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Résumé

Cette thèse traite du suivi temporel de surfaces déformables. Ces surfaces sont

observées depuis plusieurs points de vue par des caméras qui capturent l’évolution

de la scène et l’enregistrent sous la forme de vidéos. Du fait des progrès récents en

reconstruction multi-vue, cet ensemble de vidéos peut être converti en une série de

clichés tridimensionnels qui capturent l’apparence et la forme des objets dans la scène.

Le problème au coeur des travaux rapportés par cette thèse est de complémenter

les informations d’apparence et de forme avec des informations sur les mouvements

et les déformations des objets. En d’autres mots, il s’agit de mesurer la trajectoire de

chacun des points sur les surfaces observées. Ceci est un problème difficile car les

vidéos capturées ne sont que des séquences d’images, et car les formes reconstruites

à chaque instant le sont indépendemment les unes des autres. Si le cerveau humain

excelle à recréer l’illusion de mouvement à partir de ces clichés, leur utilisation pour la

mesure automatisée du mouvement reste une question largement ouverte. La majorité

des précédents travaux sur le sujet se sont focalisés sur la capture du mouvement

humain et ont bénéficié de la nature articulée de ce mouvement qui pouvait être utilisé

comme a-priori dans les calculs. La spécificité des développements présentés ici réside

dans la généricité des méthodes qui permettent de capturer des scènes dynamiques

plus complexes contenant plusieurs acteurs et différents objets déformables de nature

inconnue a priori.

Pour suivre les surfaces de la façon la plus générique possible, nous formulons

le problème comme celui de l’alignement géométrique de surfaces, et déformons un

maillage de référence pour l’aligner avec les maillages indépendemment reconstruits

de la séquence. Nous présentons un ensemble d’algorithmes et d’outils numériques in-

tégrés dans une chaîne de traitements dont le résultat est un maillage animé. Notre pre-

mière contribution est une méthode de déformation de maillage qui divise la surface

en une collection de morceaux élémentaires de surfaces que nous nommons patches.

Ces patches sont organisés dans un graphe de déformation, et une force est appliquée

sur cette structure pour émuler une déformation élastique par rapport à la pose de ré-

férence. Comme seconde contribution, nous présentons une formulation probabiliste

de l’alignement de surfaces déformables qui modélise explicitement le bruit dans le

processus d’acquisition. Pour finir, nous étudions dans quelle mesure les a-prioris sur

la nature articulée du mouvement peuvent aider, et comparons différents modèles de

déformation à une méthode de suivi de squelette.

Les développements rapportés par cette thèse sont validés par de nombreuses ex-

périences sur une variété de séquences. Ces résultats montrent qu’en dépit d’a-prioris

moins forts sur les surfaces suivies, les idées présentées permettent de traiter des

scènes complexes contenant de multiples objets tout en se comportant de façon ro-

buste vis-a-vis de données fragmentaires et d’erreurs de reconstruction.

Mots-clefs : suivi de surfaces déformables, multi-vues, scène dynamique, aligne-

ment de surfaces, Espérance-Maximisation, EM.
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Abstract

In this thesis we address the problem of digitizing the motion of three-dimensional

shapes that move and deform in time. These shapes are observed from several points

of view with cameras that record the scene’s evolution as videos. Using available re-

construction methods, these videos can be converted into a sequence of three-dimensi-

onal snapshots that capture the appearance and shape of the objects in the scene.

The focus of this thesis is to complement appearance and shape with information

on the motion and deformation of objects. In other words, we want to measure the tra-

jectory of every point on the observed surfaces. This is a challenging problem because

the captured videos are only sequences of images, and the reconstructed shapes are

built independently from each other. While the human brain excels at recreating the

illusion of motion from these snapshots, using them to automatically measure motion

is still largely an open problem. The majority of prior works on the subject has focused

on tracking the performance of one human actor, and used the strong prior knowledge

on the articulated nature of human motion to handle the ambiguity and noise inherent

to visual data. In contrast, the presented developments consist of generic methods that

allow to digitize scenes involving several humans and deformable objects of arbitrary

nature.

To perform surface tracking as generically as possible, we formulate the problem

as the geometric registration of surfaces and deform a reference mesh to fit a sequence

of independently reconstructed meshes. We introduce a set of algorithms and numer-

ical tools that integrate into a pipeline whose output is an animated mesh. Our first

contribution consists of a generic mesh deformation model and numerical optimiza-

tion framework that divides the tracked surface into a collection of patches, organizes

these patches in a deformation graph and emulates elastic behavior with respect to

the reference pose. As a second contribution, we present a probabilistic formula-

tion of deformable surface registration that embeds the inference in an Expectation-

Maximization framework that explicitly accounts for the noise and in the acquisition.

As a third contribution, we look at how prior knowledge can be used when track-

ing articulated objects, and compare different deformation model with skeletal-based

tracking.

The studies reported by this thesis are supported by extensive experiments on

various 4D datasets. They show that in spite of weaker assumption on the nature of

the tracked objects, the presented ideas allow to process complex scenes involving

several arbitrary objects, while robustly handling missing data and relatively large

reconstruction artifacts.

Keywords: deformable surface tracking, multi-view, dynamic scene, deformable

registration, Expectation-Maximization, EM.
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CHAPTER 1

Introduction

Over the last few decades, the cost of image sensors and computing capabilities has

been significantly cut down. As a consequence, digital cameras have become ubiquitous

and the ability to effortlessly record, store and transmit snapshots of the world has become

a familiar part of our day-to-day lives. However, such uses constitute only a fraction of

the possibilities opened by the available technologies. Beyond the acquisition, storage and

rendition of appearance enabled by photography, there is a need for tools that automati-

cally measure and interpret the world underlying the pictures. Computer vision concerns

itself with these challenges. As such, one might say that while photography emulates the

perceptual process of vision, computer vision strives to replicate our cognitive evaluation

of reality.

A significant part of computer vision is dedicated to measuring shape from visual data.

In particular, considerable efforts have been made to contrive algorithms that automatically

build three dimensional models of objects that were observed from multiple views. The

problem has been approached from many directions and multi-view 3D reconstruction has

grown into a mature topic in the computer vision community. Yet when applied to mul-

tiple videos of moving and deforming objects, most of the available methods will treat

each frame independently, ignoring the dynamic nature of the observed event and thus the

temporal redundancy in the data.

This way of digitizing dynamic scenes is in fact the 3D extension of the cinemato-

graphic process, that simply records and renders a rapid succession of snapshots of the

scene but does not measure motion itself. The dynamic information is only implicitly rep-

resented and human brain still has to interpret the series of snapshot to recreate the illusion

of continuous motion.

Automatically measuring motion from visual data remains a challenging and funda-

mental task of computer vision. Typically, the movement between two images of a video

sequence is described as a two-dimensional vector field called optical flow. However, be-

cause optical flow is usually computed from appearance exclusively, it only captures the

11



12 CHAPTER 1. INTRODUCTION

Figure 1.1: In this thesis, we build 4D models from visual data by augmenting the results of

3D reconstruction methods with temporal trajectories for every point of the reconstructed

objects.

displacements of brightness patterns in image space. In their seminal work of 1999, Vedula

et al. [11] introduced the term scene flow to describe the three-dimensional vector field en-

coding the motion of every point on the observed surfaces. After exploring the connections

between optical flow and scene flow, they conclude by hinting that computing scene flow

without first resorting to optical flow should a promising path for further research. Indeed,

if more information is available on the scene than its appearance, computing optical flow

from the appearance alone makes little sense.

The core interest of this thesis is the inference for motion in 3D space. We build on

the recent significant progress made on passive 3D reconstruction from multiple views that

provide us with snapshots of the scene structure, and explore the possibilities opened when

such information is available. Our interest is to simultaneously digitize shape and motion,

that is to advance to a more complete representation of dynamic scenes that complements

the recovered deformable 3D shapes with their temporal evolution. The goal is to automati-

cally reconstruct animated shapes rather than perform series of static shape reconstructions.

We refer to such digital representations of the captured scenes as space-time models, or 4D

models.



1. APPLICATIONS OF 4D CAPTURE 13

1 Applications of 4D Capture

The automatic computation of four-dimensional descriptions of scenes has a wide range

of applications. In this section we list a number of topics which we feel are already im-

pacted or soon to be changed by the recent progress on the subject, among which the

contributions of this thesis.

• Content production The recent progress made on 3D reconstruction suggests that footage

need not be processed as series of 2D images. Manipulating directly 3D shapes instead

of their 2D projections indeed allows much more efficiency and freedom in the artistic

process. For example, this allows to composite an object into a new scene with differ-

ent illumination conditions, then to render the whole from a novel point of view, with a

camera that has a different focal length and depth of field.

Furthermore, CGI artists have needs that exceed the simple acquisition and rendition

of 3D data. They need to edit this acquired content. Consider for example the task of

realistically adding a virtual logo to the shirt of an actor. Editing the 2D video frame-

by-frame to draw the logo would be extremely tedious, as one needs to account for

occlusions, folds of the shirt, self-cast shadows and illumination conditions. Drawing on

a series of 3D meshes frame-by-frame would solve part of these issues but remain very

impractical. If a 4D model of the same performance is available, completing the same

task becomes be much less tedious. Because 4D models contain the trajectories of each

point of the shirt across time, the logo can be added to the first frame, and its deformation

across time can be automatically computed. In other words, this information allows to

automatically propagate edits through time. Moreover, the possibilities opened by 4D

models for edition are not limited to the appearance of the objects. The geometry itself

can be modified in a temporally consistent fashion and the actor can be made taller or

skinnier [3]. The motion from the captured performance can also be transfered to a new

character [2, 9].

Finally, it also becomes possible to insert the 4D models into dynamic simulations. This

allows for example to capture dynamic objects and make them influence simulated par-

ticle systems, or to give an actor virtual long hair or clothing that will interact more

realistically with his captured body.

• Compression, transmission, and real-time rendering 4D models contain explicit in-

formation on the motion of objects, and therefore on the temporal redundancy in the data.

This exposed redundancy can be compressed, yielding much more compact descriptions

of dynamic scenes. Consider the limit case of the rigid motion of an object. With a series

of 3D models, the scene is spatially discretized at each frame. If a 4D model is available,

one can encode the shape information once, and only transmit one rigid transformation

per frame. Such concise representations are of evident interest suited for storage, trans-

mission over networks and real-time rendering.

• Human-Machine interaction Capturing movement at interactive frame rates opens pos-

sibilities for human machine interaction. Measured body poses can be used as user input

to provide intuitive manipulation of virtual objects or natural interaction with virtual

agents. Beyond simple measurement, computed motion cues allow to recognize body
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gestures or complex actions and in some sense to use temporal information to evaluate

the context and semantical content of 4D data.

• Medical applications Recovering shape and motion has also many potential medical

applications. For example, measuring the 3D motion of athletes allows for the bio-

mechanical analysis of skilled movement such as a golf swing. It is also useful to mea-

sure the evolution of a gait pattern during physiotherapy or to automatically detect, record

and document the evolution of patients for pathologies such as epileptic seizures. Mo-

tion capture also has applications for the observation of medical personnel. It allows to

automatically document procedures and compare them to established work flow. This

can save precious time when writing reports and help with the training of new staff. Fur-

thermore, knowing the current stage of a procedure can help predict the end of a surgical

intervention and get the next patient ready so that the usage of the operating room can

be maximized. Other applications of interest include collision avoidance [6] or the esti-

mation of the cumulated exposure to radiation of personnel in contact with x-ray sources

[7] ( our work on the subject is presented in chapter 6).

2 4D Capture: Beyond Marker-based Skeletal Animation

The research presented in this dissertation was for the most part supported by Deutsche

Telekom Laboratories and linked to its Free View-Point TV activities. Because of this link to

industrial requirements, most of our studies were steered towards the problem of animated

3D content production.

Limitations of marker-based motion capture The established pipelines for the produc-

tion of animated 3D content are currently marker-based. This means that they compute

the trajectories of a restricted set of optical markers that are relatively easy to detect and

track along sequences. In figure 1.2 we show a typical motion capture environment used

in the production of movies and games. The tight black suits worn by the actors show that

marker-based techniques come with a number of drawbacks:

• Attaching markers is tedious and requires to be done before each acquisition.

• Markers can interfere with the movement.

• Markers prevent the simultaneous acquisition of appearance, shape, and motion.

As such, marker-less motion capture has been the subject of a large body of work, mostly

focused on human motion [8, 10].

Limitations of skeletal models The vast majority of human motion capture system eval-

uate body movement in terms of joint angles on a kinematic tree representing the human
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Figure 1.2: Optical Motion Capture on the set of LA Noire ( c©Rockstar Games).

skeleton. The limited expressive ranges of these articulated structures confers a lot of ro-

bustness to the inference of body poses by constraining the solution space. But it also

severely narrows the nature of motions that can be recovered. In particular, capturing the

deformation of loose clothing such as skirts is beyond reach. Fine deformations of the

human body are also lost, which can significantly hinder the realism of the recovered ani-

mation. The limitations of thinking of the human body as an articulated structures are for

instance exposed in The Illusion of Life: Disney Animation [4]. In this book, two animators

recall the introduction of live footage in the animation process at the Disney Studios. Each

frame of the film was printed to a sheet and these sheets were pinned together to the pegs

of an animation desk so that the animator could flip through them and study the movement.

We were amazed at what we saw. The human form in movement displayed

far more overall activity than anyone had supposed. It was not just the chest

working against hips, or the backbone bending around, it was the very bulk of

the body pulling in, pushing out, stretching, protruding.

Frank Thomas and Ollie Johnston

They explain how this confirmed what they had previously empirically discovered as one

of the keys to drawing life-like animations.

The loose flesh on a figure, [...] will move at a slower speed than the skeletal

parts. This trailing behind in an action is sometimes called “drag,” and it gives

a looseness and a solidity to that figure that is vital to the feeling of life.

Frank Thomas and Ollie Johnston

Because of the limitations of skeletal-based motion capture, such small yet valuable details

are lost during the performance capture, and usually have to be re-synthesized in later stages
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Figure 1.3: The Ball sequence from INRIA illustrates the need for non skeletal-based

data-driven mesh animation methods, as the movement and deformation of the ball are of

interest but can not be modeled by an articulated structure.

of production from databases of previous observations or by physical simulation techniques

More fundamentally, skeletal methods are limited to capturing humans or other rare

articulated structures. They were not designed to handle more complex scenes involving

several objects of arbitrary nature. A complete spatio-temporal description of the scene

presented in figure 1.3 for example should include the motion and deformation of the two

persons, but also of the ball. Skeletal-based methods are insufficient in these more elabo-

rate settings, which motivates our research for new, more general solutions to marker-less

motion-capture.

Objectives and technical context The work presented in this thesis neither uses markers

nor articulated models. The goals are to avoid the tedious fastening of markers, to allow as

much freedom as possible in terms of what kind of objects and movements can be captured,

and to minimize the overall need for user intervention . In the long run, digitizing the 3D

structure and temporal evolution of an event should be as easy as it is today to capture its

appearance in a video. Our part in the ongoing research on the subject is the contribution

of a set of developments aimed at:
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Figure 1.4: The Grimage plateform.

• the concurrent capture of the appearance, shape and motion in the scene.

• the capture of scenes involving several objects of different nature.

Our developments contribute to a body of research on the uses of multi-camera setups.

These setups combine several cameras that are arranged around a volume of interest and

that synchronously acquire videos of the scene from multiple points of view. The per-

spectives opened by such systems were identified more than 15 years ago, and one notable

pioneering experiment was the CMU 3D dome [5] that recorded data on analog VCRs.

Since then, the improvements in camera technologies and storage capacity have been in-

tegrated in the development of several digital multi-view studios. We had access to three

of them: the Grimage Platform in INRIA Rhône-Alpes, which is displayed in figure 1.4,

a similar multi-camera system deployed at Deutsche Telekom Laboratories in Berlin, and

a smaller scale system deployed a the Technical University of Munich. Such systems are

relatively inexpensive to deploy and allow an unintrusive capture of performances from

multiple views. Today, the progress on passive 3D reconstruction makes them emerge as

a competitive solution to 3D content production [1]. Our goal in this thesis is to advance

the state of the art to a point where these systems can be used for the full 4D digitization of

performances.
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3 Challenges and Contributions

The objectives that were established in the previous section delineate the desired out-

come of our research, as well as its technical context. In this section, we identify the main

scientific challenges to be met, and introduce the corresponding contributions of our work.

Visual data As previously stated, our data originally consists of images acquired in a

multi-camera setup, and we rely on a number of existing reconstruction algorithms to obtain

an estimation of the scene 3D structure. These reconstructions are not only degraded by

noise and occlusion, they are also heavily biased by the simplified models used in low-

level treatment of the image information and by the shortcomings of 3D reconstruction

algorithms themselves. As such, our developments should robustly handle the artifacts that

commonly arise in these pre-processing stages.

• Visual data is inherently fractional because of occlusion. Occlusion not only degrades

the signal: it actually results in the absence of information on some parts of the shape.

This raises considerable challenges when trying to track points of a deformable surface,

as some parts of the surface might be observable at a certain time frames and not at

others.

• Visual data is often ambiguous. By ambiguity we mean that points on the surface rarely

have discriminative appearances. In figure 1.3, pretty much all the points on the father’s

t-shirt have the same uniform black appearance. In the same figure, it can also be seen

that a point on the ball will greatly vary in appearance over time because of the strong

specularity of the material. It clearly is a hard problem to follow points in space and time

from images if their appearance varies so sharply and if large parts of the surface tend to

have a uniform color.

• The information can be degraded in processing stages that precede the motion estima-

tion. A typical example in the multi-view studio setting is the segmentation stage that

separates the objects of interest from the background and sometime mislabels parts of

the images. 3D Reconstruction algorithms also have shortcomings when the appearance

of objects is too ambiguous and can output shapes with significant artifacts.

Deformable models This thesis uses a model-based approach to recover motion. The

role of a model in a surface tracking context is not only to parametrize the deformation of

surfaces, but more importantly to define what is a plausible configuration of a deformable

object. In other words, the deformable model encodes prior knowledge that allows the

tracking algorithm to confine the search for surface evolution to the space of plausible

configurations, and to steer its output towards more likely configurations. This effectively

allows to increase robustness with respect to the challenges that come with visual data.

One of the key issues explored by this thesis is the trade-off that deformable models offer

between expressiveness and robustness. If they are too constraining or object-specific like

articulated structures, they limit the nature of objects that can be tracked and the range of

deformations that can be recovered. If they are too permissive or too general, they stop
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playing their regularizing role: they no longer compensate effectively for ambiguous data

and also can fail to prevent the over-fitting of erroneous data.

Contributions This dissertation is organized around two main complemental contribu-

tions aimed at recovering 4D models from multiple videos. The first contribution consists

of a generic mesh deformation and numerical optimization framework that builds on ideas

from the field of interactive deformation in computer graphics. This framework makes no

assumption on the nature of the object and simply represents a reference surface as a col-

lection of small surface elements, or patches to which the vertices of the original mesh are

attached. These patches are each associated to a rigid transformation and organized in a

deformation graph that controls the deformation with respect to the reference mesh. We

show that while allowing large and complex deformations, this representation of the geom-

etry and parametrization of the deformation are robust tools to tackle the recovery surface

deformation from visual data. The inference for deformation benefits from the averaging

effects of visual cues over each patch’s surface. Furthermore, elastic forces are emulated

on the deformation graph to constrain and regularize the recovered deformation when faced

with fractional, ambiguous or erroneous data.

However, because this mesh deformation framework is generic and makes only weak

assumptions on how the object deforms, we show as a second contribution that the deforma-

tion model can be complemented with a Probabilistic model of the data acquisition process

that accounts for its uncertainty and errors. The surface tracking problem is then cast as the

3D registration of surfaces that we embed in an Expectation- Maximization framework. We

show that this probabilistic formulation effectively manages artifacts in 3D reconstructions

and has improved convergence properties.

Extensive experiments on various 4D datasets show that these two ideas allow to ro-

bustly handle missing data and relatively large reconstruction artifacts. More importantly,

the novelty of our work appears through our results on complex scenes involving several

objects of arbitrary nature, where previous art in the multi-camera setting had mostly aimed

at tracking a single human actor. We additionally evaluate our approach on these simpler

scenes, compare our results to these of methods that make much stronger assumptions on

the nature of the object, and show that we perform comparatively well.

4 Thesis Outline

The remainder of this dissertation is structured as follows:

Chapter 2 recalls the technical and scientific background our work builds upon. Then an

overview of the related works that address deformable surface tracking in multi-view



20 CHAPTER 1. INTRODUCTION

setups is presented. In other words, this section presents the prior art on our problem

and puts our contributions in perspective.

Chapter 3 provides an overview of state-of-the-art methods on mesh manipulation and

deformation. Then, our numerically robust mesh deformation framework is pre-

sented, as well as applicative cases that demonstrate its usefulness for the purpose

data-driven mesh deformation and tracking.

Chapter 4 presents our developments on the animation of 3D surfaces by probabilistic

registration. These developments build on the generic deformation model of the

previous chapter to allow the tracking of complex scenes involving several objects

of arbitrary, and a priori unknown nature. Furthermore, this chapter formalizes the

problem in a Bayesian framework that increases the robustness to reconstruction

artifacts.

Chapter 5 explores the applicability of the developments from the previous chapter to the

tracking of articulated objects, and compares the results of our generic patch-based

method with more constraining tracking algorithms. More specifically, this chapter

looks at skeletal-based tracking and at an extension of mesh deformation model of

chapter 3 that accounts for rigid clusters in the object.

Chapter 6 presents our conclusions, as well as a number of works that are already im-

pacted by the presented developments, and discusses the perspectives for further re-

search.
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CHAPTER 2

Related Works

This chapter presents the technical and scientific context around the research

reported by this dissertation. We articulate our discussion around three main

topics. The first part is dedicated to shape, and presents the data acquisition

studio and 3D reconstruction pipeline. In a second part, we address motion

and present existing methods for establishing temporal correspondence be-

tween images or between 3D shapes. These methods can be integrated as

building blocks for our purpose, and have been used by previous works that

directly address surface tracking in multi-view setups. In the third part of this

chapter, we discuss how these works have performed this integration and try

to outline their limitations as well as the ideas that were the key to their suc-

cesses. This allows motivate our choices of research direction and to put in

perspective the contributions presented in the remainder of the thesis.

1 Inferring Shape

As explained in the introduction, the developments of this thesis are mostly targeted

at multi-camera environments such as the Grimage Platform developed in INRIA Rhône-

Alpes. In its latest version, Grimage can count up to 32 cameras that are distributed around

a volume of interest. However most of our experiments were performed on smaller scale

systems with 8 to 16 cameras. These cameras are calibrated, which means that their intrin-

sic characteristics and relative poses in spaces are known. A whole segment of the com-

puter vision litterature is dedicated to calibration and several software packages [20, 39]

are open-source. These cameras are also synchronized, which means that the snapshot pro-

vided by one frame acquired by the system consists of a set of images all taken at the same

time.

23
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In the next paragraphs, we give a brief overview of possible 3D reconstruction pipelines.

Although the contributions of this thesis are not directly on this topic, our work heavily re-

lies on 3D data as input and is therefore directly impacted by the performance, precision

and limitations of static 3D reconstruction methods.

Background subtraction is in the majority of cases the first step of the reconstruction

pipeline when dealing with data captured in a multi-camera studio. As shown in figure 1.3,

the scene is often surrounded by painted walls and floor. Using blue or green as color allows

to easily differentiate the background from skin-color for example and makes chroma-

keying possible. It is also possible to use more elaborate background subtraction methods

such as [18] and to learn from a sample of background frames a statistical model for the

distribution of brightness and chromaticity components at each pixel. This can particularly

help to handle the case of shadows which can be incorrectly segmented as foreground.

Shape-From-Silhouette is arguably the simplest paradigm for reconstruction from multi-

view data. The idea is to look for the largest 3D volume consistent with the silhouettes of

the object in the different views. This volume is named the visual hull [24] and although

it only approximates the shape of interest, the estimate it provides is good enough for a

number of purposes. Once textured for example, the visual hull is often a good geometry

proxy that allows for convincing renderings. It is also a very good initialization point for

more precise reconstruction algorithms as it provides a coarse estimate of the geometry and

of the self-occlusions.

The main strengths of shape-from-silhouette are linked to its conceptual simplicity.

First, basic algorithms are very straightforward to implement. Second, these simple ap-

proaches make no assumption on the nature or the smoothness of the observed object. This

means that there is very little need for parameter tweaking beyond the foreground segmen-

tation stage. The third and most important attractive characteristic of shape-from-silhouette

methods is that several implementations [26, 12, 46, 23] were shown to be real-time capa-

ble.

Shape-from-silhouette algorithms however come with a number of restrictions. The

main limitation appears when dealing with concavities in objects. Concavities such as the

inside of a cup for example are not observable in a silhouette, regardless of the point-of-

view on the object. Figure 2.1 shows a simple 2D example in which the shown concavity

can not be recovered, no matter how many cameras are added to observe the object. A

second limitation is the robustness of the visual hull computation to erroneous input. Not

making assumptions on the smoothness of the observed shape confers a lot of genericity

and limits the addition of artifacts by regularization terms but it also means that errors that

arose in the pre-processing are not compensated for. Although some work has been done

to increase the robustness of shape-from-silhouette [11, 34], more elaborate methods lose

the simplicity and real-time capability that make these approaches attractive.

Some of the results presented in chapters 4 and 5 have been obtained using visual

hulls as shape input data. We implemented a basic volumetric algorithm to perform recon-
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(a) Shape-from-silhouette techniques can not re-

cover concavities that do not appear in the silhou-

ettes of the object.

(b) Too few cameras around the scene can result in

reconstruction artifacts. In this situation the visuall

hull contains an additional connected component

that does not correspond to any object in the scene.

Figure 2.1: Limitations of shape-from-silhouette reconstruction methods. In these exam-

ples, the real 3D object is in blue, the cones corresponding to is silhouettes in green, and

the visual hull in red.

struction from silhouettes. This algorithm simply processes every voxel of a 3D grid in a

bounding box and checks whether its projection falls in or out of every silhouette. Because

of errors in the background subtraction like those of figure 2.2 however, some of the re-

constructions obtained by this simple approach exhibit consequent artifacts. The basketball

sequence presented in figure 4.8 of the results section in chapter 4 is a particularly good

illustration of the range of artifacts that can occur: it contains toplogical collapses, missing

geometry due to erroneous segmentation and bad camera calibration, as well as outlying

geometry due to non-recoverable concavities.

Stereo reconstruction methods do not limit themselves to the purely geometric silhouette

information, but consider photometric information, which consists of the observed inten-

sity values in the images. Stereo builds on the idea of photoconsistency. For example, if

reflections are ignored, and a Lambertian model is assumed for the reflectance of the ob-

served object, a 3D point of its surface should appear with the same color in every view

and a matching score can be defined as the sum of squared (or absolute) differences (SSD,

SAD) on a small image patches. More robust photoconsistency scores such as normalized

cross-correlation (NCC) or mutual information (MI) can also be used [16].

Under the hypothesis of a calibrated binocular setup, the search for correspondence is

traditionally constrained using a result from epipolar geometry: for a given point in the

first image, a corresponding point in the second image necessarily lies on a well defined

line called the epipolar-line [see 14, for an extensive study of epipolar geometry]. Thus,

efficient algorithms reduce their search for correspondences to 1D scans along scanlines

that can be aligned in memory in a rectification stage for even greater speedups. The

computation of disparity is usually regularized, which means that the algorithm tries to
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(a) The silhouette of the little boy gets incorrectly segmented as foreground. However, because of the redun-

dancy brought by 16 cameras, these errors do not significantly impact the visual hull reconstruction for this

particular frame, as shown on the right.

(b) The variation of illumination under the ball is large enough to create a background subtraction error in

most of the cameras. In that case, parasite geometry appears in the reconstruction.

Figure 2.2: Examples of typical foreground segmentation artifacts in multi-view studios.

The silhouettes are shown for two cameras and illustrate the limitations of background

subtraction in areas that are weakly illuminated.
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favor some consistence in the depth estimations of neighbouring pixels (see the survey of

Scharstein and Szeliski [32] for more details). Challenges then arise to handle texture-

less objects, object boundaries, and occlusion. Several regularization schemes have been

proposed, and the most successful approaches balance data fidelity and regularization in a

global optimization on the whole image. In particular, a number of works have formulated

the depth estimation problem as a labeling task, and given it a Bayesian modelisation by

considering the depth images as Markov Random Fields (MRF). The labeling can then be

run in approximate inference [40] algorithms based on graph-cuts or belief-propagation.

When many views of the object are available, it becomes possible to reconstruct a com-

plete 3D model instead of a single depth-map. The problem is known as Multi-View Stereo,

involves much longer baselines than binocular configurations, and therefore requires care-

ful handling of occlusion. Seitz et al. [33] provide a recent and rather complete survey and

taxonomy of the field. More recent and notable results for multi-camera studio usage were

mostly linked to volumetric approaches using global optimizations with graph cuts [38] or

gradient descent of convex energies [22, 47].

