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Abstract

This thesis focus on two problems in circuit quantum electrodynamics.

We �rst investigate theoretically the coupling of a resonator to a con-

tinuous distribution of inhomogeneous broadened emitters. Studying

this formalism is strongly motivated by recent proposals to use collec-

tions of emitters as quantum memories for individual excitations to

bene�t from the collective enhancement of the interaction strength,

while keeping the relaxation properties of a single emitter. We dis-

cuss the in�uence of the emitters inhomogeneous broadening on the

existence and on the coherence properties of the polaritonic peaks.

We �nd that their coherence depends crucially on the shape of the

distribution and not only on its width. Taking into account the inho-

mogeneous broadening it is possible to simulate a number of pioneer

experimental results on a ensemble of NV centers. The modeling is

shown to be a powerful tool to obtain the properties of the spin en-

sembles coupled to a resonator.

We also propose an original Josephson qubit readout method based

on a dc-SQUID with high loop inductance. This system supports

a diamond-shape arti�cial atom where we de�ne logical and ancilla

qubits coupled through a cross-Kerr like term. Depending on the

qubit state, the ancilla is in the resonant or dispersive regime leading

to a large contrast in the transmitted microwave signal amplitude.

Simulations show that this original method can be faster and have

higher �delity than currently used methods.
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Résumé

Cette thèse porte sur deux problèmes dans l'électrodynamique quantique en

circuit. Nous allons d'abord étudier théoriquement le couplage d'un résonateur

à une distribution continue d'émetteurs élargie de façon inhomogène. L'étude

de ce formalisme est fortement motivé par les récentes propositions d'utiliser des

collections d'émetteurs pour les mémoires quantiques. Ces systèmes béné�cient

de l'augmentation de la force d'interaction, tout en conservant les propriétés de

relaxation d'un seul émetteur. Nous discutons l'in�uence de l'élargissement in-

homogène sur l'existence et les propriétés de cohérence des pics polaritoniques.

Nous constatons que leur cohérence dépend essentiellement de la forme de la dis-

tribution et pas seulement de sa largeur. En tenant compte de l'élargissement

inhomogène on peut simuler avec une grande précision un certain nombre de

résultats expérimentaux pionniers sur un ensemble de centres NV. La modélisa-

tion se révèle un outil puissant pour obtenir les propriétés des ensembles de spin

couplés à un résonateur.

Nous proposons également une méthode originale de lecture de qubits Joseph-

son basée sur un SQUID DC avec une inductance de boucle élevé. Ce système

est décrit par un atome arti�ciel avec des niveaux d'énergie en forme de diamant

où nous dé�nissons des qubits logiques et ancilla couplés entre eux par un terme

Kerr croisé. En fonction de l'état du qubit logique, l�ancilla est couplé de manière

résonante ou dispersive au résonateur, ce qui provoque un contraste important

dans l'amplitude du signal micro-onde émis. Les simulations montrent que cette

méthode originale peut être plus rapide et peut aussi avoir une plus grande �délité

que les méthodes actuellement utilisées dans le circuit QED.



Contents

Contents v

1 Introduction 1

2 Exploring quantum phenomena with an electrical circuit 7

2.1 Superconducting circuits Hamiltonians . . . . . . . . . . . . . . . 7

2.1.1 Isolated Josephson junction . . . . . . . . . . . . . . . . . 8

2.1.2 Flux quantization . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Qubits in superconducting circuits: arti�cial atoms . . . . . . . . 14

2.2.1 Cooper-pair box : Charge qubit . . . . . . . . . . . . . . . 15

2.2.2 RF-SQUID : Flux qubit . . . . . . . . . . . . . . . . . . . 18

2.2.3 Current-biased junction: Phase qubit . . . . . . . . . . . . 19

2.2.4 A word on decoherence . . . . . . . . . . . . . . . . . . . . 20

2.3 Superconducting cavities: coplanar waveguide resonators (CPW) . 21

2.3.1 Tunable coplanar waveguide resonator . . . . . . . . . . . 23

2.3.2 Cavity-qubit coupling . . . . . . . . . . . . . . . . . . . . . 25

2.3.3 Input-output theory on a transmission line . . . . . . . . . 27

3 Strong coupling ensembles of emitters to a resonator 33

3.1 Modelling transmission . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Properties of the transmission function . . . . . . . . . . . . . . . 37

3.3 Origin of peak broadening . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Open system approach . . . . . . . . . . . . . . . . . . . . . . . . 44

v



vi CONTENTS

3.5 Application to quantum memories . . . . . . . . . . . . . . . . . . 47

3.5.1 Quantum memory based on dispersive coupling . . . . . . 47

3.5.2 Quantum memory based on two emitters distributions . . 48

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Hybrid circuits 53

4.1 General setup and experimental techniques . . . . . . . . . . . . . 56

4.1.1 NV centers . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.2 Transmon qubit readout . . . . . . . . . . . . . . . . . . . 60

4.2 Storage and retrieval of a microwave �eld . . . . . . . . . . . . . . 61

4.2.1 Transmission Spectroscopy . . . . . . . . . . . . . . . . . . 62

4.2.2 Rabi oscillations . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.3 Ramsey fringes . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Quantum memory implementation . . . . . . . . . . . . . . . . . 70

4.3.1 Single photon storage . . . . . . . . . . . . . . . . . . . . . 73

4.3.2 Ramsey-fringes . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4 Electron spin resonance spectroscopy . . . . . . . . . . . . . . . . 76

4.4.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4.2 Isotopic impurities in NV centers . . . . . . . . . . . . . . 81

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5 Proposal for fast readout in a Josephson qubit 87

5.1 Coupled qubits in the dc-SQUID . . . . . . . . . . . . . . . . . . 88

5.2 QND readout on the dc-SQUID . . . . . . . . . . . . . . . . . . . 92

5.2.1 Ampli�cation noise . . . . . . . . . . . . . . . . . . . . . . 98

5.2.2 Expected Fidelity . . . . . . . . . . . . . . . . . . . . . . . 99

6 Conclusion and Perspectives 105

A Appendix A 107

A.1 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

A.2 W (ω) for speci�c distributions . . . . . . . . . . . . . . . . . . . . 110

A.3 Development with �nite γ . . . . . . . . . . . . . . . . . . . . . . 111

A.4 Two ways to obtain the temporal evolution . . . . . . . . . . . . . 113



CONTENTS vii

References 115



viii CONTENTS



Chapter 1
Introduction

Purcell's note in 1946, where he predicted that the spontaneous emission rate

of a spin should be considerably enhanced in a resonant structure, was followed

by numerous papers dealing with the problem of how the spontaneous emission

could be altered by changing the density of the modes surrounding an emitter.

The �rst experiment showing a Purcell factor much larger than unit could only

be carried out almost four decades later when Goy et al [1] showed a spontaneous

emission rate increased with respect to the free-space rate by a factor 500 in

sodium Rydberg atoms crossing a Fabry-Perot cavity. Collective Rabi oscilla-

tion was observed shortly after in [2], again using Rydberg atoms (see Fig. 1.1).

These and other seminal experiments marked the birth of cavity quantum electro-

dynamics (CQED) initiating a long history of the engineering of the matter-�eld

interaction (see [3] for an historical account). CQED relies on the physics of a

spin and an oscillator that interact with each other. Although experiments can

be highly sophisticated from the technical point of view, the physics explored can

be strikingly simple and fundamental. One of the �rst ideas was to play with

quantum vacuum-�uctuations by surrounding the atoms with a resonant high-Q

Fabry-Perot cavity which supports only discrete modes of the electromagnetic

�eld. By adjusting the frequencies and �nesse of those resonant modes with re-

spect to the transition frequency of the atoms, one can dramatically alter the

coupling of the atoms to their environment. The atom-�eld coupling can reach

such an extreme regime as to produce eigenstates which are a mix of photons and

1



2 1. INTRODUCTION

atomic excitations. The so called strong coupling regime allowed a number of pio-

neer experiments evidencing atom-�eld entanglement, and a few examples are the

generation of highly non-classical states of the light such as Fock or Schrodinger

cat states (see [4] for a review on the subject) and the detection of quantum

jumps evidencing directly the presence of an environment [5] or quantum feed-

back [6, 7]. This progress brought insights into the fundamentals of Quantum

Mechanics (QM), allowing for the basic postulates of QM to be tested and under-

stood in a much more direct way by, for instance, measuring a photon without

destroying it [8] or exploring the collapse postulate with successive non-demolition

measurements [9].

Figure 1.1: A stream of Rydberg atoms, each prepared in its excited state, cross a
cavity and are measured after leaving the cavity. The atoms and cavity are in res-
onance for a controllable time after which they are Stark shifted out of resonance.
The plots show the fraction of atoms measured in the excited state as a function
of the interaction time, for increasing total atom number N . Experimental data
in solid lines, theoretical calculation in dotted lines. Reproduced from [2].

Control over the coherent dynamics of quantum systems has become a fasci-
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nating prospect of modern physics. One practical goal for the control of quantum

systems is the processing of quantum information [10]. Quantum computers en-

able large improvements in computational power and communication security by

exploiting the superposition principle and non-classical correlations of quantum

mechanics. Although the collection of quantum algorithms is still rather lim-

ited, it includes strong examples like the factoring of large integers by Shor's [11]

and Grover's algorithm for accelerating search on a unsorted database [12]. On

the communication side, quantum cryptography and quantum key distribution

for secure communication are now well established [13, 14]. Increasing e�ort is

being devoted towards physically realizing quantum computers, and there are

many proposals for implementing the necessary quantum devices. Superconduct-

ing qubit architectures emerge in this context because they bene�t from the use

of conventional microfabrication techniques, which allows straightforward scal-

ing to a large numbers of qubits and the freedom to fabricate a variety of qubit

types and interactions. On the other hand, scaling in architectures based only on

microscopic degrees of freedom is a non-trivial task.

Di�erent ideas to process quantum information also exist, from the stan-

dard circuit model [15], which bears analogy with the classical circuit model, to

measurement-based quantum computation [16, 17]. A complete implementation

of a quantum computer requires the means for state preparation, the ability to

apply entangling quantum gates and a readout method; these and other require-

ments are compiled in the DiVincenzo criteria [18]. Linear circuit elements such

as capacitors and inductors can form low-dissipation superconducting resonators,

but are hard to use for quantum computation without additional resources be-

cause the energy-level spacings are degenerate. The nonlinearity of the Josephson

inductance breaks the degeneracy of the energy level spacings, allowing the imple-

mentation of quantum gates, state preparation and readout using only classical

microwave pulses. The Josephson junction is a remarkable nonlinear element

because it combines negligible dissipation with extremely large nonlinearity: in

fact, a single microwave photon has a large e�ect in the junction inductance.

Borrowing ideas from atomic cavity quantum electrodynamics (cQED), one

can try to engineer the electromagnetic �eld in the surroundings of a Josephson

qubit not only to obtain new means to manipulate the qubit but also to protect
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it from environment noise that leads to decoherence [19]. In cQED, supercon-

ducting qubits are used as arti�cial atoms along with superconducting microwave

resonators to explore this physics. In recent years many theoretical proposals

for coupling superconducting qubits to resonators appeared accompanied by a

fast growing number of experiments, some of each we will discuss in Chapter 2.

The advantage of such resonators is that they are quasi-one-dimensional Fabry-

Pérot cavities with mode volume orders of magnitude smaller than what can be

achieved with ordinary three-dimensional resonators. Because the mode volume

V of these quasi-one-dimensional resonators can be as small as 10−6 cubic wave-

lengths and the coupling constant scales like V−1/2 [3], the coupling strength g

between the atom and a single photon in the resonator is greatly enhanced. Be-

sides, arti�cial atoms have transition dipoles larger than even Rydberg atoms,

which means that g becomes orders of magnitude larger than usual [19]. It took

roughly a decade from the �rst experiments demonstrating strong coupling with

single atoms until similar results were achieved in superconducting circuits. In

2004, two separate research groups [20, 21] exploited charge and �ux qubits, cou-

pled to a transmission-line resonator and a SQUID LC oscillator respectively, to

achieve this regime. It did not take long until the control over the qubit was used

to control the photonic state exploiting their interaction. In 2008, the authors of

[22, 23] synthesized with high quality arbitrary photonic states (with less than

10 photons) (see Fig. 1.2). It is remarkable how superconducting qubits can now

explore the fundamental physics of the interacting spin and oscillator even if they

are not microscopical systems. With this system one can revisit the quantum

optical protocols that were explored with atoms and pave the way to quantum

information on a chip.

The counterpart of being macroscopical is that such circuits usually couple

with the environment and the coherence times are typically small (even if they

improved at a fast rate in the last decade). By coupling the circuits with micro-

scopical degrees of freedom one could use them as bearers of quantum information

to alleviate the short coherence of the Josephson qubits, and form a hybrid circuit

which we discuss in Chapter 4. The work presented in this manuscript belongs to

the framework of quantum optics in cQED, so we use Chapter 2 to bridge the gap

between CQED and cQED, introducing the physics behind the Josephson qubits.
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Figure 1.2: (a) The n−th Fock state is produced by repeating n times a sequence
where the qubit is prepared in the excited state by a classical pulse while being
kept o�-resonance and then its resonance is adjusted to match the resonator's
and the excitation is transferred resonantly. A slightly more sophisticated se-
quence where the qubit population and phase is manipulated before it interacts
resonantly with the cavity is used to generate an arbitrary state on the resonator.
(b) Theoretical form of the Wigner function as a function of the complex res-
onator amplitude in photon number units (top row). Measured Wigner function.
Negative quasi probabilities are clearly measured (bottom row). (c) Calculated
(grey) and measured (black) values for the resonator density matrix, projected
onto the number states. The magnitude and phase are represented by the length
and direction of an arrow in the complex plane. The �delities between target
states and the measured density matrices are 90%. Adapted from [23].
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In Chapter 3 we address one di�culty that emerges when one tries to couple a

solid-state spin ensemble to a circuit by studying a model that takes into account

inhomogeneous broadening. The results on this Chapter have been used to model

experiments performed by the Quantronics group of CEA Saclay, one of the �rst

to achieve strong coupling between a superconducting resonator and a Nitrogen-

Vacancy spin ensemble in a diamond matrix. In Chapter 4 the simulation of

this system is explored in a variety of experimental sequences. Besides coherence

times, there is also room for improvement in the readout performance of Joseph-

son qubits. That is precisely our goal in Chapter 5, where we explore a new qubit

readout scheme based on a high-inductance dc-SQUID that can potentially reach

high �delity at very short integration time.



Chapter 2
Exploring quantum phenomena with an

electrical circuit

In this chapter we develop the basic theory of superconducting (arti�cial) atoms

and their coupling with resonators. The arti�cial atoms are based on the dis-

sipationless non-linearity provided by the Josephson junction. A basis for the

quantum description of the Josephson circuits is the Hamilton formalism. The

dynamical equations are the quantum analogs to the standard Kirchho� rules.

A phenomenological approach taking into account the basic properties of super-

conductors is discussed in Section 2.1 allowing us to to obtain the Hamiltonian

of a given circuit. An analog to the atomic Fabry-Perot cavities in described

in 2.3 as well as the analog to the cavity-atom coupling. We end up presenting

input-output theory, a tool that will be used throughout this thesis in 2.3.3.

2.1 Superconducting circuits Hamiltonians

Standard superconducting circuits used for the qubit applications are combina-

tions of the three basic elements: capacitive elements, linear inductive elements of

superconducting leads and nonlinear inductances of Josephson tunnel junctions.

Before going into the full circuits we shall explore simpler circuits to introduce

the building blocks for constructing the circuit Hamiltonian, i.e. the kinetic en-

ergy associated with the charging energy of the capacitive elements, the potential

7
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energy associated with the Josephson inductance and the inductance of the su-

perconducting loops.

In an ordinary superconductor, the main physical e�ect is that the e�ective

interaction between electrons, resulting from virtual phonon-exchange, leads to

pairing of electrons of opposite spin into so-called Cooper pairs [24]. These pairs

are the carriers of the charge in the superconductor. Due to the anti-parallel

combination of the spins in each pair, these particles are bosons that can form

condensate at low temperatures. To create an excitation from the ground state

one has to break a pair to created single electrons, thus the energy gap ∆ be-

tween the two �rst levels corresponds to the binding energy of a Cooper pair.

The scale of this gap is typically several Kelvin. We will consider the limit of low

temperature attained in typical experiments where kBT � ∆. As long as this

condition is ful�lled an isolated superconductor has e�ectively no degrees of free-

dom. When two relatively bulky superconducting electrodes are weakly coupled

to one another, i.e. separate by a thin oxide layer, they form a Josephson junc-

tion. For the junction description we will adopt a phenomenological approach

due to Girvin [25]. The idea is to lean on the BCS theory of superconductivity

and the fact that the carriers of charges are Cooper pairs and to describe the

coherent tunneling of these pairs.

2.1.1 Isolated Josephson junction

Figure 2.1: On the left MBE image of a Josephson junction formed by the de-
position of two layers of aluminium separated by an oxide layer insulating the
superconducting electrodes (Courtesy of Olivier Buisson ). Symbol on the right
encloses the junction capacitance.
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As soon as we couple the �rst electrode to a second one with a tunnel junction

(see Fig. 2.1), Cooper pairs can tunnel through the barrier and the state of the

whole junction can be speci�ed by the net number of pairs that went from the

left to the right electrode. So if m pairs have tunneled we say the system is in

the state |m〉. Neglecting the capacitance of the junction, we get that all the

low-energy |m〉 states are degenerate in energy. To account for the tunneling of

pairs we consider a phenomenological Hamiltonian:

HJ = −EJ
2

∑
m

(|m〉 〈m+ 1|+ h.c.) , (2.1)

where the parameter EJ , which measures the tunneling strength, is called the

Josephson coupling energy.

To include the Coulomb charging energy to transfer Cooper pairs we have

neglected so far, we recall the simple result from electrostatics that says that the

energy stored in a capacitor of capacitance C and charge Q is E = Q2/2C. It is

convenient to de�ne as a basic unit the Coulomb charging energy EC = (2e)2/2C,

associated with the transfer of a single Cooper pair. De�ning N̂ as the number

operator of pairs transferred across the junction

N̂ =
∑
m

m |m〉 〈m| , (2.2)

we can write the Coulomb charging energy HC = ECN̂
2 to form the total Hamil-

tonian of a Josephson junction (see Fig. 2.1)

H = −EJ
2

∑
m

(|m〉 〈m+ 1|+ h.c.) + ECN̂
2 . (2.3)

The Coulomb part of the Hamiltonian is commonly written HC = EC(N − ng)2,

where ng is called the `gate charge' or `o�set charge' and represents the e�ect of

external electric �eld or some asymmetry in the junction. For the moment we set

ng = 0. Borrowing from the tight-binding model we de�ne the plane-wave like
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states

|φ〉 =
∑
m

eimφ |m〉 , (2.4)

labeled by the angle φ ε[−π, π] . We see readily that

HJ |φ〉 = −EJ cos(φ) |φ〉 , (2.5)

i.e HJ is diagonal in the {|φ〉} basis. As the Cooper pairs have charge 2e, there is

a current associated with the pairs motion. The operator for the current �owing

through the electrodes is simply Î = 2edN̂
dt
. Heisenberg equation of motion writes

Î = 2e
i

~
[H, N̂ ]

= −ieEJ
~
∑
m

(|m〉 〈m+ 1| − |m+ 1〉 〈m|) .
(2.6)

So then the current operator is also diagonal in the {|φ〉} basis:

Î |φ〉 =
2eEj
~

sin(φ) |φ〉 , (2.7)

We can identify this equation with the �rst Josephson relation [26, 27]. The

critical current Ic is de�ned as Ic =
2eEj
~ . We can use this identi�cation to

interpret the states |φ〉 as the states of persistent current. The �rst Josephson

relation states that when a junction is crossed by a persistent current IC sin(θ)

the phase across the junction is precisely θ. Thus we can interpret the angle φ

de�ned in Eq. (2.4) as the phase change across the junction. This interpretation

will be particularly important in the light of the Meissner e�ect discussed in the

next Section. Now we can rewrite the Hamiltonian in a more conventional way:

H = −EJcos(φ) + 4ECN̂
2 , (2.8)

where cos(φ) is short for
∑ |φ〉 〈φ| cos(φ) . With Eq. (2.4) and Eq. (2.2), in

the {|φ〉} representation we see that the operators φ̂ =
∑

φ φ |φ〉 〈φ| and N are
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reminiscent of canonically conjugated operators. Indeed

〈m| [N, φ̂] |φ〉 =φ 〈m|N |φ〉+ i
∂

∂φ
〈m| φ̂ |φ〉

=i

(
∂

∂φ
φ− φ ∂

∂φ

)
〈m|φ〉

=i 〈m|φ〉 ,

(2.9)

is valid for any |m〉 and |φ〉, thus one �nds [N, φ̂] = i. As {|φ〉} is compact, the

structure formed by N and φ̂ is completely analogous to the angular momentum

and the angle of a body that rotates around a �xed axis. In this analogy the

Hamiltonian Eq. (2.3) corresponds to placing the rotor in a gravitational �eld

with strength proportional to EJ . The sinusoidal potential is clearly non-linear

and will be the heart of any superconducting qubit.

This allow to obtain the second Josephson relation [27] lets consider the situa-

tion where an external electric �eld is applied and maintained in such a way that

there is a �xed voltage drop V across the tunnel junction. This additional poten-

tial corresponds to a term in the Hamiltonian −(2e)V N . It can be incorporated

in the Coulomb charge term as EC(N̂ − nV ), generating the o�set nV = V/Ec.

