A. Bird, DNA methylation patterns and epigenetic memory, Genes & Development, vol.16, issue.1, pp.6-21, 2002.
DOI : 10.1101/gad.947102

URL : http://www.genesdev.org/cgi/content/short/16/1/6

M. S. Ong, T. J. Richmond, and C. A. Davey, DNA Stretching and Extreme Kinking in the Nucleosome Core, Journal of Molecular Biology, vol.368, issue.4, pp.1067-1074, 2007.
DOI : 10.1016/j.jmb.2007.02.062

P. Ridgway, C. Maison, and G. Almouzni, Chromatine : Organisation Fonctionnelle du Génome, Atlas Genet Cytogenet Oncol Haematol, 2002.

S. V. Ebers and . Ramagopalan, URL : http ://AtlasGenetics Oncology, Trends Mol. Med, 2009.

A. Bird, MOLECULAR BIOLOGY: Methylation Talk Between Histones and DNA, Science, vol.294, issue.5549, pp.2113-2115, 2001.
DOI : 10.1126/science.1066726

T. H. Bestor, The DNA methyltransferases of mammals, Human Molecular Genetics, vol.9, issue.16, pp.2395-2402, 2000.
DOI : 10.1093/hmg/9.16.2395

M. Schaefer, S. Hagemann, K. Hanna, and F. Lyko, Azacytidine Inhibits RNA Methylation at DNMT2 Target Sites in Human Cancer Cell Lines, Cancer Research, vol.69, issue.20, pp.8127-8132, 2009.
DOI : 10.1158/0008-5472.CAN-09-0458

V. G. Siteinternet, A. E. Allfrey, and . Mirsky, php?option=com_content&task=vie w&id=52&Itemid=1&limit=1&limitstart=3 14. a), Science Cell Science, vol.144, issue.292, pp.559-693, 1964.

M. S. Cosgrove, J. D. Boeke, C. Wolberger, and T. Kouzarides, Regulated nucleosome mobility and the histone code, Nature Structural & Molecular Biology, vol.21, issue.11, pp.1037-1043, 2002.
DOI : 10.1101/gad.872801

M. R. Parthun, J. Widom, and D. E. Gottschling, The Major Cytoplasmic Histone Acetyltransferase in Yeast: Links to Chromatin Replication and Histone Metabolism, Cell, vol.87, issue.1, pp.85-94, 1996.
DOI : 10.1016/S0092-8674(00)81325-2

M. J. Carrozza, R. T. Utley, J. L. Workman, and J. Côté, The diverse functions of histone acetyltransferase complexes, Trends in Genetics, vol.19, issue.6, pp.321-329, 2003.
DOI : 10.1016/S0168-9525(03)00115-X

H. Santos-rosa, R. Schneider, A. J. Bannister, J. Sherriff, B. E. Bernstein et al., Active genes are tri-methylated at K4 of histone H3, Nature, vol.102, issue.6905, pp.407-411, 2002.
DOI : 10.1101/gad.190301

Y. Shi, F. Lan, C. Matson, P. Mulligan, J. R. Whetstine et al., Histone Demethylation Mediated by the Nuclear Amine Oxidase Homolog LSD1, Cell, vol.119, issue.7, pp.941-953, 2004.
DOI : 10.1016/j.cell.2004.12.012

K. Yamane, C. Toumazou, Y. Tsukada, H. Erdjument-bromage, P. Tempst et al., JHDM2A, a JmjC-Containing H3K9 Demethylase, Facilitates Transcription Activation by Androgen Receptor, Cell, vol.125, issue.3, pp.483-495, 2006.
DOI : 10.1016/j.cell.2006.03.027

B. D. Fodor, S. Kubicek, M. Yonezawa, R. J. O-'sullivan, R. Sengupta et al., Jmjd2b antagonizes H3K9 trimethylation at pericentric heterochromatin in mammalian cells, Genes & Development, vol.20, issue.12, pp.1557-1562, 2006.
DOI : 10.1101/gad.388206

M. Wissmann, N. Yin, J. M. Muller, H. Greschik, B. D. Fodor et al., Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression, Nature Cell Biology, vol.223, issue.3, pp.347-353, 2007.
DOI : 10.1038/13732