Some of the results presented in in chapters 4 and 5 have been obtained using the output

of the multi-view stereo algorithm of Starck and Hilton [37]. This algorithm first computes

the visual hull. It then performs a global optimization based on volumetric graph-cuts inside

the visual hull to maximize photoconsistency and surface smoothness while respecting a

number of edge features detected in the images.

2 Inferring Motion

The previous section has presented how 3D shape could be recovered from the multi-

view studio. However, the focus of this thesis is motion: we are interested in establishing

dense temporal trajectories for every point at the surface of deforming objects, as shown

in figure 1.1. As such, the key issue can be thought of as finding reliable correspondence

between two observations of a deformable object at different times.

Finding correspondence in images, 3D shapes or any other type of visual data is a fun-

damental task of computer vision. The computation of correspondences is actually found

at the heart of most computer vision problems. As we have seen in the previous section,

stereo reconstruction for example requires correspondences between multiple views of a

scene. Similarly, motion estimation requires correspondences between two frames of a

temporal sequence.

The rest of this section is organized around a brief overview of the existing paradigms

for establishing such correspondences. We begin with methods that try to establish dense

correspondence from the appearance of the object directly. Then we look at methods that
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match geometry, and do so globally. They offer a top-down point of view on the problem

by matching 3D shape as a whole to later obtain dense correspondences. We finally adopt

a bottom-up point-of-view by considering methods that match sparse points between two

images or two shapes, relying on following regularization mechanisms whose role is to

prune erroneous matches and diffuse the sparse correspondence information to obtain a

dense correspondence between the two surfaces.

2.1 Dense appearance matching

Let us consider the sequences of images provided by each camera. The dense cor-

respondence between two consecutive images from each of these videos is known in the

litterature as optical flow. As we already recalled in the introduction, the optical flow is

a 2D vector field in the image plane that describes the movement of brightness patterns

between two frames. If we make the assumption that a surface point will project with the

same brightness in both images the optical flow can be identified with the 2D motion flow

that is the projection of a 3D vector field describing the motion of surfaces in 3D space

[43]. This vector field is known as scene flow and is the information we are interested in.

The computation of optical flow has been the subject of significant research effort over

the last decades and the resulting advances are well summarized in the recent survey of

Baker et al. [2]. Despite the impressive progress that was made on optical flow computation

however, computing a reliable scene flow from multiple videos is not as straightforward

as backprojecting the optical flow of every camera using the equations of [43]. This is

explained by two reasons: first, optical flow only measures variations of appearance, and

not the projection of scene flow directly. These variations of appearance can be caused by

a multitude of factors such as illumination, surface orientation and reflectance properties

and radiometric properties of the camera. Second, optical flow algorithms constrain their

output by enforcing regularity properties on the flow field. However this regularization

happens in 2D and does not account for the structure of the 3D scene, where the physical

events underlying the observations take place. As reported by [2], a number of algorithms

use robust norms in their penalization of irregularities to account for sharp variations of

appearance in the image and prevent oversmoothing at occlusion boundaries. To some

extent, this process amounts to obtain more precise regularity constraints by trying to guess

information on the scene structure from its appearance.

In our case, we have access to the scene structure. It is therefore tempting to avoid the

effects of potentially error-prone 2D regularizations and regularize the scene flow directly

in 3D. For example Pons et al. [30] compute the scene flow from the appearance and 3D

structure of the scene and propose in a continuous formulation to minimize the harmonic

energy of the flow over the known surfaces. We’ll discuss in chapter 3 other regularization

energies that have been proposed to control the deformation of discrete meshes. Here, we

note that regularization models can only help whith ambiguous appearance information up

to a point. As already mentioned in the introduction, objects are rarely textured, and they

tend to have large portions of their surfaces with uniform colors. Furthermore, the appear-

ance of each point also varies from one frame to the next. Modeling for some lighting
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Figure 2.3: The correspondence problem in the deformable case, between two successive

temporal frames. This figure contain the information that is available as input in our con-

text: input images, indendent 3D reconstructions, and the reconstructions painted with col-

ors sampled in the input images. The correspondences can be searched for in these images

directly, or on the reconstructed surface. Note that the black t-shirt offers little distinctive

photometric feature, and that there is also no geometrically characteristic feature in the

middle of the chest. It is thus difficult to establish precise correspondence in this region.
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effects by taking the orientation of the surface with respect to a light source is possible for

reasonnably simple environments [43, 7]. Handling the case of specularities or (self-)cast

shadows for examples is much more complex. Because photometric information is so am-

biguous, we turn in the next paragraph to methods which are mostly concerned with match-

ing some geometric properties of surfaces. The other photometry-matching approaches that

will be reviewed do not concern themselves with dense appearance, illumination or precise

image-formation model but limit themselves to the sparse matching of areas where sharp

variation of color occur.

2.2 Establishing correspondence in embedding spaces

Global shape matching algorithms have mostly been developed for shape retrieval,

where an input object is used to query a database for similar objects. This usually hap-

pens by mapping the shape space to a feature space where a similarity measure is defined

and where the actual matching happens. Popular geometric descriptors include the spin

images of Johnson and Hebert [21] or the shape context descriptor of Belongie et al. [4].

This type of descriptors allows to match shapes and have invariance properties with respect

to rigid transformations ( with an extension in the case of shape context descriptors). How-

ever, once two shapes have been matched, these methods do not allow to establish dense

correspondence between the matched surfaces because the shapes were treated as a whole

and and mapped it to a single feature descriptor. They are not structure-preserving in that

there is no way to map part of this shape descriptor back to the constitutive elements of the

original shape that were voxels or vertices.

In this subsection, our interest goes to structure-preserving embedding techniques.

Here again, the shape is mapped to an intermediate representation that provides some

invariance with respect to a class of transformation, like rigid motion in some cases or

non-rigid deformations in other. Contrary to global shape descriptors, these embeddings

preserve the structure of the shape, in that the vertices of the mesh and their connectivity

are also mapped to the embedding space and can be matched there. The work of Starck and

Hilton [35] for example establishes dense correspondence between two temporally adjacent

reconstructions by mapping them to a spherical domain where the correspondence is com-

puted, using both shape and appearance cues. One limitation of this embedding however is

that the surfaces have to be of genus zero for the spherical mapping to be performed.

Other approaches try to respect the topology of the matched shapes more closely and

actually use this topological information for the matching. These methods are interested in

intrinsic characteristic of the shape, and notably in geodesic distances on its surface or in

its volume. The geodesic distance between two points is indeed invariant to a large class

of non-rigid deformations, while their distance in Euclidean space can vary greatly. Hilaga

et al. [15] propose to compute for each point of the surface the geodesic integral, which is

the average geodesic distance to all other points. Then they build the Reeb Graph [5] of

this scalar function on the manifold described by the mesh. These graphs are much more

compact representations of the topological characteristics of the shape and the matching is

much more efficiently performed on them. Other works [28, 31] search for an alignment
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(a) Variation of the geodesic distance between two points

(b) Variation of the geodesic integral, which is computed at each point as the average geodesic distance to all

the other points. It can be seen that the left hand is a detectable extremum in the left mesh but not in the right

one.

Figure 2.4: Changes of topology are common in sequences of meshes reconstructed from

visual data. They result in large variations of the shape’s intrinsic characteristics. This

limits the reliability of these characteristic for matching. This example shows a frequent

toplogical collapse that happens when the left arm occludes the side of the body.



32 CHAPTER 2. RELATED WORKS

in the spectral domain. In the work by Mateus et al. [28] for example, the topological

and metric characteristics of the shape are studied through the eigenfunctions of the of

the graph Laplacian of the original geometry. The shapes are aligned in the space defined

by the first eigenfunctions, where the protrusions are very distinct. However, and even

though some works have explored more robust characteristics such as the heat diffusion

distance [6], these methods are inherently very sensitive to changes of topology. The output

of 3D reconstruction algorithms exhibits such topology changes, that are mostly due to

occlusions. In figure 2.4 for example, a human actor goes from having his arm up to having

it along his body, and this changes intrinsic properties of the shape dramatically. More

importantly, this topological change happens locally but impacts some intrinsic properties

globally.

2.3 Sparse feature matching on the surfaces

To deal with geometry acquired from real data, and to increase the robustness of the

matching to occlusion and partial reconstructions, it is reasonable to try to find matches

between points of the two surfaces instead of matching the surfaces as a whole directly.

2.3.1 Finding and describing features

To match points between two surfaces, a similarity measure must be defined. This is

commonly performed by first building feature vectors that describe geometric or photomet-

ric characteristics on a spatial neighborhood of each point. Measuring similarity between

these feature vectors, or descriptors allows to evaluate the quality of point-wise matches.

Point-wise geometry descriptors typically describe the geometry of the surface around

a point. The idea is well illustrated by the spin images of Johnson and Hebert [21]. These

spin images are location histograms of the surface created around a point by spinning a

half-plane about the surface normal and accumulating in 2D bins on that half-plane when

the surface intersects it. These histograms can be matched using cross correlation or other

more robust statistical measures. A similar descriptor called shape context was proposed

by Belongie et al. [4]. It consists of a histogram of the distribution of the relative log-

polar coordinates of the other points. This logarithmic sampling in distance decreases

the influence of distortions that happen far away from the point where the descriptor is

computed. In [13], an extension of the descriptor to 3D is presented, as well as harmonic

shape context which keep the lowest frequency component of the harmonic representation

of the shape context and grants it some rotational invariance properties. These methods

work rather well to describe and match rigid shapes but when applied to non-rigid matching,

the radius of the neighborhood on which the descriptors are computed offers a trade-off: if

the radius is too small, the features become very local and less discriminant because of self

similarities. If the radius is too big, the features become global and non-rigid deformations

become a problem.
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Point-wise intrinsic geometry descriptors are built from intrinsic characteristics of the

shapes. For instance, the extrema of the geodesic integral, or protrusions, are distinctive

features that are rare enough to be matched [42, 41]. In the case of humans typically, these

would be the hand, feet and the head. The precision obtained on the localization of these

extrema can however suffer from small topological or reconstruction artifacts. For example,

if part of the foot disappears in one frame, the geodesic extrema might switch from the toe

to the heel and cause an erroneous match between these two points. While this would have

little incidence on a very coarse skeletal tracking method, it can in the case of dense surface

tracking cause a local flip of the surface in the area of the leg.

For other points that are less distinctive than geodesic extrema, Starck and Hilton [36]

propose to match geodesic histograms that bin for a point of interest the geodesic distance

to all other points on the surface. These point-wise descriptors however suffer from the lim-

itations that were already mentioned for their global topology matching counterparts. For

example in the right mesh of figure 2.4, the extremum of the geodesic integral correspond-

ing to the left hand does not disappear completely but its magnitude becomes too small for

the protrusion to be detected. It is also easy to see that this local change of topology affects

the geodesic histogram at every other point of the surface.

Point-wise photometry descriptors describe the color, or reflectance properties of the

object. They are a very well studied topic in computer vision, because of the widespread

need for image correspondences. The survey by Mikolajczyk and Schmid [29] offers a

good overview and comparison of several region detectors and descriptors in images. In

the context of 3D deformable surface tracking, the most used approaches have been the

Scale Invariant Feature Transform (SIFT) by Lowe [27] and the more recent and speed-

focused Speeded-Up Robust Features (SURF) by Bay et al. [3]. SIFT and SURF are quite

similar and detect interesting regions in both space and scale. Because they aim at scale and

rotation invariance, these approaches define a sampling grid that is aligned with the domi-

nant gradient orientation and scaled to match the scale at which the region of interest was

detected. The descriptors are then built as histograms of gradient orientation and location.

In the case of SIFT, the resulting descriptor has 128 dimensions, because the sampling grid

is of size 4x4 and because the orientations are split in 8 bins. The 3D locations of these

features on the surfaces are simply obtained by back-projecting the 2D key-point on the

reconstructed surface.

Scale invariance is a very important trait for purely image-based algorithms that need

to find key-points from objects in images regardless of the distance of the object to the

camera. When 3D information is available however, resorting to such algorithms amounts

to ignore the fact that the 3D size of a photometric feature is known. In this case, descriptors

should be build to encode how the color varies on the surface rather than how it varies in

an image. This idea has been developed by recent work such as [45, 48]. Wu et al. [45]

build a SIFT descriptor on oriented 3D patches, and therefore remove its dependence on the

point-of-view. Zaharescu et al. [48] go further and directly consider the manifold sampled

by the mesh as an image domain, and treat color intensities as scalar functions defined on

this domain. Similar to the original 2D photometric detectors/descriptors, their approach
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detects key-points in scale space and builds the feature from histograms of gradient. The

key difference is that the whole process happens on the surface itself instead of the image

domain.

2.3.2 Feature-space coherence

As it was mentioned for geometric descriptors, the precision-recall performance of

point-wise features offers a trade-off linked to their locality. If the features are computed on

a wide neighborhood, the matching has a bad recall performance when confronted to occlu-

sions or partial reconstructions. The matching can also suffers from non-rigid deformations

if the features do not describe intrinsic characteristics. If the neighborhood is too small, the

matching looses its specificity and becomes sensitive to noise and self-similarities in the

object.

Specificity is a crucial issue as we want to avoid false positives, or outliers, as much

as possible. The first solution to this problem is to exclusively build descriptors in re-

gions that are expected to be discriminant. This is what the detector part of SIFT does for

example. However, this decision is often made locally and does not account for symme-

tries or repeated structures. Therefore, other heuristics are used to prune correspondences

from as many outliers as possible. When matching a feature against a database, one can

check that closest match is isolated enough in feature space, that is that there a no other

very close candidates. This ensures that the correspondence is distinctive. When matching

points between two surfaces, one can also check the consistency of the forward-backward

correspondence and make sure two corresponding features are each other’s best matches.

The problem is that even with aggressive thresholding, none of these methods can guar-

antee an outlier free output. Figure 2.5 shows the result of the surface-based photometric

matching of [48] where there are remaining outliers in the sparse matches, even after ap-

plying the presented pruning heuristics. One of the main limitations of these methods is

that the coherence in 3D space is lost when the points are mapped to the feature space:

even though two neighboring points on the surface will most likely have correlated move-

ment in 3D space, they can be mapped to remote locations of a high dimensional feature

space (recall the 128 dimensions of SIFT). Moreover, distant points in 3D space like the

left and right foot of figure 2.5 can get mapped to the same positions in feature space where

temporal matching will be ambiguous, even though each foot hardly moved at all in 3D

space.

2.3.3 3D-space coherence

Assuming that the surface points will have spatially coherent displacements can help re-

ject outliers and disambiguate point-wise correspondences by considering the shape match-

ing from a global perspective in 3D space. For a rigid object typically, this is done by

considering that there can not be more than 6 degrees of freedom to the set of 3D point

displacements. Given three or more matches from the set of candidate correspondences, it
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Figure 2.5: Result of the photometric feature matching of Zaharescu et al. [48]. In spite of

outlier rejection, there are remaining matches between the left foot and arm and the right

foot and arm.

is possible to compute a rigid motion [17] and to evaluate how well the rest of the candi-

date correspondences agree with it. This is the idea of the RANdom SAmple Consensus

(RANSAC) algorithm by Fischler and Bolles [10]. Candidate rigid motions can be built

from randomly picked subsets of matches until a significant part of the candidate matches

agrees with the candidate rigid motion. RANSAC is a very effective method provided a can-

didate model can be built from a small subset of matches, and provided that the proportion

of outliers is sufficiently low. It is extensively used for example in Structure-From-Motion

problems [14] where it is combined with epipolar geometry to bring two images of a rigid

scene into correspondence.

For the non-rigid deformations that we consider however, RANSAC is difficult to apply.

First, non-rigid deformations have too many degrees of freedom to be simply constrained

by a limited subset of sparse matches, and it would require too large a subset to build

a candidate deformation to test the rest of the matches against. Furthermore chances of

picking an outlier-free subset would decrease in a combinatorial way as the size of the

required subset would increase.

Instead of trying to build one model that the majority of the candidate matches should

agree with, other approaches consider more local pairwise spatial relationship between



36 CHAPTER 2. RELATED WORKS

correspondences. The method by Leordeanu and Hebert [25] builds an sparse symmet-

ric affinity matrix A that has as many dimensions as there are candidate correspondences.

A[i, j] measures if feature number i and feature number j respect a given geometric con-

straint when considered together. Then the method computes the eigenvector of A corre-

sponding to the largest eigenvalue. This vector measures the strength of the association

between each correspondence and the strongest connected cluster in the graph of all corre-

spondences. The final subset of accepted correspondences is essentially this cluster, with

additional constraints preventing one-to-many or many-to-one correspondences. The key

question to be answered when using this spectral method resides in the definition of the

affinity measure between two correspondences, that is of the geometric constraint the pair

of matches must respect. This affinity measure can be the preservation of the geodesic

distance [19] when the deformation is large. If the correspondence is established between

subsequent frames of a temporal sequence, the simpler variation of Euclidean distance can

also be used [8].

The method by Starck and Hilton [36] casts the task of finding a coherent subset of

matches as a discrete labeling problem. In their work, they build the graph formed by

the points of interest on the first shape, considering that two points are neighbors in the

graph if they are within a given geodesic distance of each other on the mesh. For every

point of interest, the goal is then to find an optimal label in a set of labels formed by

possible endpoints on the second shape. The pairwise consistency between the labeling

of two neighboring interest points is defined as the preservation of the geodesic distance,

and the graph is labeled by processing it as a Markov Random Field in a Loopy Belief

Propagation algorithm. This method allows to put into correspondence two observations

of a deformable object in very different configurations. Furthermore it is robust to some

variations of topology because it only considers the geodesic distance locally. However,

this method is computationally quite involved.

3 Dense surface tracking

Inferring dense correspondence between two shapes from the motion cues that were

reviewed until now is a regularization problem. There are two aspects to this regularization:

first, the motion needs to be interpolated to the whole surface, particularly when using

sparse motion cues. Second, the regularization must prevent the over-fitting of erroneous

motion cues. As such, the task resembles a smoothed interpolation problem. We have

seen in the case of sparse matching that outlier rejection heuristics and algorithms enforce

geometric constraints based on prior knowledge on the way points on the surface should

move with respect to each other. Similarly here, the regularization should account for some

prior knowledge on how the surface deforms. Furthermore, and as it was motivated the

discussion of optical flow and scene flow, the regularization should take place in 3D, where
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the physical processes that underlie the observations happen, rather than in image space.

Deformable model The prevalent way of describing the motion field between two shapes

is to deform a mesh of one of them with the motion cues obtained from the data. This al-

lows to have Lagrangian specification of the flow field, where the discrete structure used

for computations follows the deformations of the object through time (as opposed to the

Eulerian specification that describes the flow of matter through a fixed grid). More impor-

tantly, this mesh structure is useful to define the regularization of the motion field. Indeed,

in absence of prior knowledge on the nature of the discretized shape, the connectivity of the

mesh offers a good indication on the connectivity of the object. This was already mentioned

in the outlier rejection algorithms for sparse matches: if two points are close to each other

geodesically, they will most likely have coherent motion. As such, the motion field can be

regularized by making sure that these local neighborhoods are preserved. Many methods

exist to deform meshes while preserving the local geometry as much as possible. The first

part of chapter 3 will discuss these works in details. What is of importance in this chapter is

how these deformable models are of use when tracking the temporal evolution of surfaces

through long sequences.

Some works do not explicitly deform the mesh but simply use it as support to compute

and regularize the flow field. We already mentioned the work by Pons et al. [30] who use

the Laplace-Beltrami operator defined by the mesh reconstructed at frame t to define and

penalize the harmonic energy of the flow field. Similarly, Ahmed et al. [1] establish dense

correspondence between two surfaces without resorting to a mesh deformation framework.

Their idea is to create a local parametrization of the surface by localizing a point with his

distance to the sparse features on the surface. In place of expensive to compute geodesic

distances, they pre-compute on the mesh the values of one harmonic function per sparse

feature. Then any given point on the first surface can be defined by the values of the

harmonic functions associated to the K closest sparse feature. The corresponding point

on the second surface is obtained by intersecting the isolines of the K harmonic functions

of the matched sparse features. Because it only considers the closest sparse matches, this

method offers some robustness to small and localized topology changes. It should also be

expected that the redundancy of using K closest features instead of only three would help

in the case of remaining outliers in the sparse correspondences. However, this method’s

performance is very dependent on homogeneously sampled sparse feature matches and the

effects of outliers are not really adressed in the paper. More importantly, the presented

results show the first mesh of the sequence deformed across the whole sequence. This

first mesh is used as model to regularize once more the computed dense frame-to-frame

correspondence during the propagation of deformation. This seems to be the real key to

the robustness of the method, which would otherwise yield drifting in the trajectories if the

frame-to-frame matches were simply accumulated.

Using a unique reference mesh to regularize the motion during the whole sequence is

not only a convenient way to obtain a temporally consistent sampling of the shape. It also

prevents the accumulation of tracking error because the geometric variations of the local

neighborhoods on the surface are always compared to the same reference template. How-
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ever, this robustness comes with a drawback: the topology of the mesh can not evolve.

The work of Varanasi et al. [42] explores this compromise. In this work, the first mesh of

the sequence is iteratively deformed through the sequence, but allowed to change topol-

ogy. In practice, the mesh that was obtained as solution at time t is roughly aligned to the

independently reconstructed surface from t + 1 using sparse photometric and geometric

features and a Laplacian mesh deformation method (1.4.3). Then a mesh morphing step

involving smoothing, local edge flips, vertex insertion and deletion as well as handling of

self-intersections is run to guarantee a clean sampling of the second surface. This method

provides a good estimate of the movement over short periods, and effectively allows to pro-

cess sequences that involve changes of topology. However, the precision of the recovered

point trajectories over more than one or two seconds is subject to drifting, which makes

this approach unsuited for the purpose of building consistent 4D representations of longer

sequences.

If one is willing to accept the limitation of a fixed topology, deforming a unique refer-

ence mesh for the whole sequence is a powerful way to constrain the trajectories of surface

points. The works by Vlasic et al. [44] or de Aguiar et al. [8] provide good illustrations

of this idea, as well as impressive results. In [44], the critical part of the registration is

accomplished using an articulated tracking algorithm that aims at fitting the visual hulls

with a skeleton. The dense surface correspondence is then obtained by first deforming the

template mesh with this articulated pose, then deforming it to fit the silhouettes while pre-

serving local geometric properties with respect to the reference mesh . As such, in this

work, the general body motion is regularized by the skeletal model while the mesh de-

formation is more of an interpolation step. A parallel can be established with [8] where

a coarse volumetric mesh is first deformed to obtain a rough registration of the template

mesh with the observed data. Then the reference template itself is deformed with an ”as-

rigid-as-possible” mesh deformation method to fit finer shape cues such as stereo data. The

common point between these methods is that the registration stage first happens at a coarse

level where the deformation is decorrelated from the complexity of the surface geometry.

This means that the deformation is spatially sampled at a coarser level of detail than the

geometry, which effectively reduces the number of degrees of freedom in the optimization

and improves the robustness of these methods.

Importance of silhouettes Another common point found in many of the works that tackle

surface deformation in multi-camera studios is the importance of silhouettes in the infer-

ence for motion. At first sight, this can seem counter-intuitive as silhouettes are purely

geometric information and do not explicitly contain any motion data, as opposed to photo-

metric feature matches for example. However, they are very constraining in terms of where

the surface can or can not be. Furthermore, they are the most reliable information available

in studio environments because the lighting and background can be controlled.

For example, the work by de Aguiar et al. [9] deforms a reference template using optical

flow as motion cue, but relies heavily on silhouettes to filter out erroneous optical flow

vectors by checking that their endpoints lie inside the segmented silhouette of the object.

In following work [8], SIFT features matches between frames are used as motion cues to



4. CONCLUSIONS 39

drive the deformation of the template mesh. However the process described in the paper

is more complicated than simply feeding positional constraints into a mesh deformation

framework. The mesh is not constrained by the endpoint positions of the feature matches

directly but these constraints are instead progressively displaced towards the endpoints,

making sure that the silhouette reprojection error decreases at each step. So in effect,

although the SIFT matches are used to drive the deformation, it appears that the silhouette

reprojection error is what is being minimized. This makes sense if we consider that there

potentially still are outliers or noisy correspondence in the sparse correspondence set, even

after pruning.

4 Conclusions

In the light of these previous works, it appears that sparse feature matches can be used

to build hypothesis on local surface motion, but that their reliability makes them difficult to

work with. In particular, they are difficult to use when building continuous energy functions

that should have their minimum at the solution we are looking for. One has to account for

the imprecision and the possible outliers in sparse correspondences. One of the questions

addressed by this dissertation is whether sparse feature matches are absolutely required or

if geometric information such as silhouettes, combined with a deformation prior, are suffi-

ciently constraining to recover meaningful surface deformations in multi-camera systems.

We therefore explore two aspects of the problem: in the next chapter we look into the de-

formation prior and into generic, efficient and robust numerical tools to deform meshes

from visual data. In chapter 4, we propose a method to register a template mesh to a se-

quence of independently reconstructed meshes, and show on numerous experiments that

pure geometric registration can very consistently yield very convincing results.
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CHAPTER 3

A Robust Mesh Deformation
Model

In this chapter we address the problem of defining a numerically robust mesh

deformation framework for the purpose of data-driven mesh deformation, which

is an essential component of this dissertation. The chapter begins with a dis-

cussion of the existing representations of shape and presents a survey of the

state-of-the art on mesh manipulation and deformation that spawns over the

fields of computer vision and computer graphics. Although these two fields

have different objectives and applications, parallels can be drawn between

their respective developments and we show that recently proposed deforma-

tion models for interactive mesh editing are of interest in the context of data-

driven tracking of deformable surfaces. We introduce a patch-based mesh de-

formation framework that builds on these recent developments, and detail its

integration in contexts that require data-driven mesh deformation. We present

an evaluation of its behavior in various applications such as interactive defor-

mation, 3D tracking of a deformable cloth from monocular image data, and

silhouette fitting.

1 Representing and Deforming 3D Shapes

In this section, we present an overview of deformable models in computer vision and

computer graphics. There is considerable overlap between the problems addressed by these

two fields and their developments on surface deformation have mirrored each other for

the last 25 years. Within computer graphics, our focus goes mostly to interactive editing

techniques, which have in most cases no access to the precise mechanical properties of the

45
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objects they operate on, but still aim at emulating real-world physical behavior. The recent

attention that was given to this topic and the resulting advances are of particular importance

in the scope of this dissertation, as they provide crucial insight into the challenges posed

by deformable surfaces, as well as theoretical developments and practical experience on

computationally efficient machinery to handle them. Our review of deformable models in

computer vision is conducted in parallel to emphasize the shared ideas between the two

fields. While computer graphics concentrate on synthesizing plausible and aesthetically

pleasing images of deformed objects, computer vision algorithms try to solve the inverse

problem and recover the deformations of surfaces from visual data. Much like in interactive

editing, they rarely have access to physically correct models and resort to simplified models

of deformation. However, the goal in this case is to infer the most probable deformation

that explains the observed data. The deformable model then not only constrains the result

to a space of plausible deformation: it acts as regularizer and allows to solve ill-posed

problems in the case of missing data or to fight the over-fitting of noisy information.

In the following pages, we first justify our choice of the 3D mesh as discrete represen-

tation of temporally evolving 3D surfaces, then discuss the available computational tools

to deform and manipulate these structures. This helps put our work into perspective and

motivates our choices for the deformation model presented at the end of the chapter. Our

review is organized around a classification similar to that of Salzmann and Fua [54], and

identifies three main paradigms for the definition of plausible deformation.

• The first class of approaches is referred to as data-based, and contains the methods that

learn the space of acceptable configurations of a deformable object from a corpus of

previous observations.

• The second class of approaches consists of intrinsically regularized models. These meth-

ods design specific parametrizations of the deformation to guarantee that the output shape

will be a valid deformed instance of the object.

• The third class of approaches uses prior knowledge to favor some deformed configura-

tions over others. This prior knowledge is usually associated with less constrained, more

expressive parameter spaces. We refer to this third class as extrinsically regularized

models.

1.1 Representing 3D shapes

The representation of static 3D surfaces is a well studied subject and the available op-

tions can roughly be categorized as implicit representations or explicit representations. We

briefly recall here key concepts on these two options, and discuss how these representations

have advantages and drawbacks in the context of surfaces that deform over time.

Implicit representations define the surface as the zero set of a scalar function that op-

erates on a higher dimensional space. For example many 3D surfaces can be represented

as:

S = {x ∈ R
3|f(x) = 0}, where f : R3 7→ R.
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.