The second Josephson relation can be obtained using the commutation relation

we have just obtained, with Heisenberg's equation we get

~φ̇ = i[H,φ] = 2eV . (2.10)

By solving the dynamics of the current operator I for a DC voltage bias V we

see that an AC current appears:〈
Î(t)

〉
= Icsin(φ0 +

2eV

~
t) . (2.11)

The Josephson junction �nds than a direct technological application, we can use

it to maintain a voltage standard with a frequency measurement (since frequency

is a physical quantity that can be measured with very high accuracy).
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2.1.2 Flux quantization

Figure 2.2: A superconducting loop is pierced by a magnetic Flux Φ. A particle
with charge 2e traveling by the indicated by a dashed line would acquire a phase
term exp(i2eΦ/~)

Although the simple model described in the last Section was enough to de-

scribe some important properties of a Josephson junction we are still lacking an

important ingredient that appears in superconducting circuits. The �ux quantiza-

tion is related to the Meissner e�ect [28], where any magnetic �eld present inside

a sample will be actively excluded when this material enters a superconducting

phase.Non-zero magnetic �ux may be obtained in a ring of superconducting ma-

terial, as there are no supercurrents present at the center of the ring the magnetic

�elds can pass through. However, the supercurrents at the boundary will arrange

themselves so that the total magnetic �ux through the ring is quantized in units

of Φ0 = 2π~/2e [29]. Flux quantization occurs because when a charged particle

travels in a �eld-free region that surrounds a region in which there is a magnetic

�ux. In this situation, upon completing a closed loop the particle�s wave func-

tion will acquire an additional phase factor. The wave function must be single

valued at any point in space. This can only be accomplished if the magnetic �ux

is quantized. But when there are other elements in the loop the total phase that
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the particle's wave function will acquire is the sum of the phase related to the

trapped magnetic �ux and the phase it gets when crossing each element. If φi is

the phase associated with crossing element i on the loop and the external �eld

�ux applied is Φe and φe = (2e/~)Φe is the associated phase, the �ux quantiza-

tion equation imposes the constraint
∑

i φi + φe = 2πn (for integer n). This is

the last phenomenological input we need to describe our circuits.

Figure 2.3: Electrical circuit for the RF SQUID. Current Iext �ows in the the
loop on the right generating a magnetic �ux on the SQUID.

As an example to this rule we can consider the inductively-shunted junction,

also known as the RF SQUID (Superconducting Quantum Interference Device),

of Fig. 2.3. The energy stored in an inductor of inductance L is usually written

HL = LI2/2. It can also be written as a function of the magnetic �ux through the

inductor ΦL = LI, yielding HL = Φ2
L/2L. The �ux quantization translates into

the constraint (2e/~)ΦL = 2πn− (φ− φe) (the signals are just a typical conven-

tion). The factor 2πn can be absorbed by the phase φ as this leaves the sinusoidal

part of the Hamiltonian changed, this gives the conventional Hamiltonian of the

inductively-shunted junction

H = ECN̂
2 − EJcos(φ) +

EL
2

(φ− φe)2 , (2.12)

where EL = (~/2e)2/L . The change in the Hamiltonian is accompanied by a

change in the domain of the phase which now takes values in the line instead

of the circle. This happens because as charge can move onto the junction plates

continuously through the inductor so the charge variable is no longer integer-

valued but rather continuous, as expected from the fact that the Hamiltonian is

no longer periodic and periodic boundary conditions are no longer satis�ed. The

ability to control the three parameters EJ ,EC and EL allows the fabrication of a
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rich variety of level structures in the inductance-shunted family of qubits. One

such qubit is the current-biased junction, the simplest phase qubit, depicted in

Fig. 2.4.

Figure 2.4: Electrical circuit current-biased Josephson junction.

If a constant current is forced through the junction an its capacitance, the

current bias source can be understood as arising from a loop inductance with

L → ∞ biased by a �ux Φ → ∞ such that Ie = Φ/L. Thus the Hamiltonian is

readily obtained from Eq. (2.12) as

H = ECN̂
2 − EJcos(φ)− ~

2e
Ieφ . (2.13)

The potential in the φ representation is shown in Fig. 2.8. It has the shape of a

tilted washboard, with the tilt given by the ratio Ie/IC .

Now we have all the tools to describe a superconducting circuit. Here we

have taken a more direct approach trying to interpret the Hamiltonians rather

than focusing on the rules to write them. A more systematical approach in which

`quantum Kircho�'s ' laws are used to impose relations among branch variables

leading to the Hamiltonian is available, such techniques can be found in [30, 31].

2.2 Qubits in superconducting circuits: arti�cial

atoms

We devote this Section to explore the Josephson non-linearity in three basic super-

conducting circuits that form simple qubits. An important problem in realizing

a Josephson qubit is to suppress as much as possible the detrimental e�ect of the
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�uctuations that will lead to decoherence. The three basic circuits o�er strategies

to both retain the non-linearity necessary to generate a qubit and alleviate the

decoherence. These qubits are called charge, �ux and phase qubits. A word of

caution is needed to avoid confusion arising from these historical names. One

should not think, for instance, that in charge qubits, quantum information is en-

coded in charge. Both the charge and phase are quantum variables and they are

both uncertain for a generic eigenstate of a charge qubit. The term `charge qubit'

should be understood as referring to the control parameter, i.e. the qubit variable

that we use to manipulate the qubit, applying gates and reading the qubit state

for example.

2.2.1 Cooper-pair box : Charge qubit

Figure 2.5: Electrical circuit equivalent for the Cooper-pair box.

In this circuit, �rst demonstrated in 1998 [32, 33], a Josephson junction is

biased by a voltage source through a gate capacitance (see Fig. 2.6). Using the

results of the two previous Sections we can easily show that the Hamiltonian

H = EC(N̂ − ng)2 − EJcos(φ) , (2.14)

describes the CPB if EC = (2e)2/(2CJ + 2Cg) and ng = CgVg/2e. Note that it

has the same form of an isolated junction. The presence of stray �elds will lead

to perturbation in ng, this design however can be operated in a point where this

noise has no �rst order e�ect on the energy levels of the qubit. The qubit is

composed of two states which are generally a mixture of many charge states, in

particular the qubit is formed only by two charge states |m = 0, 1〉 in the limit
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EC � EJ . Let us limit ourselves to the two lowest levels of the CPB. Near the

degeneracy point ng = 1/2 , we get the reduced Hamiltonian

Hqubit = ΩzσZ + ΩxσX , (2.15)

where σX,Y,Z are the Pauli matrices. The �rst charge qubits experimentally real-

ized were in the regime EC ' EJ [34]. The energy levels in this regime, calculated

numerically, are shown in Fig. 2.6. We see a `sweet spot' obtained when ng = 1/2,

i.e. at this point the qubit transition frequency is to �rst order insensitive to the

o�set charge noise.

Figure 2.6: Solid lines are the energies of ground and �rst excited levels of the
Cooper-pair box as a charge qubit. Note the `sweet spot' at ng = 1/2. In this
plot EJ/EC = 0.4. Adapted from [35]

There are many successful circuits based on the CPB. One successful strategy

to protect the qubit from stray electric �eld noise is to operate the CPB in the so

called `transmon' regime [36] . In the `transmon' regime the Josephson tunneling

energy dominates over the Coulomb charging energy and the phase described by

Eq. (2.14) is restricted to small deviations around the lowest level. This allows

us to approximate the Hamiltonian by expanding the cosine to forth order:

H ≈ EJ

(
1

2
φ2 − 1

24
φ4

)
+ ECN

2 , (2.16)

up to an irrelevant constant in the energy. For small oscillations it resembles an

anharmonic oscillator. However, φ is compact here and obeys periodic boundary

conditions at φ = ±π, in this sense a more complete analogy can be made with
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the quantum rotor. As usual in this cases, creation-annihilation operators provide

a convenient way to obtain the energy levels. We de�ne the annihilation operator

as

a =
1√
2

(
√
EJ φ̂+ i

√
ECN)

(ECEJ/2)
1
4

, (2.17)

which can be inverted to give φ̂ = φZPF (a + a†) =
(
EC
2EJ

) 1
4

(a + a†). To second

order in φ we have an harmonic oscillator of natural frequency ΩJ =
√

2ECEJ/~,
known as the Josephson plasma frequency. The forth order term is responsible for

the anharmonicity as we can readily see using the creation-annihilation operators:

V = −EJ
24
φ4 ≈ −EC

16
[2a†a+ (a†)2a2] . (2.18)

The �rst term simply decreases slightly the plasma frequency. The second is the

one that makes the oscillator anharmonic, i.e. the frequency ω12 is smaller than

ω01 and the di�erence is precisely A ≡ EC . Note that in the limit EJ � EC

the corrections are small and the expansion is self-consistent. Although some

anharmonicity is essential to obtain a qubit we do not need it to be extremely

large, in fact the anharmonicity just has to be large compared to the width of

the pulses used on the qubit manipulation. Finally, pushing EC/EJ to less than

1 can lead to an important protection against decoherence. The o�set ng can be

removed from the Hamiltonian with the unitary transformation U = e−ingφ but

this transformation changes the boundary conditions so that they are no longer

periodic. Nevertheless the low-lying levels have a negligible probability amplitude

in the boundary region and this amplitude decays exponentially with the ratio

EJ/EC . This is simply a consequence of the fact that the zero-point-�uctuation

in the phase gets smaller as we increase EJ/EC and thus the system is barely

a�ected by the changes in the boundary. In fact it can be show [37] that the energy

shifts due to external �eld is approximately proportional to exp(−
√

2EJ/EC) .
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2.2.2 RF-SQUID : Flux qubit

The �ux qubit is the magnetic analogue of the electrostatic CPB. In this design

a current driven magnetic �eld pierces the box with a strength given by a mutual

inductance M .

Figure 2.7: Circuit and potential of the �ux qubit. We took φe = π. Levels are
only illustrative.

An elementary �ux qubit can be constructed with an rf SQUID operating in

the phase regime, EJ � EC. Let us consider the Hamiltonian 2.12 at φe = π,

i.e. at half-integer bias magnetic �ux. The potential depicted in Fig. 2.7 has two

identical wells with equal energy levels when the tunneling between the wells is

neglected. These levels correspond to clockwise and counterclockwise persistent

currents circulating in the loop and are connected via tunneling. At Φe = Φ0/2π,

the two lowest energy levels are then the symmetric and antisymmetric combi-

nations of the two wavefunctions localized in each well, and the energy splitting

between the two states can be seen as the tunnel splitting associated with the

quantum tunneling through the potential barrier between the two wells. If the

tunneling barrier is much smaller than the Josephson energy, the potential 2.12

can be approximated as

H ≈ −EJcos(φ) +
EL
2

(φ− φe)2

≈ EL

(
−εδ

2

2
− (φe − π)δ +

1 + ε

24
φ4

)
,

(2.19)

where δ = φ−π and ε = EJ/EL−1� 1 determines the height of the barrier. The

qubit Hamiltonian derived by projecting the Hamiltonian above in the subspace
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of the �rst two levels can only be obtained numerically. Nevertheless we can

expect that going from the case of a high barrier in the middle where there

are eigenstates localized on each well, if we start to decrease the barrier the

tunneling will hybridize the levels and the energy levels will repel each other

lifting the degeneracy. We end up with a qubit of the same form of the CPB

Eq. (2.15) where Ωz depend exponentially on the height of the barrier ε (and

that can be controlled externally) and a Ωx that goes through a sweet spot of

�rst order insensitivity at half magnetic �ux quantum φe = π (in analogy to the

half quantized charge we found for the CPB).

2.2.3 Current-biased junction: Phase qubit

Figure 2.8: Circuit and tilted washboard potential of the current-biased Josephson
junction. We took Ie = EJe/~. Levels are only illustrative.

We have already obtained the Hamiltonian of this circuit in Eq. (2.13). A

qubit is obtained from this tilted washboard when the bias current Ie approaches

the critical current IC . In this case the phase approaches π/2 and the potential

is well approximated [38] by

H ≈ EJ
IC

(IC − Ie)δ −
EJ
6
δ3 , (2.20)

where δ = φ − π/2. Again we write a qubit Hamiltonian of the form Eq. (2.15)

but the coe�cients have to be obtained numerically. The current-biased junction,

unlike the charge and �ux qubits, cannot be operated in point in the parameters

space where the qubit energy levels are insensitive to �uctuation to �rst order. In
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addition there can be tunneling out of the local minima leading to decoherence.

This tunneling can, to some extent, be turned into an advantage. The tunnel-

ing can work as a built-in readout as the states in the cubic potential tunnel

through the cubic potential barrier into the continuum outside the barrier with

di�erent rates. Varying the current Ie, the authors of [39] where able to engineer

tunneling rates from states |0〉 and |1〉 di�erent by approximately a factor of a

thousand. After tunneling, the particle representing the phase accelerates down

the washboard, a convenient ampli�cation process leading to a voltage across the

junction. When a �nite voltage suddenly appearing across the junction just after

tilting the potential we can infer that the qubit was in state |1〉, whereas V = 0

implies that the qubit was in state |0〉. This process clearly destroys the qubit

and nowadays other non-destructive methods are used with success. We discuss

such a non-destructive readout proposal in Chapter 5.

We said earlier that a low temperature is needed to keep the Cooper pair from

breaking, another constraint in the temperature is to keep the qubit from being

thermally �ipped. Typical Josephson qubits fall into the 5− 20GHz range, as a

temperature of 1K corresponds to a frequency of approximately 21 GHz, if T is

in the milikelvin range we can avoid thermal excitations.

Many di�erent designs exploiting Josephson junctions have been proposed

and studied, each with its particular advantages ranging from interesting non-

linearities to intrinsic qubit protection from decoherence. The subject has been

reviewed more than once, see for instance [40, 41].

2.2.4 A word on decoherence

Superconducting qubits are sensitive to environmental noise, which leads to short

coherence times because of extrinsic and intrinsic decohering elements. Decoher-

ence caused by extrinsic elements, such as the local electromagnetic environment,

has been reduced using better design of the qubits and the surrounding circuitry

improving from the basic designs we presented in this Section. But the main

intrinsic element that in�uences the coherence results is the 1/f noise. The mi-

croscopic mechanisms of 1/f noise are still, to a large extent, unknown. With

the development of microscopic theories beyond phenomenological models one
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could envisage novel methods to actively suppress the e�ects of the noise. Such

understanding is important not only for quantum computing but also for reveal-

ing the underlying physics. This problem, however, has proven to be di�cult.

Nevertheless, the circuit QED community has gone a long way from the �rst su-

perconducting qubit with coherence times on the order of about 1 ns [33] up to

20 µs [42], i.e. an improvement of 4 orders of magnitude. This was only possible

due to the e�ort of various research groups to reduce the impact of numerous

decoherence mechanisms, see for instance [43, 44]. At the same time gates and

non-destructive readout schemes have been implemented, much of these tasks

were accomplished by the careful manipulation of the arti�cial atom - cavity �eld

interaction. On the next Section we describe one of the most common cavities

fabricated in a circuit.

2.3 Superconducting cavities: coplanar waveguide

resonators (CPW)

A CPW of length D can be modeled as a perfectly conducting wire where each

unit length element has an inductance l and a capacitance c [30, 45]. The equiv-

alent of Newton's equation on this system is given by

l∂tI(x, t) + ∂xV (x, t) = 0 , (2.21)

while charge conservation implies

∂tq(x, t) + ∂xI(x, t) = 0 . (2.22)

Before we write a Lagrangian for this system it is convenient to introduce the

�ux variable

φ(x, t) ≡
∫ t

−∞
dτ V (x, τ) , (2.23)

and we can clearly see that ∂tφ(x, t) = V (x, t), moreover from Eq. (2.21) we see

that ∂xφ(x, t) is proportional to I(x, t). With this the Lagrangian density takes
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Figure 2.9: Schematic layout and equivalent circuit representation of the copla-
nar waveguide transmission line. Input and output signals are coupled to the
resonator signals are coupled to the resonator, via the capacitance on the ex-
tremes.

the form

L =
c

2
(∂tφ)2 − 1

2l
(∂xφ)2 . (2.24)

The Euler-Lagrange equation for this Lagrangian is the wave equation with v =

1/
√
lc as the wave phase velocity.

The momentum associated with φ

∂

∂φ̇

∫ ∞
0

L dx = cV (x, t) . (2.25)

is nothing but the charge density q(x, t) . And so the Hamiltonian can be written

H =

∫
dx

[
1

2c
q2 +

1

2l
(∂xφ)2

]
. (2.26)
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The quantization of the Hamiltonian above is achieved by replacing φ(x, t) and

q(x, t) by the operators φ̂(x, t) and q̂(x, t) which obey canonical commutation

relations:

[φ̂(x), q̂(x′)] = i~δ(x− x′) . (2.27)

The Hamiltonian Eq. (2.26) is simply a sum of harmonic oscillators and as

such we can de�ne annihilation operators

bk =
1√
L~ωk

∫
dx e−ikx

[
1√
2C

q̂(x)− i
√
k2

2l
φ̂(x)

]
, (2.28)

where we used for convenience a `quantization box' of periodic boundary condi-

tions on a length D. As usual the Hamiltonian takes the form

H =
∑
k

~ωk
(
b†kbk +

1

2

)
. (2.29)

and the commutator [φ̂(x), q̂(x′)] yields the commutation relation

[bk′ , b
†
k] = δkk′ , (2.30)

for the annihilation and creation operators.

2.3.1 Tunable coplanar waveguide resonator

The �rst resonance mode of a transmission-line resonator has a wavelength λ =

2D, we have seen on the previous Section that the wave velocity is v = 1/
√
lc so

frequency of this mode will be ωres = π/D
√
lc where l and c are the inductance

and capacitance per unit length of the resonator. Clearly it su�ces to control

the inductance or capacitance with an external �eld to have a frequency-tunable

resonator. That is precisely what Palacios-Laloy et al accomplish in [46] by

inserting an array of a few SQUIDs in series in the waveguide central strip.

The SQUID behaves as a lumped non-linear inductance that depends on the

magnetic �ux Φ across the SQUID. We will wait until Chapter 5 to analyze the
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LS

(a) (b)

ω
/
2
π

Figure 2.10: (a) Electrical circuit of the dc-SQUID. (b) Measured frequency as
a function of the applied magnetic �ux for a sample with a single SQUID. The
frequency range extends from 1.3 to 1.75 GHz, yielding a tunability range of 30%.
Adapted from [46].

Hamiltonian of this SQUID, for the moment we shall assume that the voltage

across a SQUID, see Fig. 2.10, can be written as

V = L(Φ, I)
dI

dt
. (2.31)

The term L(Φ, I) is then a �ux tunable non-linear inductance. The SQUID self

inductance is LS and the critical current of both Josephson junctions is IC , if we

introduce reduced superconducting �ux quantum φ0 = ~/2e. Following [46] we

can use the results techniques of Section 2.1 to write the resonator frequency in

the linear regime

ω(Φ) =
ωres

1 +Nε(Φ)
, (2.32)

where

ε(Φ) =
φ0/2ICLres
|cos(Φ/2φ0)|

[
1 +

LSIC
φ0

cos(Φ/φ0)

cos(Φ/2φ0)

]
, (2.33)
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and N is the number of SQUIDs in series. It is important to note that this scheme

does not degrade the quality factor which was measure to be Q = 3.5103 in the

data show in Fig. 2.10 (b).

As shown in [46] if the current is comparable to 2IC |cos(Φ/2φ0)| the resonator
gets a small additional shift. This additional shift is avoided with the use of an

array of SQUIDs which allows one to stay in the linear regime with larger currents.

2.3.2 Cavity-qubit coupling

Analogous to an atom that has a dipole which couples to electromagnetic �elds, a

circuit can also exchange energy with its electromagnetical environment. The �ux

qubit can couple to a CPW resonator via the induced magnetic �eld, as shown

in Fig. 2.11. A �ux qubit placed at or near the center of the CPW resonator,

where there is an antinode of the current standing wave, can strongly couple to

the resonator via the mutual inductance. In such a circuit, the vacuum Rabi

splitting in the transmission spectrum was observed (Niemczyk 2010; Yang et

al., 2003). By employing the magnetic �eld produced by the current, the �ux

qubit can also strongly couple to an LC oscillator via a large mutual inductance.

Vacuum Rabi oscillations in this system have been observed in (Chiorescu 2004

Johansson 2006).

For charge qubits, electric �elds are naturally well suited for coupling to qubits.

A circuit involving a CPW resonator and a charge qubit capacitively coupled was

theoretically proposed in [19] and experimentally demonstrated in [20], where

strong coupling between a single photon and a charge qubit was achieved. In

this setup, depicted in Fig. 2.12, the charge qubit is integrated into the ground

planes of the transmission line near the antinode of the voltage standing wave for

maximum coupling.

To give a concrete example of how a Jaynes-Cummings Hamiltonian can be

constructed let us consider the circuit depicted in Fig. 2.12. In this circuit the

gate voltage(Vg in Section 2.2.1) has a quantum part that can be written in terms

of the annihilation operators de�ned in 2.28. Here we shall assume the qubit to

be fabricated at the center of the resonator. As a result,the qubit is coupled to

the mode k = 2 of the resonator, which has an antinode of the voltage in its



262. EXPLORINGQUANTUMPHENOMENAWITH AN ELECTRICAL CIRCUIT

Figure 2.11: Schematic layout of coplanar waveguide resonator coupled to a �ux
qubit via mutual inductance.

Figure 2.12: Schematic layout of coplanar waveguide resonator coupled through
a capacitance with a charge qubit.
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center, and we will drop the index k. This way the total Hamiltonian for the

qubit operated at ng = 1/2 and resonator is

H = ~ωres
(
b†b+

1

2

)
+ ~Ωzσz −

eCg
~(CJ + Cg)

√
~ωres
C

(b† + b)σx , (2.34)

where we identify the standard Jaynes-Cummings term with coupling strength

g ≡ eCg
~(CJ+Cg)

√
~ωres
C

. If the natural frequencies of qubit and resonator are much

larger than g we can consider the interaction in the so-called `rotating-wave-

approximation'. The coupling term is then written g(b†σ− + bσ+) as we neglect

the counter-rotating terms. In circuit QED, extremely strong coupling is easy

to obtain by tuning the circuit parameters, so this approximation is not always

valid. Also note that it might actually be harder to obtain weak coupling in such

a resonator and the main reason that the cavity is useful is to protect the qubit

from the environment by screening the vacuum noise which causes spontaneous

emission by Purcell e�ect [25].

2.3.3 Input-output theory on a transmission line

Input and output signals are coupled to the resonator signals, usually via the

capacitive-coupling, allowing measurements of the amplitude and phase of the

�eld radiated and the introduction of qubit-manipulation pulses. The theory

relating the �eld that drives the resonator with the output waves is known as

input-output theory. Our discussion will follow the standard references [47, 48],

and we will focus on the case we commonly �nd on circuit QED: the input and

output modes will be the modes of a transmission line.