K. Nakashima, T. Hagiwara, and M. Yamada, Nuclear Localization of Peptidylarginine Deiminase V and Histone Deimination in Granulocytes, Journal of Biological Chemistry, vol.277, issue.51, pp.49562-49568, 2002.
DOI : 10.1074/jbc.M208795200

R. B. Denman, PAD: the smoking gun behind arginine methylation signaling?, BioEssays, vol.87, issue.3, pp.242-246, 2005.
DOI : 10.1002/bies.20205

Y. G. Zheng, J. Wu, Z. Chen, and M. Goodman, Chemical regulation of epigenetic modifications: Opportunities for new cancer therapy, Medicinal Research Reviews, vol.12, issue.1-2, pp.645-687, 2008.
DOI : 10.1002/med.20120

S. Deltour, V. Chopin, and D. Leprince, Modifications ??pig??n??tiques et cancer, m??decine/sciences, vol.21, issue.4, pp.405-411, 2005.
DOI : 10.1051/medsci/2005214405

C. B. Yoo and P. A. Jones, Epigenetic therapy of cancer: past, present and future, Nature Reviews Drug Discovery, vol.316, issue.1, pp.37-50, 2006.
DOI : 10.1038/nrd1930

R. Mabaera, M. R. Greene, C. A. Richardson, S. J. Conine, C. D. Kozul et al., Neither DNA hypomethylation nor changes in the kinetics of erythroid differentiation explain 5-azacytidine's ability to induce human fetal hemoglobin, Blood, vol.111, issue.1, pp.411-420, 2008.
DOI : 10.1182/blood-2007-06-093948

H. K. Kuo, J. D. Griffith, and K. N. Kreuzer, 5-Azacytidine Induced Methyltransferase-DNA Adducts Block DNA Replication In vivo, Cancer Research, vol.67, issue.17, pp.8248-8254, 2007.
DOI : 10.1158/0008-5472.CAN-07-1038

F. Chik and M. Szyf, Effects of specific DNMT gene depletion on cancer cell transformation and breast cancer cell invasion; toward selective DNMT inhibitors, Carcinogenesis, vol.32, issue.2, pp.224-232, 2011.
DOI : 10.1093/carcin/bgq221

F. Cai, C. Kohler, B. Zhang, M. Wang, W. Chen et al., Epigenetic Therapy for Breast Cancer, International Journal of Molecular Sciences, vol.12, issue.12, pp.4465-4476, 2011.
DOI : 10.3390/ijms12074465

S. B. Hake, A. Xiao, and C. D. Allis, Linking the epigenetic ???language??? of covalent histone modifications to cancer, British Journal of Cancer, vol.90, issue.4, pp.761-769, 2004.
DOI : 10.1038/sj.bjc.6601575

R. Schneider, A. J. Bannister, and T. Kouzarides, Unsafe SETs: histone lysine methyltransferases and cancer, Trends in Biochemical Sciences, vol.27, issue.8, pp.396-402, 2002.
DOI : 10.1016/S0968-0004(02)02141-2

G. J. Van-leenders, D. Dukers, D. Hessels, S. W. Van-den-kieboom, C. A. Hulsbergen et al., Polycomb-Group Oncogenes EZH2, BMI1, and RING1 Are Overexpressed in Prostate Cancer With Adverse Pathologic and Clinical Features, European Urology, vol.52, issue.2, pp.455-463, 2007.
DOI : 10.1016/j.eururo.2006.11.020

C. Hwang, V. N. Giri, J. C. Wilkinson, C. W. Wright, A. S. Wilkinson et al., EZH2 regulates the transcription of estrogen-responsive genes through association with REA, an estrogen receptor corepressor, Breast Cancer Research and Treatment, vol.22, issue.2, pp.235-242, 2008.
DOI : 10.1007/s10549-007-9542-7

Y. Yao, P. Chen, J. Diao, G. Cheng, L. Deng et al., Selective Inhibitors of Histone Methyltransferase DOT1L: Design, Synthesis, and Crystallographic Studies, Journal of the American Chemical Society, vol.133, issue.42, pp.16746-16749, 2011.
DOI : 10.1021/ja206312b

J. M. Yost, I. Korboukh, F. Liu, C. Gao, and J. Jin, Targets in Epigenetics: Inhibiting the Methyl Writers of the Histone Code, Current Chemical Genomics, vol.5, issue.Suppl 1, pp.72-84, 2011.
DOI : 10.2174/1875397301005010072