In some case cases such scalar functions, and thus the corresponding shapes, can be

manipulated through a mathematical definition of f . For example the 3D sphere of ra-

dius r centered at the origin can be described as the zero set of the polynomial function

f : (x, y, z) 7→ x2 + y2 + z2 − r2. Varying the value of r allows to express a sub-set of

the possible deformations of the sphere, namely to obtain spheres of different radii. The

benefit of such models resides in the relatively small number of parameters needed to de-

fine the shape and the possible smoothness properties inherited from f . Their significant

drawback however is their limited expressive range, even when more elaborate models such

as superquadrics [3] are used.

An alternative and more flexible option is to directly manipulate the scalar values of f

on volumetric grids. The evolution of the function values is then commonly governed by a

Eulerian partial differential equation (PDE) that assumes and enforces a number of differ-

entiability and smoothness properties on f and thus on the surface. This idea constitutes

the foundation of the level-set method, introduced by Osher and Sethian [47]. This method

allows to represent a vast variety of smooth surfaces, and has the advantage of naturally

handling topology changes during the evolution of the surface. This is an essential feature

if the topology of the shape is not known a priori, as it occurs in 3D reconstruction tasks

for example. However, it can also be argued that in some cases where a strong prior model

is available, the topology should not be free to evolve. Furthermore, if we look at surface

evolution in the level-set method using terminology from fluid mechanics, it appears that

this representation and the PDEs that control its evolution are closely tied to an Eulerian

specification of the flow field. This means that the point of view is attached to the grid and

not to the flowing matter, as it is in a Lagrangian specification. As such, it is difficult to

maintain point correspondence as the shape evolves. Even though some works [50] have

attempted to solve this issue, explicit methods are much better suited to describe the flow

field from a Lagrangian point of view, that is to describe the trajectories of surface points,

which is precisely the focus of this dissertation.

Explicit Representations directly map a set of variables to a 3D surface. We first present

parametric surfaces, then motivate the use of the 3D mesh as discrete representation of

temporally evolving 3D surfaces.

Parametric surfaces are explicit surface representations that map sets of R2 to 2-manifolds

in R3. As such, the point correspondence is directly maintained via the parametrization.

S :

[
u

v

]

7→





x(u, v)
y(u, v)
z(u, v)





For example, the paraboloid S(u, v) = (u, v, au2 + v2) is a parametric surface whose

deformation is parametrized by the scalar a. The parametric function can be algebraically

defined in the case of quadrics. It is again also possible to use superquadrics to design

more complex surfaces. A third option is to use polynomials functions with finite support.

This idea is at the core of B-Spline surfaces and is more convenient to use at it resorts
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to 3D control-points that provide very intuitive control of the surface’s deformation. We

return later to these models in our discussion of interactive modeling tools. The most in-

teresting trait of these representations appears when the mapping has good differentiability

properties. It is then possible to use the tools of differential geometry [18]. This means

that concepts such as curvature, surface normals, orientability, and the notion of differ-

entiability for functions defined on the surface are well defined. This allows for princi-

pled mathematical modeling when evolving the surface in variational energy-minimization

frameworks. However, these models have limited expressive range and the description of

complex shapes often requires a delicate smooth stitching of several elementary pieces of

surface.

Polygonal meshes are arguably a more versatile and popular discrete representation of

3D surfaces. Although it is possible to use different types of polygons, we favor here trian-

gular meshes that exclusively use triangles and yield a simple and uniform representation

of the surface’s connectivity M :

M = (ν, τ),

where ν is a set of vertices and τ a set of triangles. The configuration of the surface in

space is then encoded by a position function x : ν 7→ R
3 mapping each vertex to a 3D

coordinate.

x : v 7→





x(v)
y(v)
z(v)





This function is commonly linearly interpolated in the triangles using barycentric coordi-

nates. The deformation of the surface is completely controlled by a vector that contains the

value of position x for each vertex and is therefore very intuitive to manipulate.

Meshes suffer from two major limitations: first, they are discrete structures that do

not allow for a straightforward transposition of concepts of differential geometry. Com-

puting curvature. surface normals, gradients and Laplacian of scalar functions defined on

the surface requires care when points are not inside of the triangles. This is because the

position function is piecewise affine and thus not differentiable on edges and vertices. The

second limitations is linked to topological changes. As the vertex coordinates evolve, self-

intersections can appear. Figure 2.4 displays such a situation, where two meshes of the

same actor in different poses have different topologies. Evolving one of the mesh to an-

other by simply moving vertices is thus impossible. If the algorithm that drives the mesh

evolution needs to garantee that the mesh samples a closed 2-manifold, some processing

would be required to maintain a well conditionned sampling of the surface. This is currently

an very active field of research [78, 49, 14, 76]. However, and as motivated in chapter 2, we

leave in this thesis the problem of topology changes aside. We assume that we have access

to a mesh that can be used as reference for tracking all along the sequence.

In this dissertation, we use the triangular mesh as discrete representation of the deform-

ing surfaces. Our choice is mainly motivated by our need to maintain point-correspondence

when the shape deforms, as the temporal trajectory of points is what we are interested in.

Furthermore, meshes handle open surfaces and boundaries naturally, which allows to de-

scribe shapes such as simple pieces of cloth. Finally, and although meshes do not provide
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a continuous representation of the surface, there are methods to approximate a number of

differential properties on them, provided that the sampling is reasonably uniform spatially.

As we will see in our discussion of mesh deformation, this is of importance because these

differential properties appear in the equations of elasticity.

1.2 Data-based deformable models

Our review of deformable models starts with data-based approaches which often are a

natural choice in computer vision. Indeed, data can be easily acquired, and provided some

work force to manually register and annotate it, large databases of deformed shapes can be

built. Data-based approaches deal with these samples of the deformed object in different

configurations (keyframes) and try to infer the structure of the space of deformed shapes

from the training set.

1.2.1 Blend-shapes

Given a rest mesh and a reasonnably small database of the same mesh in deformed

configurations, one of the simplest things that can be done is to synthesize new poses by

linear blending of the vertices position in the keyframes. This is the idea of blend shapes

[48] that directly interpolate the vertex displacements of several sample poses and allow to

create new poses by manipulating the blending weights.

An interesting extension called Pose Space Deformation (PSD) can be found in the

work of Lewis et al. [41] that uses blend shapes to correct the mesh obtained by skeletal-

based deformation. They build a database of manual corrections to the output of the articu-

lated mesh deformation algorithm and automatically blend these corrections during synthe-

sis. For instance, this means that artists can manually input a keyframe shape that indicated

that the biceps should bulge when the elbow is bent. Then for a given pose of the descrip-

tive model, a distance to that sample can be computed -i.e. how much is the elbow bent-

yielding a blending weight for the correction of vertices positions. This idea is extended

and successfully applied to data-driven facial deformation in the work of Bickel et al. [6]

where the fine scale wrinkles of the face are blended from a database, using the infered

local surface streching of a coarse deformation graph as a feature vector.

The work Sumner et al. [66] called Mesh IK represents every keyframe as a high di-

mensional feature vector. This vector that encodes not the vertices positions, but the spatial

variation of these positions on the mesh for every given keyframe. The blending operates

on these features rather than the vertex coordinates directly. In their work, the blending

weights are computed by measuring how well each feature vector (and thus sample shape

in the database) fits a set of positional constraints. In the work by White et al. [75], MeshIK

is used to recover the shape of moving pieces of cloth from a set of color markers printed on

it. The benefit of the approach is in this context is that Mesh IK can convincingly interpolate

occluded parts of the surface by using the database of previous observations.
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1.2.2 Dimension reduction

When the database of samples is large enough, it becomes impractical to associate a

weight to every single keyframe. It is however possible to try to extract a low dimensional

parameter space automatically. The goal is then to feed the training data into a dimension-

reduction algorithm, hoping that it will infer some meaningful structure of the deformation

space. Principal Component Analysis (PCA) has been used extensively to this end but

recent works [64] have tried to capture the non linearities of the deformation space by us-

ing non-linear dimension reduction methods. Dimension reduction techniques have limited

interest for human guided synthesis because the inferred parameter space may not have

semantical value and therefore can end up being difficult to interpret and manipulate. How-

ever, when no semantical value is sought after, dimension reduction methods are a powerful

tool to constrain the deformation space and limit the complexity of the search. For example

they have recently been used to learn from physically simulated data a low-dimensional

model of how clothing moves with respect to body pose and dynamics for fast synthesis

in interactive environments [25]. In computer vision, the constrained and low-dimensional

deformation space that they yield makes them a key component of many data-driven mo-

tion/deformation recovery algorithms.

If there is little variation of the viewpoint on the deformable object, the learning of

deformation models can be cast as the learning of point distribution models in 2D. A notable

example of such an approach is the Active Shape Model (ASM) of Cootes et al. [23]. In

ASM, a PCA is run on a database of 2D points sets that usually describe the contour of

an object. Given an image where an instance of the shape is to be localized, the shape is

expressed as a linear combination of the principal directions. The weights are optimized

for iteratively so that the points of the current approximation will better fit the observation.

This work was later extended as Active Appearance Model (AAM) [22] where the texture

information is warped to a common shape and is run through PCA to find principal modes

of appearance. This approach was in particular shown to be quite effective at capturing the

variability of human faces.

Similar dimension-reduction techniques also have been successfully applied to full 3D

representations. The work by Blanz and Vetter [8] tackles the variability of human faces in

neutral expression. The database built for this purpose contains 200 complete 3D models

of the head acquired by laser scanning. These models are all registered together, so that

a unique mesh can be used to sample all of them, leaving only the vertices positions as

variable. As with AAMs, the principal modes of shape (3D coordinates) and texture (RGB

coordinates) are extracted by PCA. Given an illumination and reflectance model, the pa-

rameters of this morphable model can automatically be ajusted to fit a single image and

recover the full 3D shape of the face. In following work [7] this model was extended to

handle principal modes of facial expressions and allowed to reanimate single pictures after

the fitting process. In other work on capturing the variability of human bodies, Anguelov

et al. [1] define one transformation matrix per triangle of their template mesh and run PCA

on the vectors created by concatenating the 9 parameters of every triangle of a shape.

Principal modes of deformation are not necessarily learned from a database of real data
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brought into correspondence. The work by [56] sample the possible deformations on a

synthesized database. It samples the space of inextensible triangular meshes by varying the

parameters of angles between adjacent triangles of mesh representing a piece of cloth. PCA

is then applied to this sampled data and modes are extracted. An interesting result brought

to light in this work is that even though the training data contains no instances of stretched

mesh, the resulting low dimensional PCA space does. This is an important reminder that

in spite of the success of PCA-based methods, the space of deformed configuration of a

mesh should in general be expected to be non-linear. This suggests that non-linear dimen-

sion reduction techniques should be applied to build more faithful parametrizations of the

deformation space.

1.2.3 Other machine learning techniques

Learning the behavior of parts The deformation space of an object needs not be learned

globally. If all parts of the object are assumed to obey similar elementary deformation rules,

one can attempt to learn these rules. The work by Salzmann et al. [57] illustrates this idea,

and assumes that every small surface patch on the surface obeys the same deformation

model. The probability density function of shape configurations for a patch from a sheet of

paper is learned using Gaussian Process Latent Variable Model. The deformation is guided

by edge and texture information from a single image, and the global deformation of the

whole sheet of paper is constrained by a product of experts that each assess the probability

of the deformations of local patches.

Discriminative learning The approaches presented up to now can be labeled as genera-

tive. This means that the distribution of deformed shapes is learned from the training set,

and that new samples can be resynthesised for comparison with an actual observation. An-

other branch of data-based methods does nott concern itself with modeling the distribution

of deformed configurations, but instead learns to differentiate observations directly. Such

approaches are called discriminative. Contrary to generative approaches, they have the

significant advantage of not requiring a good initialization.

For example Huang et al. [33] use shape retrieval techniques and global shape descrip-

tors to discriminate between different poses of the same object, rather than the original

purpose that was to discriminate between multiple objects. In their work, the database of

deformed instances is made of independently reconstructed meshes that contain no explicit

dense correspondence information. However, given an extensive database of deformed in-

stances of a shape put in dense correspondence, this type discriminative method could be

used as a deformation model.

Another good illustration of discriminative learning for pose estimation is the recent

work by Shotton et al. [60]. However, it does not deal with mesh data directly, but tackles

instead human pose estimation. In this work, the range of human poses in depth images

is captured with a forest of decision trees. The task is cast as pixel classification in range

data, where each pixel gets associated to a class that represents a body part. The approach
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represents each pixel with a feature vector encoding the relative depth of two pixels in its

neighborhood. For each of the node, the dimension of the feature vector along which the

split is to be made is chosen as the one that discriminates the most classes in the training

data. This algorithm manages to classify most pixels correctly. The joint locations, and

thus the pose of the object can be recovered in a second step by looking for centers of

clusters of pixels labeled as a body part. In following work, Girshick et al. [30] replaced

classification forest with regression forest. This means that for a given pixel run through

a tree, we do not find a label when reaching a leaf, but instead find a set of votes for the

relative 3D positions of joints.

1.2.4 Automatic skinning

For articulated structures, the dimensionality of the deformation space can be signifi-

cantly reduced by automatically computing an underlying skeletal model, performing what

is called mesh skinning. Baran et al. [2] align a defined articulated skeleton with a static

model using only its shape in the inference. More generic approaches by James and Twigg

[35], Ladislav Kavan [40] take an animated mesh as input and automatically infer a set of

bones (each of which moves rigidly), as well as blending weights linking each vertex to a

small subset of these bones. Not only do these methods work particularly well for artic-

ulated structure, they also display results on more intricate deformations such as these of

cloth. This shows that smoothly blending several local rigid transformations with respect

to a rest pose can be applied rather generally to represent deformations, provided a suffi-

ciently dense set of bones. This idea is at the core of the patch-based deformation model

that we present in this chapter.

1.2.5 Conclusions on data-based deformation models

Learning from data is a powerful way to generate a parameter space of limited dimen-

sion and to constrain the space of outputs. However, for databases involving significant

deformations, simple blending or PCA do not capture the non-Euclidean structure of the

space of deformed configurations. In this thesis, we wish to process deforming objects of

unknown nature and need to handle large deformations. This a priori unknown nature of

the objects precludes largely the use of data-based methods, except for machine-learning

techniques that would capture elementary deformation rules for small localized surface el-

ements as in [57]. We will see in our discussion of extrinsically regularized deformation

models that emulating such rules for these small elements can also be done efficiently and

convincingly using the equations of elasticity.

1.3 Intrinsically regularized deformable models

We discuss here methods that use carefully designed parameter space to ensure that any

point of this space maps to an acceptable instance of the deformed model. We differentiate
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in this class of approaches two subgroups that mostly differ on their definition of what an

acceptable deformation is. On one hand, we label as descriptive the approaches that deal

with a specific real object for which a human has designed a specific set of deformation

parameters, using his perception, experience and understanding of how the object deforms.

On the other hand, we consider more general approaches for which the validity of a defor-

mation is linked to geometric constraints which are enforced through the parametrization.

1.3.1 Descriptive deformable models

In the case of descriptive deformable models, a human manually defines the parameter

space. Because this process typically involves a semantical component, the resulting set

of parameters is often more intuitive to interpret and manipulate than those produced by

data-based approaches. As a large part of the developments on such deformation models

was driven by the need to synthesise, capture and edit compelling animated performances

of humans, we illustrate descriptive models on the problems of body and face animation.

Articulated structures are a straightforward example of simplified deformation model,

routinely used to render convincing animations of the human body without resorting to a

complex anatomical dynamic simulation of bones, joints and muscles. The process usually

requires to perform character skinning, that is to attach a mesh of the human body to an

underlying skeletal structure. The deformed body can then be animated by manipulating a

small number of joint angles directly. A possible extension consists in defining degrees of

freedom for the skeleton from which the joint angles can be computed, usually as simple

linear mappings. Articulated models are extensively used in computer vision, mostly for

marker-based and marker-less motion capture of human performances. This parametriza-

tion alone already greatly constrains the deformation, and allows to express reasonably

realistic poses for the body, provided some additional constraints such as limited angular

range of articulations or minimization of self intersections of the body. We return in chapter

5 in details on articulated 3D models.

Facial animation is another field where descriptive approaches have been successfully

employed. Among the parametrization of human expressions, one of the most influential is

the Facial Action Coding System of Ekman and Friesen [27] that was originally designed

to allow human annotators to label sequences. It consists of a vocabulary made of action

units that describe elementary movements on the face, such as a wrinkled nose for example.

Although this parametrization emerged in research on psychology, the work of Rydfalk [52]

linked the concept of action units with a deformable polygonal model of the human face

that allowed to synthesize expressive faces from this restricted vocabulary. This polygonal

model was quickly used for tracking purposes in Li et al. [42].
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1.3.2 Geometric design tools

Early mathematical methods for the manipulation of deforming shapes were linked

to Computer Aided Design (CAD) tasks. Even if some of these methods are not strictly

speaking model-based deformation methods, they have been used in computer vision and

their limitations will motivate the discussion of extrinsic regularizers.

Parametrized shape primitives allow to quickly generate a variety of shapes from a

restricted set of parameters, and to use these shape as basis before further refinements.

We cite here the family of superquadrics as an interesting example because of its wide

expressive range[3], and the possibilities opened by applying further deformations to them

such as tapering, bending and twisting [4]. Superquadrics were also used for automatic 3D

reconstruction (e.g. [61]) but only provide rather crude approximations when the shapes

are complex. It was however shown that this limitation can to some extent be alleviated

by combining them with more expressive deformation models [69] that further refine the

parametric shape in a post-processing step.

Smooth interpolation Another group of CAD techniques deals with interpolating smooth

curves and surfaces respecting a given set of positional constraints. This problem needed to

be solved for the drawing of models in the automobile, aircraft and shipbuilding industries.

It is in that context that Bezier curves -and later surface patches [51]- were developed in the

early 1960s, soon to be followed by their B-spline and NURBS extensions. The original

Free-Form Deformation (FFD) approach by Sederberg and Parry [58] essentially transposes

these ideas to 3D by embedding the deformed object into a parallelepipedical solid whose

deformation is driven by control points placed on a lattice. This provides designers with an

intuitive shape manipulation tool: the control points are moved by the user and the resulting

smoothly interpolated deformation field is transfered to the embedded object.

In computer vision, B-Splines, FFD and other smooth interpolation methods have also

been used extensively for motion estimation and 2D and 3D image registration (e.g. [67]).

Here also, an embedding structure is overlaid on the object or the space on which the defor-

mation field is to be computed. However an inverse problem is solved, and the positions of

the control points that parametrize the motion field are automatically computed from data

instead of being manually defined by a user. In effect, the motion cues in the data are inte-

grated in the neighborhood of each control point and their contributions weighted with the

smooth interpolation functions. These methods originally designed for interpolation thus

act as regularizer in two ways: first, they intrinsically guarantees the smoothness of the

deformation field, which is inherited from the basis spline functions it builds on. Second.

for sufficiently coarse control grid, there are large averaging effects in the image domain

which can prevent the over-fitting of noisy motion cues.

One significant limitation of these methods is linked to the topology of the control

grid: enforcing smoothness on a parallelepipedical grid can often produce strange looking

results if different parts of the object are close in the reference pose and get deformed
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together when they should move independently. Coquillart [24] showed that manually

defined control lattice topologies, tailored for the embedded object, could alleviate this

problem and provide more natural looking deformations.

These methods were initially aimed at modeling from a basis shape rather than deform-

ing a reference shape. As such, it was assumed that positional constraints could be defined

densely by the modeler trying to input detailed deformations. The only responsibility of

the interpolating algorithm is to output a smooth surface, no matter how far the control

points are pulled apart. This however does not reflect at all how real-life objects deform.

If we pull a point of a piece of cloth, it is expected that the rest of that piece of cloth will

move with it, including other potential control points. This marks the difference between

interactive modeling tools and the interactive deformation tools that we will discuss later.

Smooth interpolation methods are used for computer vision applications but only play

part of the regularizer role that is awaited from a deformation model. For example, [67]

discusses how this appears clearly when trying to compute optical flow. When there are

untextured areas in the image, the overall computed deformation might not move control

points that lie in these areas, while the surrounding control points move because they have

motion cues in their region of influence. This can lead to unlikely deformations and there-

fore requires the introduction of an additional regularizer force that maintains an overall

coherence between the motion of the control points.

As such, to deform a reference model in a realistic manner, we need more than simple

interpolation. We need smoothing splines rather than interpolating splines. These objects

introduce a regularization that balances finite external external forces and the internal strain

of the deformed object. This brings to the next category of deformation models which use

extrinsic regularizers.

1.4 Extrinsically regularized deformable models

Extrinsically regularized approaches constitute the third branch of our taxonomy of

deformation models. Here, parameter spaces with a broader expressive range can be used

to describe the object’s deformations, and prior knowledge on the plausibility of each point

of this space is encoded either as a probability density function or an energy function.

Extrinsic regularizations are often combined with data-based or intrinsically regularized

parameter spaces. The role of this additional, external regularizing term is to favor some

configurations of the shape over others.

For computer vision, this translates in practice into a regularization energy term in an

energy minimization problem:

argminEdata(shape) + Ereg(shape) (3.1)

Such equations can often be looked at from a probabilistic point of view by considering

that they represent a generative model that can draw samples of observations from the

distribution characterized by the energies. Edata then encodes for the log-likelihood of

the observed visual data conditioned on a realization of the shape’s configurations, while
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Ereg encodes for a prior on the likelihood of that configuration. This Bayesian interpreta-

tion then makes the energy minimization equivalent to finding the Maximum A Posteriori

(MAP) shape deformation parameters. Therefore, extrinsic regularization can be looked

at a way of accounting for prior knowledge on the distribution of the deformation of the

shape of interest. While data-based deformable models had the option of estimating such

a distribution from a corpus of previous observations, the challenge here is to encode for

the deformation priors analytically. This model should of course reflect some meaning-

ful distribution of the possible configurations, but must also be convenient to minimize in

equation (3.1).

1.4.1 Physics-based Models

How do real-world objects deform ? Because of the need for plausible and compelling

animations that resemble real-world physical behavior, computer graphics and computer

vision scientists started looking towards physical models in the 1980s. Among the no-

table early works, the research of Terzopoulos and Witkin [71] introduced simplifications

of the PDEs of elasticity theory and structural mechanics into the field of computer graph-

ics. Since then, physically based deformable models have emerged as a major subject of

research and drawn a lot of attention, as shown by the recent survey of Nealen et al. [46].

Physical simulation mostly deals with the simplification, discretization and solving of the

PDEs of continuum mechanics. Currently, the most widespread tool for discretizing and

solving these PDEs is the Finite Element Method (FEM), combined with temporal integra-

tion schemes in the case of dynamic simulations. Such simulations constitute a vast field

of computer science, that extends well beyond computer graphics and deals with problems

such as elasticity, plasticity, fracture or fluid dynamics.

In this thesis, we restrict our discussion to elasticity, which means that the surface is as-

sumed to always comes back to its rest configuration once its not under load. Furthermore,

we notice that even though we deal with dynamic scenes, it is difficult to link our observa-

tions to underlying physical meaning because we assume no prior on the nature or mass of

the observed object, and have no information on the external and internal mechanical forces

applied to it. Therefore, we can not really infer anything about quantities such as inertia

or damping and full blown dynamic models are out of scope. That being said, and even if

we ignore the temporal evolution, the PDEs of elasticity and their FEM discretization still

constitute valuable insight on how real-world materials deform.

If we assume small displacements with respect to the rest pose, the finite element

method allows to discretize the object of interest and to compute a constant stiffness ma-

trix K. Then, given a set of external forces f applied to the object, the problem becomes

that of a finding a small displacement u with respect to the rest-pose that corresponds to

an equilibrium, or steady-state. The discretization allows to solve this problem through a

linear system:

Ku = f.
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The potential energy stored by the object in this deformed configuration is then:

1

2
uTKu

It should be noted that for large deformations that lie outside of the realm of infinitesimal

strain theory, K becomes a non-linear function of the configuration.

Physics-inspired tracking When tracking elastic objects, Ereg is generally chosen as the

potential energy associated to a configuration of the object. This strain energy can be used

to prevent minimizations of the type of equation (3.1) from reaching incorrect deformation

states. In essence, this amounts to favoring configurations with low potential energy, which

in the case of elasticity are the configurations close to the rest state of the object, or rigidly

transformed versions of it.

If a specific object is to be tracked, and if there is a priori knowledge on its properties,

it is possible to precisely compute the strain energy by using a mechanical model of the

object. However, such models are complex and except for some rare attempts [34], very

few works go to the trouble of using a Finite Element discretization for disambiguating

visual data. This can be in part explained by the computational load of the FEM once

large deformations bring non-linearity into play. Another explanation is that building an

elasticity prior to favor the rest state over every other -and possibly valid- configuration is

from the start a somewhat flawed approximation, and that there is as such no incentive to

refine it with a precise energy computation. From a probabilistic point of view, the elasticity

prior can be considered a flawed approximation because there is no reason for us to expect

the object to be in its rest state in the images we get. In fact we should expect it not to

be in this rest configuration since the images are supposed to be interesting. Nonetheless

the elasticity assumption is very effective at penalizing grossly erroneous configurations,

and we will see in the next paragraphs how simpler approximations of the strain energy are

actually sufficient for this purpose.

As a side note, we remark that accurate modeling of physics still is of interest for

vision-based force measurement, and that this seems to have driven most of the recent

developments on combining precise physical models with visual data. Vision-based force

measurement is particularly sought after for its unintrusiveness, and has found applications

in the analysis of micro-electromechanical systems [73, 31].

1.4.2 Smoothing splines

The work of Terzopoulos et al. [70] was seminal in the fields of computer graphics. In

this work, it is argued that the mathematical properties of objects as computed by differ-

ential geometry can be used to define “a reasonable strain energy for elastic bodies”. For

example, the resistance of a parametrized curve x(s) : R 7→ R
3 to stretching and bending
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Figure 3.1: Comparison of membrane (left) and thin-plate (right) energy minimization

under positional constraints (set on the borders and a 4x4 block in the middle).

(we ignore twisting here) can be emulated by minimizing the following energies:

Erod =

∫

α(s)‖
∂x

∂s
‖2ds (3.2)

Ebeam =

∫

β(s)‖
∂2x

∂s2
‖2ds. (3.3)

The first order term penalizes stretching, while the second order penalizes bending. For

example setting β(s) to zero at one point allows the snake to develop a corner.

This energy has counterparts for shells (2D) and volumes. In the case of a parametrized

shell, similar simplified energies can be defined to penalize stretching and bending. In the

survey of Botsch and Sorkine [13], these energies are defined as follows:

Emembrane =

∫∫

‖
∂x

∂u
‖2 + ‖

∂x

∂v
‖2dudv (3.4)

Eplate =

∫∫

‖
∂2x

∂u2
‖2 + 2‖

∂2x

∂u∂v
‖2 + ‖

∂2x

∂v2
‖2dudv (3.5)

The first order term favors membrane (rubber sheet) behavior while the second-order term

makes the surface act like a thin plate (metal sheet) (see figure 3.1 ).

Cubic and Thin-Plate Splines are related to this physical modeling are mostly found in

a whole different branch of the literature concerned with function regression and regular-

ization. In the 1D setting typically, and given a set of samples {(xi, yi)}, these approaches

seek a function f̂ that minimizes the following functional:

E[f ] =
∑

(yi − f(xi))
2 + λ

∫

(
∂2f

∂x2
)2dx (3.6)
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This equation is very similar to equation (3.1) where the regularization term is the beam

(or plate) energy from equation (3.3). With variational calculus, it appears that f̂ is a linear

combination of basis functions {fi(x)} that satisfy:

∂4fi

∂x4
(x) = δ(x− xi) (3.7)

These are Green’s functions of the 4th order linear differential operator ∂4

∂x4 . In 1D these ba-

sis functions are cubic splines |x−xi|
3. In 2D they are thin-plate splines ‖x−xi‖

2 log ‖x− xi‖.

In 3D they are simply the absolute distance to the sample point ‖x− xi‖.

Bookstein [9] introduced the thin-plate-spline as a useful regularization tool for image

processing and computer vision tasks in general. He insists on the physical interpretation of

this model, which solves for the deflection on the z axis of a xy sheet of metal submitted to

punctual external loads. The regularization term minimizes then the total bending energy

of the metal sheet. He replaces the deflection function with two 1D displacement func-

tions x(x, y) and y(x, y) that are smoothed with the framework, and combines them with

a global affine function. The parameters of this deformation model are thus the weights of

the thin-plate basis functions {‖x− xi‖
2 log ‖x− xi‖} and of the affine warp. The whole

is referred to in the literature as TPS-warp and has been used to regularize image warpings

or the deformations of sheets of paper from monocular data [5] for example. The resulting

deformation is intrinsically smooth because of the basis functions, and allows for a conve-

nient expression of the extrinsic regularizer that has a closed-form solution for a given set

of data constraints and a given lambda. TPS-warps as a deformation model is of interest

because they have been used to parametrize and regularize the non-rigid registration of 2D

and 3D point clouds [21], which will be addressed in chapter 4.

