded deformations methods is that the control structures must respect the topology of
the deformed shape.

Cage methods embed the original geometry in a closed control mesh of much lower
complexity. The vertices of the deformed mesh are interpolated from those of the de-
formed control structure. This allows to place constraints on the original mesh itself, but
to solve for the deformation of the cage. For example Huang et al. [32] propose a formu-
lation that allows to solve for equation (3.11) using the cage vertices as variables. They
also demonstrate the potential of cage based approaches by integrating other constraints
to the minimization such as skeletal constraints or the preservation of the total volume of
the mesh. However, subsequent works such as [20] remark that interpolating vertices po-
sitions from the deformed control structure is a complex problem. Actually minimizing
the distortion of the interpolated Þeld can be brought back to solving PDEs inside the cage
while using the control mesh to enforce boundary conditions, which is difÞcult for arbitrary
control meshes.

Other space deformation methods use different control structures. Botsch et al. [11]
embed the surface in a layer of volumetric prisms that are obtained by extruding the faces
of the original mesh. Then elastic forces are emulated between adjacent prisms and rigid
motions for each of the prisms are used as variables. The optimal rigid motions are obtained
with a non-linear minimization performed in a Gauss-Newton framework. The process is
even sped up by clustering together neighboring prisms in a coarse-to-Þne hierarchy. In
following work, Botsch et al. [12] embed the mesh in an array of volumetric cells and
minimize a similar physics-inspired rigidity. The cubic cells are arranged in an octree that
allows to reÞne locally the embedding structure where the deformations need to be sampled
more Þnely. Sumner et al. [65] propose to embed the deforming geometry in a control graph
consisting of points seeded in space. There, the rigidity energy is expressed between the
nodes and the variables consist of one afÞne transformation per node. The corresponding
minimization is performed similarly to [11, 12].

One of the key characteristics of the methods cited in the previous paragraph is that
they optimize explicitly on onerigid transformationper control point, while nearly all the
deformation models reviewed until now limited themselves to using thepositionsof these
control points as variables. As such, these methods explicitly solve non-linear minimization
problems, as opposed to the methods of1.4.3that implicitly evaluate the local rotations of
the surface. This non-linear minimization might at Þrst seem much more complex, for rea-
sons as simple as the 6 parameters required per control point instead of 3. Yet, [11, 65, 12]
are used as interactive deformation tools, which shows that these non-linear approaches
remain computationally tractable. Two mechanisms make this possible: Þrst of all, decou-
pling the control geometry from the complexity of the original geometry obviously allows
to decrease the number of unknowns. Secondly, efÞcient numerical tools are available to
solve the large sparse linear systems that appear in these computations (see the survey by
[10] for a good overview).
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1.5 Motivation for the presented research

In this section we saw that the deformation of possibly very dense meshes can often
be described by a low dimensional set of parameters, instead of vertex positions. Articu-
lated structures are a common example, used for both interactive animation and data-driven
recovery of deformation. However, articulated structures are rare, and articulated models
fail to capture Þne deformations such as the cloth on a human. Recent results in computer
graphics on the compression of arbitrary mesh animations [35, 25] have shown that a small
set of rigid transformations and weighting functions can encode for visually complex de-
formations such as these of cloth. In other words, mesh skinning methods need not be
restricted to articulated objects. The limited expressive range of articulated models can
be overcome by extending the notions of bone and joints, and by sampling uniformly and
sufÞciently densely the local transformations of the surface.

This idea matches some of the embedded deformation models that were presented in the
previous paragraph. More precisely, it corresponds to the embedded deformation methods
that explicitly on local transformations of the surface, similarly to [11, 65, 12]. These meth-
ods were developed for interactive deformation. One of the propositions in this dissertation
and in one of our papers [16], also supported by recent results on geometric registration
[43, 19], is that these tools are useful for data-driven animation. We motivate our research
in that direction with three main ideas:

¥ Embedded deformation effectively decouples the parametrization of the deformation
from the complexity of the original geometry. For computer vision applications, this
decouples the parametrization of the deformation from thesampling domainthat is the
mesh. The mesh can be used as sampling domain for data terms while the deformation
is computed on a coarser structure. This allows to integrate noisy data terms on the area
of inßuence of control element, and to beneÞt from averaging effects in the inference for
the local transformations of the surface. Furthermore, choosing the scale at which these
transformations are sampled allows to solve problems in acoarse-to-Þnemanner, which
helps minimize low-frequency errors in the deformation more rapidly.

¥ Optimizing explicitly on local transformations of the surface allows to deÞne simple and
usable regularization terms. In the next section, such a regularization energy will be
presented. Because this regularization energy is uniquely deÞned, and does not depend
on current estimates of the local rotations (as in [62] for example), it is possible to check
whether each step of the minimization effectively decreases it. This comes at a cost: there
are more variables to be solved for, and the minimized energies are explicitly non-linear.
However the continuing increase in available computational power allows to handle this
additional complexity for the type of geometry that we wish to deform.

¥ As we have discussed, one of the key issues with embedded deformation is to respect
the topology of the deformed object. We have seen how TPS deforms the whole do-
main, and how the control lattices and basis functions of FFD can cause artifacts. The
deformation model that we present in the following sections focuses on respecting the
topology of the deformed shape. This is achieved by adopting a strictlysurface-based
approach that builds a deformation graph from the connectivity of the original geometry.
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In that sense our work is closer to [11] (surface-based) than it is to [12] or [65] (volu-
metric). However [11] was formulated in a way that did not decouple the control graph
from the deformed mesh. In our formulation, the density of the deformation graph can
be controlled, allowing to sample the deformations of the object with a chosen spatial
precision.

In this chapter, we present an embedded deformation method based on small surface
elements we refer to aspatches. These patches resemble thematrix palette skinningused in
real-time rendering engines in that every patch is associated with a rigid transform and that
the positions of the vertices are computed by blending the transformations locally. We also
present details on the robust numerical machinery that was built around this representation
to optimize energy functions involving elastic regularization and other terms deÞned from
visual data. The resulting deformation framework can be used for the automatic inference
of 3D shape deformation from visual data in a large range of potential applications. To
support this idea, we discuss the integration of our framework for two applications and
present the corresponding results.

2 A Patch-based Approach to Data-driven Mesh Deformation

2.1 Patches

A rigid transformation with respect to the world coordinates is associated to each patch
Pk . It is parametrized by the position of the patch centerck and a rotation matrixR k (or
equivalently by a unit-length quaternionqk ). This rigid transform yields for every vertexv
of the mesh a predicted positionxk (v):

xk (v) = R k (x0(v) %c0
k ) + ck , (3.13)

wherec0
k is the center ofPk in the reference pose andx0(v) the position of the consid-

ered vertex in the reference pose. The deformed mesh is recovered by linearly blending
the predictions made by the different patches for each vertex. The weighting functions#k

are Gaussians of the Euclidean distance to the center of mass ofPk and their support is re-
stricted to the union ofPk and its neighboring patchesNk . These Gaussians have isotropic
covariances and their standard deviation is taken as the maximum patch radius parameter
of the patch seeding stage. At each vertexv, the values#k (v) are normalized to add up to
1.

x(v) =
(

k

#k (v)xk (v). (3.14)
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Figure 3.2: Greedy patching procedure evolution on the Stanford Armadillo model ( 170k
vertices ) with a maximum patch radius of 40. From left to right: patching after 1,3,4,30,143
patches have been seeded.

Thus the complete deformation of the mesh is encoded by one parameter vector! =
{ R k , ck } k=1: Np , whereNp is the number of patches seeded on the surface.

! = { R k , ck } k=1: Np (3.15)

The distribution of patches on the surface should ideally follow the intrinsic nature of
the shape, e.g., rigid parts. However, in the absence of prior knowledge on this structure,
and to handle non-articulated objects, the patches are preferably regularly distributed over
the surface, with a density that deÞnes the spatial frequency at which we wish to sample the
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surfaceÕs stretching and bending with respect to the reference pose. One existing approach
to obtain a sub-sampling of the shape is the Farthest Point Sampling method [28]. This
idea consists in randomly picking the Þrst sample and iteratively placing the next sample
in the middle of the least-sampled area of the domain. For our application, this translates
into picking new patch centers one at a time by Þnding the vertex that maximizes the max-
imum geodesic distance to all already picked centers until the mesh is sufÞciently covered.
However this requires to build for each added center the complete Þeld of geodesic distance
over the mesh, which is computationally involved.

Our approach also automatically computes the patches from the embedded surface, but
is much more local in nature. Our patching method considers geodesic distances, takes a
maximum patch radius as parameter and seeds patches greedily. The idea is to randomly
choose a vertex to be the center of the Þrst patch and then to grow this patch until the max-
imum radius is reached. The subsequent patch centers are chosen among the unassigned
vertices which lie on the most existing patch boundaries. The front of a new patch is prop-
agated from the center until the maximum radius is reached or until the processed vertex
is closer to the center of another patch. In all of our experiments we have assumed the
sampling density of the mesh to be homogeneous and therefore approximated the geodesic
distance with the number of edges of the shortest path linking two vertices. We illustrate in
Þgure3.2the behavior of this greedy patch seeding algorithm.

This procedure also organizes the patches in a deformation graph that respects the topol-
ogy of the embedded object. This means that the deformation graph has an edge between
patchesPk andPl if and only if there exists a vertex inPk that is a neighbor of a vertex of
Pl in the original mesh. These edges are crucial as they are used to deÞne the rigidity of
the structure which will be the key to regularizing the objectÕs deformation.

2.2 Optimization

In the previous section and our discussion of extrinsic regularizer for surface defor-
mation, we have seem that driving the deformation of the mesh from visual data can be
viewed as an optimization problem balancing data terms and extrinsic regularization terms.
All these functions are assumed to be squared functions of the vertices positions, so that
the problem can be formalized as an unconstrained non-linear least-squares minimization:

argmin
!

E(! ),

whereE(! ) = &r (x(! ))&2. (3.16)

The residual vectorr mapsSE(3)Np #$ RN r . The Gauss-Newton algorithm is commonly
used to solve unconstrained least-squares minimizations. It is however not straightforward
to apply here because the structure ofSE(3)Np is non Euclidean. We recall brießy that if
it were, the Gauss-Newton method would approximate the variation ofE with respect to a
variation of the parameters"! as:

E (! + "! ) * & r (! ) + J r "! &2, (3.17)
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(a) Seeding of the Þrst patch. All the points
on the boundary are candidates for the second
patch center.

(b) Seeding of the second patch. Only two
points are candidates for the third patch cen-
ter

(c) Seeding of the third patch. (d) After Þve patches have been seeded

Figure 3.3: detail of the patching procedure

whereJ r is the Jacobian ofr computed at! . This is a quadratic form in"! whose
minimum"! ! is given by the equation:

J r
T J r "! ! = %J r

T r (! ). (3.18)

The algorithm converges to a local minimum of E by iteratively computing these minima of
local quadratic approximations and taking the corresponding steps in the parameter space.

Parameterizing the rotations However elements ofSE(3)Np cannot be directly used in
such a framework, mainly because the rotationsR k can not be simply added. Thus, to use
the Gauss-Newton algorithm, the neighborhood of the current approximation! needs an
adequate parametrization that will allow to compute an energy-minimizing step. We chose
to use exponential maps [68] to do so. As shown in Þgure3.4, this means that for each

patch the update step is parametrized with a vector" k =
!
uk

vk

"
" R6.

R k #$ e[u k ]! R k

ck #$ ck + vk
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Figure 3.4: On a small neighborhood around the current approximationR k , the manifold
of rotationsSO(3) is locally parametrized with an exponential mapping

Figure 3.5: In this example, the points are in the planez = 0 anduk points along thez
direction. The Þrst order approximation of the exponential map adds to each vertexxk the
cross product ofuk with xk %ck . This approximation of the transformation is not a rigid
motion and rapidly induces scaling effects when&uk&(the angle) increases.

Using the Þrst-order expansion of the exponential mapping ofuk to SO(3), the update of
R k can be approximated asR k #$ (I + [ uk ]" + . . .)R k . Figure3.5 and equation (3.19)
show how this update of the parameters affects the vertices coordinates. The coordinatexk

varies linearly in" k , and thusx also varies linearly in{ " k } k=1: Np .

xk (v) #$ xk (v) + [ uk ]" (xk (v) %ck ) + vk .

#$ xk (v) + K k (v) " k

with K k (v) =
)
[ck %xk (v)]" I

*
(3.19)

Computing the Jacobian For all scalar componentsr in the residualr , the gradient with
respect to the{ " k } k=1: Np can be expressed using the chain rule and the fact thatK k (v) is
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precisely the Jacobian ofxk (v) with respect to" k .
!

$r
$" k

"
=

!
$r

$xk

"

+ ,- .
1" 3

!
$xk

$" k

"

+ ,- .
3" 6

=
!

$r
$xk

"
K k (v). (3.20)

Taking an energy-minimizing step These Þrst order approximations can be used to com-
pute the gradient, but the actual energy must be evaluated once the rotations in! have been
properly updated with the exponential maps. In practice, the rotationsR k are encoded as
quaternions, and their update is performed with a multiplication:

qk #$ [cos
&uk&

2
,

uk

&uk&
sin

&uk&
2

]qk

The resulting quaternion is normalized after each update to limit the accumulation of nu-
merical error.

The corresponding step on the manifold does not however necessarily decrease the en-
ergy. This step was only computed to minimize the quadratic approximation of the function,
and this approximation induces non-rigid effects on each patch, as shown by Þgure3.5.
Therefore, it is necessary to make sure that each step decreases the energy. This is per-
formed by line-search along the direction set by the step, which maps to a trajectory on
SE(3)Np . In practice, we follow [12] and simply halve the stepÕs length by powers of two
until the corresponding energy evaluated on the manifold is actually decreased with respect
to the current state.