D. Cheng, N. Yadav, R. W. King, M. S. Swanson, E. J. Weinsteini et al., Small Molecule Regulators of Protein Arginine Methyltransferases, Journal of Biological Chemistry, vol.279, issue.23, pp.23892-23899, 2004.
DOI : 10.1074/jbc.M401853200

K. Bonham, S. Hemmers, Y. H. Lim, D. M. Hill, M. G. Finn et al., Effects of a novel arginine methyltransferase inhibitor on T-helper cell cytokine production, FEBS Journal, vol.104, issue.9, pp.2096-2108, 2010.
DOI : 10.1111/j.1742-4658.2010.07623.x

A. Spannhoff, R. Heinke, I. Bauer, P. Trojer, E. Metzger et al., Target-Based Approach to Inhibitors of Histone Arginine Methyltransferases, Journal of Medicinal Chemistry, vol.50, issue.10, pp.2319-2325, 2007.
DOI : 10.1021/jm061250e

R. Heinke, A. Spannhoff, R. Meier, P. Trojer, I. Bauer et al., Virtual Screening and Biological Characterization of Novel Histone Arginine Methyltransferase PRMT1 Inhibitors, ChemMedChem, vol.43, issue.1, pp.69-77, 2009.
DOI : 10.1002/cmdc.200800301

Y. Feng, M. Li, B. Wang, and Y. G. Zheng, Discovery and Mechanistic Study of a Class of Protein Arginine Methylation Inhibitors, Journal of Medicinal Chemistry, vol.53, issue.16, pp.6028-6039, 2010.
DOI : 10.1021/jm100416n

T. Osborne, R. L. Weller-roska, S. R. Rajski, and P. R. Thompson, In Situ Generation of a Bisubstrate Analogue for Protein Arginine Methyltransferase 1, Journal of the American Chemical Society, vol.130, issue.14, pp.4574-4575, 2008.
DOI : 10.1021/ja077104v

J. Dowden, W. Hong, R. V. Parry, R. A. Pike, and S. G. Ward, Toward the development of potent and selective bisubstrate inhibitors of protein arginine methyltransferases, Bioorganic & Medicinal Chemistry Letters, vol.20, issue.7, pp.2103-2105, 2010.
DOI : 10.1016/j.bmcl.2010.02.069

J. Dowden, R. A. Pike, R. V. Parry, W. Hong, U. A. Muhsen et al., Small molecule inhibitors that discriminate between protein arginine N-methyltransferases PRMT1 and CARM1, Organic & Biomolecular Chemistry, vol.7, issue.22, pp.7814-7821, 2011.
DOI : 10.1039/c1ob06100c

K. L. Bicker, O. Obianyo, H. L. Rust, and P. R. Thompson, A combinatorial approach to characterize the substrate specificity of proteinargininemethyltransferase 1, Mol. BioSyst., vol.284, issue.1, pp.48-51, 2011.
DOI : 10.1039/C0MB00015A

N. Yadav, J. Lee, J. Kim, J. Shen, M. C. Hu et al., Specific protein methylation defects and gene expression perturbations in coactivator-associated arginine methyltransferase 1-deficient mice, Proceedings of the National Academy of Sciences, vol.100, issue.11, pp.6464-6468, 2003.
DOI : 10.1073/pnas.1232272100

S. L. Chen, K. A. Loffler, D. Chen, M. R. Stallcup, and G. E. Muscat, The Coactivator-associated Arginine Methyltransferase Is Necessary for Muscle Differentiation: CARM1 COACTIVATES MYOCYTE ENHANCER FACTOR-2, Journal of Biological Chemistry, vol.277, issue.6, pp.4324-4333, 2002.
DOI : 10.1074/jbc.M109835200

S. Frietze, M. Lupien, P. A. Silver, and M. Brown, CARM1 Regulates Estrogen-Stimulated Breast Cancer Growth through Up-regulation of E2F1, Cancer Research, vol.68, issue.1, pp.301-306, 2008.
DOI : 10.1158/0008-5472.CAN-07-1983

S. Majumder, Y. Liu, O. H. Ford, J. L. Mohler, and Y. E. Whang, Involvement of arginine methyltransferase CARM1 in androgen receptor function and prostate cancer cell viability, The Prostate, vol.26, issue.12, pp.1292-1301, 2006.
DOI : 10.1002/pros.20438