In the situation we aim to describe a single mode resonator couples to the

transmission line. The system in the resonator does not however need to be an

harmonic oscillator, it su�ces that a single degree of freedom obeying bosonic

commutation relation [a, a†] = 1 interacts with the external modes. We should

note that the distinction between resonator and outside modes is blurred when

the quality factor is �nite and the cavity is partially open. Nevertheless in the

standard input-output theory we keep the original modes as if they where iso-

lated but we introduce an interaction term in the Hamiltonian which allows the
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annihilation of an excitation inside the cavity with the creation of an excitation

outside and the reciprocal. This perturbative description is, however, highly ac-

curate when the quality factor is large. The coupling Hamiltonian is thus written

Hint = −i~
∑
k

gk(a
†bk − b†ka) , (2.35)

where we neglected the counter-rotating terms abk and a†b†k as these terms os-

cillate at high frequencies in the interaction picture and have little e�ect on the

dynamics if the coupling gk is much smaller than the typical frequencies involved.

This term is added to the transmission line Hamiltonian Eq. (2.29) and a general

resonator Hamiltonian

H = Hres +HTL +Hint . (2.36)

The Heisenberg equation yields

ḃk = −iωkbk + gka , (2.37)

for the transmission line modes and

ȧ =
i

~
[Hres, a]−

∑
k

gkbk . (2.38)

for the resonator bosonic mode. We can formally integrate Eq. (2.37) from the

initial condition t0 before any interaction between the external wave packet and

the resonator has happened

bk(t) = e−iωk(t−t0)bk(t0) + gk

∫ t

t0

dτ e−iωk(t−τ)a(τ) , (2.39)
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and inject it in last term in the RHS of Eq. (2.38)

∑
k

gkbk =
∑
k

gke
−iωk(t−t0)bk(t0) + g2

k

∫ t

t0

dτ e−iωk(t−τ)a(τ)

=
∑
k

gke
−iωk(t−t0)bk(t0) + g2

k

∫ t

t0

dτ e−i(ωk−ωc)(t−τ)[a(τ)e−iωc(t−τ)] .

(2.40)

From the �rst to the second line we arrange the term in square brackets to be

slowly varying with τ . The term e−iωc(τ−t) can be interpreted as the free evolution

if the resonator were an harmonic oscillator of frequency ωc. We make the Markov

approximation which assumes that the coupling is essentially constant over the

relevant frequencies, i.e. frequencies around ωc we have∑
k

g2
ke
−i(ωk−ωc)(t−τ) = κδ(t− τ) . (2.41)

Note that κ encompasses both the coupling strength and the transmission line

mode density, in fact we have

κ = 2πg2ρ . (2.42)

if gk is taken constant gk = g and ρ is de�ned as

ρ =
∑
k

δ(ωc − ωk) . (2.43)

If we introduce Eq. (2.41) back in Eq. (2.40) a de�nite integral, where δ(x) should

be interpreted as a distribution, appears∫ ∞
0

δ(x) =

∫
θ(x)δ(x) . (2.44)

The Heaviside step function θ(x) relates to the delta function as δ = θ′, conse-

quently θδ = −θδ + (θ2)′ thus∫
dx θ(x)δ(x) =

1

2

∫
dx (θ2(x))′ =

1

2
. (2.45)
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With this result we reach the intermediate expression

ȧ =
i

~
[Hres, a]− κ

2
a−

∑
k

gke
−iωk(t−t0)bk(t0) , (2.46)

we see that the resonator leak to the transmission line originates a damping term

for the resonator mode as one could expect. The last terms drives the resonator

and if we de�ne the operator

binput(t) =
1√
2πρ

∑
k

e−iωk(t−t0)bk(t0) , (2.47)

we see that it evolves under the free transmission line Hamiltonian so we physi-

cally interpret it as the input �eld. With this de�nition we �nally get

ȧ =
i

~
[Hres, a]− κ

2
a−√κ binput(t) . (2.48)

Analogously, the output mode boutput is radiated into the transmission line

bath and evolves freely thereafter. As the resonator is partially open the output

mode will also contain waves radiated by the resonator, these waves contain

information about the internal dynamics of the resonator and are thus a way

to probe this system. To obtain an equation of motion to the output mode we

integrate Eq. (2.37) using a reference time t1 > t where all the wave packet no

longer interacts with the cavity

bk(t) = e−iωk(t−t1)bk(t1)− gk
∫ t1

t

dτ e−iωk(t−τ)a(τ) . (2.49)

We proceed in the same fashion as before to obtain

ȧ =
i

~
[Hres, a] +

κ

2
a−√κ boutput(t) . (2.50)

where

boutput(t) =
1√
2πρ

∑
k

e−iωk(t−t1)bk(t1) . (2.51)
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From Eq. (2.50) and Eq. (2.48) we get the last relation we need

boutput(t) = binput(t) +
√
κ a(t) . (2.52)

The extension of this formalism to multiple input and output ports is direct,

to each additional `channel' there will be an associated operator with the same

form of Eq. (2.47). This formalism will be explored in the next Chapter to model

homodyne measurements, which is a typical experiment used to probe indirectly

a system coupled to the resonator.
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Chapter 3
Strong coupling ensembles of emitters to

a resonator

Strong coupling is characterized by recurrent energy exchange between the res-

onator and the matter �eld and it takes place if the coupling overwhelms the

dissipative processes. This seemly simple condition is a formidable experimental

task demanding very high-Q resonators. With a moderate quality factor one can

resort to the use of an ensemble of N emitters, in that case the collective cou-

pling is enhanced by a factor
√
N , making it easier to meet the strong coupling

requirements. In fact it took almost a decade for the experiments showing collec-

tive Rabi oscillations with 104 atoms [2] to be re�ned to the point where vacuum

Rabi splitting with one atom (on average) could be observed [49, 50]. Another

example comes from experiments with semiconductor nanostructures where the

�rst strong coupling signatures were obtained in monolithic semiconductor quan-

tum microcavity containing an ensemble of quantum wells [51]. Other systems

could bene�t from collective coupling including semiconductor nanocrystals [52],

self-assembled quantum dots [53] and molecules in organic crystals [54].

The interest for this topic has been renewed in the framework of quantum

information, with proposals to use collections of emitters as quantum memories

for individual excitations. Indeed, ensembles of microscopic degrees of freedom

bene�t from the collective enhancement of the interaction strength , while possi-

bly keeping the relaxation properties of a single emitter [55]. This led to a series

33
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of recent proposals where cold atoms [56], polar molecules [57] or electronic spins

[58, 55] coupled to a superconducting cavity have been suggested as long-storage

quantum memories and optical interfaces. Following these proposals, recent ex-

periments have demonstrated the strong coupling of a resonator to a collection

of electronic spins in a crystal [59, 60]. This idea is particularly compelling for

superconducting circuits where the Josephson junction based qubits, which cou-

ple strongly to electromagnetic �elds enabling quantum information processing,

could be complemented by ensembles of emitters with very high coherence times

but rather small coupling with electromagnetic �elds. In addition, the spin en-

semble contains many collective modes that could be explored for example if one

could apply a strong magnetic �eld gradient to make di�erent modes interact

selectively with the cavity as proposed in [61]. In this way, the spin ensemble

could act as many quantum registers storing a large number of logical qubits.

In atomic experiments, although there is a �nite broadening of the atomic

spectra (due to Doppler broadening for instance) it is usually small compared

to the cavity linewidth or the coupling strength. For this reason we can safely

describe this ensemble as N identical atomic oscillators. In this case only one

collective mode couples with the cavity and we have a direct analogy with the

single-emitter case if we scale the coupling constant by a factor
√
N [62]. How-

ever, in solid state systems the broadening is frequently larger than the cavity

linewidth or the coupling strength (and the ensemble can no longer be reasonably

approximated by an ensemble of identical emitters). That is the main motivation

for this chapter, where we make a theoretical investigation on the properties of a

system consisting in a resonator `�lled' with a large number of two-level emitters

non-degenerate in frequency 1.

As we will see throughout this Chapter, we have to pay attention not only to

the width of the emitters distribution but also on its shape which can vary among

di�erent systems and even di�erent samples of the same system. We will show

that provided the spectral density of emitters in the wings of the distribution

decays faster than a Lorentzian, the losses will be dominated by the cavity and

the emitters homogeneous linewidth (for large enough coupling).

1Parts of this chapter have been published in Physical Review A 00, 003800 (2011)
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3.1 Modelling transmission

The system under study is pictured in �g.3.1. To build the proper hamiltonian

we have to modify Eq. (3.1) to account for the frequencies inhomogeneity

~ω0

2

N∑
j=1

σjz ⇒ ~
2

N∑
j=1

ωjσ
j
z . (3.1)

From now on we consider the so called low-excitation regime in which the

number of excitations is small compared to the total number of emitters. In this

regime the behavior of a two-level system cannot be distinguished from the be-

havior of the two lower levels of a harmonic oscillator. In fact if the probability

of exciting the j-th emitter is small we have 〈σjz〉 = −1/2 and the raising and

lowering atomic operators which are analogous to creation and annihilation op-

erators will display bosonic commutation relation : [σj−, σ
j
+] = −2σjz ≈ 1. Each

two-level emitter is properly modeled by a bosonic mode bk (Holstein-Primako�

approximation). The total Hamiltonian writes

H = ~ω0a
†a+

N∑
j=1

~ωjb†jbj − i~
∑
j

gj(b
†
ja− a†bj) . (3.2)

Figure 3.1: Scheme of the emitters-cavity coupled system. The cavity frequency
is ω0. The cavity mode is coupled to the outside world via two ports, on the left
we have input and re�ected channels and on the right we have the transmitted
one. The j-th two-level system has frequency ωj and interacts with the cavity
mode with coupling constant gj.

The Hamiltonian above corresponds to the resonator Hamiltonian in the lan-
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guage of Section 2.3.3 where we presented the input-output formalism. The ex-

ternal modes are combined into the operators cin (injected or pumping �eld), cr
(re�ected �eld) and ct (transmitted �eld) that lead to the damping κ of the intra-

cavity �eld as in Eq's 2.47 and 2.51 . We also consider atomic losses γ, i.e. atomic

emission in modes other than the cavity mode, these terms contributing to the

damping of the emitters without pumping the resonator mode. With Eq. (2.48),

the Heisenberg equations are written in the frame rotating at the frequency ω of

the probe as

ȧ = − (κ/2 + i(ω0 − ω)) a−
√
κ/2cin +

∑
k

gkbk ,

ḃk = − (γ/2 + i(ωk − ω)) sk − gka+ Ξ(t) ,

cr = cin +
√
κ/2a ,

ct =
√
κ/2a ,

(3.3)

where Ξ(t) is a noise operator associated with the atomic decay γ [47]. From

this set of equations, and as demonstrated in Appendix A.1, it comes out that

the evolution of the system can be modeled with a generalized Hamiltonian Heff

involving the respective complex emitters and cavity frequencies ω̃k = ωk − iγ/2
and ω̃0 = ω0 − iκ/2. Consequently, the system made of N atoms coupled to a

cavity appears to be equivalent to an ensemble of N + 1 coupled leaky cavities,

and the problem reduces to the study of the classical evolution of the �eld in

each cavity. This analogy is the basis of the model. Taking the average value and

solving analytically the set of equations in the steady state regime, we get the

following expression for the complex transmission of the cavity:

t(ω) =
〈ct〉
〈cin〉

=
−κ/2i

ω̃0 − ω −
∑

k g
2
k/(ω̃k − ω)

. (3.4)

The complex transmission can be directly measured via a homodyne measure-

ment, if phase reference is not kept we will measured instead the transmission

in energy |t(ω)|2. We are interested in the very large number of emitters N , so

we describe the emitters as a continuous distribution with spectral density ρ(ω)
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spread around its central frequency ωc and normalized to 1. The full width at

half maximum (FWHM) is denoted ∆, and is used to parametrize each distribu-

tion. We de�ne the spectral density distribution as ρ(ω) =
∑

k g
2
kδ(ω − ωk)/Ω2,

where Ω2 =
∑

k g
2
k. Introducing this de�nition in eq.(3.4) and using the identity

1/(ωk − ω − iγ) =
∫
dω′δ(ω′ − ωk)/(ω′ − ω − iγ) we obtain

t(ω) =
κ/2i

ω − ω0 + iκ/2−W (ω)
, (3.5)

with

W (ω) = Ω2

∫ ∞
−∞

ρ(ω′)dω′

ω − ω′ + iγ/2
. (3.6)

In the following we consider three di�erent continua, namely a Gaussian, a

Lorentzian, and a rectangular distribution. Gaussian broadening is quite com-

mon in nature, from Doppler-broadened lines in gases to e.g. size distributions in

ensembles of semiconductor nanocrystals [52] and self-assembled quantum dots

[53]. Lorentzian distributions can be found in certain solid-state systems, such

as spin ensembles in dipolar interaction [63] or dilute optically active impurities

in crystals [64]. Finally, the rectangular distribution is a prototypical example

of �nite bandwidth distribution. The results obtained in this case can for in-

stance qualitatively be applied to dilute ensembles of �uorescent molecules in

organic crystals [54]. For these three distributions, we have obtained analytical

expressions for the function W (ω), which are detailed in Appendix A.2.

3.2 Properties of the transmission function

We start this Section recalling some well-known results in the absence of inhomo-

geneous broadening (∆ = 0). In that case, the distribution ρ(ω) is well described

by a Dirac delta function, leading to W (ω) = Ω2/(ω + iγ/2), and the transmis-

sion function has two poles λ± = ±
√

Ω2 − ((κ− γ)/4)2 + i
κ+ γ

4
[65]. Strong

coupling is reached if Ω� κ, γ and is manifested by the appearance of a doublet

in the transmission pattern located at ±Ω (at �rst order in κ/Ω, γ/Ω). These

two peaks are the spectral counterpart of the coherent and reversible exchange
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of a quantum of energy between the cavity �eld and the symmetrical state |S〉
of the emitters ensemble. The transmission coe�cient t(ω) is proportional to the

Fourier-Laplace transform of the �eld's amplitude in the cavity initially fed with

a single excitation 〈1, G| e−iHeff t/~ |1, G〉 (this result is demonstrated in Appendix

A.1, generalizing ref.[66] and is also valid in the case where ∆ > 0). The so-called

collective Rabi oscillation takes place at the frequency Ω de�ned above, which

in that case simply equals Ω = g0

√
N , and is damped on a timescale given by

the �nite linewidth of the peaks. In that temporal picture, strong coupling is

reached when the excitation is exchanged several times before being lost in the

environment.

We now study how the strong coupling features are modi�ed by inhomoge-

neous broadening. We have plotted the transmission in energy |t(ω)|2 for Ω/∆

ranging from 0 to 3.5 in �g.3.2. To be only sensitive to the in�uence of inho-

mogeneous broadening, we have kept κ and γ negligible with respect to Ω. We

have considered the three types of distributions introduced in Sec. 3.1, namely

Lorentzian (a), Gaussian (b) and rectangular (c). Whatever the distribution, two

peaks appear in the transmission pattern when Ω > ∆, a signature of Rabi oscilla-

tion in the temporal domain. A �rst rough interpretation is that strong coupling

is reached when dephasing processes, that take place on a timescale ∆−1, are

slower than than energy exchanges, whose period still scales like Ω−1. Note that

the Rabi period is a collective quantity involving all the emitters, even emitters

which are not spectrally matched to the cavity mode. This apparently puzzling

feature had already been evidenced in [67] and is due to the fact that the mode

interacts with a collective state of the matter �eld.

Inhomogeneous broadening not only states a novel condition to ful�ll to en-

sure strong light-matter coupling. As it eventually accelerates the damping of

Rabi oscillations, it also leads to the broadening of the polaritonic peaks, as it

clearly appears in �g.3.2. In particular, the shape of the emitters distribution has

a dramatic in�uence. An analytical expression for this width can be derived, in

perturbation with respect to the small parameter ∆/Ω : namely, departing from

the strong coupling case in the absence of inhomogeneous broadening, we evalu-

ate how the poles of the transmission function are modi�ed when 0 < ∆ � Ω.

For the sake of simplicity we consider the limit γ = 0. The case of �nite γ is
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Figure 3.2: (Color online). Transmission of a cavity resonantly coupled to a broad
distribution of emitters. (a,d) : Lorentzian; (b,e) : Gaussian; (c,f) : Rectangular.
We took ∆ = 1 MHz, κ = 0.1 MHz, γ = 10−4 MHz. Bottom : Ω = 3.5 MHz.
These values are typical of NV centers coupled to a superconducting resonator.

studied in Appendix A.3 in the limit γ � ∆, which corresponds to the experi-

mental situations we aim to describe. Using the Sokhatsky-Weierstrass formula

in eq.(3.6) we have

W (ω)

Ω2
= P

∫ ∞
−∞

ρ(ω′)dω′

ω − ω′ − iπρ(ω) . (3.7)

The modi�ed poles of the transmission function are expected in the vicinity

of ±Ω, so that we develop the expression of W (ω) for ω ∼ Ω� ∆ :

W (ω) =
Ω2

ω
(1 + O(∆2/ω2))− iπΩ2ρ(ω) , (3.8)

yielding for the poles of the transmission function (at �rst order in κ/Ω and

second order in ∆/Ω), λ± = ±Ω + iκ+2πΩ2ρ(Ω)
4

. Finally, keeping a �nite γ leads
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to the modi�ed expression for the full width at half maximum of the peaks :

Γ = (κ+ γ + 2πρ(Ω)Ω2)/2. (3.9)

Looking at eq.(3.9), it appears that in the strong coupling regime, the po-

laritonic peaks remain located at ±Ω, but that inhomogeneous broadening adds

a contribution to their linewidth. This contribution writes 2πΩ2ρ(Ω) and scales

like the density of emitters at the real frequency of the poles. This feature ex-

plains the sensitivity to the distribution shape that clearly appears in �g.3.2.

The polaritonic linewidth decreases upon increasing Ω, provided the distribution

ρ(ω) decays faster than 1/ω2. The Lorentzian distribution is the limiting case

for which the linewidth tends towards a constant ∆ : whatever the coupling,

the polaritonic linewidth is governed by inhomogeneous broadening. On the con-

trary, in the Gaussian and rectangular cases, increasing the ratio Ω/∆ allows to

get rid of the in�uence of the parameter ∆, so that the width of the peaks only

depends on the losses of the cavity and of individual emitters. In the rectan-

gular case, this ideal behavior is even reached for �nite values of the collective

coupling strength Ω (while it remains a limit in the Gaussian case). This e�ect,

that we call cavity protection, leads to an enhanced lifetime of the Rabi oscillation

and has interesting consequences for quantum information storage as we show in

Section3.5.

3.3 Origin of peak broadening

Before focusing on applications opened by cavity protection, we give an interpre-

tation of peaks broadening. This amounts to understanding the damping of Rabi

oscillations, which occurs even in the absence of any radiative losses κ = γ = 0.

Our approach is based on a seminal paper of Fano [68], and consists in the diag-

onalization of the total Hamiltonian of the system H = Hcav +Hem +Hint.

In the absence of inhomogeneous broadening, preparing the system in the

initial state |1, G〉 gives rise to Rabi oscillations between the atoms and the �eld.

This state is a coherent superposition of two eigenstates of the Hamiltonian,

namely the polaritons
∣∣ψ0
±
〉

= 1√
2
|0, S〉± i 1√

2
|1, G〉, of energies ±~Ω, where |S〉 is
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the symmetrical matter state de�ned in Section III. Rabi oscillation is a quantum

beat between these two components. In particular, all other emitters states, which

do not interact with the electromagnetic �eld and are usually called "dark states",

remain uncoupled.

The presence of inhomogeneous broadening strongly modi�es the features of

the emitters cavity coupling. We start the diagonalization by a change of basis

from the bare emitters to a set of coarse grained states {|ω〉} regularly spaced

in frequency. Consider you have a very large number of emitters distributed

according to ρ(ω). Now let

|ω〉 =
1√
ε

1√
ρ(ω)

∑
ω− ε

2
<ωk≤ω+ ε

2

|ek〉 , (3.10)

we assume ε is small enough that the variation of ρ(ω) can be disregarded in

this scale. In the limit of small ε these are the only states that interact with

the cavity. This happens because we are forming locally symmetric states. The

matrix elements of the Hamiltonian between excited resonator and |ω〉 is

〈ω|H |1, G〉 = 〈ω|
(
|1, G〉 〈1, G|+

∑
k

|ek〉 〈ek|
)
H |d〉

=
∑
k

gk 〈ω|ek〉

=
√
ε
√
ρ(ω)g(ω) .

(3.11)

where g(ω) is the average coupling around g(ω). We can regain a `coarse grained'

continuous if we make ε → 0. This way we end up with a continuous of states

distributed with constant density in the ω axis that interact with the discrete

cavity levels. We drop ε and make the interaction strength Ω normalized `per

unit frequency/energy'. As we are only interested in eigenstates which are not

'dark` all the matrix elements we need are
〈1, G|H |1, G〉 = ~ω0 ,

〈ω′|H |1, G〉 = ~Ω
√
ρ(ω′) ,

〈ω′|H |ω〉 = ~ωδ(ω − ω′) ,
(3.12)
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as the remaining emitter states form a subspace which does not communicate

via H. We shall now prove that the matrix element of H between two states

each from one subspace are zero. Let |ω, ek〉 be the bare excited emitters on the

bin of size ε around the frequency ω with k ranging from 1 to the total number

of emitters in this bin N(ω). In addition to the vector |ω, 1〉 = |ω〉 de�ned in

Eq. (3.10) we have the orthonormal set

|ω, j〉 =
1√

j(j − 1)

j−1∑
k=1

|ω, ek〉 − (j − 1) |ω, ej〉 , (3.13)

for j ∈ [2, N(ω)], these are `dark-states' that complete the basis to the one-

excitation manifold. Nevertheless it is easy to see that〈ω, j|H |1, G〉 = 0,

〈ω, j|H |ω, 1〉 = 1√
N(ω)
√
j(j−1)

∑j−1
k (ωk − ωj) < ε,

(3.14)

and in the ε→ 0 limit the two subspaces decouple.

An eigenvector |ψω〉 of H with energy ~ω is searched under the form

|ψω〉 = a(ω) |1, G〉+

∫
dω′b(ω, ω′) |ω′〉 , (3.15)

where the quantity |a(ω)|2 is normalized with respect to ω. From the eigen-

values equation we get the system

a(ω)ω0 +

∫
dω′b(ω, ω′)Ω

√
ρ(ω′) = a(ω)ω

a(ω)Ω
√
ρ(ω′) + b(ω, ω′)ω′ = b(ω, ω′)ω .