2.3 Regularization

The deformation method as it has been described up to now forces each patch to un-
dergo rigid motion through the choice of parametrization. In that respect, it is intrinsically
regularized. However, these rigid motions are not yet linked together and nothing pre-
vents neighboring patches from collapsing or from drifting apart. Therefore, an extrinsic
regularizer needs to be introduced to maintain coherence in the structure and prevent the
deformation from reaching implausible states.

DeÞnition We deÞne a regularization energy that emulates elastic behavior with respect
to a reference pose. As discussed in section1 this is a reasonable deformation prior given
a reference shape to be deformed, when no further information is available on the nature
of the object. The energy that we deÞne resembles these proposed by Botsch et al. [11, 12]
and Sumner et al. [65]. These approaches embed the shape in deformation graphs similar to
our patch structure and emulate elastic behavior by deÞning pairwise energy terms between
nodes of the graph. These pairwise energies are simpliÞed Òelastic glueÓ [12], designed to
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induce plausible behavior rather than to estimate a proper strain energy from the deformed
object. Let us consider two neighboring patchesPk andPl , and nameEkl (! ) the rigidity
energy that links them. The idea is that these two patches should agree on their predictions
of a number of representative verticesv " Vkl .

Ekl (! ) =
(

v# Vkl

wkl (v)&xk (v) %x l (v)&2. (3.21)

=
(

v# Vkl

wkl (v)&[R k (x0(v) %c0
k ) + ck ] %[R l (x0(v) %c0

l ) + cl ]&2.

This type of regularization term integrates perfectly within the energy minimization
framework because it consists of squared residuals, and because these residuals can be
linearized using equation (3.20). This linearization of the residual yields a quadratic ap-
proximation of the energy, presented here in matrix form:

Ekl (" k , " l ) *
(

v# Vkl

wkl (v)&K k (v)" k %K l (v)" l %(x l (v) %xk (v))&2

*
(

v# Vkl

wkl (v)&
)
. . . K k (v) . . . %K l (v) . . .

*

+ ,- .
3" 6Np

#

/
/
/
/
/
/
/
$

...
" k
...

" l
...

%

0
0
0
0
0
0
0
&

+ ,- .
6Np " 1

%(x l (v) %xk (v))
+ ,- .

3" 1

&2

(3.22)

This type of elastic energy is numerically well behaved because it does not rely on the
interpolated shape to make any computation. The set of representative verticesVkl is al-
ways transformed by(R k , ck ) and(R l , cl ) and the energy only depends on these rigidly
transformed point sets, and not on the interpolated shape. This means that even if the defor-
mation is driven to an extreme case where interpolation artifacts occur (see [38] for a recent
discussion of the limitations of linear blend skinning), the energy will stay well behaved
and consistently pull back towards the rest state. This is illustrated by one experiment of
Botsch et al. [12] where the deformation graph is collapsed to a single point, and where
minimizing the deformation energy brings back to the rest state. Such consistence in the
behavior of regularization terms is particularly important when dealing with visual data, as
the computed advection terms are noisy.

Choosing a set of representative vertices There are several possible choices for the set
of representative vertices. In the following, two existing works are presented and their
transposition to our patch structure is discussed. Our proposed regularization energy is
then introduced.

¥ The regularization energy proposed by Sumner et al. [65] applies each nodeÕs transfor-
mation to the centers of the neighboring nodes and penalizes quadratically the distance
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Figure 3.6: Rigidity energy as deÞned in the work of Sumner et al. [65]. Each patch
tries to preserve the center of its neighboring patches in its own local frame. The relative
rigid transformations are not well conditioned, as all rotations around the axis between the
centers yield a null energy.

of these prediction to the actual positions of the neighborsÕs centers. In the formulation
of equation (3.21), this amounts to have only the two centersck andcl in Vkl .

Ekl = &R k (c0
l %c0

k ) + ck %cl )&2 + &R l (c0
k %c0

l ) + cl %ck )&2

An illustration of this method is displayed in Þgure3.6 and helps see that this regular-
ization is not well conditioned. Indeed, it yields 0 energy for all the relative rotations
of the two patches around the axis that joins their centers. In practice, this means that
this energy does not penalize twisting at all. Despite this remark, this energy has been
successfully applied for interactive deformations [65] and mesh registration [43]. This
can be explained by the fact that when all the nodes of the deformation graph are con-
sidered, other pairwise energy terms from other neighbors help constrain the rotations
in this direction. Furthermore, it should be noted that these works do not intrinsically
force the nodeÕs transformations to be rigid motions but instead let them be afÞne trans-
formations that are extrinsically regularized by another energy term. In that respect, the
singularity of the rigidity term could be absorbed by this additional regularization. More
simply, it can be fought by penalizing changes with respect to the current estimate, that
is by adding a small diagonal term onJ r

T J r from equation (3.18). In effect, this then
adds some curvature along the direction of the energy valley, or singularity, and allows
for the linear system to be solved. However, the condition number ofJ r

T J r still can be
very big in some extreme cases such as a graph made of a single 1 dimensional line of
nodes.

¥ Choosing other representative points helps solve this singularity issue. In the works by
Botsch et al. [11, 12] the meshes are embedded in control structures made of volumetric
cells. In [11] these cells are prisms extruded from the faces of the surface and they are
linked by an energy that forces two neighboring prisms to agree on the face that they
shared in the rest pose. In [12], the cells are cubes that are linked by an energy that
forces two neighboring cubes to agree on the union of their volumes. In both cases, it
can be shown that these error integrals over faces -resp. volumes- can be expressed as
weighted sums of the errors on the corners of the face -resp.volume-, thus Þtting in the
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Figure 3.7: Rigidity energy inspired from the work of Botsch et al. [11]. Each node needs
to agree with its neighbor on 4 vertices that lie on the face shared by polyhedra build around
them.

Figure 3.8: Rigidity energy inspired from the work of Botsch et al. [11]. Varying the ratio
of dimensions of the common face allows to control the relative penalizations of bending,
shearing and twisting.

formulation from equation (3.21). Figure3.7 illustrates how these ideas transpose to
our patch-based representation. In Þgure3.8, we illustrate how varying the shape of the
representative face -resp. volume- allows to control the relative penalizations of bending,
shearing and twisting.

¥ Our rigidity energy, as deÞned in Eq. (3.23) and shown in Þgure3.9, simply tries to
enforce the predicted positionsxk (v) andx l (v) of a vertexv by two neighboring patches
Pk andPl " Nk to be consistent.

Er (! ) =
(

l=1: Np

(

Pk # N l

(

v# Pk $ Pl

wkl (v)&xk (v) %x l (v)&2. (3.23)

The choice of the weightswkl (v) is of importance as allows to encode for material prop-
erties. We chose to use the product of the blending basis functions. This choice is
motivated by the following equations. If we leave the discrete settings and the sum over
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Figure 3.9: Rigidity energy as deÞned in the work of Cagniart et al. [16]. Both patches pre-
dict positions for the mesh points associated to themselves and their neighboring patches.
The energy penalizes discrepancies in these predictions.

the verticesv, we can rewrite the previous energy as:

Er (! ) =
'

S

(

k

(

l

#k# l &xk %x l &2dS

=
'

S

(

k

#k

(

l

# l (xT
k xT

k %2xT
k x l + xT

l x l )dS
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(

k
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k xk %xT x]dS

= 2
'

S

(

k

#k&xk %x&2dS (3.24)

The transition between the two last lines was simply a conversion fromE[X T X ]%E[X ]2

to E [(X %E[X ])T (X %E[X ])]. It appears with this formulation thatEr is measuring
the variance of the different rigid transformationsxk of the original surface, weighting
this variance locally with the compactly supported blending functions#k .

2.4 Numerical considerations

Structure of the linear system With the regularization energy deÞned, and given exter-
nal data terms, the Jacobians for the data and rigidity residuals are computed using equation
(3.20). These residuals and Jacobians could be fed to a minimization software which would
computeJ r

T J r and solve the linear system of equation (3.18). However, there are 6 vari-
ables per patch and this system becomes rapidly large. Moreover, the sparse nature of
J r

T J r problem must be taken into account. To illustrate this sparseness, let us consider the
Jacobian of a pairwise energy termEkl linking patchesPk andPl . If we index the vertices
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vi in Vkl , the approximation of equation (3.22) can be rewritten as:

Ekl * & W
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This energy term contributes a symmetric matrixJkl
T Jkl to the generalJ r

T J r .

JT
kl Jkl =
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i wkl (vi )K T
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%

0
0
0
0
0
0
0
&

(3.26)
These6Np ) 6Np matrices are composed of6) 6 blocks, and their sparse structure mirrors
the connectivity in the graph of patches. Other data terms depending on blended vertice
positions yield similar matrices, but have a positive sign on the off-diagonal terms.

In our implementation, we never store the Jacobians of the energy terms. Instead, we
directly accumulate on theJ r

T J r matrix and theJ r
T r vector that constitutes the right hand

side of equation (3.18). This has the advantage of keeping the memory footprint low and
independent of the number of energy terms in the minimization.

Sparse Cholesky factorization Finding a minimizer of the quadratic approximation at
each step of the Gauss-Newton algorithm can then be tackled by any available sparse solver,
either direct or iterative. We present in this paragraph details on the direct solver. We
have however conÞrmed that a simple Conjugate Gradient algorithm with a diagonal pre-
conditioner was a functional alternative that requires a much less involved implementation
effort. For more details, the interested reader can refer to the survey by Botsch et al. [10]
on the solving of large linear systems for mesh processing.

We use a sparse Cholesky factorization package [53] to solve equation (3.18). When the
deformation graph has several connected components, each one is processed independently
and has its ownJ r

T J r andJ r
T r accumulators. Furthermore, the nodes are re-indexed in

each connected component to reduce Þll-in of the sparse structure during the solving stage
[36]. In the same spirit, the sparse Cholesky factorization package [53] that is used for
solving precomputes the symbolic part of the factorization. This symbolic decomposition
is reused at each Gauss-Newton step and allows for a consequent speedup of the overall
procedure.

Dimensional inhomogeneity and importance of scale As concluding remark on the nu-
merical behavior of the presented deformation framework, we mention the conditioning of



76 CHAPTER 3. A ROBUST MESH DEFORMATION MODEL

the matrixJ r
T J r , as well as the impact of scale on the numerical behavior of this frame-

work. Both the regularization energy and the data energies accumulate6 ) 6 blocks on the
matrix that are multiples ofK T

k (v)K k (v). If we namedx k (v) = xk (v) % ck and omitv
for the sake of clarity, we see that these terms have the form:

K T
k K k =

!
%[dx k ]" [dx k ]" [dx k ]"

%[dx k ]" I

"
(3.27)

It can be seen that the top left3 ) 3 sub-matrix, which corresponds to the rotation variable
uk , involves elements with magnitudes that are quadratic in the length ofdx k , which varies
with the scale of the mesh. In comparison, the bottom right part that corresponds to the
translation variablevk is independent on the scale of the mesh and is alwaysI . This means
that a same mesh, scaled a thousand times could yield aJ r

T J r matrix with a condition
number of roughly a million times the condition number that was given by the original
mesh. This dependence on scale is due to the dimensional inhomogeneity of the parameters
used for optimization, that is of rotations and translations.

Provided a limited numerical error in the accumulation of terms onJ r
T J r andJ r

T b r ,
this conditioning issue has very limited impact on the behavior of the framework. A more
important issue appears when regularizing Gauss-Newton type optimizers by adding a di-
agonal term&I to theJT

r J r matrix, where& is a small scalar. This adds some curvature
to the local quadratic approximation of the energy function, which can effectively remove
singularities and damp the steps taken by the optimizer. Using&I amounts to performing
this regularization isotropically. Therefore we must be conscious of what isotropy means,
that is of the correspondence established between lengths units and radians. The damping
can be adapted to account for this correspondence by replacing the identity matrix with a
diagonal matrix whose values reßect the proper ratio. This makes the framework behave
similarly in all scales.

3 Applications

The presented mesh deformation framework is a generic tool for two reasons: Þrst, it
can be used to parametrize and regularize the deformation of just about any mesh, regard-
less of the object it actually represents. Second, we have presented how any data term that
depends on vertex positions can be integrated in the energy minimization. We show in
this section how different problems can be solved by simply integrating data terms in our
patch-based framework, and how the same framework and code can be reused across this
variety of problems.
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Figure 3.10: Illustration of the deformation graph inferred from the patch structure.

3.1 Interactive deformation

To evaluate the behavior of our patch-based mesh deformation framework and quickly
test against regressions in the code base of the solver, we implemented a simple interactive
application where 3D constraints on the vertices positions could manually be set by the
user. For example if a vertexv on the mesh is constrained to go to positiony in space, the
energy term&r 3D (v)&2 is added to the energy to be minimized.

r 3D (v) = %(x(v) %y) (3.28)

Integrating these residuals in the framework only requires to compute their Jacobians,
whose components are simply:

!
$r 3D (v)

$" k

"

+ ,- .
3" 6

= %#k (v)K k (v) (3.29)

The results displayed in Þgure3.11illustrate two important facts on the method. Firstly,
even though the number of patches is low, the resulting interpolated deformation of the
mesh is reasonably smooth. Secondly, the constraints are set on vertices of the mesh and
not on patch centers. This shows that even though the deformation is computed on the
control graph, the data terms can still be sampled on the original geometry.
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(a) Object in its rest pose (b) Deformed object

Figure 3.11: Behavior of the patch deformation framework in an interactive deformation
application. The target positions for the constrained vertices of the original mesh are indi-
cated by red boxes.