C. Teyssier, D. Chen, and M. R. Stallcup, Requirement for Multiple Domains of the Protein Arginine Methyltransferase CARM1 in Its Transcriptional Coactivator Function, Journal of Biological Chemistry, vol.277, issue.48, pp.46066-46072, 2002.
DOI : 10.1074/jbc.M207623200

W. W. Yue, M. Hassler, S. M. Roe1, V. Thompson-vale, and L. H. Pearl, Insights into histone code syntax from structural and biochemical studies of CARM1 methyltransferase, The EMBO Journal, vol.102, issue.20, pp.4402-4412, 2007.
DOI : 10.1038/sj.emboj.7601856

J. S. Sack, S. Thieffine, T. Bandiera, M. Fasolini, G. J. Duke et al., Structural basis for CARM1 inhibition by indole and pyrazole inhibitors, Biochemical Journal, vol.276, issue.2, pp.331-339, 2011.
DOI : 10.1107/S0907444998003254

URL : https://hal.archives-ouvertes.fr/hal-00592572

D. Cheng, S. Valente, S. Castellano, G. Sbardella, R. D. Santo et al., Novel 3,5-Bis(bromohydroxybenzylidene)piperidin-4-ones as Coactivator-Associated Arginine Methyltransferase 1 Inhibitors: Enzyme Selectivity and Cellular Activity, Journal of Medicinal Chemistry, vol.54, issue.13, pp.4928-4932, 2011.
DOI : 10.1021/jm200453n

URL : https://hal.archives-ouvertes.fr/pasteur-00968654

M. Y. Lee and . Stallcup, Minireview: Protein Arginine Methylation of Nonhistone Proteins in Transcriptional Regulation, Molecular Endocrinology, vol.23, issue.4, pp.425-433, 2009.
DOI : 10.1210/me.2008-0380

R. A. Copeland, M. E. Solomon, and V. M. Richon, Protein methyltransferases as a target class for drug discovery, Nature Reviews Drug Discovery, vol.25, issue.9, pp.724-732, 2009.
DOI : 10.1038/nrd2974

W. N. Tsankova, A. Renthal, E. J. Kumar, and . Nesler, Epigenetic regulation in psychiatric disorders, Nature Reviews Neuroscience, vol.276, issue.5, pp.355-67, 2007.
DOI : 10.1038/nrn2132

S. P. Jones and . Baylin, The Epigenomics of Cancer, Cell, vol.128, issue.4, pp.683-92, 2007.
DOI : 10.1016/j.cell.2007.01.029

E. S. Messaoudi, C. Fabbrizio, P. Rodriguez, L. Chuchana, D. Fauquier et al., Coactivator-associated arginine methyltransferase 1 (CARM1) is a positive regulator of the Cyclin E1 gene, Proceedings of the National Academy of Sciences, vol.103, issue.36, pp.13351-13356, 2006.
DOI : 10.1073/pnas.0605692103

URL : https://hal.archives-ouvertes.fr/hal-00169734

J. M. Yost, I. Korboukh, F. Liu, C. Gao, and J. Jin, Targets in Epigenetics: Inhibiting the Methyl Writers of the Histone Code, Current Chemical Genomics, vol.5, issue.Suppl 1, pp.72-84, 2011.
DOI : 10.2174/1875397301005010072

D. Cheng, N. Yadav, R. W. King, M. S. Swanson, E. J. Weinsteini et al., Small Molecule Regulators of Protein Arginine Methyltransferases, Journal of Biological Chemistry, vol.279, issue.23, pp.23892-23899, 2004.
DOI : 10.1074/jbc.M401853200

S. K. Bonham, Y. H. Hemmers, D. M. Lim, M. G. Hill, K. A. Finn et al., Effects of a novel arginine methyltransferase inhibitor on T-helper cell cytokine production, FEBS Journal, vol.104, issue.9, pp.2096-2108, 2010.
DOI : 10.1111/j.1742-4658.2010.07623.x

S. Castellano, C. Milite, R. Ragno, S. Simeoni, A. Mai et al., Design, Synthesis and Biological Evaluation of Carboxy Analogues of Arginine Methyltransferase Inhibitor???1 (AMI-1), ChemMedChem, vol.25, issue.3, pp.398-414, 2010.
DOI : 10.1002/cmdc.200900459