(3.16)

The continuous spectrum poses some di�culties, the solution of this set of equa-

tions involve a division by ω − ω′ which might be zero. This obstacle has been

circumvented by Fano in [68] with the introduction of an Ansatz already contain-

ing a delta-like singularity

b(ω, ω′) =

[
1

ω − ω′ + z(ω)δ(ω − ω′)
]
a(ω)Ω

√
ρ(ω′) , (3.17)
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where the term (ω − ω′)−1 should be taken as the principal part of the integral

and z(ω) is to be determined latter. The substitution in Eq. (3.16) yields

z(ω) =
C(ω)

Ω2ρ(ω)
, (3.18)

where

C(ω) = ω − ω0 − Ω2 P

∫
dω′

ρ(ω′)

ω − ω′ , (3.19)

and P
∫
stands for principal value. At this point we already have a(ω) and b(ω, ω′)

up to a normalization factor. Ensuring that |ψω〉 are normalized yields

|ψω〉 =

√
ρ(ω)Ω

(
|1, G〉+ P

∫
dω′
√
ρ(ω′)Ω

ω−ω′ |ω′〉
)

+ C(ω) |ω〉√
C(ω)2 + (πρ(ω)Ω2)2

.
(3.20)

We have implicitly assumed that the distribution support is not bounded, as it is

the case for Lorentzian and Gaussian. If this is not the case other solutions are

possible as we discuss later. The amplitude of probability to �nd the excitation

in the cavity mode can �nally be written

〈1, G| e−iHt/~ |1, G〉 = 〈1, G| e−iHt/~
∫
dω′a∗(ω′) |ψω′〉

=

∫
dω′|a(ω′)|2e−iω′t .

(3.21)

It can easily be shown that |a(ω)|2 is proportional to the transmission coef-

�cient in energy |t(ω)|2 (namely, |a(ω)|2 = Ω2ρ(ω)
∣∣∣ t(ω)
κ/2

∣∣∣2 for γ, κ → 0), so that

|t(ω)|2 corresponds to the Fourier transform of the occupation amplitude of the

cavity mode. As we have checked in Appendix A.4, this result is completely con-

sistent with the formalism of Laplace transform used in Section III in the absence

of external sources of loss.

This approach sheds new light on the transmission function studied in Section

III, which directly re�ects the overlap between the initial state |1, G〉 and the con-

tinuum of eigenstates |ψω〉 of the Hamiltonian. The two peaks characteristics of
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the strong coupling regime show that this initial state is a coherent superposition

of two wave packets, reminiscent of the polaritons obtained when ∆ = 0. As

the eigenstates of the Hamiltonian form an in�nite continuum, these wavepack-

ets always have a �nite width, responsible for the damping of Rabi oscillations.

Nevertheless, as it was shown above, increasing the collective coupling Ω may

drastically change the shape of this overlap and eventually, lead to the narrowing

of the peaks for distributions ρ(ω) decaying faster than ω−2, a phenomenon that

was de�ned above as cavity protection.

Distributions with a bounded support of width ∆ (rectangular for example),

provide an interesting limiting case where cavity protection is almost perfect. As

a matter of fact, if Ω > ∆, the Hamiltonian eigenstates not only consist in a con-

tinuum ψω lying within the support of the distribution, but also in two discrete

states |ψ+〉 and |ψ−〉, located around ω = ±Ω (at �rst order in ∆/Ω), corre-

sponding to the polaritons
∣∣ψ0

+

〉
and

∣∣ψ0
−
〉
when ∆ = 0. The initial state |1, G〉

mostly overlaps with these two eigenstates, making the problem similar to the

case of standard Rabi oscillations in the absence of inhomogeneous broadening.

In particular, if ρ(ω) is rectangular, the overlap of |1, G〉 with the discrete states

equals C = 1 − (1/8)(∆/Ω)2, giving rise to Rabi oscillations of in�nite duration

characterised by a contrast C.

To conclude this part, we emphasize that the total damping rate Γ = (κ+γ+

2πρ(Ω)Ω2)/2 evidenced in Section III shows contributions of essentially di�erent

nature. The �rst type, related to κ and γ, is due to the irreversible loss of

the excitation in the environment of the cavity or the emitters. The second

type, related to πρ(Ω)Ω2, is Hamiltonian and thus reversible in principle with

CRIB experiments. It is due to the interaction of the cavity with a continuum of

emitters, leading to progressive dephasing of Rabi oscillations.

3.4 Open system approach

The approach developed in Section IV gives an interpretation of the peaks broad-

ening within a Hamiltonian formalism. In this part, we adopt another point of

view based on quantum open systems. As it was exposed above and pictured

in �g.3.3, in the absence of inhomogeneous broadening, the symmetrical state



45

|S〉 is decoupled from the dark states. The excitation initially injected in the

cavity mode remains thus trapped in the `small system' consisting in the two

polaritons
∣∣ψ0

+

〉
and

∣∣ψ0
−
〉
. When inhomogeneous broadening is switched on, the

symmetrical state couples to the dark states, which appear as an environment

in which the excitation can decay. Broadening of the polaritonic peaks can be

attributed to the decoherence induced by the bath of dark states. This picture

is inforced by the computed expression for the width of the transmission peaks,

Γ = 2πΩ2ρ(Ω), which could be interpreted as a natural linewidth for polaritons

`dressed' by the environment of dark states. Nevertheless, the analogy should be

used with caution, as the coupling with the bath is not Markovian. This naive

picture has still the advantage to give an intuitive insight on cavity protection,

which is nothing but energetically decoupling the polaritons from the bath of

dark states, as initially suggested in [69].

  

Figure 3.3: (Color online). Schematic diagram of the open system approach
to inhomogeneous broadening. (a): ∆ = 0, the states |ψ±〉 are isolated from
the degenerate dark states |ω〉. (b): ∆ 6= 0, the states |ψ±〉 are coupled to
the |ω〉 states, which are non-degenerate in this case, with a coupling strength
proportional to ∆ .

To study the dynamics of the polaritonic relaxation, we have exactly computed

the evolution of the state of the system initially prepared in
∣∣ψ0

+

〉
, for di�erent

values of the collective coupling strength Ω, and for the three types of distribution,

keeping the same FWHM ∆ = 1MHz. We have plotted in �g.3.4 the probability

|
〈
ψ0

+

∣∣ e−iHeff t ∣∣ψ0
+

〉
|2 of �nding the excitation in the polariton, as a function of



463. STRONGCOUPLING ENSEMBLES OF EMITTERS TO A RESONATOR

5 10
0

0.2

0.4

0.6

0.8

1

Time (units of 1/∆)
5 10

0

0.2

0.4

0.6

0.8

1

Time (units of 1/∆)
5 10

0

0.2

0.4

0.6

0.8

1

Time (units of 1/∆)

|<
ψ
+
0
|U

e
f
f
(t
)
|ψ

+
0
>

|2 (c)(b)(a)

Figure 3.4: (Color online). Probability to recover an excitation initially stored in
the state |ψ+〉 after a time t. We took ∆ = 1 MHz, κ = γ = 0. (a) : Lorentzian ;
(b) : Gaussian ; (c) : Rectangular. Red Dashed line : Ω = 1 MHz; Green Dotted
line : Ω = 2 MHz; Blue line : Ω = 4 MHz.

time. For the sake of clarity, we have neglected again the losses κ = γ = 0

(realistic values are considered below). As it can be seen in the �gure, if the

distribution is Lorentzian, the excitation exponentially decays in the environment,

whatever the coupling Ω, on a typical timescale ∆−1. This is consistent with the

spectral study performed in Section III, where the width of the polaritonic peaks

does not depend on the coupling with the cavity. On the contrary, the e�ect of

cavity protection can be observed on the two other distributions. Damping is

strongly inhibited as soon as Ω > ∆ if the distribution is Gaussian, but is always

present whatever the coupling, which is the counterpart of the �nite linewidth

of the transmission peaks. Finally, in the case of a rectangular distribution, two

timescales are visible. The initial state
∣∣ψ0

+

〉
mostly overlaps with the discrete

state |ψ+〉 de�ned above, but also with the continuum of eigenstates |ψω〉. The

coherent superposition of the continuum of frequencies is damped on a short

timescale ∆−1, so that the probability quickly converges towards the quantity

|
〈
ψ0

+

∣∣ψ+〉|2, which also scales like (∆/Ω)2.
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3.5 Application to quantum memories

The previous Section establishes that for distributions allowing cavity protection,

increasing the collective coupling Ω dramatically increases the potential storage

time of one excitation in the polaritonic states, as energetic decoupling from the

dark states is more pronounced. In particular, this storage time becomes insen-

sitive to dephasing processes induced by inhomogeneous broadening. This allows

to treat an inhomogeneous distribution as an e�ective oscillator of ground state

|G〉 and �rst excited state |S〉, that bene�ts from the collective coupling Ω to the

cavity and whose relaxation properties are solely governed by individual emitter

properties γ. As a consequence, cavity protection opens the path to the imple-

mentation of long lived solid-state quantum memories, by exploiting ensembles

of microscopic degrees of freedom, whose coherence times are remarkable. In this

Section we use our modelling to estimate the performances of two such types of

quantum memories.

3.5.1 Quantum memory based on dispersive coupling

Here we evaluate the potential of a broad ensemble of emitters dressed by a

cavity mode for quantum information storage. The coupling should be dispersive

to freeze Rabi oscillations between the mode and the atoms. This system o�ers

an interesting situation where information has to be protected against two types

of losses : the cavity losses, which are more critical when the mode and the

distribution of emitters are on resonance, and the losses in the dark states, which

on the contrary, are weaker as the atoms-cavity detuning is smaller. The atoms-

cavity detuning is thus the cause of a tradeo�, and can be optimized with our

modelling, as we show below.

The protocol of the quantum memory is the following. First, the detuning δ

between the mode and the center of the distribution is slowly swept from −∞ to a

�nite positive value, thus adiabatically mapping the quantum state of the cavity

mode onto the emitter's ensemble : (α |0〉+ β |1〉) |G〉 → |0〉 (α |G〉+ β
∣∣ψ0

+(δ)
〉
).

We have introduced the dressed state
∣∣ψ0

+(δ)
〉

= cos(θ/2) |0, S〉+ i sin(θ/2) |1, G〉,
and the mixing angle cot(θ) = δ/(2Ω). The transfer of the excitation should be

realized on a timescale longer than the Rabi period, but shorter than ∆−1 so that
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no dephasing mechanism a�ects the process, this can be achieved under strong

coupling as in this case Ω � ∆ . The expected �delity F(t) of such a quantum

memory can be exactly computed with the present model; in particular, in the

case where a single photon state is stored (β = 1), we get the simple expression

F = |
〈
ψ0

+(δ)
∣∣ e−iHeff t ∣∣ψ0

+(δ)
〉
|2. We have plotted this quantity in �g.3.5. As

explained above, F must be optimized by properly choosing the detuning δ, which

should be low enough to maintain cavity protection, and high enough to reduce

the sensitivity to cavity losses, which typically scale like κ(Ω/δ)2. The maximal

detuning δM leading to an e�cient protective energy gap is Ω2/δM ∼ ∆[70]. This

condition induces an optimal reduction of the cavity losses by a factor of (Ω/∆)2.

The trade-o� in the detuning clearly appears in the inset of �g.3.5, where we

have plotted F, as a function of the detuning δ, after ten cavity lifetimes, for

di�erent values of the ratio Ω/∆. We have used standard parameters for circuit

QED technology [59]. As it appears in the �gure, a quantum memory based on a

Gaussian distribution of emitters of linewidth ∆ = 1 MHz, strongly coupled to a

cavity of width κ = 0.1 MHz with a strength Ω = 40 MHz would yield a typical

�delity of 90% after 100 µs, a remarkable storage time compared to the lifetime

of the cavity mode (10 µs) and the typical dephasing time of the ensemble (1 µs).

3.5.2 Quantum memory based on two emitters distribu-

tions

We focus now on a second type of quantum memory, based on two distributions

of emitters allowing cavity protection, respectively detuned by +δ and −δ with

respect to a cavity. Note that the case of a mode coupled to two such discrete

emitters of ground and excited states |gi〉 and |ei〉 is exactly solvable, the poles

of the transmission revealing the complex eigenfrequencies of the system [71].

In particular, when the emitters are on resonance with the mode (δ = 0), the

antisymmetrical state (|e1, g2〉−|g1, e2〉)/
√

2 is not coupled to the electromagnetic

�eld. This dark state is naturally protected against spontaneous emission in the

cavity, a property that can be used to store quantum information during a typical

timescale given by the atomic dephasing time. Note that for arti�cial atoms like

superconducting qubits or quantum dots this time can be quite short, which
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Figure 3.5: (Color online). Maximized �delity F of regaining the excitation
initially stored in the state |ψ+〉 after τ = 10 cavity lifetimes, as a function of
Ω/∆. We took ∆ = 1 MHz, κ = 0.1 MHz, γ = 10−4 MHz. Inset : same quantity
L as a function of detuning δ, after τ . Green dotted line : Ω = 40 MHz ; Black
solid line : Ω = 20 MHz; Blue dashed line : Ω = 10 MHz; Red dotted line : Ω = 5
MHz.

is a severe drawback for quantum computation on chip. Here we suggest an

experiment to prepare and exploit this dark state as a quantum memory, in the

case where the discrete emitters are replaced by broad assemblies of atoms. This

proposal allows to bene�t from the collective atoms-cavity coupling, while the

storage time now corresponds to the dephasing time of individual emitters, and

is thus potentially quite long.

First we have checked the validity of the e�ective model if two ensembles are

coupled to the cavity. We have plotted in �g.3.6a the exact transmission |t(ω)|2
of a cavity coupled to two Gaussian ensembles and veri�ed that the position of

the peaks are �tted by the eigenenergies computed in the discrete case. More-

over, we have superimposed the transmission resulting from the exact calculation

and from the discrete model, as it can be seen in �g.3.6b after focusing on the

central peak of the transmission pattern: the excellent agreement between the

two plots fully validates the e�ective approach. This central peak corresponds
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to the eigenstate |ψd〉 resulting from the coupling between the cavity mode and

the antisymmetric state |A〉 = (|G1, S2〉 − |S1, G2〉)/
√

2, its expression being

|ψd〉 = (iδ |1, G1, G2〉 + Ω
√

2 |0,A〉)/
√
δ2 + 2Ω2. When δ � Ω, the excitation is

mostly in the cavity, and mostly in the matter �eld in the opposite case. This

change of nature clearly appears in the narrowing of the peak while lowering δ,

as it can be seen in the �gure, and con�rmed by the expression for its linewidth

Γd = (δ2κ+2Ω2γ)/(δ2+2Ω2). Note that this modelling might explain some recent

experimental results [59], in which a superconducting cavity is strongly coupled

to a inhomogeneous ensemble of NV centers of spin 1. Because of the geomet-

rical strain, the transitions |mS = 0〉 → |mS = 1〉 and |mS = 0〉 → |mS = −1〉
are splitted, which can be modeled by two ensembles of emitters of di�erent cen-

tral frequencies. The visible presence of a narrow peak at the cavity frequency

explains qualitatively the e�ect discussed above.

Coming back to the general case of two distinct ensembles, the state |ψd〉 could
provide a new type of quantum memory as mentioned in the beginning of this

Section. The protocol consists in feeding the cavity mode with a single photon

while the ensembles are largely detuned, thus preparing the state |1, G1, G2〉,
then adiabatically transferring the excitation to |ψd〉 by slowly lowering δ. Yet

the ensembles cannot be brought to resonance with the mode as it would be the

case for two discrete emitters. As it appears in �g.3.6c, the e�ective model breaks

down when δ ∼ ∆. At this point indeed, the distributions of emitters start to

spectrally overlap with the central peak, leading to its broadening. This yields a

minimal linewidth Γd ∼ γ + (∆2/2Ω2)κ, allowing to typically reduce the cavity

losses by (Ω/∆)2. Here again the ratio (Ω/∆)2 appears as a major �gure of merit

for devices based on inhomogeneous ensembles strongly coupled to cavities.

3.6 Summary

We have shown that if an inhomogeneous distribution of emitters is strongly

coupled to a cavity, the ensemble can be treated as a single e�ective emitter

collectively coupled to the mode, whose relaxation is governed by single emit-

ter's properties, provided that their spectral distribution decreases faster than

1/ω2. This e�ect called "cavity protection" o�ers promising perspectives in the
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Figure 3.6: (Color online). (a) : Transmission of a cavity coupled to two Gaussian
distributions of emitters, each detuned by +δ and −δ from the cavity frequency,
δ is swept from 0 to 8 MHz. We took Ω = 1MHz, ∆ = 0.1MHz, κ = 0.5MHz,
γ = 10−4MHz. (b) : Focus on the central peak with δ = 0.5 MHz. Solid red line
: Gaussian pro�le. Blue dashed line : two emitters of homogeneous linewidth γ.
(c) : δ = 0.15 MHz.

framework of quantum information with solid state integrable devices, in partic-

ular regarding the implementation of long lived high �delity quantum memories.

These results are quite general, and can fruitfully be applied to numerous impor-

tant physical systems, ranging from semiconductor emitters coupled to optical

cavities, to ensembles of spins in circuit QED. That is precisely our goal in the

next Chapter, where we employ the model developed so far, with some minor

modi�cations, to analyze a set of experimental data. The experimental work,

performed by the Quantronics group of CEA Saclay, is one of the �rst to achieve

strong coupling between a superconducting resonator to a Nitrogen-Vacancy spin

ensemble.
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Chapter 4
Hybrid circuits

In this chapter we report on the theoretical analysis of some of the �rst proof-

of-concept experiments on hybrid quantum circuits. Hybrid circuits are devices

that combine di�erent physical systems in a way as to pro�t from complementary

strengths and minimize the weaknesses. They are not an exclusivity of quantum

circuits, in fact classical computers have been using hybrid circuits for a long time.

For instance, electronic circuits that allow for fast processing are put together with

magnetic hard-drives that provide high-volume information storage. It appears

that the manipulation of quantum information could bene�t from analogous ideas.

One of the goals of quantum hybrid circuits is to associate a macroscopic sys-

tem, such as a superconducting qubit, which exhibits good scalability, tunability,

and large coupling allowing for e�cient readout and logical gate implementa-

tion, but have relatively short coherence(10µ s) times with microscopic systems.

Microscopic systems (a trapped atom or spin for instance) on the other hand,

have long coherence times ( ms or even s) and can be identical to one another,

but operate slowly due to their small couplings, and have limited scalability. The

challenge, pursued at the moment by various groups, is to combine these di�erent

systems only inheriting the advantages of each one [58, 72]. Clearly many hy-

brids are possible. Apart from the di�erent superconducting qubits available, we

have a myriad of microscopical systems: from atoms trapped in optical lattices,

Rydberg atoms and ions to spins in atomic clouds or in solids or even mechanical

oscillators.

53
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In this chapter we model an experiment coupling a transmon SQ to a nitrogen-

vacancy(NV) spin ensemble mediated by the microwave coplanar resonator that

we described in Section 2.3. The resonator can be spectrally tuned to interact

with the spins or the qubit acting as a quantum bus. The NV centers provide a

very versatile platform to process quantum information as the electronic spin can

interact both with microwave and optical �elds possibly working as a light-matter

interface [73]. The electronic spin has a very long coherence time( ms) when iso-

lated even at room temperature [74]. In addition the nitrogen nuclear spin could

be exploited to obtain even longer coherence if one transfers quantum information

from electron spins by using hyper�ne interaction [75]. The microwave transition

in the NV center matches well the typical qubit transitions with a ground state

zero-�eld-splitting of 2.88 GHz.

In order to implement this hybrid circuit using the resonator bus, one has to

implement a strong coupling between the resonator and both the superconduct-

ing qubit and the spin ensemble. Several experiments have demonstrated strong

coupling between superconducting qubits and resonators [76, 20]. On the other

hand, similar experiments on spin ensembles have not been implemented until

recently and this was the �rst experimental challenge to be faced. Two indepen-

dent groups have pioneered the strong coupling between an ensemble of spins

and a resonator [59, 60]. Both placed a diamond crystal with spins from defects

on diamond lattice, the crystal was placed at the position of maximum magnetic

�eld of the resonator. The resonator was probed spectroscopically yielding a Rabi

splitting of several MHz, a clear signature of strong coupling.

After this breakthrough the next step towards implementing the hybrid circuit

using the spin ensemble as a memory was to store and retrieve microwave photons

in the spin ensemble. This has been achieved in [77] for a coherent state involving

500 photons. We discuss the modeling of this experiment in Section 4.2.

Having established the building blocks of the full hybrid circuit the next step

was to integrate them on the same sample. Experiments reported in [78] are a �rst

proof-of-concept of a hybrid circuit with spin-ensemble based quantum memory

for a superconducting qubit. In this experiment Kubo et al prepared arbitrary

superpositions of the qubit states that were stored into collective excitations of

the spin ensemble and retrieved back into the qubit. The quantum coherence of
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Figure 4.1: Schematic diagram showing how the building blocks of a hybrid
circuit. The qubit and the dipole transition on the NV center are detuned allowing
the resonator to interact selectively with either the qubit and the spin ensemble
(as the resonator is tunable in frequency). Switching o� the interaction is achieved
when a large detuning is imposed between resonator an each of the other elements.
SQ and spins couple only indirectly via the resonator acting as a quantum data
bus.

the process was demonstrated by performing quantum state tomography of the

qubit. We discuss the modeling of this experiment in Section 4.3.

These experiments take quantum circuits to a point where novel quantum

technologies can emerge, one such new possibility has been explored in [79]

where the same hybrid circuit was used to realize a new type of high-sensitivity

low-temperature electron-spin-resonance (ESR) spectrometer. This set of exper-

iments revealing the hyper�ne structure of the NV centers is modeled in Section

4.4.
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4.1 General setup and experimental techniques

In this section we present in more detail the properties of all the elements com-

posing the circuit sketched in Fig. 4.1. This circuit is experimentally realized as

shown in Fig. 4.2 and is roughly the same for the experiments in [77, 78, 79].

The main di�erence between [77] and [78, 79] is the addition of the transmon

qubit. The scheme in Fig. 4.2 is the full setup, i.e. the setup in [77] does not

contain the elements in the dashed box.