3.2 Recovering cloth deformation

Recovering the evolutions of 3D surfaces from 2D information is a highly under-
constrained problem. Prior knowledge is therefore required to ensure consistent deforma-
tions. We ran a simple experiment to show that our framework, equipped with the simple
surface rigidity priors of equation (3.21), performs well in this situation. We use the data
made available by the EPFL computer vision group for that purpose [55]. It consists of a
reference 3D mesh model of a piece of cloth and of a list of correspondences for each video
frame. Each of these correspondences maps a 3D position on the reference mesh, expressed
in barycentric coordinates, to a 2D position in the image. We use these correspondences in
our framework by simply deÞning a residual functionr 2D (v) that measure the reprojection
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Figure 3.12: Results on the cloth dataset [55]. On the top row, the mesh overlay on the
original data demonstrates a low reprojection error, while the bottom row shows that the
recovered 3D deformations are physically plausible. Note on the two Þrst images that in
absence of matches, the rigidity constraints make the mesh return locally to its rest pose
(ßat cloth).
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error of a 3D vertex on the image.
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whereP =
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%

& is a 3 ) 4 matrix that contains the parameters of the

camera. The Jacobian of these residuals is more complex than in the interactive deformation
example but remains straightforward to compute:
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Figure3.12presents overlays of the our result over the input images. These overlays
show that there is an overall low residual reprojection error. The Þgure also shows side
views of the corresponding 3D shape illustrating that the recovered 3D deformations are
actually plausible states for a piece of cloth. This simple experiment conÞrms that our
deformation model, although originating mostly from the Þeld of computer graphics, can
be used as deformation prior for the data-driven recovery of shape.

3.3 Silhouette Þtting

The last application that we present also uses 2D data as input. We show that our
deformation model can be used to optimize silhouette reprojection error when deforming
shapes observed in a multi-view studio.

For many approaches to markerless performance capture, this is an important step be-
cause silhouettes are usually the most reliable information available in a multi-view studio.
For example, Vlasic et al. [72] Þrst deform the reference mesh using a skeletal pose they
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optimized for, then Þt the silhouettes by reÞning the deformation. Their method samples
the silhouette contours in each image by shooting rays through the image plane every 10
pixels on the contour. For each ray, they Þnd the vertex on the mesh that is closest to the
ray (and consider some additional heuristics to take surface normals into account ). They
then compute for each of these vertices the closest point on the ray and use it as a 3D
positional constraint in a Laplacian-preserving mesh deformation framework. This frame-
work basically minimizes the sum of the regularization energy of equation (3.12) and of
the weighted residual 3D distances of the constrained points to their targets. Gall et al. [29]
also use silhouette Þtting to reÞne the surface deformation after optimizing a skeletal pose.
They regularize this reÞnement with a Laplacian-preserving energy also, but differ from
[72] in that they constrain the projections of the points to match a given 2D position in the
image, instead of setting 3D positional constraints.

As we have already remarked in our conclusion on deformation models (1.5), the
Laplacian-preserving regularization energy is difÞcult to work with in because it depends
on the current approximation of the local rotations of the surface. As such, there is no
objective function whose decrease can be checked during the optimization and the conver-
gence does not appear as provable, especially if for some reason local surface ßips occur
and perturb the regularization energy.

Silhouette energy We propose to explictely minimize the weighted sum of the shape
rigidity energyEr (! ) deÞned in equation (3.21) and of the silhouette reprojection error.
This silhouette reprojection error is simply taken for each camera as the XOR of the ob-
served silhouette and the projected silhouette from the deformed mesh. This effectively
deÞnes a unique energy for which we can check that every step of the optimization indeed
decreases the residual error. This does not guarantee that the algorithm will converge to the
global minimum. However, it allows to stop the algorithm when the energy decrease rate
becomes too small and thus guarantees that the algorithm will converge.

ESIL (! ) =
(

ci# cameras

&SIL ci %SIL ci (! )&, (3.32)

whereSIL ci is the observed silhouette for camerai , andSIL ci (! ) is the silhouette gen-
erated by the mesh that was deformed with parameters! .

Energy gradient The challenge in this formulation is to compute the gradient of the data
term analytically. Our approach is to compute an approximation of the gradient, and to rely
on the line search in the optimization to reduce the size of the step until that approximation
is valid enough to take an energy decreasing step. We Þrst Þndcontour generators, that
is the set of vertices that are on the border ofSIL ci (! ). Then, for each of these contour
generating verticesvg, we consider the line in the image plane deÞned by its projection
and the projection of its normal. For eachvg, we scan along this line inSIL ci for a
corresponding pointt that has a compatible gradient. Finally, we use the gradient of the
2D residual functionr 2D (vg) deÞned in the previous section to approximate the variation
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Figure 3.13: The observed silhouetteSIL ci is displayed in gray. The silhouette generated
by the deformed meshSIL ci (! ) is displayed in red. The small green lines indicate the
found correspondences between silhouette generators in the red contour and point of the
observed silhouette.

of the silhouette error with respect to small variations of!

ESIL (! ) * const +
(

vg

&r 2D (vg)&2 (3.33)

A simple interpretation for this approximation is that moving the contour generator one
pixel towards the real silhouette will reduce the silhouette overlap error by one pixel. A
more principled approximation would need to account for the neighboring contour genera-
tors along the silhouette boundary. We however keep the approximation of equation (3.33)
because it gives good results in practice.

Results We show in Þgure3.14how silhouette optimization can help reÞne the results
of mesh registration. When the quality of the segmented silhouettes is good enough, we
use the described optimization as a post-process to improve the quality of the deformation
recovered by the method that we will present in chapter4.
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Figure 3.14: Silhouette optimization allows to better Þt the silhouette data as a post-process.
The mesh on the left is the result of the probabilistic registration algorithm presented in
Chapter4. It can be observed that after the mesh registration step, the overlap with the
silhouette (displayed in black underneath) is not necessarily optimal. After a couple of
iterations of silhouette optimization, the overlap is much more precise.

4 Conclusion

In this chapter, we have presented a broad survey of the state-of-the art on mesh defor-
mation models. Among the reviewed methods, we have identiÞed two interesting ideas for
data-driven deformation: Þrst we have seen that embedded deformation methods allowed
to decouple the parametrization of the deformation from the complexity of the deformed
geometry. Second, we have seen that elasticity intrinsically carried non-linearities in its
formulation as soon as large deformations need to be represented. We therefore have de-
cided to explicitly optimize on local rotations of the surface, when most other methods
optimize on the locations of control vertices and implicitly recover the local rotations from
this sparse set of vertex locations.

Building on these ideas, we have presented a deformation model and an optimization
framework. The deformation model is strictly surface-based an builds a deformation graph
that matches the connectivity of the deformed mesh. We have proposed to divide this
mesh into small surface elements whose size depends on the precision at which we wish to
sample the deformation. We have emulated an elastic behavior of the surface by deÞning a
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well conditioned rigidity force between neighboring patches. Finally, we have presented an
optimizer that approximates variations of the local rotations of the surface with exponential
maps, and thus has access to precise analytical derivatives of any energy term that depends
on vertex positions.

We have presented a number of such energy terms through three applications. The
results we have obtained show that this deformation model is a useful and generic tool
for the recovery of surface deformation from visual data. We will show in the following
chapter how it can be used as a prior in the inference for the deformation of arbitrary shapes
observed in multi-camera studios.
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CHAPTER 4

Surface Tracking by Probabilistic
Mesh Registration

In this chapter we address the problem of automatically recovering temporally
consistent animated 3D models of arbitrary shapes observed in multi-camera
setups. The approach we propose considers a sequence of independently re-
constructed surfaces and iteratively deforms a reference mesh to Þt these ob-
servations. To effectively cope with the parasite and missing geometry that are
inherent to reconstructions from visual data, we build on two ideas. Firstly,
we use the patch-based deformation and numerical optimization framework
that were presented in the previous chapter. This framework increases robust-
ness by providing natural integration domains over the surface for noisy data
and by enabling to express simple patch-level rigidity constraints. Secondly
we propose a Bayesian method for mesh registration that accounts for the un-
certainty in the data acquisition process by embedding the optimization in an
Expectation-Maximization formulation. Extensive experiments on various 4D
datasets show that these two ideas allow to process complex scenes involving
several objects of arbitrary nature, while robustly handling missing data and
relatively large reconstruction artifacts.

1 Introduction

In chapter2, the study of prior art established that Þnding correspondence between
two deformed instances of an object is a challenging problem. We discussed how most of
the available feature-matching methods were designed to match temporally uncorrelated
observations of deformable objects, and how this fails to exploit fully the strong temporal
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redundancy in scene appearance and structure that exists between two successive frames of
a sequence captured in a multi-view studio. Furthermore, we noticed that when trying to
infer dense motion in this context, many approaches rely heavily on silhouettes to ensure of
the correctness of correspondences computed by other means such as optical ßow or sparse
feature matching. This is a strong indication that the information brought by silhouettes on
the scene geometry for a given frame can be considered a more reliable cue than the matches
established between successive images or successive reconstructions during the sequence.
Not only is this information relatively reliable, it is also sufÞcient to infer motion in some
cases. For example, Vlasic et al. [32] use silhouettes exclusively as input data to perform
dense surface tracking of humans.

The question addressed by this chapter is that of inferring the motion of 3D surface
points from a series of snapshot of the scene structure alone. From one frame to the next,
these independent 3D reconstructions vary in their sampling of the scene structure. How-
ever, given a high enough frame-rate, the independently reconstructed surfaces represent
shapes that are both similar and spatially close to one another. We aim at exploiting this
proximity to establish dense correspondence between frames. We cast the problem as ge-
ometric registration of a reference mesh to the sequence of reconstructed meshes, as dis-
played in Þgure4.1. This reference mesh, once deformed to Þt every observed mesh,
constitutes a temporally coherent sampling of the scene geometry across the sequence.

The Þrst key aspect of our approach is its generality. In contrast to other works that
compute motion from geometric cues exclusively [32, 16, 10], we do not assume a strong
articulated structure and instead use the robust mesh deformation framework presented in
chapter 3 to regularize the tracking. In that respect, our work is closer to that of [12, 11].
Because our regularization energy is purely surface based and does not make assumptions
on the nature of the object, our approach can process scenes involving several objects of
arbitrary nature in a single mathematical formulation.

The second key aspect of our work lies in theprobabilistic formulationof the regis-
tration problem that accounts for potential errors in the silhouette segmentation and 3D
reconstruction stages, and increases the robustness to artifacts in the geometry. As we will
discuss in this chapter, modeling for the uncertainty of the acquisition process is a crucial
component of our work because of the more generic and thus less constraining regulariza-
tion that we use.

In the next section, we brießy recall several important ideas on geometric registration,
as well as a review of the works directly related to ours in terms of probabilistic model-
ing. The remainder of the chapter presents our developments in details and particularly
focuses on our proposal of probabilistic formulation for mesh registration. We present our
results and demonstrate the performance and versatility of our algorithm. This evaluation
is performed qualitatively and quantitatively on several sequences, including scenes that
involve several objects of different nature. We show that our approach not only allows to
process such scenes with a single mathematical formulation and deformation model, but
also performs comparably well to previous art on simpler scenes.
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Figure 4.1: Our method performs the geometric registration of a reference mesh to a tem-
poral series of independently reconstructed meshes. The left column contains the meshes
that were independently reconstructed from the image data. A patch structure is associated
to one of these meshes (usually the Þrst). This reference mesh is deformed to Þt the rest of
the sequence. The resulting animated mesh is a 4D model of the sequence.
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2 Related Works on Geometric Registration

The following discussion of geometric registration methods considers that the two
shapes that need to be registered are already be roughly aligned. This hypothesis is con-
sistent with our setting where the registration happens between two successive frames of
a temporal sequence. For a discussion of coarse alignment methods, the interested reader
can refer to the section on matching in chapter2 and its listed references.

2.1 Rigid registration

For simplicity purposes, we Þrst illustrate the idea of geometric registration within the
restricted case of rigid registration of point clouds. In that case, the goal is to Þnd an optimal
rigid transformationR , t that aligns two sets of 3D pointsX = { x i } andY = { y j } . This
is a relatively constrained problem as there are only 6 degrees of freedom. The issue is that
we donÕt know the correspondence between the points ofX and the points ofY.

ICP In the literature, the prevailing way to address rigid registration when the two shapes
are almost aligned is the Iterative Closest Point (ICP) method by Besl and McKay [1]. The
idea is to minimize the following registration error with respect toR , t :

argmin
R ,t

(

i

min
j

&Rx i + t %y j &2. (4.1)

This minimization happens by iterating two steps until convergence:

1. given the current approximationR , t , Þnd+x i " X the pointy (i ) closest toRx i + t .

2. given these closest pointsy (i ), updateR , t to the rigid transformation minimizing1
i &Rx i + t %y(i )&2

The Þrst step is a simple nearest neighbor search and can be tackled by brute force or
with more sophisticated space-partitioning methods. The second step has a closed-form
solution that can be found with the method by Horn [20], or other methods such as polar
decomposition of the coordinate covariance matrix. Overall, ICP is proven to converge to
a local minimum.

Different error functions Since the original ICP algorithm was presented, numerous
extensions have been proposed. Rusinkiewicz and Levoy [28] provide a good overview, as
well as a comparison of different strategies.