A. V. Purandare, Z. Chen, T. Huynh, S. Pang, J. Geng et al., Pyrazole inhibitors of coactivator associated arginine methyltransferase 1 (CARM1), Bioorganic & Medicinal Chemistry Letters, vol.18, issue.15, pp.4438-4441, 2008.
DOI : 10.1016/j.bmcl.2008.06.026

T. Huynh, Z. Chen, S. Pang, J. Geng, T. Bandiera et al., Optimization of pyrazole inhibitors of Coactivator Associated Arginine Methyltransferase 1 (CARM1), Bioorganic & Medicinal Chemistry Letters, vol.19, issue.11, pp.2924-2927, 2009.
DOI : 10.1016/j.bmcl.2009.04.075

E. Therrien, G. Larouche, S. Mankuallan, M. Nguyen, N. Styhler et al., 1,2-Diamines as inhibitors of co-activator associated arginine methyltransferase 1 (CARM1), Bioorganic & Medicinal Chemistry Letters, vol.19, issue.23, pp.6725-6732, 2009.
DOI : 10.1016/j.bmcl.2009.09.110

H. Wan, T. Huynh, S. Pang, J. Geng, W. Vaccaro et al., Benzo[d]imidazole inhibitors of Coactivator Associated Arginine Methyltransferase 1 (CARM1)???Hit to Lead studies, Bioorganic & Medicinal Chemistry Letters, vol.19, issue.17, pp.5063-5066, 2009.
DOI : 10.1016/j.bmcl.2009.07.040

K. B. Selvi, A. H. Batta, K. Kishore, R. A. Mantelingu, K. Varier et al., Identification of a Novel Inhibitor of Coactivator-associated Arginine Methyltransferase 1 (CARM1)-mediated Methylation of Histone H3 Arg-17, Journal of Biological Chemistry, vol.285, issue.10, pp.7143-7152, 2010.
DOI : 10.1074/jbc.M109.063933

T. Huynh, Z. Chen, S. Pang, J. Geng, T. Bandiera et al., Optimization of pyrazole inhibitors of Coactivator Associated Arginine Methyltransferase 1 (CARM1), Bioorganic & Medicinal Chemistry Letters, vol.19, issue.11, pp.2924-2927, 2009.
DOI : 10.1016/j.bmcl.2009.04.075

D. Cheng, S. Valente, S. Castellano, G. Sbardella, R. D. Santo et al., Novel 3,5-Bis(bromohydroxybenzylidene)piperidin-4-ones as Coactivator-Associated Arginine Methyltransferase 1 Inhibitors: Enzyme Selectivity and Cellular Activity, Journal of Medicinal Chemistry, vol.54, issue.13, pp.4928-4932, 2011.
DOI : 10.1021/jm200453n

URL : https://hal.archives-ouvertes.fr/pasteur-00968654

T. Osborne, R. L. Weller-roska, S. R. Rajski, and P. R. Thompson, In Situ Generation of a Bisubstrate Analogue for Protein Arginine Methyltransferase 1, Journal of the American Chemical Society, vol.130, issue.14, pp.4574-4575, 2008.
DOI : 10.1021/ja077104v

J. Dowden, W. Hong, R. V. Parry, R. A. Pike, and S. G. Ward, Toward the development of potent and selective bisubstrate inhibitors of protein arginine methyltransferases, Bioorganic & Medicinal Chemistry Letters, vol.20, issue.7, pp.2103-2105, 2010.
DOI : 10.1016/j.bmcl.2010.02.069

J. Dowden, R. A. Pike, R. V. Parry, W. Hong, U. A. Muhsen et al., Small molecule inhibitors that discriminate between protein arginine N-methyltransferases PRMT1 and CARM1, Organic & Biomolecular Chemistry, vol.7, issue.22, pp.7814-7821, 2011.
DOI : 10.1039/c1ob06100c

S. J. Sack, T. Thieffine, M. Bandiera, G. J. Fasolini, L. Duke et al., Structural basis for CARM1 inhibition by indole and pyrazole inhibitors, Biochemical Journal, vol.276, issue.2, pp.331-339, 2011.
DOI : 10.1107/S0907444998003254

URL : https://hal.archives-ouvertes.fr/hal-00592572

H. M. Cohen, A. D. Griffiths, D. S. Tawfik, and D. Loakes, Determinants of cofactor binding to DNA methyltransferases: insights from a systematic series of structural variants of S-adenosylhomocysteine, Organic & Biomolecular Chemistry, vol.3, issue.1, pp.152-161, 2005.
DOI : 10.1039/b415446k