B CC

SQ
R

Figure 4.2: Sketch of the implementation of the transmon-NV hybrid circuit. The
spin ensemble S consists of NV centers in a diamond crystal. They are coupled
to the frequency-tunable waveguide resonator C which embeds the qubit Q. The
qubit state can be readout with another resonator R. Microwave pulses for spin
spectroscopy as well as for qubit readout are sent via an input port coupled both
to C and to R. The qubit and its readout resonator is enclosed in the dashed box.
The main di�erence between [78] and [77] is the addition of the transmon qubit,
i.e. the setup in [77] does not contain the dashed box. Adapted from [78].

4.1.1 NV centers

NV centers have recently been used and proposed for a number of applications

such as quantum computers, quantum cryptography and communication [80, 81],

vectorial magnetic sensors [81, 82] spin-photon entanglement, and coupling them

to a wide variety of interesting systems to achieve scalability [83, 84]. The NV
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center arises when a vacant lattice site has a nitrogen atom as one of its nearest-

neighbors in the diamond lattice. This point defect can be either the neutral

NV0 [85] or the negatively-charged NV− center (commonly referred to as the NV

center). The NV− has attracted more attention as it has a spin-one ground state

[86] with zero-�eld splitting and long spin-coherence time. It is composed of six

electrons, three electrons come from the dangling bonds connecting the vacant

site with the three nearest-neighbor C atoms, two come from the nitrogen-atom�s

dangling bond, and the other electron is captured from a donor. This point defect

has a rather complex level structure and there is still debate on topics such as the

ordering of the dark intermediate singlet states [87]. In this thesis we will model

experiments made with microwave irradiation of the NV centers, this will allow

us to restrict ourselves to the electronic ground state as the electronic transition

are in the optical range.

The use of spin resonance techniques has shown that the ground state is a

triplet [88, 86]. The ground state properties can be successfully described by a

molecular model for the six electrons [89, 90]. The four lowest energy molecular

orbitals are represented in Fig. 4.3 and if we �ll the molecular orbitals from lowest

to highest energy following Hund�s rules we �nd that the ground state has 2

unpaired electrons (these electrons originate the spin 1 observed experimentally).

The ground state spin triplet couples to the 14N nuclear spin I = 1 1 yielding the

hyper�ne coupling Hamiltonian 2


HS = DS2

z + E(S2
x − S2

y) + γNV ~B.~S

HSI = A‖SzIz + A⊥(SxIX + SyIy)

HI = PI2
z + γN ~B.~I .

(4.1)

P = −5MHz is the 14N quadrupole splitting and γNV ≡ gSµB = 2.8MHz G−1

(γN ≡ −gIµN ) is the gyromagnetic ratio for the NV center spin (14N nuclear spin)

. D = 2.88GHz is the electronic zero-�eld splitting [86], responsible for energy

splitting between the |ms = 0〉 and |ms = ±1〉 levels. The constant E is controlled

1In natural abundance, nitrogen is composed of 99.6% of 14N, with spin I = 1, and 0.4% of
15N, with spin I = 1/2. Throughout this thesis we shall neglect the presence of 15N.

2In this chapter we call Hamiltonian and operator which is in fact the standard Hamiltonian
divided by ~. This is convenient because all observable are frequencies.
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by local strain felt by the defect and can vary considerably between di�erent

sample preparation techniques and even from one defect to another in the same

sample. Typical values for E are in the range of MHz [91]. This local strain is one

of the reasons why ensembles of NV centers display inhomogeneous broadening.

A‖ = −2.1MHz and A⊥ = −2.7MHz are, respectively, the axial and transverse

hyper�ne constants [92, 93]. They cause a splitting of ANhs = −2.16MHz between

transition frequencies for di�erent Iz projections as indicated in Fig. 4.3.

In the presence of an applied magnetic �eld ~B, the |ms = ±1〉 levels split,

revealing resonances separated by 2gSµBB, where we suppose that the symmetry

axis of this particular NV center is parallel to the magnetic �eld. For ensembles,

there are four di�erent NV orientations(see Fig. 4.3) and clearly the angle be-

tween the magnetic �eld and each of the four orientations is, in general, not the

same. Provided that gSµB|B| � D , only the projection of the magnetic �eld on

the NV axis a�ects the transition frequencies. This happens because the terms

proportional Sx or Sy are spin �ips, but the spins are separated by a gap ~D
which inhibits any spin �ip as long as gSµB|B| � D. So in total there will be

24 transitions which are eight shifted copies of the triplet spectrum, cf Fig. 4.3

. For special magnetic �eld orientations (i.e. along the [100] crystal orientation),
~B.~S is the same for all four NV orientations, producing only six resonances.

The existence of optical transitions is a strong attribute of these point de-

fects. They allow, for instance, optical spin polarization and spin-dependent

�uorescence. These features translate into the possibility to access, initialize and

readout a spin qubit optically [90, 94].

The last electron forming the NV− center comes from nitrogen substitutional

[95], i.e. nitrogen that substituted a carbon atom in the diamond lattice. However

this defect has an electron spin which works as a spin bath inducing decoherence

[96] to the spins. Furthermore this limits the conversion rate from nitrogen to

NV centers in a diamond, at least with convention fabrication techniques, as less

than half of the nitrogen atoms that enter the lattice can capture an electron to

form a NV− center.
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Figure 4.3: (a) Ground state level hyper�ne structure of the NV center coupled to
its 14N spin under a small external �eld. Magnetic dipole transitions are shown
with double-headed arrows. The strain constant E is taken to be zero. (b)
Adapted from [78]. Two-dimensional plot of the transmission in energy through
a resonator coupled to an ensemble of NV centers. On the y-axis we have the
drive frequency, on the x-axis we have the �ux of magnetic �eld used to tune the
resonator (in this range the �ux is roughly proportional to the resonator bare
frequency). Color scale goes from −55 dB (green) to −30 dB (magenta). A
magnetic �eld of intensity BNV = 1.1mT (mistakenly report as BNV = 1.4mT
in [78]) is applied to the spins parallel to the [1, 1, 1] crystallographic axis. In
this case there are only two di�erent angles between the magnetic �eld and the
di�erent NV orientations, this originates 12 microwave transitions on the spins
(see text). Each two of the four anticrossings correspond to the one of two distinct
families of NV centers, being either along the [1, 1, 1] crystal direction parallel to
or along one of the three other possible <1,1,1> axes. The yellow and blue arrows
between the two �gures relate the level structure with the associated anticrossing.
Instead of a simple doublet as the one we found in Chapter 3 it is possible to
distinguish several peaks in each anticrossing: a clear indicative of the hyper�ne
coupling. (To �x: dashes on the �g)
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4.1.2 Transmon qubit readout

The qubit readout relies on the nonlinearity of the readout resonator R operated

in the so-called JBA (Josephson Bifurcation Ampli�er) mode. It behaves as a

sample-and-hold detector, i.e. the �rst pulse maps di�erent qubit states into

di�erent photonic states of the resonator that is then readout. It is based on the

dispersive version of the qubit-resonator interaction Hamiltonian 2.34

H = ~(ωres + χσz)b
†b+ ~Ωzσz , (4.2)

where χ = g2/δ is typically in the MHz range. This Hamiltonian is obtained when

the detuning δ between resonator and qubit is much larger than their coupling

g. The resonator is then shifted by an amount which is a function of the qubit

state. To measure the qubit state one needs to detect this frequency change

before the qubit relaxes by spontaneous emission. This can be done by sending

a microwave pulse close to the resonance frequency and measuring the phase of

the transmitted signal [19]. However, the noise imposed by the ampli�cation

apparatus limits the e�ciency of this method. A �rst step of ampli�cation can

be made on-chip using a non-linear resonator which owns its non-linearity also

to a Josephson junction [97, 98]. This non-linear resonator has two metastable

oscillation states, if pumped at a particular frequency. When the drive current

is increased the system becomes metastable with two possible dynamical states

with di�erent oscillation amplitudes, i.e. two possible photon populations. But

the qubit interaction can shift the resonator so that the bistability curves will

shift as a whole. We can then choose a driving power su�cient to switch the

resonator when the qubit is in one state but that is not su�cient when it is in the

other state. The dynamical states of the resonator will di�er both in amplitude

and phase depending on the qubit state. The switching is strongly hysteretic

and once a switching event has occurred one can decrease the drive power and

maintain while the state of the resonator is readout by a second pulse. This

latching property conserves the information about the qubit state acquired during

a small time interval in the resonator, so after the latching the measurement is

not a�ected by the qubit relaxation anymore. This switching is easily detected by

measuring the phase of the re�ected readout pulse. Repeating the same sequence
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then yields the resonator switching probability for a given readout pulse power.

This allows to reconstruct response curves which change from 0 to 1 in a narrow

power range close to bistability, see Fig. 4.4 .
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Figure 4.4: Readout resonator switching probability Psw as a function of readout
pulse power PR. Black solid line: qubit in thermal equilibrium. Olive solid
line: qubit prepared in |e〉. Red solid line: qubit prepared in |f〉, the second
excited state of the transmon. This third level is used in composite readout
pulses where the transmon is taken from |e〉 to |f〉 before readout to increase the
contrast. Dotted blue vertical line indicates the readout power used for simple
readout pulses, dotted brown vertical line indicates the readout power used for
the composite readout pulse method. Adapted from [78].

4.2 Storage and retrieval of a microwave �eld

In this Section we analyze the �rst storage and retrieval cycle of microwave pho-

tons between a NV-center spin ensemble and a superconducting resonator. The

experiment is well describe by the model of Chapter 3 where we showed that

to �rst approximation the interaction between the electromagnetic �eld in the

resonator and the spin ensemble involves only one collective variable, which be-

haves as a harmonic oscillator in the limit of low excitation energy [62]. When

two such coupled harmonic oscillators are put into resonance, they coherently

exchange energy with a period π/Ω where Ω is the collective coupling constant,
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i.e. a classical Rabi oscillation. This dynamics is observed by measuring the

amplitude of the microwave �eld leaking out of the resonator after its interac-

tion with the spins, which is found to oscillate as a function of the interaction

time. The large inhomogeneous broadening is the main limitation to the number

of energy exchange cycles that can be observed, thus the situation described in

Chapter 3 corresponds ideally to this system. From the theoretical point of view,

the biggest di�culty is to obtain quantitative agreement for a set of data covering

spectroscopic as well as di�erent time-domain measurements.

4.2.1 Transmission Spectroscopy

The experimental setup is the one described in Section 4.1. Additional details on

the diamond fabrication as well as the superconducting circuit can be found on

[78] .The magnetic �eld ~B (|B| = 1.7 mT)used to Zeeman shift the NV center

transitions is applied along the [1, 0, 0] crystal axis. This orientation is useful

because all the four NV center orientations make the same angle with ~B and, as

discussed in Section 4.1.1, we will have only two spin transition frequencies in

the electronic ground state(apart from hyper�ne transitions and inhomogeneous

broadening). This way a maximal number of spins do contribute to a large

collective coupling. On the other hand this can have a negative impact of the

observed linewidth as a small misalignment of ~B will yield di�erent shifts for each

NV direction.

In Chapter 3 we developed a single excitation theory while the experiment

discussed in this Section is realized with ∼ 500 excitations. Nevertheless as long

as we can faithfully describe the system as a set of coupled harmonic oscillators

(i.e. the number of excitations is small compared to N ∼ 1012) the dynamical

equations do not depend on the number of excitations. To see this consider that

we inject a coherent �eld of amplitude c̄in

ĉin(t) = e−iωt[〈cin〉+ ξ̂(t)] , (4.3)

where ξ̂(t) is responsible for the quantum �uctuations averaging to zero. Now if
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Figure 4.5: (a) Resonator transmission |t(ω, ωres)| as a function of the drive
frequency ω and of the �ux (in units of the superconducting �ux quantum
Φ0 = h/2e) to tune the resonator bare frequency ωres as described in Section
2.3.1. Two vacuum Rabi splittings are observed corresponding to the ω− and
ω+ spin transitions . (c) Transmission in energy for a �xed resonator frequency
close to resonance with ω−. Red line is experimental data, black line is theory
(rescaled in amplitude to �t the data). The spin density distribution found to
agree with the experiments is a convolution of a Gaussian (σ/2π = 5.12 MHz)
and a Lorentzian(γ/2π = 1.0 MHz) distributions. The collective coupling is
Ω/2π = 10.6 MHz and the spins-resonator detuning is 0.5 MHz .



64 4. HYBRID CIRCUITS

we insert this �eld in the set of input-output equations Eq. (3.3) we get

d 〈a(t)〉
dt

= − (κ/2 + iωres) 〈a(t)〉+
∑
k

gk 〈bk(t)〉 −
√
k/2 〈cin〉 ,

d 〈bk(t)〉
dt

= − (γ/2 + iωk) 〈bk(t)〉 − gk 〈a(t)〉 .
(4.4)

We can then see that this set of equations is formally identical to Eq. (A.1)

and we can thus use the result obtained in Chapter 3. The �rst experiment

modeled is a transmission spectroscopy Fig. 4.5. Quantitative predictions for

this and the other experiments require to know not only the overall linewidth but

also the detailed shape of the spins distribution ρ(ω). In particular Gaussian and

Lorentzian distributions yield very di�erent results. In NV centers ensembles, the

inhomogeneous linewidth is caused by dipolar interactions with neighboring spins,

either paramagnetic P1 centers that were not converted into NV centers during

the sample processing, or 13C nuclei which will be discussed in detail in Section

4.4.2. Neighboring NV centers do not contribute to the inhomogeneous linewidth

because at the temperature of our experiment they are almost always frozen in the

mS = 0 state. Spin ensembles inhomogeneously broadened by dipolar interactions

are expected to show a Lorentzian lineshape [54] with a cuto�; however we have

complications in the experiment such as hyper�ne coupling or misalignment of ~B.

As a result, we assume a phenomenological lineshape for our spin ensemble as a

convolution of a normalized Gaussian of standard deviation σ with a normalized

Lorentzian of HWHM γ. The resulting distribution is known as the Voigt pro�le

and is also normalized

ρ(ω′;σ, γ) =

∫ ∞
−∞

G(ω′′;σ)L(ω′ − ω′′; γ)dω′

=
1

σ
√

2π

γ

π

∫ ∞
−∞

eω
′′2/2σ2

(ω′ − ω′′)2 + γ2
dω′ .

(4.5)

An important property is that we can compute analytically the functionW (ω)

de�ned in 3.6:

W (ω;σ, γ, γ0) =
Ω2

σ
√

2π

γ

π

∫ ∫
eω
′′2/2σ2

(ω′ − ω′′)2 + γ2

dω′dω′′

ω − ω′ + iγ0

. (4.6)
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We take the limit γ0 → 0, the decay of a single spin can be neglected in the

time-scale < 1µs compared to the T1 > 1s expected for an NV spin

W (ω;σ, γ) = −i
√
π

2

Ω2

σ
exp

{
−
(
ω + iγ

σ
√

2

)2
}
erfc

(
−iω + iγ

σ
√

2

)
. (4.7)

The function that is pictured in the theory plots takes into account the well-known

NV center hyper�ne splitting due to 14N by adding up three identical distributions

ρ(ω) separated by 2.2 MHz [99]. This is conveniently done since W [ρ1 + ρ2] =

W [ρ1] + W [ρ2] for any two di�erent spin distributions ρ1,2. Using this formula

for W (ω) we can evaluate the functions ti necessary for the simulation of the

time-domain experiments and that gives directly the transmission as plotted in

Fig. 4.5 (b). The parameters are then optimized simultaneously for transmission

spectroscopy in Fig. 4.5 and time-domain experiments in Fig. 4.6 and Fig. 4.8.

4.2.2 Rabi oscillations

The �rst time-dependent experiment is the resonant microwave �eld exchange on

the resonator-spins. The resonant exchange is shown on Fig. 4.6 while the depen-

dence with the resonator-spins detuned is explored in Fig. 4.7. The experimental

sequence is sketched in Fig. 4.6 (a), �rst the resonator is populated at a time

before t = 0 while it is kept out of resonance ( ∆ω/2π = 30 MHz) by a microwave

drive. At time t = 0 the resonator is abruptly tuned to resonance with the spins

and they are left to interact for a time τ . When t = τ the resonator is once again

taken out of resonance and the �eld it contains is measured as it leaks to the

ampli�cation chain and detection. After the t = τ the only evolution of the �eld

is an exponential decay |a(t > τ)| = |a(τ)|exp[−(t − τ)/2Tcav]. Measuring the

amplitude of the exponentially damped microwave signal that leaks out of the

cavity therefore directly yields |a(τ)|. This sequence is repeated typically 5.105

times. The amplitude of the detected �eld in time t is plotted in 4.6 (b) as a

function of the interaction time τ . The quantity of interest |a(τ)| is extracted

by averaging A(τ, t) around A(τ, τ + 140ns). Such an average is show in 4.6 (c)

where we can clearly see the storage-retrieval cycles at a time scale tRabi 50 ns

compatible with the collective coupling extracted by the spectroscopy experiment



66 4. HYBRID CIRCUITS

40 A (mV)

200

150

100

50

4002000
t (ns)

τ 
(n

s)

t (ns)1

3002001000
τ (ns)

2ga b

U
nc

al
ib
ra
te
d

(a)

(b)

(c)

B

NV
τ

ω-

Figure 4.6: Rabi-like experiment. (a) Sketch of the pulse sequence. (b) The am-
plitude A(τ, t) of microwave pulses transmitted through the resonator is measured
by homodyne detection at room temperature after ampli�cation. (c) Normalized
amplitude a(τ) = ¯A(τ, τ + 140ns) evidencing the exchange of energy between
resonator and a collective mode of the spin ensemble. Red dots are experimental
data, blue is theory as explained in text. Adapted from [77].
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and in agreement with the full theoretical simulation. As a direct proof of the

in�uence of inhomogeneous broadening, the �eld amplitude decays to zero within

a hundred of ns, a time scale not compatible with the spins T1 s nor the cavity

damping Tcav 100 ns. This type of decay is precisely the one we found in Section

3.4, and it can be seen as a coupling to a bath of dark states which act as an

environment.
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Figure 4.7: Coherent �eld exchange between the resonator and the spins for
varying �ux pulse amplitude. Normalized amplitude aa(τ) = ¯A(τ, τ + 140ns)is
plotted as a function of resonator frequency tuned by the �ux ∆Φ. Left graph
is experimental data, right graph is theory. The white dashed line indicates the
resonance condition as plotted in Fig. 4.6(c) .

In Fig. 4.7 the Rabi-like exchange is performed also out of resonance. As

expected for two coupled oscillators. Out of resonance, the oscillations amplitude

is reduced and their frequency slightly increases. The asymmetry with respect

to the resonance frequency is caused by the nonlinear dependence of the bare

resonator frequency with the �ux and the fact that the resonator is always pumped

with a positive detuning at time t < 0, and it is well reproduced by the theory.

At around 65MHz we clearly see additional features not taken into account by

the theory here. These are mainly due to spins having 13C among their closest
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neighbors, known to shift the electron spin frequency by this amount.

An additional complication for the simulation is that the resonator-spin de-

tuning ∆ω during the microwave pulse is �nite. This means that instead of

exciting a pure cavity state we excite a dressed state composed of cavity plus

the superradiant spin state. To take this into account in the calculation, we

make the approximation that this initial state is a coherent superposition of the

excited resonator and excited superradiant spin mode. Indeed, introducing the

vector X(t) of coordinates
[
〈â(t)〉 , ...,

〈
b̂j(t)

〉
, ...
]
and de�ning xG ≡ (1, 0, ...)

and xS ≡ (0, g1, ..., gj, .., gN)/Ω, the initial state is written

x(t = 0) = cos(θ/2)xG + i sin(θ/2)xS , (4.8)

with mixing angle tan θ = 2Ω/∆ω. As in Appendix A this de�nition is useful

because dX/dt = −(i/~)HeffX and the formal solution is readily obtained as

X(t) = L−1[(s+ iHeff/~)−1X(0)] . (4.9)

The solution for the amplitude of the resonator is then proportional to

αRabi(τ) = cos(θ/2)L−1 [t1(s)] + i sin(θ/2)L−1 [t4(s)] . (4.10)

Both t1(s) = x†G(s + iHeff )
−1xG and t4(s) = x†G(s + iHeff )

−1xS have been eval-

uated in Section A.1 to be t1(−iω) = i/ [ω − ω0 + iκ/2−W (ω)] and t4(−iω) =

−it1(−iω)W (ω)/Ω. As we have already obtained W (ω) in Sexction A.2, com-

puting αRabi(τ) is thus achieved by numerically evaluating the inverse Laplace

transform of t1 and t4.

4.2.3 Ramsey fringes

The last experiment of this set is a Ramsey-like experiment that gives direct in-

formation on the phase coherence of the stored microwave. The Ramsey sequence

starts as before with a steady-state microwave �eld in the resonator which is kept

out of resonance. The resonator is then brought to resonance for a time τ = π/2Ω

to implement a π/2 resonant pulse transferring about half of the energy to the
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Figure 4.8: Ramsey-fringes-like experiment.(a) Sketch of the pulse sequence. (b)
The normalized microwave amplitude a(∆t) after the pulse sequence shown in
the inset is plotted. Red dots are experimental data, the black continuous line is
theory. The same parameters as on the previous simulations are used.

spin ensemble. The resonator is then detuned by ∆ω/2π = 30MHz by a �ux

pulse during a variable amount of time τ after which it is brought again to res-

onance for a second π/2 pulse and �nally detuned so we can infer the resonator

population at this stage.

The π/2 pulse corresponds to the transformation of the state xG into the

superposition xG−xS√
2

. The state of the system after the �rst π/2 pulse and the o�

resonant interaction of duration τ can be evaluated using Eq. (4.9). We de�ne

XG(t) (resp. XS(t)) as the vector of coordinates [〈a(t)〉 , ..., 〈bj(t)〉 , ...] at time t

with initial conditions xG (resp. xS). A second π/2 pulse is then applied before
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the amplitude αRF of the �eld in the resonator is measured :

αRF =
1√
2
x†G · Uπ/2(XG(t)−XS(t))

=
1

2
(x†G + x†S) · (XG(t)−XS(t))

=
1

2
L−1(t1(s)− t2(s) + t3(s)− t4(s)) ,

(4.11)

where Uπ/2 is the evolution caused by the second π/2 pulse. Also t2(s) = xS
† ·

(s+ iHeff )
−1 ·xS and t3(s) = xS

† · (s+ iHeff )
−1 ·xG are evaluated in Section A.1

to be t2(−iω) = −t1(−iω)W (ω)(s+ iω̃0)/Ω2 and t3 = −t4.
The beating between the e�ective spin oscillator and the resonator is observed

in Fig. 4.8 at the frequency ∆ω. The theory curve also agrees fairly well. We

can thus extract a single set of parameters σ/2π = 5.12 MHz, γ/2π = 1.0 MHz

and collective coupling Ω/2π = 10.6 MHz compatible with all three experiments.