A notable modiÞcation was presented by Chen and Medioni [6] who propose to mini-
mize thepoint-to-plane distancein place of thepoint-to-point distance. Their idea is to use
information on the surface normals when it is available to get a better approximation of the
residual distance of each transformedx i to the target surface. Once the closest pointy (i )
is found for allx i , the second step minimizes

1
i

)
n i

T (Rx i + t %y(i )
*2. This Þrst-order
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approximation of the target surface, that considers more than the points ofY only, was
shown to signiÞcantly improve the convergence rate by Pottmann et al. [25].

Another path to improve ICPÕs performance and robustness is to weight the individual
contributions of the correspondences, and to minimize

1
i wi &Rx i + t %y(i )&2. For exam-

ple, [14] uses robust estimators to weight the contributions of correspondences depending
on the residual distance between points. This prevents the quadratic penalization of outly-
ing correspondences that can signiÞcantly impact the update of the rigid transformation in
the second step.

Handling outliers As noted by [28], an extreme case of weighting correspondences is to
ignore some of them completely. This rejection can happen in the matching stage, when
the closest pointy (i ) in the target set is computed for each model pointx i , by making sure
that the two points are compatible with respect to some criterion. A common criterion is to
check that the angles between the normals are below some threshold.

The rejection of correspondence can also happen when forming the objective function
in the second step, by pruning correspondences involving points that are too distant, or
rejecting a percentage of the correspondence after sorting them by their residual error [7].
The rejection of a percentage of worst correspondences can for example improve the regis-
tration of two partial reconstructions which are only expected to have a partial overlap. The
idea comes from more conventional least-square regression tasks where it is used to limit
the inßuence of outliers. It integrates naturally in the ICP framework and it is shown in[7]
that this does not affect the convergence properties of the algorithm.

2.2 Probabilistic formulation

The Þrst step of the ICP iterations makes a hard decision when computing the corre-
sponding pointy (i ) for every model pointx i . This correspondence is unfortunately rarely
correct, especially in the early stages of the registration, and overall because of the different
sampling of the shape byX andY. In other words, if(R ! , t ! ) is the optimal registration,
there is no guarantee at a given point of the inference thaty (i ) will be the point closest to
R ! x i + t ! . Even if it were, the fact that it is the closest point does not mean it is the same
point on the surface.

As such, some works evaluate the likelihood of assignments between points ofX and
points ofY. Instead of making a hard choice on the assignment ofx i to a unique point of
Y, thesoftassignapproach of Rangarajan et al. [26] builds a|X | ) |Y| assignment matrix
W that weights the correspondence between every point of the two clouds. These weights
encode fuzzy assignments between the two point sets. The weightswij are computed as
Gaussians of the distance betweenx i andy j and normalized to favor one-to-one correspon-
dences. The variance of the Gaussians, which determines how fuzzy the assignments are,
is controlled by a temperature term. The algorithm alternates between the estimation of the



96CHAPTER 4. SURFACE TRACKING BY PROBABILISTIC MESH REGISTRATION

nowsoftcorrespondences, and the update of transformation parameters that minimizes:

(

i

(

j

wij &Rx i + t %y j &2. (4.2)

The variance parameter and its multi-scale interpretation Just like ICP, the algorithm
alternates the two steps until convergence, but does so by decreasing progressively the
temperature, performing what is calleddeterministic annealing. To understand what the
algorithm does, we must Þrst notice that the higher the temperature, the fuzzier the assign-
ments are. Given a Þxed very high variance for example, every point will be associated
to every other point with roughly the same weight, and the optimization will progressively
align the centers of the two point clouds, as well as their moments of inertia. For a very
small variance, the assignment becomes very selective and points get assigned to one point
much more than the others, bringing back to the behavior of ICP.

Granger and Pennec [17] propose to discuss the annealing of the variance parameter
as thescaleparameter in a coarse-to-Þne approach. This is justiÞed by the fact that a
high temperature speeds-up the coarse registration process and prevents the algorithm from
getting trapped in local minima caused by erroneous associations. Inspired by [26], they
look at the registration problem from a probabilistic standpoint. However, they advance
to a fully Bayesian formulation by embedding it in an Expectation-Maximization (EM)
framework, coining the name EM-ICP. We will return to the reasons the EM formalism Þts
the problem particularly well when presenting our approach.

Horaud et al. [19] remark that annealing scheduling on the temperature parameter fails
to consider the variance as a parameter of the optimization. As such, deterministic anneal-
ing prevents from estimating the characteristics of the noise in the data and prevents from
fully beneÞting from the convergence properties of the EM-algorithm.

Handling outliers In an extension of softassign named Robust Point Matching (RPM),
Chui and Rangarajan [9] deal with outliers by adding a cluster to each point cloud and
associating it with the points from the other cloud that can not be matched. In practice,
this amounts to adding a virtual point to each cloud, but to give it a much bigger variance
in his search for correspondence. This adds a row and a column to the assignment matrix
W . After normalization, outliers tend to have high weights in these additional rows or
columns. During the update step, these rows and columns are not included in the error
function, which effectively diminishes the impact of outliers on the estimation of the rigid
transformation.

Horaud et al. [19] essentially do the same, but the idea integrates much more elegantly
into the EM-framework than it does into softassign. They model the outliers as the effect of
a random point-generating process that creates points in 3D space with a uniform probabil-
ity distribution function distributed on the sceneÕs bounding box. We use a similar model
in our work and will present the details in section3.
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2.3 Non rigid registration

Extending ICP to the non-rigid case is a challenging task, mostly because of the ad-
ditional degrees of freedom. The transformation being much less constrained than in the
rigid case, it becomes difÞcult to regularize the correspondence information. Because the
parametrization of the deformation and its regularization were already discussed in pre-
vious chapters, we focus here our discussion on the handling of uncertainty in the data
term.

2.3.1 Deterministic approaches

Choi and Szymczak [8] tackle roughly the same problem that we are addressing. They
consider a reference volumetric mesh in its rest state and treat it as an elastic body that
needs to be Þtted to a series of temporally consecutive 3D reconstructions. They do not for-
mulate it exactly as the registration of point clouds but instead pre-compute signed distance
volumes to the target surface. Then the residual energy is computed as the sum of sampled
residual distances at the locations of the boundary vertices of the deformed model. This
is a common way to speed up registration tasks and avoid nearest neighbor searches when
approximating the Þtting error (see the distance transform used to speed up ICP in [14] for
example). Their approach introduces a measure of conÞdence in the data term by weighting
the residuals of every vertex using a heuristic that trusts error terms more when the normal
to the currently deformed model is aligned with the gradient of the distance volume. Their
method however does not consider the possibility of outliers in the scene data. These would
undoubtedly cause problems because they would signiÞcantly modify the signed distance
volume. As this distance volume is computed once and for all at the start, it collapses all the
information brought by the scene points in a single representation, forgetting their individ-
ual and localized uncertainty. Furthermore, the presented results suggest that their energy
contains numerous local minima in which their optimizer can get trapped, despite some
additional and computationally costly heuristics preventing self collisions of the deformed
model.

de Aguiar et al. [11] insist on their use of image features in the registration process,
but as discussed in chapter2, a number of implementation details conÞrm the prevailing
inßuence of silhouettes in their registration algorithm. Indeed, they do not trust the sparse
correspondences directly but instead progressively deform the mesh along the direction
of these matches, making sure that the silhouette error decreases at each step. Finally
they reÞne the pose using the silhouette information alone to account for regions where
photometric feature matches could not be established. As such, it appears that they in fact
minimize the silhouette reprojection error in their method. They therefore can be classiÞed
as a geometric registration method. However, they do not account at all for possible errors
in the segmented silhouettes.

The work by Li et al. [22] on the registration of range scans is the closest to ours in
terms of parametrization and regularization of the deformation. There are slight differences
between this approach and ours in that respect, and we have discussed them in chapter3.
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In contrast, the differences in the data-term of the optimization are signiÞcant. First of all,
they do not sample the geometric information densely and only look for correspondence for
the graph nodes of their optimization structure, which correspond to the patch centers in our
formulation. Secondly, these correspondences are established by projecting each node on
the range image of the target shape (corrected of an average rigid transformation between
the two shapes) and is not established like ICP by nearest neighbors search in 3D. The last
difference is related to the problem of outliers: because part of the surface in the Þrst range
image might not be seen in the second range image, there might be nodes that will not Þnd
a reliable match. The way they solve this problem is by weighting the correspondences
with weights that are also variables in the optimization:Edata =

1
i wi &x i % y(i )&2,

and introducing an energy term favoring non-zerowi s: Ew =
1

i (1 % wi )2. In effect,
if the correspondence is bad and&x i % y(i )& is large, the optimizer will beneÞt from
the slack offered bywi and progressively reduce it to zero. This idea is related to the
variable weights and outlier class of softassign or EM-ICP, and offers the same slack to the
optimizer. However, while EM optimizes these weightsimplicitly in the E-step, [22] make
it an explicit variable of the optimization and make its complexity grow. This probably
explains why they only sample data at control nodes and not more densely on the model.

Shinya [29] propose to register a mesh to subsequent observations for the purpose of
sequence compression. Similar to our setting, they make no assumptions on the nature of
the observed objects and aim at designing a generic non-rigid mesh registration algorithm.
They display result on very clean data involving limited motion. They display failure cases
that occur when the deformations become to large. These failures could be the result of
their regularization energy which operates at the vertex level by penalizing changes of
angles between triangles, changes of edge lengths and changes of triangle areas. In the
end, they use user-speciÞed positional constraints to guide the deformation.

Our early experiments on mesh registration [2, 4, 3] were fully deterministic and only
associating the closest point in the target set to each point of the deformed model. This
had two major consequences: Þrst, the convergence rate was considerably worse than in
the proposed method, because hard assignments do not beneÞt from the fuzzy multi-scale
effects that were just discussed for probabilistic approaches in the rigid case. The second
issue was that reconstruction artifacts and outliers were not accounted for and impacted the
deformation as strongly as correctly reconstructed points.

2.3.2 Probabilistic approaches

The probabilistic approaches to non-rigid registration are directly related to the ap-
proaches of the rigid case in their handling of data uncertainty. They mostly differ on their
choice of deformation model.

Articulated Horaud et al. [19] extend their rigid registration method based on EM to
tackle the alignment of articulated structures. Their method iteratively registers the dif-
ferent parts that constitute the articulated body: Þrst, the root part is registered to the tar-
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get data using theirExpectation Conditional Maximization Point Registration(ECMPR)
method. Then, the points of the target cloud that are explained by the root in its optimized
position are removed from the data set. This procedure is repeated iteratively for all the
remaining parts of the articulated body.

Thin-plate splines and other RBFs Chui and Rangarajan [9] extend the softassign algo-
rithm to the non-rigid case and name their methodThin Plate Spline Robust Point Matching
(TPS-RPM). As this name indicates, this approaches parametrizes the non-afÞne part of
the deformation using the thin-plate-spline (TPS) as basis functions. The optimization thus
happens on the parameters of an afÞne warp plus as many warping coefÞcients as there are
dimensions to the TPS Kernel. As noted by Myronenko and Song [24], the TPS in 3D uses
basis functions that are non differentiable at control points. Therefore, [24] presents the
Coherent Point Driftalgorithm, based on Gaussian basis functions. It is worth noting that
both approaches use deterministic annealing on the variance instead of estimating it as a
variable. The main issue with these methods however, already discussed in chapter3, is that
these parametrization enforce smoothness over the whole sceneÕs volume, and not only on
the object itself. They therefore can present artifacts when two geodesically distant parts of
the surface are close in 3D space, and they have limited applicability to large deformations.

Mesh deformation Our work shares common points with the work by Starck et al. [31]
who deform a generic human template to Þt a visual hull reconstruction. They start by
roughly aligning the template model with the visual hull, then perform deformable regis-
tration. To this end, they adapt the TPS-RPM [9]. Like TPS-RPM, they rely on the fuzzy
assignments of softassign. However they establish this smooth correspondence between
the voxels of the visual hull reconstruction and the vertices of the deformed template. They
also use deterministic annealing on the variance, that they refer to as temperature parame-
ter. The main resemblance with our work lies in the introduction of a regularization based
on a mesh deformation energy to replace the TPS. However this deformation method op-
timizes directly on the vertices of the template, which results in a very high-dimensional
non-linear minimization. Moreover, and just like the TPS-RPM method, the approach lacks
a probabilistic formulation.

Early reference to deformable EM-ICP We Þnish this overview of related works by
showing that the idea of associating EM with an elastic model is far from new. In the
earliest (1992) reference we could Þnd, Hinton et al. [18] propose a method for Þtting
deformable templates of letters to handwritten characters. Their deformable model is a 1D
spline on which ÒGaussian ink-generatorsÓ are placed (see Þgure4.2). The EM inference
then optimizes the position of these ink generators while estimating the soft assignments
between observed black pixels and each of the ink generators. Additionally, the authors
include a uniform noise process in the model so that pixels that were erroneously segmented
as ink can be rejected. The afÞne component of the deformation energy is absorbed by
always computing an optimal afÞne transform between the reference pose and the current
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Figure 4.2: Illustration of the idea presented in the work by Hinton et al. [18]. The digit
model is represented by a spline on which Gaussian ink-generators are placed. Each pixel
of the observed image can be explained by each of these ink-generators. The registration
and assignment problems are simultaneously solved for in an EM framework.

approximation of the deformed spline. In following work [27] the variance is correctly
updated.

Interestingly, this work was published concurrently to the ICP algorithm. The authors
therefore do not refer to their method as some sort of EM-ICP, as the term ICP had not
been coined yet. This is simply a geometric registration method, solved with EM, that uses
a deformable elastic model and a probabilistic model of the data generation process. In
that respect, and even though handwritten digit recognition is seemingly very far from our
problem, we believe this work to be the closest to ours.