However, these methods have two main issues: first, it must be noted that in the 3D

extension of TPS, the basis functions are not differentiable at the sample points. Second,

these basis functions do not have compact support like the piecewise polynomial splines

for example, and they actually grow as ‖x − xi‖ increases. Intuitively, this means that

there is no notion of locality in the deformable model and that a data point xj, far from

xi will influence the weight of fi in the solving process. In practice this means that the

linear systems that appear in the solving process are not sparse. Moreover, the assumption

of smoothness of the deformation over the whole 3D domain makes TPS-warps unsuited

for our setting: a hand moving away from the thigh should not result in a movement of the

thigh, even if they were close in the reference shape. This is a common problem with space

deformation methods, already mentioned for FFD. However, we saw that FFD had been

extended to use lattice topologies adapted to the object. Defining arbitrary domains and

boundary conditions is not as easy with the TPS formalism. Finally, the non-locality of the

parametrization is an even bigger issue as a movement of the hand would induce significant

changes for the weights of the basis functions associated to all the sample points in space.

Discrete Splines We have seen that the TPS formulation originated from the minimiza-

tion of a functional that was translated to a PDE. Then fundamental solutions for the dif-

ferential operator ( or Green’s functions) were superposed to satisfy the whole PDE. Other
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spline formulations adopt a different method to solve PDEs, that resemble more the FEM

or Finite Differences.

Extrinsically regularized discrete splines were quickly identified as interesting for com-

puter vision purposes, and used early on as shape regularizers for segmentation tasks. The

seminal work of Kass et al. [37] introduced a deformation model called snakes, that uses

the simplified elastic deformation model of equation (3.3) to penalize the stretching and

bending of a 2D curve, and uses a finite difference approximation of the energy. The image

data is then used to define a potential energy, and the combination of these two energies

is minimized in a variational framework to a state that should delineate the structures of

interest in the image. Also named Active Contour Model, this idea has also been extended

to 3D segmentation and reconstruction tasks. Other spline parametrizations are closer to

the FEM such as the already mentioned [67] that use basis functions that are compactly

supported polynomials on the discretized domain

1.4.3 Differential mesh Representations

Since deformation energies are closely tied to differential properties, differential mesh

manipulation methods handle differential representations of the surfaces directly. This

means that the geometry is encoded with differential coordinates that allow for an easy

expression of the deformation energies. The surface can be reconstructed from this repre-

sentation by integration, given sufficient boundary constraints. The following paragraphs

present recent developments on these topics. The energies that are presented resemble

these of equation (3.5) but do not penalize absolute stretching and curvature: they penalize

variations with respect to a rest pose of the surface.

Gradient-based representations of meshes such as the work of Yu et al. [77] were in-

spired by gradient-domain image editing. The idea is to preserve local details of the surface

S by preserving the gradients of the coordinate function x : S 7→ R (resp. y, z). This is

done by using as reference the scalar fields x0, y0, z0. With at least a vertex position fixed

as constraint, the new position can be recovered as finding the functions x (resp. y, z) that

minimize the energy functional:

EG(x) =

∫

S
‖∇x−∇x0‖2dS (3.8)

Laplacian-based approaches such as that of Sorkine et al. [63] were developed concur-

rently. These methods try to preserve the mean curvature at each point of the manifold

rather than the gradient. Instead of preserving this scalar field directly however, they pre-

serve the Laplacian of the position function whose norm is precisely the mean curvature,

which results in minimizing the following functional:

EL(x) =

∫

S
‖△Sx−△Sx

0‖2dS, (3.9)

where △S is the Laplace-Beltrami operator.
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Discretization Translating these equations from their continuous formulation to the dis-

crete case must be handled with care. The differentiable manifold S is now approximated

by a mesh (ν, τ), that is by a discrete graph represented by a set of vertices ν and a set

of triangles τ that encode for its topology. The main problem which such a discretization

is that the mesh is a piecewise linear approximation of the surface, therefore not differen-

tiable at vertices and edges. Meyer et al. [45] and Wardetzky et al. [74] provide discussion

on the choice of discretization for the continuous Laplace-Beltrami operator. Following

their conclusions, the Laplacian matrix L on the graph of vertices is usually built using the

cotangent weights. The mesh in its reference pose can be encoded by three |ν| × 1 vectors

δ0
x

, δ0
y

and δ0
z

obtained by applying the operator to the coordinates vectors x0, y0, z0 of

the reference mesh.

δ
0
x
= Lx0. (3.10)

This leads to a discrete formulation of equation (3.9):

EL(x) = ‖Lx− δ
0
x
‖2. (3.11)

Since the Laplacian operator is invariant to translations, L is rank-deficient and a positional

constraint on one vertex per connected component needs to be added to the minimization

so that the mesh can be rebuild from the differential coordinates.

Local rotations However, differential coordinates, whether Laplacian or gradient, are en-

coded in the global coordinate system and therefore not invariant to rotations. This means

that if 3 vertices of a mesh are rotated around the the origin and then used as positional con-

straints, the reconstruction from the Laplacian coordinates brought by the minimization of

the energy of equation (3.11) will be not be the whole shape rotated. This problem has been

addressed by a number of works [59, 44, 39] that have proposed rotation-invariant mesh

encodings. However, these encodings lose the simplicity of the linear system in equation

(3.11) and have to perform large-scale non-linear optimizations to reconstruct the mesh

from the rotation-invariant coordinates. To the best of our knowledge these representations

have not been used in computer vision.

Differential coordinates on the other hand have been very popular, but the algorithms

built around them had to be modified to account for the local rotations of the surface: in

the case of gradient representations, Yu et al. [77] simply propose to have the user define

local changes of frame and scale on the constrained vertices, then to explicitly propagate

these frame changes to the unconstrained vertices using blending weighted by functions of

the geodesic distance. In the same direction, Zayer et al. [79] replace these weights with

an interpolation scheme based on harmonic fields. In the case of Laplacian representations,

Sorkine et al. [63] propose to first solve equation (3.10), then to solve for a linearized ver-

sion the local transformations, and finally to solve a modified version of equation (3.10)

again, that accounts for the implicitly computed local frames. The linearization however

restricts the method to small rotations. In a following work, Sorkine and Alexa [62] implic-

itly evaluate the local rotations on 1-rings around every vertex. For each each vertex v, the

values [δx(v), δy(v), δz(v)] are obtained by applying this rotation to [δ0x(v), δ
0
y(v), δ

0
z(v)].

The modified equation (3.11) then becomes:

EL(x) = ‖Lx− δx‖
2. (3.12)
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This formulation allows to handle large transformations by alternatively solving for the

local rotations ( and thus the rotated original Laplacian vectors ) and the vertices positions.

This boils down to performing a non-linear optimization by iteratively minimizing equation

(3.12) which is a local quadratic approximation of the true bending energy that depends

non-linearly on the current vertices positions.

Usage in computer vision The Laplacian-based energy of equation (3.9) has been exten-

sively used as regularizing term for computer vision purposes used over the last few years.

This success is largely explained by the ease of implementation of [62], and the fact that

this method requires only one costly factorization of LTL. Moreover, the method behaves

very well for its original purpose, that is for interactive mesh deformation.

However, the use of this energy as regularizer for computer vision is questionable.

Firstly, and as noticed by others [75], Laplacian-based methods do little to penalize strain.

If we consider a flat mesh, and scale it isotropically, we introduce no bending and the

energy from equation (3.11) remains null. Secondly, equation (3.12) is only a quadratic

approximation of the true bending energy to which we have no access. This approximation

depends on the evaluation of the local rotations of the surface, which can be erroneous if

the vertices positions were brought to an aberrant state. These two issues have little impact

in an interactive mesh deformation setting. However, when the effects of potentially noisy

data terms that need to be balanced, it is more reassuring to be able to check that we are

effectively decreasing a well defined energy, and that the local quadratic approximations of

it that we build are precise.

If we look at works directly related to ours, such as the methods of Vlasic et al. [72],

Gall et al. [29] or de Aguiar et al. [26], we notice that they do not use the Laplacian de-

formation framework on the surface as their main regularization tools. For [72, 29] the

strong regularizer of the template deformation is an articulated model. The bending en-

ergy of the surface is only use in a later stage to regularize adjustments destined at fitting

the silhouettes. In the case of [26] the preservation of Laplacian coordinates is used on a

coarse volumetric tetrahedral mesh. The surface bending energy is there again only used

during refinements to match silhouettes and stereo information. Our own experience with

the framework [15, 17] is that this smoothing energy effectively had to be helped by a

coarser elastic model that penalized strain.

1.4.4 Embedded deformation

The methods presented until here manipulated the mesh directly by considering the

original geometry as variables: vertices, faces, or local frames. In contrast, space deforma-

tion methods deform the ambient space in which the original geometry is embedded. This

is particularly advantageous in terms of computational cost and scalability, as it allows to

decouple the complexity of the deformation from that of the shape. In other words, the basis

shape and its deformation field can be sampled with different spatial resolutions. A sec-

ond advantage of these methods is that they can handle low-quality non-manifold meshes
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and even allow deformations of point clouds, polygon soups or volumetric representations.

However, and as it was already discussed for FFD and TPS warps, one of the limitations of

embedded deformations methods is that the control structures must respect the topology of

the deformed shape.

Cage methods embed the original geometry in a closed control mesh of much lower

complexity. The vertices of the deformed mesh are interpolated from those of the de-

formed control structure. This allows to place constraints on the original mesh itself, but

to solve for the deformation of the cage. For example Huang et al. [32] propose a formu-

lation that allows to solve for equation (3.11) using the cage vertices as variables. They

also demonstrate the potential of cage based approaches by integrating other constraints

to the minimization such as skeletal constraints or the preservation of the total volume of

the mesh. However, subsequent works such as [20] remark that interpolating vertices po-

sitions from the deformed control structure is a complex problem. Actually minimizing

the distortion of the interpolated field can be brought back to solving PDEs inside the cage

while using the control mesh to enforce boundary conditions, which is difficult for arbitrary

control meshes.

Other space deformation methods use different control structures. Botsch et al. [11]

embed the surface in a layer of volumetric prisms that are obtained by extruding the faces

of the original mesh. Then elastic forces are emulated between adjacent prisms and rigid

motions for each of the prisms are used as variables. The optimal rigid motions are obtained

with a non-linear minimization performed in a Gauss-Newton framework. The process is

even sped up by clustering together neighboring prisms in a coarse-to-fine hierarchy. In

following work, Botsch et al. [12] embed the mesh in an array of volumetric cells and

minimize a similar physics-inspired rigidity. The cubic cells are arranged in an octree that

allows to refine locally the embedding structure where the deformations need to be sampled

more finely. Sumner et al. [65] propose to embed the deforming geometry in a control graph

consisting of points seeded in space. There, the rigidity energy is expressed between the

nodes and the variables consist of one affine transformation per node. The corresponding

minimization is performed similarly to [11, 12].

One of the key characteristics of the methods cited in the previous paragraph is that

they optimize explicitly on one rigid transformation per control point, while nearly all the

deformation models reviewed until now limited themselves to using the positions of these

control points as variables. As such, these methods explicitly solve non-linear minimization

problems, as opposed to the methods of 1.4.3 that implicitly evaluate the local rotations of

the surface. This non-linear minimization might at first seem much more complex, for rea-

sons as simple as the 6 parameters required per control point instead of 3. Yet, [11, 65, 12]

are used as interactive deformation tools, which shows that these non-linear approaches

remain computationally tractable. Two mechanisms make this possible: first of all, decou-

pling the control geometry from the complexity of the original geometry obviously allows

to decrease the number of unknowns. Secondly, efficient numerical tools are available to

solve the large sparse linear systems that appear in these computations (see the survey by

[10] for a good overview).
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1.5 Motivation for the presented research

In this section we saw that the deformation of possibly very dense meshes can often

be described by a low dimensional set of parameters, instead of vertex positions. Articu-

lated structures are a common example, used for both interactive animation and data-driven

recovery of deformation. However, articulated structures are rare, and articulated models

fail to capture fine deformations such as the cloth on a human. Recent results in computer

graphics on the compression of arbitrary mesh animations [35, 25] have shown that a small

set of rigid transformations and weighting functions can encode for visually complex de-

formations such as these of cloth. In other words, mesh skinning methods need not be

restricted to articulated objects. The limited expressive range of articulated models can

be overcome by extending the notions of bone and joints, and by sampling uniformly and

sufficiently densely the local transformations of the surface.

This idea matches some of the embedded deformation models that were presented in the

previous paragraph. More precisely, it corresponds to the embedded deformation methods

that explicitly on local transformations of the surface, similarly to [11, 65, 12]. These meth-

ods were developed for interactive deformation. One of the propositions in this dissertation

and in one of our papers [16], also supported by recent results on geometric registration

[43, 19], is that these tools are useful for data-driven animation. We motivate our research

in that direction with three main ideas:

• Embedded deformation effectively decouples the parametrization of the deformation

from the complexity of the original geometry. For computer vision applications, this

decouples the parametrization of the deformation from the sampling domain that is the

mesh. The mesh can be used as sampling domain for data terms while the deformation

is computed on a coarser structure. This allows to integrate noisy data terms on the area

of influence of control element, and to benefit from averaging effects in the inference for

the local transformations of the surface. Furthermore, choosing the scale at which these

transformations are sampled allows to solve problems in a coarse-to-fine manner, which

helps minimize low-frequency errors in the deformation more rapidly.

• Optimizing explicitly on local transformations of the surface allows to define simple and

usable regularization terms. In the next section, such a regularization energy will be

presented. Because this regularization energy is uniquely defined, and does not depend

on current estimates of the local rotations (as in [62] for example), it is possible to check

whether each step of the minimization effectively decreases it. This comes at a cost: there

are more variables to be solved for, and the minimized energies are explicitly non-linear.

However the continuing increase in available computational power allows to handle this

additional complexity for the type of geometry that we wish to deform.

• As we have discussed, one of the key issues with embedded deformation is to respect

the topology of the deformed object. We have seen how TPS deforms the whole do-

main, and how the control lattices and basis functions of FFD can cause artifacts. The

deformation model that we present in the following sections focuses on respecting the

topology of the deformed shape. This is achieved by adopting a strictly surface-based

approach that builds a deformation graph from the connectivity of the original geometry.
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In that sense our work is closer to [11] (surface-based) than it is to [12] or [65] (volu-

metric). However [11] was formulated in a way that did not decouple the control graph

from the deformed mesh. In our formulation, the density of the deformation graph can

be controlled, allowing to sample the deformations of the object with a chosen spatial

precision.

In this chapter, we present an embedded deformation method based on small surface

elements we refer to as patches. These patches resemble the matrix palette skinning used in

real-time rendering engines in that every patch is associated with a rigid transform and that

the positions of the vertices are computed by blending the transformations locally. We also

present details on the robust numerical machinery that was built around this representation

to optimize energy functions involving elastic regularization and other terms defined from

visual data. The resulting deformation framework can be used for the automatic inference

of 3D shape deformation from visual data in a large range of potential applications. To

support this idea, we discuss the integration of our framework for two applications and

present the corresponding results.

2 A Patch-based Approach to Data-driven Mesh Deformation

2.1 Patches

A rigid transformation with respect to the world coordinates is associated to each patch

Pk. It is parametrized by the position of the patch center ck and a rotation matrix Rk (or

equivalently by a unit-length quaternion qk). This rigid transform yields for every vertex v

of the mesh a predicted position xk(v):

xk(v) = Rk(x
0(v)− c0k) + ck, (3.13)

where c0k is the center of Pk in the reference pose and x0(v) the position of the consid-

ered vertex in the reference pose. The deformed mesh is recovered by linearly blending

the predictions made by the different patches for each vertex. The weighting functions αk

are Gaussians of the Euclidean distance to the center of mass of Pk and their support is re-

stricted to the union of Pk and its neighboring patches Nk. These Gaussians have isotropic

covariances and their standard deviation is taken as the maximum patch radius parameter

of the patch seeding stage. At each vertex v, the values αk(v) are normalized to add up to

1.

x(v) =
∑

k

αk(v)xk(v). (3.14)
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Figure 3.2: Greedy patching procedure evolution on the Stanford Armadillo model ( 170k

vertices ) with a maximum patch radius of 40. From left to right: patching after 1,3,4,30,143

patches have been seeded.

Thus the complete deformation of the mesh is encoded by one parameter vector Θ =
{Rk, ck}k=1:Np

, where Np is the number of patches seeded on the surface.

Θ = {Rk, ck}k=1:Np
(3.15)

The distribution of patches on the surface should ideally follow the intrinsic nature of

the shape, e.g., rigid parts. However, in the absence of prior knowledge on this structure,

and to handle non-articulated objects, the patches are preferably regularly distributed over

the surface, with a density that defines the spatial frequency at which we wish to sample the
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surface’s stretching and bending with respect to the reference pose. One existing approach

to obtain a sub-sampling of the shape is the Farthest Point Sampling method [28]. This

idea consists in randomly picking the first sample and iteratively placing the next sample

in the middle of the least-sampled area of the domain. For our application, this translates

into picking new patch centers one at a time by finding the vertex that maximizes the max-

imum geodesic distance to all already picked centers until the mesh is sufficiently covered.

However this requires to build for each added center the complete field of geodesic distance

over the mesh, which is computationally involved.

Our approach also automatically computes the patches from the embedded surface, but

is much more local in nature. Our patching method considers geodesic distances, takes a

maximum patch radius as parameter and seeds patches greedily. The idea is to randomly

choose a vertex to be the center of the first patch and then to grow this patch until the max-

imum radius is reached. The subsequent patch centers are chosen among the unassigned

vertices which lie on the most existing patch boundaries. The front of a new patch is prop-

agated from the center until the maximum radius is reached or until the processed vertex

is closer to the center of another patch. In all of our experiments we have assumed the

sampling density of the mesh to be homogeneous and therefore approximated the geodesic

distance with the number of edges of the shortest path linking two vertices. We illustrate in

figure 3.2 the behavior of this greedy patch seeding algorithm.

This procedure also organizes the patches in a deformation graph that respects the topol-

ogy of the embedded object. This means that the deformation graph has an edge between

patches Pk and Pl if and only if there exists a vertex in Pk that is a neighbor of a vertex of

Pl in the original mesh. These edges are crucial as they are used to define the rigidity of

the structure which will be the key to regularizing the object’s deformation.

2.2 Optimization

In the previous section and our discussion of extrinsic regularizer for surface defor-

mation, we have seem that driving the deformation of the mesh from visual data can be

viewed as an optimization problem balancing data terms and extrinsic regularization terms.

All these functions are assumed to be squared functions of the vertices positions, so that

the problem can be formalized as an unconstrained non-linear least-squares minimization:

argmin
Θ

E(Θ),

where E(Θ) = ‖r(x(Θ))‖2. (3.16)

The residual vector r maps SE(3)Np 7→ R
Nr . The Gauss-Newton algorithm is commonly

used to solve unconstrained least-squares minimizations. It is however not straightforward

to apply here because the structure of SE(3)Np is non Euclidean. We recall briefly that if

it were, the Gauss-Newton method would approximate the variation of E with respect to a

variation of the parameters ∆Θ as:

E(Θ+∆Θ) ≃ ‖r(Θ) + Jr∆Θ‖2, (3.17)
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Figure 3.3: detail of the patching procedure

where Jr is the Jacobian of r computed at Θ. This is a quadratic form in ∆Θ whose

minimum ∆Θ∗ is given by the equation:

Jr
TJr∆Θ∗ = −Jr

T r(Θ). (3.18)

The algorithm converges to a local minimum of E by iteratively computing these minima of

local quadratic approximations and taking the corresponding steps in the parameter space.

Parameterizing the rotations However elements of SE(3)Np cannot be directly used in

such a framework, mainly because the rotations Rk can not be simply added. Thus, to use

the Gauss-Newton algorithm, the neighborhood of the current approximation Θ needs an

adequate parametrization that will allow to compute an energy-minimizing step. We chose

to use exponential maps [68] to do so. As shown in figure 3.4, this means that for each

patch the update step is parametrized with a vector θk =

[
uk

vk

]

∈ R
6.

Rk 7→ e[uk]×Rk

ck 7→ ck + vk
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Figure 3.4: On a small neighborhood around the current approximation Rk, the manifold

of rotations SO(3) is locally parametrized with an exponential mapping

Figure 3.5: In this example, the points are in the plane z = 0 and uk points along the z

direction. The first order approximation of the exponential map adds to each vertex xk the

cross product of uk with xk − ck. This approximation of the transformation is not a rigid

motion and rapidly induces scaling effects when ‖uk‖ (the angle) increases.

Using the first-order expansion of the exponential mapping of uk to SO(3), the update of

Rk can be approximated as Rk 7→ (I + [uk]× + . . .)Rk. Figure 3.5 and equation (3.19)

show how this update of the parameters affects the vertices coordinates. The coordinate xk

varies linearly in θk, and thus x also varies linearly in {θk}k=1:Np
.

xk(v) 7→ xk(v) + [uk]×(xk(v)− ck) + vk.

7→ xk(v) +Kk(v) θk

with Kk(v) =
[
[ck − xk(v)]× I

]
(3.19)

Computing the Jacobian For all scalar components r in the residual r, the gradient with

respect to the {θk}k=1:Np
can be expressed using the chain rule and the fact that Kk(v) is
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precisely the Jacobian of xk(v) with respect to θk.

[
∂r

∂θk

]

=

[
∂r

∂xk

]

︸ ︷︷ ︸

1×3

[
∂xk

∂θk

]

︸ ︷︷ ︸

3×6

=

[
∂r

∂xk

]

Kk(v). (3.20)

Taking an energy-minimizing step These first order approximations can be used to com-

pute the gradient, but the actual energy must be evaluated once the rotations in Θ have been

properly updated with the exponential maps. In practice, the rotations Rk are encoded as

quaternions, and their update is performed with a multiplication:

qk 7→ [cos
‖uk‖

2
,

uk

‖uk‖
sin

‖uk‖

2
]qk

The resulting quaternion is normalized after each update to limit the accumulation of nu-

merical error.

The corresponding step on the manifold does not however necessarily decrease the en-

ergy. This step was only computed to minimize the quadratic approximation of the function,

and this approximation induces non-rigid effects on each patch, as shown by figure 3.5.

Therefore, it is necessary to make sure that each step decreases the energy. This is per-

formed by line-search along the direction set by the step, which maps to a trajectory on

SE(3)Np . In practice, we follow [12] and simply halve the step’s length by powers of two

until the corresponding energy evaluated on the manifold is actually decreased with respect

to the current state.

2.3 Regularization

The deformation method as it has been described up to now forces each patch to un-

dergo rigid motion through the choice of parametrization. In that respect, it is intrinsically

regularized. However, these rigid motions are not yet linked together and nothing pre-

vents neighboring patches from collapsing or from drifting apart. Therefore, an extrinsic

regularizer needs to be introduced to maintain coherence in the structure and prevent the

deformation from reaching implausible states.

Definition We define a regularization energy that emulates elastic behavior with respect

to a reference pose. As discussed in section 1 this is a reasonable deformation prior given

a reference shape to be deformed, when no further information is available on the nature

of the object. The energy that we define resembles these proposed by Botsch et al. [11, 12]

and Sumner et al. [65]. These approaches embed the shape in deformation graphs similar to

our patch structure and emulate elastic behavior by defining pairwise energy terms between

nodes of the graph. These pairwise energies are simplified “elastic glue” [12], designed to
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induce plausible behavior rather than to estimate a proper strain energy from the deformed

object. Let us consider two neighboring patches Pk and Pl, and name Ekl(Θ) the rigidity

energy that links them. The idea is that these two patches should agree on their predictions

of a number of representative vertices v ∈ Vkl.

Ekl(Θ) =
∑

v∈Vkl

wkl(v)‖xk(v)− xl(v)‖
2. (3.21)

=
∑

v∈Vkl

wkl(v)‖[Rk(x
0(v)− c0k) + ck]− [Rl(x

0(v)− c0l ) + cl]‖
2.

This type of regularization term integrates perfectly within the energy minimization

framework because it consists of squared residuals, and because these residuals can be

linearized using equation (3.20). This linearization of the residual yields a quadratic ap-

proximation of the energy, presented here in matrix form:

Ekl(θk,θl) ≃
∑

v∈Vkl

wkl(v)‖Kk(v)θk −Kl(v)θl − (xl(v)− xk(v))‖
2

≃
∑

v∈Vkl

wkl(v)‖
[
. . . Kk(v) . . . −Kl(v) . . .

]

︸ ︷︷ ︸

3×6Np












...

θk

...

θl

...












︸ ︷︷ ︸

6Np×1

− (xl(v)− xk(v))
︸ ︷︷ ︸

3×1

‖2

(3.22)

This type of elastic energy is numerically well behaved because it does not rely on the

interpolated shape to make any computation. The set of representative vertices Vkl is al-

ways transformed by (Rk, ck) and (Rl, cl) and the energy only depends on these rigidly

transformed point sets, and not on the interpolated shape. This means that even if the defor-

mation is driven to an extreme case where interpolation artifacts occur (see [38] for a recent

discussion of the limitations of linear blend skinning), the energy will stay well behaved

and consistently pull back towards the rest state. This is illustrated by one experiment of

Botsch et al. [12] where the deformation graph is collapsed to a single point, and where

minimizing the deformation energy brings back to the rest state. Such consistence in the

behavior of regularization terms is particularly important when dealing with visual data, as

the computed advection terms are noisy.

Choosing a set of representative vertices There are several possible choices for the set

of representative vertices. In the following, two existing works are presented and their

transposition to our patch structure is discussed. Our proposed regularization energy is

then introduced.

• The regularization energy proposed by Sumner et al. [65] applies each node’s transfor-

mation to the centers of the neighboring nodes and penalizes quadratically the distance
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Figure 3.6: Rigidity energy as defined in the work of Sumner et al. [65]. Each patch

tries to preserve the center of its neighboring patches in its own local frame. The relative

rigid transformations are not well conditioned, as all rotations around the axis between the

centers yield a null energy.

of these prediction to the actual positions of the neighbors’s centers. In the formulation

of equation (3.21), this amounts to have only the two centers ck and cl in Vkl.

Ekl = ‖Rk(c
0
l − c0k) + ck − cl)‖

2 + ‖Rl(c
0
k − c0l ) + cl − ck)‖

2

An illustration of this method is displayed in figure 3.6 and helps see that this regular-

ization is not well conditioned. Indeed, it yields 0 energy for all the relative rotations

of the two patches around the axis that joins their centers. In practice, this means that

this energy does not penalize twisting at all. Despite this remark, this energy has been

successfully applied for interactive deformations [65] and mesh registration [43]. This

can be explained by the fact that when all the nodes of the deformation graph are con-

sidered, other pairwise energy terms from other neighbors help constrain the rotations

in this direction. Furthermore, it should be noted that these works do not intrinsically

force the node’s transformations to be rigid motions but instead let them be affine trans-

formations that are extrinsically regularized by another energy term. In that respect, the

singularity of the rigidity term could be absorbed by this additional regularization. More

simply, it can be fought by penalizing changes with respect to the current estimate, that

is by adding a small diagonal term on Jr
TJr from equation (3.18). In effect, this then

adds some curvature along the direction of the energy valley, or singularity, and allows

for the linear system to be solved. However, the condition number of Jr
TJr still can be

very big in some extreme cases such as a graph made of a single 1 dimensional line of

nodes.

• Choosing other representative points helps solve this singularity issue. In the works by

Botsch et al. [11, 12] the meshes are embedded in control structures made of volumetric

cells. In [11] these cells are prisms extruded from the faces of the surface and they are

linked by an energy that forces two neighboring prisms to agree on the face that they

shared in the rest pose. In [12], the cells are cubes that are linked by an energy that

forces two neighboring cubes to agree on the union of their volumes. In both cases, it

can be shown that these error integrals over faces -resp. volumes- can be expressed as

weighted sums of the errors on the corners of the face -resp.volume-, thus fitting in the
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Figure 3.7: Rigidity energy inspired from the work of Botsch et al. [11]. Each node needs

to agree with its neighbor on 4 vertices that lie on the face shared by polyhedra build around

them.

Figure 3.8: Rigidity energy inspired from the work of Botsch et al. [11]. Varying the ratio

of dimensions of the common face allows to control the relative penalizations of bending,

shearing and twisting.

formulation from equation (3.21). Figure 3.7 illustrates how these ideas transpose to

our patch-based representation. In figure 3.8, we illustrate how varying the shape of the

representative face -resp. volume- allows to control the relative penalizations of bending,

shearing and twisting.

• Our rigidity energy, as defined in Eq. (3.23) and shown in figure 3.9, simply tries to

enforce the predicted positions xk(v) and xl(v) of a vertex v by two neighboring patches

Pk and Pl ∈ Nk to be consistent.