4.3 Quantum memory implementation

In this Section we analyze the �rst experimental proof of concept of spin-ensemble

based quantum memory. The sample used corresponds to the full circuit sketched

in Fig. 4.2 . In addition to the elements of the sample of the previous Section, this

sample has a superconducting transmon qubit with separate channels that allow

for qubit state preparation and readout and a higher quality diamond crystal

with less inhomogeneous broadening. Previous experiments of storage using an

NV-spin ensemble were carried out in a `classical' regime since the resonator

and spin ensemble behaved as two coupled harmonic oscillators driven by large

microwave �elds. In the perspective of building a quantum memory, it is instead

necessary to perform experiments at the level of a single quantum of excitation.

The integration of the superconducting qubit on the same chip is what ultimately

allows the exploration of this new regime. The experiment relies on the fact that

we can transfer an arbitrary qubit state to the corresponding photonic state on the

resonator, i.e. we can transform (α |g〉+β |e〉)⊗|0〉res into |g〉⊗(α |0〉res+β |1〉res).
This SWAP gate could be performed by tuning ωres into resonance with ωqubit for

a duration π/2gqubit in the same way that the experiment described in the previous
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Figure 4.9: Comparison between resonant and adiabatic SWAP pulses. Left
panel: principle of a resonant SWAP. After excitation of the qubit in |e〉, B is put
suddenly into resonance with Q for an interaction time τ during which |e, 0〉 and
|g, 1〉 exchange periodically energy. Right panel: principle of an adiabatic SWAP
(aSWAP). The resonator is ramped through ωqubit in a time τ , and the states
of the resonator and qubit are swaped at the end of the pulse. For long enough
ramp durations (in our case τ & 300 ns), the qubit excited state population is
fully transferred into the bus. The pulse R represents the qubit readout that
in this case works as an indirect readout of the resonator state. Note that one
disadvantage of the aSWAP sequence is that a larger portion of the excitation
can escape through the resonator.
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Section transferred energy from the resonator to the spin ensemble. Instead Kubo

et al prefered to adiabatically sweep ωres across ωqubit as this sequence is more

immune to �ux noise in the SQUID loop used to tune the resonator frequency as

pictured in Fig. 4.9. In other words the �ux noise translates into a fast noise in the

resonator frequency which makes it di�cult to maintain the resonance condition

to within a few KHz as it is necessary to perform the resonant SWAP pulse. The

adiabatic SWAP (aSWAP ) achieves nevertheless the same quantum operation

as the resonant SWAP except for an irrelevant dynamical phase. This way one

can populate the resonator with single microwave photons and then proceed to

store and retrieve this single excitation in the spins. As the interaction between

qubit and spins is mediated by the resonator, we call it `bus', shortened to B

in the �gures. Additionally the qubit works as a high e�ciency detector for the

resonator state. This can be done because, as discussed in Section 4.1.2, the qubit

state can be read out with high e�ciency and the aSWAP pulse can be used to

imprint the resonator state on the qubit.

The diamond sample consists of roughly the same density of NV defects as the

one used in [77], of which 1012 are expected to couple to the resonator magnetic

�eld. A static magnetic �eld is also used to lift the degeneracy between the

mS = ±1 states. This time, however, the direction of ~B is parallel to the [1, 1, 1]

crystal axis. Two groups of NVs thus experience di�erent Zeeman shifts as this

term is sensitive only to the projection of B along the N − V axis. We denoted

I the group along [1, 1, 1] and III those along either of the three other 〈1, 1, 1〉
axes as they are 3 times more numerous. As already shown in Fig. 4.3 this

results in a total of 12 di�erent transition frequencies and we group them in sets

of three transitions separated by 2.2 MHz corresponding to the three 14N nuclear

spin projections denoted ω±I,±III . The advantage of this choice is that the group

of spins along the [1, 1, 1] direction do not su�er from additional inhomogeneous

broadening caused by misalignment. This is because a small misalignment will

generate the same shift for any spin in this direction.

The simulations in this Section follow the same scheme of the previous one.

The di�erences are restricted to the fact that the phenomenological Gaussian

convolution is no longer necessary and the spin densities can be taken to be

Lorentzians and that here we are really dealing with single excitation, but as we
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showed this has no large impact on the modeling.

4.3.1 Single photon storage

Instead of directly populating the resonator with a coherent �eld as in the previous

experiment, this sequence starts with the preparation of the qubit in the state

|e〉 by a π pulse that inverts the qubit. A �rst aSWAP converts |e〉 into the bus

Fock state |1〉res; B is brought into or near to resonance with the spin ensemble

for a duration τ ; the resulting B state is then transferred back into the qubit,

which is �nally read-out. Fig. 4.10 (b) shows the resulting curve Pe(τ) when

the bus is brought into resonance either with ω−III or ω−I . An oscillation in Pe
is observed, revealing a storage in the spin ensemble of the single quantum of

excitation initially in the qubit at τs,III = 65 ns or τs,I = 97 ns, and a retrieval

back into the qubit at τr,III = 116 ns or τr,I = 146 ns. The �delity of this

storage-retrieval process, de�ned as Pe(τr)/Pe(0), is 0.14 for group III and 0.07

for group I. These relatively low values are not due to a short spin dephasing

time, but rather to an interference e�ect caused by the HF structure of NV

centers, as evidenced by the non-exponential damping observed in Pe(τ). The

higher quality of the sample and the higher detection e�ciency contribute to a

very clean experiment that agrees to a high level of precision with the theory

curves. The simulation takes into account the HF structure, with the linewidth

of the three HF peaks as the adjustable parameter. A linewidth of 1.6 MHz is

in this way determined for the spins in group I, and of 2.4 MHz for group III,

this larger value being likely due to a residual misalignment of BNV from the

[1, 1, 1] crystalline axis causing each of the three < 1, 1, 1 > N − V orientations

non-collinear with the �eld to experience slightly di�erent Zeeman shifts. A

misalignment of 0.02 rad would be enough to cause a broadening such as we

observe. We also note that the best �t is achieved for the splitting of 2.3 MHz

between the three peaks of the HF structure which is slightly larger than the

value reported in most articles (2.18 MHz). We cannot, however, determine

precisely whether this di�erence actually re�ects a change in the HF interaction

parameters of the NV center at low temperature. We �nd that ΩI/2π = 2.9 MHz

and ΩIII/2π = 3.8 MHz �t best our data, the di�erence in the coupling constants



74 4. HYBRID CIRCUITS

600400200
Interaction time,τ (ns)

Φ
/Φ

0

0.38

0.34

0.32

0.4

0.2

6004002000
Interaction time,τ (ns)

0.4

0.2

τs,III

τs,I

τr,III

τr,I

P
e

ω-I

ω-III

π

0.200.05 Pe

Q

R

B

NV
τ

ωB(Φ)

aSWAP

(a)

(b)
(c)

ω+I

ω+III

ω-I

ω-III

600400200
Interaction time,τ (ns)

(d)

Figure 4.10: Storage and retrieval of a single quantum of excitation from the
qubit to the spin ensemble. (a) Experimental sequence showing the microwave
pulses used for exciting the qubit in |e〉 (red) and for reading it out (blue), as
well as transition frequencies of the quantum bus (orange), qubit (red), and spins
(magenta). (b) Experimental (red dots) and theoretical (black line) probability
Pe(τ) for ωres tuned to ω−III (top graph) or ω−I (bottom graph), showing the
storage and retrieval times τs and τr. (c) Two-dimensional plot of Pe versus
interaction time τ and �ux pulse height Φ, showing resonance with the four spin
groups. Chevron-like patterns are observed, showing a faster oscillation with
reduced amplitude when ωB is detuned from the spin resonance. Note that the
di�erence between the ω− and ω+ patterns in the same NV group is simply caused
by the non-linear dependence of ωres on the �ux Φ. (d) Simulation of Pe versus
interaction time τ and �ux pulse height reproducing all the main features.
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can be explained by the larger number of type III spins and the fact that the

magnetic �eld lines of the resonator do not make the same angle with the I and

III N-V axis. We also note that in both curves shown in Fig. 4.10 (b) Pe(τ)

tends towards 0.08 at long times which correspond to a thermal population of

temperature ∼ 50 mK.

4.3.2 Ramsey-fringes
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Figure 4.11: Ramsey-fringes-like experiment. The probability of �nding the ex-
cited qubit used to detect the resonator state is plotted as a function the time τ
between the π/2 pulses. Red dots are experimental data, the black continuous
line is theory. The same parameters as on the previous simulations are used.

A single-photon Ramsey-fringes-like is performed to evaluate the quantum

coherence of the stored in the ensemble, Fig. 4.11. A one photon Fock state

is prepared in the same way as the Rabi-like experiment, after that the bus is

tuned to ω−I for a duration τπ/2 = τs,−I/2, ωres is then suddenly detuned by
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∆ω/2π = 38 MHz for a time τ . At this point, the joint bus-spin ensemble

state is an entangled state
(
|1〉res |G〉−I + eiϕ |0〉res |S〉−I

)
/
√

2 with a phase ϕ =

∆ωτ . A second τπ/2 pulse converts the phase ϕ into population of |1〉res |G〉−I .
This population is �nally transferred to the qubit, and read-out. Oscillations at

frequency ∆ω are observed in Pe(τ) as seen in Fig. 4.11, con�rming that the

resonator and the spins are entangled after the �rst π/2 pulse. These oscillations

are modulated by a beating pattern, with an overall damping of the oscillations

envelope in ∼ 200 ns. Quite remarkably, this beating observed in the qubit

excited state probability is directly caused by the HF structure of NV centers,

as proved by the Fourier transform of Pe(τ) which shows three HF lines. The

full calculation of the system dynamics quantitatively captures both the beatings

and the oscillations damping, which is thus completely explained by the 1.6 MHz

inhomogeneous linewidth of each HF line taken into account in the theory. In this

sample the hyper�ne structure is as important as the inhomogeneous broadening

in limiting the storage time of quantum information in the NV centers ensemble.

Note that unlike the inhomogeneous broadening, the hyper�ne coupling to the

nuclear spin of 14N could be turned into a useful resource if quantum information

was transferred from the electron spin to the nuclear spin degree of freedom,

which has a much narrower linewidth. Finally refocusing techniques borrowed

from quantum memories in the optical domain [100] should increase the storage

time by two orders of magnitude.

4.4 Electron spin resonance spectroscopy

One of the goals of the development of hybrid circuits is to explore new phenomena

that could eventually span novel quantum technologies. An example of such a

novel technology is a high sensitivity electron spin (ESR) spectroscopy [101] that

we describe in this Section. The sample is the same used in the experiment

of the previous Section and the novelty consists in pumping directly the spins

and measuring the signal with the superconducting qubit that acts as a single-

microwave-photon detector, resulting in an enhanced sensitivity. With this setup

Kubo et al measured the NV center absorption spectrum at 30 mK with no

more than 15 spins excited at each time. The use of superconducting quantum
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electronics in high sensitivity ESR spectroscopy allows to boost the sensitivity

lost when measuring spins at millikelvin temperatures. These measurements have

to be restricted to low powers to avoid saturation as the spins take a long time

to relax. High Q resonators with cryogenic low noise ampli�ers have been used

in [102]. The hybrid circuit allows to go one step further and use the qubit as an

on-chip single microwave photon detector.
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Figure 4.12: (a) Experimental pulse sequence used for qubit-detected ESR: (1)
The spins are �rst weakly excited by a microwave pulse with a frequency ωp; (2)
the resulting spin excitation is transferred to the cavity C by a fast �ux pulse
which brings ωres in resonance with ωK (K = +I,+III) for a swap time τs,K , and
then to the qubit by an adiabatic swap (aSWAP ). (3) The qubit excited state
probability Pe is �nally measured. (b) Measured (open circles) and calculated
(solid line) Pe(ωp) for spin ensemble +III (left) and +I (right). The spin density
ρ(ω) used in the calculation is shown as a dashed line.

The experimental sequence starts with the injection of a microwave �eld at

the frequency ωp, this pulse is injected via the resonator that is kept detuned from
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spins and qubit at this state. The fact that the resonator is detuned with respect

to the injected �eld means that this �eld is attenuated and as the attenuation

factor is constant in the region around the probed spin resonance this factor only

renormalizes the injected power. In order to measure the absorption we transfer

the excitation of the spins to the resonator, this is accomplished as the resonator

is tuned into resonance with the spin transition being studied for a time τS de�ned

in Fig. 4.10. This time is chosen to give a maximal transfer of energy and it is

reminiscent of a resonant π pulse. The resonator then is adiabatically sweept

trough the qubit anticrossing in a way as to transfer the absorption signal to the

qubit which can be readout. Repeating this experimental sequence yields the

probability Pe to �nd the qubit in its excited state. Provided the average number

of microwave photons emitted by the spins into the resonator stays lower than

1 to avoid saturating the qubit, the resulting excited state probability Pe(ωp)

is expected to reproduce the spin ensemble absorption spectrum. Experimental

results of Fig. 4.12 indeed display the characteristic HF structure of NV centers

consisting in three peaks separated by 2.2 MHz for both spin ensembles +I and

+III.

The sensitivity of such an ESR spectrometer is set by the e�ciency at which

signal photons can be transferred from the spins to the resonator, then to the

qubit, and by the �delity with which the qubit state can be measured.

The qubit state is detected in a single-shot with a �delity of ' 0.7 at the end

of an experimental sequence that lasts typically 50µs, yielding a 1% precision on

the probability Pe in one second. The transfer of one microwave photon from

the cavity to the qubit is performed with an e�ciency of the order of unity (in

our experiment it is around 0.7 limited by losses in the cavity and qubit), so the

limiting factor is the e�ciency of the transfer of the spin ensemble excitation to

the cavity during their resonant interaction. At �rst sight one might think that

since the spin ensemble and cavity are in the strong coupling limit, one excitation

of the spin ensemble should also be converted into a microwave photon with an

e�ciency of the order of 1, similar to what happened in the coherent oscillations

shown in Fig. 4.11. This reasoning is not correct here because the collective spin

mode excited by the spectroscopy pulse does not necessarily match perfectly the

superradiant mode. Indeed, although the spatial matching of the two modes is
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excellent since the spectroscopy pulse is applied through the cavity, this is not

the case for spectral matching: only spins having a resonance frequency within

the spectroscopy pulse bandwidth δ/2π = 150 kHz around ωp contribute, whereas

all spins within the hyper�ne(HF) line (total width ∆/2π ∼ 5 MHz) contribute

to the superradiant mode. As a result, one expects an overlap of order
√
δ/∆,

implying that the transfer e�ciency is limited to about δ/∆ ≈ 1/20. We now

make this argument rigorous.

4.4.1 Modeling

To evaluate the resonator population after the interaction with the spins we need

to calculate the probability that the excitation created at t = 0 in the spins is

transferred to the cavity after a time t, this probability being the square modulus

of 〈0| a(t)b†ωp |0〉. The spins excitation is created by a microwave pulse of central

frequency ωp with a pulse envelope in frequency described by αωp(ω) = α(ω−ωp),
and a typical envelope is a Lorentzian function with FWHM δ. We can de�ne an

operator b†ωp that describes the excitation induced by this pulse as

b†ωp =
1√∑

j

|αωp(ωj)|2g2
j

∑
k

αωp(ωk)gkb
†
k , (4.12)

which comes simply from the standard atom-�eld interaction for a classical light

source such as the one used in the experiment. Once more it is convenient to

introduce the vector X(t) of coordinates
[〈
a(t)a†(0)

〉
, ...,

〈
bj(t)a

†(0)
〉
, ...
]
and

use the formal solution of dX/dt = −(i/~)HeffX to write

〈0| a(t)b†ωp |0〉 = xG
† ·X(t) = L−1

[
tωp(s)

]
, (4.13)
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with xG = (1, 0, 0, ...). The initial condition X(0) is the one produced by b†ωp
given in Eq.4.12, thus

tωp(−iω) =

∑
k αωp(ωk)gk√∑
j |αωp(ωj)|2g2

j

[(s+ iHeff )
−1]0,k

=

∑
k αωp(ωk)gk√∑
j |αωp(ωj)|2g2

j

[
gk t1(−iω)

iγ0 + (ω − ωp)

]

=
t1(−iω)

iγ0 + (ω − ωp)

∑
k αωp(ωk)g

2
k√∑

j |αωp(ωj)|2g2
j

,

(4.14)

where t1(−iω) = i/ [ω − ω0 + iκ/2−W (ω)] withW (ω) =
∑

j g
2
j/ [ω − ωj + iγ0/2].

Note that we evaluated tωp(s) for s = −iω. This is su�cient to perform the

Laplace transform inversion as there are no singularities in the imaginary axis of

tωp . Since the spin density ρ(ω) is de�ned as, then ρ(ω) =
∑

j

g2
j

Ω2
K
δ(ω − ωj)

tωp =
ΩK t1(−iω)

iγ0 + (ω − ωp)
(α ∗ ρ)(ωp)√
(|α|2 ∗ ρ)(ωp)

. (4.15)

The spectral width of the microwave pulse is, in our case, much smaller than

any scale that characterizes our distribution ρ(ω). This allows the rewriting of

the convolution above as

(α ∗ ρ)(ωp)√
(|α|2 ∗ ρ)(ωp)

= A
√
ρ(ωp) , (4.16)

where the constant A =
∫
α(ω)dω√∫
|α(ω)|2dω

is purely characterized by the pulse envelope

with no dependence on ωp, yielding for example A =
√
δ
√
π/2 for a Lorentzian

envelope. This means that if we consider that the spins are distributed at a typical

range ∆ the equation above gives a rigorous justi�cation of the rule of thumb

that says that the e�ciency of the spins-resonator transfer is given by the overlap√
δ/∆. Additionally this shows that the density of emitters in the frequency ωp

can be directly measured if we have access to the population in the resonator.

To generate the theoretical curve in Fig. 4.12, we perform a numerical inversion

of the Laplace transform for each ωp and take | 〈0| a(t)b†ωp |0〉 |2 at t = τS,III or
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t = τS,I .

Note that the parameters needed to compute the theoretical curve were al-

ready determined on the experiment described in Section 4.3. It is remarkable

that a quantitative agreement shown in Fig. 4.12 is obtained. From this calcu-

lation, we deduce that the average excitation of the spin ensemble at resonance

in the data shown in Fig. 4.12 is of the order of 15, in agreement with the qual-

itative argument presented above. In the present state of the experiment, the

qubit-based ESR spectrometer therefore measures the spectrum of an ensemble

of 1011 NV centers at an excitation level of order 15µB, in an one minute inte-

gration time. We also note that our calculation reproduces a puzzling feature of

the data that was not discussed yet: the middle peak of the Pe(ωp) curve has a

lower amplitude than the two other peaks, both for the +I and the +III curves

as seen in Fig. 4.12, although the spin density ρ(ω) is clearly expected to show a

maximum in the central peak. Our ESR protocol thus appears to slightly distort

the absorption spectrum. This phenomenon originates from the ωp dependence

of the energy transfer e�ciency from the spins into the cavity, caused by the fact

that ΩK ≈ ∆ in our sample. It could be corrected in future experiments either

by increasing ΩK or by transferring the spin excitation to the cavity with an

adiabatic passage.

Note, however, that a quantitative agreement could only be obtained after

the inclusion of additional ESR frequencies in the distribution ρ(ω) caused by

the hyper�ne interaction of the NV center with neighboring 13C nuclei with the

1.1% natural abundance as expected. Fig. 4.13 compares the simulation with

and without these additional transitions at a slightly higher power injected on

the spins. It is remarkable that the experiment is sensible to the point of detecting

such a small e�ect. These transition could be taken into account because they

were carefully measured in the literature. In the next section we review a bit

about the physics behind this e�ect.

4.4.2 Isotopic impurities in NV centers

So far we neglected the nuclear spin of the carbon atoms that form the diamond

crystal. This is because the most abundant carbon isotope is the 12C which in
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Figure 4.13: Experimental data for ESR spectroscopy at larger power (red circles).
At this power the di�erences between the simulation taking into account the 13C
additional ESR frequencies (black solid line) and the simulation without these
transitions (green doted line) are clear. Note that in the experiment the central
oscillations go bellow the point on the sides of the spectral window, an e�ect
that could never be reproduced without the ESR lines shifted by the hyper�ne
interaction with 13C spins.

fact does posses zero total nuclear spin. Nevertheless, if the crystal is fabricated

with carbon which is not isotopically puri�ed there will be 1.1% of 13C atoms.

As this isotope posses a nuclear spin I(C) = 1/2, when it lies on a neighboring

lattice site of the NV defect, the spin Hamiltonian Eq. (4.1) will gain additional

terms

HC = γC ~B.~I
(C) + ~S.AC .~I

(C) . (4.17)
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Note that for each position that the 13C can occupy we have a di�erent tensor

AC . The equation above can be simpli�ed with a secular approximation in which

we neglect Sx and Sy terms, which can be justi�ed because these operators are

related to an unlikely spin-�ip(as long as the elements of AC are small compared

to D = 2.88GHz). This way we can replace the tensor AC by a vector ~A and

Eq. (4.17) becomes

HC = γC ~B.~I
(C) + Sz ~AC .~I

(C) . (4.18)

To understand the e�ects of this coupling let us study the operator HC for a �xed
14N nuclear-spin projection (the results are unchanged if we consider another

projection).