3 Probabilistic Mesh Registration

Our work addresses data-driven mesh deformation, and we cast the problem as the
geometric registration of 3D point sets. In a Bayesian context, this means that given a set
of observed 3D points and an estimate of the current pose of the mesh, we are faced with a
maximum-a-posteriori (MAP) estimation problem where the joint probability distribution
of data and model must be maximized:

max
!

ln P(Y, ! ), (4.3)

whereY = { yi } i =1: m is the set of observed 3D points{ y i } i =1: m associated with the
surface normals at these points. In the absence of knowledge on the nature of the shape, we
model a probability distribution over the range of shape deformations by seeding patches
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on a reference surface and making the approximation

P(! ) , e%E r (! ) , (4.4)

whereEr (! ) is the rigidity energy deÞned in equation (3.23). This energy emulates elastic
behavior with respect to the patched reference mesh.

Because our patching approach infers the connectivity of the object from the vertex
connectivity, this reference mesh has to be topologically suitable, that is it has to be split
wherever the surface might split during the sequence. For example if multiple objects are
present in the scene the number of connected components in the reference mesh should
match the number of objects. The pose deÞned by this reference surface is of less im-
portance provided that the number of patches is high enough to Þnely sample changes of
curvature with respect to the rest pose (see Þgure4.6for example).

3.1 Bayesian Model

Given this model forP(! ), the likelihoodP(Y|! ) remains to be approximated to
complete the generative model. This is done with a mixture of distributions parametrized
by a common variance( 2, where each component corresponds to a patch. This requires to
introduce latent variableszi for each observationyi " Y , wherezi = k means thatyi was
generated by the mixture component associated withPk . We also increase the robustness of
our model to outliers by introducing a uniform component in the mixture to handle points
in the input data that could not be explained by the patches. This uniform component is
supported on the sceneÕs bounding box and we index it withNp + 1 .

P(yi |! , ( ) =
Np +1(

k=1

" kP(yi |zi = k, ! , ( ), (4.5)

where the" k = p(zi = k|! , ( ) represent probabilities on the latent variables marginalized
over all possible values ofyi . In other words they are prior probabilities on model-data
assignments. We deÞne them as constantsp(zi = k) that add up to 1, using the expected
proportion of outlier surface in the observations and the ratios of patch surfaces in the
reference mesh.

The patch mixture component with indexk must encode a distance between the position
y i and the patchPk while accounting for the alignment of normals. For computational
cost reasons, we model this distance by looking for each patchPk in its different predicted
poses (this means the positions{ x l (v)} l#{ k}$ N k ,v# Pk

and corresponding normals as shown
in Þgure4.3for the closest vertex with a compatible normalvk

i . We consider two points and
normals to be compatible when their normals form an angle smaller than a threshold. In
practice this threshold was set to45& in all of our experiments. This leads to the following
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Figure 4.3: A point/normalyi with positiony i from the observed data is associated tovk
i ,

the closest vertex with a compatible normal among all the predictions for the patchPk . In
this casevk

i is selected because of its position and normal in the prediction made by the
neighboring patchPl .

(a) (b)

Figure 4.4: P(yi |zi = k, ! , ( ) as deÞned in Eq.4.6 is a Gaussian of an approximate
distance to the patch. It forms a sort of halo in space around the different predicted positions
for the vertices of patchesk. The subÞgures display the probability density function for two
values of( . Please note that we ignore here the normal compatibility condition.
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model for each component of the mixture:

+k " [1, Np],

P(yi |zi = k, ! , ( ) ,

2
N (y i |x(vk

i ), ( ) if vk
i exists

) otherwise,
(4.6)

where ) encodes for a uniform distribution deÞned on the sceneÕs bounding box, and
N (y |x, ( ) is a multivariate Gaussian distribution centered inx with an isotropic covari-
ance.

3.2 Expectation-Maximization

The variableszi can not be observed, but the probabilistic model built until now allows
to express their posterior distributions:

P(zi = k|yi , ! , ( ) =
" kP(yi |zi = k, ! , ( )

1 Np +1
l=1 " l P(yi |zi = l, ! , ( )

. (4.7)

In other words,if we have an estimate for the parameters! (the deformed mesh) and(
(the variance), we can evaluate for every pointyi how likely it is that it was generated by
patchPk . This places us in a position where we can use the Expectation Maximization
(EM) algorithm that was originally formalized by Dempster et al. [13]. We have seen that
if we have an estimate for the unknowns, we can compute posterior distributions on the
latent variables. We will see that given these posterior distributions, we can optimize for
the unknowns. The idea of EM can be roughly described as alternating between these two
stages until convergence. For the sake of completeness, and to build some insight on the
convergence properties of the algorithm, we recall in the following paragraphs a derivation
of EM. We follow the derivation by Frank Dellaert [15] and adopt here the interpretation
of EM as bound minimization that seems to us as the easiest to understand.

Building a bounding function We recall that we aim at maximizingP(Y|! , ( ), which
we rewrite as the marginalization over the hidden variables of the joint probability.

ln P(Y|! , ( ) = ln
(

Z

P(Y, Z |! , ( ), (4.8)

Following [15], we can write for any positive real valued functionq(Z ) deÞned on the
space of latent variables:

ln P(Y|! , ( ) = ln
(

Z

q(Z )
P(Y, Z |! , ( )

q(Z )
, (4.9)

If we add the constraint that the values ofq(Z ) must sum up to 1, the concavity of the log
function allows to write a bound on the function of interest:

%ln P(Y|! , ( ) - %
(

Z

q(Z ) ln
P(Y, Z |! , ( )

q(Z )
. (4.10)
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Finding an optimal bounding function Let us consider that we have a current estimate
(! t , ( t ), of the variables we wish to optimize. To take a step that decreases%ln P(Y|! , ( ),
it sufÞces decrease the bounding function, after carefully choosingq(Z ) so that the bound-
ing function will touch the bounded function at(! t , ( t ). [15] Þndsq(Z ) by minimizing
the difference between the two while enforcing

1
q(Z ) = 1 with Lagrange multipliers.

He shows that choosingq(Z ) = P(Z |Y,! t , ( t ) satisÞes the requirements: it indeed
sums up to 1 and yields a bounding function that touches the bounded function at the point
of interest. This means that the bounding function should be theexpected complete-data
log-likelihood conditioned by the observed data.

%ln P(Y|! , ( ) - const %EZ
)
ln P(Y, Z |! , ( )|Y,! t , ( t * . (4.11)

A practical expression of the bound The challenge is now to Þnd an expression of the
bounding function in equation (4.11) that we will be able to minimize. We start by rewriting
P(Y, Z |! , ( ) by making the approximation that the observation process that gaveY draws
theyi Õs from this distribution in an independent identically distributed way:

P(Y, Z |! , ( ) =
m3

i =1

P(yi , zi |! , ( ) (4.12)

=
Np +13

k=1

m3

i =1

)
P(yi , zi = k|! , ( )

*" k (zi ) . (4.13)

The rewriting that appeared in equation (4.13) allows to make the double product move out
of the logarithm and obtain sums:

%ln P(Y|! , ( ) - const %
Np +1(

k=1

m(

i =1

)
EZ [' k (zi)|Y,! t , ( t ]ln[ " kP(yi |zi = k, ! , ( )

*
,

(4.14)
which Þnally leads to the expression of the bounding function we need to minimize:

%ln P(Y|! , ( ) - const %
Np +1(

k=1

m(

i =1

P(zi = k|yi , ! t , ( t ) ln P(yi |zi = k, ! , ( ). (4.15)

For practical purposes, we can rename the current estimates of the posterior probability
density functions of the latent variables. These are not at all dependent on the variables of
the bounding function! and( and are simply scalars that act as weights in the equations.

wt
i (k) = P(zi = k|yi , ! t , ( t ) (4.16)

We also rewrite the other terms of the equation fork .= Np + 1 by reminding that the
covariance is assumed isotropic:

ln P(yi |zi = k, ! , ( ) = %
&y i %x(vk

i )&2

2( 2 %3 ln ( + const (4.17)
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Reintroducing the prior If we reintroduce the prior and move fromP(Y|! , ( ) to the
joint-probability P(Y, ! , ( ), we obtain a new bounding functionB t (! , ( ) to minimize
given a current approximate of the variables! t and( t :

B t (! , ( ) = Er (! ) + 3

#

$
Np(

k=1

m(

i =1

wt
i (k)

%

& ln (

+
1

2( 2

Np +1(

k=1

m(

i =1

4
wt

i (k)&y i %x(vk
i )&2

5
. (4.18)

Although ! does not appear explicitly in the equation, it controls the deformation of the
mesh, and thus of thex(vk

i ) vectors.

3.3 Practical minimization

The previous section recalled the EM algorithm and its mathematical derivation. In this
section, we focus on how to translate these ideas in a practical implementation.

E - Step In the E-Step of iterationt, the posteriorP(zi |yi , ! t , ( t ) distributions are evalu-
ated using the current estimation! t , ( t and the corresponding predicted local deformations
of the mesh. As deÞned in equation (4.7), these functions require to Þnd for each target
vertexyi and patchk the vertex indexvk

i of its nearest neighbor in the different predicted
conÞgurations of the patch.

The complete E-Step amounts to the computation of am ) (Np +1) matrix whose lines
add up to 1, as shown in Þgure4.5. This is an very parallel operation as all the elements of
this matrix can be evaluated independently, except for the normalization of each line that
takes place afterwards. In theory it would be tempting to use space partitioning techniques
to speed up the nearest neighbor search. However the dependency of this search on the
orientation of vertex normals makes this cumbersome. In practice we run a brute-force
search, and show in section5.4CPU/GPU timings that indicate that the computation time
remains reasonable for practical uses.

M - Step The M-Step of iterationt requires to minimize the bounding functionB t (! , ( )
deÞned as in equation (4.18) by the the soft data - model assignment weights that were
computed in the E-Step. In this bounding function, both data terms and rigidity terms are
made of weighted squared distances between 3D points. This Þts exactly in the mesh de-
formation framework deÞned in chapter3 and equation (3.16). We do not solve minimize
B t (! , ( ) directly with respect to both! and( but instead follow the Expectation Condi-
tional Maximization (ECM) approach (Meng and Rubin [23]) that shares the convergence
properties of EM while being easier to implement. The idea is to replace the M-Step by a
number of CM-steps in which variables are optimized alone while the others remain Þxed.
Thus in the M-step, we Þrst use the mesh deformation framework and obtain! t+1 , then
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Figure 4.5: The soft assignment matrix holds the posterior patch-assignment distributions
for every vertex of the target point cloud. As such, the lines are normalized to add up to 1.
The last column of the matrix corresponds to the outlier class.

we update( t+1 . The update of( is simply done by setting the derivative!!# B t (! t+1 , ( )
to zero.

! t+1 = argmin
!

B t (! , ( t ) (4.19)

( t+1 =
1
2

67
7
8

1 Np +1
k=1

1 m
i =1 wt

i (k)&y i %x t (vk
i )&2

3
1 Np

k=1

1 m
i =1 wt

i (k)
(4.20)

To avoid degenerate mesh conÞgurations, we however do not completely minimize the
bounding function. Instead we just run one iteration of the Gauss-Newton algorithm, which
amounts to minimizing the quadratic approximation of the objective function around (! t ,
( t ).

4 Results

In this section we present the results of our algorithm on several multi-view datasets.
We Þrst show our results on sequences involving several objects to emphasize the beneÞt
of our approach with respect to methods that use very constraining deformation models.
Then we show with a quantitative evaluation that our work produces comparable results to
existing methods when dealing with less complex sequences.
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Figure 4.6: Results on the Romans sequence that exhibits two interacting objects occluding
each other in fast paced action. The reference mesh is on the top left. The temporally
inconsistent input geometry is displayed in gray. The corresponding colored surfaces are
the deformed reference mesh.

4.1 Multi object tracking

The Romans sequence (1050 frames - about 42 sec) in Þgure4.8was kindly provided
by Indigenes Productions and 4D View Solutions. It involves two soldiers Þghting with
swords. The action is fast paced and there are many intersections and occlusions of geom-
etry. This type of sequence highlights the advantage of our approach. No initialization was
required, as the reference mesh was simply the Þrst reconstruction of the sequence. Even
with our simple rigidity model that treats the swords exactly as the loose clothing of the
actors, the algorithm recovers meaningful deformations throughout the sequence.

The Ball sequence shown in Þgure4.7 was made available by INRIA Rh™ne-Alpes
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and involves a father and his son playing with a ball. Here again, our approach does not
require the tedious deÞnition and Þtting of an articulated model for each of the objects.
A topologically suitable reconstruction where the three objects are distinct is simply used
as reference geometry. This sequence illustrates the handling of some outlying geometry
that was created by the erroneous segmentation of shadows as foreground. The outlier
class introduced in the Bayesian framework allows to limit the impact of such geometry in
the inference of deformation by progressively reducing the weight of points that canÕt be
explained by the model.

The Basketball sequence (1364 frames - about 55 sec) in Þgure4.6was recorded in our
own multi-camera studio. This scene is interesting for a number of reasons. Firstly, the
ball bounces between the legs and is sometimes held close to the body for many frames.
As such the data involves two distinct objects whose interaction is fast, complex and con-
tains a lot of occlusion. Secondly, the simple shape from silhouette method that was used
to recover the temporally inconsistent meshes was quite coarse. It produced geometry ex-
hibiting occlusions and numerous artifacts such as missing limbs. Finally, the reference
mesh that was deformed across the sequence was simply the Þrst mesh, which is barely
more than a blob. The results presented in Þgure4.8 show that our algorithm can recover
meaningful estimates of these difÞcult motions and deformations using a coarse model of
the surface, even when confronted with numerous artifacts in the input data such as missing
limbs, occlusions and self intersecting geometry.