Er(Θ) =
∑

l=1:Np

∑

Pk∈Nl

∑

v∈Pk∪Pl

wkl(v)‖xk(v)− xl(v)‖
2. (3.23)

The choice of the weights wkl(v) is of importance as allows to encode for material prop-

erties. We chose to use the product of the blending basis functions. This choice is

motivated by the following equations. If we leave the discrete settings and the sum over
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Figure 3.9: Rigidity energy as defined in the work of Cagniart et al. [16]. Both patches pre-

dict positions for the mesh points associated to themselves and their neighboring patches.

The energy penalizes discrepancies in these predictions.

the vertices v, we can rewrite the previous energy as:

Er(Θ) =

∫

S

∑

k

∑

l

αkαl‖xk − xl‖
2dS

=

∫

S

∑

k

αk

∑

l

αl(x
T
k x

T
k − 2xT

k xl + xT
l xl)dS

=

∫

S

[
∑

k

αkx
T
k xk − 2

∑

k

αkx
T
k

∑

l

αlxl +
∑

l

αlx
T
l xl]dS

= 2

∫

S

[
∑

k

αkx
T
k xk − xTx]dS

= 2

∫

S

∑

k

αk‖xk − x‖2dS (3.24)

The transition between the two last lines was simply a conversion from E[XTX]−E[X]2

to E[(X − E[X])T (X − E[X])]. It appears with this formulation that Er is measuring

the variance of the different rigid transformations xk of the original surface, weighting

this variance locally with the compactly supported blending functions αk.

2.4 Numerical considerations

Structure of the linear system With the regularization energy defined, and given exter-

nal data terms, the Jacobians for the data and rigidity residuals are computed using equation

(3.20). These residuals and Jacobians could be fed to a minimization software which would

compute Jr
TJr and solve the linear system of equation (3.18). However, there are 6 vari-

ables per patch and this system becomes rapidly large. Moreover, the sparse nature of

Jr
TJr problem must be taken into account. To illustrate this sparseness, let us consider the

Jacobian of a pairwise energy term Ekl linking patches Pk and Pl. If we index the vertices



2. A PATCH-BASED APPROACH TO DATA-DRIVEN MESH DEFORMATION 75

vi in Vkl, the approximation of equation (3.22) can be rewritten as:

Ekl ≃ ‖W







...
...

. . . Kk(vi) . . . −Kl(vi) . . .
...

...







︸ ︷︷ ︸

Jkl












...

θk

...

θl

...












−







...

xl(vi)− xk(vi)
...






‖2 (3.25)

This energy term contributes a symmetric matrix Jkl
TJkl to the general Jr

TJr.

JT
klJkl =












. . .
∑

iwkl(vi)K
T
k (vi)Kk(vi) . . . −

∑

iwkl(vi)K
T
k (vi)Kl(vi)

. . .
...

∑

iwkl(vi)K
T
l (vi)Kl(vi)

. . .












(3.26)

These 6Np×6Np matrices are composed of 6×6 blocks, and their sparse structure mirrors

the connectivity in the graph of patches. Other data terms depending on blended vertice

positions yield similar matrices, but have a positive sign on the off-diagonal terms.

In our implementation, we never store the Jacobians of the energy terms. Instead, we

directly accumulate on the Jr
TJr matrix and the Jr

T r vector that constitutes the right hand

side of equation (3.18). This has the advantage of keeping the memory footprint low and

independent of the number of energy terms in the minimization.

Sparse Cholesky factorization Finding a minimizer of the quadratic approximation at

each step of the Gauss-Newton algorithm can then be tackled by any available sparse solver,

either direct or iterative. We present in this paragraph details on the direct solver. We

have however confirmed that a simple Conjugate Gradient algorithm with a diagonal pre-

conditioner was a functional alternative that requires a much less involved implementation

effort. For more details, the interested reader can refer to the survey by Botsch et al. [10]

on the solving of large linear systems for mesh processing.

We use a sparse Cholesky factorization package [53] to solve equation (3.18). When the

deformation graph has several connected components, each one is processed independently

and has its own Jr
TJr and Jr

T r accumulators. Furthermore, the nodes are re-indexed in

each connected component to reduce fill-in of the sparse structure during the solving stage

[36]. In the same spirit, the sparse Cholesky factorization package [53] that is used for

solving precomputes the symbolic part of the factorization. This symbolic decomposition

is reused at each Gauss-Newton step and allows for a consequent speedup of the overall

procedure.

Dimensional inhomogeneity and importance of scale As concluding remark on the nu-

merical behavior of the presented deformation framework, we mention the conditioning of



76 CHAPTER 3. A ROBUST MESH DEFORMATION MODEL

the matrix Jr
TJr, as well as the impact of scale on the numerical behavior of this frame-

work. Both the regularization energy and the data energies accumulate 6× 6 blocks on the

matrix that are multiples of KT
k (v)Kk(v). If we name dxk(v) = xk(v) − ck and omit v

for the sake of clarity, we see that these terms have the form:

KT
kKk =

[
−[dxk]×[dxk]× [dxk]×

−[dxk]× I

]

(3.27)

It can be seen that the top left 3× 3 sub-matrix, which corresponds to the rotation variable

uk, involves elements with magnitudes that are quadratic in the length of dxk, which varies

with the scale of the mesh. In comparison, the bottom right part that corresponds to the

translation variable vk is independent on the scale of the mesh and is always I. This means

that a same mesh, scaled a thousand times could yield a Jr
TJr matrix with a condition

number of roughly a million times the condition number that was given by the original

mesh. This dependence on scale is due to the dimensional inhomogeneity of the parameters

used for optimization, that is of rotations and translations.

Provided a limited numerical error in the accumulation of terms on Jr
TJr and Jr

Tbr,

this conditioning issue has very limited impact on the behavior of the framework. A more

important issue appears when regularizing Gauss-Newton type optimizers by adding a di-

agonal term λI to the JT
r Jr matrix, where λ is a small scalar. This adds some curvature

to the local quadratic approximation of the energy function, which can effectively remove

singularities and damp the steps taken by the optimizer. Using λI amounts to performing

this regularization isotropically. Therefore we must be conscious of what isotropy means,

that is of the correspondence established between lengths units and radians. The damping

can be adapted to account for this correspondence by replacing the identity matrix with a

diagonal matrix whose values reflect the proper ratio. This makes the framework behave

similarly in all scales.

3 Applications

The presented mesh deformation framework is a generic tool for two reasons: first, it

can be used to parametrize and regularize the deformation of just about any mesh, regard-

less of the object it actually represents. Second, we have presented how any data term that

depends on vertex positions can be integrated in the energy minimization. We show in

this section how different problems can be solved by simply integrating data terms in our

patch-based framework, and how the same framework and code can be reused across this

variety of problems.
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Figure 3.10: Illustration of the deformation graph inferred from the patch structure.

3.1 Interactive deformation

To evaluate the behavior of our patch-based mesh deformation framework and quickly

test against regressions in the code base of the solver, we implemented a simple interactive

application where 3D constraints on the vertices positions could manually be set by the

user. For example if a vertex v on the mesh is constrained to go to position y in space, the

energy term ‖r3D(v)‖2 is added to the energy to be minimized.

r3D(v) = β(x(v)− y) (3.28)

Integrating these residuals in the framework only requires to compute their Jacobians,

whose components are simply:

[
∂r3D(v)

∂θk

]

︸ ︷︷ ︸

3×6

= βαk(v)Kk(v) (3.29)

The results displayed in figure 3.11 illustrate two important facts on the method. Firstly,

even though the number of patches is low, the resulting interpolated deformation of the

mesh is reasonably smooth. Secondly, the constraints are set on vertices of the mesh and

not on patch centers. This shows that even though the deformation is computed on the

control graph, the data terms can still be sampled on the original geometry.
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(a) Object in its rest pose (b) Deformed object

Figure 3.11: Behavior of the patch deformation framework in an interactive deformation

application. The target positions for the constrained vertices of the original mesh are indi-

cated by red boxes.

3.2 Recovering cloth deformation

Recovering the evolutions of 3D surfaces from 2D information is a highly under-

constrained problem. Prior knowledge is therefore required to ensure consistent deforma-

tions. We ran a simple experiment to show that our framework, equipped with the simple

surface rigidity priors of equation (3.21), performs well in this situation. We use the data

made available by the EPFL computer vision group for that purpose [55]. It consists of a

reference 3D mesh model of a piece of cloth and of a list of correspondences for each video

frame. Each of these correspondences maps a 3D position on the reference mesh, expressed

in barycentric coordinates, to a 2D position in the image. We use these correspondences in

our framework by simply defining a residual function r2D(v) that measure the reprojection
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Figure 3.12: Results on the cloth dataset [55]. On the top row, the mesh overlay on the

original data demonstrates a low reprojection error, while the bottom row shows that the

recovered 3D deformations are physically plausible. Note on the two first images that in

absence of matches, the rigidity constraints make the mesh return locally to its rest pose

(flat cloth).
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error of a 3D vertex on the image.

r2D(v) = β







[
p00 p01 p02 p03
p10 p11 p12 p13

] [
x(v)
1

]

[
p20 p21 p22 p23

]
[
x(v)
1

] −

[
tu
tv

]






, (3.30)

where P =





p00 p01 p02 p03
p10 p11 p12 p13
p20 p21 p22 p23



 is a 3 × 4 matrix that contains the parameters of the

camera. The Jacobian of these residuals is more complex than in the interactive deformation

example but remains straightforward to compute:

[
∂r2D(v)

∂θk

]

︸ ︷︷ ︸

2×6

=

[
∂r2D(v)

x(v)

]

αk(v)Kk(v)

=
β

zc(v)2

[
zc(v)

[
p00 p01 p02

]
− xc(v)

[
p20 p21 p22

]

zc(v)
[
p10 p11 p12

]
− yc(v)

[
p20 p21 p22

]

]

αk(v)Kk(v),

(3.31)

where

xc(v) =
[
p00 p01 p02 p03

]
[
x(v)
1

]

yc(v) =
[
p10 p11 p12 p13

]
[
x(v)
1

]

zc(v) =
[
p20 p21 p22 p23

]
[
x(v)
1

]

Figure 3.12 presents overlays of the our result over the input images. These overlays

show that there is an overall low residual reprojection error. The figure also shows side

views of the corresponding 3D shape illustrating that the recovered 3D deformations are

actually plausible states for a piece of cloth. This simple experiment confirms that our

deformation model, although originating mostly from the field of computer graphics, can

be used as deformation prior for the data-driven recovery of shape.

3.3 Silhouette fitting

The last application that we present also uses 2D data as input. We show that our

deformation model can be used to optimize silhouette reprojection error when deforming

shapes observed in a multi-view studio.

For many approaches to markerless performance capture, this is an important step be-

cause silhouettes are usually the most reliable information available in a multi-view studio.

For example, Vlasic et al. [72] first deform the reference mesh using a skeletal pose they
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optimized for, then fit the silhouettes by refining the deformation. Their method samples

the silhouette contours in each image by shooting rays through the image plane every 10

pixels on the contour. For each ray, they find the vertex on the mesh that is closest to the

ray (and consider some additional heuristics to take surface normals into account ). They

then compute for each of these vertices the closest point on the ray and use it as a 3D

positional constraint in a Laplacian-preserving mesh deformation framework. This frame-

work basically minimizes the sum of the regularization energy of equation (3.12) and of

the weighted residual 3D distances of the constrained points to their targets. Gall et al. [29]

also use silhouette fitting to refine the surface deformation after optimizing a skeletal pose.

They regularize this refinement with a Laplacian-preserving energy also, but differ from

[72] in that they constrain the projections of the points to match a given 2D position in the

image, instead of setting 3D positional constraints.

As we have already remarked in our conclusion on deformation models (1.5), the

Laplacian-preserving regularization energy is difficult to work with in because it depends

on the current approximation of the local rotations of the surface. As such, there is no

objective function whose decrease can be checked during the optimization and the conver-

gence does not appear as provable, especially if for some reason local surface flips occur

and perturb the regularization energy.

Silhouette energy We propose to explictely minimize the weighted sum of the shape

rigidity energy Er(Θ) defined in equation (3.21) and of the silhouette reprojection error.

This silhouette reprojection error is simply taken for each camera as the XOR of the ob-

served silhouette and the projected silhouette from the deformed mesh. This effectively

defines a unique energy for which we can check that every step of the optimization indeed

decreases the residual error. This does not guarantee that the algorithm will converge to the

global minimum. However, it allows to stop the algorithm when the energy decrease rate

becomes too small and thus guarantees that the algorithm will converge.

ESIL(Θ) =
∑

ci∈cameras

‖SILci − SILci(Θ)‖, (3.32)

where SILci is the observed silhouette for camera i, and SILci(Θ) is the silhouette gen-

erated by the mesh that was deformed with parameters Θ.

Energy gradient The challenge in this formulation is to compute the gradient of the data

term analytically. Our approach is to compute an approximation of the gradient, and to rely

on the line search in the optimization to reduce the size of the step until that approximation

is valid enough to take an energy decreasing step. We first find contour generators, that

is the set of vertices that are on the border of SILci(Θ). Then, for each of these contour

generating vertices vg, we consider the line in the image plane defined by its projection

and the projection of its normal. For each vg, we scan along this line in SILci for a

corresponding point t that has a compatible gradient. Finally, we use the gradient of the

2D residual function r2D(vg) defined in the previous section to approximate the variation
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Figure 3.13: The observed silhouette SILci is displayed in gray. The silhouette generated

by the deformed mesh SILci(Θ) is displayed in red. The small green lines indicate the

found correspondences between silhouette generators in the red contour and point of the

observed silhouette.

of the silhouette error with respect to small variations of Θ

ESIL(Θ) ≃ const+
∑

vg

‖r2D(vg)‖
2 (3.33)

A simple interpretation for this approximation is that moving the contour generator one

pixel towards the real silhouette will reduce the silhouette overlap error by one pixel. A

more principled approximation would need to account for the neighboring contour genera-

tors along the silhouette boundary. We however keep the approximation of equation (3.33)

because it gives good results in practice.

Results We show in figure 3.14 how silhouette optimization can help refine the results

of mesh registration. When the quality of the segmented silhouettes is good enough, we

use the described optimization as a post-process to improve the quality of the deformation

recovered by the method that we will present in chapter 4.
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Figure 3.14: Silhouette optimization allows to better fit the silhouette data as a post-process.

The mesh on the left is the result of the probabilistic registration algorithm presented in

Chapter 4. It can be observed that after the mesh registration step, the overlap with the

silhouette (displayed in black underneath) is not necessarily optimal. After a couple of

iterations of silhouette optimization, the overlap is much more precise.

4 Conclusion

In this chapter, we have presented a broad survey of the state-of-the art on mesh defor-

mation models. Among the reviewed methods, we have identified two interesting ideas for

data-driven deformation: first we have seen that embedded deformation methods allowed

to decouple the parametrization of the deformation from the complexity of the deformed

geometry. Second, we have seen that elasticity intrinsically carried non-linearities in its

formulation as soon as large deformations need to be represented. We therefore have de-

cided to explicitly optimize on local rotations of the surface, when most other methods

optimize on the locations of control vertices and implicitly recover the local rotations from

this sparse set of vertex locations.

Building on these ideas, we have presented a deformation model and an optimization

framework. The deformation model is strictly surface-based an builds a deformation graph

that matches the connectivity of the deformed mesh. We have proposed to divide this

mesh into small surface elements whose size depends on the precision at which we wish to

sample the deformation. We have emulated an elastic behavior of the surface by defining a
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well conditioned rigidity force between neighboring patches. Finally, we have presented an

optimizer that approximates variations of the local rotations of the surface with exponential

maps, and thus has access to precise analytical derivatives of any energy term that depends

on vertex positions.

We have presented a number of such energy terms through three applications. The

results we have obtained show that this deformation model is a useful and generic tool

for the recovery of surface deformation from visual data. We will show in the following

chapter how it can be used as a prior in the inference for the deformation of arbitrary shapes

observed in multi-camera studios.
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CHAPTER 4

Surface Tracking by Probabilistic
Mesh Registration

In this chapter we address the problem of automatically recovering temporally

consistent animated 3D models of arbitrary shapes observed in multi-camera

setups. The approach we propose considers a sequence of independently re-

constructed surfaces and iteratively deforms a reference mesh to fit these ob-

servations. To effectively cope with the parasite and missing geometry that are

inherent to reconstructions from visual data, we build on two ideas. Firstly,

we use the patch-based deformation and numerical optimization framework

that were presented in the previous chapter. This framework increases robust-

ness by providing natural integration domains over the surface for noisy data

and by enabling to express simple patch-level rigidity constraints. Secondly

we propose a Bayesian method for mesh registration that accounts for the un-

certainty in the data acquisition process by embedding the optimization in an

Expectation-Maximization formulation. Extensive experiments on various 4D

datasets show that these two ideas allow to process complex scenes involving

several objects of arbitrary nature, while robustly handling missing data and

relatively large reconstruction artifacts.

1 Introduction

In chapter 2, the study of prior art established that finding correspondence between

two deformed instances of an object is a challenging problem. We discussed how most of

the available feature-matching methods were designed to match temporally uncorrelated

observations of deformable objects, and how this fails to exploit fully the strong temporal
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redundancy in scene appearance and structure that exists between two successive frames of

a sequence captured in a multi-view studio. Furthermore, we noticed that when trying to

infer dense motion in this context, many approaches rely heavily on silhouettes to ensure of

the correctness of correspondences computed by other means such as optical flow or sparse

feature matching. This is a strong indication that the information brought by silhouettes on

the scene geometry for a given frame can be considered a more reliable cue than the matches

established between successive images or successive reconstructions during the sequence.

Not only is this information relatively reliable, it is also sufficient to infer motion in some

cases. For example, Vlasic et al. [32] use silhouettes exclusively as input data to perform

dense surface tracking of humans.

The question addressed by this chapter is that of inferring the motion of 3D surface

points from a series of snapshot of the scene structure alone. From one frame to the next,

these independent 3D reconstructions vary in their sampling of the scene structure. How-

ever, given a high enough frame-rate, the independently reconstructed surfaces represent

shapes that are both similar and spatially close to one another. We aim at exploiting this

proximity to establish dense correspondence between frames. We cast the problem as ge-

ometric registration of a reference mesh to the sequence of reconstructed meshes, as dis-

played in figure 4.1. This reference mesh, once deformed to fit every observed mesh,

constitutes a temporally coherent sampling of the scene geometry across the sequence.

The first key aspect of our approach is its generality. In contrast to other works that

compute motion from geometric cues exclusively [32, 16, 10], we do not assume a strong

articulated structure and instead use the robust mesh deformation framework presented in

chapter 3 to regularize the tracking. In that respect, our work is closer to that of [12, 11].

Because our regularization energy is purely surface based and does not make assumptions

on the nature of the object, our approach can process scenes involving several objects of

arbitrary nature in a single mathematical formulation.

The second key aspect of our work lies in the probabilistic formulation of the regis-

tration problem that accounts for potential errors in the silhouette segmentation and 3D

reconstruction stages, and increases the robustness to artifacts in the geometry. As we will

discuss in this chapter, modeling for the uncertainty of the acquisition process is a crucial

component of our work because of the more generic and thus less constraining regulariza-

tion that we use.

In the next section, we briefly recall several important ideas on geometric registration,

as well as a review of the works directly related to ours in terms of probabilistic model-

ing. The remainder of the chapter presents our developments in details and particularly

focuses on our proposal of probabilistic formulation for mesh registration. We present our

results and demonstrate the performance and versatility of our algorithm. This evaluation

is performed qualitatively and quantitatively on several sequences, including scenes that

involve several objects of different nature. We show that our approach not only allows to

process such scenes with a single mathematical formulation and deformation model, but

also performs comparably well to previous art on simpler scenes.
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Figure 4.1: Our method performs the geometric registration of a reference mesh to a tem-

poral series of independently reconstructed meshes. The left column contains the meshes

that were independently reconstructed from the image data. A patch structure is associated

to one of these meshes (usually the first). This reference mesh is deformed to fit the rest of

the sequence. The resulting animated mesh is a 4D model of the sequence.
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2 Related Works on Geometric Registration

The following discussion of geometric registration methods considers that the two

shapes that need to be registered are already be roughly aligned. This hypothesis is con-

sistent with our setting where the registration happens between two successive frames of

a temporal sequence. For a discussion of coarse alignment methods, the interested reader

can refer to the section on matching in chapter 2 and its listed references.

2.1 Rigid registration

For simplicity purposes, we first illustrate the idea of geometric registration within the

restricted case of rigid registration of point clouds. In that case, the goal is to find an optimal

rigid transformation R, t that aligns two sets of 3D points X = {xi} and Y = {yj}. This

is a relatively constrained problem as there are only 6 degrees of freedom. The issue is that

we don’t know the correspondence between the points of X and the points of Y .

ICP In the literature, the prevailing way to address rigid registration when the two shapes

are almost aligned is the Iterative Closest Point (ICP) method by Besl and McKay [1]. The

idea is to minimize the following registration error with respect to R, t:

argmin
R,t

∑

i

min
j

‖Rxi + t− yj‖
2. (4.1)

This minimization happens by iterating two steps until convergence:

1. given the current approximation R, t, find ∀xi ∈ X the point y(i) closest to Rxi+t.

2. given these closest points y(i), update R, t to the rigid transformation minimizing
∑

i ‖Rxi + t− y(i)‖2

The first step is a simple nearest neighbor search and can be tackled by brute force or

with more sophisticated space-partitioning methods. The second step has a closed-form

solution that can be found with the method by Horn [20], or other methods such as polar

decomposition of the coordinate covariance matrix. Overall, ICP is proven to converge to

a local minimum.

Different error functions Since the original ICP algorithm was presented, numerous

extensions have been proposed. Rusinkiewicz and Levoy [28] provide a good overview, as

well as a comparison of different strategies.

A notable modification was presented by Chen and Medioni [6] who propose to mini-

mize the point-to-plane distance in place of the point-to-point distance. Their idea is to use

information on the surface normals when it is available to get a better approximation of the

residual distance of each transformed xi to the target surface. Once the closest point y(i)

is found for all xi, the second step minimizes
∑

i

[
ni

T (Rxi + t− y(i)
]2

. This first-order
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approximation of the target surface, that considers more than the points of Y only, was

shown to significantly improve the convergence rate by Pottmann et al. [25].

Another path to improve ICP’s performance and robustness is to weight the individual

contributions of the correspondences, and to minimize
∑

iwi‖Rxi+t−y(i)‖2. For exam-

ple, [14] uses robust estimators to weight the contributions of correspondences depending

on the residual distance between points. This prevents the quadratic penalization of outly-

ing correspondences that can significantly impact the update of the rigid transformation in

the second step.

Handling outliers As noted by [28], an extreme case of weighting correspondences is to

ignore some of them completely. This rejection can happen in the matching stage, when

the closest point y(i) in the target set is computed for each model point xi, by making sure

that the two points are compatible with respect to some criterion. A common criterion is to

check that the angles between the normals are below some threshold.

The rejection of correspondence can also happen when forming the objective function

in the second step, by pruning correspondences involving points that are too distant, or

rejecting a percentage of the correspondence after sorting them by their residual error [7].

The rejection of a percentage of worst correspondences can for example improve the regis-

tration of two partial reconstructions which are only expected to have a partial overlap. The

idea comes from more conventional least-square regression tasks where it is used to limit

the influence of outliers. It integrates naturally in the ICP framework and it is shown in[7]

that this does not affect the convergence properties of the algorithm.

2.2 Probabilistic formulation

The first step of the ICP iterations makes a hard decision when computing the corre-

sponding point y(i) for every model point xi. This correspondence is unfortunately rarely

correct, especially in the early stages of the registration, and overall because of the different

sampling of the shape by X and Y . In other words, if (R∗, t∗) is the optimal registration,

there is no guarantee at a given point of the inference that y(i) will be the point closest to

R∗xi + t∗. Even if it were, the fact that it is the closest point does not mean it is the same

point on the surface.

As such, some works evaluate the likelihood of assignments between points of X and

points of Y . Instead of making a hard choice on the assignment of xi to a unique point of

Y , the softassign approach of Rangarajan et al. [26] builds a |X | × |Y| assignment matrix

W that weights the correspondence between every point of the two clouds. These weights

encode fuzzy assignments between the two point sets. The weights wij are computed as

Gaussians of the distance between xi and yj and normalized to favor one-to-one correspon-

dences. The variance of the Gaussians, which determines how fuzzy the assignments are,

is controlled by a temperature term. The algorithm alternates between the estimation of the
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now soft correspondences, and the update of transformation parameters that minimizes:

∑

i

∑

j

wij‖Rxi + t− yj‖
2. (4.2)

The variance parameter and its multi-scale interpretation Just like ICP, the algorithm

alternates the two steps until convergence, but does so by decreasing progressively the

temperature, performing what is called deterministic annealing. To understand what the

algorithm does, we must first notice that the higher the temperature, the fuzzier the assign-

ments are. Given a fixed very high variance for example, every point will be associated

to every other point with roughly the same weight, and the optimization will progressively

align the centers of the two point clouds, as well as their moments of inertia. For a very

small variance, the assignment becomes very selective and points get assigned to one point

much more than the others, bringing back to the behavior of ICP.

Granger and Pennec [17] propose to discuss the annealing of the variance parameter

as the scale parameter in a coarse-to-fine approach. This is justified by the fact that a

high temperature speeds-up the coarse registration process and prevents the algorithm from

getting trapped in local minima caused by erroneous associations. Inspired by [26], they

look at the registration problem from a probabilistic standpoint. However, they advance

to a fully Bayesian formulation by embedding it in an Expectation-Maximization (EM)

framework, coining the name EM-ICP. We will return to the reasons the EM formalism fits

the problem particularly well when presenting our approach.

Horaud et al. [19] remark that annealing scheduling on the temperature parameter fails

to consider the variance as a parameter of the optimization. As such, deterministic anneal-

ing prevents from estimating the characteristics of the noise in the data and prevents from

fully benefiting from the convergence properties of the EM-algorithm.

Handling outliers In an extension of softassign named Robust Point Matching (RPM),

Chui and Rangarajan [9] deal with outliers by adding a cluster to each point cloud and

associating it with the points from the other cloud that can not be matched. In practice,

this amounts to adding a virtual point to each cloud, but to give it a much bigger variance

in his search for correspondence. This adds a row and a column to the assignment matrix

W . After normalization, outliers tend to have high weights in these additional rows or

columns. During the update step, these rows and columns are not included in the error

function, which effectively diminishes the impact of outliers on the estimation of the rigid

transformation.

Horaud et al. [19] essentially do the same, but the idea integrates much more elegantly

into the EM-framework than it does into softassign. They model the outliers as the effect of

a random point-generating process that creates points in 3D space with a uniform probabil-

ity distribution function distributed on the scene’s bounding box. We use a similar model

in our work and will present the details in section 3.
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2.3 Non rigid registration

Extending ICP to the non-rigid case is a challenging task, mostly because of the ad-

ditional degrees of freedom. The transformation being much less constrained than in the

rigid case, it becomes difficult to regularize the correspondence information. Because the

parametrization of the deformation and its regularization were already discussed in pre-

vious chapters, we focus here our discussion on the handling of uncertainty in the data

term.

2.3.1 Deterministic approaches

Choi and Szymczak [8] tackle roughly the same problem that we are addressing. They

consider a reference volumetric mesh in its rest state and treat it as an elastic body that

needs to be fitted to a series of temporally consecutive 3D reconstructions. They do not for-

mulate it exactly as the registration of point clouds but instead pre-compute signed distance

volumes to the target surface. Then the residual energy is computed as the sum of sampled

residual distances at the locations of the boundary vertices of the deformed model. This

is a common way to speed up registration tasks and avoid nearest neighbor searches when

approximating the fitting error (see the distance transform used to speed up ICP in [14] for

example). Their approach introduces a measure of confidence in the data term by weighting

the residuals of every vertex using a heuristic that trusts error terms more when the normal

to the currently deformed model is aligned with the gradient of the distance volume. Their

method however does not consider the possibility of outliers in the scene data. These would

undoubtedly cause problems because they would significantly modify the signed distance

volume. As this distance volume is computed once and for all at the start, it collapses all the

information brought by the scene points in a single representation, forgetting their individ-

ual and localized uncertainty. Furthermore, the presented results suggest that their energy

contains numerous local minima in which their optimizer can get trapped, despite some

additional and computationally costly heuristics preventing self collisions of the deformed

model.

de Aguiar et al. [11] insist on their use of image features in the registration process,

but as discussed in chapter 2, a number of implementation details confirm the prevailing

influence of silhouettes in their registration algorithm. Indeed, they do not trust the sparse

correspondences directly but instead progressively deform the mesh along the direction

of these matches, making sure that the silhouette error decreases at each step. Finally

they refine the pose using the silhouette information alone to account for regions where

photometric feature matches could not be established. As such, it appears that they in fact

minimize the silhouette reprojection error in their method. They therefore can be classified

as a geometric registration method. However, they do not account at all for possible errors

in the segmented silhouettes.