In the basis
{∣∣∣mS = 0,m

(C)
I = 1

2

〉
,
∣∣0,−1

2

〉
,
∣∣−1, 1

2

〉
,
∣∣−1,−1

2

〉
,
∣∣1, 1

2

〉
,
∣∣1,−1

2

〉}
,

HC is given by

H =



γcB

2
0 0 0 0 0

0 −γcB
2

0 0 0 0

0 0 E− −
Az − γcB

2
−1

2
(Ax − iAy) 0 0

0 0 −1

2
(Ax + iAy) E− +

Az − γcB
2

0 0

0 0 0 0 E+ +
Az − γcB

2

1

2
(Ax − iAy)

0 0 0 0
1

2
(Ax + iAy) E+ −

Az − γcB
2



,

where E± = D±γNVB. The diagonalization of each of the 2×2 blocks can be car-

ried with ease if we notice that each 2×2 matrix is identical to the one of a spin 1/2

placed in a magnetic �eld. For instance in the subspace {
∣∣mS = −1,mC = ±1

2

〉
}

the matrix is

V{−1,± 1
2
} = E− − σz

Az − γcB
2

− σx
Ax
2
− σy

Ay
2
. (4.19)
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The �ctitious �eld has a projection in the plane xy with an intensity pro-

portional to A⊥z =
√
A2
x + A2

y and from this simple analogy we see that if

|Az − γcB| � A⊥z the �eld is almost parallel to the z axis and the eigenstates

should not change from the uncoupled case. If a spin half was placed in a �eld

B ‖ ẑ, the hamiltonian in the basis of eigenstate of σz will be diagonal and we

see that the two eigenvalues are proportional to ±B. But the ẑ direction is no

di�erent from any other so from this simple argument we can get the eigenvalues

for V{−1,± 1
2
} as E1 = E− −

√
A2
⊥z + (Az − γCB)2 ,

E2 = E− +
√
A2
⊥z + (Az − γCB)2 .

(4.20)

We could obtain the eigenvectors if we noted that, in analogy with the �eld in the

ẑ direction, the eigenstates have Bloch vectors parallel to the �ctitious �eld (for

details see Complement BIV of [103] or Sec. 3.4 of [3]). For a high �eld B ≈ 500

G we can get Ax = γcB and thus the eigenstates will mix equally |mC = 1〉 and
|mC = −1〉 yielding new allowed transitions [104]. We will be rather constrained

to much smaller �elds and we will be on the situation where the eigenstates are

unaltered. In our case, the 13C nuclear-spin projection is identical regardless of

the NV center electronic spin and only two nuclear-spin conserving transitions

can be observed in the subspace {
∣∣mS = −1,mC = ±1

2

〉
}. By considering all the

14N nuclear-spin projections and also the transitions involving mS = +1 we have

a total of 12 transitions for each family of NV centers (defects which have the

same angle between the NV axis and the external magnetic �eld).

We now study the values of hyper�ne splitting induced by nearby 13C nuclear

spins for a low magnetic �eld magnitude (B < 20 G). As the gyromagnetic ratio

for γC = 1.07 KHz G−1 is small the nuclear Zeeman will be small compared to

| ~A| and we can write the splitting between transition frequencies associated with

di�erent 13C nuclear-spin projection as

AChs = ±
√
A2
⊥z + A2

z

(
1 +

γcB

2
√
A2
⊥z + A2

z

)
≈ ±

√
A2
⊥z + A2

z .

(4.21)
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The second line of Eq. (4.21) is justi�ed when AChs is in the MHz range while

γcB < 20 Khz. This simpli�es the analysis as AChs does not depend on the angle

between the external magnetic �eld and the 13C nuclear spin. The lattice sites of

the diamond lattice around an NV defect are depicted and labeled in Fig. 4.14.

Experiments performed measuring Electron-Spin-Resonance signals from single

defects have identi�ed a range of discrete values for AChs which is reminiscent of

the discrete positions that the C atoms can occupy on the lattice. They agree

with ab initio calculations in a way that is possible to identity the lattice site

associated with a given AChs, this data is displayed in Table 4.1. Each of these

lattice sites is occupied with probability 1.1% by a 13C nuclear spin. So if we

make a cuto� at AChs = 1MHz, we can consider only the �rst 36 nearest sites

which means that around (1 − ε)36 = 67% of the NV centers will have no shift

due to 13C, 36ε.(1 − ε)35 = 27% will display a shift associated with a single 13C

and less than 6% will interact strongly with more than one 13C.

Lattice Site Distance to site() Number of sites Ahfs(MHz) Ahfs(MHz)

Measured Theory

A 3.89 6 13.72(3) 14.8
B 3.9 3 12.78(1) 13.9
C 2.52 3 -8.92(3) -7.5
D 2.50 6 -6.52(4) -5.7
E,F 2.93, 2.96 6,3 4.2(1) 4.6, 4.7
G,H 5.05, 5.05 6,3 2.4(3) 2.6, 2.3

Table 4.1: Observed hyper�ne splittings Ahfs at low magnetic �eld
(< 50G) from [105]. Each hyper�ne shift is an average value for
what has been observed in a set of 3 to 5 single NV centers which
give approximately the same value for Ahfs. The number in paren-
thesis give the deviation found within a given set. Identi�cation of
the lattice site in which we have a 13C is possible because of the close
agreement with theoretical prediction from ab initio model using
supercell density functional calculations [105]. Not shown on the
table is the Ahfs associated with 13C as one of the �rst-neighbors
(lattice site `o'), in this case we have a large shift Ahfs = 130 MHz
[106, 93] .
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Figure 4.14: Reproduced from [105] with author's permission. Two views of the
geometry of the NV defect, with lattice sites for proximal 13C nuclear spins labeled
as in table 4.1. The nitrogen is labeled `N', whereas sites labelled �0� are the
nearest neighbors to the vacancy (Ahfs = 130 MHz).

4.5 Summary

In conclusion the experiments we modeled bring the �rst proof of concept of

a spin-based quantum memory for superconducting qubits and one of the �rst

technologies derived from hybrid circuits. We have successfully explained all the

experimental data and shown that the experiments are sensible to the point where

a quantitative agreement can only be obtained if we include hyper�ne interaction

with 1.1% natural abundance 13C.



Chapter 5
Proposal for fast readout in a Josephson

qubit

A fast high-�delity readout is an essential requirement for quantum information

processing, in particular for implementations like measurement-based quantum

computing [17, 16]. A high readout �delity can be a valuable resource to deal

with moderate gate �delities if one is to implement quantum error correction codes

[107]. Fault-tolerant quantum computing requires readout �delities (de�ned as

F = 1−ε where ε is the probability of determining the state incorrectly) of 99.9%

to avoid a large increase in the number of physical qubits per logical qubit [108].

For any physical implementation of a qubit readout, �delity is usually limited by

the time available to integrate a detector's signal, to give the best possible signal-

to-noise ratio, before the qubit decays. Besides, fast acquisition is important if we

want to exploit the information after the measurement as in a state preparation

protocol or in a closed feedback loop. In this framework, the ability to perform

fast single shot readout of a quantum bit is highly desirable.

In superconducting qubits, the highest one shot �delity up to now was ob-

tained by switching quantum measurements using escape process [109] and bifur-

cation ampli�er[97, 98]. In fact, a high e�ciency bifurcation ampli�er was used

to readout the qubit in the experiments we analyzed in Section 4.4 where the

apparatus demonstrated unprecedent spin-spectroscopy sensitivity. The intrin-

sic drawback of these methods is their destructiveness. An alternative readout

87
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consists in coupling dispersively a qubit to a resonator [110]. The qubit acts as

a state-dependent refractive index that shifts the resonator frequency and the

measurement of this shift is performed by probing the resonator with an external

microwave. The QND character is preserved as long as one remains in the dis-

persive regime, limiting the photon population n̄ of the resonator below a critical

value[111], so as the probe power. Large averaging and low temperature ampli-

�ers have thus to be used to reach high �delity. Thanks to recent advances in

parametric ampli�cation using Josephson junction circuits [45, 112, 113, 114, 115],

single shot readout has been demonstrated. However this measurement scheme

still requires very small resonator linewidth, lowering the circuit bandwidth and

imposing several hundred nanoseconds measurement time. Moreover, even with

parametric ampli�er improvements, the photon population inside the resonator

still remains large (n̄ ≥ 10) [114, 115] and may induce additional qubit dephasing

or relaxation. Consequently, further improvements need to be realized to reach

fast and high �delity measurements.

In this Chapter, we propose an original method which is able to realize fast

QND measurements of a qubit with large resonator linewidth and measurement

bandwidth, while preserving high �delity. The protocol is based on the use of a

diamond-shape arti�cial atom and the system consists in an inductive dc-SQUID

coupled to a coplanar resonator described in Section 5.1. In Section 5.2 we evalu-

ate the performance of this device taking into account experimental ampli�cation

noise and realistic circuit parameters.

5.1 Coupled qubits in the dc-SQUID

In our method we shall consider the symmetrical dc-Squid depicted in Fig. 5.1

which presents a total inductance L associated with the SQUID loop. Following

Chapter 2 it is simple to write its total Hamiltonian: we just have to add energies

of the form of the current biased junction studied in Section 2.2.3 and consider

the �ux quantization in the loop. Note that the external current Ie does not

circulate in the loop and, therefore, does not contribute to the �ux. This way the
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Hamiltonian is given by

H = 4EC(N2
1 +N2

2 )− EJ [cos(φ1) + cos(φ−)] +
EL
2

(φ1 − φ2 − φe)2 +
~
4e
Ie(φ1 + φ2) ,

(5.1)

It is convenient to write the Hamiltonian as a function of the sum and thye

di�erence of the Josephson phases φ± = (φ1 ± φ2)/2

H = 2EC(N2
+ +N2

−)− 2EJ cos(φ+) cos(φ−) + 2EL

(
φ− −

φe
2

)2

+
~
2e
Ieφ+ .

(5.2)

The classical dynamical equations for the phase can be cast in the suggestive

form mφ̈+ = −∂φ+U(φ+, φ−)

mφ̈− = −∂φ−U(φ+, φ−) ,
(5.3)

Figure 5.1: A micrograph of the circuit made with aluminium is shown on the left.
The symmetric and antisymmetric oscillation modes are illustrated by blue and
red arrows, respectively. The two small squares are the two Josephson junctions
(enlarged in the top right inset). The �ux Φ applied on the loop is generated by
the current IΦ running next to the loop. Courtesy of Olivier Buisson. On the
right the equivalent electrical circuit were only the �ux Φ caused by IΦ is shown.
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and the phase dynamics is mapped on the dynamics of a particle of `mass' m =

2C(~/2e)2 and coordinates (φ+, φ−) evolving in the potential U(φ+, φ−)

U(φ+, φ−) = 2EJ

[
− cos(φ+) cos(φ−) +

EL
EJ

(
φ− −

φe
2

)2

− ~
2e

Ie
EJ

φ+

]
. (5.4)

Figure 5.2: 2D potential for a dc SQUID with EL = 3EJ , Ie = 0 and Φ = 0.51Φ0.
M and M ′ indicate two di�erent local minima separated by a saddle point C.
The dashed black line represents the trajectory of minimum energy. Adapted
from [116].

If EL/EJ � 1, the term cos(φ+) cos(φ−) is dominated by the term EL
EJ

(
φ− − φe

2

)2

and we can see that the potential will trap the phase di�erence and the quantum

behavior of the circuit is described only by the `longitudinal' mode associated

with the one-dimensional motion of the φ+ phase. The dc-SQUID circuit has

been extensively studied in this regime where it behaves as a tunable phase qubit

[117, 118, 119]. Here we will consider instead a circuit with large loop inductance

EJ ≥ EL and the dynamics of the system becomes fully two-dimensional. This

regime has been experimentally observed only very recently in [120]. The 2D
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potential Eq. (5.4) is plotted in Fig. 5.2 with EL = 3EJ . For ~Ie < 2eEJ this po-

tential presents a periodic series of local minima separated by potential barriers.

We know describe the dynamics of the particle trapped in a potential minimum

following [116]. In this work the authors showed that the zero-bias current point

Ie = 0 is protected against current �uctuation so we shall restrict our develop-

ment to this case. The origin of the protection is that at this point the two �rst

eigen-energies do not depend on the bias current to �rst order. We now place

ourselves at the minimum φmin+ = 0 and φmin− + (EJ/2EL) sinφmin− = ~Ie/(2eEJ).

We de�ne the coordinates (x̂‖, x̂⊥) centered in the minimum corresponding to the

motion parallel or transverse to the trajectory of minimum energy. By expanding

the potential to fourth order we have the Hamiltonian given by H = H‖+H⊥+C,

where H‖ and H⊥ describe the anharmonic oscillators in each direction having

ω‖ and ω⊥ as the frequencies of the �rst transition. C describes the coupling of

these anharmonic oscillators

C(x̂‖, x̂⊥) = ~g21x̂
2
‖x̂⊥ + ~g22x̂

2
‖x̂

2
⊥ . (5.5)

The coupling constants are tuned by the circuit parameters and they are found to

be ~g22 = −e2/(2C
√

1 + 2EL/EJ) and ~g21 = −EJ(~/m)3/2(ω‖
√
ω⊥)−1 sin(φmin− )

and are typically much smaller than the plasma frequencies ω‖, ω⊥ [120, 116]. This

frequency hierarchy allows us to treat C as a perturbation of the uncoupled modes

which have energies En‖,n⊥ = En‖ +En⊥. We introduce annihilation operators â‖
and â⊥ of the longitudinal and transversal modes obtaining

C(â‖, â⊥) =
1

2
√

2
~g21[â2

‖ + (â†‖)
2 + 2â†‖â‖ + 1](â⊥ + â†⊥)

+
1

4
~g22[â2

‖ + (â†‖)
2 + 2â†‖â‖ + 1][â2

⊥ + (â†⊥)2 + 2â†⊥â⊥ + 1] .

(5.6)

One advantage of the annihilation operators is that they give direct information

about which are the relevant processes. For instance (a†‖)
2a⊥ is a term that leads

to the simultaneous annihilation of one excitation in the transverse mode with the

double excitation of the longitudinal mode. Such events are highly rare and have

no appreciable e�ect on the dynamics if we do not meet a quasi-resonant condition

2ω‖ ' ω⊥. This term was exploited in [120] to generate coherent frequency
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conversion, i.e. a coherent exchange of a single excitation of the transverse mode

with a double excitation of the longitudinal one. Here we choose instead to tune

the circuit (or the external �ux) to yield g21 � |2ω‖ − ω⊥|. In this case, by

projecting the Hamiltonian in the qubits subspaces we get

Hqubits = ~ωqbσqbz /2 + ~(ωa − gzzσqbz )σaz/2 , (5.7)

gzz ≡ −g22; where the logical (ancilla) qubit `qb'(`a') is composed by the �rst two

levels of the longitudinal (transversal) mode. In the absence of coupling between

the two modes, the transition frequency of the qubit and ancilla are de�ned as ωqb
and ωa, respectively. By reducing the critical current of the junctions, keeping the

ratio EJ/EL constant, one can increase the strength of the coupling term gzz up

to 250 MHz providing a strong dispersive frequency shift proportional to the state

of each qubit. The interaction Hamiltonian we have just obtained is of particular

interest to build a diamond-shape arti�cial atom. The gzz term can be viewed

as an analogue of a cross-Kerr term between the two quantum systems. This

interaction leads to a conditional energy transition of the ancilla which depends

on the quantum state of the qubit |g〉qb and |e〉qb. The respective frequencies of

the transitions |g〉qb |g〉a → |g〉qb |e〉a and |e〉qb |g〉a → |e〉qb |e〉a are ~(ωa + gzz) and

~(ωa − gzz) as sketched in 5.3.

5.2 QND readout on the dc-SQUID

The arti�cial atom will be coupled to a coplanar waveguide resonator that will me-

diate the interaction with microwave pulses. When the arti�cial atom is localized

at the center of the resonator, the quantum �uctuation of the �ux is maximal and

the voltage �uctuations are reduced to zero. Because of zero-current and zero-�ux

bias working point, the qubit is not a�ected by �ux �uctuations, leading to zero-

coupling between the resonator and the qubit. This way, σqbz commutes with the

Hamiltonian of the system, ensuring the non-destructive character of the mea-

surement whatever the number of photons in the resonator. The arti�cial atom
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Figure 5.3: Energy levels of the diamond shape arti�cial atom.

inside a coplanar resonator is described by the Hamiltonian:

Hfree = ~ωqbσqbz /2 + ~(ωa − gzzσqbz )σaz/2

+~ωr(a†a+ 1/2)− i~ga(aσa+ − a†σa−) .
(5.8)

The three �rst terms describe the arti�cial atom, the fourth term the resonator at

frequency ωr. We consider the frequency condition between the resonator and the

ancilla: ωr = ωa + gzz. In this picture, the �rst qubit is the qubit to read out, the

second qubit playing the role of an ancilla whose frequency depends on the �rst

qubit state. The resonator is not coupled to the qubit but only coupled to the

ancilla, which is an important di�erence with respect to other readout schemes.

The transmission is conditioned to the state to measure through a QND process.

Contrary to dispersive coupling based methods, this approach imposes no harsh

constraint on the ampli�cation and resonator bandwidth, allowing to reach fast,

one shot, high �delity QND read-out of our qubit even with the present day

ampli�er technology.

The system will be probed by a transmission experiment where the microwave

transmission through the resonator is measured for di�erent pumping powers and

frequencies. To describe the transmission properties of the cavity as a function
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Figure 5.4: a) Schematic circuit for a fast QND read-out. The incident mi-
crowave signal (ω = ωr + δL) is transmitted through the 1D resonator coupled to
a superconducting arti�cial atom which contains the qubit to be measured. The
signal is ampli�ed and homodyne detected to measure the ampli�ed transmitted
signal. The noise ampli�er, characterized by its noise temperature TN and band-
width B, is illustrated by additional microwave source at the ampli�er input. b)
The arti�cial atom is realized by an inductive dc-SQUID leading to a transmon
qubit coupled to an ancilla qubit by a cross-Kerr term. The ancilla is strongly
coupled to the resonator. c) Energy spectrum of the diamond shape arti�cial
atom and the resonator. The 1D resonator and the ancilla are coupled resonantly
(ωr = ωa + gzz) or dispersively (ωr > ωa − gzz) depending on the qubit state,
leading to a large variation of the transmitted signal amplitude.
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of the qubit state, we write a closed set of di�erential equations from Eq. (5.8)

describing the time evolution of the system operators in the Heisenberg picture.

These are deduced from input-output equations established in the case of a trans-

mitting cavity as in [121]. We de�ne the external �elds bin (injected microwave

�eld), br (re�ected �eld), and bt (transmitted �eld) that lead to the damping of

the intracavity �eld: br = bin + i
√
κa and bt = i

√
κa where κ is the resonator

coupling to external transmission line modes. We consider an overcoupled cavity,

that allows to neglect the internal losses of the resonator. Therefore κ de�nes

the resonator linewidth. The qubit energy relaxation and dephasing times are

assumed to be very long compared to resonator relaxation time (κT1 � 1 and

κT2 � 1). The Heisenberg equations are written in the frame rotating at the

frequency ω of the probe, yielding

σ̇az = −2ga(σ
a
+a+ σa−a

†) ,

σ̇a− = −i(ωr − ω + δs)σ
a
− + gaσ

a
za ,

˙
σqb− = −i(ωqb − gzzσaz )σqb− ,
ȧ = −i(ωr − ω)a− κa+ gaσ

a
− + i

√
κbin ,

(5.9)

where δj = −gzz(1 + σqbz ) is the qubit state dependent shift. The index j de�nes

the qubit state (j = g or e). Note that, as expected from a QND measurement,

the evolution preserves
〈
σqbz
〉
. We are interested in the transmission properties

of this system in the steady state regime established after a time much larger

than 1/κ. We adopt the semiclassical approach where the quantum correlations

between atomic and �eld operators are neglected [121]. Frow now on we identify

the operators with their average complex values as they could be measured in a

homodyne experiment. The ratio t(ω) = 〈bt〉 / 〈bin〉 checks, in the steady-state

regime

tj(ω)= t0(ω)

{
1− 1

1 + p
ps

[
1− 2i(ωr + δj − ω)

Γt0(ω)

]−1
}

ps
Γ

=
(ωr + δj − ω)2

Γ2
+

[
(ωr − ω)

Γ

(ωr + δj − ω)

κ
− 1/2

]2
(5.10)
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where we introduced the relaxation time in the cavity mode Γ = 2g2/κ and

the drive power p in units of photons per second p =
〈
b†inbin

〉
. The quantity

t0(ω) = −[1 + i(ωr − ω)/κ]−1 is the transmission of the empty resonator, and ps
is the saturation power of the atom-cavity system.
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Figure 5.5: Transmission coe�cient at low pump power for a microwave pulse
injected in a 1D resonator containing a diamond-shape arti�cial atom with κ =
40MHz and p = 1photon/ns. Blue solid curve: qubit state |g〉. Green dashed
curve: qubit state |e〉. Frequency is centered on the bare cavity. For all the
numerical calculations, we took gzz/2π = 250 MHz , ga/2π = 150 MHz and a
cavity linewidth κ/2π = 40 MHz (Q = 250) and p << ps. The black dotted line
indicates the pump frequency δL, at this point the transmission varies abruptly
as the qubit state changes.

The essence of the protocol is pictured in Fig.5.5, in the linear regime when

p� ps. In this regime, the transmission is given by tj(ω) =
[

1
t0(ω)

+ iΓ
2(ωr+δj−ω)

]−1

.

If the qubit is in state |g〉, δg = 0 so that the ancilla qubit is resonant with the

cavity mode and the transmission consists of two peaks located at ±ga with

respect to the frequency of the resonator. If the qubit is in state |e〉, |δe| = 2gzz,

inducing a dispersive coupling between the resonator and the ancilla provided

that gzz > ga. The transmission essentially consists in a single peak slightly
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shifted by a quantity δL = gzz(
√

1 + g2
a/g

2
zz − 1) with respect to the bare cavity

frequency (see Fig. 5.5). Thus a change in the state of the qubit to measure

can now translate into a switch from dispersive to resonant coupling between

the resonator and the ancilla. This is evidenced by a visible displacement in

the transmission peaks by a quantity ga, which can be as high as 150MHz,

between one and two orders of magnitude higher than the usual dispersive ac-

Stark shift[122, 115]. As will shall see, this strong e�ect allows to increase the

linewidth of the resonator while keeping a high �delity readout. Working with a

low Q cavity has important advantages. First, it drastically increases the total

bandwidth of the circuit, thus the readout speed. Moreover, for the same probe

power, the average intracavity photon number is lower, which is known to preserve

the lifetime and coherence time of the qubit. The readout is performed by the

injection of a short microwave pulse of power p at the frequency (ωr + δL)/2π.

Thus, the transmitted power depends on the state of the qubit, giving rise to

two conditional output signals pt|j =
〈
b†tbt

〉
= |tj|2p. Note that when p largely

overcomes ps, one recovers the transmission pattern t0(ω) of the empty cavity, a

signature of saturation [121] which limits the information on the qubit state.

