Skip to Main content Skip to Navigation

Diversité phylogénétique et fonctionnelle des Eumycètes dans les écosystèmes pélagiques

Abstract : Microorganisms play major roles in aquatic ecosystems, primarily as the main actors for organic matter mineralization and recycling. “True” fungi (i.e. Eumycota) are among heterotrophic microorganisms that are highly efficient in recycling organic materials in natural ecosystems. However, the overall diversity of fungi and their quantitative and functional importance remain largely unknown in typical pelagic ecosystems. Environmental 18S rDNA surveys have recently highlighted the importance of microscopic fungi in the diversity of picoeukaryotes (size < 5 μm) in lake ecosystems, including particularly the members of chytridiomycetes (i.e. chytrids) as the dominant phyla. These studies and the known major roles of fungi in natural ecosystems such as soils have leaded us to venture the hypothesis that fungal diversity and functional roles are important structuring factors in pelagic ecosystems. The main aims of the thesis were to examine the overall diversity, genetic structure and quantitative importance of various phyla belonging to the Kingdom Fungi in freshwater pelagic ecosystems. Methodological tools were also developed for ecological investigations of fungal populations of interest. Phylogenetic diversity and quantitative importance of fungi (size classe: 0.6 and 150 μm) were analysed in three contrasting pelagic lakes. Environmental 18S and ITS rDNA surveys were performed during spring 2007 in the oligomesotrophic Lake Pavin, the eutrophic Lake Aydat, and the mesotrophic and humic Lake Vassivière, all located in the French Massif Central. Phylogenetic affiliation of sequences confirmed the presence and the substantial diversity of chytridiomycetes, known as parasites of primarily phytoplankton. We also have unveiled a sizeable number of sequences belonging to the fungal lineages of ascomycetes and basidiomycetes, mainly known as saprophytes. The seasonal dynamics of fungal community structure (essayed by TRFLP),and the quantitative importance of various taxonomic divisions (estimates by real time quantitative PCR or qPCR), revealed significant differences with seasons and with ecosystems. These differences were linked to phytoplankton composition and population successions, with at times the influence of allochthonous inputs, primarily for the eutrophic Lake Aydat. Finally, molecular sequences obtained during the few past years allowed the development of primers for targeting microscopic fungal lineages of interest, and the ecological study of their in situ dynamics using qPCR and FISH (fluorescent in situ hybridization) approaches. Overall, we consider that the acquisition of complementary data is necessary to allow the inclusion of fungi and their main functions (i.e. saprophytisms and parasitism) in the energy and matter fluxes in pelagics ecosystems, and the related biogeochemical cycling.
Complete list of metadatas

Cited literature [166 references]  Display  Hide  Download
Contributor : Abes Star :  Contact
Submitted on : Friday, January 4, 2013 - 2:02:11 AM
Last modification on : Friday, August 23, 2019 - 3:50:04 PM
Document(s) archivé(s) le : Friday, April 5, 2013 - 5:49:31 AM


Version validated by the jury (STAR)


  • HAL Id : tel-00769938, version 1



Marlène Jobard-Portas. Diversité phylogénétique et fonctionnelle des Eumycètes dans les écosystèmes pélagiques. Sciences agricoles. Université Blaise Pascal - Clermont-Ferrand II, 2010. Français. ⟨NNT : 2010CLF22090⟩. ⟨tel-00769938⟩



Record views


Files downloads