The work by Li et al. [22] on the registration of range scans is the closest to ours in

terms of parametrization and regularization of the deformation. There are slight differences

between this approach and ours in that respect, and we have discussed them in chapter 3.
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In contrast, the differences in the data-term of the optimization are significant. First of all,

they do not sample the geometric information densely and only look for correspondence for

the graph nodes of their optimization structure, which correspond to the patch centers in our

formulation. Secondly, these correspondences are established by projecting each node on

the range image of the target shape (corrected of an average rigid transformation between

the two shapes) and is not established like ICP by nearest neighbors search in 3D. The last

difference is related to the problem of outliers: because part of the surface in the first range

image might not be seen in the second range image, there might be nodes that will not find

a reliable match. The way they solve this problem is by weighting the correspondences

with weights that are also variables in the optimization: Edata =
∑

iwi‖xi − y(i)‖2,

and introducing an energy term favoring non-zero wis: Ew =
∑

i(1 − wi)
2. In effect,

if the correspondence is bad and ‖xi − y(i)‖ is large, the optimizer will benefit from

the slack offered by wi and progressively reduce it to zero. This idea is related to the

variable weights and outlier class of softassign or EM-ICP, and offers the same slack to the

optimizer. However, while EM optimizes these weights implicitly in the E-step, [22] make

it an explicit variable of the optimization and make its complexity grow. This probably

explains why they only sample data at control nodes and not more densely on the model.

Shinya [29] propose to register a mesh to subsequent observations for the purpose of

sequence compression. Similar to our setting, they make no assumptions on the nature of

the observed objects and aim at designing a generic non-rigid mesh registration algorithm.

They display result on very clean data involving limited motion. They display failure cases

that occur when the deformations become to large. These failures could be the result of

their regularization energy which operates at the vertex level by penalizing changes of

angles between triangles, changes of edge lengths and changes of triangle areas. In the

end, they use user-specified positional constraints to guide the deformation.

Our early experiments on mesh registration [2, 4, 3] were fully deterministic and only

associating the closest point in the target set to each point of the deformed model. This

had two major consequences: first, the convergence rate was considerably worse than in

the proposed method, because hard assignments do not benefit from the fuzzy multi-scale

effects that were just discussed for probabilistic approaches in the rigid case. The second

issue was that reconstruction artifacts and outliers were not accounted for and impacted the

deformation as strongly as correctly reconstructed points.

2.3.2 Probabilistic approaches

The probabilistic approaches to non-rigid registration are directly related to the ap-

proaches of the rigid case in their handling of data uncertainty. They mostly differ on their

choice of deformation model.

Articulated Horaud et al. [19] extend their rigid registration method based on EM to

tackle the alignment of articulated structures. Their method iteratively registers the dif-

ferent parts that constitute the articulated body: first, the root part is registered to the tar-
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get data using their Expectation Conditional Maximization Point Registration (ECMPR)

method. Then, the points of the target cloud that are explained by the root in its optimized

position are removed from the data set. This procedure is repeated iteratively for all the

remaining parts of the articulated body.

Thin-plate splines and other RBFs Chui and Rangarajan [9] extend the softassign algo-

rithm to the non-rigid case and name their method Thin Plate Spline Robust Point Matching

(TPS-RPM). As this name indicates, this approaches parametrizes the non-affine part of

the deformation using the thin-plate-spline (TPS) as basis functions. The optimization thus

happens on the parameters of an affine warp plus as many warping coefficients as there are

dimensions to the TPS Kernel. As noted by Myronenko and Song [24], the TPS in 3D uses

basis functions that are non differentiable at control points. Therefore, [24] presents the

Coherent Point Drift algorithm, based on Gaussian basis functions. It is worth noting that

both approaches use deterministic annealing on the variance instead of estimating it as a

variable. The main issue with these methods however, already discussed in chapter 3, is that

these parametrization enforce smoothness over the whole scene’s volume, and not only on

the object itself. They therefore can present artifacts when two geodesically distant parts of

the surface are close in 3D space, and they have limited applicability to large deformations.

Mesh deformation Our work shares common points with the work by Starck et al. [31]

who deform a generic human template to fit a visual hull reconstruction. They start by

roughly aligning the template model with the visual hull, then perform deformable regis-

tration. To this end, they adapt the TPS-RPM [9]. Like TPS-RPM, they rely on the fuzzy

assignments of softassign. However they establish this smooth correspondence between

the voxels of the visual hull reconstruction and the vertices of the deformed template. They

also use deterministic annealing on the variance, that they refer to as temperature parame-

ter. The main resemblance with our work lies in the introduction of a regularization based

on a mesh deformation energy to replace the TPS. However this deformation method op-

timizes directly on the vertices of the template, which results in a very high-dimensional

non-linear minimization. Moreover, and just like the TPS-RPM method, the approach lacks

a probabilistic formulation.

Early reference to deformable EM-ICP We finish this overview of related works by

showing that the idea of associating EM with an elastic model is far from new. In the

earliest (1992) reference we could find, Hinton et al. [18] propose a method for fitting

deformable templates of letters to handwritten characters. Their deformable model is a 1D

spline on which “Gaussian ink-generators” are placed (see figure 4.2). The EM inference

then optimizes the position of these ink generators while estimating the soft assignments

between observed black pixels and each of the ink generators. Additionally, the authors

include a uniform noise process in the model so that pixels that were erroneously segmented

as ink can be rejected. The affine component of the deformation energy is absorbed by

always computing an optimal affine transform between the reference pose and the current
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Figure 4.2: Illustration of the idea presented in the work by Hinton et al. [18]. The digit

model is represented by a spline on which Gaussian ink-generators are placed. Each pixel

of the observed image can be explained by each of these ink-generators. The registration

and assignment problems are simultaneously solved for in an EM framework.

approximation of the deformed spline. In following work [27] the variance is correctly

updated.

Interestingly, this work was published concurrently to the ICP algorithm. The authors

therefore do not refer to their method as some sort of EM-ICP, as the term ICP had not

been coined yet. This is simply a geometric registration method, solved with EM, that uses

a deformable elastic model and a probabilistic model of the data generation process. In

that respect, and even though handwritten digit recognition is seemingly very far from our

problem, we believe this work to be the closest to ours.

3 Probabilistic Mesh Registration

Our work addresses data-driven mesh deformation, and we cast the problem as the

geometric registration of 3D point sets. In a Bayesian context, this means that given a set

of observed 3D points and an estimate of the current pose of the mesh, we are faced with a

maximum-a-posteriori (MAP) estimation problem where the joint probability distribution

of data and model must be maximized:

max
Θ

ln P (Y,Θ), (4.3)

where Y = {yi}i=1:m is the set of observed 3D points {yi}i=1:m associated with the

surface normals at these points. In the absence of knowledge on the nature of the shape, we

model a probability distribution over the range of shape deformations by seeding patches
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on a reference surface and making the approximation

P (Θ) ∝ e−Er(Θ), (4.4)

where Er(Θ) is the rigidity energy defined in equation (3.23). This energy emulates elastic

behavior with respect to the patched reference mesh.

Because our patching approach infers the connectivity of the object from the vertex

connectivity, this reference mesh has to be topologically suitable, that is it has to be split

wherever the surface might split during the sequence. For example if multiple objects are

present in the scene the number of connected components in the reference mesh should

match the number of objects. The pose defined by this reference surface is of less im-

portance provided that the number of patches is high enough to finely sample changes of

curvature with respect to the rest pose (see figure 4.6 for example).

3.1 Bayesian Model

Given this model for P (Θ), the likelihood P (Y|Θ) remains to be approximated to

complete the generative model. This is done with a mixture of distributions parametrized

by a common variance σ2, where each component corresponds to a patch. This requires to

introduce latent variables zi for each observation yi ∈ Y , where zi = k means that yi was

generated by the mixture component associated with Pk. We also increase the robustness of

our model to outliers by introducing a uniform component in the mixture to handle points

in the input data that could not be explained by the patches. This uniform component is

supported on the scene’s bounding box and we index it with Np + 1.

P (yi|Θ, σ) =

Np+1
∑

k=1

ΠkP (yi|zi = k,Θ, σ), (4.5)

where the Πk = p(zi = k|Θ, σ) represent probabilities on the latent variables marginalized

over all possible values of yi. In other words they are prior probabilities on model-data

assignments. We define them as constants p(zi = k) that add up to 1, using the expected

proportion of outlier surface in the observations and the ratios of patch surfaces in the

reference mesh.

The patch mixture component with index k must encode a distance between the position

yi and the patch Pk while accounting for the alignment of normals. For computational

cost reasons, we model this distance by looking for each patch Pk in its different predicted

poses (this means the positions {xl(v)}l∈{k}∪Nk,v∈Pk
and corresponding normals as shown

in figure 4.3 for the closest vertex with a compatible normal vki . We consider two points and

normals to be compatible when their normals form an angle smaller than a threshold. In

practice this threshold was set to 45◦ in all of our experiments. This leads to the following
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Figure 4.3: A point/normal yi with position yi from the observed data is associated to vki ,

the closest vertex with a compatible normal among all the predictions for the patch Pk. In

this case vki is selected because of its position and normal in the prediction made by the

neighboring patch Pl.

(a) (b)

Figure 4.4: P (yi|zi = k,Θ, σ) as defined in Eq. 4.6 is a Gaussian of an approximate

distance to the patch. It forms a sort of halo in space around the different predicted positions

for the vertices of patches k. The subfigures display the probability density function for two

values of σ. Please note that we ignore here the normal compatibility condition.
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model for each component of the mixture:

∀k ∈ [1, Np],

P (yi|zi = k,Θ, σ) ∝

{

N (yi|x(v
k
i ), σ) if vki exists

ǫ otherwise,
(4.6)

where ǫ encodes for a uniform distribution defined on the scene’s bounding box, and

N (y|x, σ) is a multivariate Gaussian distribution centered in x with an isotropic covari-

ance.

3.2 Expectation-Maximization

The variables zi can not be observed, but the probabilistic model built until now allows

to express their posterior distributions:

P (zi = k|yi,Θ, σ) =
ΠkP (yi|zi = k,Θ, σ)

∑Np+1
l=1 ΠlP (yi|zi = l,Θ, σ)

. (4.7)

In other words,if we have an estimate for the parameters Θ (the deformed mesh) and σ

(the variance), we can evaluate for every point yi how likely it is that it was generated by

patch Pk. This places us in a position where we can use the Expectation Maximization

(EM) algorithm that was originally formalized by Dempster et al. [13]. We have seen that

if we have an estimate for the unknowns, we can compute posterior distributions on the

latent variables. We will see that given these posterior distributions, we can optimize for

the unknowns. The idea of EM can be roughly described as alternating between these two

stages until convergence. For the sake of completeness, and to build some insight on the

convergence properties of the algorithm, we recall in the following paragraphs a derivation

of EM. We follow the derivation by Frank Dellaert [15] and adopt here the interpretation

of EM as bound minimization that seems to us as the easiest to understand.

Building a bounding function We recall that we aim at maximizing P (Y|Θ, σ), which

we rewrite as the marginalization over the hidden variables of the joint probability.

lnP (Y|Θ, σ) = ln
∑

Z

P (Y, Z|Θ, σ), (4.8)

Following [15], we can write for any positive real valued function q(Z) defined on the

space of latent variables:

lnP (Y|Θ, σ) = ln
∑

Z

q(Z)
P (Y, Z|Θ, σ)

q(Z)
, (4.9)

If we add the constraint that the values of q(Z) must sum up to 1, the concavity of the log

function allows to write a bound on the function of interest:

− lnP (Y|Θ, σ) ≤ −
∑

Z

q(Z) ln
P (Y, Z|Θ, σ)

q(Z)
. (4.10)
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Finding an optimal bounding function Let us consider that we have a current estimate

(Θt, σt), of the variables we wish to optimize. To take a step that decreases − lnP (Y|Θ, σ),
it suffices decrease the bounding function, after carefully choosing q(Z) so that the bound-

ing function will touch the bounded function at (Θt, σt). [15] finds q(Z) by minimizing

the difference between the two while enforcing
∑

q(Z) = 1 with Lagrange multipliers.

He shows that choosing q(Z) = P (Z|Y,Θt, σt) satisfies the requirements: it indeed

sums up to 1 and yields a bounding function that touches the bounded function at the point

of interest. This means that the bounding function should be the expected complete-data

log-likelihood conditioned by the observed data.

− lnP (Y|Θ, σ) ≤ const− EZ

[
lnP (Y, Z|Θ, σ)|Y,Θt, σt

]
. (4.11)

A practical expression of the bound The challenge is now to find an expression of the

bounding function in equation (4.11) that we will be able to minimize. We start by rewriting

P (Y, Z|Θ, σ) by making the approximation that the observation process that gave Y draws

the yi’s from this distribution in an independent identically distributed way:

P (Y, Z|Θ, σ) =

m∏

i=1

P (yi, zi|Θ, σ) (4.12)

=

Np+1
∏

k=1

m∏

i=1

[
P (yi, zi = k|Θ, σ)

]δk(zi). (4.13)

The rewriting that appeared in equation (4.13) allows to make the double product move out

of the logarithm and obtain sums:

− lnP (Y|Θ, σ) ≤ const−

Np+1
∑

k=1

m∑

i=1

[
EZ [δk(zi)|Y,Θ

t, σt ]ln[ ΠkP (yi|zi = k,Θ, σ)
]
,

(4.14)

which finally leads to the expression of the bounding function we need to minimize:

− lnP (Y|Θ, σ) ≤ const−

Np+1
∑

k=1

m∑

i=1

P (zi = k|yi,Θ
t, σt) lnP (yi|zi = k,Θ, σ). (4.15)

For practical purposes, we can rename the current estimates of the posterior probability

density functions of the latent variables. These are not at all dependent on the variables of

the bounding function Θ and σ and are simply scalars that act as weights in the equations.

wt
i(k) = P (zi = k|yi,Θ

t, σt) (4.16)

We also rewrite the other terms of the equation for k 6= Np + 1 by reminding that the

covariance is assumed isotropic:

lnP (yi|zi = k,Θ, σ) = −
‖yi − x(vki )‖

2

2σ2
− 3 lnσ + const (4.17)
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Reintroducing the prior If we reintroduce the prior and move from P (Y|Θ, σ) to the

joint-probability P (Y,Θ, σ), we obtain a new bounding function Bt(Θ, σ) to minimize

given a current approximate of the variables Θt and σt:

Bt(Θ, σ) = Er(Θ) + 3





Np∑

k=1

m∑

i=1

wt
i(k)



 lnσ

+
1

2σ2

Np+1
∑

k=1

m∑

i=1

[

wt
i(k)‖yi − x(vki )‖

2
]

. (4.18)

Although Θ does not appear explicitly in the equation, it controls the deformation of the

mesh, and thus of the x(vki ) vectors.

3.3 Practical minimization

The previous section recalled the EM algorithm and its mathematical derivation. In this

section, we focus on how to translate these ideas in a practical implementation.

E - Step In the E-Step of iteration t, the posterior P (zi|yi,Θ
t, σt) distributions are evalu-

ated using the current estimation Θt, σt and the corresponding predicted local deformations

of the mesh. As defined in equation (4.7), these functions require to find for each target

vertex yi and patch k the vertex index vki of its nearest neighbor in the different predicted

configurations of the patch.

The complete E-Step amounts to the computation of a m×(Np+1) matrix whose lines

add up to 1, as shown in figure 4.5. This is an very parallel operation as all the elements of

this matrix can be evaluated independently, except for the normalization of each line that

takes place afterwards. In theory it would be tempting to use space partitioning techniques

to speed up the nearest neighbor search. However the dependency of this search on the

orientation of vertex normals makes this cumbersome. In practice we run a brute-force

search, and show in section 5.4 CPU/GPU timings that indicate that the computation time

remains reasonable for practical uses.

M - Step The M-Step of iteration t requires to minimize the bounding function Bt(Θ, σ)
defined as in equation (4.18) by the the soft data - model assignment weights that were

computed in the E-Step. In this bounding function, both data terms and rigidity terms are

made of weighted squared distances between 3D points. This fits exactly in the mesh de-

formation framework defined in chapter 3 and equation (3.16). We do not solve minimize

Bt(Θ, σ) directly with respect to both Θ and σ but instead follow the Expectation Condi-

tional Maximization (ECM) approach (Meng and Rubin [23]) that shares the convergence

properties of EM while being easier to implement. The idea is to replace the M-Step by a

number of CM-steps in which variables are optimized alone while the others remain fixed.

Thus in the M-step, we first use the mesh deformation framework and obtain Θt+1, then
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Figure 4.5: The soft assignment matrix holds the posterior patch-assignment distributions

for every vertex of the target point cloud. As such, the lines are normalized to add up to 1.

The last column of the matrix corresponds to the outlier class.

we update σt+1. The update of σ is simply done by setting the derivative ∂
∂σ

Bt(Θt+1, σ)
to zero.

Θt+1 = argmin
Θ

Bt(Θ, σt) (4.19)

σt+1 =
1

2

√
√
√
√

∑Np+1
k=1

∑m
i=1w

t
i(k)‖yi − xt(vki )‖

2

3
∑Np

k=1

∑m
i=1w

t
i(k)

(4.20)

To avoid degenerate mesh configurations, we however do not completely minimize the

bounding function. Instead we just run one iteration of the Gauss-Newton algorithm, which

amounts to minimizing the quadratic approximation of the objective function around (Θt,

σt).

4 Results

In this section we present the results of our algorithm on several multi-view datasets.

We first show our results on sequences involving several objects to emphasize the benefit

of our approach with respect to methods that use very constraining deformation models.

Then we show with a quantitative evaluation that our work produces comparable results to

existing methods when dealing with less complex sequences.
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Figure 4.6: Results on the Romans sequence that exhibits two interacting objects occluding

each other in fast paced action. The reference mesh is on the top left. The temporally

inconsistent input geometry is displayed in gray. The corresponding colored surfaces are

the deformed reference mesh.

4.1 Multi object tracking

The Romans sequence (1050 frames - about 42 sec) in figure 4.8 was kindly provided

by Indigenes Productions and 4D View Solutions. It involves two soldiers fighting with

swords. The action is fast paced and there are many intersections and occlusions of geom-

etry. This type of sequence highlights the advantage of our approach. No initialization was

required, as the reference mesh was simply the first reconstruction of the sequence. Even

with our simple rigidity model that treats the swords exactly as the loose clothing of the

actors, the algorithm recovers meaningful deformations throughout the sequence.

The Ball sequence shown in figure 4.7 was made available by INRIA Rhône-Alpes
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and involves a father and his son playing with a ball. Here again, our approach does not

require the tedious definition and fitting of an articulated model for each of the objects.

A topologically suitable reconstruction where the three objects are distinct is simply used

as reference geometry. This sequence illustrates the handling of some outlying geometry

that was created by the erroneous segmentation of shadows as foreground. The outlier

class introduced in the Bayesian framework allows to limit the impact of such geometry in

the inference of deformation by progressively reducing the weight of points that can’t be

explained by the model.

The Basketball sequence (1364 frames - about 55 sec) in figure 4.6 was recorded in our

own multi-camera studio. This scene is interesting for a number of reasons. Firstly, the

ball bounces between the legs and is sometimes held close to the body for many frames.

As such the data involves two distinct objects whose interaction is fast, complex and con-

tains a lot of occlusion. Secondly, the simple shape from silhouette method that was used

to recover the temporally inconsistent meshes was quite coarse. It produced geometry ex-

hibiting occlusions and numerous artifacts such as missing limbs. Finally, the reference

mesh that was deformed across the sequence was simply the first mesh, which is barely

more than a blob. The results presented in figure 4.8 show that our algorithm can recover

meaningful estimates of these difficult motions and deformations using a coarse model of

the surface, even when confronted with numerous artifacts in the input data such as missing

limbs, occlusions and self intersecting geometry.

4.2 Evaluation of the silhouette reprojection error

We also ran our algorithm on standard datasets available to the community to compare

it to previous works. We used as input the results of a precise 3D reconstruction algorithm

in one case, and rudimentary shape from silhouette in the other. As we show in this section,

our algorithm performs consistently well in both these situations. In the presented results

we additionally optimized the silhouette reprojection error in a post-processing step, with

the method presented in subsection 3.3. This procedure relies on the very same numerical

framework defined in chapter 3, uses extremely small patches and minimizes an energy that

is the residual error in silhouette overlap.

Tracking Using Photo-consistent Meshes As Input The Surfcap Data from University

of Surrey consists of a series of temporally inconsistent meshes obtained by the photo-

consistency driven graph-cut method of Starck et al.[30]. Except for some rare recon-

struction artifacts in a couple of frames, these are overall very clean and smooth meshes.

Because of their extremely high resolution, these meshes were down-sampled to roughly

10k vertices and fed to our algorithm. We present our results on six sequences. They show

a hip-hop dancer whose moves are very challenging to track because they contain fast mo-

tions and large deformations. In figure 4.9, our results on the Flashkick dataset show that

we can cope with extremely fast deformations such as a backflip. In figure 4.10 we present

our results on the Pop sequence in which the intricate and ambiguous motion of crossing

arms is handled properly. Additionally figure 4.13 shows a quantitative evaluation of the
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Figure 4.7: The frames 292-295-296-297-298 of the Ball sequence show the effects of

outlying geometry and the benefit of the outlier class in the Bayesian model. The shad-

ows were erroneously segmented as foreground, which resulted in outlying geometry. It

is observable that as the ball goes down, this outlying geometry is correctly handled by

the EM framework and does not impact the estimation of the ball’s deformation. As the

ball bounces, the algorithm tries to find a compromise between rigidity and data while pro-

gressively reducing the weight of the erroneous points. It quickly converges to the proper

estimate.



110CHAPTER 4. SURFACE TRACKING BY PROBABILISTIC MESH REGISTRATION

Figure 4.8: Results on the Basketball Sequence. The reference mesh is displayed on the

top left. The hand and ball were manually separated for this initial mesh in a modeling

software so that the deformation model would be topologically suitable. Note that despite a

very coarse reference surface, wrong geometry, missing data and fast motion have a limited

impact on our tracking algorithm.
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Figure 4.9: Results on the Flashkick sequence. The kickflip itself consists of extremely

fast motion as it spans over 15 frames.

Figure 4.10: Results on the Pop sequence. Note how geometrically ambiguous the arm

crossing is, and the strong self-occlusions it produces.

Figure 4.11: Results on the Samba sequence. The approach yields visually convincing

results on the tracking of a skirt.
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overlap error between the reprojected silhouettes from our result and the original silhou-

ettes. The error is given as the ratio of erroneous pixels and total number of pixels in the

original silhouette and stays approximately constant at a value of 5%.

Tracking Using The Visual Hull As Input We used the multi-view image data made

public by the MIT CSAIL group to run a very simple volumetric shape from silhouette

algorithm. The resulting visual hulls, although only a coarse approximation of the true

shape, were enough to drive the deformation of the provided template mesh through the

sequences. We show our results after silhouette fitting on the Samba dataset. In this specific

sequence, a woman in a skirt dances. Skirts are difficult to handle for methods deforming a

reference mesh as the interpolated surface between the bottom of the skirt and the legs has

to undergo severe compression and stretching. We show in figure 4.11 that our approach

still manages to produce visually convincing results. We ran our algorithm on four of

the available sequences and compared the silhouette re-projection error after silhouette

fitting to the meshes obtained by Vlasic et al. [32]. The results in figure 4.12 show that

our approach yields a similar precision despite its much weaker underlying deformation

model. Furthermore, our results were obtained without manual intervention, while these of

[32] required help from the user in ambiguous frames.

5 Discussion

In this section, we present a variety of experiments designed to determine more pre-

cisely the impact of the different components and parameters of the algorithm. We start

by looking at the probabilistic model [5] that was presented in this chapter and compare

it to the simpler non-rigid ICP that we presented in earlier work [3]. Both approaches use

the same patch-based regularization. We show that the probabilistic model, complemented

with the patch prediction mechanism, gives better convergence rate and overall tracking

accuracy. In another part of this section we recall the parameters that need to be set to run

the algorithm and discuss their influence. Finally we present timing results that confirm the

computational tractability of the presented method and that open perspectives for turning it

into an actual tool that could be used for production purposes.

5.1 Probabilistic and deterministic assignments compared

The reason why we experimented with the Bayesian model in the first place was be-

cause it offered a principled way to handle of outliers. It is indeed one of its major benefits,

and the Ball sequence in figure 4.7 illustrated how this allows to increase robustness with

respect to parasite geometry in the scene. We however found that this approach also gave
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(a) crane
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(b) bouncing
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(c) handstand
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(d) samba

Figure 4.12: Numerical comparison of our silhouette reprojection error to that of Vlasic

et al. [32]. This graph shows a consistent good behavior of our approach despite the much

weaker underlying deformation model. The slight improvement in performance we get is

most likely due to the temporal smoothing they apply.

better results on sequences that were relatively free of parasite geometry. On the MIT se-

quences ( figure 4.14 ) as well as on the U. of Surrey sequences (figures 4.15, 4.16, 4.17,

4.18, 4.19).

We ran the registration in four configurations. In these configurations, the Bayesian

model with the smooth assignments was either used or replaced by a simpler nearest neigh-

bor search. Similarly, the prediction mechanism (described in figure 4.3) could be turned

off. In all cases, the optimizer was allowed to run for at most 30 iterations of E-Step (or

one of its variations) and M-Step. We ran the silhouette optimization on every frame in-

dependently as a post-process. The goal of this experiment was to identify cases where

the inference would get stuck in a local minimum. The idea was that in extreme cases of

bad registration, the silhouette optimization would also fail, while it would improve greatly

the numerical results for successful registrations. This accentuates the differences between
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(a) flashkick
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(c) head
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(d) kickup
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(e) lock
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(f) pop

Figure 4.13: Silhouette reprojection error of our deformed model in percentage of the

original silhouette area. Each color represents a camera.
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incorrectly and correctly registered frames in our results.

An number of remarks can be made on the already mentioned figures, and the results

for the roman sequence in figure 4.20:

• the Bayesian modeling combined with neighbor prediction performs better than the other

configurations in the vast majority of cases.

• most configurations actually give reasonable results except for small time periods where

they lose track. However they tend to recover quickly, which indicates that the shape

prior maintained by our deformation model is quite strong.

• the worst combination seems by far to be to combine smooth assignments with no neigh-

borhood prediction.

5.2 Importance of neighboring patch prediction

To investigate the reasons behind the previous results, we focused on the initial frames

of the flashkick sequence (see figure 4.18) in which it can be observed that the proba-

bilistic/prediction and deterministic/prediction perform much better than the configurations

without patch prediction. These are interesting frames because they involve fast motion,

and exhibit no changes of topology.

In figure 4.21, we look at the evolution of the average distance between the two surfaces

during the iterated E and M-Steps. In each plot, we used the first mesh of the sequence as

reference mesh for the rigidity and started the inference from the same patch configuration

for all four curves.

The presented results show that the prediction mechanism greatly improves the rate of

convergence. It also appears that without this prediction, the probabilistic registration has

a sharp decrease in its rate of convergence after 3 or 4 iterations. Our interpretation is that

most of the surface is registered properly after these iterations, and that this causes a sharp

decrease in the evaluation of σ. Then the slack introduced by the outlier class in the model

starts to dominate in badly registered part of the surface, which without the help of the

prediction mechanism severely hurts the convergence rate.

5.3 Influence of parameters

Now that we have evaluated the impact of the components in our algorithm, we move

to discussing the influence of parameters. In its full version, with smooth assignments and

neighbor prediction, the algorithm requires the following parameters to be defined:

• the maximum patch size.

• the balancing between the data term lnP (Y|Θ) and the rigidity regularization Er(Θ).

• an initial value for the variance σ.

• the expected outlier proportion eoutlier.
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Figure 4.14: Probabilistic/deterministic comparison: the U. of Surrey sequences. These

results are obtained after an additional silhouette fitting step. Residual errors indicate that

a limb was not fitted properly in the registration step and that the silhouette optimization

stayed stuck in a local minimum. On the bottom row we compare the result with proba-

bilistic assignments and prediction, the target geometry, and the result with deterministic

assignments and no prediction.
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Figure 4.15: The pop and kickup sequences behaved well in all configurations.

Figure 4.16: In the head sequence the registration converged to a state from which the

silhouette fitting could not get out. This is most likely due to a local surface flip. Such

flips combined with the normal compatibility condition in the nearest neighbor search are

difficult to recover from when there is no neighboring patch prediction.

