Skip to Main content Skip to Navigation
Theses

Motion Capture of Deformable Surfaces in Multi-View Studios

Cédric Cagniart 1
1 MORPHEO - Capture and Analysis of Shapes in Motion
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology
Résumé : Cette thèse traite du suivi temporel de surfaces déformables. Ces surfaces sont observées depuis plusieurs points de vue par des caméras qui capturent l'évolution de la scène et l'enregistrent sous la forme de vidéos. Du fait des progrès récents en reconstruction multi-vue, cet ensemble de vidéos peut être converti en une série de clichés tridimensionnels qui capturent l'apparence et la forme des objets dans la scène. Le problème au coeur des travaux rapportés par cette thèse est de complémenter les informations d'apparence et de forme avec des informations sur les mouvements et les déformations des objets. En d'autres mots, il s'agit de mesurer la trajectoire de chacun des points sur les surfaces observées. Ceci est un problème difficile car les vidéos capturées ne sont que des séquences d'images, et car les formes reconstruites à chaque instant le sont indépendemment les unes des autres. Si le cerveau humain excelle à recréer l'illusion de mouvement à partir de ces clichés, leur utilisation pour la mesure automatisée du mouvement reste une question largement ouverte. La majorité des précédents travaux sur le sujet se sont focalisés sur la capture du mouvement humain et ont bénéficié de la nature articulée de ce mouvement qui pouvait être utilisé comme a-priori dans les calculs. La spécificité des développements présentés ici réside dans la généricité des méthodes qui permettent de capturer des scènes dynamiques plus complexes contenant plusieurs acteurs et différents objets déformables de nature inconnue a priori. Pour suivre les surfaces de la façon la plus générique possible, nous formulons le problème comme celui de l'alignement géométrique de surfaces, et déformons un maillage de référence pour l'aligner avec les maillages indépendemment reconstruits de la séquence. Nous présentons un ensemble d'algorithmes et d'outils numériques intégrés dans une chaîne de traitements dont le résultat est un maillage animé. Notre première contribution est une méthode de déformation de maillage qui divise la surface en une collection de morceaux élémentaires de surfaces que nous nommons patches. Ces patches sont organisés dans un graphe de déformation, et une force est appliquée sur cette structure pour émuler une déformation élastique par rapport à la pose de référence. Comme seconde contribution, nous présentons une formulation probabiliste de l'alignement de surfaces déformables qui modélise explicitement le bruit dans le processus d'acquisition. Pour finir, nous étudions dans quelle mesure les a-prioris sur la nature articulée du mouvement peuvent aider, et comparons différents modèles de déformation à une méthode de suivi de squelette. Les développements rapportés par cette thèse sont validés par de nombreuses expériences sur une variété de séquences. Ces résultats montrent qu'en dépit d'a-prioris moins forts sur les surfaces suivies, les idées présentées permettent de traiter des scènes complexes contenant de multiples objets tout en se comportant de façon robuste vis-a-vis de données fragmentaires et d'erreurs de reconstruction.
Document type :
Theses
Complete list of metadatas

Cited literature [180 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-00771536
Contributor : Abes Star :  Contact
Submitted on : Friday, July 19, 2013 - 10:07:47 AM
Last modification on : Friday, July 3, 2020 - 4:50:06 PM
Document(s) archivé(s) le : Sunday, October 20, 2013 - 4:10:35 AM

File

22173_CAGNIART_2012_archivage....
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-00771536, version 2

Collections

Citation

Cédric Cagniart. Motion Capture of Deformable Surfaces in Multi-View Studios. General Mathematics [math.GM]. Université de Grenoble, 2012. English. ⟨NNT : 2012GRENM090⟩. ⟨tel-00771536v2⟩

Share

Metrics

Record views

1253

Files downloads

561