We introduce now the model to optimize the measurement scheme. The per-

formances of the readout are usually quanti�ed by two �gures of merit, namely

its �delity F and speed. The speed is all the higher as the typical correlation

time between two measurements τc is lower. It is related to the inertia of the

circuit, in particular imposed by the resonator as τc is always larger or equal to

κ−1. Fidelity and correlation time depend on two independent parameters that

should be optimized: �rst, the resonator linewidth should be narrow enough to

give a large contrast between the two transmission patterns (κ < ga, gzz); but

large enough to allow large transmitted signal and therefore high speed qubit

readout for a given photon number n̄ inside the resonator pt|j = n̄κ. In the same

way, the driving power p should be su�ciently low to avoid the saturation of

the ancilla p < ps, but high enough to have large pt|j. It is worth to note that

the frequency chosen for the drive populates minimally the ancilla because the

dressed ancilla-resonator states are always detuned from the driving �eld. This

allows to use potentially high values for p before the ancilla saturates.
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5.2.1 Ampli�cation noise

In a typical circuit QED experiment, microwave photons are usually ampli�ed

before being sent through a homodyne detection scheme and digitalized within a

short time interval τ , which is usually taken equal to τc. For our purpose, we shall

consider the �eld at the entrance of the amplifying chain. The chain is modeled

by a perfect ampli�er [112] radiating at the input of the circuit a thermal �eld

of e�ective temperature TN . This temperature ranges from a few hundreds of

mK for the recent generation of quantum limited devices[113, 114], to 4 − 10K

for commercial device. The total noise power is N = (kBTN/~ω)B, where ω is

the operating frequency and B the bandwidth of the ampli�er. Note that like

the resonator, the ampli�er behaves as a �lter, thus imposes a lower band to the

correlation time τc > B−1. Consequently, high speed measurements are obtained

at the price of increased bandwidth and noise power N.

Estimation of the �delity readout is based on the photon number distribu-

tions P(n|j) conditioned to the qubit state (j = g, e) that we computed using the

Glauber-Sudarshan P-representation [123]. In this representation, the superposi-

tion of two �elds is given by the convolution of the two P functions. In our case,

this simply corresponds to the P-representations of a thermal �eld of temperature

TN displaced by a coherent �eld of amplitude √pt|j (the phase is unimportant as

there is no phase relation between the added �elds)

P (α) =
1

πN
exp(−|α−√pt|j|2/N) . (5.11)

With this representation of the density matrix we can readily calculate the gen-

erating function [124] for the photon statistics

∞∑
n=0

P(n|j)(1− ξ)n =
〈
e−ξ〈n〉

〉
α

=
1

1 + ξNτ
exp

(
− ξpt|j τ

1 + ξNτ

)
,

(5.12)

where 〈〉α stands for phase-space averaging and 〈n〉 is the average of the number
operator. We can promptly extract P(n|j) by considering the n-th derivative in



99

both sides of Eq. (5.12) at ξ = 1. In this particular case we can simplify the

calculation by making the change of variables : u ≡ Nτ
1+Nτ

(1− ξ)

∞∑
n=0

P(n|j)
(

1 + Nτ

Nτ

)n
un =

exp(
−pt|j τ
1+Nτ

)

1 + Nτ

exp(−xu
1−u )

1− u (5.13)

where x ≡ −pt|jτ
(1+Nτ)Nτ

. Note that the last term in the right-hand-side of Eq. (5.13)

is nothing but the generating function of the Laguerre polynomials Ln(x)

∞∑
n=0

Ln(x)un =
exp(−xu

1−u )

1− u , (5.14)

and it is thus easy to see that

P(n|j) =
Nnτn

(1 + Nτ)n+1
exp

(−pt|j τ
1 + Nτ

)
Ln

(−pt|j /N
1 + Nτ

)
. (5.15)

5.2.2 Expected Fidelity

An inference error happens when the measurement yields a result in a region

where both distributions are non-negligible. We will thus infer the qubit state to

be the one associated with the larger probability when it could be the other way

around. The �delity depends on the overlap between the distributions P(n|g)

and P(n|e) as F = 1− 1
2

∑
nPeΘ[Pg −Pe] + PgΘ[Pe −Pg] .

The histograms plotted in Fig. 5.6 clearly show how the ampli�cation noise

has a large e�ect on the statistics of the counts associated with each of the qubit

states. As the noise power increases with TN the �delity is degraded(a vs c and b

vs d). By increasing the integration time, one can regain �delity (a vs b and c vs

d). As a matter of fact, it increases the signal, but it also allows to operate with

a lower bandwidth, reducing the noise power. With this protocol, a �delity as

high as 90% can already be reached with a commercial ampli�er, within a typical

time of τ = 50ns.

On the other hand, Fig. 5.7 shows optimization of the �delity as a function of

the resonator linewidth and probe power in the case of a state of the art ampli�er

of e�ective temperature TN = 140mK [114]. The digitalization time τ = 10ns has
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Figure 5.6: Photon distribution at the entrance of the ampli�er. Histograms
P(n|e) (red solid) and P(n|g) (blue dashed) with κ = 40MHz and p =
1photon/ns. (a) TN = 140mK, τ = 10ns, B = 50MHz; (b) TN = 140mK,
τ = 50ns, B = 10MHz; (c) TN = 4K, τ = 10ns, B = 50MHz; (d) TN = 4K,
τ = 50ns, B = 10MHz.

been chosen, compatible with a bandwidth B = 50MHz. A �delity F = 95% can

be reached with a resonator linewidth κ = 50 MHz and very small pumping power

(see Fig. 5.6), corresponding to an intra-cavity population n̄ = 1.8 photons. This

�delity corresponds to up to date results obtained in the dispersive measurement

scheme with the same ampli�er [114, 125]. In these last cases still, the dynamics

is one order of magnitude slower because of the inertia imposed by the resonator

of linewidth κ ∼ 5MHz, imposing a typical correlation time of τc = 100ns.

The �delity of the readout can be increased to the price of an increased mea-

surement time, by performing a sequence of q independent measurements. In this

approach, recording uncorrelated outcomes allows for exponentially fast conver-

gence to arbitrarily high measurement �delity. The optimal way to update the

conditional probabilities of having the qubits in |g〉 or |e〉 is simply to use the

Bayes' rule [125, 9, 126] at each of the q measurements. To evaluate the �delity
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Figure 5.7: Single measurement �delity for a state of the art ampli�er (TN =
140mK) and an acquisition time τ = 10 ns versus drive power p in units of
photons/10ns and resonator linewidth κ. Optimal value of F= 95% is reached
for broad range around κ = 40MHz and p = 1photon/ns.

F after q steps we use Cherno� information [127],

C = − inf
0<λ<1

log2

∑
n

(P(n|g))1−λ(Pr(n|e))λ , (5.16)

which bounds asymptotically the misclassifying error probability E = 1−F after

q steps as E ≤ 2−qC . With a commercial ampli�er, the optimal value C = 1.2 is

obtained after 50ns, which translates into a �delity of 99, 9% after 8 integrations,

i.e. 400ns. In the case of a state-of-the-art ampli�er we can reach C = 1.8 after

only 10ns, yielding 99, 9% after 60ns. We plot the Cherno� information as a

function of drive power and cavity linewidth in Fig. 5.8. The proposed scheme,

using low temperature ampli�er allows to drastically increase the bandwidth and

the speed of the readout and to perform projective measurement of the qubit on a

timescale much shorter that the recent measured relaxation time, T1 = 50µs [42].
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Figure 5.8: Cherno� information between the distributions associated with each
logical qubit state (|g〉, |e〉) for a state of the art ampli�er (TN = 140mK) and
an acquisition time τ = 10 ns versus drive power p in units of photons/10ns and
resonator linewidth κ. For broad range around κ = 40MHz and p = 1photon/ns
we have C> 1.8.

This scheme opens the path to the observation of quantum jumps in circuit QED

with a very high temporal resolution, comparable to the performances of recent

experiments performed with Rydberg atoms [5], where the system is typically

measured 103 times before undergoing a quantum jump.

In conclusion we propose a new read-out scheme based on a superconducting

diamond shape arti�cial atom which contains a transmon qubit strongly coupled

to an ancilla qubit by a cross-Kerr term. The intrinsic properties of such an

atom are used to amplify the quantum measurements performances. We show

high �delity fast QND read-out of the transmon qubit with commercial ampli�er.

Using quantum limited ampli�er, 60 ns read-out time and 99.9% �delity are

predicted. This original method overcomes the current read-out limitation of

the superconducting qubits based on high Q resonators and small ampli�cation
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bandwidth. As a side e�ect the intra-cavity population is minimal, n̄ = 1.8 for

the optimal parameters, minimizing any adverse e�ect on the qubit coherence

properties. This opens the way to the monitoring of the quantum jumps of the

qubit with very high temporal resolution, to the generation of non-classical states

[128] or the implementation of quantum error correction codes [15] using closed

feedback loops.
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Chapter 6
Conclusion and Perspectives

We presented the theoretical description of superconducting circuits based on

Josephson junctions, beginning with a simple theoretical description for the physics

of superconducting circuits to obtain the Hamiltonian of a generic circuit. We

revisited some of the typical circuits showing how they can yield the three ba-

sic Josephson qubits. We discussed how these qubits couple to resonators and

how these resonators interact with external control pulses. This is the theoretical

framework in which all the thesis is based.

We investigated theoretically the coupling of a cavity mode to a continuous

distribution of emitters, discussing the in�uence of the emitters inhomogeneous

broadening on the existence and on the coherence properties of the polaritonic

peaks. We found that their coherence depends crucially on the shape of the dis-

tribution and not only on its width. Under certain conditions the coupling to the

cavity protects the polaritonic states from inhomogeneous broadening, resulting

in a longer storage time for a quantum memory based on emitters ensembles. A

direct perspective in this subject is the search of protocols which could alleviate

the short storage time imposed by the inhomogeneous broadening. Spin echo

techniques can be used in principle but they require a new theoretical approach

as the spin ensemble will not be restricted to a few excitations anymore.

We showed that taking into account the inhomogeneous broadening it is possi-

ble to simulate successfully a number of pioneer experimental results on a hybrid

circuit based on an ensemble of NV centers. Both spectroscopical and dynami-

cal signals were simulated culminating with a high sensibility spin spectroscopy
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where unexpected features were reproduced. The modeling has been shown to

be a powerful tool to obtain the properties of the spin ensembles coupled to a

resonator. This will hopefully serve as a guide for the next generation of samples

in the pursuit of better coherence properties.

We studied theoretically the transmitted microwave signal of a resonator cou-

pled to a diamond-shape arti�cial atom. We showed how this level scheme appears

in high inductance dc-SQUID and identi�ed logical and ancilla qubits coupled

through a cross-Kerr like term. We investigated how the transmission through

the resonator depends on the qubit state, showing that the ancilla goes from

resonant to the dispersive regime leading to a large contrast in the transmitted

microwave signal amplitude. We evaluated the performance of this device in mea-

suring the logical qubit state taking into account experimental ampli�cation noise

and realistic circuit parameters. Simulations show that this original method can

be faster and have higher �delity than currently used methods. As a short-term

perspective, the scheme should be optimized to work in re�ection geometry where

instead of the di�erence in the transmitted power the states could be distinguished

by the phase of the re�ected �eld. More generally other Josephson qubits could

exploit a similar readout method based on the diamond level-scheme.

We consider the work presented in this thesis to be a contribution, although

modest, to the circuit quantum electrodynamics framework in which it is inserted.
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Appendix A

Supplementary material for Chapter 3 .

A.1 Dynamics

In this part, we establish the link between the complex transmission of the cavity,

and the evolution of the system if the mode a is initially fed with a single photon.

This evolution is governed by the set of equations (3.3) written in the free frame

(ω = 0). The input �elds are in the vacuum, the state of the system is |1, G〉 =

a†(0) |0〉 where |0〉 is the ground state of the total system. We are interested in the

quantities 〈a(t)a†(0)〉 and 〈bk(t)a†(0)〉, which represent the probability amplitude

of the excitation in the cavity mode and in each emitter respectively, as it will

appear later. The average values are taken in state |0〉. We get

〈ȧ(t)a†(0)〉 = − (κ/2 + iω0) 〈a(t)a†(0)〉+
∑
k

gk〈bk(t)a†(0)〉

〈ḃk(t)a†(0)〉 = − (γ/2 + iωk) 〈bk(t)a†(0)〉 − gk〈a(t)a†(0)〉
(A.1)

De�ning the vector |ψ〉 of coordinates (〈a(t)a†(0)〉, ..., 〈bk(t)a†(0)〉, ...), its evo-
lution simply follows the Schrödinger like equation ~

d

dt
|ψ〉 (t) = −iHeff |ψ〉 (t),
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with

Heff/~ =


ω̃0 ig1 ig2 . . .

−ig1 ω̃1

−ig2 ω̃2

... . . .

 . (A.2)

We have used the complex frequencies for the cavity ω̃0 and for the emitters ω̃k
de�ned above. Note that these results are in full agreement with the ones obtained

in the Green function formalism by Kurucz et al [70]. It appears that the dynam-

ics of the problem can be modeled with the e�ective Hamiltonian Heff . In par-

ticular, one can de�ne an e�ective evolution operator O(t) = eiHeff t/~Oe−iHeff t/~,

such that 〈a(t)a†(0)〉 = 〈0| a(0)e−iHeff t/~a†(0) |0〉. This quantity can be rewrit-

ten 〈1, G| e−iHeff t/~ |1, G〉, justifying that we talk of the probability amplitude of

the excitation in the cavity mode, starting from the initial state |1, G〉. The

problem is solved using e.g. standard Laplace transform method. De�ning

L (f(t)) = F (s) =
∫∞

0
exp(st)f(t)dt, we have

|ψ(t)〉 = L−1
(
(s+ iHeff/~)−1 |ψ(0)〉

)
, (A.3)

where we have used the Laplace transform property: L{ d
dt
|ψ(t)〉} = s |Ψ(s)〉−

|ψ(0)〉. We �nally de�ne t1(s) = 〈1, G| (s + iHeff/~)−1 |1, G〉. Inverse Laplace

transform of this coe�cient gives back the quantity 〈1, G| e−iHeff/~t |1, G〉. We

easily get

t1(s) =
1

s+ iω̃0 +
∑

k

g2
k

s+iω̃k

, (A.4)

From eq.(3.5) and eq.(A.4), we �nally write the link between the transmission

coe�cient in amplitude t(ω) and the coe�cient t1(s) characterizing the dynamics
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of the system,

t(ω) = −κ
2
t1(−iω) . (A.5)

This establishes the relation between the amplitude α1(t) = 〈1, G| e−iHeff t/~ |1, G〉
and the transmission t(ω) as:

∫ ∞
0

α1(t)eiωtdt = −2

κ
t(ω) . (A.6)

One can use the method exposed above to compute the expression of the prob-

ability amplitude for a state initially prepared in
∣∣ψ0

+(δ)
〉
, namely

〈
ψ0

+(δ)
∣∣ e−iHeff t/~ ∣∣ψ0

+(δ)
〉

studied in Section 3.5. In general, we can decompose it as

〈
ψ0

+(δ)
∣∣Ueff (t) ∣∣ψ0

+(δ)
〉

=

= cos2(θ/2) 〈1, G|Ueff |1, G〉+ sin2(θ/2) 〈0, S|Ueff |0, S〉+
+ i sin(θ/2) cos(θ/2) (〈0, S|Ueff |1, G〉 − 〈1, G|Ueff |0, S〉)
= cos2(θ/2)α1(t) + sin2(θ/2)α2(t)+

+ i sin(θ/2) cos(θ/2) (α3(t)− α4(t)) ,

(A.7)

where Ueff (t) ≡ e−iHeff t/~ .

We need only to calculate the four matrix elements αi(t). De�ning ti(s) =

L(αi(t)) we obtain in the case of a continuous distribution,

t2(s) = −W (is)

Ω2
t1(s)(s+ iω̃o)

t3(s) = t1(s)
iW (is)

Ω

t4(s) = −t3(s) .

(A.8)
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A.2 W (ω) for speci�c distributions

We now evaluate the function W (ω) for all the speci�c continua analyzed in the

paper. This function allows the evaluation of the complex transmission using

t(ω) = (κ/2i)(ω − ω0 + iκ/2−W (ω))−1, but also appears in other formulae.

Gaussian

The Gaussian distribution writes ρ(ω) =
√

ln 2
∆
√
π
e−(ω2 ln 2)/∆2

. W (ω) is thus,

WG(ω) =
1

i

√
ln 2 Ω2

∆

√
π

 i

π

∫ ∞
−∞

dω′e−ω
′2(

ω+iγ/2

∆/
√

ln 2
− ω′

)
 . (A.9)

Remembering that

i

π

∫ ∞
−∞

dω′
e−ω

′2

z − ω′ = e−z
2

erfc(−iz) (A.10)

where erfc is the complex complementary error function, it comes

WG(ω) = −i
√

ln 2 Ω2

∆

√
πe
−(

ω+iγ/2

∆/
√

ln 2
)2

erfc

(
−iω + iγ/2

∆/
√

ln 2

)
. (A.11)

Rectangular

In the case of a rectangular distribution, the density of emitter is ρ(ω) = 1
∆

(Θ(ω−
∆/2)−Θ(ω + ∆/2)) we have

WR(ω) =
2Ω2

i∆
ArcTan

(
∆

γ − 2iω

)
. (A.12)
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Lorentzian

The density of emitter is ρ(ω) = ∆/2
π

1
(∆/2)2+ω2 , thus

WL(ω) =
Ω2

ω + iγ/2 + i∆/2
. (A.13)

From the equation above we see that for Lorentz distribution we do not achieve

cavity protection, i.e. the inhomogeneous broadening always contributes as if it

were homogeneous.

A.3 Development with �nite γ

We start rewrite W (ω) from eq.(3.6) as

W (ω) = Ω2

∫ ∞
−∞

dω′
ω′2

ω′2 + γ2

ρ(ω′ + ω)

ω′
−

−iπΩ2

∫ ∞
−∞

dω′
γ

π(ω′2 + γ2)
ρ(ω + ω′) .

(A.14)

The integrands contain products of a function of width γ and another with

width ∆. If γ � ∆, the integrals take the form:

W (ω) = Ω2P

∫ ∞
−∞

ρ(ω′)dω′

ω − ω′ −

− iΩ2

(
πρ(ω) +

γ

2
P

∫ ∞
−∞

ρ(ω′)dω′

(ω − ω′)2

)
.

(A.15)

We are interested in the development of W (ω) near the poles of the trans-

mission function in the absence of inhomogeneous broadening, namely ω ∼ Ω.
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Denoting r = ω′/ω, and using the identity
∑
rk = 1/(1− r), we �nd :

W (ω) =
Ω2

ω

(
1 +

∞∑
k=1

µk
ωk
− iπρ(ω)

)
−

− iΩ
2

ω2

γ

2

(
1 +

∞∑
k=1

(k + 1)
µk
ωk

)
,

(A.16)

where µk is the k-th moment of the distribution ρ(ω) about its origin

µk ≡
∫ ∞
−∞

dωρ(ω)ωk . (A.17)

Note that this development is only valid if ω � ω′, which is the case in the

present study as ω ∼ Ω � ∆ > ω′. From the normalization and considering

only symmetric distributions, we have µ0 = 1 and µ1 = 0. µ2 gives the �rst

non-zero correction and it is typically proportional to the square of the FWHM

(as an example, µ2 = ∆2/(2 ln 2) in the case of a Gaussian distribution). To �rst

non-zero correction we have:

W (ω) =
Ω2

ω
(1 + µ2/ω

2)− i
(
γ

2

Ω2

ω2
+ πΩ2ρ(ω)

)
=

Ω2(1 + µ2/ω
2)

ω + iγ/2
− iπΩ2ρ(ω) ,

(A.18)

where we have used Ω� γ. One easily infers the modi�cations to the transmis-

sion poles induced by inhomogeneous broadening. They are located at

ω± = ±Ω

√
1 + µ2/Ω2 −

(
κ+ 2πρ(Ω)Ω2 − γ

4Ω

)2

. (A.19)

Their width check Γ = κ+γ+2πΩ2ρ(Ω)
2

, in correspondence with what stated in

Sec. 3.2. Note that this procedure is only valid for distribution with well de�ned



113

moments. This is not the case of the Lorentzian, nevertheless W (ω) can be

exactly evaluated in this case. The exact calculations for the 3 cases taken under

consideration are the subject of appendix A.2.

A.4 Two ways to obtain the temporal evolution

We have found two ways to evaluate α1(t) = 〈1, G| e−iHeff t/~ |1, G〉, the �rst at

Appendix A.1 uses a Laplace-Fourier transform of −t(ω)/(κ/2) the second uses

the standard Fourier transform of 2πΩ2 ρ(ω) |t(ω)/(κ/2)|2 for κ, γ → 0 as in Sec.

3.3. The �rst way is more general in the sense that it can include emitter and

cavity radiative losses, the second describe a reversible process originated in a

Hamiltonian evolution. We now show that both ways coincide when we disregard

losses.

From Appendix A.1 we have

∫ ∞
0

α1(t)eiωtdt = t1(−iω) , (A.20)

where, if γ, κ→ 0

t1(−iω) =
i

ω − ω0 − Ω2P
∫ ρ(ω′)dω′

ω−ω′ + iπΩ2ρ(ω)
. (A.21)

We now take the real part of eqs.(A.20 , A.21) , yielding

<
{∫ ∞

0

α1(t)eiωtdt

}
=

= <
{

i

ω − ω0 − Ω2P
∫ ρ(ω′)dω′

ω−ω′ + iπΩ2ρ(ω)

}
= πΩ2ρ(ω)|t1|2 ,

(A.22)

if we consider time reversibility of the lossless dynamics we have α1(−t) =
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(α1(t))∗ and thus

2<
{∫ ∞

0

α1(t)eiωtdt

}
=

=

∫ ∞
0

(α1(t)eiωt + α∗1(t)e−iωt)dt

=

∫ ∞
−∞

α1(t)eiωtdt .

(A.23)

Eq.(A.22) and eq.(A.23) together give

∫ ∞
−∞

α1(t)eiωtdt = 2πΩ2 ρ(ω) |t1|2 , (A.24)

which is precisely what we �nd applying the inverse Fourier transform in eq.(3.21).

Note we had to use the time-reversibility which is only valid in the lossless case.
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