4.2 Evaluation of the silhouette reprojection error

We also ran our algorithm on standard datasets available to the community to compare
it to previous works. We used as input the results of a precise 3D reconstruction algorithm
in one case, and rudimentary shape from silhouette in the other. As we show in this section,
our algorithm performs consistently well in both these situations. In the presented results
we additionally optimized the silhouette reprojection error in a post-processing step, with
the method presented in subsection3.3. This procedure relies on the very same numerical
framework deÞned in chapter3, uses extremely small patches and minimizes an energy that
is the residual error in silhouette overlap.

Tracking Using Photo-consistent Meshes As Input The Surfcap Data from University
of Surrey consists of a series of temporally inconsistent meshes obtained by the photo-
consistency driven graph-cut method of Starck et al.[30]. Except for some rare recon-
struction artifacts in a couple of frames, these are overall very clean and smooth meshes.
Because of their extremely high resolution, these meshes were down-sampled to roughly
10k vertices and fed to our algorithm. We present our results on six sequences. They show
a hip-hop dancer whose moves are very challenging to track because they contain fast mo-
tions and large deformations. In Þgure4.9, our results on theFlashkickdataset show that
we can cope with extremely fast deformations such as a backßip. In Þgure4.10we present
our results on thePopsequence in which the intricate and ambiguous motion of crossing
arms is handled properly. Additionally Þgure4.13shows a quantitative evaluation of the
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Figure 4.7: The frames 292-295-296-297-298 of the Ball sequence show the effects of
outlying geometry and the beneÞt of the outlier class in the Bayesian model. The shad-
ows were erroneously segmented as foreground, which resulted in outlying geometry. It
is observable that as the ball goes down, this outlying geometry is correctly handled by
the EM framework and does not impact the estimation of the ballÕs deformation. As the
ball bounces, the algorithm tries to Þnd a compromise between rigidity and data while pro-
gressively reducing the weight of the erroneous points. It quickly converges to the proper
estimate.
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Figure 4.8: Results on the Basketball Sequence. The reference mesh is displayed on the
top left. The hand and ball were manually separated for this initial mesh in a modeling
software so that the deformation model would be topologically suitable. Note that despite a
very coarse reference surface, wrong geometry, missing data and fast motion have a limited
impact on our tracking algorithm.
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Figure 4.9: Results on the Flashkick sequence. The kickßip itself consists of extremely
fast motion as it spans over 15 frames.

Figure 4.10: Results on the Pop sequence. Note how geometrically ambiguous the arm
crossing is, and the strong self-occlusions it produces.

Figure 4.11: Results on the Samba sequence. The approach yields visually convincing
results on the tracking of a skirt.
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overlap error between the reprojected silhouettes from our result and the original silhou-
ettes. The error is given as the ratio of erroneous pixels and total number of pixels in the
original silhouette and stays approximately constant at a value of 5%.

Tracking Using The Visual Hull As Input We used the multi-view image data made
public by the MIT CSAIL group to run a very simple volumetric shape from silhouette
algorithm. The resulting visual hulls, although only a coarse approximation of the true
shape, were enough to drive the deformation of the provided template mesh through the
sequences. We show our results after silhouette Þtting on theSambadataset. In this speciÞc
sequence, a woman in a skirt dances. Skirts are difÞcult to handle for methods deforming a
reference mesh as the interpolated surface between the bottom of the skirt and the legs has
to undergo severe compression and stretching. We show in Þgure4.11that our approach
still manages to produce visually convincing results. We ran our algorithm on four of
the available sequences and compared the silhouette re-projection error after silhouette
Þtting to the meshes obtained by Vlasic et al. [32]. The results in Þgure4.12 show that
our approach yields a similar precision despite its much weaker underlying deformation
model. Furthermore, our results were obtained without manual intervention, while these of
[32] required help from the user in ambiguous frames.

5 Discussion

In this section, we present a variety of experiments designed to determine more pre-
cisely the impact of the different components and parameters of the algorithm. We start
by looking at the probabilistic model [5] that was presented in this chapter and compare
it to the simpler non-rigid ICP that we presented in earlier work [3]. Both approaches use
the same patch-based regularization. We show that the probabilistic model, complemented
with the patch prediction mechanism, gives better convergence rate and overall tracking
accuracy. In another part of this section we recall the parameters that need to be set to run
the algorithm and discuss their inßuence. Finally we present timing results that conÞrm the
computational tractability of the presented method and that open perspectives for turning it
into an actual tool that could be used for production purposes.

5.1 Probabilistic and deterministic assignments compared

The reason why we experimented with the Bayesian model in the Þrst place was be-
cause it offered a principled way to handle of outliers. It is indeed one of its major beneÞts,
and the Ball sequence in Þgure4.7 illustrated how this allows to increase robustness with
respect to parasite geometry in the scene. We however found that this approach also gave
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(a) crane (b) bouncing

(c) handstand (d) samba

Figure 4.12: Numerical comparison of our silhouette reprojection error to that of Vlasic
et al. [32]. This graph shows a consistent good behavior of our approach despite the much
weaker underlying deformation model. The slight improvement in performance we get is
most likely due to the temporal smoothing they apply.

better results on sequences that were relatively free of parasite geometry. On the MIT se-
quences ( Þgure4.14) as well as on the U. of Surrey sequences (Þgures4.15, 4.16, 4.17,
4.18, 4.19).

We ran the registration in four conÞgurations. In these conÞgurations, the Bayesian
model with the smooth assignments was either used or replaced by a simpler nearest neigh-
bor search. Similarly, the prediction mechanism (described in Þgure4.3) could be turned
off. In all cases, the optimizer was allowed to run for at most 30 iterations of E-Step (or
one of its variations) and M-Step. We ran the silhouette optimization on every frame in-
dependently as a post-process. The goal of this experiment was to identify cases where
the inference would get stuck in a local minimum. The idea was that in extreme cases of
bad registration, the silhouette optimization would also fail, while it would improve greatly
the numerical results for successful registrations. This accentuates the differences between
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(a) ßashkick (b) free

(c) head (d) kickup

(e) lock (f) pop

Figure 4.13: Silhouette reprojection error of our deformed model in percentage of the
original silhouette area. Each color represents a camera.
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incorrectly and correctly registered frames in our results.

An number of remarks can be made on the already mentioned Þgures, and the results
for the roman sequence in Þgure4.20:

¥ the Bayesian modeling combined with neighbor prediction performs better than the other
conÞgurations in the vast majority of cases.

¥ most conÞgurations actually give reasonable results except for small time periods where
they lose track. However they tend to recover quickly, which indicates that the shape
prior maintained by our deformation model is quite strong.

¥ the worst combination seems by far to be to combine smooth assignments with no neigh-
borhood prediction.

5.2 Importance of neighboring patch prediction

To investigate the reasons behind the previous results, we focused on the initial frames
of the ßashkick sequence (see Þgure4.18) in which it can be observed that the proba-
bilistic/prediction and deterministic/prediction perform much better than the conÞgurations
without patch prediction. These are interesting frames because they involve fast motion,
and exhibit no changes of topology.

In Þgure4.21, we look at the evolution of the average distance between the two surfaces
during the iterated E and M-Steps. In each plot, we used the Þrst mesh of the sequence as
reference mesh for the rigidity and started the inference from the same patch conÞguration
for all four curves.

The presented results show that the prediction mechanism greatly improves the rate of
convergence. It also appears that without this prediction, the probabilistic registration has
a sharp decrease in its rate of convergence after 3 or 4 iterations. Our interpretation is that
most of the surface is registered properly after these iterations, and that this causes a sharp
decrease in the evaluation of( . Then the slack introduced by the outlier class in the model
starts to dominate in badly registered part of the surface, which without the help of the
prediction mechanism severely hurts the convergence rate.

5.3 Inßuence of parameters

Now that we have evaluated the impact of the components in our algorithm, we move
to discussing the inßuence of parameters. In its full version, with smooth assignments and
neighbor prediction, the algorithm requires the following parameters to be deÞned:

¥ the maximum patch size.

¥ the balancing between the data termln P(Y|! ) and the rigidity regularizationEr (! ).

¥ an initial value for the variance( .

¥ the expected outlier proportioneoutlier .
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Figure 4.14: Probabilistic/deterministic comparison: the U. of Surrey sequences. These
results are obtained after an additional silhouette Þtting step. Residual errors indicate that
a limb was not Þtted properly in the registration step and that the silhouette optimization
stayed stuck in a local minimum. On the bottom row we compare the result with proba-
bilistic assignments and prediction, the target geometry, and the result with deterministic
assignments and no prediction.
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Figure 4.15: The pop and kickup sequences behaved well in all conÞgurations.

Figure 4.16: In the head sequence the registration converged to a state from which the
silhouette Þtting could not get out. This is most likely due to a local surface ßip. Such
ßips combined with the normal compatibility condition in the nearest neighbor search are
difÞcult to recover from when there is no neighboring patch prediction.

Figure 4.17: In the lock sequence the leg is stretched, probably because the strong deter-
ministic assignments did not allow the surface to ÒslideÓ back into place with the rigidity
force.
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Figure 4.18: In the ßashkick sequence, similarly to the lock sequence, it appears that with
deterministic assignments and without prediction, the surface did not manage to slide back
into place during the fast motion of the ßashkick, and that the inference led to a local
minimum involving stretching the thigh.

Figure 4.19: Probabilistic/deterministic comparison: the free sequence. The artifacts at
frames 45 and 391 are similar to the ones observed in the lock and ßashkick sequences. At
frame 188 however, the problem is that the legs are switched. It appears that without soft
assignments, the inference converges prematurely to a local minimum.
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Figure 4.20: The roman sequence, as shown in Þgure4.6 involves two actors with props,
but is in fact not very ambiguous.The soldiers have there arms stretched out most of the
time and very little self intersection happens. Therefore, most methods perform correctly.
In this sequence like in most others, the worst performance is that of the probabilistic/no
prediction conÞguration. On the bottom row we show how the arm of the left soldier
remained stuck in the body. Our interpretation is that with the probabilistic modeling, the
outlier class offers some slack to the optimizer that can choose to ignore the full right arm of
the soldier. Without the prediction mechanism to propagate the information from correctly
registered parts of the surface to their neighborhoods, this is a dangerous mechanism.
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(a) ßashkick 50!" 51 (b) ßashkick 51!" 52

(c) ßashkick 52!" 53 (d) ßashkick 53!" 54

Figure 4.21: The Þrst 5 frames of the ßashkick sequence involve fast motion and are there-
fore interesting to evaluate the convergence behavior of the registration. Furthermore, as
they do not involve changes of topology, we can use the average residual 3D distance be-
tween the two meshes as error measure. For each of these plots, the 4 conÞgurations start
off with the same deformation of the reference mesh and try to register it observed mesh
of the next frame. The Þrst observation that can be made on these 4 frames is that the
prediction mechanism greatly improves convergence speed. The second observation is that
without prediction, the probabilistic registration has a sharp decrease in its convergence
rate after 3 or 4 iterations.
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Our experience indicates that the algorithm is actually rather resilient to variations of
these values. Since all of the sequences used similar mesh resolutions, the size of patches
was common to all sequences an yielded 150-200 patches per human. The balancing be-
tween data and regularization term was empirically Þxed on one of the sequences so that
the residual energies would have comparable magnitudes. All the other sequences ran with
the same value. The starting variance was always set to 2 times the mean edge length.

In Þgure4.22 we show the result of an experiment we ran to study the inßuence of
the expected outlier proportion. In this experiment, seven pairs of consecutive meshes
(M t , M t+1 ) from the Free sequence were considered. Outlier points were distributed
aroundM t+1 by duplicating a percentage of its vertices and perturbing them with a Gaus-
sian noise of standard deviation 4 edge length. Then we ran the deformable registration
of M t to M t+1 with different outlier proportions. The Þgure shows the average residual
registration error as a function ofeoutlier and the actual proportion of added outliers. We
conclude from this experiment that this parameter does not require to be Þnely tuned and
that it simply needs to be non zero to give the optimization enough slack to progressively
ignore outliers and converge to a proper solution.

5.4 Computational cost

We give in table4.1experimental timings on numerous sequences that give an idea of
the complexity of the method. These measurements were obtained by looking at times
when Þles were written to the hard-drive. As such they are only an indication on the
computational load of our method and do not constitute a precise performance evaluation.
The computational cost is largely dominated by the nearest neighbor search and the sparse
linear system solver. The nearest neighbor search is straightforward to parallelize on the
GPU. It is to be expected that coming up with a smarter space partitioning approach or using
more computational resources should make this step negligible. The remaining bottleneck
is therefore the sparse linear solver. Preliminary experiments on the CPU indicate that
Conjugate Gradient is a viable alternative to the direct solver we currently use. Porting this
approach to the GPU and evaluating its interest deÞnitely constitutes future work, on the
way to making our algorithm usable for interactive purposes.

5.5 The i.i.d. assumption and limitations.

We conclude the discussion of our approach by presenting its main theoretical limita-
tion and the practical consequences that ensue. The i.i.d. assumption that led to equation
(4.12) is to be considered with care in that the observation process is a multi-camera setup
in which parts of the surface, thus patches occlude each other. This clearly biases the draw-
ing of samples in the distribution of 3D data. For example in Þgure4.8, when the arms and
body are joined, the local density of points in the input data does not double, which clearly
indicates that the data generation by two overlapping patches on the arm and the body is
not independent. In that sense our method and equation (4.12) are only approximations.
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Figure 4.22: Average Þtting error on 7 random frames of the Free sequence. The x axis
represents the expected outlier parameter. The x axis represents the actual proportion of
added outliers to the target point cloud. The z axis shows the Þtting error with respect to
the mean edge length.