Figure 4.17: In the lock sequence the leg is stretched, probably because the strong deter-

ministic assignments did not allow the surface to “slide” back into place with the rigidity

force.
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Figure 4.18: In the flashkick sequence, similarly to the lock sequence, it appears that with

deterministic assignments and without prediction, the surface did not manage to slide back

into place during the fast motion of the flashkick, and that the inference led to a local

minimum involving stretching the thigh.

Figure 4.19: Probabilistic/deterministic comparison: the free sequence. The artifacts at

frames 45 and 391 are similar to the ones observed in the lock and flashkick sequences. At

frame 188 however, the problem is that the legs are switched. It appears that without soft

assignments, the inference converges prematurely to a local minimum.
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Figure 4.20: The roman sequence, as shown in figure 4.6 involves two actors with props,

but is in fact not very ambiguous.The soldiers have there arms stretched out most of the

time and very little self intersection happens. Therefore, most methods perform correctly.

In this sequence like in most others, the worst performance is that of the probabilistic/no

prediction configuration. On the bottom row we show how the arm of the left soldier

remained stuck in the body. Our interpretation is that with the probabilistic modeling, the

outlier class offers some slack to the optimizer that can choose to ignore the full right arm of

the soldier. Without the prediction mechanism to propagate the information from correctly

registered parts of the surface to their neighborhoods, this is a dangerous mechanism.
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(a) flashkick 50 7→ 51

0 20 40 60 80 100
iteration

0.008

0.009

0.010

0.011

0.012

0.013

0.014

0.015

0.016

av
er

ag
e 

re
si

du
al

 d
is

ta
nc

e 
be

tw
ee

n 
m

es
he

s 
(m

)

probabilistic_pred
probabilistic_nopred
deterministic_pred
deterministic_nopred

(b) flashkick 51 7→ 52
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(c) flashkick 52 7→ 53
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(d) flashkick 53 7→ 54

Figure 4.21: The first 5 frames of the flashkick sequence involve fast motion and are there-

fore interesting to evaluate the convergence behavior of the registration. Furthermore, as

they do not involve changes of topology, we can use the average residual 3D distance be-

tween the two meshes as error measure. For each of these plots, the 4 configurations start

off with the same deformation of the reference mesh and try to register it observed mesh

of the next frame. The first observation that can be made on these 4 frames is that the

prediction mechanism greatly improves convergence speed. The second observation is that

without prediction, the probabilistic registration has a sharp decrease in its convergence

rate after 3 or 4 iterations.
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Our experience indicates that the algorithm is actually rather resilient to variations of

these values. Since all of the sequences used similar mesh resolutions, the size of patches

was common to all sequences an yielded 150-200 patches per human. The balancing be-

tween data and regularization term was empirically fixed on one of the sequences so that

the residual energies would have comparable magnitudes. All the other sequences ran with

the same value. The starting variance was always set to 2 times the mean edge length.

In figure 4.22 we show the result of an experiment we ran to study the influence of

the expected outlier proportion. In this experiment, seven pairs of consecutive meshes

(Mt,Mt+1) from the Free sequence were considered. Outlier points were distributed

around Mt+1 by duplicating a percentage of its vertices and perturbing them with a Gaus-

sian noise of standard deviation 4 edge length. Then we ran the deformable registration

of Mt to Mt+1 with different outlier proportions. The figure shows the average residual

registration error as a function of eoutlier and the actual proportion of added outliers. We

conclude from this experiment that this parameter does not require to be finely tuned and

that it simply needs to be non zero to give the optimization enough slack to progressively

ignore outliers and converge to a proper solution.

5.4 Computational cost

We give in table 4.1 experimental timings on numerous sequences that give an idea of

the complexity of the method. These measurements were obtained by looking at times

when files were written to the hard-drive. As such they are only an indication on the

computational load of our method and do not constitute a precise performance evaluation.

The computational cost is largely dominated by the nearest neighbor search and the sparse

linear system solver. The nearest neighbor search is straightforward to parallelize on the

GPU. It is to be expected that coming up with a smarter space partitioning approach or using

more computational resources should make this step negligible. The remaining bottleneck

is therefore the sparse linear solver. Preliminary experiments on the CPU indicate that

Conjugate Gradient is a viable alternative to the direct solver we currently use. Porting this

approach to the GPU and evaluating its interest definitely constitutes future work, on the

way to making our algorithm usable for interactive purposes.

5.5 The i.i.d. assumption and limitations.

We conclude the discussion of our approach by presenting its main theoretical limita-

tion and the practical consequences that ensue. The i.i.d. assumption that led to equation

(4.12) is to be considered with care in that the observation process is a multi-camera setup

in which parts of the surface, thus patches occlude each other. This clearly biases the draw-

ing of samples in the distribution of 3D data. For example in figure 4.8, when the arms and

body are joined, the local density of points in the input data does not double, which clearly

indicates that the data generation by two overlapping patches on the arm and the body is

not independent. In that sense our method and equation (4.12) are only approximations.
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Figure 4.22: Average fitting error on 7 random frames of the Free sequence. The x axis

represents the expected outlier parameter. The x axis represents the actual proportion of

added outliers to the target point cloud. The z axis shows the fitting error with respect to

the mean edge length.

The first and obvious practical consequence to this assumption of independence is that

our EM framework can not be easily be used to track an object observed from a single

range scanner. Occlusion in this case becomes much too severe for the hypothesis of inde-

pendence to hold. Consider for example a human facing the range scanner and pointing his

arm towards the camera. In the observed point cloud, there are only couple of points corre-

sponding to the fist and no points at all for the arm. This makes the optimization impossible

within our framework.

The second practical consequence and main artifact that can be produced by our method

we did not encounter in the sequences from the community. On a sequence that we had to

process for an applicative paper [21] however, we had an actor that kept both his arms along

his body most of the time. The reconstruction was of very low quality and the severe self-

occlusion caused by the arms merged the arm and torso reconstructions. We observed that

the arms would pop-out and would sometime briefly return to the rest pose for a couple of

frames. Our interpretation is that because the local density of points did not double, each

point of the merged arm-torso reconstruction in the data would be explained by both the



5. DISCUSSION 123

Table 4.1: Average timings on standard sequences for the EM procedure (max. 10 EM

steps - without silhouette refinement) with target point clouds of roughly ten thousand

vertices. The CPU implementation was run on a 2.5Ghz quad-core machine. The CUDA

implementation was run on a NVIDIA Geforce GTX260.

Sequence Length Ref. Mesh

Vertex#

Average Time

Per Frame

CPU GPU

Flashkick 200 5445 24 s 3.60 s

Free 500 4284 25 s 3.16 s

Head 250 5548 29 s 3.79 s

Kickup 220 5580 23 s 3.69 s

Lock 250 5301 24 s 3.52 s

Pop 250 5596 16 s 3.44 s

Handstand 174 5939 29 s 4.11 s

Bouncing 174 3848 29 s 3.70 s

Crane 174 3407 11 s 2.72 s

Samba 150 5530 12 s 2.03 s

arm and the torso. Because of the normalization of posterior probability density functions

and thus of weights in EM, this meant that the energy function would only pull the model

towards the data with half the force. The regularization term would then pull the arm

further away from the torso at each iteration, which would in turn diminish the weight of

the association between the data points and the arm.

This behavior could be expected because our approach is designed to look for a solu-

tion that explain the data with as little deformation as possible. Our method maximizes

the explanation of occupied space but does not model at all empty space. Interestingly,

this problem was also considered by Revow et al. [27] in an extension of their work on

handwritten digit recognition [18] (figure 4.2). In [27], the problem is described as “A sig-

nificant drawback of our generative model is that it does not treat the un-inked pixels as

evidence.” They address the issue by suggesting to introduce a penalty for all the pixels

that are not inked in the data but inked by the deformed model. The results of their attempt

appear inconclusive: They account for white space violation to evaluate the final fits but do

not use it in the inference of the deformation itself. Indeed, penalizing the occupation of

unoccupied space in the final fit with such a method also induces penalizing going through

that same unoccupied space during the inference. In our case one could understand it as

having attractive vertices on the observed surface and repulsive vertices everywhere else

in the scene’s bounding box. These repulsive vertices would make it difficult to go from a

configuration where the arm is against the torso to a configuration where the arm is away

from the torso for example. For small values of σ, they would create impassable energy

ridges in parameter space that would prevent the arm in the deformable model from going

through the newly formed empty space between the observed arm and torso. We leave as

future work the study of this problem and the evaluation of this particular solution.
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6 Conclusion

In this chapter, we have proposed an approach to recover temporally consistent ani-

mated models from sequences of surfaces acquired in multi-camera setups. In contrast to

previous works, this approach makes no assumption on the articulated nature of the tracked

object and actually allows to process scenes involving several arbitrary objects.

Our developments have integrated the rigidity model of chapter 3 as a deformation prior

in a Bayesian formulation of the mesh registration problem. Although the idea of embed-

ding deformable registration in an EM framework had already been explored several times

during the past 20 years, we have made two contributions that have allowed to perform

significantly more challenging deformable mesh tracking tasks.

• First, we have used the patch-based parametrization that was presented in chapter 3.

Instead of computing intractable point-point soft assignments, we have computed point-

patch soft assignments. Our results show that this was sufficient to handle parasite geom-

etry gracefully. They also show that this approaches allowed to retain some smoothness

in the convergence compared to the deterministic assignments of ICP. Finally, our timing

results prove that this approach runs fast enough to be usable on commodity hardware.

• Our second contribution is the patch-prediction mechanism. This mechanism maintains

in the inference several hypothesis for the location and orientation of every patch. For

each patch, the considered hypothesis are obtained by assuming that the patch and one of

its neighbors moved together rigidly. In effect, this gives the inference an opportunity to

quickly propagate the information from correctly registered parts of the surface to their

neighbors. We have shown that this approach significantly improves the convergence

rate of the mesh registration.

Our experimental validation has been run on several scenes of different nature. Some

of them included loose clothing, skirts, swords or bouncing balls. The 3D data that we

have used as input was of variable quality. Some meshes were obtained with state of the

art photometric reconstruction methods, while others simply consisted of the visual hull

and exhibited significant reconstruction artifacts. For all of these scenes, we have used the

same deformation prior, the same mathematical formulation and the same set of param-

eters. There was no user intervention before the inference to indicate rigid parts or joint

locations. There was no user intervention during the inference to correct the estimated pose.

Our algorithm has managed on all of these sequences to perform comparatively well with

respect to previous works that use more priors on the deformation or user intervention to

correct errors. The major contribution however is that our algorithm has allowed to process

scenes more general and complex than these that had been addressed by prior art.
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CHAPTER 5

Articulated Models for Mesh
Registration

The developments presented in the previous chapters were focused on the core

contribution of this thesis, that is on a generic surface tracking method that

does not make assumption on the nature of the tracked object. In this chapter

we study the applicability of the developments from the previous chapter to the

tracking of articulated objects. This allows us to evaluate to which extent con-

sidering prior knowledge on the way the surface deforms helps in the inference

for motion.

The goal of this chapter is to explore the use of different rigidity models with the

Bayesian mesh registration framework that was developed in chapter 4. In other words,

we want to introduce more knowledge on how the surface deforms in the inference for mo-

tion. We explore the case of articulated objects, and look into two distinct ways to account

for the prior we have on the way they deform.

• One possibility is to use an intrinsically regularized deformation model that enforces

articulated motion through its parametrization. We therefore adapt the mesh registration

framework so that the motion would be parametrized by kinematic chains. It is expected

that the reduced number of degrees of freedom in the optimization should make the

registration process faster.

• The other possibility is to extend the deformation model presented in chapter 3 so that it

will account for clusters of patches that tend to deform rigidly. There the parametrization

is the one that was used in chapters 3 and 4, but a new extrinsic regularizer is introduced

to quadratically penalize non rigid motion within the clusters.

This study can at first appear to go against the general motivation of this thesis, that is the

development of a generic tracking method. It is however necessary for several reasons:

firstly, one can reasonably imagine interfaces where artists could guide the inference for

motion by manually feeding information on the rigidity or the topology of the tracked

objects. Secondly, we need to evaluate the benefits and drawbacks of more constrained

deformation models.

129
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(a) GM: The patch-based rigid-

ity of chapter 3.

(b) GMa: The patch-based

rigidity of chapter 3 with an ad-

ditional energy term enforcing

the rigidity of clusters.

(c) KB: Parametrization of the

deformation with a kinematic

tree.

Figure 5.1: There are three deformation models compared in this chapter: the generic

patch-based model of the previous chapter, an extrinsically regularized model that addi-

tionally enforces rigidity in clusters of patches, and an intrinsically regularized articulated

model that parametrizes motion as joint angles in a kinematic tree.

1 Related Works on Articulated Tracking

Marker-less motion capture has received considerable amounts of attention over the

past two decades, and several surveys have been dedicated to the subject [17, 28, 21, 25].

Our goal here is not to overview the whole field, but to give some background on key ideas

that are directly related to the problems that we address in this chapter, namely tracking

by geometric registration and the comparison of articulated models with our more generic

deformation models.

1.1 Parameterizing articulated motion.

The first option to parametrize articulated motion is to represent the articulated object

with a kinematic tree made out of joints and bones, and to parametrize its pose with angle

values at the joints. This has the evident advantage of intrinsically constraining the range of

motions to these that preserve the length of bones. Furthermore the joint angles constitute

a relatively low dimensional set of parameters that fully describe object’s motion. Kine-

matic chains and trees are well studied structures because of their crucial importance for

robotic manipulation, and the interested reader can turn to the book by Murray et al. [23]

for a meticulous study of the subject. Two interesting mathematical tools presented in this

book are the product of exponential maps and twist motion. These tools were introduced

for articulated tracking in the work of Bregler and Malik [4], Bregler et al. [5] who were

tracking human poses in monocular videos. As it was discussed in chapter 3, exponential

maps are indeed the parametrization of choice when descending the gradient of energies

that are functions of rotations. In the next section, we will recall as simply as possible the

mathematics required in our context, and go over the specificities of different joint types

and kinematic chains. This line of work corresponds to the first rigidity model that we

examine: the intrinsically regularized deformation model.



1. RELATED WORKS ON ARTICULATED TRACKING 131

The second option when parameterizing articulated motion is to use soft-constraints

in place of intrinsically constrained parameter spaces. This type of parametrization is for

example very used for human detection in monocular images. Pictorial structures [13] are

graphical models that divide the object in parts, where each part correspond to local visual

characteristics that can be searched for by feature detectors. The parts are linked by soft

spring-like constraints that model the relative locations or orientations of the two parts.

Typically the parameters of the model for the relation between two parts (or conditional

probabilities) are learned from data, and these models can be as simple as as: “the head

tends to be 20cm above the neck.” The recent book chapter by Ramanan [26] provides

an interesting overview on these models. However pictorial structures are originally 2D

entities. In the work by Sigal et al. [27], they are transposed to 3D and called loose-limbed

models, where each limb is parametrized by a full rigid transformation. That idea was

also employed by Corazza et al. [11] and in following work by Mundermann et al. [22].

This line of ideas is closer to the second rigidity model that we examine: the extrinsically

regularized deformation model.

1.2 Modeling the skin.

The previous paragraphs have presented possible definitions for the skeleton. For

model-based tracking, we now need to define the shape, or flesh, deformed by this skeleton.

In other words, we need to go from the variation of joint angles to the deformation of actual

surfaces in 3D.

A common and simple solution is to use geometric primitives to model the limbs: ex-

amples include ellipsoids (Bregler et al. [5], Horaud et al. [20]), cylinders (Sigal et al. [27])

or even tapered super-quadrics (Gavrila and Davis [18]). Implicit surfaces were also used

by Plänkers and Fua [24] who attach metaballs to the skeleton. Each of these metaballs

generates an ellipsoidal field functions in 3D, and the surface of each limb is obtained as a

level-set of the added field functions of the metaballs corresponding to that limb. This for-

mulation allows the author to parametrize the shape with the coefficients of the ellipsoids.

Because the goal of this particular paper was to optimize both for shape and motion of the

tracked person, this low dimensional parametrization of the shape was required.

Subject specific models are however usually recovered before tracking. The work by

Corazza et al. [11] builds a model by using a method based on the SCAPE model [1]

and iteratively optimizes for shape and pose of the subject. Another type of body shape

model is used in the work by Bandouch et al. [2], where the anthropometric coefficients of

the RAMSIS [6] model (originally created in the fields of ergonomics) are tuned by hand

before tracking. Model generation is not the focus of our study. We therefore choose to

use a coarse yet simpler way to generate a subject specific model: we attach a reference

mesh of the tracked person to a skeleton. This could be done automatically with a method

such as the one by Baran et al. [3]. We will present in the next section how we use the

semi-automatic method of a 3D content production software to perform the rigging of the

reference mesh.
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1.3 Pose optimization

The last part of our review is focused on how articulated body models can be used in

an optimization for the pose of the tracked object. Because we focus on generic geometric

registration in 3D, we leave aside from our review a number of ideas. For example we do

not detect endpoints such as heads, hands or feet to constrain the inference and neither use

motion priors nor activity recognition. Our interest goes exclusively to geometric registra-

tion and to the different available optimization schemes. In all model-based approaches, an

objective function measures the fitness of any considered pose by evaluating how well this

pose explains the observed data. In the case of human motion capture, three things make

the optimization of such a function challenging: first, the space of human poses is high

dimensional. Second, occlusion and self similarities of objects make visual data ambigu-

ous, and the fitness functions are therefore multi-modal with many local minima. Finally,

evaluating the fitness of a pose is quite costly when it requires to synthesize visual data to

be compared with the observation.

Stochastic search Stochastic sampling and filtering approaches are designed to handle

the multi-modality of fitness measures. This is especially important in the monocular case.

Consider for example an actor observed from the side. It is really difficult to differentiate

on appearance alone whether this actor holds his left arm, or his right arm, or both arms

horizontally in front of him. Stochastic search methods evolve populations of discrete

samples in the parameter space and try to explore this space to escape local extrema, but

also to increase the sampling density in areas where the fitness measure has peaks to get

results with acceptable precision. This is challenging because of the high dimensionality of

the parameter space and the restricted number of points that can be sampled in reasonable

time.

If the process underlying the observed data is modeled as Markovian, stochastic filter-

ing methods allow to more efficiently explore the parameter space by accounting for the

dynamic nature of the process with a simple transition model between subsequent poses.

However this transition model may not yield a proposal density of samples that matches

the real posterior probability. To further refine the inference, the annealed particle filter

of Deutscher and Reid [12] performs several iterations to evolve the particles while gradu-

ally reducing a temperature term that controls the smoothing of the fitness function. This

increases the sampling in narrow peaks of the fitness function, and the initial high temper-

ature tends to prevent premature convergence of the particle population to local maxima

of the fitness function. The paper by Gall et al. [14] gives a more in depth analysis of the

mathematical derivation and behavior of this method.

Another interesting idea in the work of Deutscher and Reid [12] is the adaptive diffusion

that reduces the number of particles along dimensions where the algorithm is doing well to

increase the sampling of the uncertainty along ambiguous dimensions. Furthermore, they

introduce a crossover operator inspired by genetic algorithms. This operator generates new

sample points from two parent samples by using the coordinates of one parent along some

dimensions and the coordinates of the other along the rest. This is a very effective way of
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seeding new samples in yet unexplored modes of the fitness function, and to encourage the

survival rate of the subparts of particles that correspond to a partial good fit of the data.

While [12] tries not to commit to a fixed partition of the parameter space, Gall et al. [15]

propose two human specific mutation operators that swap kinematic branches such as the

right and left leg.

Local optimization Local optimization methods are unimodal, and usually assume the

local differentiability of the fitness function to perform some kind of gradient descent.

Their advantage is their better precision and their convergence when these hypothesis on

the fitness function are valid. Their drawback is that the inference can easily get stuck in a

local maximum of the fitness function.

We have illustrated the multiple modes of an error function with the example of an actor

seen from the side from a single point of view. When multiple point of views are available

however, many situations can be disambiguated. For example, with an additional camera

looking at the actor from the top, it is no longer ambiguous whether the right arm, left arm

or both arms are held horizontally. One possible error function in a multi-view environment

is the sum of silhouette reprojection errors over all cameras. However in this case each

component of the error term contributed by a single image can be highly multi-modal.

The hope is that the average of these functions will present prominent peaks where modes

coincide, and therefore resolve the ambiguity. Previous works that use the sum of silhouette

reprojection errors tend to show that this does not work very well and have to resort to

hybrid methods mixing local optimization with stochastic search. For example the method

by Carranza et al. [8] first fits the torso to the silhouettes using some numerical gradient

descent (Powell’s method) then solves for the limb’s poses independently by performing a

grid search on the 4 dimensions of the limb’s parameter spaces. In a similar spirit, the work

by Gall et al. [16] initially drives the inference with silhouette contour matches and SIFT

matches. In a second step, stochastic searches are run on the subspaces corresponding to

misaligned parts to optimize the silhouette overlap. Although this approach is not explicitly

hierarchical as [8], it can be expected that the misaligned parts will be limbs and that the

two approaches will have similar behavior.

Strictly local optimization methods seem however usable when the fitness function is

expressed in 3D. This hypothesis is supported by our results in the previous chapter, as

well as by a number of works that we will now review. The research by Mundermann

et al. [22], Corazza et al. [11] is one of the closest to ours in terms of methodology and a

good example of local optimization for articulated tracking. In these works, the problem

is formulated as articulated ICP, and the optimization is performed with the Levenberg-

Marquardt method. One issue with this approach however is that the correspondences

computed at each iterations ICP are fully trusted.

Other methods perform some kind of articulated ICP, but are less trusting with corre-

spondences. For example in the early work of Cheung et al. [10], the body is coarsely

represented with 6 ellipses, and an EM-like procedure alternates voxel labeling and ellipse

estimation where the ellipse parameters for a body part are only computed from the voxels

that were assigned to this body part. This idea can also be found in the work of Caillette
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and Howard [7] who additionally combine color and 3D distance in their computation of

soft-assignments. Cheng and Trivedi [9] proposes a kinematically constrained Gaussian

mixture model that uses soft priors on the motion to avoid hard angle limits and retain the

convergence properties of EM. Finally the recent works (already mentioned in chapter 4)

by Horaud et al. [20] and Horaud et al. [19] explored articulated registration using EM. The

research presented in this chapter belongs to this line of work and actually naturally extends

the results of chapter 4 by examining the effects of the introduction of rigidity priors in the

inference for motion.

2 Pose Optimization for Kinematic Trees

In this section, we briefly recall how kinematic chains can be parametrized, and how

analytical gradients of point positions can be computed with respect to the parameters of

these chains. This allows to solve Inverse Kinematics problems, that is to optimize the

configuration of the chain so that points attached to it will fulfill as well as possible a

number of soft positional constraints.

However, in contrast with usual applications of Inverse Kinematics where a few posi-

tional constraints at most are used at a time, the mesh registration framework of chapter 4

that we adapt here can potentially involve millions. Therefore, the following paragraphs

focus on the uniformity of the mathematical formulations and on numerical efficiency.

In particular, the following derivations will underline that the Jacobian of a residual

positional error with respect to the update of a chain parameter can be factorized as the

product of a matrix that is only dependent on the position of the 3D point and a vector that

only depends on the state of the kinematic chain. This will lead us discuss how the Gauss-

Newton algorithm can be efficiently implemented by processing positional constraints in

batches instead of explicitly computing one Jacobian per constraint.

2.1 Joints in their local frame

In its local frame, a joint induces a rigid transformation that we write with a 4×4 matrix

T. This allows to describe the rigid transformation applied to a 3D point x0 this way:

[
x

1

]

= T

[
x0

1

]

.
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(a) Prismatic joint - 1 DOF. (b) Hinge joint - 1 DOF. (c) Ball joint - 3 DOF.

Figure 5.2: The three types of joint considered by our optimizer, along with the number of

degrees of freedom (DOF) associated.

Prismatic joint A prismatic joint has 1 DOF. It is defined by an axis w. A scalar param-

eter θ controls the magnitude of the translation.

T =

[
I θw

0 1

]

. This means that x(θ) = x0 + θw, and therefore that the derivative of x with respect to θ

is simply
dx

dθ
= w. (5.1)

Hinge joint A hinge joint has 1 DOF. It is defined by a 3D point c and a unit-length axis

w. A scalar parameter θ controls the magnitude of the rotation. In its local frame, it induces

the transformation:

T =

[
e[θw]× 0

0 1

]

This means that x(θ) = e[θw]×x0. If we perform a Taylor expansion of the exponential,

the derivative of x with respect to θ appears as:

dx

dθ
= [w]×x (5.2)

2.2 Joints in kinematic chains

We index the kinematic chain linking the root of tree with the joint to which the point

is attached with indices 1, . . . , n. Each joint k along the chain induces a transform written

as a 4 × 4 matrix Tk. We define the result transformation induced by the whole chain as

Tn = T1 . . .Tn.

Let us consider a vertex v attached to the frame of joint n, and let xn be its local

coordinates in this frame. Because v is attached to this frame, this value is constant. The
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world coordinates of the point x for a given value of the parameters is then:

[
x

1

]

= T1 . . .Tn

[
xn

1

]

= Tn

[
xn

1

]

(5.3)

The state of the kinematic chain is described by a vector Θ = {θ1, . . . , θn}, where θk holds

the angle values for the hinge joints, or a translation value for the prismatic joints.

To compute derivatives, we fix all the chain parameters {θ1, . . . , θn}, except the one

associated to the joint k and parametrized by θk. We define xk as the local coordinates of

the vertex v in the frame of joint k. These local coordinates account for the transforms of

all the joints down the chain from k, that is of the current value of {θk+1, . . . , θn}.

[
x

1

]

= Tk

[
xk

1

]

. (5.4)

We equivalently write equation (5.4) as x = Rkx
k + ck, where Rk and ck are respectively

the rotational and the translational part of Tk. Note that ck holds the world coordinates of

the origin of joint k’s frame.

Prismatic joint We know from equation (5.1) that ∂xk

∂θk
= wk. In the context of the

kinematic chain, this translates to:

∂x

∂θk
= Rkwk (5.5)

Intuitively, this simply rotates the axis of the joint with the rotation induced by the previous

joints in the chain. For all the points attached to joints down the chain, a variation of θk
will result in a translation along this axis.

Hinge Joint We know from equation (5.2) that ∂xk

∂θ
= [wk]×x

k. Knowing that x =

Rkx
k + ck, we deduce that ∂x

∂θ
= Rk[wk]×R

T
k (x− ck). Finally this leads to:

∂x

∂θk
= [Rkwk]×(x− ck)

=
[
−[x]× I

]
[

Rkwk

−[Rkwk]×ck

]

(5.6)

2.3 Inverse Kinematics

To reduce the amount of clutter in the notation, we assume that there is a single kine-

matic chain whose joints are indexed by 1 . . . n and that every point xi in the following

equations is transformed by all the joints of the chain. This means it is attached to the

frame of joint n.
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Energy The notations are similar as these in chapter 4. We write target coordinates as

yi. Solving an inverse kinematics problem on a given chain then amounts to minimizing

an energy of the form:

EIK =
∑

i

‖xi(Θ)− yi‖
2. (5.7)

The optimization consists in minimizing EIK with respect to the state of the kinematic

chain Θ. Because the energy is a sum of squared functions whose gradients can be com-

puted analytically, we perform this optimization using the Gauss-Newton algorithm.

Efficient computation The EM formalism developed in the previous chapter involves a

very large number of residuals. For a typical scene with one human, an observed cloud

of 104 vertices and a model with 100 patches, this formalism leads to an energy function

involving the squared norm of 106 3D residuals. Computing a Jacobian matrix J of size

3.106 × Njoints is impractically slow in these conditions. Even accumulating directly on

JTJ and JTb remains very involved for that much data.

This paragraph presents how this matrix and this vector can be computed efficiently

for a large number of residuals. We first notice that the gradients of these residuals can be

written as:
∂xi − yi

∂Θ
=

∂xi

∂Θ
. (5.8)

Thus entry [k, l] of JTJ is given by:

(JTJ)[k, l] =
∑

i

∂xi

∂θk

T ∂xi

∂θl
(5.9)

We can rewrite equation (5.6) to have a similar form to that of equation (5.5). If for

prismatic joints ωk =

[
0

Rkwk

]

and for hinge joints ωk =

[
Rkwk

−[Rkwk]×ck

]

, then both

partial derivatives write as the multiplication of a 6× 3 matrix that only depends on x, and

this 6 × 1 vector that is different for each joint but only depends on the state of the chain

and the type of joint:

∂xi

∂θk
=
[
−[xi]× I

]
ωk (5.10)

This means that the entries of JTJ can be written as:

(JTJ)[k, l] = ω
T
k

(
∑

i

[
−[xi]×[xi]× [xi]×

−[xi]× I

])

ωl (5.11)

The entries for JTb contain the same type of factorization:

(JTb)[k] = ω
T
k

(
∑

i

[
[xi]×
I

]

(xi − yi)

)

(5.12)
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Equations 5.11 and 5.12 show that for a simple chain where all the points are attached

to the last joint, all the entries of JTJ and JTb can be computed from the same 6 × 6
matrix and a 6 × 1 vector, multiplied by the correct ωk and ωl. Pre-computing this accu-

mulator transforms the complexity of building JTJ and JTb from O(Njoints×Nresiduals)
to O(Nresiduals).

