P. N. Haubenreich and J. R. Engel, Experience with the Molten-Salt Reactor Experiment, Nuclear Technology, vol.8, issue.2, p.118, 1970.
DOI : 10.13182/NT8-2-118

C. D. Bowman, Once-Through Thermal-Spectrum Accelerator-Driven System for LWR Waste Destruction Without Reprocessing: Tier-1 Description, pp.98-102, 1998.

E. Merle-lucotte, D. Heuer, M. Allibert, V. Ghetta, D. Le-brun et al., Proceeding of ICAPP, 2007.

E. Merle-lucotte, Mémoire d'Habilitation à Diriger les Recherches, 2008.

S. Delpech, E. Merle-lucotte, D. Heuer, and C. Slim, Liquide fuel for nuclear energy: The Molten Salt Fast Reactor (MSFR) concept, Chapitre de Liquid Fuels: Types, Properties and Production, 2011.

O. Connocar, N. Douyère, and J. Lacquement, Distribution of actinides and lanthanides in a molten fluoride/liquid aluminum alloy system, Journal of Alloys and Compounds, vol.389, issue.1-2, p.29, 2005.
DOI : 10.1016/j.jallcom.2004.07.040

D. L. Manning, Voltammetry of nickel in molten lithium fluoride-sodium fluoride-potassium fluoride, Journal of Electroanalytical Chemistry (1959), vol.7, issue.4, p.302, 1964.
DOI : 10.1016/0022-0728(64)80104-2

J. Limsden, thermodynamics of molten salts mixtures, 1966.

L. Martinot, Electrochemical behaviour of tetravalent thorium in molten /Li-K/Cl eutectic, Journal of Radioanalytical and Nuclear Chemistry Letters, vol.9, issue.6, p.357, 1986.
DOI : 10.1007/BF02164785

J. A. Plambeck, Encyclopedia of Electrochemistry of the Element X: Fused salt systems, M. Dekker, 1976.

D. Lambertin, J. Lacquement, S. Sanchez, and G. Picard, Dismutation of divalent americium induced by the addition of fluoride anion to a LiCl???KCl eutectic at 743 K, Electrochemistry Communications, vol.3, issue.9, p.519, 2001.
DOI : 10.1016/S1388-2481(01)00210-7

F. Lantelme and A. Salmi, Electrochemistry of Titanium in NaCl-KCl Mixtures and Influence of Dissolved Fluoride Ions, Journal of The Electrochemical Society, vol.142, issue.10, p.3451, 1995.
DOI : 10.1149/1.2050003

A. J. Bard and L. R. Faulkner, Electrochimie-Principes, méthodes et applications, 1983.

G. Mamantov, D. L. Manning, and J. M. Dale, Reversible deposition of metals on solid electrodes by voltammetry with linearly varying potential, Journal of Electroanalytical Chemistry (1959), vol.9, issue.4, p.253, 1965.
DOI : 10.1016/0022-0728(65)80023-7

S. Delpech, Introduction à la spectroscopie d'impédance électrochimique, 1991.

F. J. Smith, The solubilities of thorium and neodymium in liquid lithium-bismuth solutions, Journal of the Less Common Metals, vol.27, issue.2, p.195, 1972.
DOI : 10.1016/0022-5088(72)90030-6

J. Sangster and A. D. Pelton, The Bi-Li (Bismuth-Lithium) system, Journal of Phase Equilibria, vol.4, issue.1, p.447, 1991.
DOI : 10.1007/BF02645966

M. S. Foster, S. E. Wood, and C. E. , Thermodynamics of Binary Alloys. I. The Lithium-Bismuth System, Inorganic Chemistry, vol.3, issue.10, p.1428, 1964.
DOI : 10.1021/ic50020a019

W. Weppner and R. A. Huggins, Thermodynamic Properties of the Intermetallic Systems Lithium-Antimony and Lithium-Bismuth, Journal of The Electrochemical Society, vol.125, issue.1, p.7, 1978.
DOI : 10.1149/1.2131401

J. Vergnes and D. Lecarpentier, The AMSTER concept (actinides molten salt transmutER), Nuclear Engineering and Design, vol.216, issue.1-3, p.43, 2002.
DOI : 10.1016/S0029-5493(02)00026-2

I. Slessarev, On nuclear power intrinsically protected against long-lived actinide wastes, weapons proliferation and heavy accidents, Annals of Nuclear Energy, vol.33, issue.4, p.325, 2006.
DOI : 10.1016/j.anucene.2005.12.002