The Þrst and obvious practical consequence to this assumption of independence is that
our EM framework can not be easily be used to track an object observed from a single
range scanner. Occlusion in this case becomes much too severe for the hypothesis of inde-
pendence to hold. Consider for example a human facing the range scanner and pointing his
arm towards the camera. In the observed point cloud, there are only couple of points corre-
sponding to the Þst and no points at all for the arm. This makes the optimization impossible
within our framework.

The second practical consequence and main artifact that can be produced by our method
we did not encounter in the sequences from the community. On a sequence that we had to
process for an applicative paper [21] however, we had an actor that kept both his arms along
his body most of the time. The reconstruction was of very low quality and the severe self-
occlusion caused by the arms merged the arm and torso reconstructions. We observed that
the arms would pop-out and would sometime brießy return to the rest pose for a couple of
frames. Our interpretation is that because the local density of points did not double, each
point of the merged arm-torso reconstruction in the data would be explained by both the
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Table 4.1: Average timings on standard sequences for the EM procedure (max. 10 EM
steps - without silhouette reÞnement) with target point clouds of roughly ten thousand
vertices. The CPU implementation was run on a 2.5Ghz quad-core machine. The CUDA
implementation was run on a NVIDIA Geforce GTX260.

Sequence Length Ref. Mesh
Vertex#

Average Time
Per Frame
CPU GPU

Flashkick 200 5445 24 s 3.60 s
Free 500 4284 25 s 3.16 s
Head 250 5548 29 s 3.79 s
Kickup 220 5580 23 s 3.69 s
Lock 250 5301 24 s 3.52 s
Pop 250 5596 16 s 3.44 s
Handstand 174 5939 29 s 4.11 s
Bouncing 174 3848 29 s 3.70 s
Crane 174 3407 11 s 2.72 s
Samba 150 5530 12 s 2.03 s

arm and the torso. Because of the normalization of posterior probability density functions
and thus of weights in EM, this meant that the energy function would only pull the model
towards the data with half the force. The regularization term would then pull the arm
further away from the torso at each iteration, which would in turn diminish the weight of
the association between the data points and the arm.

This behavior could be expected because our approach is designed to look for a solu-
tion that explain the data with as little deformation as possible. Our method maximizes
the explanation ofoccupiedspace but does not model at allempty space. Interestingly,
this problem was also considered by Revow et al. [27] in an extension of their work on
handwritten digit recognition [18] (Þgure4.2). In [27], the problem is described as ÒA sig-
niÞcant drawback of our generative model is that it does not treat the un-inked pixels as
evidence.Ó They address the issue by suggesting to introduce a penalty for all the pixels
that are not inked in the data but inked by the deformed model. The results of their attempt
appear inconclusive: They account for white space violation to evaluate the Þnal Þts but do
not use it in the inference of the deformation itself. Indeed, penalizing the occupation of
unoccupied space in the Þnal Þt with such a method also induces penalizing going through
that same unoccupied space during the inference. In our case one could understand it as
having attractive vertices on the observed surface and repulsive vertices everywhere else
in the sceneÕs bounding box. These repulsive vertices would make it difÞcult to go from a
conÞguration where the arm is against the torso to a conÞguration where the arm is away
from the torso for example. For small values of( , they would create impassable energy
ridges in parameter space that would prevent the arm in the deformable model from going
through the newly formed empty space between the observed arm and torso. We leave as
future work the study of this problem and the evaluation of this particular solution.
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6 Conclusion

In this chapter, we have proposed an approach to recover temporally consistent ani-
mated models from sequences of surfaces acquired in multi-camera setups. In contrast to
previous works, this approach makes no assumption on the articulated nature of the tracked
object and actually allows to process scenes involving several arbitrary objects.

Our developments have integrated the rigidity model of chapter3 as a deformation prior
in a Bayesian formulation of the mesh registration problem. Although the idea of embed-
ding deformable registration in an EM framework had already been explored several times
during the past 20 years, we have made two contributions that have allowed to perform
signiÞcantly more challenging deformable mesh tracking tasks.

¥ First, we have used the patch-based parametrization that was presented in chapter3.
Instead of computing intractable point-point soft assignments, we have computed point-
patch soft assignments. Our results show that this was sufÞcient to handle parasite geom-
etry gracefully. They also show that this approaches allowed to retain some smoothness
in the convergence compared to the deterministic assignments of ICP. Finally, our timing
results prove that this approach runs fast enough to be usable on commodity hardware.

¥ Our second contribution is the patch-prediction mechanism. This mechanism maintains
in the inference several hypothesis for the location and orientation of every patch. For
each patch, the considered hypothesis are obtained by assuming that the patch and one of
its neighbors moved together rigidly. In effect, this gives the inference an opportunity to
quickly propagate the information from correctly registered parts of the surface to their
neighbors. We have shown that this approach signiÞcantly improves the convergence
rate of the mesh registration.

Our experimental validation has been run on several scenes of different nature. Some
of them included loose clothing, skirts, swords or bouncing balls. The 3D data that we
have used as input was of variable quality. Some meshes were obtained with state of the
art photometric reconstruction methods, while others simply consisted of the visual hull
and exhibited signiÞcant reconstruction artifacts. For all of these scenes, we have used the
same deformation prior, the same mathematical formulation and the same set of param-
eters. There was no user intervention before the inference to indicate rigid parts or joint
locations. There was no user intervention during the inference to correct the estimated pose.
Our algorithm has managed on all of these sequences to perform comparatively well with
respect to previous works that use more priors on the deformation or user intervention to
correct errors. The major contribution however is that our algorithm has allowed to process
scenes more general and complex than these that had been addressed by prior art.
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CHAPTER 5

Articulated Models for Mesh
Registration

The developments presented in the previous chapters were focused on the core
contribution of this thesis, that is on a generic surface tracking method that
does not make assumption on the nature of the tracked object. In this chapter
we study the applicability of the developments from the previous chapter to the
tracking of articulated objects. This allows us to evaluate to which extent con-
sidering prior knowledge on the way the surface deforms helps in the inference
for motion.

The goal of this chapter is to explore the use of different rigidity models with the
Bayesian mesh registration framework that was developed in chapter4. In other words,
we want to introduce more knowledge on how the surface deforms in the inference for mo-
tion. We explore the case of articulated objects, and look into two distinct ways to account
for the prior we have on the way they deform.

¥ One possibility is to use anintrinsically regularizeddeformation model that enforces
articulated motion through its parametrization. We therefore adapt the mesh registration
framework so that the motion would be parametrized by kinematic chains. It is expected
that the reduced number of degrees of freedom in the optimization should make the
registration process faster.

¥ The other possibility is to extend the deformation model presented in chapter3 so that it
will account forclustersof patches that tend to deform rigidly. There the parametrization
is the one that was used in chapters3 and4, but a newextrinsic regularizeris introduced
to quadratically penalize non rigid motion within the clusters.

This study can at Þrst appear to go against the general motivation of this thesis, that is the
development of a generic tracking method. It is however necessary for several reasons:
Þrstly, one can reasonably imagine interfaces where artists could guide the inference for
motion by manually feeding information on the rigidity or the topology of the tracked
objects. Secondly, we need to evaluate the beneÞts and drawbacks of more constrained
deformation models.

129
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(a) GM: The patch-based rigid-
ity of chapter3.

(b) GMa: The patch-based
rigidity of chapter3 with an ad-
ditional energy term enforcing
the rigidity of clusters.

(c) KB: Parametrization of the
deformation with a kinematic
tree.

Figure 5.1: There are three deformation models compared in this chapter: the generic
patch-based model of the previous chapter, an extrinsically regularized model that addi-
tionally enforces rigidity in clusters of patches, and an intrinsically regularized articulated
model that parametrizes motion as joint angles in a kinematic tree.

1 Related Works on Articulated Tracking

Marker-less motion capture has received considerable amounts of attention over the
past two decades, and several surveys have been dedicated to the subject [17, 28, 21, 25].
Our goal here is not to overview the whole Þeld, but to give some background on key ideas
that are directly related to the problems that we address in this chapter, namely tracking
by geometric registration and the comparison of articulated models with our more generic
deformation models.

1.1 Parameterizing articulated motion.

The Þrst option to parametrize articulated motion is to represent the articulated object
with a kinematic tree made out of joints and bones, and to parametrize its pose with angle
values at the joints. This has the evident advantage of intrinsically constraining the range of
motions to these that preserve the length of bones. Furthermore the joint angles constitute
a relatively low dimensional set of parameters that fully describe objectÕs motion. Kine-
matic chains and trees are well studied structures because of their crucial importance for
robotic manipulation, and the interested reader can turn to the book by Murray et al. [23]
for a meticulous study of the subject. Two interesting mathematical tools presented in this
book are the product of exponential maps and twist motion. These tools were introduced
for articulated tracking in the work of Bregler and Malik [4], Bregler et al. [5] who were
tracking human poses in monocular videos. As it was discussed in chapter3, exponential
maps are indeed the parametrization of choice when descending the gradient of energies
that are functions of rotations. In the next section, we will recall as simply as possible the
mathematics required in our context, and go over the speciÞcities of different joint types
and kinematic chains. This line of work corresponds to the Þrst rigidity model that we
examine: theintrinsically regularizeddeformation model.



1. RELATED WORKS ON ARTICULATED TRACKING 131

The second option when parameterizing articulated motion is to usesoft-constraints
in place of intrinsically constrained parameter spaces. This type of parametrization is for
example very used for human detection in monocular images. Pictorial structures [13] are
graphical models that divide the object in parts, where each part correspond to local visual
characteristics that can be searched for by feature detectors. The parts are linked by soft
spring-like constraints that model the relative locations or orientations of the two parts.
Typically the parameters of the model for the relation between two parts (or conditional
probabilities) are learned from data, and these models can be as simple as as: Òthe head
tends to be 20cm above the neck.Ó The recent book chapter by Ramanan [26] provides
an interesting overview on these models. However pictorial structures are originally 2D
entities. In the work by Sigal et al. [27], they are transposed to 3D and called loose-limbed
models, where each limb is parametrized by a full rigid transformation. That idea was
also employed by Corazza et al. [11] and in following work by Mundermann et al. [22].
This line of ideas is closer to the second rigidity model that we examine: theextrinsically
regularizeddeformation model.

1.2 Modeling the skin.

The previous paragraphs have presented possible deÞnitions for the skeleton. For
model-based tracking, we now need to deÞne the shape, or ßesh, deformed by this skeleton.
In other words, we need to go from the variation of joint angles to the deformation of actual
surfaces in 3D.

A common and simple solution is to use geometric primitives to model the limbs: ex-
amples include ellipsoids (Bregler et al. [5], Horaud et al. [20]), cylinders (Sigal et al. [27])
or even tapered super-quadrics (Gavrila and Davis [18]). Implicit surfaces were also used
by PlŠnkers and Fua [24] who attach metaballs to the skeleton. Each of these metaballs
generates an ellipsoidal Þeld functions in 3D, and the surface of each limb is obtained as a
level-set of the added Þeld functions of the metaballs corresponding to that limb. This for-
mulation allows the author to parametrize the shape with the coefÞcients of the ellipsoids.
Because the goal of this particular paper was to optimize both for shape and motion of the
tracked person, this low dimensional parametrization of the shape was required.

Subject speciÞc models are however usually recovered before tracking. The work by
Corazza et al. [11] builds a model by using a method based on the SCAPE model [1]
and iteratively optimizes for shape and pose of the subject. Another type of body shape
model is used in the work by Bandouch et al. [2], where the anthropometric coefÞcients of
the RAMSIS [6] model (originally created in the Þelds of ergonomics) are tuned by hand
before tracking. Model generation is not the focus of our study. We therefore choose to
use a coarse yet simpler way to generate a subject speciÞc model: we attach a reference
mesh of the tracked person to a skeleton. This could be done automatically with a method
such as the one by Baran et al. [3]. We will present in the next section how we use the
semi-automatic method of a 3D content production software to perform the rigging of the
reference mesh.
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1.3 Pose optimization

The last part of our review is focused on how articulated body models can be used in
an optimization for the pose of the tracked object. Because we focus on generic geometric
registration in 3D, we leave aside from our review a number of ideas. For example we do
not detect endpoints such as heads, hands or feet to constrain the inference and neither use
motion priors nor activity recognition. Our interest goes exclusively to geometric registra-
tion and to the different available optimization schemes. In all model-based approaches, an
objective function measures the Þtness of any considered pose by evaluating how well this
pose explains the observed data. In the case of human motion capture, three things make
the optimization of such a function challenging: Þrst, the space of human poses is high
dimensional. Second, occlusion and self similarities of objects make visual data ambigu-
ous, and the Þtness functions are therefore multi-modal with many local minima. Finally,
evaluating the Þtness of a pose is quite costly when it requires to synthesize visual data to
be compared with the observation.

Stochastic search Stochastic sampling and Þltering approaches are designed to handle
the multi-modality of Þtness measures. This is especially important in the monocular case.
Consider for example an actor observed from the side. It is really difÞcult to differentiate
on appearance alone whether this actor holds his left arm, or his right arm, or both arms
horizontally in front of him. Stochastic search methods evolve populations of discrete
samples in the parameter space and try to explore this space to escape local extrema, but
also to increase the sampling density in areas where the Þtness measure has peaks to get
results with acceptable precision. This is challenging because of the high dimensionality of
the parameter space and the restricted number of points that can be sampled in reasonable
time.