In the case where points are attached to different joints, we can easily keep this im-

proved complexity. The idea is to accumulate this 6 × 6 matrix and this 6 × 1 vector per

joint, using only the constraints set on points xi attached to that joint. Because the accumu-

lators use the world coordinates of points, and because skeletons are kinematic trees, one

pass from the end joints to the root allows to add each joint’s accumulator onto its parent’s.

This simple method allows the
∑

i that happens in each accumulator to account only for

the points that depend on the associated joint.

Furthermore, one can notice that these 6 × 6 and 6 × 1 accumulators only contain el-

ements from the matrices
∑

i

[
xT
i 1

]T [
xi 1

]
and

∑

i

[
xT
i 1

]T [
[xi − yi] 1

]
. These

covariance matrices can be very efficiently accumulated and propagated down the kine-

matic chain, allowing to further speedup the dominating O(Nresiduals) part of the compu-

tation.

One possible drawback of this method is that the covariance matrices are accumulated

with world coordinates, which can cause some precision issues in practice. We used world

coordinates here to describe the idea as simply as possible. In a practical application one

might want to use local coordinates for each joint’s accumulator, and perform a transform

of the covariance matrix as it gets added to the accumulator of the parent’s joint.

2.4 Numerical considerations

Regularization One of the drawbacks inherent to the use of the Gauss-Newton algo-

rithm appears in the cases where the JTJ matrix is singular. This usually happens when

the system is under-constrained. For example, given a kinematic chain and an energy cor-

responding to one positional constraint on its root, the rest of the joints remain completely

free. This means that the derivatives of the residual error with respect to their parameters

are 0 and that the whole submatrix of JTJ corresponding to these parameters is 0.

Confronted with such cases, a common method consists in lightly penalizing changes

with respect to the current state of the kinematic chain, and to choose an update that opti-

mizes the following function:

Edamped(Θ+∆Θ) =
∑

i

‖xi(Θ+∆Θ)− yi‖
2 + λ‖∆Θ‖2 (5.13)

This has the effect of adding λI to the JTJ matrix and thus to make it positive definite. This

method is called damped least-squares and its convergence behavior varies from that of

Gauss-Newton (λ = 0) to that of a simple gradient descent for large values of λ. However,

and as already discussed at page 75, the dimensional inhomogeneity between translations

and rotations requires to use different damping coefficient λrotate and λtranslate if we want
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(a) Initial (b) Saddle point (c) A solution

Figure 5.3: Illustration of a singular case. The target for the tip of the kinematic chain is

displayed in yellow. In both (a) and (b) the derivative of the residual with respect to the

angle of the revolute joint is orthogonal to the residual error vector (in red).

the optimizer to behave similarly for scaled versions of the same problem (this issue is also

briefly mentioned by Corazza et al. [11]).

This issue brings also to the more general issue of the problem’s ill conditioning caused

by the hierarchical parameterization of the articulated structure. In the extreme case where

the human skeleton would have joints for finger, a variation of angle on the root has a

significantly bigger impact than a variation of the same angle on the finger joint in terms

of 3D motion of the fingertip. In other words the parameter space’s Euclidean norm has

no physical meaning. It is interesting to note that the patch-based structure presented in

the previous chapters does not suffer from these issues, as it is local in nature and does not

involve a hierarchy.

Perturbation Another issue with gradient descent or Gauss-Newton methods occurs at

local extrema of the energy function. Figure 5.3 displays such a case, where the kinematic

chain and the target position all lie in a 2D plane. The problem here is that the Jacobian of

the position of the tip of the arm with respect to the angle of the hinge joint is orthogonal

to the residual error vector. This means that the corresponding entry in JTb will remain 0

as long as the arm stays in the plane. The optimizer can get stuck at this saddle point (b). A

perturbation is needed to kick the optimizer off this local optimum so that a solution (c) can

be reached. In practice, and when dealing with real, noisy data in a geometric registration

problem, we have not encountered this problem.
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3 Two Models for Articulated Bodies

In this section, we present the two models of articulated bodies that we compare in

this chapter. We begin by describing the skeleton-based articulated model that builds on

the previous section. We justify our choice of ball joints to represent all the rotational

joints with an example of human motion. We also present how the skeleton is attached to

a 3D mesh. In the second part of this section, we briefly describe the second model, which

builds on the patch-structure presented in chapter 3 but additionally maintains the rigidity

of clusters of patches that correspond to the rigid parts of the articulated body.

3.1 Skeleton-based articulated model

As shown in figure 5.4, our parametrization of the human body is rather coarse and uses

only 11 joints. At the root we place three prismatic joint that controls the hips location. All

the other joints are ball joints. This means that the model has 33 degrees of freedom. We

did not present the mathematical details of ball joints in the previous section to keep the

presentation concise. They nonetheless fit in the presented framework easily and allow

to avoid the problem of gimbal lock caused by the Euler-angle parametrization of 3 DOF

rotational joints.

Our choice of ball joints for all rotational joints can seem surprising at first, since

articulations like the knee look like they would be advantageously represented by hinge

joints. The obvious benefit would be the reduction of the number of degrees of freedom

in the optimization. In figure 5.5 we show a simple kinematic chain that models a human

arm using a ball joint at the shoulder and a hinge joint at the elbow. In a mesh registration

application, we might try to go from a straight horizontal arm (a) to a pose where the arm

is horizontal and the forearm points up (b). In the figure the hinge is misaligned and only

allows to move the forearm horizontally, so that the arm needs to rotate the arm around its

axis first. However, all the residual point upwards, and are orthogonal to their derivatives

with respect to the hinge angle. Their is no torque created either on the hinge or on the ball

to rotate the arm around its axis. The optimizer might find a compromise where the arm

stays straight but points diagonally, or maybe will eventually rotate the hinge a little which

will start creating torque on the ball. The bottom line is that the convergence will be slow

at best.

In the end, using hinges significantly changes the shape of the parameter space. This

space is already challenging to work with because it is largely made of rotations and is

therefore a curved manifold. The hinge behavior depends greatly on the parent joint orien-

tation. This hurts the locality of the inference and introduces dependencies in the parameter

space. Going back to the example of figure 5.5, if the arm is registered correctly, we would

like to be able to optimize the forearm without having to modify the registration of the arm.

We therefore choose to simplify the mesh registration by using ball joints, and delay the

inference for the elbow orientation to a post process.



3. TWO MODELS FOR ARTICULATED BODIES 141

Figure 5.4: Sample kinematic tree with 11 joints to parametrize human motion. The root

joint is a translate joint, and all the rotation joints are ball joints, which results in a total of

33 degrees of freedom for the kinematic chain.

(a) Reference mesh and reference

skeletal pose.

(b) Deformed target mesh

Figure 5.5: This example displays a hinge at the elbow that is not aligned with the actual

articulation. When the target geometry moves, the residual vectors are orthogonal to their

derivative with respect to the joint angle.
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Mesh skinning The skin attachment step consists in attaching a mesh to the skeletal

structure. This type of procedure is a well studied problem in computer graphics as it is

allows to synthesize animated mesh sequences from motion capture data. Therefore, there

is a wide variety of ready-to-use software packages to perform the task. We chose to use the

open-source Blender 3D content creation suite. This software provides an implementation

of the skinning method described in the 2007 SIGGRAPH paper of Baran et al. [3]. This

method turns bones into heat sources, and attaches every vertex to its closest bone with

a thermal conductivity proportional to the inverse squared distance to the bone. Then it

solves for the equilibrium of the heat diffusion over the mesh using the surface Laplace-

Beltrami operator. Figure 5.6 displays the articulated structure and the blending weights on

the reference frame of the Roman sequence.

Patch prediction and soft assignments. The skeleton-based articulated model does not

associate a patch structure to the reference mesh. We however transpose the ideas of neigh-

boring patch prediction and patch-vertex assignments because the results presented in the

previous chapter showed that they improved the behavior of the registration process. To

transpose these ideas to the skeleton-based model, we overlay a patch structure on the ref-

erence mesh and associate each patch to one bone. So now each vertex is associated to a

patch that is associated to a bone. Because bones move rigidly, the effects of the prediction

are only felt at the boundaries of bones, that is when two neighboring patches depend on

distinct bones.

3.2 Patch structure with rigid clusters

The vertex blending weights obtained in the mesh skinning process, and shown in fig-

ure 5.6 can be used without the skeletal model. Our second articulated deformation model

uses these weights to assign each patch to a cluster that corresponds to one of the body

parts. For example figure 5.1(b) highlights all the patches that were assigned to the left

knee. The idea is then to encourage all the patches that belong to the same cluster to move

rigidly together. To do so, we simply extend the approach of chapter 3 but modify the no-

tion of neighborhood: instead of having each patch be linked with its neighbors only, we

link it with all the patches of the same cluster. The rigidity energy that we use is the one

displayed page 73 in figure 3.7.

The major advantage of this approach is that it was simple to implement and integrate in

the registration framework that was developed through this thesis. The only significant im-

pact it has on the code is that it modifies the topology of the graph of patches and therefore

the sparseness of the large linear system that is solved at each Gauss-Newton iteration. This

matrix is still sparse but now has large strongly connected clusters of variables that form

dense blocks. The link between these blocks is only ensured by the regular patch-based

rigidity Er that was used throughout the thesis. However, if the weight of the cluster rigid-

ity energy is high enough, the blocks become numerically independent and the registration

behaves as if there were 11 independent rigid bodies. To maintain coherence between the

body parts, it is therefore necessary to limit the weight of the cluster rigidity.
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(a) Reference mesh. (b) Articulated model.

(c) Skinning weights for the right leg. (d) Skinning weights for the right hip.

(e) Skinning weights for the right forearm. (f) Skinning weights for the sword.

Figure 5.6: Articulated body skinning on the initial frame of the Romans sequence. The

skinning weights are automatically computed by a mesh animation software (here we used

Blender) once the skeleton has been roughly aligned with the mesh. We display here these

weights for 4 of the bones. Note that the articulated model is not limited to a biped, and

contains bones for the swords, as well as one root for each of the soldiers.
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4 Results

Equipped with the two models for articulated mesh deformation defined in the previous

section, we proceed to their evaluation. We start this section with a number of qualitative

results that show the overall good behavior of the skeletal-based approach. We then pro-

ceed to a comparison of how the two models for articulated motion affect the convergence

properties of the registration by considering a difficult registration task between two non-

consecutive frames of the lock sequence. We finish our study by varying the weight of the

articulated prior for the model that uses cluster of patches, and discuss how stronger priors

on articulated motion do not necessarily improve the behavior of the registration.

4.1 Qualitative results.

We evaluated both approaches on all the sequences that we had access to and obtained

results that were comparable to these presented in chapter 4. We display in figure 5.7 the

results obtained for the Free sequence. The skeleton in its recovered pose is overlaid on the

original images from one of the cameras. In spite of fast and complex motion, the tracking

performed well and the bones are correctly located. In figure 5.8 similar results are shown

for some other sequences that involved complex motion.

4.2 Comparison of 3 rigidity models.

Our comparison of the three rigidity models is built on one experiment that we sum

up in figure 5.9. In this experiment, we perform the geometric registration of the lock

reference model between two non consecutive frames of the lock sequence. This means

that the registration starts with a deformed version of the reference model that corresponds

to the state at frame 124, and deforms it further to fit the independently reconstructed

mesh of frame 128. This choice of frame was motivated by several reasons: first, there

is no self occlusion or change of topology, which allows us to evaluate the convergence

with the residual 3D distance between surfaces. Second, the deformation with respect

to the reference model is relatively large. Third, the motion is fast with some of limbs

changing orientation of more than 90 degrees between the two frames. Finally, the motion

is articulated, with both legs going from an extended to a bent position, and the right arm

going from a bent to an extended position.

The results of figure 5.9 display for all three deformation models the residual 3D dis-

tance between the two surfaces as a function of the number of EM iterations performed.

These results were obtained for a registration with soft, probabilistic assignments and

neighboring patch prediction. It can be seen that in this case all three rigidity model yield

similar convergence times. Furthermore, and as one would expect, the residual error for

more constrained deformation models after convergence is higher, because the deforma-

tion prior limits the fitting of the data.
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Figure 5.7: Results of the skeleton-based articulated tracking -with probabilistic assign-

ments and patch-prediction- on the Free sequence, overlaid on the original images of cam-

era 2.
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(a) Head sequence.

(b) Flashkick sequence.

(c) Handstand sequence.

Figure 5.8: Results of the skeleton-based articulated tracking with probabilistic assign-

ments and patch-prediction.

To further study the convergence behavior with these different deformation priors, we

now consider their effects when combined with the different options for the data term.

These options, already presented in chapter 4 yield 4 configurations obtained by deciding

whether to use soft assignments, and whether to use neighboring patch prediction. We

present in figure 5.10 compared convergence rates for each rigidity model and each data

term configuration. We also show in the same figure the deformed meshes that correspond

to the convergence point of each curve. We make the following observations on these

experimental results.

• The most striking fact is that for the skeleton-based articulated model, the only con-

figuration that converged properly was the one with soft assignments and neighboring

patch prediction. The consistent and satisfactory performance on the upper body can be

explained by the relatively little movement for these parts. On the legs. deterministic as-

signments appear to fail. A probable explanation for these errors is that the orientation of

the vertices on the top of the upper right thigh in the starting pose match the orientation

of the vertices on the top of the left thigh in the target mesh. Because the assignments are

deterministic, and these points are the closest compatible matches, the optimizer imme-

diately pulled the right thigh towards the left one and created the leg switch from which
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Figure 5.9: Compared convergence properties for different rigidity models. These results

are obtained with soft assignments and neighboring patch prediction. On the lock sequence,

we chose two frames, separated by 4 frames that exhibited a significant articulated motion,

without topology changes so that we could use the 3D residual distance between surfaces

as error measure. The results compare the convergence properties of the rigidity model of

chapter 3 (GM), the same rigidity model complemented with a force maintaining cluster

cohesion (GMa), and the kinematic tree (KB). It can be seen that the patch-based rigidity

fits the surface more accurately than the two articulated methods.

he could not recover.

• For the skeleton-based model with soft assignments (two last rows), the neighboring

patch prediction mechanism helped prevent the wrong registration of the right calf. Hav-

ing the right thigh introduce hypothesis for part of the right calf in the optimization ap-

parently helped the optimizer find a new mode where the knee was not bent 180 degrees

and the calf actually could explain some observed data.

• The compared convergence rates for the model used in chapter 4 and the same model

augmented with cluster rigidity seem to indicate better and more consistent convergence

rates when using cluster rigidity. This is a coherent an expected behavior. Penalizing

deformation inside the clusters prevents the optimizer from wandering in some modes

of deformation. More importantly it immediately propagates registration information

through the block of the deformation graph that corresponds to a limb. This means that

low frequency registration error is attenuated much faster. While the Er force penalizes

local deformation and operates at a fine level, the cluster rigidity operates at a coarser

level.

• Finally, it is very interesting to note that for both the cluster rigidity and the skeleton-

based deformation models, the left foot goes through the floor, which indicates an impre-

cise registration. Our explanation, confirmed by looking at the skinning of the reference

mesh is that the joint location for the knee was placed too high. Because both articulated
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(b) Er + cluster rigidity
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(c) skeleton-based

Figure 5.10: Comparison of the convergence properties of different rigidity models. The

top row displays the evolutions of the residual mesh distance in 3D for different registration

methods. The following rows show the point of convergence for each of the curves in the

top row. ( respectively deterministic no prediction, deterministic prediction, probabilistic

no prediction, probabilistic prediction).
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models impose one unique place for bending, the foot ended up under the floor. In com-

parison, the non-articulated model relying on the Er force correctly registered the foot,

which indicates that this model is not only more generic, but also more robust to model

imprecisions.

4.3 Limitations of the rigid clusters model

In the previous paragraph we have discussed how both articulated models forced more

or less strictly the bending to happen at one location. We saw with the presented example

and how this could affect the final results. More importantly, constrained articulated model

also affect the convergence of the registration. We present in figures 5.11 and 5.12 details

of the convergence for the three compared rigidity models. These figures show the state

of the registration through iterations 1 to 9, as well as the final convergence state after 100

iterations. These meshes correspond to the error curves of figure 5.9.

It can be observed that the patch-based deformation model of chapter 3 goes through

very deformed states during the inference, while both articulated models preserve the rigid-

ity of the body parts.

• The skeleton-based articulated model converges pretty quickly to the correct pose. It

appears that the data corresponding to the right forearm is classified as outlier for the

first two iterations, and therefore has a negligible weight in the registration. The right

forearm of the model stays in a constant orientation with respect to its parent bone for the

first two iterations. Because the neighboring patch predictions test a configuration where

the arm is extended, some patches of the forearm around the elbow are predicted at the

right location, get associated with data, and the whole forearm is rapidly reintegrated in

the registration.

• The cluster-based articulated model converges more rapidly than the one with the simple

patch-based rigidity for most of the body. The notable exception is the left knee which is

still incorrectly registered after 9 frames. It is bent backwards. Because most of the body

is correctly registered, the σ parameter is evaluated as small, and the weight of most of

the left leg data points is diminished in the registration. Because the left thigh and left

foot are closer to data-points, their association to data is stronger. Where the patch-based

rigidity could locally deform the template to fit the data and then later on propagate this

information to the rest of the surface, the cluster-based rigidity immediately has to solve

a non-local problem: the weak associations around the knee must force a reevaluation

of the strong ( and in this case erroneous) associations at the foot and hip because the

regularization forces clusters to move rigidly.

That example shows that articulated models are a double-edged sword: on one side

they can quickly propagate good registration information from one end of a bone to the

other, resulting in quicker convergence. On the other side, an erroneous registration of one

end (the hip in our example) also propagates to the other end and can limit the convergence

speed , or simply prevent the inference from reaching a global minimum. To confirm this

behavior, we varied the weight of the cluster rigidity relatively to the simple patch-based
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rigidity and confirmed that when the cluster rigidity was too strong, the registration simply

failed to converge to the proper minimum.

5 Conclusion

In this chapter, we have examined the case of articulated objects, and presented a com-

parison of rigidity models used with the Bayesian mesh registration framework of chapter 4.

The first articulated model that we have developed simply enforces the rigidity of clusters

of patches on the deformation graph that was defined in the previous chapters. The second

articulated model parametrizes the motion with a kinematic chain, and we have presented

a number of developments to efficiently transpose the ideas of soft-assignments and patch

predictions so that they could be used with this parametrization of the deformation.

Our comparison of the three models on a challenging registration task has revealed that

within our probabilistic framework, using more specific deformation priors can speed up

the convergence. However, these priors do not necessarily improve the results. We have

observed convergences towards erroneous configurations, as well as imprecise registration

results due to an imprecise location of the joint in the model.

This study opens the way for future work on rigidity models. In particular, a promising

area of research would be to simultaneously perform the tracking of the surface and esti-

mate the local rigidity of different parts of the surface. In other words, the challenge would

be to initiate the inference with our generic deformation model and to have the true rigidity

of the observed material be a variable in the optimization.
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Figure 5.11: The rows show iterations 1 to 5 of the registration for the three rigidity models.

The left column corresponds to the patch-based rigidity of chapter 3. The middle column

corresponds to the same rigidity complemented with a force maintaining the rigidity of

cluster of patches. The last column shows the results for the kinematic tree parametrization.
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Figure 5.12: Iterations 6 to 9 of the registration for the three rigidity models. The final row

shows the final result after 100 iterations.
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CHAPTER 6

Conclusion and Perspectives

1 Conclusion

In this thesis, we have explored novel techniques to capture the motion and deformation

of surfaces observed in multi-camera environments. Our research was motivated by two

main ideas: firstly, we wanted the process to be unintrusive so that motion capture would

not get in the way of the concurrent digitization of appearance and shape of the observed

objects. Our second motivation, and essential contribution with respect to previous art

on markerless motion capture is that that we have tackled this problem without making

strong assumptions on the nature of the observed object. In fact, we have shown on several

examples that the genericity of our approach allows to track several objects of arbitrary

nature, given a topologically suitable frame in the sequence to be used as model. This is in

sharp contrast with the vast majority of the literature that tends to focus on human motion

capture and mostly limits itself to capturing the performance of a single actor in a multi-

view studio. This thesis has reported on our progress and contributions to the ongoing

research on the use of generic deformation models for the purpose of motion capture.

In chapter 3 we have presented a robust mesh deformation model that has the following

traits. It is purely surface based and creates a control graph for the deformation that re-

spects the topology of the reference frame. It emulates elastic behavior with respect to the

reference frame. It explicitly optimizes the local rotations of the surface and parametrizes

updates of these rotations with exponential maps contrary to previous work on similar mod-

els. We have furthermore shown on several applications that this deformation framework

is an interesting tool for data-driven mesh deformation in computer vision.

In chapter 4 we have introduced a Bayesian formulation of deformable mesh registra-

tion. Our work has explored further a path opened by previous works on rigid, articulated

and deformable registration (e.g. EM-ICP, Softassign, TPS-RPM). We have shown that this

formulation was a mathematically principled and effective way to handle parasite geometry

thanks to the introduction of an outlier class in the Bayesian model. We also have shown

155
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that the variance parameter σ allowed to benefit from a coarse-to-fine behavior that im-

proved convergence properties in ambiguous situations. Furthermore, and in contrast with

prior art on deformable registration we have optimized this variance parameter explicitly

instead of forcing convergence by performing deterministic annealing. We have addition-

ally introduced a local prediction mechanism of neighboring patches that maintains several

hypothesis on the relative locations and orientations of neighbors in the control graph, al-

lows the optimizer to quickly favor one over the others, and therefore greatly improves the

convergence rate of the registration. Finally, we have produced experimental results that

confirm that this single mathematical formulation constitutes a generic tool that performs

consistently well for a given set of parameters on various datasets involving several objects

of different nature.

In chapter 5, we have looked at the case of articulated objects and have proposed two

models to account for prior knowledge on their articulated nature in the inference for mo-

tion. We have illustrated on a challenging registration task that although this prior knowl-

edge can make the convergence faster, it can also lead to imprecise or even erroneous results

on tasks where the generic deformation model of chapter 4 performs well.

2 Perspectives

We conclude this dissertation by first presenting how we used our work in a new appli-

cation for marker less motion capture in the medical field. We then discuss the fundamental

limitation of our work that is the fixed topology of the model, and go over the current re-

search effort from the computer vision community on the subject. This allows us to discuss

the perspectives opened by our work for further research on these topics.

New applications of motion capture The developments presented in this thesis were fo-

cused on the production of 4D content in multi-view systems. They also have implications

for research on model-based motion capture, and open perspectives for new applications.

We cite as an example the work that we presented at MICCAI 2010 [5]. In this paper,

we installed a multi-view system in the operating room and looked at how motion capture

could be used to evaluate the accumulated exposition of the medical personnel to the radia-

tion from the X-ray imaging device used during interventions. Although the dose received

by the staff over a single intervention is limited, the repeated exposure can have important

long term consequences on their health. Motion capture is challenging in this setting for

several reasons: first, the operating room is a complex environment that involves several

people and moving objects made out of different materials. There is therefore a need for a

generic tracking method that can build a complete spatio-temporal description of the sur-

gical procedure that will later be fed in a physics simulation package to evaluate the actual
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radiation exposure of the staff. The second difficulty is lead vest and collar usually worn by

the physician. The lead vest being rather long, articulated body models are not well suited

for tracking. Although our experimental conditions were simplified, we showed in our re-

sults that multi-camera systems and our generic marker less motion tracking method allow

interesting new applications in interventional environments, and that further development

of such ideas will most likely be integrated into the operating room in the future.

Segmentation of an animated mesh The temporal trajectories encoded in 4D models

can be used to recover information on the nature of the observed object. For example, it

is interesting to learn from these trajectories that that some parts tend to bend or stretch

more than others, or maybe that the object tends to deform in an articulated way. Shape

segmentation consists in identifying a partition of a shape such that each segment fulfills a

defined criterion. A considerable amount of literature already exists on segmenting static

shapes from static geometric criteria (e.g. curvature, geodesic integral, convexity). If mo-

tion information is added to the shape, the temporal trajectories of points can be used to

define new segmentation criteria.

For example de Aguiar et al. [3] automatically compute a skeleton and skinning weights

from a animated mesh obtained with the technique developed in their previous work [2].

The animation can then be modified by an artist who edits the skeletal structure instead of

having to edit meshes directly. Another example is the recent work by Stoll et al. [7], who

begin by animating an articulated structure from the visual data, then segment out pieces of

the reference mesh whose deformation can not be well explained by an articulated motion

and re-synthesize convincing cloth simulation for these pieces of the surface.

The mesh deformation framework presented in chapter 3 performs some kind of seg-

mentation when it seeds the patches on the reference mesh. However this segmentation is

only constrained by the patch size and regularity heuristics for the patch seeding. As noted

in the conclusion of chapter 5, it would be much more interesting for the patch structure

and regularization energy to adapt so that they would match the actual rigid parts of the

tracked body. Rigid parts could be identified from the mesh animation with a method such

as [2]. Knowing which parts tend to move rigidly and adapting the regularization energy to

favor rigid behavior of these parts would in turn help to constrain the inference of the mesh

animation. However the improvement on the available datasets would be marginal with

respect to our current results, and difficult to evaluate as our only quantitative evaluation

metric is the silhouette re-projection error.

Topology changes Identifying rigidly moving parts on an animated mesh of constant

topology is interesting but limited in its applications. The more general challenge is to

handle gracefully changes of topology between the reconstructed surfaces of a same de-

forming object at two different times. Topology changes were discussed in chapter 2 and

an typical case presented in figure 2.4. This example illustrates perfectly the challenge at

hand: the problem is not to assert whether the hand and the thigh deform together as part

of a rigid segment. The problem is to assert whether they move together at all, as we need

this information to regularize the deformation.



158 CHAPTER 6. CONCLUSION AND PERSPECTIVES

In our work, this problem was left aside by postulating the existence of a reference

frame that is topologically suitable for tracking. This is usually a valid hypothesis when

dealing with a human character, as it is likely that at some time in the sequence, the actor

will have both arms and both legs correctly separated from his body. Furthermore, if our

work is used to build an animated mesh of a performance in the context of content pro-

duction, it is reasonable to make sure that the actor will start in a suitable pose. However,

finding a reference frame becomes more complicated as the scene complexity increases.

For example in the Ball sequence presented in figure 4.7, there are very few topologically

suitable frames in the sequence because there are more conditions to be met: the ball should

not be in the hands of either actor and both actors should not have their arms merged with

their torso.

Essentially, the question is whether letting go of model-based deformation is feasible.

In our study of prior art in chapter 2, the model-based deformation of a reference template

all along the sequence had been identified as the key to long term precision and robustness.

Our work in this thesis has explored to which extent assumptions on the model’s rigid-

ity could be relaxed to increase generality without losing either precision or robustness.

However, we preserved the assumption of constant topology.

Among the recent works that have explored how the constant topology constraint could

be relaxed, Wand et al. [10] propose a technique to build a template model from range scans

of a deformable object and compute at the same time a deformation field registering this

reference template to every observation of the sequence. Franco and Boyer [4] hypothesize

a number of rigid clusters in the shape and simultaneously estimate rigid motions for these

clusters, as well as which points of the reference shape belong to which cluster. They

effectively estimate the rigid motions (deformation) and cluster assignments (topology)

simultaneously in an EM framework. Other works let go of the notion of template all-

together. For example, Varanasi and Boyer [9] first notice that the convexity of a volumetric

part of object is a strong indication that it might deform rigidly. Then they try to track

each convex part independently across the sequence to validate the hypothesis that it is a

rigid cluster. They add validated clusters to a list until they have enough valid clusters to

explain all the observed geometry in the sequence. Popa et al. [6] process the sequence

hierarchically by first registering frames with their direct adjacent frame, and handling

the potential topological changes there. They then register at each new level the resulting

moving shapes of the previous level together and solve for topological inconsistencies.

They proceed recursively until they obtain a unique piece of geometry that can be deformed

to any shape of the sequence by moving through the tree of correspondences.

Our future work on the subject will be guided by three ideas. First, we will explore

methods that do not process the sequence linearly, inspired by the work of Popa et al. [6]

that we just mentioned or the recent work by Budd et al. [1]. Second, we will persist

in parameterizing the deformation with a deformation graph but will investigate how its

connectivity can be updated during the inference. Finally, we will investigate how the mesh

representation can be abandoned, to avoid the bookkeeping that is required when meshes

change topology. Attaching simple surfels to the deformation graph or small generative

elements encoding geometry or color [8] should be promising paths of research.
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