P. S. Sikchi and . Hultin, -Boc Protection of Adenosine, Cytidine, and Guanosine Derivatives, The Journal of Organic Chemistry, vol.71, issue.16, pp.5888-5891, 2006.
DOI : 10.1021/jo060430t

D. F. Liu and . Austin, Synthesis of 5???-functionalized adenosine: suppression of cyclonucleoside formation, Tetrahedron Letters, vol.42, issue.18, pp.3153-3154, 2001.
DOI : 10.1016/S0040-4039(01)00395-1

S. S. Petersen and . Rajski, -Nitrobenzenesulfonamides in Nucleoside Synthesis:?? Efficient 5???-Aziridination of Adenosine, The Journal of Organic Chemistry, vol.70, issue.15, pp.5833-5839, 2005.
DOI : 10.1021/jo050205w

URL : https://hal.archives-ouvertes.fr/in2p3-00025581

C. Guérard, M. Bréard, F. Courtois, T. Drujon, and O. Ploux, Synthesis and evaluation of analogues of S-adenosyl-l-methionine, as inhibitors of the E. coli cyclopropane fatty acid synthase, Bioorganic & Medicinal Chemistry Letters, vol.14, issue.7, pp.1661-1664, 2004.
DOI : 10.1016/j.bmcl.2004.01.051

J. Lim, W. Winkler, S. Nakamura, V. Scott, and R. R. Breaker, Molecular-Recognition Characteristics of SAM-Binding Riboswitches, Angewandte Chemie International Edition, vol.67, issue.6, pp.964-968, 2006.
DOI : 10.1002/anie.200503198

C. P. Fonlupt, H. Rey, and . Pacheco, SAH analogs, modified in the aminoacid region, inhibitors of phosphatidyl-ethanolamine methylase activity and 3H-SAH binding to rat brain membranes, Life Sciences, vol.31, issue.7, pp.655-659, 1982.
DOI : 10.1016/0024-3205(82)90766-4

J. C. Chang and . Coward, Analogues of S-adenosylhomocysteine as potential inhibitors of biological transmethylation. Synthesis of analogues with modifications at the 5'-thioether linkage, Journal of Medicinal Chemistry, vol.19, issue.5, pp.684-691, 1976.
DOI : 10.1021/jm00227a021

R. D. Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, 2011.

W. L. Delano, The PyMOL User's Manual, 2002.

T. M. Lakowski and A. , A Kinetic Study of Human Protein Arginine N-Methyltransferase 6 Reveals a Distributive Mechanism, Journal of Biological Chemistry, vol.283, issue.15, pp.10015-10025, 2008.
DOI : 10.1074/jbc.M710176200

W. W. Yue, M. Hassler, S. M. Roe1, V. Thompson-vale, and L. H. Pearl, Insights into histone code syntax from structural and biochemical studies of CARM1 methyltransferase, The EMBO Journal, vol.102, issue.20, pp.4402-4412, 2007.
DOI : 10.1038/sj.emboj.7601856

X. Zhang and X. Cheng, Structure of the Predominant Protein Arginine Methyltransferase PRMT1 and Analysis of Its Binding to Substrate Peptides, Structure, vol.11, issue.5, pp.509-529, 2003.
DOI : 10.1016/S0969-2126(03)00071-6

P. Velichkova and F. Himo, Theoretical Study of the Methyl Transfer in Guanidinoacetate Methyltransferase, The Journal of Physical Chemistry B, vol.110, issue.1, pp.16-19, 2006.
DOI : 10.1021/jp055120d

V. Avogadro, Retrieved from Avogadro: an open-source molecular builder and visualization tool. Version 1.XX, 2010.

J. Dowden, W. Hong, R. V. Parry, R. A. Pike, and S. G. Ward, Toward the development of potent and selective bisubstrate inhibitors of protein arginine methyltransferases, Bioorganic & Medicinal Chemistry Letters, vol.20, issue.7, pp.2103-2105, 2010.
DOI : 10.1016/j.bmcl.2010.02.069

J. Dowden, R. A. Pike, R. V. Parry, W. Hong, U. A. Muhsen et al., Small molecule inhibitors that discriminate between protein arginine N-methyltransferases PRMT1 and CARM1, Organic & Biomolecular Chemistry, vol.7, issue.22, pp.7814-7821, 2011.
DOI : 10.1039/c1ob06100c