If the process underlying the observed data is modeled as Markovian, stochastic Þlter-
ing methods allow to more efÞciently explore the parameter space by accounting for the
dynamic nature of the process with a simple transition model between subsequent poses.
However this transition model may not yield a proposal density of samples that matches
the real posterior probability. To further reÞne the inference, the annealed particle Þlter
of Deutscher and Reid [12] performs several iterations to evolve the particles while gradu-
ally reducing a temperature term that controls the smoothing of the Þtness function. This
increases the sampling in narrow peaks of the Þtness function, and the initial high temper-
ature tends to prevent premature convergence of the particle population to local maxima
of the Þtness function. The paper by Gall et al. [14] gives a more in depth analysis of the
mathematical derivation and behavior of this method.

Another interesting idea in the work of Deutscher and Reid [12] is the adaptive diffusion
that reduces the number of particles along dimensions where the algorithm is doing well to
increase the sampling of the uncertainty along ambiguous dimensions. Furthermore, they
introduce a crossover operator inspired by genetic algorithms. This operator generates new
sample points from two parent samples by using the coordinates of one parent along some
dimensions and the coordinates of the other along the rest. This is a very effective way of
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seeding new samples in yet unexplored modes of the Þtness function, and to encourage the
survival rate of the subparts of particles that correspond to a partial good Þt of the data.
While [12] tries not to commit to a Þxed partition of the parameter space, Gall et al. [15]
propose two human speciÞc mutation operators that swap kinematic branches such as the
right and left leg.

Local optimization Local optimization methods are unimodal, and usually assume the
local differentiability of the Þtness function to perform some kind of gradient descent.
Their advantage is their better precision and their convergence when these hypothesis on
the Þtness function are valid. Their drawback is that the inference can easily get stuck in a
local maximum of the Þtness function.

We have illustrated the multiple modes of an error function with the example of an actor
seen from the side from a single point of view. When multiple point of views are available
however, many situations can be disambiguated. For example, with an additional camera
looking at the actor from the top, it is no longer ambiguous whether the right arm, left arm
or both arms are held horizontally. One possible error function in a multi-view environment
is the sum of silhouette reprojection errors over all cameras. However in this case each
component of the error term contributed by a single image can be highly multi-modal.
The hope is that the average of these functions will present prominent peaks where modes
coincide, and therefore resolve the ambiguity. Previous works that use the sum of silhouette
reprojection errors tend to show that this does not work very well and have to resort to
hybrid methods mixing local optimization with stochastic search. For example the method
by Carranza et al. [8] Þrst Þts the torso to the silhouettes using some numerical gradient
descent (PowellÕs method) then solves for the limbÕs poses independently by performing a
grid search on the 4 dimensions of the limbÕs parameter spaces. In a similar spirit, the work
by Gall et al. [16] initially drives the inference with silhouette contour matches and SIFT
matches. In a second step, stochastic searches are run on the subspaces corresponding to
misaligned parts to optimize the silhouette overlap. Although this approach is not explicitly
hierarchical as [8], it can be expected that the misaligned parts will be limbs and that the
two approaches will have similar behavior.

Strictly local optimization methods seem however usable when the Þtness function is
expressed in 3D. This hypothesis is supported by our results in the previous chapter, as
well as by a number of works that we will now review. The research by Mundermann
et al. [22], Corazza et al. [11] is one of the closest to ours in terms of methodology and a
good example of local optimization for articulated tracking. In these works, the problem
is formulated as articulated ICP, and the optimization is performed with the Levenberg-
Marquardt method. One issue with this approach however is that the correspondences
computed at each iterations ICP are fully trusted.

Other methods perform some kind of articulated ICP, but are less trusting with corre-
spondences. For example in the early work of Cheung et al. [10], the body is coarsely
represented with 6 ellipses, and an EM-like procedure alternates voxel labeling and ellipse
estimation where the ellipse parameters for a body part are only computed from the voxels
that were assigned to this body part. This idea can also be found in the work of Caillette
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and Howard [7] who additionally combine color and 3D distance in their computation of
soft-assignments. Cheng and Trivedi [9] proposes a kinematically constrained Gaussian
mixture model that uses soft priors on the motion to avoid hard angle limits and retain the
convergence properties of EM. Finally the recent works (already mentioned in chapter4)
by Horaud et al. [20] and Horaud et al. [19] explored articulated registration using EM. The
research presented in this chapter belongs to this line of work and actually naturally extends
the results of chapter4 by examining the effects of the introduction of rigidity priors in the
inference for motion.

2 Pose Optimization for Kinematic Trees

In this section, we brießy recall how kinematic chains can be parametrized, and how
analytical gradients of point positions can be computed with respect to the parameters of
these chains. This allows to solve Inverse Kinematics problems, that is to optimize the
conÞguration of the chain so that points attached to it will fulÞll as well as possible a
number of soft positional constraints.

However, in contrast with usual applications of Inverse Kinematics where a few posi-
tional constraints at most are used at a time, the mesh registration framework of chapter4
that we adapt here can potentially involve millions. Therefore, the following paragraphs
focus on the uniformity of the mathematical formulations and on numerical efÞciency.

In particular, the following derivations will underline that the Jacobian of a residual
positional error with respect to the update of a chain parameter can be factorized as the
product of a matrix that is only dependent on the position of the 3D point and a vector that
only depends on the state of the kinematic chain. This will lead us discuss how the Gauss-
Newton algorithm can be efÞciently implemented by processing positional constraints in
batches instead of explicitly computing one Jacobian per constraint.

2.1 Joints in their local frame

In its local frame, a joint induces a rigid transformation that we write with a4) 4 matrix
T . This allows to describe the rigid transformation applied to a 3D pointx0 this way:

!
x
1

"
= T

!
x0

1

"

.
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(a) Prismatic joint - 1 DOF. (b) Hinge joint - 1 DOF. (c) Ball joint - 3 DOF.

Figure 5.2: The three types of joint considered by our optimizer, along with the number of
degrees of freedom (DOF) associated.

Prismatic joint A prismatic joint has 1 DOF. It is deÞned by an axisw. A scalar param-
eter* controls the magnitude of the translation.

T =
!

I *w
0 1

"

. This means thatx(*) = x0 + *w, and therefore that the derivative ofx with respect to*
is simply

dx
d*

= w. (5.1)

Hinge joint A hinge joint has 1 DOF. It is deÞned by a 3D pointc and a unit-length axis
w. A scalar parameter* controls the magnitude of the rotation. In its local frame, it induces
the transformation:

T =
!
e[$w ]! 0

0 1

"

This means thatx(*) = e[$w ]! x0. If we perform a Taylor expansion of the exponential,
the derivative ofx with respect to* appears as:

dx
d*

= [ w]" x (5.2)

2.2 Joints in kinematic chains

We index the kinematic chain linking the root of tree with the joint to which the point
is attached with indices1, . . . , n. Each jointk along the chain induces a transform written
as a4 ) 4 matrix T k . We deÞne the result transformation induced by the whole chain as
Tn = T 1 . . . T n .

Let us consider a vertexv attached to the frame of jointn, and letxn be its local
coordinates in this frame. Becausev is attached to this frame, this value is constant. The
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world coordinates of the pointx for a given value of the parameters is then:
!
x
1

"
= T 1 . . . T n

!
xn

1

"

= Tn

!
xn

1

"
(5.3)

The state of the kinematic chain is described by a vector! = { *1, . . . , *n } , where*k holds
the angle values for the hinge joints, or a translation value for the prismatic joints.

To compute derivatives, we Þx all the chain parameters{ *1, . . . , *n } , except the one
associated to the jointk and parametrized by*k . We deÞnexk as the local coordinates of
the vertexv in the frame of jointk. These local coordinates account for the transforms of
all the joints down the chain from k, that is of the current value of{ *k+1 , . . . , *n } .

!
x
1

"
= Tk

!
xk

1

"
. (5.4)

We equivalently write equation (5.4) asx = Rkxk + ck , whereRk andck are respectively
the rotational and the translational part ofTk . Note thatck holds the world coordinates of
the origin of jointkÕs frame.

Prismatic joint We know from equation (5.1) that ! x k

!$ k
= wk . In the context of the

kinematic chain, this translates to:

$x
$*k

= Rkwk (5.5)

Intuitively, this simply rotates the axis of the joint with the rotation induced by the previous
joints in the chain. For all the points attached to joints down the chain, a variation of*k

will result in a translation along this axis.

Hinge Joint We know from equation (5.2) that ! x k

!$ = [ wk ]" xk . Knowing thatx =
Rkxk + ck , we deduce that! x

!$ = Rk [wk ]" RT
k (x %ck ). Finally this leads to:

$x
$*k

= [ Rkwk ]" (x %ck )

=
)
%[x]" I

*
!

Rkwk

%[Rkwk ]" ck

"
(5.6)

2.3 Inverse Kinematics

To reduce the amount of clutter in the notation, we assume that there is a single kine-
matic chain whose joints are indexed by1. . . n and that every pointx i in the following
equations is transformed by all the joints of the chain. This means it is attached to the
frame of jointn.
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Energy The notations are similar as these in chapter4. We write target coordinates as
y i . Solving an inverse kinematics problem on a given chain then amounts to minimizing
an energy of the form:

E IK =
(

i

&x i (! ) %y i &2. (5.7)

The optimization consists in minimizingE IK with respect to the state of the kinematic
chain! . Because the energy is a sum of squared functions whose gradients can be com-
puted analytically, we perform this optimization using the Gauss-Newton algorithm.

EfÞcient computation The EM formalism developed in the previous chapter involves a
very large number of residuals. For a typical scene with one human, an observed cloud
of 104 vertices and a model with 100 patches, this formalism leads to an energy function
involving the squared norm of106 3D residuals. Computing a Jacobian matrixJ of size
3.106 ) N joints is impractically slow in these conditions. Even accumulating directly on
JT J andJT b remains very involved for that much data.

This paragraph presents how this matrix and this vector can be computed efÞciently
for a large number of residuals. We Þrst notice that the gradients of these residuals can be
written as:

$x i %y i

$!
=

$x i

$!
. (5.8)

Thus entry[k, l ] of JT J is given by:

(JT J)[k, l ] =
(

i

$x i

$*k

T $x i

$* l
(5.9)

We can rewrite equation (5.6) to have a similar form to that of equation (5.5). If for

prismatic joints# k =
!

0
Rkwk

"
and for hinge joints# k =

!
Rkwk

%[Rkwk ]" ck

"
, then both

partial derivatives write as the multiplication of a6 ) 3 matrix that only depends onx, and
this 6 ) 1 vector that is different for each joint but only depends on the state of the chain
and the type of joint:

$x i

$*k
=

)
%[x i ]" I

*
# k (5.10)

This means that the entries ofJT J can be written as:

(JT J)[k, l ] = # T
k

9
(

i

!
%[x i ]" [x i ]" [x i ]"

%[x i ]" I

" :

# l (5.11)

The entries forJT b contain the same type of factorization:

(JT b)[k] = # T
k

9
(

i

!
[x i ]"

I

"
(x i %y i )

:

(5.12)
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Equations5.11and5.12show that for a simple chain where all the points are attached
to the last joint, all the entries ofJT J andJT b can be computed from the same6 ) 6
matrix and a6 ) 1 vector, multiplied by the correct# k and# l . Pre-computing this accu-
mulator transforms the complexity of buildingJT J andJT b from O(N joints ) N residuals )
to O(N residuals ).

In the case where points are attached to different joints, we can easily keep this im-
proved complexity. The idea is to accumulate this6 ) 6 matrix and this6 ) 1 vector per
joint, using only the constraints set on pointsx i attached to that joint. Because the accumu-
lators use the world coordinates of points, and because skeletons are kinematic trees, one
pass from the end joints to the root allows to add each jointÕs accumulator onto its parentÕs.
This simple method allows the

1
i that happens in each accumulator to account only for

the points that depend on the associated joint.

Furthermore, one can notice that these6 ) 6 and6 ) 1 accumulators only contain el-
ements from the matrices

1
i

)
xT

i 1
*T )

x i 1
*

and
1

i

)
xT

i 1
*T )

[x i %y i ] 1
*
. These

covariance matrices can be very efÞciently accumulated and propagated down the kine-
matic chain, allowing to further speedup the dominatingO(N residuals ) part of the compu-
tation.

One possible drawback of this method is that the covariance matrices are accumulated
with world coordinates, which can cause some precision issues in practice. We used world
coordinates here to describe the idea as simply as possible. In a practical application one
might want to use local coordinates for each jointÕs accumulator, and perform a transform
of the covariance matrix as it gets added to the accumulator of the parentÕs joint.

2.4 Numerical considerations

Regularization One of the drawbacks inherent to the use of the Gauss-Newton algo-
rithm appears in the cases where theJT J matrix is singular. This usually happens when
the system is under-constrained. For example, given a kinematic chain and an energy cor-
responding to one positional constraint on its root, the rest of the joints remain completely
free. This means that the derivatives of the residual error with respect to their parameters
are 0 and that the whole submatrix ofJT J corresponding to these parameters is 0.

Confronted with such cases, a common method consists in lightly penalizing changes
with respect to the current state of the kinematic chain, and to choose an update that opti-
mizes the following function:

Edamped(! + "! ) =
(

i

&x i (! + "! ) %y i &2 + &&"! &2 (5.13)

This has the effect of adding&I to theJT J matrix and thus to make it positive deÞnite. This
method is calleddampedleast-squares and its convergence behavior varies from that of
Gauss-Newton (& = 0 ) to that of a simple gradient descent for large values of&. However,
and as already discussed at page75, the dimensional inhomogeneity between translations
and rotations requires to use different damping coefÞcient&rotate and&translate if we want
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