J. L. Lamattina, P. A. Mccarthy, L. A. Reiter, W. F. Holt, and L. A. Yeh, Antiulcer agents. 4-Substituted 2-guanidinothiazoles: reversible, competitive, and selective inhibitors of gastric H+,K+-ATPase, Journal of Medicinal Chemistry, vol.33, issue.2, pp.543-52, 1990.
DOI : 10.1021/jm00164a012

H. C. Kolb, M. G. Finn, and K. B. Sharpless, Click Chemistry: Diverse Chemical Function from a Few Good Reactions, Angewandte Chemie International Edition, vol.36, issue.6, pp.2004-2021, 2001.
DOI : 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5

W. L. Mock, T. A. Irra, J. P. Wepsiec, and T. L. Manimaran, Cycloaddition induced by cucurbituril. A case of Pauling principle catalysis, The Journal of Organic Chemistry, vol.48, issue.20, pp.3619-3620, 1983.
DOI : 10.1021/jo00168a070

W. G. Lewis, L. G. Green, F. Grynszpan, Z. Radic, P. R. Carlier et al., Click Chemistry In Situ: Acetylcholinesterase as a Reaction Vessel for the Selective Assembly of a Femtomolar Inhibitor from an Array of Building Blocks, Angewandte Chemie International Edition, vol.274, issue.6, pp.1053-1057, 2002.
DOI : 10.1002/1521-3773(20020315)41:6<1053::AID-ANIE1053>3.0.CO;2-4

S. K. Mamidyala and M. G. Finn, In situ click chemistry: probing the binding landscapes of biological molecules, Chemical Society Reviews, vol.48, issue.158, pp.1252-1261, 2010.
DOI : 10.1039/b901969n

P. R. Carlier, D. M. Du, Y. F. Han, J. Liu, E. Perola et al., Dimerization of an Inactive Fragment of Huperzine A Produces a Drug with Twice the Potency of the Natural Product, Angewandte Chemie International Edition, vol.39, issue.10, pp.1775-1777, 2000.
DOI : 10.1002/(SICI)1521-3773(20000515)39:10<1775::AID-ANIE1775>3.0.CO;2-Q

L. Tong, Viral Proteases, Chemical Reviews, vol.102, issue.12, pp.4609-4626, 2002.
DOI : 10.1021/cr010184f

M. Whiting, J. Muldoon, Y. C. Lin, M. Silverman, W. Lindstrom et al., Inhibitors of HIV-1 Protease by Using In Situ Click Chemistry, Angewandte Chemie International Edition, vol.67, issue.9, pp.1435-1439, 2006.
DOI : 10.1002/anie.200502161

S. W. Wang, Solid phase synthesis of protected peptides via photolytic cleavage of the .alpha.-methylphenacyl ester anchoring linkage, The Journal of Organic Chemistry, vol.41, issue.20, pp.3258-3261, 1976.
DOI : 10.1021/jo00882a010

G. Lu, Improved synthesis of 4-alkoxybenzyl alcohol resin, The Journal of Organic Chemistry, vol.46, issue.17, pp.3433-3436, 1981.
DOI : 10.1021/jo00330a009

A. J. Link, M. K. Vink, and D. A. , Presentation and Detection of Azide Functionality in Bacterial Cell Surface Proteins, Journal of the American Chemical Society, vol.126, issue.34, pp.10598-10602, 2004.
DOI : 10.1021/ja047629c

B. Ganem, Y. Li, and J. Henion, Detection of noncovalent receptor-ligand complexes by mass spectrometry, Journal of the American Chemical Society, vol.113, issue.16, pp.6294-6296, 1991.
DOI : 10.1021/ja00016a069

V. Katta and B. T. Chait, Observation of the heme-globin complex in native myoglobin by electrospray-ionization mass spectrometry, Journal of the American Chemical Society, vol.113, issue.22, pp.8534-8535, 1991.
DOI : 10.1021/ja00022a058

A. N. Glazer, Specific Chemical Modification of Proteins, Annual Review of Biochemistry, vol.39, issue.1, pp.101-130, 1970.
DOI : 10.1146/annurev.bi.39.070170.000533

J. M. Chalker, G. J. Bernandes, Y. A. Lin, and B. G. Davis, Chemical Modification of Proteins at Cysteine: Opportunities in Chemistry and Biology, Chemistry - An Asian Journal, vol.71, issue.5, pp.630-640, 2009.
DOI : 10.1002/asia.200800427

P. Renard, H. Schwebel, P. Vayron, E. Leclerc, S. Dias et al., Optimized access to alkyl thiocyanates, Tetrahedron Letters, vol.42, issue.48, pp.8479-8481, 2001.
DOI : 10.1016/S0040-4039(01)01846-9

M. Bodanszky and A. Bodanszky, In The Practice of Peptide Synthesis, pp.68-69, 1994.

R. L. Osborne, S. R. Weller-roska, P. R. Rajski, and . Thompson, In Situ Generation of a Bisubstrate Analogue for Protein Arginine Methyltransferase 1, Journal of the American Chemical Society, vol.130, issue.14, pp.4574-4575, 2008.
DOI : 10.1021/ja077104v

A. L. Grossberg and D. Pressman, Modification of arginine in the active sites of antibodies, Biochemistry, vol.7, issue.1, pp.272-279, 1968.
DOI : 10.1021/bi00841a033

M. Z. Atassi and A. V. Thomas, Immunochemistry of sperm whale myoglobin. IV. Role of the arginine residues in the conformation and differentiation of their roles in the antigenic reactivity, Biochemistry, vol.8, issue.8, pp.3385-3394, 1969.
DOI : 10.1021/bi00836a037

C. Marchi, E. Trepat, M. Moreno-manas, A. Vallribera, and E. Molins, Ni(II)-catalyzed Michael additions. Part 2: Dynamic kinetic resolution in the reduction of chiral ??-hydrazino-??-ketoacid derivatives, Tetrahedron, vol.58, issue.28, pp.5699-5708, 2002.
DOI : 10.1016/S0040-4020(02)00538-0

N. L. Martin and R. M. Liskamp, -Arginine Analogues Suitable for Solid Phase Peptide Synthesis, The Journal of Organic Chemistry, vol.73, issue.19, pp.7849-7851, 2008.
DOI : 10.1021/jo801517f

URL : https://hal.archives-ouvertes.fr/edutice-00109613

C. J. Nielsen and C. E. Sjogfogren, The vibrational spectra, molecular structure and conformation of organic azides, Journal of Molecular Structure: THEOCHEM, vol.150, issue.3-4, p.361, 1987.
DOI : 10.1016/0166-1280(87)85033-9

. Hcl-dioxane, 88 M) and water (0.29 M) were dropwise added to compound 60

. Hcl-dioxane, 88 M) and water (0.29 M) were dropwise, p.61

. Hcl-dioxane, 88 M) and water (0.29 M) were dropwise added to compound 76

. Amine-20a, mL) and stirred at room temperature To the solution, 2-oxopropanal (130 µL, 0.252 mmol, 1.0 eq) was dropwise added HOAc (15 µL, 0.252 mmol, 1.0 eq) and NaBH 3 CN (25 mg, 0.403 mmol, 1.6 eq) were successively added and the reaction mixture was stirred at room temperature for 16 hours. Then the reaction mixture was diluted in ethyl acetate (50 mL) and washed with a solution of NaOH 1N (2 x 20 mL), the aqueous layer was extracted with dichloromethane (2 x 20 mL) dried over Na 2 SO 4 , filtered and evaporated. The crude was 2.23-2.90 (m, 6H)), 302 mmol, 1.2 eq) was dissolved in anhydrous methanol (s, 1H). 13 C NMR (CDCl, pp.23-26

. Hcl-dioxane, 88 M) and water (0.29 M) were dropwise added to compound 78

. Hcl-dioxane, 88 M) and water (0.29 M) were dropwise added to compound 83

1. Hz and J. =. , 42 (s, 2H) 13 C NMR (D 2 O, 100 MHz): ? (ppm) = 26.2; 32, pp.12-98

. Hcl-dioxane, 48 M) and water (360 µL) were dropwise added to compound 68

. Hcl-dioxane, 88 M) and water (0.29 M) were dropwise added to compound 98

. Hcl-dioxane, 88 M) and water (0.29 M) were dropwise added to compound 99

. Hcl-dioxane, 88 M) and water (0.29 M) were dropwise added to compound 100

. Hcl-dioxane, 88 M) and water (0.29 M) were dropwise added to compound 101